WO2016088466A1 - 複合基板の製造方法及び複合基板 - Google Patents

複合基板の製造方法及び複合基板 Download PDF

Info

Publication number
WO2016088466A1
WO2016088466A1 PCT/JP2015/079763 JP2015079763W WO2016088466A1 WO 2016088466 A1 WO2016088466 A1 WO 2016088466A1 JP 2015079763 W JP2015079763 W JP 2015079763W WO 2016088466 A1 WO2016088466 A1 WO 2016088466A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
substrate
crystal silicon
single crystal
thin film
Prior art date
Application number
PCT/JP2015/079763
Other languages
English (en)
French (fr)
Inventor
昌次 秋山
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2016562345A priority Critical patent/JPWO2016088466A1/ja
Priority to CN201580066099.8A priority patent/CN107004573A/zh
Priority to US15/532,517 priority patent/US20170330747A1/en
Priority to EP15864392.4A priority patent/EP3229260A4/en
Priority to SG11201703377SA priority patent/SG11201703377SA/en
Publication of WO2016088466A1 publication Critical patent/WO2016088466A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/7602Making of isolation regions between components between components manufactured in an active substrate comprising SiC compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body

Definitions

  • the present invention relates to a composite substrate manufacturing method and a composite substrate, and more particularly to a composite substrate manufacturing method capable of manufacturing a nanocarbon film with high quality and low cost, and a composite substrate manufactured by the manufacturing method. .
  • nanocarbons typified by graphene, fullerene, and carbon nanotubes have attracted attention as new electronic device materials.
  • research is progressing as a platform for next-generation electronic devices because graphene has extremely high mobility (also referred to as 100 times that of silicon) and higher durability than steel.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a composite substrate capable of manufacturing a defect-free nanocarbon film at low cost and a composite substrate manufactured by the manufacturing method. To do.
  • the present inventor has invented the following method. That is, the thickness of the single crystal silicon carbide layer that is usually graphenized is sufficient for the number of atoms, and a thick silicon carbide layer is unnecessary, so a single crystal silicon carbide thin film is transferred to a support wafer (handle wafer). Thus, a single crystal silicon carbide thin film is obtained. Specifically, a single crystal silicon carbide wafer into which hydrogen ions have been previously implanted is bonded to a support wafer, and after obtaining a sufficient bonding strength, peeling is performed at the ion implantation interface. At that time, the surfaces on which the single crystal silicon carbide substrate and the handle substrate are bonded are smoothed to improve the adhesion strength of the bonding. As a result, a number of single crystal silicon carbide thin films can be transferred from one single crystal silicon carbide wafer, and the cost merit is extremely high.
  • the present invention provides the following composite substrate manufacturing method and composite substrate.
  • Ions are implanted from the surface of the single-crystal silicon carbide substrate to form an ion-implanted region, and an ion-implanted surface (hereinafter referred to as “ion-implanted surface”) of the single-crystal silicon carbide substrate and the main surface of the handle substrate.
  • ion-implanted surface an ion-implanted surface of the single-crystal silicon carbide substrate and the main surface of the handle substrate.
  • the single crystal silicon carbide substrate is peeled off in the ion implantation region, and the single crystal silicon carbide thin film is transferred onto the handle substrate.
  • the surface roughness RMS of each surface which bonds a handle substrate together is 1.00 nm or less, The manufacturing method of the composite substrate characterized by the above-mentioned.
  • a thin film made of a seed metal material is formed, and the surface roughness RMS of the surface is 1.00 nm or less.
  • the bonding is performed at the subsequent ion implantation interface.
  • the single crystal silicon carbide thin film can be transferred without peeling at the bonding interface between the crystal silicon carbide substrate and the handle substrate.
  • a substrate made of silicon carbide has a very high hardness, it is difficult to smooth the surface by polishing.
  • By forming a specific thin film on the surface it becomes easy to smooth the surface, and Good adhesion strength can be obtained in the bonding.
  • FIG. 4E is a cross-sectional view showing a state in which the single crystal silicon carbide substrate is peeled off in the ion implantation region
  • FIG. 4E is a cross-sectional view showing a state in which the single crystal silicon carbide substrate is peeled off in the ion implantation region
  • 5F is a cross-sectional view of the composite substrate. It is the schematic which shows the manufacturing process of 2nd Embodiment in the manufacturing method of the composite substrate which concerns on this invention, (a) is sectional drawing of the single crystal silicon carbide substrate by which ion implantation was carried out and the ion implantation surface was smoothed, (B) is a cross-sectional view of a handle substrate with one main surface smoothed, (c) is a cross-sectional view showing a state where a single crystal silicon carbide substrate and a handle substrate are bonded together, and (d) is a single crystal in an ion implantation region. Sectional drawing which shows the state which peeled the silicon carbide substrate, (e) is sectional drawing of a composite substrate.
  • the method for manufacturing a composite substrate according to the first embodiment of the present invention includes a hydrogen ion implantation step (step 1) for a single crystal silicon carbide substrate, and an ion implantation surface of the single crystal silicon carbide substrate.
  • Smoothing step (step 2), handle substrate smoothing step (step 3), single crystal silicon carbide substrate and / or handle substrate surface activation treatment step (step 4), single crystal silicon carbide substrate and handle substrate The bonding process (process 5), the peeling process process (process 6), and the single crystal silicon carbide thin film polishing process (process 7) are performed in this order.
  • the single crystal silicon carbide substrate 1 to be bonded to the handle substrate 4 is preferably selected from those having a crystal structure of 4H—SiC, 6H—SiC, or 3C—SiC.
  • the size of the single crystal silicon carbide substrate 1 and the handle substrate 4 to be described later is set based on the size, cost, etc. of the required nanocarbon film.
  • the thickness of the single crystal silicon carbide substrate 1 is preferably in the vicinity of the substrate thickness of the SEMI standard or JEIDA standard from the viewpoint of handling.
  • the single crystal silicon carbide substrate 1 a commercially available one, for example, a single crystal silicon carbide wafer marketed for power devices may be used, and the surface thereof is finish-polished by a CMP (Chemical Mechanical Polishing (or Planarization)) process. It is preferable to use a flat and smooth surface.
  • CMP Chemical Mechanical Polishing (or Planarization)
  • the ion implantation energy may be set so as to obtain a desired thin film thickness.
  • He ions, B ions, or the like may be implanted at the same time, and any ions may be employed as long as the same effect can be obtained.
  • the ion implantation depth corresponds to the desired thickness of the single crystal silicon carbide thin film.
  • the dose amount of hydrogen ions (H + ) implanted into single crystal silicon carbide substrate 1 is preferably 1.0 ⁇ 10 16 atoms / cm 2 to 9.0 ⁇ 10 17 atoms / cm 2 . If it is less than 1.0 ⁇ 10 16 atoms / cm 2 , the interface may not be embrittled. If it exceeds 9.0 ⁇ 10 17 atoms / cm 2 , bubbles are transferred during heat treatment after bonding. It may become defective.
  • the dose is preferably 5.0 ⁇ 10 15 atoms / cm 2 to 4.5 ⁇ 10 17 atoms / cm 2 . If it is less than 5.0 ⁇ 10 15 atoms / cm 2 , the interface may not be embrittled. If it exceeds 4.5 ⁇ 10 17 atoms / cm 2 , bubbles are transferred during heat treatment after bonding. It may become defective.
  • the depth from the surface of the ion-implanted substrate to the ion-implanted region 2 corresponds to the desired thickness of the single-crystal silicon carbide thin film 6 provided on the handle substrate 4, and is usually
  • the thickness is about 100 to 2,000 nm, preferably about 300 to 500 nm, more preferably about 400 nm.
  • the thickness of the ion implantation region 2 (that is, the ion distribution thickness) is such that it can be easily peeled off by mechanical impact or the like, and is preferably about 200 to 400 nm, more preferably about 300 nm.
  • an insulating film such as a silicon oxide film of about 50 to 500 nm may be formed in advance on the surface of the single crystal silicon carbide substrate 1, and hydrogen ions or hydrogen molecular ions may be implanted therethrough. Thereby, the effect of suppressing channeling of implanted ions is obtained.
  • Step 2 Step of smoothing ion-implanted surface of single crystal silicon carbide substrate (FIG. 1B)
  • a surface (ion implantation surface) on which the single crystal silicon carbide substrate 1 is bonded is a smooth surface having a surface roughness of RMS 1.00 nm or less.
  • the surface of the single crystal silicon carbide substrate 1 can be directly polished and smoothed, but it is not easy to polish a very hard substrate made of silicon carbide. Therefore, in this step, any one of the following steps 2-1 and 2-2 is performed to smooth the surface of the single crystal silicon carbide substrate 1.
  • Thin film 3a made of a material having heat resistance to the heat treatment performed later on the ion-implanted surface of single crystal silicon carbide substrate 1 and having the same or close thermal expansion coefficient as single crystal silicon carbide thin film 6 finally formed.
  • silicon oxide for example, SiO 2
  • silicon nitride aluminum nitride
  • silicon for example, amorphous silicon, polycrystalline silicon
  • alumina Al 2 O 3
  • zirconium oxide for example, zirconia
  • silicon carbide for example, amorphous silicon carbide, polycrystalline silicon carbide.
  • a plurality of materials are selected from these materials, either a structure laminated for each material or a single layer structure made of a mixture of these materials may be used.
  • the film thickness of the thin film 3a is preferably 1 to 200 nm, more preferably 1 to 100 nm, and still more preferably 1 to 20 nm. If the film thickness is less than 1 nm, the surface is not completely covered due to in-plane variation of the film thickness, and the adhesion of the bonding to the handle substrate 4 may be deteriorated. On the other hand, if it exceeds 200 nm, the surface roughness of the deposited thin film 3a is deteriorated, and the desired smoothness may not be obtained even by polishing. Note that the film thickness to be formed needs to be a film thickness in consideration of the thickness of polishing performed later.
  • the thin film 3a may be formed by any film forming method that can be formed on the single crystal silicon carbide substrate 1 with good adhesion.
  • a silicon oxide thin film is formed by PECVD, and silicon nitride, aluminum nitride,
  • a thin film of silicon and silicon carbide is preferably formed by a sputtering method.
  • the thin film 3a is polished, and the surface roughness RMS of the surface is set to 1.00 nm or less, preferably 0.80 nm or less, more preferably 0.70 nm or less.
  • the surface roughness RMS of the thin film 3a exceeds 1.00 nm, the bonding interface with the handle substrate 4 (that is, the thin film 3b) during the peeling process for forming a single crystal silicon carbide thin film and the subsequent heat treatment performed later. At the interface).
  • the surface roughness RMS (Root-mean-square) is the root mean square roughness Rq as defined in JIS B0601: 2013.
  • the polishing method of the thin film 3a is preferably a chemical mechanical polishing method, and the conditions differ depending on the material of the thin film 3a.
  • Step 2-2 At least one selected from metal materials having a melting point of 950 ° C. or higher, for example, Ti, Au, Ag, Cu, Ni, Co, Fe, Cr, Zr, Mo, Ta, and W, on the ion implantation surface of the single crystal silicon carbide substrate 1.
  • a thin film 3a made of a seed metal material is formed.
  • a metal material having a melting point of 950 ° C. or higher it is possible to prevent the thin film 3a from being melted by a low-temperature heat treatment in a subsequent peeling treatment process.
  • a plurality of metal materials are selected from these metal materials, either a structure in which the metal materials are laminated or a single layer structure made of an alloy material of the metal materials may be used.
  • the film thickness of the thin film 3a is preferably 1 to 100 nm, more preferably 1 to 20 nm, and still more preferably 1 to 10 nm. If the film thickness is less than 1 nm, the substrate surface is not completely covered due to in-plane variation of the film thickness, and there is a possibility that the adhesion of the bonding to the handle substrate 4 may be deteriorated. On the other hand, if it exceeds 100 nm, the surface roughness of the thin film 3a is deteriorated, and there is a possibility that the adhesion of the bonding to the handle substrate 4 is deteriorated.
  • the thin film 3a can be formed by any method as long as it can be formed on the single crystal silicon carbide substrate 1 with good adhesion.
  • the thin film 3a may be formed by an electron beam evaporation method.
  • the surface roughness RMS of the surface is 1.00 nm or less, preferably 0.80 nm or less. Preferably, it can be 0.75 nm or less.
  • the order of the above steps 1 and 2 is reversed, and the thin film 3a is first formed on the surface of the single crystal silicon carbide substrate 1 to smooth the surface, and then the ion implantation is performed from above the thin film 3a. Good.
  • the handle substrate 4 used in the present invention is preferably made of a heat resistant material (excluding single crystal silicon carbide) having a heat resistant temperature of 1,100 ° C. or higher.
  • a heat resistant material excluding single crystal silicon carbide
  • silicon carbide that is not single crystal that is, amorphous silicon carbide or polycrystalline Silicon carbide, quartz glass, sapphire, crystalline silicon (single crystal silicon or polycrystalline silicon), silicon nitride, diamond, or aluminum nitride can be used.
  • silicon carbide that is not single crystal that is, amorphous silicon carbide or polycrystalline Silicon carbide, quartz glass, sapphire, crystalline silicon (single crystal silicon or polycrystalline silicon), silicon nitride, diamond, or aluminum nitride
  • those made of amorphous silicon carbide or polycrystalline silicon carbide having a thermal expansion coefficient close to that of single crystal silicon carbide and having heat resistance to heat treatment performed later are more preferable.
  • the substrate can be prevented from being damaged by heat treatment in a subsequent single crystal silicon carbide thin film polishing step.
  • the thickness of the handle substrate 4 is not particularly limited, but in the same manner as the single crystal silicon carbide substrate 1, a handle near the normal SEMI standard or JEIDA standard is preferable.
  • a thin film made of a material having heat resistance to a heat treatment performed later and having a thermal expansion coefficient the same as or close to that of the single crystal silicon carbide thin film 6 on at least the surface of the handle substrate 4 to be bonded to the single crystal silicon carbide substrate 1 3b is formed to smooth the surface.
  • the same processing as in step 2-1 or step 2-2 is performed. That is, the processing corresponding to step 2-1 is performed as follows. First, silicon oxide (for example, SiO 2 ), silicon nitride, aluminum nitride, silicon (for example, amorphous silicon, polycrystalline silicon), alumina (Al 2 ) is formed on the bonding surface of the handle substrate 4 to the single crystal silicon carbide substrate 1.
  • a thin film 3b made of at least one material selected from O 3 ), zirconium oxide (eg, zirconia (ZrO 2 )) and silicon carbide (eg, amorphous silicon carbide, polycrystalline silicon carbide) is formed.
  • zirconium oxide eg, zirconia (ZrO 2 )
  • silicon carbide eg, amorphous silicon carbide, polycrystalline silicon carbide
