WO2016088466A1 - 複合基板の製造方法及び複合基板 - Google Patents
複合基板の製造方法及び複合基板 Download PDFInfo
- Publication number
- WO2016088466A1 WO2016088466A1 PCT/JP2015/079763 JP2015079763W WO2016088466A1 WO 2016088466 A1 WO2016088466 A1 WO 2016088466A1 JP 2015079763 W JP2015079763 W JP 2015079763W WO 2016088466 A1 WO2016088466 A1 WO 2016088466A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon carbide
- substrate
- crystal silicon
- single crystal
- thin film
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 382
- 239000002131 composite material Substances 0.000 title claims abstract description 106
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 43
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 281
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 211
- 239000010409 thin film Substances 0.000 claims abstract description 198
- 230000003746 surface roughness Effects 0.000 claims abstract description 57
- 239000010408 film Substances 0.000 claims abstract description 35
- 229910021392 nanocarbon Inorganic materials 0.000 claims abstract description 17
- 150000002500 ions Chemical class 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 89
- 238000011282 treatment Methods 0.000 claims description 59
- 238000005468 ion implantation Methods 0.000 claims description 50
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 34
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 25
- 238000001994 activation Methods 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 21
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 21
- 239000007769 metal material Substances 0.000 claims description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 230000004913 activation Effects 0.000 claims description 17
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 15
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 239000010703 silicon Substances 0.000 claims description 12
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 11
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 11
- 238000010884 ion-beam technique Methods 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 238000007654 immersion Methods 0.000 claims description 9
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 7
- 238000000678 plasma activation Methods 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 5
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 5
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000003779 heat-resistant material Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- 230000007547 defect Effects 0.000 abstract 1
- 206010040844 Skin exfoliation Diseases 0.000 description 59
- 238000010438 heat treatment Methods 0.000 description 38
- 238000005498 polishing Methods 0.000 description 20
- 239000010936 titanium Substances 0.000 description 15
- 125000004429 atom Chemical group 0.000 description 14
- 239000001257 hydrogen Substances 0.000 description 14
- 229910052739 hydrogen Inorganic materials 0.000 description 14
- -1 hydrogen ions Chemical class 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 12
- 239000010931 gold Substances 0.000 description 11
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 10
- 238000004299 exfoliation Methods 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000009499 grossing Methods 0.000 description 9
- 239000010410 layer Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 6
- 230000000007 visual effect Effects 0.000 description 6
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 5
- 229910021389 graphene Inorganic materials 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 238000004381 surface treatment Methods 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 238000005566 electron beam evaporation Methods 0.000 description 4
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 3
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910003472 fullerene Inorganic materials 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000010944 silver (metal) Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 1
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 1
- JQMFQLVAJGZSQS-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JQMFQLVAJGZSQS-UHFFFAOYSA-N 0.000 description 1
- IHCCLXNEEPMSIO-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 IHCCLXNEEPMSIO-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- WTFUTSCZYYCBAY-SXBRIOAWSA-N 6-[(E)-C-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-N-hydroxycarbonimidoyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C/C(=N/O)/C1=CC2=C(NC(O2)=O)C=C1 WTFUTSCZYYCBAY-SXBRIOAWSA-N 0.000 description 1
- DFGKGUXTPFWHIX-UHFFFAOYSA-N 6-[2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]acetyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)C1=CC2=C(NC(O2)=O)C=C1 DFGKGUXTPFWHIX-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000005092 sublimation method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02527—Carbon, e.g. diamond-like carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76254—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0227—Pretreatment of the material to be coated by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02378—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02422—Non-crystalline insulating materials, e.g. glass, polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/7602—Making of isolation regions between components between components manufactured in an active substrate comprising SiC compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
Definitions
- the present invention relates to a composite substrate manufacturing method and a composite substrate, and more particularly to a composite substrate manufacturing method capable of manufacturing a nanocarbon film with high quality and low cost, and a composite substrate manufactured by the manufacturing method. .
- nanocarbons typified by graphene, fullerene, and carbon nanotubes have attracted attention as new electronic device materials.
- research is progressing as a platform for next-generation electronic devices because graphene has extremely high mobility (also referred to as 100 times that of silicon) and higher durability than steel.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a composite substrate capable of manufacturing a defect-free nanocarbon film at low cost and a composite substrate manufactured by the manufacturing method. To do.
- the present inventor has invented the following method. That is, the thickness of the single crystal silicon carbide layer that is usually graphenized is sufficient for the number of atoms, and a thick silicon carbide layer is unnecessary, so a single crystal silicon carbide thin film is transferred to a support wafer (handle wafer). Thus, a single crystal silicon carbide thin film is obtained. Specifically, a single crystal silicon carbide wafer into which hydrogen ions have been previously implanted is bonded to a support wafer, and after obtaining a sufficient bonding strength, peeling is performed at the ion implantation interface. At that time, the surfaces on which the single crystal silicon carbide substrate and the handle substrate are bonded are smoothed to improve the adhesion strength of the bonding. As a result, a number of single crystal silicon carbide thin films can be transferred from one single crystal silicon carbide wafer, and the cost merit is extremely high.
- the present invention provides the following composite substrate manufacturing method and composite substrate.
- Ions are implanted from the surface of the single-crystal silicon carbide substrate to form an ion-implanted region, and an ion-implanted surface (hereinafter referred to as “ion-implanted surface”) of the single-crystal silicon carbide substrate and the main surface of the handle substrate.
- ion-implanted surface an ion-implanted surface of the single-crystal silicon carbide substrate and the main surface of the handle substrate.
- the single crystal silicon carbide substrate is peeled off in the ion implantation region, and the single crystal silicon carbide thin film is transferred onto the handle substrate.
- the surface roughness RMS of each surface which bonds a handle substrate together is 1.00 nm or less, The manufacturing method of the composite substrate characterized by the above-mentioned.
- a thin film made of a seed metal material is formed, and the surface roughness RMS of the surface is 1.00 nm or less.
- the bonding is performed at the subsequent ion implantation interface.
- the single crystal silicon carbide thin film can be transferred without peeling at the bonding interface between the crystal silicon carbide substrate and the handle substrate.
- a substrate made of silicon carbide has a very high hardness, it is difficult to smooth the surface by polishing.
- By forming a specific thin film on the surface it becomes easy to smooth the surface, and Good adhesion strength can be obtained in the bonding.
- FIG. 4E is a cross-sectional view showing a state in which the single crystal silicon carbide substrate is peeled off in the ion implantation region
- FIG. 4E is a cross-sectional view showing a state in which the single crystal silicon carbide substrate is peeled off in the ion implantation region
- 5F is a cross-sectional view of the composite substrate. It is the schematic which shows the manufacturing process of 2nd Embodiment in the manufacturing method of the composite substrate which concerns on this invention, (a) is sectional drawing of the single crystal silicon carbide substrate by which ion implantation was carried out and the ion implantation surface was smoothed, (B) is a cross-sectional view of a handle substrate with one main surface smoothed, (c) is a cross-sectional view showing a state where a single crystal silicon carbide substrate and a handle substrate are bonded together, and (d) is a single crystal in an ion implantation region. Sectional drawing which shows the state which peeled the silicon carbide substrate, (e) is sectional drawing of a composite substrate.