  • the thickness of the thin film 3b is preferably 1 to 200 nm, more preferably 1 to 100 nm, and still more preferably 1 to 20 nm. If the film thickness is less than 1 nm, the surface is not completely covered due to in-plane variation of the film thickness, and there is a possibility that the adhesiveness of bonding to the single crystal silicon carbide substrate 1 is deteriorated. On the other hand, if it exceeds 200 nm, the surface roughness of the deposited thin film 3b is deteriorated, and the desired smoothness may not be obtained even by polishing. Note that the film thickness to be formed needs to be a film thickness in consideration of the thickness of polishing performed later.
  • the thin film 3b may be formed by any film forming method that can be formed on the handle substrate 4 with good adhesion.
  • a silicon oxide thin film is formed by PECVD or thermal oxidation, and silicon nitride or aluminum nitride is formed.
  • Silicon, alumina, zirconium oxide, and silicon carbide thin films may be formed by a sputtering method.
  • the thin film 3b is polished, and the surface roughness RMS of the surface is made 1.00 nm or less, preferably 0.80 nm or less, more preferably 0.70 nm or less.
  • the surface roughness RMS of the thin film 3b exceeds 1.00 nm, a bonding interface with the single crystal silicon carbide substrate 1 (that is, the thin film) in a peeling process for forming a single crystal silicon carbide thin film to be performed later or a subsequent heat treatment. Peeling occurs at the interface with 3a.
  • the polishing method of the thin film 3b is preferably a chemical mechanical polishing method, and the conditions differ depending on the material of the thin film 3b.
  • the process corresponding to step 2-2 is performed as follows.
  • a metal material having a melting point of 950 ° C. or higher for example, Ti, Au, Ag, Cu, Ni, Co, Fe, Cr, Zr, Mo, on the bonding surface (main surface) of the handle substrate 4 to the single crystal silicon carbide substrate 1.
  • a thin film 3b made of at least one metal material selected from Ta and W is formed.
  • a metal material having a melting point of 950 ° C. or higher it is possible to prevent the thin film 3a from being melted by a low-temperature heat treatment in a subsequent peeling treatment process.
  • a plurality of metal materials are selected from these metal materials, either a structure in which the metal materials are laminated or a single layer structure made of an alloy material of the metal materials may be used.
  • the thickness of the thin film 3b is preferably 1 to 100 nm, more preferably 1 to 20 nm, and still more preferably 1 to 10 nm. If the film thickness is less than 1 nm, the substrate surface is not completely covered due to in-plane variation of the film thickness, and there is a possibility that the adhesiveness of bonding to the single crystal silicon carbide substrate 1 is deteriorated. On the other hand, if it exceeds 100 nm, the surface roughness of the thin film 3b is deteriorated, and there is a possibility that the adhesiveness of bonding to the single crystal silicon carbide substrate 1 is deteriorated.
  • the thin film 3b may be formed by any method as long as it can be formed on the handle substrate 4 with good adhesion.
  • the thin film 3b may be formed by an electron beam evaporation method.
  • the surface roughness RMS of the surface is 1.00 nm or less, preferably 0.80 nm or less, more preferably 0. .75 nm or less.
  • the surface roughness RMS of the thin film 3b exceeds 1.00 nm, a bonding interface with the single crystal silicon carbide substrate 1 (that is, in the subsequent peeling treatment for forming the single crystal silicon carbide thin film and the subsequent heat treatment (that is, , Peeling occurs at the interface with the thin film 3a.
  • the adhesiveness of bonding is improved and it is preferable.
  • the surface roughness of the thin films 3a and 3b is made within a certain range (for example, the difference between the two in the surface roughness RMS is within ⁇ 0.05 nm), which further improves the adhesion of bonding.
  • Step 4 Surface activation treatment step of single crystal silicon carbide substrate and / or handle substrate
  • the surface to be bonded to the single crystal silicon carbide substrate 1 and the handle substrate 4 that is, the surfaces of the thin films 3a and 3b, is subjected to plasma activation treatment, vacuum ion beam treatment, or immersion treatment in ozone water as the surface activation treatment.
  • plasma activation treatment vacuum ion beam treatment, or immersion treatment in ozone water as the surface activation treatment.
  • the single crystal silicon carbide substrate 1 and / or the handle substrate 4 that have been subjected to the processes up to the step 3 are placed in a vacuum chamber, and the plasma gas is introduced under reduced pressure. Thereafter, the surface is exposed to high-frequency plasma of about 100 W for about 5 to 10 seconds to subject the surface to plasma activation treatment.
  • the plasma gas oxygen gas, hydrogen gas, nitrogen gas, argon gas, a mixed gas thereof, or a mixed gas of hydrogen gas and helium gas can be used.
  • the single crystal silicon carbide substrate 1 and / or the handle substrate 4 is placed in a high vacuum chamber, and an activation treatment is performed by irradiating the surface to be bonded with an ion beam of Ar or the like.
  • the single crystal silicon carbide substrate 1 and / or the handle substrate 4 is immersed in ozone water in which ozone gas is dissolved, and the surface thereof is activated.
  • the surface activation treatment described above may be performed only on the single crystal silicon carbide substrate 1 or only on the handle substrate 4, but is preferably performed on both the single crystal silicon carbide substrate 1 and the handle substrate 4.
  • the surface activation treatment may be any one of the above methods, or a combination treatment may be performed.
  • the surface of the single crystal silicon carbide substrate 1 and the handle substrate 4 on which the surface activation process is performed is preferably a surface to be bonded, that is, the surfaces of the thin films 3a and 3b.
  • the warpage of the substrate occurs due to the difference in coefficient of thermal expansion between the single crystal silicon carbide substrate 1 and the handle substrate 4, but it is preferable to employ a temperature suitable for each material to suppress the warpage.
  • the heat treatment time is preferably 2 to 24 hours depending on the temperature to some extent.
  • the thin film 3a and the thin film 3b are in close contact to form a single layer, the intervening layer 3, and the single crystal silicon carbide substrate 1 and the handle substrate 4 are in close contact with each other through the intervening layer 3. It becomes.
  • the bonded substrate 5 is heated to a high temperature, and by this heat, a fine bubble of a component ion-implanted in the ion-implanted region 2 is generated to cause peeling, thereby producing a single crystal silicon carbide substrate 1a.
  • a thermal exfoliation method for separating the components it is possible to apply a thermal exfoliation method for separating the components.
  • mechanical peeling is generated by applying a physical impact to one end of the ion implantation region 2 while performing a low temperature heat treatment (eg, 500 to 900 ° C., preferably 500 to 700 ° C.) that does not cause thermal peeling.
  • a mechanical peeling method for separating the single crystal silicon carbide substrate 1a can be applied.
  • the mechanical peeling method is more preferable because the roughness of the transfer surface after the transfer of the single crystal silicon carbide thin film is relatively smaller than that of the thermal peeling method.
  • the composite substrate 7 is heated at a heating temperature of 700 to 1,000 ° C. under a temperature higher than that during the peeling process and a heating time of 1 to 24 hours, so that the single crystal silicon carbide thin film 6 and the handle are heated. You may perform the heat processing which improves adhesiveness with the board
  • the thin film 3a and the thin film 3b are in close contact with each other, the thin film 3a is in close contact with the single crystal silicon carbide substrate 1, and the thin film 3b is in close contact with the handle substrate 4; No peeling occurs at any part other than the peeling part.
  • the single-crystal silicon carbide substrate 1a after being peeled can be reused as a bonding substrate in the composite substrate manufacturing method again by polishing or cleaning the surface.
  • Step 7 Single crystal silicon carbide thin film polishing step
  • the surface of the single crystal silicon carbide thin film 6 on the handle substrate 4 is mirror-finished (FIG. 1 (f)).
  • the single crystal silicon carbide thin film 6 is subjected to chemical mechanical polishing (CMP polishing) to finish a mirror surface.
  • CMP polishing chemical mechanical polishing
  • a conventionally known CMP polishing used for planarization of a silicon wafer or the like may be used.
  • the composite substrate 7 obtained as described above is used to form a nanocarbon film on the handle substrate 4 (intervening layer 3) by sublimating silicon atoms from the single crystal silicon carbide thin film 6 by heating.
  • the composite substrate 7 is preferably heated to 1,100 ° C. or higher, more preferably 1,200 to 1,400 ° C., and still more preferably 1,250 to 1,350 ° C., to thereby form the single crystal silicon carbide thin film 6.
  • the atmosphere of this heat treatment is preferably a vacuum atmosphere (reduced pressure) because silicon atoms are easily sublimated.
  • the temperature condition at this time also changes depending on the atmosphere, the number of processed sheets, and the like, so that an optimal temperature is appropriately set.
  • the nanocarbon film after sublimation has a structure in which either fullerene, graphene, carbon nanotube, or two or more selected from these are mixed depending on the production conditions and the like. What is necessary is just to select suitably by a use.
  • the formation of the thin film 3a in the step 2 or the formation of the thin film 3b in the step 3 may be omitted.
  • the ion implantation surface of single crystal silicon carbide substrate 1 is polished to have a surface roughness of RMS 1.00 nm or less.
  • the bonding surface of the handle substrate 4 with the single crystal silicon carbide substrate 1 is polished to a surface roughness of RMS 1.00 nm or less.
  • FIG. 2 the manufacturing process figure of the manufacturing method of the composite substrate which concerns on the 2nd Embodiment of this invention is shown.
  • the thin films 3a and 3b are not formed, and the other processes are the same as those in the first embodiment, and a hydrogen ion implantation process (process 1) to the single crystal silicon carbide substrate, a single crystal silicon carbide substrate.
  • the single crystal silicon carbide substrate 1, the ion implantation region 2, and the handle substrate 4 are the same as those in the first embodiment.
  • the surface (ion implantation surface) to be bonded to the handle substrate 4 of the single crystal silicon carbide substrate 1 shown in FIG. 2A is a smooth surface having a surface roughness RMS of 1.00 nm or less.
  • a commercially available single crystal silicon carbide wafer having a smooth surface with a surface roughness of RMS 1.00 nm or less may be prepared, or a smoothing process with a surface roughness of RMS 1.00 nm or less by performing a CMP process after the ion implantation process. You may make it finish on a smooth surface.
  • the surface to be bonded to the single crystal silicon carbide substrate 1 of the handle substrate 4 shown in FIG. 2B is a smooth surface having a surface roughness RMS of 1.00 nm or less.
  • a handle substrate having a smooth surface with a surface roughness of RMS 1.00 nm or less may be prepared as a commercial product, or a CMP process may be performed to finish the surface to a smooth surface with a surface roughness of RMS 1.00 nm or less. May be.
  • Step 4 Surface activation treatment step of single crystal silicon carbide substrate and / or handle substrate
  • a plasma activation process, a vacuum ion beam process, or an immersion process in ozone water is performed as a surface activation process on the surface to which the single crystal silicon carbide substrate 1 and the handle substrate 4 are bonded.
  • the processing conditions are the same as in the first embodiment.
  • the warpage of the substrate occurs due to the difference in coefficient of thermal expansion between the single crystal silicon carbide substrate 1 and the handle substrate 4, but it is preferable to employ a temperature suitable for each material to suppress the warpage.
  • the heat treatment time is preferably 2 to 24 hours depending on the temperature to some extent.
  • the bonded substrate 5 is obtained in which the single crystal silicon carbide substrate 1 and the handle substrate 4 are directly and firmly adhered.
  • Step 7 Single crystal silicon carbide thin film polishing step
  • the surface of the single crystal silicon carbide thin film 6 on the handle substrate 4 is mirror-finished (FIG. 2E).
  • the surface roughness RMS was obtained by measuring the surface of the substrate with an atomic force microscope (AFM).
  • the measurement conditions were a measurement area of 10 ⁇ m ⁇ 10 ⁇ m.
  • Example 1 As the single crystal silicon carbide substrate 1, a commercially available single crystal silicon carbide wafer having a diameter of 3 inches (polytype 4H, thickness 400 ⁇ m) is prepared, and 100 KeV and a dose amount of 8.8 ⁇ 10 16 atoms / cm 2 are prepared. Hydrogen ions (H + ) were implanted. The surface of this single crystal silicon carbide wafer was finished by CMP treatment, and the surface roughness RMS was 0.90 nm.
  • a polycrystalline silicon carbide wafer (thickness: 400 ⁇ m) having a diameter of 3 inches was prepared as the handle substrate 4, and a silicon oxide (SiO 2 ) thin film having a thickness of 100 nm was formed as a thin film 3 b on the main surface by PECVD. Thereafter, this thin film was polished by CMP treatment. Its surface roughness RMS was 0.60 nm.
  • the plasma-activated surface treatment was applied to the ion-implanted surface of the single crystal silicon carbide substrate and the thin film formation surface of the handle substrate, both were bonded together. At this time, the bonded substrates were heat treated at 150 ° C. for 5 hours to obtain a joined body.
  • the single crystal silicon carbide thin film was uniformly transferred means that the laminated portion other than the ion implantation region was not peeled off by visual observation.
  • the surface roughness RMS of the single crystal silicon carbide thin film transfer surface of the composite substrate was 8.2 nm.
  • Example 2 In the method for producing a composite substrate of the present invention, the following two types of handle substrates were used, and a composite substrate was produced as follows using the peeling method as a mechanical peeling method.
  • Example 2-1 As the single crystal silicon carbide substrate 1, a commercially available single crystal silicon carbide wafer having a diameter of 3 inches (polytype 4H, thickness 400 ⁇ m) is prepared, and 100 KeV and a dose amount of 8.8 ⁇ 10 16 atoms / cm 2 are prepared. Hydrogen ions (H + ) were implanted. The surface of this single crystal silicon carbide wafer was finished by CMP treatment, and the surface roughness RMS was 0.90 nm.
  • a polycrystalline silicon carbide wafer (thickness: 400 ⁇ m) having a diameter of 3 inches was prepared as the handle substrate 4, and a silicon oxide (SiO 2 ) thin film having a thickness of 100 nm was formed as a thin film 3 b on the main surface by PECVD. Thereafter, this thin film was polished by CMP treatment. Its surface roughness RMS was 0.60 nm.
  • the plasma-activated surface treatment was applied to the ion-implanted surface of the single crystal silicon carbide substrate and the thin film formation surface of the handle substrate, both were bonded together. At this time, the bonded substrates were heat treated at 150 ° C. for 5 hours to obtain a joined body.
  • this bonded body is set on a boat, it is heated to 880 ° C. as a low temperature heat treatment that does not cause thermal peeling in a heating furnace, and after 30 minutes of heat treatment time has elapsed, it is mechanically connected to one end of the ion implantation region.
  • an impact was applied, mechanical peeling occurred in the ion implantation region, and a composite substrate in which the single crystal silicon carbide thin film was uniformly transferred to the polycrystalline silicon carbide wafer via the silicon oxide thin film was obtained (good peeling result).
  • the surface roughness RMS of the single crystal silicon carbide thin film transfer surface of this composite substrate was 4.7 nm.
  • Example 2-2 In Example 2-1, a handle substrate 4 was an amorphous silicon carbide wafer (thickness 400 ⁇ m) having a diameter of 3 inches, and a composite substrate was fabricated in the same manner as in Example 2-1. As a result, a composite substrate was obtained in which the single crystal silicon carbide thin film was uniformly transferred to the amorphous silicon carbide wafer via the silicon oxide thin film (exfoliation result was good).
  • the surface roughness after CMP treatment of the thin film forming surface of the handle substrate 4 was 0.60 nm, and the surface roughness RMS of the single crystal silicon carbide thin film transfer surface of the composite substrate was 5.1 nm.
  • the surface roughness of the single crystal silicon carbide thin film transfer surface of the composite substrate can be reduced by using the mechanical peeling method as the peeling method, and the burden when the transfer surface is mirror-finished can be reduced. Is possible.
  • Example 3 In the method for manufacturing a composite substrate of the present invention, six types of thin films 3a and 3b were formed on the single crystal silicon carbide substrate 1 and the handle substrate 4, respectively, to smooth the surface, and the composite substrate was manufactured as follows.
  • Example 3-1 As the single crystal silicon carbide substrate 1, a commercially available single crystal silicon carbide wafer having a diameter of 3 inches (polytype 4H, thickness 400 ⁇ m) is prepared, and 100 KeV and a dose amount of 8.8 ⁇ 10 16 atoms / cm 2 are prepared. Hydrogen ions (H + ) were implanted. Next, a silicon oxide (SiO 2 ) thin film having a thickness of 100 nm was formed as a thin film 3a on the ion-implanted surface of the single crystal silicon carbide substrate 1 by PECVD, and this thin film was polished by CMP treatment. Its surface roughness RMS was 0.60 nm.
  • a polycrystalline silicon carbide wafer (thickness: 400 ⁇ m) having a diameter of 3 inches was prepared as the handle substrate 4, and a silicon oxide (SiO 2 ) thin film having a thickness of 100 nm was formed as a thin film 3 b on the main surface by PECVD. Thereafter, this thin film was polished by CMP treatment. Its surface roughness RMS was 0.60 nm.
  • the plasma activation surface treatment was applied to the thin film forming surface of the single crystal silicon carbide substrate and the thin film forming surface of the handle substrate, both were bonded together. At this time, the bonded substrates were heat treated at 150 ° C. for 5 hours to obtain a joined body.
  • this bonded body is set on a boat, it is heated to 880 ° C. as a low temperature heat treatment that does not cause thermal peeling in a heating furnace, and after 30 minutes of heat treatment time has elapsed, it is mechanically connected to one end of the ion implantation region.
  • mechanical peeling occurred in the ion implantation region, and a composite substrate in which the single crystal silicon carbide thin film was uniformly transferred to the polycrystalline silicon carbide wafer via the silicon oxide thin film was obtained (good peeling result).
  • Example 3-1 After forming a silicon nitride (SiN) thin film having a thickness of 100 nm as the thin films 3a and 3b by sputtering, the thin film is polished and finished by CMP treatment. A composite substrate was produced in the same manner as in 3-1. As a result, a composite substrate was obtained in which the single-crystal silicon carbide thin film was uniformly transferred to the polycrystalline silicon carbide wafer via the silicon nitride thin film (good peeling result). In addition, the surface roughness after the CMP process on the thin film forming surfaces of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.63 nm.
  • SiN silicon nitride
  • Example 3-3 an amorphous silicon carbide (SiC) thin film having a thickness of 100 nm was formed as each of the thin films 3a and 3b by sputtering, and then the thin film was polished and finished by CMP treatment.
  • a composite substrate was produced in the same manner as in Example 3-1. As a result, a composite substrate was obtained in which the single crystal silicon carbide thin film was uniformly transferred to the polycrystalline silicon carbide wafer via the silicon carbide thin film (good peeling result).
  • the surface roughness after the CMP treatment on the thin film forming surfaces of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.68 nm.
  • Example 3-4 In Example 3-1, an amorphous silicon (Si) thin film having a thickness of 100 nm was formed as each of the thin films 3a and 3b by sputtering, and then the thin film was polished and finished by CMP treatment. A composite substrate was produced in the same manner as in 3-1. As a result, a composite substrate in which the single crystal silicon carbide thin film was uniformly transferred to the polycrystalline silicon carbide wafer via the silicon thin film was obtained (exfoliation result was good). The surface roughness after the CMP treatment on the thin film forming surfaces of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.65 nm.
  • Example 3-5 In Example 3-1, a thin film of titanium (Ti) having a thickness of 20 nm was formed as the thin films 3a and 3b by the electron beam evaporation method, respectively, and then left without being subjected to the CMP process. A composite substrate was produced in the same manner. As a result, a composite substrate in which the single crystal silicon carbide thin film was uniformly transferred to the polycrystalline silicon carbide wafer via the titanium thin film was obtained (exfoliation result was good). In addition, the surface roughness of the thin film formation surface of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.71 nm, respectively.
  • Example 3-1 After forming a 20 nm-thick titanium (Ti) thin film and a 20 nm-thick gold (Au) thin film as the thin films 3a and 3b by the electron beam evaporation method, they are left without being subjected to CMP treatment. Otherwise, a composite substrate was produced in the same manner as in Example 3-1. As a result, a composite substrate is obtained in which a single crystal silicon carbide thin film is uniformly transferred to a polycrystalline silicon carbide wafer through a thin film of titanium thin film and gold thin film (a thin film having a four-layer structure of Ti / Au / Au / Ti). (Good peeling result). In addition, the surface roughness of the thin film formation surface of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.75 nm.
  • Example 4 the handle substrate 4 was an amorphous silicon carbide wafer (thickness 400 ⁇ m) having a diameter of 3 inches, and a composite substrate was fabricated in the same manner as in Example 3 except that. Details are as follows.
  • Example 4-1 In Example 3-1, a composite substrate was fabricated in the same manner as in Example 3-1, except that the handle substrate 4 was an amorphous silicon carbide wafer (400 ⁇ m thick) having a diameter of 3 inches. As a result, a composite substrate was obtained in which the single crystal silicon carbide thin film was uniformly transferred to the amorphous silicon carbide wafer via the silicon oxide thin film (exfoliation result was good). In addition, the surface roughness after CMP processing of the thin film formation surface of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.60 nm.
  • Example 4-2 the handle substrate 4 was an amorphous silicon carbide wafer (400 ⁇ m thickness) having a diameter of 3 inches, and a composite substrate was fabricated in the same manner as in Example 3-2.
  • a composite substrate was obtained in which the single crystal silicon carbide thin film was uniformly transferred to the amorphous silicon carbide wafer via the silicon nitride thin film (good peeling result).
  • the surface roughness after the CMP process on the thin film forming surfaces of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.63 nm.
  • Example 4-3 the handle substrate 4 was an amorphous silicon carbide wafer having a diameter of 3 inches (thickness: 400 ⁇ m), and a composite substrate was fabricated in the same manner as in Example 3-3. As a result, a composite substrate was obtained in which the single crystal silicon carbide thin film was uniformly transferred to the amorphous silicon carbide wafer via the silicon carbide thin film (good peeling result).
  • the surface roughness after the CMP treatment on the thin film forming surfaces of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.68 nm.
  • Example 4-4 the handle substrate 4 was an amorphous silicon carbide wafer (thickness 400 ⁇ m) having a diameter of 3 inches, and a composite substrate was fabricated in the same manner as in Example 3-4. As a result, a composite substrate in which the single crystal silicon carbide thin film was uniformly transferred to the amorphous silicon carbide wafer via the silicon thin film was obtained (exfoliation result was good).
  • the surface roughness after the CMP treatment on the thin film forming surfaces of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.65 nm.
  • Example 4-5 a handle substrate 4 was an amorphous silicon carbide wafer (thickness 400 ⁇ m) having a diameter of 3 inches, and a composite substrate was fabricated in the same manner as in Example 3-5. As a result, a composite substrate in which the single crystal silicon carbide thin film was uniformly transferred to the amorphous silicon carbide wafer via the titanium thin film was obtained (exfoliation result was good). In addition, the surface roughness of the thin film formation surface of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.71 nm, respectively.
  • Example 4-6 the handle substrate 4 was an amorphous silicon carbide wafer (400 ⁇ m thick) having a diameter of 3 inches, and a composite substrate was fabricated in the same manner as in Example 3-6.
  • a composite substrate was obtained in which a single crystal silicon carbide thin film was uniformly transferred to an amorphous silicon carbide wafer via a laminated thin film of titanium thin film and gold thin film (a thin film having a four-layer structure of Ti / Au / Au / Ti). (Peeling result is good).
  • the surface roughness of the thin film formation surface of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.75 nm.
  • Example 5 In the method for manufacturing a composite substrate according to the second embodiment of the present invention, the condition of the surface activation treatment before bonding was changed, and the composite substrate was manufactured as follows.
  • Example 5-1 As the single crystal silicon carbide substrate 1, a commercially available single crystal silicon carbide wafer having a diameter of 3 inches (polytype 4H, thickness 400 ⁇ m) is prepared, and 100 KeV and a dose amount of 8.8 ⁇ 10 16 atoms / cm 2 are prepared. Hydrogen ions (H + ) were implanted. The surface of this single crystal silicon carbide wafer was finished by CMP treatment, and the surface roughness RMS was 0.90 nm. Next, a polycrystalline silicon carbide wafer (thickness 400 ⁇ m) having a diameter of 3 inches was prepared as the handle substrate 4. Note that the surface of this polycrystalline silicon carbide wafer was finished by CMP treatment, and the surface roughness RMS was 0.95 nm.
  • the bonded substrates were heat treated at 150 ° C. for 5 hours to obtain a joined body.
  • this bonded body is set on a boat, it is heated to 880 ° C. as a low temperature heat treatment that does not cause thermal peeling in a heating furnace, and after 30 minutes of heat treatment time has elapsed, it is mechanically connected to one end of the ion implantation region.
  • mechanical peeling occurred in the ion implantation region, and a composite substrate in which the single crystal silicon carbide thin film was uniformly transferred to the polycrystalline silicon carbide wafer was obtained (good peeling result).
  • Example 5-1 As a surface activation process before bonding, vacuum ion beam processing is performed on the ion-implanted surface of the single crystal silicon carbide substrate and the planned bonding surface of the handle substrate.
  • a composite substrate was prepared in the same manner as described above. Note that the vacuum ion beam treatment was performed by irradiating the surface with Ar ions. As a result, a composite substrate in which the single crystal silicon carbide thin film was uniformly transferred to the polycrystalline silicon carbide wafer was obtained (exfoliation result was good).
  • Example 5-3 immersion treatment with ozone water is applied to the surface of the single crystal silicon carbide substrate on which ions are implanted and the planned bonding surface of the handle substrate as the surface activation treatment before bonding.
  • a composite substrate was prepared in the same manner as in 1.
  • the immersion treatment with ozone water was performed by immersing in ultra pure water in a container containing ozone for 10 minutes. As a result, a composite substrate in which the single crystal silicon carbide thin film was uniformly transferred to the polycrystalline silicon carbide wafer was obtained (exfoliation result was good).
  • Example 5-1 a composite substrate was fabricated in the same manner as in Example 5-1, except that the surface activation treatment before bonding was not performed and the surface was not treated. As a result, in the obtained composite substrate, a part of the single crystal silicon carbide thin film was peeled off from the polycrystalline silicon carbide wafer by visual observation (about 5% in area ratio). The silicon thin film was transferred with good adhesion to the polycrystalline silicon carbide wafer, and it was in a state where it could be used for forming the nanocarbon film.
  • a commercially available single crystal silicon carbide wafer having a diameter of 3 inches (polytype 4H, thickness 400 ⁇ m) is prepared, and 100 KeV and a dose amount of 8.8 ⁇ 10 16 atoms / cm 2 are prepared. Hydrogen ions (H + ) were implanted. The surface of this single crystal silicon carbide wafer was finished by CMP treatment, and the surface roughness RMS was 0.95 nm. Next, a polycrystalline silicon carbide wafer (thickness 400 ⁇ m) having a diameter of 3 inches was prepared as the handle substrate 4. Note that the surface of this polycrystalline silicon carbide wafer was finished by CMP treatment, and the surface roughness RMS was 1.05 nm.
  • the bonded substrates were heat treated at 150 ° C. for 5 hours to obtain a joined body.
  • this bonded body is set on a boat, it is heated to 880 ° C. as a low temperature heat treatment that does not cause thermal peeling in a heating furnace, and after 30 minutes of heat treatment time has elapsed, it is mechanically connected to one end of the ion implantation region.
  • Comparative Example 1-1 As a surface activation process before bonding, vacuum ion beam processing was performed on the ion-implanted surface of the single crystal silicon carbide substrate and the bonding surface of the handle substrate, and otherwise, Comparative Example 1-1.
  • a composite substrate was prepared in the same manner as described above. Note that the vacuum ion beam treatment was performed by irradiating the surface with Ar ions.
  • the vacuum ion beam treatment was performed by irradiating the surface with Ar ions.
  • most of the single crystal silicon carbide thin film (about 90% in terms of area ratio) is peeled off from the polycrystalline silicon carbide wafer by visual observation, and cannot be used for forming the nanocarbon film. Met.
  • Comparative Example 1-1 immersion treatment with ozone water was applied to the ion-implanted surface of the single crystal silicon carbide substrate and the planned bonding surface of the handle substrate as surface activation treatment before bonding, and otherwise, Comparative Example 1 A composite substrate was prepared in the same manner as in 1.
  • the immersion treatment with ozone water was performed by immersing in ultra pure water in a container containing ozone for 10 minutes.
  • most of the single crystal silicon carbide thin film (about 90% in terms of area ratio) is peeled off from the polycrystalline silicon carbide wafer by visual observation, and cannot be used for forming the nanocarbon film. Met.
  • Comparative Example 1-1 the composite substrate was fabricated in the same manner as Comparative Example 1-1, except that the surface activation treatment before bonding was not performed and the surface was not treated. As a result, in the obtained composite substrate, most of the single crystal silicon carbide thin film (about 90% in terms of area ratio) is peeled off from the polycrystalline silicon carbide wafer by visual observation, and cannot be used for forming the nanocarbon film. Met.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Laminated Bodies (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】欠陥のないナノカーボン膜を安価に作製することが可能な複合基板を提供する。 【解決手段】単結晶炭化珪素基板の表面からイオンを注入してイオン注入領域を形成し、上記単結晶炭化珪素基板のイオン注入した面とハンドル基板の主面とを貼り合わせた後、上記イオン注入領域で単結晶炭化珪素基板を剥離させて、ハンドル基板上に単結晶炭化珪素薄膜を転写させた複合基板の製造方法であって、上記単結晶炭化珪素基板及びハンドル基板の貼り合わせを行うそれぞれの面の表面粗さRMSが1.00nm以下である。