- the method for manufacturing a composite substrate according to the first embodiment of the present invention includes a hydrogen ion implantation step (step 1) for a single crystal silicon carbide substrate, and an ion implantation surface of the single crystal silicon carbide substrate.
- Smoothing step (step 2), handle substrate smoothing step (step 3), single crystal silicon carbide substrate and / or handle substrate surface activation treatment step (step 4), single crystal silicon carbide substrate and handle substrate The bonding process (process 5), the peeling process process (process 6), and the single crystal silicon carbide thin film polishing process (process 7) are performed in this order.
- the single crystal silicon carbide substrate 1 to be bonded to the handle substrate 4 is preferably selected from those having a crystal structure of 4H—SiC, 6H—SiC, or 3C—SiC.
- the size of the single crystal silicon carbide substrate 1 and the handle substrate 4 to be described later is set based on the size, cost, etc. of the required nanocarbon film.
- the thickness of the single crystal silicon carbide substrate 1 is preferably in the vicinity of the substrate thickness of the SEMI standard or JEIDA standard from the viewpoint of handling.
- the single crystal silicon carbide substrate 1 a commercially available one, for example, a single crystal silicon carbide wafer marketed for power devices may be used, and the surface thereof is finish-polished by a CMP (Chemical Mechanical Polishing (or Planarization)) process. It is preferable to use a flat and smooth surface.
- CMP Chemical Mechanical Polishing (or Planarization)
- the ion implantation energy may be set so as to obtain a desired thin film thickness.
- He ions, B ions, or the like may be implanted at the same time, and any ions may be employed as long as the same effect can be obtained.
- the ion implantation depth corresponds to the desired thickness of the single crystal silicon carbide thin film.
- the dose amount of hydrogen ions (H + ) implanted into single crystal silicon carbide substrate 1 is preferably 1.0 ⁇ 10 16 atoms / cm 2 to 9.0 ⁇ 10 17 atoms / cm 2 . If it is less than 1.0 ⁇ 10 16 atoms / cm 2 , the interface may not be embrittled. If it exceeds 9.0 ⁇ 10 17 atoms / cm 2 , bubbles are transferred during heat treatment after bonding. It may become defective.
- the dose is preferably 5.0 ⁇ 10 15 atoms / cm 2 to 4.5 ⁇ 10 17 atoms / cm 2 . If it is less than 5.0 ⁇ 10 15 atoms / cm 2 , the interface may not be embrittled. If it exceeds 4.5 ⁇ 10 17 atoms / cm 2 , bubbles are transferred during heat treatment after bonding. It may become defective.
- the depth from the surface of the ion-implanted substrate to the ion-implanted region 2 corresponds to the desired thickness of the single-crystal silicon carbide thin film 6 provided on the handle substrate 4, and is usually
- the thickness is about 100 to 2,000 nm, preferably about 300 to 500 nm, more preferably about 400 nm.
- the thickness of the ion implantation region 2 (that is, the ion distribution thickness) is such that it can be easily peeled off by mechanical impact or the like, and is preferably about 200 to 400 nm, more preferably about 300 nm.
- an insulating film such as a silicon oxide film of about 50 to 500 nm may be formed in advance on the surface of the single crystal silicon carbide substrate 1, and hydrogen ions or hydrogen molecular ions may be implanted therethrough. Thereby, the effect of suppressing channeling of implanted ions is obtained.
- Step 2 Step of smoothing ion-implanted surface of single crystal silicon carbide substrate (FIG. 1B)
- a surface (ion implantation surface) on which the single crystal silicon carbide substrate 1 is bonded is a smooth surface having a surface roughness of RMS 1.00 nm or less.
- the surface of the single crystal silicon carbide substrate 1 can be directly polished and smoothed, but it is not easy to polish a very hard substrate made of silicon carbide. Therefore, in this step, any one of the following steps 2-1 and 2-2 is performed to smooth the surface of the single crystal silicon carbide substrate 1.
- Thin film 3a made of a material having heat resistance to the heat treatment performed later on the ion-implanted surface of single crystal silicon carbide substrate 1 and having the same or close thermal expansion coefficient as single crystal silicon carbide thin film 6 finally formed.
- silicon oxide for example, SiO 2
- silicon nitride aluminum nitride
- silicon for example, amorphous silicon, polycrystalline silicon
- alumina Al 2 O 3
- zirconium oxide for example, zirconia
- silicon carbide for example, amorphous silicon carbide, polycrystalline silicon carbide.
- a plurality of materials are selected from these materials, either a structure laminated for each material or a single layer structure made of a mixture of these materials may be used.
- the film thickness of the thin film 3a is preferably 1 to 200 nm, more preferably 1 to 100 nm, and still more preferably 1 to 20 nm. If the film thickness is less than 1 nm, the surface is not completely covered due to in-plane variation of the film thickness, and the adhesion of the bonding to the handle substrate 4 may be deteriorated. On the other hand, if it exceeds 200 nm, the surface roughness of the deposited thin film 3a is deteriorated, and the desired smoothness may not be obtained even by polishing. Note that the film thickness to be formed needs to be a film thickness in consideration of the thickness of polishing performed later.
- the thin film 3a may be formed by any film forming method that can be formed on the single crystal silicon carbide substrate 1 with good adhesion.
- a silicon oxide thin film is formed by PECVD, and silicon nitride, aluminum nitride,
- a thin film of silicon and silicon carbide is preferably formed by a sputtering method.
- the thin film 3a is polished, and the surface roughness RMS of the surface is set to 1.00 nm or less, preferably 0.80 nm or less, more preferably 0.70 nm or less.
- the surface roughness RMS of the thin film 3a exceeds 1.00 nm, the bonding interface with the handle substrate 4 (that is, the thin film 3b) during the peeling process for forming a single crystal silicon carbide thin film and the subsequent heat treatment performed later. At the interface).
- the surface roughness RMS (Root-mean-square) is the root mean square roughness Rq as defined in JIS B0601: 2013.
- the polishing method of the thin film 3a is preferably a chemical mechanical polishing method, and the conditions differ depending on the material of the thin film 3a.
- Step 2-2 At least one selected from metal materials having a melting point of 950 ° C. or higher, for example, Ti, Au, Ag, Cu, Ni, Co, Fe, Cr, Zr, Mo, Ta, and W, on the ion implantation surface of the single crystal silicon carbide substrate 1.
- a thin film 3a made of a seed metal material is formed.
- a metal material having a melting point of 950 ° C. or higher it is possible to prevent the thin film 3a from being melted by a low-temperature heat treatment in a subsequent peeling treatment process.
- a plurality of metal materials are selected from these metal materials, either a structure in which the metal materials are laminated or a single layer structure made of an alloy material of the metal materials may be used.
- the film thickness of the thin film 3a is preferably 1 to 100 nm, more preferably 1 to 20 nm, and still more preferably 1 to 10 nm. If the film thickness is less than 1 nm, the substrate surface is not completely covered due to in-plane variation of the film thickness, and there is a possibility that the adhesion of the bonding to the handle substrate 4 may be deteriorated. On the other hand, if it exceeds 100 nm, the surface roughness of the thin film 3a is deteriorated, and there is a possibility that the adhesion of the bonding to the handle substrate 4 is deteriorated.
- the thin film 3a can be formed by any method as long as it can be formed on the single crystal silicon carbide substrate 1 with good adhesion.
- the thin film 3a may be formed by an electron beam evaporation method.
- the surface roughness RMS of the surface is 1.00 nm or less, preferably 0.80 nm or less. Preferably, it can be 0.75 nm or less.
- the order of the above steps 1 and 2 is reversed, and the thin film 3a is first formed on the surface of the single crystal silicon carbide substrate 1 to smooth the surface, and then the ion implantation is performed from above the thin film 3a. Good.
- the handle substrate 4 used in the present invention is preferably made of a heat resistant material (excluding single crystal silicon carbide) having a heat resistant temperature of 1,100 ° C. or higher.
- a heat resistant material excluding single crystal silicon carbide
- silicon carbide that is not single crystal that is, amorphous silicon carbide or polycrystalline Silicon carbide, quartz glass, sapphire, crystalline silicon (single crystal silicon or polycrystalline silicon), silicon nitride, diamond, or aluminum nitride can be used.
- silicon carbide that is not single crystal that is, amorphous silicon carbide or polycrystalline Silicon carbide, quartz glass, sapphire, crystalline silicon (single crystal silicon or polycrystalline silicon), silicon nitride, diamond, or aluminum nitride
- those made of amorphous silicon carbide or polycrystalline silicon carbide having a thermal expansion coefficient close to that of single crystal silicon carbide and having heat resistance to heat treatment performed later are more preferable.
- the substrate can be prevented from being damaged by heat treatment in a subsequent single crystal silicon carbide thin film polishing step.
- the thickness of the handle substrate 4 is not particularly limited, but in the same manner as the single crystal silicon carbide substrate 1, a handle near the normal SEMI standard or JEIDA standard is preferable.
- a thin film made of a material having heat resistance to a heat treatment performed later and having a thermal expansion coefficient the same as or close to that of the single crystal silicon carbide thin film 6 on at least the surface of the handle substrate 4 to be bonded to the single crystal silicon carbide substrate 1 3b is formed to smooth the surface.
- the same processing as in step 2-1 or step 2-2 is performed. That is, the processing corresponding to step 2-1 is performed as follows. First, silicon oxide (for example, SiO 2 ), silicon nitride, aluminum nitride, silicon (for example, amorphous silicon, polycrystalline silicon), alumina (Al 2 ) is formed on the bonding surface of the handle substrate 4 to the single crystal silicon carbide substrate 1.
- a thin film 3b made of at least one material selected from O 3 ), zirconium oxide (eg, zirconia (ZrO 2 )) and silicon carbide (eg, amorphous silicon carbide, polycrystalline silicon carbide) is formed.
- zirconium oxide eg, zirconia (ZrO 2 )
- silicon carbide eg, amorphous silicon carbide, polycrystalline silicon carbide
- the thickness of the thin film 3b is preferably 1 to 200 nm, more preferably 1 to 100 nm, and still more preferably 1 to 20 nm. If the film thickness is less than 1 nm, the surface is not completely covered due to in-plane variation of the film thickness, and there is a possibility that the adhesiveness of bonding to the single crystal silicon carbide substrate 1 is deteriorated. On the other hand, if it exceeds 200 nm, the surface roughness of the deposited thin film 3b is deteriorated, and the desired smoothness may not be obtained even by polishing. Note that the film thickness to be formed needs to be a film thickness in consideration of the thickness of polishing performed later.
- the thin film 3b may be formed by any film forming method that can be formed on the handle substrate 4 with good adhesion.
- a silicon oxide thin film is formed by PECVD or thermal oxidation, and silicon nitride or aluminum nitride is formed.
- Silicon, alumina, zirconium oxide, and silicon carbide thin films may be formed by a sputtering method.
- the thin film 3b is polished, and the surface roughness RMS of the surface is made 1.00 nm or less, preferably 0.80 nm or less, more preferably 0.70 nm or less.
- the surface roughness RMS of the thin film 3b exceeds 1.00 nm, a bonding interface with the single crystal silicon carbide substrate 1 (that is, the thin film) in a peeling process for forming a single crystal silicon carbide thin film to be performed later or a subsequent heat treatment. Peeling occurs at the interface with 3a.
- the polishing method of the thin film 3b is preferably a chemical mechanical polishing method, and the conditions differ depending on the material of the thin film 3b.
- the process corresponding to step 2-2 is performed as follows.
- a metal material having a melting point of 950 ° C. or higher for example, Ti, Au, Ag, Cu, Ni, Co, Fe, Cr, Zr, Mo, on the bonding surface (main surface) of the handle substrate 4 to the single crystal silicon carbide substrate 1.
- a thin film 3b made of at least one metal material selected from Ta and W is formed.
- a metal material having a melting point of 950 ° C. or higher it is possible to prevent the thin film 3a from being melted by a low-temperature heat treatment in a subsequent peeling treatment process.
- a plurality of metal materials are selected from these metal materials, either a structure in which the metal materials are laminated or a single layer structure made of an alloy material of the metal materials may be used.
- the thickness of the thin film 3b is preferably 1 to 100 nm, more preferably 1 to 20 nm, and still more preferably 1 to 10 nm. If the film thickness is less than 1 nm, the substrate surface is not completely covered due to in-plane variation of the film thickness, and there is a possibility that the adhesiveness of bonding to the single crystal silicon carbide substrate 1 is deteriorated. On the other hand, if it exceeds 100 nm, the surface roughness of the thin film 3b is deteriorated, and there is a possibility that the adhesiveness of bonding to the single crystal silicon carbide substrate 1 is deteriorated.
- the thin film 3b may be formed by any method as long as it can be formed on the handle substrate 4 with good adhesion.
- the thin film 3b may be formed by an electron beam evaporation method.
- the surface roughness RMS of the surface is 1.00 nm or less, preferably 0.80 nm or less, more preferably 0. .75 nm or less.
- the surface roughness RMS of the thin film 3b exceeds 1.00 nm, a bonding interface with the single crystal silicon carbide substrate 1 (that is, in the subsequent peeling treatment for forming the single crystal silicon carbide thin film and the subsequent heat treatment (that is, , Peeling occurs at the interface with the thin film 3a.
- the adhesiveness of bonding is improved and it is preferable.
- the surface roughness of the thin films 3a and 3b is made within a certain range (for example, the difference between the two in the surface roughness RMS is within ⁇ 0.05 nm), which further improves the adhesion of bonding.
- Step 4 Surface activation treatment step of single crystal silicon carbide substrate and / or handle substrate
- the surface to be bonded to the single crystal silicon carbide substrate 1 and the handle substrate 4 that is, the surfaces of the thin films 3a and 3b, is subjected to plasma activation treatment, vacuum ion beam treatment, or immersion treatment in ozone water as the surface activation treatment.
- plasma activation treatment vacuum ion beam treatment, or immersion treatment in ozone water as the surface activation treatment.