Description

複合基板の製造方法及び複合基板
 本発明は、複合基板の製造方法及び複合基板に関し、特に高品質に且つ安価にナノカーボン膜を製造することが可能な複合基板の製造方法及び該製造方法により製造された複合基板に関するものである。
 近年、グラフェン、フラーレン、カーボンナノチューブに代表されるナノカーボンが新たな電子デバイス材料として注目を集めている。一例として、グラフェンが有する極めて高い移動度(シリコンの100倍とも言われている)や鋼鉄よりも高い耐久性などから、次世代の電子デバイスのプラットフォームとして研究が進んでいる。
 ナノカーボンの形成方法として幾つか提案がなされており、例えば昇華法が挙げられる。これは単結晶炭化珪素(SiC)を不活性ガス中で高温で処理をすることで、炭化珪素中のシリコン(Si)を蒸発させ、残存した炭素(C)がグラフェンを形成するという方法である(特開2007-335532号公報(特許文献1))。この方法は単結晶炭化珪素ウェーハ(直径最大6インチ)からグラフェンウェーハが得られる方法として、近年脚光を浴びている方法である。また、フラーレンやカーボンナノチューブに関しても単結晶炭化珪素をプラットフォーム基板とすることで高品質の膜が形成される可能性が高まっている。
 しかしながら、非常に高価な単結晶炭化珪素ウェーハを用いることで、コストが高くなってしまうという問題が挙げられる。特に、電子デバイス用途で重要と思われる半絶縁性の単結晶炭化珪素ウェーハは直径3インチ程度のウェーハ1枚でも数十万円程度の価格であり、広範囲に用いられるには余りにも高価であるという欠点がある。
 なお、本発明に関連する先行技術として、国際公開2014/061337号(特許文献2)がある。
特開2007-335532号公報 国際公開2014/061337号
 本発明は、上記事情に鑑みなされたもので、欠陥のないナノカーボン膜を安価に作製することが可能な複合基板の製造方法及び該製造方法によって製造される複合基板を提供することを目的とする。
 この問題を解決するために、本発明者は次のような方法を発案した。即ち、通常グラフェン化する単結晶炭化珪素層の厚さは原子数層分で十分であり、厚い炭化珪素層は不要であることから、単結晶炭化珪素の薄膜を支持ウェーハ(ハンドルウェーハ)に転写して単結晶炭化珪素薄膜を得るようにする。具体的には、予め水素イオンを注入した単結晶炭化珪素ウェーハを支持ウェーハに貼り合わせ、十分な接合強度を得た後にイオン注入界面で剥離を行うという方法である。その際、単結晶炭化珪素基板及びハンドル基板の貼り合わせを行うそれぞれの面を平滑化して、貼り合わせの密着強度を改善する。これにより、一枚の単結晶炭化珪素ウェーハからいくつもの単結晶炭化珪素薄膜を転写することができ、コストメリットも極めて高くなる。
 即ち、本発明は、下記の複合基板の製造方法及び複合基板を提供する。
〔1〕 単結晶炭化珪素基板の表面からイオンを注入してイオン注入領域を形成し、上記単結晶炭化珪素基板のイオン注入した面(以下「イオン注入面」という。)とハンドル基板の主面とを貼り合わせた後、上記イオン注入領域で単結晶炭化珪素基板を剥離させて、ハンドル基板上に単結晶炭化珪素薄膜を転写させた複合基板の製造方法であって、上記単結晶炭化珪素基板及びハンドル基板の貼り合わせを行うそれぞれの面の表面粗さRMSが1.00nm以下であることを特徴とする複合基板の製造方法。
〔2〕 上記ハンドル基板が耐熱温度1,100℃以上の耐熱材料(ただし、単結晶炭化珪素を除く)からなることを特徴とする〔1〕に記載の複合基板の製造方法。
〔3〕 上記ハンドル基板がアモルファス炭化珪素又は多結晶炭化珪素からなることを特徴とする〔1〕又は〔2〕に記載の複合基板の製造方法。
〔4〕 上記単結晶炭化珪素基板のイオン注入面及び/又はハンドル基板の主面に酸化珪素、窒化珪素、酸化アルミニウム、窒化アルミニウム、酸化ジルコニウム、シリコン及び炭化珪素から選ばれる少なくとも1種の材料からなる薄膜を形成し、該薄膜を研磨してその面の表面粗さRMSを1.00nm以下とすることを特徴とする〔1〕~〔3〕のいずれかに記載の複合基板の製造方法。
〔5〕 上記単結晶炭化珪素基板のイオン注入面及び/又はハンドル基板の主面にTi、Au、Ag、Cu、Ni、Co、Fe、Cr、Zr、Mo、Ta及びWから選ばれる少なくとも1種の金属材料からなる薄膜を形成してその面の表面粗さRMSを1.00nm以下とすることを特徴とする。〔1〕~〔3〕のいずれかに記載の複合基板の製造方法。
〔6〕 上記炭化珪素基板及び/又はハンドル基板の貼り合わせを行う面について表面活性化処理を施した後に、上記貼り合わせを行うことを特徴とする〔1〕~〔5〕のいずれかに記載の複合基板の製造方法。
〔7〕 上記表面活性化処理は、プラズマ活性化処理、真空イオンビーム処理又はオゾン水への浸漬処理であることを特徴とする〔6〕記載の複合基板の製造方法。
〔8〕 上記単結晶炭化珪素基板とハンドル基板とを貼り合わせた後、イオン注入領域に物理的衝撃を加えて単結晶炭化珪素基板を剥離させることを特徴とする〔1〕~〔7〕のいずれかに記載の複合基板の製造方法。
〔9〕 〔1〕~〔8〕のいずれかに記載の複合基板の製造方法により得られた複合基板。
〔10〕 ナノカーボン膜形成用である〔9〕記載の複合基板。
 本発明によれば、貼り合わせを行う面が所定の平滑性を有する単結晶炭化珪素基板及びハンドル基板を用いて貼り合わせを行うので、その後に行なわれるイオン注入界面における剥離処理の際にも単結晶炭化珪素基板とハンドル基板との貼り合わせ界面で剥離することなく、単結晶炭化珪素薄膜を転写することができる。特に、炭化珪素からなる基板は非常に硬度が高いために研磨によって表面を平滑化することが困難であるところ、その表面に特定の薄膜を形成することにより表面の平滑化が容易となり、上記貼り合わせにおいて良好な密着強度を得ることができる。また、単結晶炭化珪素膜をハンドル基板に薄膜転写することにより、高価な単結晶炭化珪素基板を多量に準備する必要がなくなり、低コストでナノカーボン膜を作製可能な複合基板を提供することができる。
本発明に係る複合基板の製造方法における第1の実施形態の製造工程を示す概略図であり、(a)はイオン注入された単結晶炭化珪素基板の断面図、(b)は単結晶炭化珪素基板のイオン注入面に薄膜を形成した状態を示す断面図、(c)はハンドル基板の一主面に薄膜を形成した状態を示す断面図、(d)は単結晶炭化珪素基板とハンドル基板を貼り合わせた状態を示す断面図、(e)はイオン注入領域で単結晶炭化珪素基板を剥離させた状態を示す断面図、(f)は複合基板の断面図である。 本発明に係る複合基板の製造方法における第2の実施形態の製造工程を示す概略図であり、(a)はイオン注入され、イオン注入面が平滑化された単結晶炭化珪素基板の断面図、(b)は一主面が平滑化されたハンドル基板の断面図、(c)は単結晶炭化珪素基板とハンドル基板を貼り合わせた状態を示す断面図、(d)はイオン注入領域で単結晶炭化珪素基板を剥離させた状態を示す断面図、(e)は複合基板の断面図である。
 以下に、本発明に係る複合基板の製造方法及び複合基板の実施形態について説明する。
(第1の実施形態)
 本発明の第1の実施形態に係る複合基板の製造方法は、図1に示すように、単結晶炭化珪素基板への水素イオン注入工程(工程1)、単結晶炭化珪素基板のイオン注入面の平滑化工程(工程2)、ハンドル基板の平滑化工程(工程3)、単結晶炭化珪素基板及び/又はハンドル基板の表面活性化処理工程(工程4)、単結晶炭化珪素基板とハンドル基板との貼り合わせ工程(工程5)、剥離処理工程(工程6)、単結晶炭化珪素薄膜研磨工程(工程7)の順に処理を行うものである。
(工程1:単結晶炭化珪素基板への水素イオン注入工程)
 まず、単結晶炭化珪素基板1に水素イオン等を注入してイオン注入領域2を形成する(図1(a))。
 ここで、ハンドル基板4に貼り合わせをする単結晶炭化珪素基板1は、結晶構造が4H-SiC、6H-SiC、3C-SiCのものから選択をすることが好ましい。単結晶炭化珪素基板1及び後述するハンドル基板4の大きさは、必要なナノカーボン膜の大きさやコスト等から設定をする。また、単結晶炭化珪素基板1の厚さは、SEMI規格又はJEIDA規格の基板厚さ近傍のものがハンドリングの面から好ましい。なお、単結晶炭化珪素基板1として、市販のもの、例えばパワーデバイス向けに市販されている単結晶炭化珪素ウェーハを用いればよく、その表面がCMP(Chemical Mechanical Polishing(or Planarization))処理で仕上げ研磨された、表面が平坦かつ平滑なものを用いることが好ましい。
 単結晶炭化珪素基板1へのイオン注入の際、その表面から所望の深さにイオン注入領域2を形成できるような注入エネルギーで、所定の線量の少なくとも水素イオン(H+)又は水素分子イオン(H2 +)を注入する。このときの条件として、所望の薄膜の厚さになるようにイオン注入エネルギーを設定すればよい。HeイオンやBイオン等を同時にインプラしても構わないし、同じ効果が得られるものであればどのようなイオンを採用しても構わない。
 イオン注入深さは、所望の単結晶炭化珪素薄膜の厚さに対応したものとする。
 単結晶炭化珪素基板1に注入する水素イオン(H+)のドーズ量は、1.0×1016atom/cm2~9.0×1017atom/cm2であることが好ましい。1.0×1016atom/cm2未満であると、界面の脆化が起こらない場合があり、9.0×1017atom/cm2を超えると、貼り合わせ後の熱処理中に気泡となり転写不良となる場合がある。
 注入イオンとして水素分子イオン(H2 +)を用いる場合、そのドーズ量は5.0×1015atoms/cm2~4.5×1017atoms/cm2であることが好ましい。5.0×1015atoms/cm2未満であると、界面の脆化が起こらない場合があり、4.5×1017atoms/cm2を超えると、貼り合わせ後の熱処理中に気泡となり転写不良となる場合がある。
 イオン注入された基板表面からイオン注入領域2までの深さ(即ち、イオン打ち込み深さ)は、ハンドル基板4上に設ける単結晶炭化珪素薄膜6の所望の厚さに対応するものであり、通常100~2,000nm、好ましくは300~500nm、更に好ましくは400nm程度である。また、イオン注入領域2の厚さ(即ち、イオン分布厚さ)は、機械衝撃等によって容易に剥離できる厚さが良く、好ましくは200~400nm、更に好ましくは300nm程度である。
 また、単結晶炭化珪素基板1の表面に、予め50~500nm程度の酸化珪素膜等の絶縁膜を形成しておき、それを通して水素イオン又は水素分子イオンの注入を行ってもよい。これにより注入イオンのチャネリングを抑制する効果が得られる。
(工程2:単結晶炭化珪素基板のイオン注入面の平滑化工程(図1(b))
 本発明では、単結晶炭化珪素基板1の貼り合わせを行う面(イオン注入面)を表面粗さRMS1.00nm以下の平滑な面とする。この場合、単結晶炭化珪素基板1の表面を直接研磨して平滑化を図ることも可能ではあるが、炭化珪素からなる非常に硬い基板を研磨することは容易なことではない。そこで、本工程では以下の工程2-1、工程2-2のいずれかを行い、単結晶炭化珪素基板1の表面の平滑化を行う。
(工程2-1)
 単結晶炭化珪素基板1のイオン注入面に、後に行われる熱処理に対する耐熱性を有し、最終的に形成される単結晶炭化珪素薄膜6と同じか又は近い熱膨張係数を有する材料からなる薄膜3aを形成する。薄膜3aを構成する材料としては、酸化珪素(例えば、SiO2)、窒化珪素、窒化アルミニウム、シリコン(例えば、アモルファスシリコン、多結晶シリコン)、アルミナ(Al23)、酸化ジルコニウム(例えば、ジルコニア(ZrO2))及び炭化珪素(例えば、アモルファス炭化珪素、多結晶炭化珪素)から選ばれる少なくとも1種の材料が挙げられる。なお、これらの材料から複数の材料が選ばれた場合には、それらの材料ごとに積層した構造、それらの材料を混合した材料からなる単層構造のいずれでもよい。