- the single crystal silicon carbide substrate 1 and / or the handle substrate 4 that have been subjected to the processes up to the step 3 are placed in a vacuum chamber, and the plasma gas is introduced under reduced pressure. Thereafter, the surface is exposed to high-frequency plasma of about 100 W for about 5 to 10 seconds to subject the surface to plasma activation treatment.
- the plasma gas oxygen gas, hydrogen gas, nitrogen gas, argon gas, a mixed gas thereof, or a mixed gas of hydrogen gas and helium gas can be used.
- the single crystal silicon carbide substrate 1 and / or the handle substrate 4 is placed in a high vacuum chamber, and an activation treatment is performed by irradiating the surface to be bonded with an ion beam of Ar or the like.
- the single crystal silicon carbide substrate 1 and / or the handle substrate 4 is immersed in ozone water in which ozone gas is dissolved, and the surface thereof is activated.
- the surface activation treatment described above may be performed only on the single crystal silicon carbide substrate 1 or only on the handle substrate 4, but is preferably performed on both the single crystal silicon carbide substrate 1 and the handle substrate 4.
- the surface activation treatment may be any one of the above methods, or a combination treatment may be performed.
- the surface of the single crystal silicon carbide substrate 1 and the handle substrate 4 on which the surface activation process is performed is preferably a surface to be bonded, that is, the surfaces of the thin films 3a and 3b.
- the warpage of the substrate occurs due to the difference in coefficient of thermal expansion between the single crystal silicon carbide substrate 1 and the handle substrate 4, but it is preferable to employ a temperature suitable for each material to suppress the warpage.
- the heat treatment time is preferably 2 to 24 hours depending on the temperature to some extent.
- the thin film 3a and the thin film 3b are in close contact to form a single layer, the intervening layer 3, and the single crystal silicon carbide substrate 1 and the handle substrate 4 are in close contact with each other through the intervening layer 3. It becomes.
- the bonded substrate 5 is heated to a high temperature, and by this heat, a fine bubble of a component ion-implanted in the ion-implanted region 2 is generated to cause peeling, thereby producing a single crystal silicon carbide substrate 1a.
- a thermal exfoliation method for separating the components it is possible to apply a thermal exfoliation method for separating the components.
- mechanical peeling is generated by applying a physical impact to one end of the ion implantation region 2 while performing a low temperature heat treatment (eg, 500 to 900 ° C., preferably 500 to 700 ° C.) that does not cause thermal peeling.
- a mechanical peeling method for separating the single crystal silicon carbide substrate 1a can be applied.
- the mechanical peeling method is more preferable because the roughness of the transfer surface after the transfer of the single crystal silicon carbide thin film is relatively smaller than that of the thermal peeling method.
- the composite substrate 7 is heated at a heating temperature of 700 to 1,000 ° C. under a temperature higher than that during the peeling process and a heating time of 1 to 24 hours, so that the single crystal silicon carbide thin film 6 and the handle are heated. You may perform the heat processing which improves adhesiveness with the board
- the thin film 3a and the thin film 3b are in close contact with each other, the thin film 3a is in close contact with the single crystal silicon carbide substrate 1, and the thin film 3b is in close contact with the handle substrate 4; No peeling occurs at any part other than the peeling part.
- the single-crystal silicon carbide substrate 1a after being peeled can be reused as a bonding substrate in the composite substrate manufacturing method again by polishing or cleaning the surface.
- Step 7 Single crystal silicon carbide thin film polishing step
- the surface of the single crystal silicon carbide thin film 6 on the handle substrate 4 is mirror-finished (FIG. 1 (f)).
- the single crystal silicon carbide thin film 6 is subjected to chemical mechanical polishing (CMP polishing) to finish a mirror surface.
- CMP polishing chemical mechanical polishing
- a conventionally known CMP polishing used for planarization of a silicon wafer or the like may be used.
- the composite substrate 7 obtained as described above is used to form a nanocarbon film on the handle substrate 4 (intervening layer 3) by sublimating silicon atoms from the single crystal silicon carbide thin film 6 by heating.
- the composite substrate 7 is preferably heated to 1,100 ° C. or higher, more preferably 1,200 to 1,400 ° C., and still more preferably 1,250 to 1,350 ° C., to thereby form the single crystal silicon carbide thin film 6.
- the atmosphere of this heat treatment is preferably a vacuum atmosphere (reduced pressure) because silicon atoms are easily sublimated.
- the temperature condition at this time also changes depending on the atmosphere, the number of processed sheets, and the like, so that an optimal temperature is appropriately set.
- the nanocarbon film after sublimation has a structure in which either fullerene, graphene, carbon nanotube, or two or more selected from these are mixed depending on the production conditions and the like. What is necessary is just to select suitably by a use.
- the formation of the thin film 3a in the step 2 or the formation of the thin film 3b in the step 3 may be omitted.
- the ion implantation surface of single crystal silicon carbide substrate 1 is polished to have a surface roughness of RMS 1.00 nm or less.
- the bonding surface of the handle substrate 4 with the single crystal silicon carbide substrate 1 is polished to a surface roughness of RMS 1.00 nm or less.
- FIG. 2 the manufacturing process figure of the manufacturing method of the composite substrate which concerns on the 2nd Embodiment of this invention is shown.
- the thin films 3a and 3b are not formed, and the other processes are the same as those in the first embodiment, and a hydrogen ion implantation process (process 1) to the single crystal silicon carbide substrate, a single crystal silicon carbide substrate.
- the single crystal silicon carbide substrate 1, the ion implantation region 2, and the handle substrate 4 are the same as those in the first embodiment.
- the surface (ion implantation surface) to be bonded to the handle substrate 4 of the single crystal silicon carbide substrate 1 shown in FIG. 2A is a smooth surface having a surface roughness RMS of 1.00 nm or less.
- a commercially available single crystal silicon carbide wafer having a smooth surface with a surface roughness of RMS 1.00 nm or less may be prepared, or a smoothing process with a surface roughness of RMS 1.00 nm or less by performing a CMP process after the ion implantation process. You may make it finish on a smooth surface.
- the surface to be bonded to the single crystal silicon carbide substrate 1 of the handle substrate 4 shown in FIG. 2B is a smooth surface having a surface roughness RMS of 1.00 nm or less.
- a handle substrate having a smooth surface with a surface roughness of RMS 1.00 nm or less may be prepared as a commercial product, or a CMP process may be performed to finish the surface to a smooth surface with a surface roughness of RMS 1.00 nm or less. May be.
- Step 4 Surface activation treatment step of single crystal silicon carbide substrate and / or handle substrate
- a plasma activation process, a vacuum ion beam process, or an immersion process in ozone water is performed as a surface activation process on the surface to which the single crystal silicon carbide substrate 1 and the handle substrate 4 are bonded.
- the processing conditions are the same as in the first embodiment.
- the warpage of the substrate occurs due to the difference in coefficient of thermal expansion between the single crystal silicon carbide substrate 1 and the handle substrate 4, but it is preferable to employ a temperature suitable for each material to suppress the warpage.
- the heat treatment time is preferably 2 to 24 hours depending on the temperature to some extent.
- the bonded substrate 5 is obtained in which the single crystal silicon carbide substrate 1 and the handle substrate 4 are directly and firmly adhered.
- Step 7 Single crystal silicon carbide thin film polishing step
- the surface of the single crystal silicon carbide thin film 6 on the handle substrate 4 is mirror-finished (FIG. 2E).
- the surface roughness RMS was obtained by measuring the surface of the substrate with an atomic force microscope (AFM).
- the measurement conditions were a measurement area of 10 ⁇ m ⁇ 10 ⁇ m.
- Example 1 As the single crystal silicon carbide substrate 1, a commercially available single crystal silicon carbide wafer having a diameter of 3 inches (polytype 4H, thickness 400 ⁇ m) is prepared, and 100 KeV and a dose amount of 8.8 ⁇ 10 16 atoms / cm 2 are prepared. Hydrogen ions (H + ) were implanted. The surface of this single crystal silicon carbide wafer was finished by CMP treatment, and the surface roughness RMS was 0.90 nm.
- a polycrystalline silicon carbide wafer (thickness: 400 ⁇ m) having a diameter of 3 inches was prepared as the handle substrate 4, and a silicon oxide (SiO 2 ) thin film having a thickness of 100 nm was formed as a thin film 3 b on the main surface by PECVD. Thereafter, this thin film was polished by CMP treatment. Its surface roughness RMS was 0.60 nm.
- the plasma-activated surface treatment was applied to the ion-implanted surface of the single crystal silicon carbide substrate and the thin film formation surface of the handle substrate, both were bonded together. At this time, the bonded substrates were heat treated at 150 ° C. for 5 hours to obtain a joined body.
- the single crystal silicon carbide thin film was uniformly transferred means that the laminated portion other than the ion implantation region was not peeled off by visual observation.
- the surface roughness RMS of the single crystal silicon carbide thin film transfer surface of the composite substrate was 8.2 nm.
- Example 2 In the method for producing a composite substrate of the present invention, the following two types of handle substrates were used, and a composite substrate was produced as follows using the peeling method as a mechanical peeling method.
- Example 2-1 As the single crystal silicon carbide substrate 1, a commercially available single crystal silicon carbide wafer having a diameter of 3 inches (polytype 4H, thickness 400 ⁇ m) is prepared, and 100 KeV and a dose amount of 8.8 ⁇ 10 16 atoms / cm 2 are prepared. Hydrogen ions (H + ) were implanted. The surface of this single crystal silicon carbide wafer was finished by CMP treatment, and the surface roughness RMS was 0.90 nm.
- a polycrystalline silicon carbide wafer (thickness: 400 ⁇ m) having a diameter of 3 inches was prepared as the handle substrate 4, and a silicon oxide (SiO 2 ) thin film having a thickness of 100 nm was formed as a thin film 3 b on the main surface by PECVD. Thereafter, this thin film was polished by CMP treatment. Its surface roughness RMS was 0.60 nm.
- the plasma-activated surface treatment was applied to the ion-implanted surface of the single crystal silicon carbide substrate and the thin film formation surface of the handle substrate, both were bonded together. At this time, the bonded substrates were heat treated at 150 ° C. for 5 hours to obtain a joined body.
- this bonded body is set on a boat, it is heated to 880 ° C. as a low temperature heat treatment that does not cause thermal peeling in a heating furnace, and after 30 minutes of heat treatment time has elapsed, it is mechanically connected to one end of the ion implantation region.
- an impact was applied, mechanical peeling occurred in the ion implantation region, and a composite substrate in which the single crystal silicon carbide thin film was uniformly transferred to the polycrystalline silicon carbide wafer via the silicon oxide thin film was obtained (good peeling result).
- the surface roughness RMS of the single crystal silicon carbide thin film transfer surface of this composite substrate was 4.7 nm.
- Example 2-2 In Example 2-1, a handle substrate 4 was an amorphous silicon carbide wafer (thickness 400 ⁇ m) having a diameter of 3 inches, and a composite substrate was fabricated in the same manner as in Example 2-1. As a result, a composite substrate was obtained in which the single crystal silicon carbide thin film was uniformly transferred to the amorphous silicon carbide wafer via the silicon oxide thin film (exfoliation result was good).
- the surface roughness after CMP treatment of the thin film forming surface of the handle substrate 4 was 0.60 nm, and the surface roughness RMS of the single crystal silicon carbide thin film transfer surface of the composite substrate was 5.1 nm.
- the surface roughness of the single crystal silicon carbide thin film transfer surface of the composite substrate can be reduced by using the mechanical peeling method as the peeling method, and the burden when the transfer surface is mirror-finished can be reduced. Is possible.
- Example 3 In the method for manufacturing a composite substrate of the present invention, six types of thin films 3a and 3b were formed on the single crystal silicon carbide substrate 1 and the handle substrate 4, respectively, to smooth the surface, and the composite substrate was manufactured as follows.
- Example 3-1 As the single crystal silicon carbide substrate 1, a commercially available single crystal silicon carbide wafer having a diameter of 3 inches (polytype 4H, thickness 400 ⁇ m) is prepared, and 100 KeV and a dose amount of 8.8 ⁇ 10 16 atoms / cm 2 are prepared. Hydrogen ions (H + ) were implanted. Next, a silicon oxide (SiO 2 ) thin film having a thickness of 100 nm was formed as a thin film 3a on the ion-implanted surface of the single crystal silicon carbide substrate 1 by PECVD, and this thin film was polished by CMP treatment. Its surface roughness RMS was 0.60 nm.
- a polycrystalline silicon carbide wafer (thickness: 400 ⁇ m) having a diameter of 3 inches was prepared as the handle substrate 4, and a silicon oxide (SiO 2 ) thin film having a thickness of 100 nm was formed as a thin film 3 b on the main surface by PECVD. Thereafter, this thin film was polished by CMP treatment. Its surface roughness RMS was 0.60 nm.
- the plasma activation surface treatment was applied to the thin film forming surface of the single crystal silicon carbide substrate and the thin film forming surface of the handle substrate, both were bonded together. At this time, the bonded substrates were heat treated at 150 ° C. for 5 hours to obtain a joined body.
- this bonded body is set on a boat, it is heated to 880 ° C. as a low temperature heat treatment that does not cause thermal peeling in a heating furnace, and after 30 minutes of heat treatment time has elapsed, it is mechanically connected to one end of the ion implantation region.
- mechanical peeling occurred in the ion implantation region, and a composite substrate in which the single crystal silicon carbide thin film was uniformly transferred to the polycrystalline silicon carbide wafer via the silicon oxide thin film was obtained (good peeling result).
- Example 3-1 After forming a silicon nitride (SiN) thin film having a thickness of 100 nm as the thin films 3a and 3b by sputtering, the thin film is polished and finished by CMP treatment. A composite substrate was produced in the same manner as in 3-1. As a result, a composite substrate was obtained in which the single-crystal silicon carbide thin film was uniformly transferred to the polycrystalline silicon carbide wafer via the silicon nitride thin film (good peeling result). In addition, the surface roughness after the CMP process on the thin film forming surfaces of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.63 nm.