 薄膜3aの膜厚は、好ましくは1~200nm、より好ましくは1~100nm、更に好ましくは1~20nmとする。この膜厚が1nm未満では膜厚の面内ばらつきにより表面が完全には覆われず、ハンドル基板4との貼り合わせの密着性が悪くなるおそれがある。また、200nm超では堆積した薄膜3aの表面粗さが悪化し、研磨によっても所期の平滑性が得られないおそれがある。なお、形成する膜厚はこの後に行う研磨の厚さを考慮した膜厚とする必要がある。
 薄膜3aの形成方法としては、単結晶炭化珪素基板1に密着性よく形成できる成膜方法であればいずれの方法でもよく、例えば酸化珪素の薄膜はPECVD法により形成し、窒化珪素、窒化アルミニウム、シリコン及び炭化珪素の薄膜はスパッタリング法により形成するとよい。
 次いで、薄膜3aを研磨して、その面の表面粗さRMSを1.00nm以下とし、好ましくは0.80nm以下とし、より好ましくは0.70nm以下とする。薄膜3aの表面粗さRMSが1.00nm超では、後で行われる単結晶炭化珪素薄膜形成のための剥離処理や更にその後の熱処理の際にハンドル基板4との貼り合わせ界面(即ち、薄膜3bとの界面)において剥離が発生する。なお、表面粗さRMS(Root-mean-square:二乗平均粗さ)は、JIS B0601:2013でいう二乗平均平方根粗さRqのことである。
 薄膜3aの研磨方法は、化学的機械研磨法が好ましく、薄膜3aの材質によってその条件は異なる。
(工程2-2)
 単結晶炭化珪素基板1のイオン注入面に、融点が950℃以上の金属材料、例えばTi、Au、Ag、Cu、Ni、Co、Fe、Cr、Zr、Mo、Ta及びWから選ばれる少なくとも1種の金属材料からなる薄膜3aを形成する。融点が950℃以上の金属材料を用いることで、後の剥離処理工程における低温熱処理で薄膜3aが溶融するのを防ぐことができる。なお、これらの金属材料から複数の金属材料が選ばれた場合には、それらの金属材料ごとに積層した構造、それらの金属材料の合金材料からなる単層構造のいずれでもよい。
 薄膜3aの膜厚は、好ましくは1~100nm、より好ましくは1~20nm、更に好ましくは1~10nmとする。この膜厚が1nm未満では膜厚の面内ばらつきにより基板表面が完全には覆われず、ハンドル基板4との貼り合わせの密着性が悪くなるおそれがある。また、100nm超では薄膜3aの表面粗さが悪化し、ハンドル基板4との貼り合わせの密着性が悪くなるおそれがある。
 薄膜3aの形成方法としては、単結晶炭化珪素基板1に密着性よく形成できる成膜方法であればいずれの方法でもよく、例えば電子ビーム蒸着法により形成するとよい。
 本工程2-2では、上記金属材料の蒸着により薄膜3aを形成するだけで(即ち、研磨することなく)、その面の表面粗さRMSを1.00nm以下、好ましくは0.80nm以下、より好ましくは0.75nm以下とすることができる。薄膜3aの表面粗さRMSが1.00nm超では、後で行われる単結晶炭化珪素薄膜形成のための剥離処理や更にその後の熱処理の際にハンドル基板4との貼り合わせ界面(即ち、薄膜3bとの界面)において剥離が発生する。
 なお、上記工程1,2の順番を入れ替えて、先に単結晶炭化珪素基板1の表面に薄膜3aを形成して表面の平滑化を図り、次いで該薄膜3a上から上記イオン注入を行ってもよい。
(工程3:ハンドル基板の平滑化工程(図1(c))
 本発明で用いるハンドル基板4として、耐熱温度1,100℃以上の耐熱材料(ただし、単結晶炭化珪素を除く)からなるものが好ましく、例えば単結晶ではない炭化珪素、即ちアモルファス炭化珪素や多結晶炭化珪素、あるいは石英ガラス、サファイア、結晶性シリコン(単結晶シリコンや多結晶シリコン)、窒化珪素、ダイヤモンド又は窒化アルミニウムからなるものを用いることができる。その中で、熱膨張係数が単結晶炭化珪素に近く、後に行なわれる熱処理に対する耐熱性を有するアモルファス炭化珪素や多結晶炭化珪素からなるものがより好ましい。耐熱温度1,100℃以上の耐熱材料を用いることで、後の単結晶炭化珪素薄膜研磨工程における加熱処理により基板が損傷するのを防ぐことができる。また、ハンドル基板4の厚さは、特に限定されないが、単結晶炭化珪素基板1と同様に、通常のSEMI規格又はJEIDA規格近傍のものがハンドリングの面から好ましい。
 ハンドル基板4の少なくとも単結晶炭化珪素基板1と貼り合わせをする表面に、後に行われる熱処理に対する耐熱性を有し、単結晶炭化珪素薄膜6と同じか又は近い熱膨張係数をする材料からなる薄膜3bを形成してその表面の平滑化を図る。ここでは、上記工程2-1又は工程2-2と同様の処理を行う。
 即ち、工程2-1に対応する処理としては、次のように行う。
 まず、ハンドル基板4における単結晶炭化珪素基板1との貼り合わせ面に、酸化珪素(例えば、SiO2)、窒化珪素、窒化アルミニウム、シリコン(例えば、アモルファスシリコン、多結晶シリコン)、アルミナ(Al23)、酸化ジルコニウム(例えば、ジルコニア(ZrO2))及び炭化珪素(例えば、アモルファス炭化珪素、多結晶炭化珪素)から選ばれる少なくとも1種の材料からなる薄膜3bを形成する。なお、これらの材料から複数の材料が選ばれた場合には、それらの材料ごとに積層した構造、それらの材料を混合した材料からなる単層構造のいずれでもよい。
 この場合の薄膜3bの膜厚は、好ましくは1~200nm、より好ましくは1~100nm、更に好ましくは1~20nmとする。この膜厚が1nm未満では膜厚の面内ばらつきにより表面が完全には覆われず、単結晶炭化珪素基板1との貼り合わせの密着性が悪くなるおそれがある。また、200nm超では堆積した薄膜3bの表面粗さが悪化し、研磨によっても所期の平滑性が得られないおそれがある。なお、形成する膜厚はこの後に行う研磨の厚さを考慮した膜厚とする必要がある。
 薄膜3bの形成方法としては、ハンドル基板4に密着性よく形成できる成膜方法であればいずれの方法でもよく、例えば酸化珪素の薄膜はPECVD法又は熱酸化法により形成し、窒化珪素、窒化アルミニウム、シリコン、アルミナ、酸化ジルコニウム及び炭化珪素の薄膜はスパッタリング法により形成するとよい。
 次いで、薄膜3bを研磨して、その面の表面粗さRMSを1.00nm以下とし、好ましくは0.80nm以下とし、より好ましくは0.70nm以下とする。薄膜3bの表面粗さRMSが1.00nm超では、後で行われる単結晶炭化珪素薄膜形成のための剥離処理や更にその後の熱処理において単結晶炭化珪素基板1との貼り合わせ界面(即ち、薄膜3aとの界面)において剥離が発生する。
 薄膜3bの研磨方法は、化学的機械研磨法が好ましく、薄膜3bの材質によってその条件は異なる。
 また、工程2-2に対応する処理としては、次のように行う。
 ハンドル基板4の単結晶炭化珪素基板1との貼り合わせ面(主面)に、融点が950℃以上の金属材料、例えばTi、Au、Ag、Cu、Ni、Co、Fe、Cr、Zr、Mo、Ta及びWから選ばれる少なくとも1種の金属材料からなる薄膜3bを形成する。融点が950℃以上の金属材料を用いることで、後の剥離処理工程における低温熱処理で薄膜3aが溶融するのを防ぐことができる。なお、これらの金属材料から複数の金属材料が選ばれた場合には、それらの金属材料ごとに積層した構造、それらの金属材料の合金材料からなる単層構造のいずれでもよい。
 この場合の薄膜3bの膜厚は、好ましくは1~100nm、より好ましくは1~20nm、更に好ましくは1~10nmとする。この膜厚が1nm未満では膜厚の面内ばらつきにより基板表面が完全には覆われず、単結晶炭化珪素基板1との貼り合わせの密着性が悪くなるおそれがある。また、100nm超では薄膜3bの表面粗さが悪化し、単結晶炭化珪素基板1との貼り合わせの密着性が悪くなるおそれがある。
 薄膜3bの形成方法としては、ハンドル基板4に密着性よく形成できる成膜方法であればいずれの方法でもよく、例えば電子ビーム蒸着法により形成するとよい。
 この処理では、上記金属材料の蒸着により薄膜3bを形成するだけで(即ち、研磨することなく)、その面の表面粗さRMSを1.00nm以下、好ましくは0.80nm以下、より好ましくは0.75nm以下とすることができる。薄膜3bの表面粗さRMSが1.00nm超では、後で行われる単結晶炭化珪素薄膜形成のための剥離処理や更にその後の熱処理の際に単結晶炭化珪素基板1との貼り合わせ界面(即ち、薄膜3aとの界面)において剥離が発生する。
 なお、薄膜3bを構成する材料は、上記薄膜3aの構成材料と同じものとすると、貼り合わせの密着性が改善され好ましい。また、薄膜3a、3bの表面粗さをある程度の範囲内に揃えると(例えば、表面粗さRMSにおいて両者の差が±0.05nm以内)、更に貼り合わせの密着性が改善され好ましい。
(工程4:単結晶炭化珪素基板及び/又はハンドル基板の表面活性化処理工程)
 次に、単結晶炭化珪素基板1とハンドル基板4の貼り合わせをする表面、即ち薄膜3a、3b表面について、表面活性化処理としてプラズマ活性化処理、真空イオンビーム処理又はオゾン水への浸漬処理を行う。
 このうち、プラズマ活性化処理をする場合、真空チャンバ中に上記工程3までの処理が終了した単結晶炭化珪素基板1及び/又はハンドル基板4を載置し、プラズマ用ガスを減圧下で導入した後、100W程度の高周波プラズマに5~10秒程度さらし、表面をプラズマ活性化処理する。プラズマ用ガスとしては、酸素ガス、水素ガス、窒素ガス、アルゴンガス、又はこれらの混合ガスあるいは水素ガスとヘリウムガスの混合ガスを用いることができる。
 真空イオンビーム処理は、高真空のチャンバ内に単結晶炭化珪素基板1及び/又はハンドル基板4を載置し、Ar等のイオンビームを貼り合わせをする表面に照射して活性化処理を行う。
 オゾン水への浸漬処理は、オゾンガスを溶解させたオゾン水に単結晶炭化珪素基板1及び/又はハンドル基板4を浸漬し、その表面を活性化処理をする。
 上記した表面活性化処理は、単結晶炭化珪素基板1のみ又はハンドル基板4のみに行ってもよいが、単結晶炭化珪素基板1及びハンドル基板4の両方について行うのがより好ましい。
 また、表面活性化処理は上記方法のいずれか一つでもよいし、組み合わせた処理を行っても構わない。更に、単結晶炭化珪素基板1、ハンドル基板4の表面活性化処理を行う面は、貼り合わせを行う面、即ち薄膜3a、3b表面であることが好ましい。
(工程5:単結晶炭化珪素基板とハンドル基板との貼り合わせ工程)
 次に、この単結晶炭化珪素基板1及びハンドル基板4の表面活性化処理をした表面(薄膜3a、3b表面)を接合面として貼り合わせる(図1(d))。
 次いで、単結晶炭化珪素基板1とハンドル基板4と貼り合わせた後に、好ましくは150~350℃、より好ましくは150~250℃の熱処理を行い、薄膜3a、3bの貼り合わせ面の結合強度を向上させる。150℃未満では十分な結合強度が得られず、350℃超では、熱処理初期に(=結合強度が十分に高まる前の段階で)熱膨張係数の差に起因する剥がれが発生しやすくなる。熱処理の際には、単結晶炭化珪素基板1とハンドル基板4との間の熱膨張率差により基板の反りが発生するが、それぞれの材質に適した温度を採用して反りを抑制するとよい。熱処理時間としては、温度にもある程度依存するが、2~24時間が好ましい。
 これにより、薄膜3aと薄膜3bとは密着して一つの層、介在層3となると共に、単結晶炭化珪素基板1とハンドル基板4とが介在層3を介して強固に密着した貼り合わせ基板5となる。
(工程6:剥離処理工程)
 単結晶炭化珪素基板1とハンドル基板4とを貼り合わせ、貼り合わせ強度を向上させた後、イオン注入した部分に熱的エネルギー又は機械的エネルギーを付与して、イオン注入領域2で単結晶炭化珪素基板1aを剥離させ、ハンドル基板4上に単結晶炭化珪素薄膜6を有する複合基板7を作製する(図1(e))。
 剥離方法としては、例えば貼り合わせ基板5を高温に加熱して、この熱によってイオン注入領域2においてイオン注入した成分の微小なバブル体を発生させることにより剥離を生じさせて単結晶炭化珪素基板1aを分離する熱剥離法を適用することができる。あるいは、熱剥離が生じない程度の低温熱処理(例えば、500~900℃、好ましくは500~700℃)を施しつつ、イオン注入領域2の一端に物理的な衝撃を加えて機械的に剥離を発生させて単結晶炭化珪素基板1aを分離する機械剥離法を適用することができる。機械剥離法は単結晶炭化珪素薄膜転写後の転写表面の粗さが熱剥離法よりも比較的小さいため、より好ましい。