- SiN silicon nitride
- Example 3-3 an amorphous silicon carbide (SiC) thin film having a thickness of 100 nm was formed as each of the thin films 3a and 3b by sputtering, and then the thin film was polished and finished by CMP treatment.
- a composite substrate was produced in the same manner as in Example 3-1. As a result, a composite substrate was obtained in which the single crystal silicon carbide thin film was uniformly transferred to the polycrystalline silicon carbide wafer via the silicon carbide thin film (good peeling result).
- the surface roughness after the CMP treatment on the thin film forming surfaces of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.68 nm.
- Example 3-4 In Example 3-1, an amorphous silicon (Si) thin film having a thickness of 100 nm was formed as each of the thin films 3a and 3b by sputtering, and then the thin film was polished and finished by CMP treatment. A composite substrate was produced in the same manner as in 3-1. As a result, a composite substrate in which the single crystal silicon carbide thin film was uniformly transferred to the polycrystalline silicon carbide wafer via the silicon thin film was obtained (exfoliation result was good). The surface roughness after the CMP treatment on the thin film forming surfaces of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.65 nm.
- Example 3-5 In Example 3-1, a thin film of titanium (Ti) having a thickness of 20 nm was formed as the thin films 3a and 3b by the electron beam evaporation method, respectively, and then left without being subjected to the CMP process. A composite substrate was produced in the same manner. As a result, a composite substrate in which the single crystal silicon carbide thin film was uniformly transferred to the polycrystalline silicon carbide wafer via the titanium thin film was obtained (exfoliation result was good). In addition, the surface roughness of the thin film formation surface of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.71 nm, respectively.
- Example 3-1 After forming a 20 nm-thick titanium (Ti) thin film and a 20 nm-thick gold (Au) thin film as the thin films 3a and 3b by the electron beam evaporation method, they are left without being subjected to CMP treatment. Otherwise, a composite substrate was produced in the same manner as in Example 3-1. As a result, a composite substrate is obtained in which a single crystal silicon carbide thin film is uniformly transferred to a polycrystalline silicon carbide wafer through a thin film of titanium thin film and gold thin film (a thin film having a four-layer structure of Ti / Au / Au / Ti). (Good peeling result). In addition, the surface roughness of the thin film formation surface of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.75 nm.
- Example 4 the handle substrate 4 was an amorphous silicon carbide wafer (thickness 400 ⁇ m) having a diameter of 3 inches, and a composite substrate was fabricated in the same manner as in Example 3 except that. Details are as follows.
- Example 4-1 In Example 3-1, a composite substrate was fabricated in the same manner as in Example 3-1, except that the handle substrate 4 was an amorphous silicon carbide wafer (400 ⁇ m thick) having a diameter of 3 inches. As a result, a composite substrate was obtained in which the single crystal silicon carbide thin film was uniformly transferred to the amorphous silicon carbide wafer via the silicon oxide thin film (exfoliation result was good). In addition, the surface roughness after CMP processing of the thin film formation surface of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.60 nm.
- Example 4-2 the handle substrate 4 was an amorphous silicon carbide wafer (400 ⁇ m thickness) having a diameter of 3 inches, and a composite substrate was fabricated in the same manner as in Example 3-2.
- a composite substrate was obtained in which the single crystal silicon carbide thin film was uniformly transferred to the amorphous silicon carbide wafer via the silicon nitride thin film (good peeling result).
- the surface roughness after the CMP process on the thin film forming surfaces of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.63 nm.
- Example 4-3 the handle substrate 4 was an amorphous silicon carbide wafer having a diameter of 3 inches (thickness: 400 ⁇ m), and a composite substrate was fabricated in the same manner as in Example 3-3. As a result, a composite substrate was obtained in which the single crystal silicon carbide thin film was uniformly transferred to the amorphous silicon carbide wafer via the silicon carbide thin film (good peeling result).
- the surface roughness after the CMP treatment on the thin film forming surfaces of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.68 nm.
- Example 4-4 the handle substrate 4 was an amorphous silicon carbide wafer (thickness 400 ⁇ m) having a diameter of 3 inches, and a composite substrate was fabricated in the same manner as in Example 3-4. As a result, a composite substrate in which the single crystal silicon carbide thin film was uniformly transferred to the amorphous silicon carbide wafer via the silicon thin film was obtained (exfoliation result was good).
- the surface roughness after the CMP treatment on the thin film forming surfaces of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.65 nm.
- Example 4-5 a handle substrate 4 was an amorphous silicon carbide wafer (thickness 400 ⁇ m) having a diameter of 3 inches, and a composite substrate was fabricated in the same manner as in Example 3-5. As a result, a composite substrate in which the single crystal silicon carbide thin film was uniformly transferred to the amorphous silicon carbide wafer via the titanium thin film was obtained (exfoliation result was good). In addition, the surface roughness of the thin film formation surface of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.71 nm, respectively.
- Example 4-6 the handle substrate 4 was an amorphous silicon carbide wafer (400 ⁇ m thick) having a diameter of 3 inches, and a composite substrate was fabricated in the same manner as in Example 3-6.
- a composite substrate was obtained in which a single crystal silicon carbide thin film was uniformly transferred to an amorphous silicon carbide wafer via a laminated thin film of titanium thin film and gold thin film (a thin film having a four-layer structure of Ti / Au / Au / Ti). (Peeling result is good).
- the surface roughness of the thin film formation surface of the single crystal silicon carbide substrate 1 and the handle substrate 4 was 0.75 nm.
- Example 5 In the method for manufacturing a composite substrate according to the second embodiment of the present invention, the condition of the surface activation treatment before bonding was changed, and the composite substrate was manufactured as follows.
- Example 5-1 As the single crystal silicon carbide substrate 1, a commercially available single crystal silicon carbide wafer having a diameter of 3 inches (polytype 4H, thickness 400 ⁇ m) is prepared, and 100 KeV and a dose amount of 8.8 ⁇ 10 16 atoms / cm 2 are prepared. Hydrogen ions (H + ) were implanted. The surface of this single crystal silicon carbide wafer was finished by CMP treatment, and the surface roughness RMS was 0.90 nm. Next, a polycrystalline silicon carbide wafer (thickness 400 ⁇ m) having a diameter of 3 inches was prepared as the handle substrate 4. Note that the surface of this polycrystalline silicon carbide wafer was finished by CMP treatment, and the surface roughness RMS was 0.95 nm.
- the bonded substrates were heat treated at 150 ° C. for 5 hours to obtain a joined body.
- this bonded body is set on a boat, it is heated to 880 ° C. as a low temperature heat treatment that does not cause thermal peeling in a heating furnace, and after 30 minutes of heat treatment time has elapsed, it is mechanically connected to one end of the ion implantation region.
- mechanical peeling occurred in the ion implantation region, and a composite substrate in which the single crystal silicon carbide thin film was uniformly transferred to the polycrystalline silicon carbide wafer was obtained (good peeling result).
- Example 5-1 As a surface activation process before bonding, vacuum ion beam processing is performed on the ion-implanted surface of the single crystal silicon carbide substrate and the planned bonding surface of the handle substrate.
- a composite substrate was prepared in the same manner as described above. Note that the vacuum ion beam treatment was performed by irradiating the surface with Ar ions. As a result, a composite substrate in which the single crystal silicon carbide thin film was uniformly transferred to the polycrystalline silicon carbide wafer was obtained (exfoliation result was good).
- Example 5-3 immersion treatment with ozone water is applied to the surface of the single crystal silicon carbide substrate on which ions are implanted and the planned bonding surface of the handle substrate as the surface activation treatment before bonding.
- a composite substrate was prepared in the same manner as in 1.
- the immersion treatment with ozone water was performed by immersing in ultra pure water in a container containing ozone for 10 minutes. As a result, a composite substrate in which the single crystal silicon carbide thin film was uniformly transferred to the polycrystalline silicon carbide wafer was obtained (exfoliation result was good).
- Example 5-1 a composite substrate was fabricated in the same manner as in Example 5-1, except that the surface activation treatment before bonding was not performed and the surface was not treated. As a result, in the obtained composite substrate, a part of the single crystal silicon carbide thin film was peeled off from the polycrystalline silicon carbide wafer by visual observation (about 5% in area ratio). The silicon thin film was transferred with good adhesion to the polycrystalline silicon carbide wafer, and it was in a state where it could be used for forming the nanocarbon film.
- a commercially available single crystal silicon carbide wafer having a diameter of 3 inches (polytype 4H, thickness 400 ⁇ m) is prepared, and 100 KeV and a dose amount of 8.8 ⁇ 10 16 atoms / cm 2 are prepared. Hydrogen ions (H + ) were implanted. The surface of this single crystal silicon carbide wafer was finished by CMP treatment, and the surface roughness RMS was 0.95 nm. Next, a polycrystalline silicon carbide wafer (thickness 400 ⁇ m) having a diameter of 3 inches was prepared as the handle substrate 4. Note that the surface of this polycrystalline silicon carbide wafer was finished by CMP treatment, and the surface roughness RMS was 1.05 nm.
- the bonded substrates were heat treated at 150 ° C. for 5 hours to obtain a joined body.
- this bonded body is set on a boat, it is heated to 880 ° C. as a low temperature heat treatment that does not cause thermal peeling in a heating furnace, and after 30 minutes of heat treatment time has elapsed, it is mechanically connected to one end of the ion implantation region.
- Comparative Example 1-1 As a surface activation process before bonding, vacuum ion beam processing was performed on the ion-implanted surface of the single crystal silicon carbide substrate and the bonding surface of the handle substrate, and otherwise, Comparative Example 1-1.
- a composite substrate was prepared in the same manner as described above. Note that the vacuum ion beam treatment was performed by irradiating the surface with Ar ions.
- the vacuum ion beam treatment was performed by irradiating the surface with Ar ions.
- most of the single crystal silicon carbide thin film (about 90% in terms of area ratio) is peeled off from the polycrystalline silicon carbide wafer by visual observation, and cannot be used for forming the nanocarbon film. Met.
- Comparative Example 1-1 immersion treatment with ozone water was applied to the ion-implanted surface of the single crystal silicon carbide substrate and the planned bonding surface of the handle substrate as surface activation treatment before bonding, and otherwise, Comparative Example 1 A composite substrate was prepared in the same manner as in 1.
- the immersion treatment with ozone water was performed by immersing in ultra pure water in a container containing ozone for 10 minutes.
- most of the single crystal silicon carbide thin film (about 90% in terms of area ratio) is peeled off from the polycrystalline silicon carbide wafer by visual observation, and cannot be used for forming the nanocarbon film. Met.