 なお、剥離処理後に、複合基板7を加熱温度700~1,000℃であって剥離処理時よりも高い温度、加熱時間1~24時間の条件で加熱して、単結晶炭化珪素薄膜6とハンドル基板4との密着性を改善する熱処理を行ってもよい。
 このとき、薄膜3aと薄膜3bとは強固に密着し、更に薄膜3aは単結晶炭化珪素基板1と強固に密着し、薄膜3bはハンドル基板4と強固に密着しているため、イオン注入領域2における剥離部分以外の部分での剥離は発生しない。
 剥離した後の単結晶炭化珪素基板1aは、表面を再度研磨や洗浄等を施すことにより再度当該複合基板の製造方法における貼り合わせ用の基板として再利用することが可能となる。
(工程7:単結晶炭化珪素薄膜研磨工程)
 ハンドル基板4上の単結晶炭化珪素薄膜6表面を鏡面仕上げする(図1(f))。具体的には、単結晶炭化珪素薄膜6に化学機械研磨(CMP研磨)を施して鏡面に仕上げる。ここではシリコンウェーハの平坦化等に用いられる従来公知のCMP研磨でよい。
 以上のようにして得られた複合基板7は、ナノカーボン膜形成用、即ち加熱により単結晶炭化珪素薄膜6から珪素原子を昇華させてハンドル基板4(介在層3)上にナノカーボン膜を得るためのものとすることができる。詳しくは、複合基板7を好ましくは1,100℃以上、より好ましくは1,200~1,400℃、更に好ましくは1,250~1,350℃に加熱することにより単結晶炭化珪素薄膜6の珪素原子(Si)を昇華させて、厚さ50~1,500nm程度のナノカーボン膜を形成することができる。この加熱処理の雰囲気は真空雰囲気(減圧)にすると珪素原子が昇華されやすいので好ましい。また、このときの温度条件も雰囲気や処理枚数等により変化するので適宜最適な温度に設定をする。
 昇華後のナノカーボン膜は、その作製条件等により、フラーレン、グラフェン、カーボンナノチューブのいずれか又はこれらから選択される2種以上が混在する構造を有するものとなる。用途により適宜選択をすればよい。
 なお、本実施形態において、工程2における薄膜3aの形成、又は工程3における薄膜3bの形成を省略してもよい。薄膜3aを省略した場合、単結晶炭化珪素基板1のイオン注入面を研磨により表面粗さRMS1.00nm以下とする。また、薄膜3bを省略した場合、ハンドル基板4における単結晶炭化珪素基板1との貼り合わせ面を研磨により表面粗さRMS1.00nm以下とする。
(第2の実施形態)
 図2に、本発明の第2の実施形態に係る複合基板の製造方法の製造工程図を示す。本実施形態では、薄膜3a、3bを形成せず、それ以外は第1の実施形態と同様の工程であり、単結晶炭化珪素基板への水素イオン注入工程(工程1)、単結晶炭化珪素基板のイオン注入面の平滑化工程(工程2)、ハンドル基板の平滑化工程(工程3)、単結晶炭化珪素基板及び/又はハンドル基板の表面活性化処理工程(工程4)、単結晶炭化珪素基板とハンドル基板との貼り合わせ工程(工程5)、剥離処理工程(工程6)、単結晶炭化珪素薄膜研磨工程(工程7)の順に処理を行う。なお、単結晶炭化珪素基板1、イオン注入領域2、ハンドル基板4は、第1の実施形態と同じものである。
(工程1:単結晶炭化珪素基板への水素イオン注入工程)
 まず、単結晶炭化珪素基板1に水素イオン等を注入してイオン注入領域2を形成する(図2(a))。本工程は第1の実施形態と同じである。
(工程2:単結晶炭化珪素基板のイオン注入面の平滑化工程)
 本工程では、図2(a)に示す単結晶炭化珪素基板1のハンドル基板4と貼り合わせを行う面(イオン注入面)を表面粗さRMS1.00nm以下の平滑な面とする。この場合、表面粗さRMS1.00nm以下の平滑な面を有する市販品の単結晶炭化珪素ウェーハを用意してもよいし、イオン注入処理後にCMP処理を施して表面粗さRMS1.00nm以下の平滑な面に仕上げるようにしてもよい。
(工程3:ハンドル基板の平滑化工程)
 本工程においても図2(b)に示すハンドル基板4の単結晶炭化珪素基板1と貼り合わせを行う面を表面粗さRMS1.00nm以下の平滑な面とする。この場合も、市販品として表面粗さRMS1.00nm以下の平滑な面を有するハンドル基板を用意してもよいし、CMP処理を施して表面粗さRMS1.00nm以下の平滑な面に仕上げるようにしてもよい。
(工程4:単結晶炭化珪素基板及び/又はハンドル基板の表面活性化処理工程)
 次に、単結晶炭化珪素基板1とハンドル基板4の貼り合わせをする表面について、表面活性化処理としてプラズマ活性化処理、真空イオンビーム処理又はオゾン水への浸漬処理を行う。処理条件等は第1の実施形態と同じである。
(工程5:単結晶炭化珪素基板とハンドル基板との貼り合わせ工程)
 表面活性化処理が終了した単結晶炭化珪素基板1及びハンドル基板4の表面活性化処理をした表面を接合面として貼り合わせる(図2(c))。
 次いで、単結晶炭化珪素基板1とハンドル基板4と貼り合わせた後に、好ましくは150~350℃、より好ましくは150~250℃の熱処理を行い、貼り合わせ面の結合強度を向上させる。150℃未満では十分な結合強度が得られず、350℃超では、熱処理初期に(=結合強度が十分に高まる前の段階で)熱膨張係数の差に起因する剥がれが発生しやすくなる。熱処理の際には、単結晶炭化珪素基板1とハンドル基板4との間の熱膨張率差により基板の反りが発生するが、それぞれの材質に適した温度を採用して反りを抑制するとよい。熱処理時間としては、温度にもある程度依存するが、2~24時間が好ましい。
 これにより、単結晶炭化珪素基板1とハンドル基板4とが直接強固に密着した貼り合わせ基板5となる。
(工程6:剥離処理工程)
 貼り合わせ基板5について、イオン注入した部分に熱的エネルギー又は機械的エネルギーを付与して、イオン注入領域2で単結晶炭化珪素基板1aを剥離させ、ハンドル基板4上に単結晶炭化珪素薄膜6を有する複合基板7’を作製する(図2(d))。剥離方法は、第1の実施形態と同じである。
 このとき、単結晶炭化珪素基板1とハンドル基板4とは強固に密着しているため、イオン注入領域2における剥離部分以外の部分での剥離は発生しない。
(工程7:単結晶炭化珪素薄膜研磨工程)
 ハンドル基板4上の単結晶炭化珪素薄膜6表面を鏡面仕上げする(図2(e))。
 以下に、実施例及び比較例を挙げて、本発明を更に具体的に説明するが、本発明は実施例に限定されるものではない。
 なお、表面粗さRMSは、原子間力顕微鏡(AFM)によりその基板の表面を測定して求めた。測定条件は、測定領域10μm×10μmとした。
[実施例1]
 単結晶炭化珪素基板1として、市販品の直径3インチの単結晶炭化珪素ウェーハ(ポリタイプ4H、厚さ400μm)を用意し、これに100KeV,ドーズ量8.8×1016atom/cm2で水素イオン(H+)を注入した。なお、この単結晶炭化珪素ウェーハは表面がCMP処理で仕上げられており、その表面粗さRMSが0.90nmであった。
 次に、ハンドル基板4として、直径3インチの多結晶炭化珪素ウェーハ(厚さ400μm)を用意し、その主面に薄膜3bとしてPECVD法によって厚さ100nmの酸化珪素(SiO2)薄膜を形成した後、この薄膜をCMP処理により研磨した。その表面粗さRMSは0.60nmであった。
 次いで、単結晶炭化珪素基板のイオン注入した表面及びハンドル基板の薄膜形成面にプラズマ活性化表面処理を施した後、両者を貼り合わせた。このとき、貼り合わせた基板に対して、150℃で5時間熱処理を施して接合体を得た。
 次いで、この接合体をボートにセットした後に、加熱炉にて950℃まで加熱したところ、イオン注入領域にて熱剥離を起こし、多結晶炭化珪素ウェーハに酸化珪素薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、「単結晶炭化珪素薄膜が均一に転写された」とは、目視観察でイオン注入領域以外の積層部分で剥離していないということである。
 複合基板の単結晶炭化珪素薄膜転写面の表面粗さRMSは8.2nmであった。
[実施例2]
 本発明の複合基板の製造方法において、下記2種類のハンドル基板を用いて、剥離方法を機械剥離法として複合基板を以下のように作製した。
(実施例2-1)
 単結晶炭化珪素基板1として、市販品の直径3インチの単結晶炭化珪素ウェーハ(ポリタイプ4H、厚さ400μm)を用意し、これに100KeV,ドーズ量8.8×1016atom/cm2で水素イオン(H+)を注入した。なお、この単結晶炭化珪素ウェーハは表面がCMP処理で仕上げられており、その表面粗さRMSが0.90nmであった。
 次に、ハンドル基板4として、直径3インチの多結晶炭化珪素ウェーハ(厚さ400μm)を用意し、その主面に薄膜3bとしてPECVD法によって厚さ100nmの酸化珪素(SiO2)薄膜を形成した後、この薄膜をCMP処理により研磨した。その表面粗さRMSは0.60nmであった。
 次いで、単結晶炭化珪素基板のイオン注入した表面及びハンドル基板の薄膜形成面にプラズマ活性化表面処理を施した後、両者を貼り合わせた。このとき、貼り合わせた基板に対して、150℃で5時間熱処理を施して接合体を得た。
 次いで、この接合体をボートにセットした後に、加熱炉にて熱剥離が生じない程度の低温熱処理として880℃まで加熱し、30分の加熱処理時間が経過した後にイオン注入領域の一端に機械的衝撃を付与したところ、イオン注入領域にて機械剥離を起こし、多結晶炭化珪素ウェーハに酸化珪素薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。
 この複合基板の単結晶炭化珪素薄膜転写面の表面粗さRMSは4.7nmであった。
(実施例2-2)
 実施例2-1において、ハンドル基板4を直径3インチのアモルファス炭化珪素ウェーハ(厚さ400μm)とし、それ以外は実施例2-1と同様にして複合基板を作製した。
 その結果、アモルファス炭化珪素ウェーハに酸化珪素薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、ハンドル基板4の薄膜形成面のCMP処理後の表面粗さは0.60nmであり、複合基板の単結晶炭化珪素薄膜転写面の表面粗さRMSは5.1nmであった。
 以上のように、剥離方法を機械剥離法とすることにより複合基板の単結晶炭化珪素薄膜転写面の表面粗さを低減することができ、この転写面を鏡面仕上げする際の負担を軽減することが可能である。
[実施例3]
 本発明の複合基板の製造方法において、単結晶炭化珪素基板1、ハンドル基板4それぞれに6種類の薄膜3a、3bを形成して表面の平滑化を図り、複合基板を以下のように作製した。
(実施例3-1)
 単結晶炭化珪素基板1として、市販品の直径3インチの単結晶炭化珪素ウェーハ(ポリタイプ4H、厚さ400μm)を用意し、これに100KeV,ドーズ量8.8×1016atom/cm2で水素イオン(H+)を注入した。
 次いで、この単結晶炭化珪素基板1のイオン注入面に薄膜3aとしてPECVD法によって厚さ100nmの酸化珪素(SiO2)薄膜を形成した後、この薄膜をCMP処理により研磨した。その表面粗さRMSは0.60nmであった。
 次に、ハンドル基板4として、直径3インチの多結晶炭化珪素ウェーハ(厚さ400μm)を用意し、その主面に薄膜3bとしてPECVD法によって厚さ100nmの酸化珪素(SiO2)薄膜を形成した後、この薄膜をCMP処理により研磨した。その表面粗さRMSは0.60nmであった。
 次いで、単結晶炭化珪素基板の薄膜形成面及びハンドル基板の薄膜形成面にプラズマ活性化表面処理を施した後、両者を貼り合わせた。このとき、貼り合わせた基板に対して、150℃で5時間熱処理を施して接合体を得た。
 次いで、この接合体をボートにセットした後に、加熱炉にて熱剥離が生じない程度の低温熱処理として880℃まで加熱し、30分の加熱処理時間が経過した後にイオン注入領域の一端に機械的衝撃を付与したところ、イオン注入領域にて機械剥離を起こし、多結晶炭化珪素ウェーハに酸化珪素薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。
(実施例3-2)
 実施例3-1において、薄膜3a、3bとして、それぞれスパッタリング法によって厚さ100nmの窒化珪素(SiN)薄膜を形成した後、この薄膜をCMP処理により研磨して仕上げるようにし、それ以外は実施例3-1と同様にして複合基板を作製した。
 その結果、多結晶炭化珪素ウェーハに窒化珪素薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面のCMP処理後の表面粗さはそれぞれ0.63nmであった。
(実施例3-3)
 実施例3-1において、薄膜3a、3bとして、それぞれスパッタリング法によって厚さ100nmのアモルファス炭化珪素(SiC)薄膜を形成した後、この薄膜をCMP処理により研磨して仕上げるようにし、それ以外は実施例3-1と同様にして複合基板を作製した。
 その結果、多結晶炭化珪素ウェーハに炭化珪素薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面のCMP処理後の表面粗さはそれぞれ0.68nmであった。
(実施例3-4)
 実施例3-1において、薄膜3a、3bとして、それぞれスパッタリング法によって厚さ100nmのアモルファスシリコン(Si)薄膜を形成した後、この薄膜をCMP処理により研磨して仕上げるようにし、それ以外は実施例3-1と同様にして複合基板を作製した。
 その結果、多結晶炭化珪素ウェーハにシリコン薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面のCMP処理後の表面粗さはそれぞれ0.65nmであった。
(実施例3-5)
 実施例3-1において、薄膜3a、3bとして、それぞれ電子ビーム蒸着法によって厚さ20nmのチタン(Ti)薄膜を形成した後、CMP処理することなくそのままとし、それ以外は実施例3-1と同様にして複合基板を作製した。
 その結果、多結晶炭化珪素ウェーハにチタン薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面の表面粗さはそれぞれ0.71nmであった。
(実施例3-6)
 実施例3-1において、薄膜3a、3bとして、それぞれ電子ビーム蒸着法によって厚さ20nmのチタン(Ti)薄膜と厚さ20nmの金(Au)薄膜を形成した後、CMP処理することなくそのままとし、それ以外は実施例3-1と同様にして複合基板を作製した。
 その結果、多結晶炭化珪素ウェーハにチタン薄膜と金薄膜の積層薄膜(Ti/Au/Au/Tiの4層構造の薄膜)を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面の表面粗さはそれぞれ0.75nmであった。
[実施例4]
 実施例3において、ハンドル基板4を直径3インチのアモルファス炭化珪素ウェーハ(厚さ400μm)とし、それ以外は実施例3と同様にして複合基板を作製した。詳しくは以下の通りである。
(実施例4-1)
 実施例3-1において、ハンドル基板4を直径3インチのアモルファス炭化珪素ウェーハ(厚さ400μm)とし、それ以外は実施例3-1と同様にして複合基板を作製した。
 その結果、アモルファス炭化珪素ウェーハに酸化珪素薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面のCMP処理後の表面粗さはそれぞれ0.60nmであった。
(実施例4-2)
 実施例3-2において、ハンドル基板4を直径3インチのアモルファス炭化珪素ウェーハ(厚さ400μm)とし、それ以外は実施例3-2と同様にして複合基板を作製した。
 その結果、アモルファス炭化珪素ウェーハに窒化珪素薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面のCMP処理後の表面粗さはそれぞれ0.63nmであった。
(実施例4-3)
 実施例3-3において、ハンドル基板4を直径3インチのアモルファス炭化珪素ウェーハ(厚さ400μm)とし、それ以外は実施例3-3と同様にして複合基板を作製した。
 その結果、アモルファス炭化珪素ウェーハに炭化珪素薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面のCMP処理後の表面粗さはそれぞれ0.68nmであった。
(実施例4-4)
 実施例3-4において、ハンドル基板4を直径3インチのアモルファス炭化珪素ウェーハ(厚さ400μm)とし、それ以外は実施例3-4と同様にして複合基板を作製した。
 その結果、アモルファス炭化珪素ウェーハにシリコン薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面のCMP処理後の表面粗さはそれぞれ0.65nmであった。
(実施例4-5)
 実施例3-5において、ハンドル基板4を直径3インチのアモルファス炭化珪素ウェーハ(厚さ400μm)とし、それ以外は実施例3-5と同様にして複合基板を作製した。
 その結果、アモルファス炭化珪素ウェーハにチタン薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面の表面粗さはそれぞれ0.71nmであった。
(実施例4-6)
 実施例3-6において、ハンドル基板4を直径3インチのアモルファス炭化珪素ウェーハ(厚さ400μm)とし、それ以外は実施例3-6と同様にして複合基板を作製した。
 その結果、アモルファス炭化珪素ウェーハにチタン薄膜と金薄膜の積層薄膜(Ti/Au/Au/Tiの4層構造の薄膜)を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面の表面粗さはそれぞれ0.75nmであった。
[実施例5]
 本発明の第2の実施形態の複合基板の製造方法において、貼り合わせ前の表面活性化処
理の条件を変更し、複合基板を以下のように作製した。
(実施例5-1)
 単結晶炭化珪素基板1として、市販品の直径3インチの単結晶炭化珪素ウェーハ(ポリタイプ4H、厚さ400μm)を用意し、これに100KeV,ドーズ量8.8×1016atom/cm2で水素イオン(H+)を注入した。なお、この単結晶炭化珪素ウェーハは表面がCMP処理で仕上げられており、その表面粗さRMSが0.90nmであった。
 次に、ハンドル基板4として、直径3インチの多結晶炭化珪素ウェーハ(厚さ400μm)を用意した。なお、この多結晶炭化珪素ウェーハは表面がCMP処理で仕上げられており、その表面粗さRMSが0.95nmであった。
 次いで、単結晶炭化珪素基板のイオン注入した表面及びハンドル基板の貼り合わせ予定面にプラズマ活性化表面処理を施した後、両者を貼り合わせた。次いで、貼り合わせた基板に対して、150℃で5時間熱処理を施して接合体を得た。
 次いで、この接合体をボートにセットした後に、加熱炉にて熱剥離が生じない程度の低温熱処理として880℃まで加熱し、30分の加熱処理時間が経過した後にイオン注入領域の一端に機械的衝撃を付与したところ、イオン注入領域にて機械剥離を起こし、多結晶炭化珪素ウェーハに単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。
(実施例5-2)
 実施例5-1において、貼り合わせ前の表面活性化処理として真空イオンビーム処理を単結晶炭化珪素基板のイオン注入した表面及びハンドル基板の貼り合わせ予定面に施し、それ以外は実施例5-1と同様にして複合基板を作製した。なお、真空イオンビーム処理は、Arイオンを表面に照射することにより行なった。
 その結果、多結晶炭化珪素ウェーハに単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。
(実施例5-3)
 実施例5-1において、貼り合わせ前の表面活性化処理としてオゾン水による浸漬処理を単結晶炭化珪素基板のイオン注入した表面及びハンドル基板の貼り合わせ予定面に施し、それ以外は実施例5-1と同様にして複合基板を作製した。なお、オゾン水による浸漬処理は、超純水にオゾンを含ませた容器の中に10分間浸漬することで行なった。
 その結果、多結晶炭化珪素ウェーハに単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。
(実施例5-4)
 実施例5-1において、貼り合わせ前の表面活性化処理を行わず未処理とし、それ以外は実施例5-1と同様にして複合基板を作製した。
 その結果、得られた複合基板において、目視観察で一部(面積率にして5%程度)に単結晶炭化珪素薄膜の多結晶炭化珪素ウェーハからの剥がれが発生したが、大部分の単結晶炭化珪素薄膜は多結晶炭化珪素ウェーハに密着よく転写されており、ナノカーボン膜形成用として使用可能な状態であった。
[比較例1]
 本発明の第2の実施形態の複合基板の製造方法において、貼り合わせ前の表面活性化処理の条件を変更し、複合基板を以下のように作製した。
(比較例1-1)
 単結晶炭化珪素基板1として、市販品の直径3インチの単結晶炭化珪素ウェーハ(ポリタイプ4H、厚さ400μm)を用意し、これに100KeV,ドーズ量8.8×1016atom/cm2で水素イオン(H+)を注入した。なお、この単結晶炭化珪素ウェーハは表面がCMP処理で仕上げられており、その表面粗さRMSが0.95nmであった。
 次に、ハンドル基板4として、直径3インチの多結晶炭化珪素ウェーハ(厚さ400μm)を用意した。なお、この多結晶炭化珪素ウェーハは表面がCMP処理で仕上げられており、その表面粗さRMSが1.05nmであった。
 次いで、単結晶炭化珪素基板のイオン注入した表面及びハンドル基板の貼り合わせ予定面にプラズマ活性化表面処理を施した後、両者を貼り合わせた。次いで、貼り合わせた基板に対して、150℃で5時間熱処理を施して接合体を得た。
 次いで、この接合体をボートにセットした後に、加熱炉にて熱剥離が生じない程度の低温熱処理として880℃まで加熱し、30分の加熱処理時間が経過した後にイオン注入領域の一端に機械的衝撃を付与したところ、イオン注入領域にて機械剥離を起こし、多結晶炭化珪素ウェーハに単結晶炭化珪素薄膜が転写された複合基板を得た。この得られた複合基板において、目視観察で単結晶炭化珪素薄膜の大部分(面積率にして90%程度)が多結晶炭化珪素ウェーハから剥がれ、ナノカーボン膜形成用として使用不可能な状態であった。
(比較例1-2)
 比較例1-1において、貼り合わせ前の表面活性化処理として真空イオンビーム処理を単結晶炭化珪素基板のイオン注入した表面及びハンドル基板の貼り合わせ予定面に施し、それ以外は比較例1-1と同様にして複合基板を作製した。なお、真空イオンビーム処理は、Arイオンを表面に照射することにより行なった。
 その結果、得られた複合基板において、目視観察で単結晶炭化珪素薄膜の大部分(面積率にして90%程度)が多結晶炭化珪素ウェーハから剥がれ、ナノカーボン膜形成用として使用不可能な状態であった。
(比較例1-3)
 比較例1-1において、貼り合わせ前の表面活性化処理としてオゾン水による浸漬処理を単結晶炭化珪素基板のイオン注入した表面及びハンドル基板の貼り合わせ予定面に施し、それ以外は比較例1-1と同様にして複合基板を作製した。なお、オゾン水による浸漬処理は、超純水にオゾンを含ませた容器の中に10分間浸漬することで行なった。
 その結果、得られた複合基板において、目視観察で単結晶炭化珪素薄膜の大部分(面積率にして90%程度)が多結晶炭化珪素ウェーハから剥がれ、ナノカーボン膜形成用として使用不可能な状態であった。
(比較例1-4)
 比較例1-1において、貼り合わせ前の表面活性化処理を行わず未処理とし、それ以外は比較例1-1と同様にして複合基板を作製した。
 その結果、得られた複合基板において、目視観察で単結晶炭化珪素薄膜の大部分(面積率にして90%程度)が多結晶炭化珪素ウェーハから剥がれ、ナノカーボン膜形成用として使用不可能な状態であった。
 なお、これまで本発明を実施形態をもって説明してきたが、本発明は上記実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用効果を奏する限り、本発明の範囲に含まれるものである。
1、1a 単結晶炭化珪素基板
2 イオン注入領域
3a、3b 薄膜
3 介在層
4 ハンドル基板
5 貼り合わせ基板
6 単結晶炭化珪素薄膜
7、7’ 複合基板

Claims (10)

  1.  単結晶炭化珪素基板の表面からイオンを注入してイオン注入領域を形成し、上記単結晶
    炭化珪素基板のイオン注入した面とハンドル基板の主面とを貼り合わせた後、上記イオン
    注入領域で単結晶炭化珪素基板を剥離させて、ハンドル基板上に単結晶炭化珪素薄膜を転
    写させた複合基板の製造方法であって、上記単結晶炭化珪素基板及びハンドル基板の貼り
    合わせを行うそれぞれの面の表面粗さRMSが1.00nm以下であることを特徴とする
    複合基板の製造方法。
  2.  上記ハンドル基板が耐熱温度1,100℃以上の耐熱材料(ただし、単結晶炭化珪素を
    除く)からなることを特徴とする請求項1に記載の複合基板の製造方法。
  3.  上記ハンドル基板がアモルファス炭化珪素又は多結晶炭化珪素からなることを特徴とす
    る請求項1又は2に記載の複合基板の製造方法。
  4.  上記単結晶炭化珪素基板のイオン注入面及び/又はハンドル基板の主面に酸化珪素、窒
    化珪素、酸化アルミニウム、窒化アルミニウム、酸化ジルコニウム、シリコン及び炭化珪
    素から選ばれる少なくとも1種の材料からなる薄膜を形成し、該薄膜を研磨してその面の
    表面粗さRMSを1.00nm以下とすることを特徴とする請求項1~3のいずれか1項
    に記載の複合基板の製造方法。
  5.  上記単結晶炭化珪素基板のイオン注入面及び/又はハンドル基板の主面にTi、Au、
    Ag、Cu、Ni、Co、Fe、Cr、Zr、Mo、Ta及びWから選ばれる少なくとも
    1種の金属材料からなる薄膜を形成してその面の表面粗さRMSを1.00nm以下とす
    ることを特徴とする請求項1~3のいずれか1項に記載の複合基板の製造方法。
  6.  上記炭化珪素基板及び/又はハンドル基板の貼り合わせを行う面について表面活性化処
    理を施した後に、上記貼り合わせを行うことを特徴とする請求項1~5のいずれか1項に
    記載の複合基板の製造方法。
  7.  上記表面活性化処理は、プラズマ活性化処理、真空イオンビーム処理又はオゾン水への
    浸漬処理であることを特徴とする請求項6記載の複合基板の製造方法。
  8.  上記単結晶炭化珪素基板とハンドル基板とを貼り合わせた後、イオン注入領域に物理的
    衝撃を加えて単結晶炭化珪素基板を剥離させることを特徴とする請求項1~7のいずれか
    1項に記載の複合基板の製造方法。
  9.  請求項1~8のいずれか1項に記載の複合基板の製造方法により得られた複合基板。
  10.  ナノカーボン膜形成用である請求項9記載の複合基板。
PCT/JP2015/079763 2014-12-05 2015-10-22 複合基板の製造方法及び複合基板 WO2016088466A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016562345A JPWO2016088466A1 (ja) 2014-12-05 2015-10-22 複合基板の製造方法及び複合基板
CN201580066099.8A CN107004573A (zh) 2014-12-05 2015-10-22 复合基板的制造方法和复合基板
US15/532,517 US20170330747A1 (en) 2014-12-05 2015-10-22 Composite substrate manufacturing method and composite substrate
EP15864392.4A EP3229260A4 (en) 2014-12-05 2015-10-22 Composite substrate manufacturing method and composite substrate
SG11201703377SA SG11201703377SA (en) 2014-12-05 2015-10-22 Composite substrate manufacturing method and composite substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-246797 2014-12-05
JP2014246797 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016088466A1 true WO2016088466A1 (ja) 2016-06-09

Family

ID=56091422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079763 WO2016088466A1 (ja) 2014-12-05 2015-10-22 複合基板の製造方法及び複合基板

Country Status (6)

Country Link
US (1) US20170330747A1 (ja)
EP (1) EP3229260A4 (ja)
JP (1) JPWO2016088466A1 (ja)
CN (1) CN107004573A (ja)
SG (2) SG10202008808TA (ja)
WO (1) WO2016088466A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088093A1 (ja) * 2016-11-11 2018-05-17 信越化学工業株式会社 複合基板、表面弾性波デバイスおよび複合基板の製造方法
JP2020109796A (ja) * 2019-01-04 2020-07-16 富士通株式会社 半導体装置、半導体装置の製造方法及び基板接合方法
TWI804550B (zh) * 2017-12-28 2023-06-11 日商日本碍子股份有限公司 壓電性材料基板與支持基板的接合體及其製造方法
TWI829629B (zh) * 2017-01-18 2024-01-21 日商信越化學工業股份有限公司 複合基板及複合基板的製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104291A1 (ja) 2014-12-22 2016-06-30 信越化学工業株式会社 複合基板、ナノカーボン膜の作製方法及びナノカーボン膜
WO2017087393A1 (en) * 2015-11-20 2017-05-26 Sunedison Semiconductor Limited Manufacturing method of smoothing a semiconductor surface
CN110078017B (zh) * 2018-01-26 2021-11-05 沈阳硅基科技有限公司 一种贯穿空腔结构硅片的加工方法
CN109686656A (zh) * 2018-11-13 2019-04-26 中国科学院上海微系统与信息技术研究所 一种硅基异质集成碳化硅薄膜结构的制备方法
CN109678106B (zh) * 2018-11-13 2020-10-30 中国科学院上海微系统与信息技术研究所 一种硅基异质集成4H-SiC外延薄膜结构的制备方法
WO2020138202A1 (ja) * 2018-12-28 2020-07-02 国立研究開発法人産業技術総合研究所 グラファイト薄膜/シリコン基板積層体、及びその製造方法、高排熱型電子デバイス用基板
CN110473778B (zh) * 2019-08-17 2021-10-15 哈尔滨工业大学 一种利用等离子体活化直接键合氧化锆和三氧化二铝的方法
FR3101726B1 (fr) 2019-10-04 2021-10-01 Commissariat Energie Atomique procédé de fabrication d’un dispositif électronique
CN111893558B (zh) * 2020-07-01 2021-08-17 中国科学院上海微系统与信息技术研究所 一种用于单晶硅生长炉的薄膜隔热片及单晶硅生长炉
FR3128057B1 (fr) * 2021-10-07 2023-09-15 Soitec Silicon On Insulator Procede de fabrication d’une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic poly-cristallin
CN114525489B (zh) * 2022-01-25 2023-04-25 中国科学院上海微系统与信息技术研究所 一种硅基碳化硅薄膜材料制备方法
CN114864529A (zh) * 2022-05-18 2022-08-05 北京青禾晶元半导体科技有限责任公司 一种碳化硅复合基板及其制造方法与应用
CN116817804B (zh) * 2023-08-24 2023-11-03 江苏集创原子团簇科技研究院有限公司 一种多层石墨烯中离子注入深度精确标定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062267A (ja) * 2006-09-06 2008-03-21 Mitsubishi Heavy Ind Ltd 常温接合方法及び常温接合装置
JP2009117533A (ja) * 2007-11-05 2009-05-28 Shin Etsu Chem Co Ltd 炭化珪素基板の製造方法
WO2014061337A1 (ja) * 2012-10-15 2014-04-24 信越化学工業株式会社 ナノカーボン膜の作製方法及びナノカーボン膜

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521155B (zh) * 2008-02-29 2012-09-12 信越化学工业株式会社 制备具有单晶薄膜的基板的方法
JP5496598B2 (ja) * 2008-10-31 2014-05-21 信越化学工業株式会社 シリコン薄膜転写絶縁性ウェーハの製造方法
JP2012182201A (ja) * 2011-02-28 2012-09-20 Shin Etsu Chem Co Ltd 半導体ウェーハの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062267A (ja) * 2006-09-06 2008-03-21 Mitsubishi Heavy Ind Ltd 常温接合方法及び常温接合装置
JP2009117533A (ja) * 2007-11-05 2009-05-28 Shin Etsu Chem Co Ltd 炭化珪素基板の製造方法
WO2014061337A1 (ja) * 2012-10-15 2014-04-24 信越化学工業株式会社 ナノカーボン膜の作製方法及びナノカーボン膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3229260A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088093A1 (ja) * 2016-11-11 2018-05-17 信越化学工業株式会社 複合基板、表面弾性波デバイスおよび複合基板の製造方法
KR20190075924A (ko) * 2016-11-11 2019-07-01 신에쓰 가가꾸 고교 가부시끼가이샤 복합 기판, 표면탄성파 디바이스 및 복합 기판의 제조 방법
JPWO2018088093A1 (ja) * 2016-11-11 2019-09-26 信越化学工業株式会社 複合基板、表面弾性波デバイスおよび複合基板の製造方法
KR102433349B1 (ko) * 2016-11-11 2022-08-16 신에쓰 가가꾸 고교 가부시끼가이샤 복합 기판, 표면탄성파 디바이스 및 복합 기판의 제조 방법
TWI776822B (zh) * 2016-11-11 2022-09-11 日商信越化學工業股份有限公司 複合基板、表面彈性波裝置及複合基板之製造方法
US11800805B2 (en) 2016-11-11 2023-10-24 Shin-Etsu Chemical Co., Ltd. Composite substrate, surface acoustic wave device, and method for manufacturing composite substrate
TWI829629B (zh) * 2017-01-18 2024-01-21 日商信越化學工業股份有限公司 複合基板及複合基板的製造方法
TWI804550B (zh) * 2017-12-28 2023-06-11 日商日本碍子股份有限公司 壓電性材料基板與支持基板的接合體及其製造方法
US11689172B2 (en) 2017-12-28 2023-06-27 Ngk Insulators, Ltd. Assembly of piezoelectric material substrate and support substrate, and method for manufacturing said assembly
JP2020109796A (ja) * 2019-01-04 2020-07-16 富士通株式会社 半導体装置、半導体装置の製造方法及び基板接合方法
JP7205233B2 (ja) 2019-01-04 2023-01-17 富士通株式会社 半導体装置、半導体装置の製造方法及び基板接合方法

Also Published As

Publication number Publication date
JPWO2016088466A1 (ja) 2017-08-31
EP3229260A4 (en) 2018-07-25
EP3229260A1 (en) 2017-10-11
SG11201703377SA (en) 2017-05-30
SG10202008808TA (en) 2020-10-29
CN107004573A (zh) 2017-08-01
US20170330747A1 (en) 2017-11-16

Similar Documents

Publication Publication Date Title
WO2016088466A1 (ja) 複合基板の製造方法及び複合基板
JP6369566B2 (ja) ナノカーボン膜作製用複合基板及びナノカーボン膜の作製方法
CN108138358B (zh) SiC复合基板的制造方法
CN108140540B (zh) SiC复合基板的制造方法和半导体基板的制造方法
TWI613145B (zh) 奈米碳膜之製作方法及奈米碳膜
JP2007220782A (ja) Soi基板およびsoi基板の製造方法
CN108140541B (zh) SiC复合基板的制造方法
TW200818255A (en) Method of producing bonded wafer
TW201140662A (en) Method for the preparation of a multi-layered crystalline structure
JP6866150B2 (ja) 2つの構造体間の直接接合を実行する方法
JP7262415B2 (ja) 複合基板およびその製造方法
JP6737378B2 (ja) SiC複合基板
TW202205357A (zh) 用於製作複合結構之方法,該複合結構包含一單晶sic薄層在一sic載體底材上

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016562345

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201703377S

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 15532517

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015864392

Country of ref document: EP