- Comparative Example 1-1 the composite substrate was fabricated in the same manner as Comparative Example 1-1, except that the surface activation treatment before bonding was not performed and the surface was not treated. As a result, in the obtained composite substrate, most of the single crystal silicon carbide thin film (about 90% in terms of area ratio) is peeled off from the polycrystalline silicon carbide wafer by visual observation, and cannot be used for forming the nanocarbon film. Met.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plasma & Fusion (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Physical Vapour Deposition (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Laminated Bodies (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
〔1〕 単結晶炭化珪素基板の表面からイオンを注入してイオン注入領域を形成し、上記単結晶炭化珪素基板のイオン注入した面(以下「イオン注入面」という。)とハンドル基板の主面とを貼り合わせた後、上記イオン注入領域で単結晶炭化珪素基板を剥離させて、ハンドル基板上に単結晶炭化珪素薄膜を転写させた複合基板の製造方法であって、上記単結晶炭化珪素基板及びハンドル基板の貼り合わせを行うそれぞれの面の表面粗さRMSが1.00nm以下であることを特徴とする複合基板の製造方法。
〔2〕 上記ハンドル基板が耐熱温度1,100℃以上の耐熱材料(ただし、単結晶炭化珪素を除く)からなることを特徴とする〔1〕に記載の複合基板の製造方法。
〔3〕 上記ハンドル基板がアモルファス炭化珪素又は多結晶炭化珪素からなることを特徴とする〔1〕又は〔2〕に記載の複合基板の製造方法。
〔4〕 上記単結晶炭化珪素基板のイオン注入面及び/又はハンドル基板の主面に酸化珪素、窒化珪素、酸化アルミニウム、窒化アルミニウム、酸化ジルコニウム、シリコン及び炭化珪素から選ばれる少なくとも1種の材料からなる薄膜を形成し、該薄膜を研磨してその面の表面粗さRMSを1.00nm以下とすることを特徴とする〔1〕~〔3〕のいずれかに記載の複合基板の製造方法。
〔5〕 上記単結晶炭化珪素基板のイオン注入面及び/又はハンドル基板の主面にTi、Au、Ag、Cu、Ni、Co、Fe、Cr、Zr、Mo、Ta及びWから選ばれる少なくとも1種の金属材料からなる薄膜を形成してその面の表面粗さRMSを1.00nm以下とすることを特徴とする。〔1〕~〔3〕のいずれかに記載の複合基板の製造方法。
〔6〕 上記炭化珪素基板及び/又はハンドル基板の貼り合わせを行う面について表面活性化処理を施した後に、上記貼り合わせを行うことを特徴とする〔1〕~〔5〕のいずれかに記載の複合基板の製造方法。
〔7〕 上記表面活性化処理は、プラズマ活性化処理、真空イオンビーム処理又はオゾン水への浸漬処理であることを特徴とする〔6〕記載の複合基板の製造方法。
〔8〕 上記単結晶炭化珪素基板とハンドル基板とを貼り合わせた後、イオン注入領域に物理的衝撃を加えて単結晶炭化珪素基板を剥離させることを特徴とする〔1〕~〔7〕のいずれかに記載の複合基板の製造方法。
〔9〕 〔1〕~〔8〕のいずれかに記載の複合基板の製造方法により得られた複合基板。
〔10〕 ナノカーボン膜形成用である〔9〕記載の複合基板。
(第1の実施形態)
本発明の第1の実施形態に係る複合基板の製造方法は、図1に示すように、単結晶炭化珪素基板への水素イオン注入工程(工程1)、単結晶炭化珪素基板のイオン注入面の平滑化工程(工程2)、ハンドル基板の平滑化工程(工程3)、単結晶炭化珪素基板及び/又はハンドル基板の表面活性化処理工程(工程4)、単結晶炭化珪素基板とハンドル基板との貼り合わせ工程(工程5)、剥離処理工程(工程6)、単結晶炭化珪素薄膜研磨工程(工程7)の順に処理を行うものである。
まず、単結晶炭化珪素基板1に水素イオン等を注入してイオン注入領域2を形成する(図1(a))。
イオン注入深さは、所望の単結晶炭化珪素薄膜の厚さに対応したものとする。
本発明では、単結晶炭化珪素基板1の貼り合わせを行う面(イオン注入面)を表面粗さRMS1.00nm以下の平滑な面とする。この場合、単結晶炭化珪素基板1の表面を直接研磨して平滑化を図ることも可能ではあるが、炭化珪素からなる非常に硬い基板を研磨することは容易なことではない。そこで、本工程では以下の工程2-1、工程2-2のいずれかを行い、単結晶炭化珪素基板1の表面の平滑化を行う。
単結晶炭化珪素基板1のイオン注入面に、後に行われる熱処理に対する耐熱性を有し、最終的に形成される単結晶炭化珪素薄膜6と同じか又は近い熱膨張係数を有する材料からなる薄膜3aを形成する。薄膜3aを構成する材料としては、酸化珪素(例えば、SiO2)、窒化珪素、窒化アルミニウム、シリコン(例えば、アモルファスシリコン、多結晶シリコン)、アルミナ(Al2O3)、酸化ジルコニウム(例えば、ジルコニア(ZrO2))及び炭化珪素(例えば、アモルファス炭化珪素、多結晶炭化珪素)から選ばれる少なくとも1種の材料が挙げられる。なお、これらの材料から複数の材料が選ばれた場合には、それらの材料ごとに積層した構造、それらの材料を混合した材料からなる単層構造のいずれでもよい。
単結晶炭化珪素基板1のイオン注入面に、融点が950℃以上の金属材料、例えばTi、Au、Ag、Cu、Ni、Co、Fe、Cr、Zr、Mo、Ta及びWから選ばれる少なくとも1種の金属材料からなる薄膜3aを形成する。融点が950℃以上の金属材料を用いることで、後の剥離処理工程における低温熱処理で薄膜3aが溶融するのを防ぐことができる。なお、これらの金属材料から複数の金属材料が選ばれた場合には、それらの金属材料ごとに積層した構造、それらの金属材料の合金材料からなる単層構造のいずれでもよい。
本発明で用いるハンドル基板4として、耐熱温度1,100℃以上の耐熱材料(ただし、単結晶炭化珪素を除く)からなるものが好ましく、例えば単結晶ではない炭化珪素、即ちアモルファス炭化珪素や多結晶炭化珪素、あるいは石英ガラス、サファイア、結晶性シリコン(単結晶シリコンや多結晶シリコン)、窒化珪素、ダイヤモンド又は窒化アルミニウムからなるものを用いることができる。その中で、熱膨張係数が単結晶炭化珪素に近く、後に行なわれる熱処理に対する耐熱性を有するアモルファス炭化珪素や多結晶炭化珪素からなるものがより好ましい。耐熱温度1,100℃以上の耐熱材料を用いることで、後の単結晶炭化珪素薄膜研磨工程における加熱処理により基板が損傷するのを防ぐことができる。また、ハンドル基板4の厚さは、特に限定されないが、単結晶炭化珪素基板1と同様に、通常のSEMI規格又はJEIDA規格近傍のものがハンドリングの面から好ましい。
即ち、工程2-1に対応する処理としては、次のように行う。
まず、ハンドル基板4における単結晶炭化珪素基板1との貼り合わせ面に、酸化珪素(例えば、SiO2)、窒化珪素、窒化アルミニウム、シリコン(例えば、アモルファスシリコン、多結晶シリコン)、アルミナ(Al2O3)、酸化ジルコニウム(例えば、ジルコニア(ZrO2))及び炭化珪素(例えば、アモルファス炭化珪素、多結晶炭化珪素)から選ばれる少なくとも1種の材料からなる薄膜3bを形成する。なお、これらの材料から複数の材料が選ばれた場合には、それらの材料ごとに積層した構造、それらの材料を混合した材料からなる単層構造のいずれでもよい。
ハンドル基板4の単結晶炭化珪素基板1との貼り合わせ面(主面)に、融点が950℃以上の金属材料、例えばTi、Au、Ag、Cu、Ni、Co、Fe、Cr、Zr、Mo、Ta及びWから選ばれる少なくとも1種の金属材料からなる薄膜3bを形成する。融点が950℃以上の金属材料を用いることで、後の剥離処理工程における低温熱処理で薄膜3aが溶融するのを防ぐことができる。なお、これらの金属材料から複数の金属材料が選ばれた場合には、それらの金属材料ごとに積層した構造、それらの金属材料の合金材料からなる単層構造のいずれでもよい。
次に、単結晶炭化珪素基板1とハンドル基板4の貼り合わせをする表面、即ち薄膜3a、3b表面について、表面活性化処理としてプラズマ活性化処理、真空イオンビーム処理又はオゾン水への浸漬処理を行う。
次に、この単結晶炭化珪素基板1及びハンドル基板4の表面活性化処理をした表面(薄膜3a、3b表面)を接合面として貼り合わせる(図1(d))。
単結晶炭化珪素基板1とハンドル基板4とを貼り合わせ、貼り合わせ強度を向上させた後、イオン注入した部分に熱的エネルギー又は機械的エネルギーを付与して、イオン注入領域2で単結晶炭化珪素基板1aを剥離させ、ハンドル基板4上に単結晶炭化珪素薄膜6を有する複合基板7を作製する(図1(e))。
ハンドル基板4上の単結晶炭化珪素薄膜6表面を鏡面仕上げする(図1(f))。具体的には、単結晶炭化珪素薄膜6に化学機械研磨(CMP研磨)を施して鏡面に仕上げる。ここではシリコンウェーハの平坦化等に用いられる従来公知のCMP研磨でよい。
図2に、本発明の第2の実施形態に係る複合基板の製造方法の製造工程図を示す。本実施形態では、薄膜3a、3bを形成せず、それ以外は第1の実施形態と同様の工程であり、単結晶炭化珪素基板への水素イオン注入工程(工程1)、単結晶炭化珪素基板のイオン注入面の平滑化工程(工程2)、ハンドル基板の平滑化工程(工程3)、単結晶炭化珪素基板及び/又はハンドル基板の表面活性化処理工程(工程4)、単結晶炭化珪素基板とハンドル基板との貼り合わせ工程(工程5)、剥離処理工程(工程6)、単結晶炭化珪素薄膜研磨工程(工程7)の順に処理を行う。なお、単結晶炭化珪素基板1、イオン注入領域2、ハンドル基板4は、第1の実施形態と同じものである。
まず、単結晶炭化珪素基板1に水素イオン等を注入してイオン注入領域2を形成する(図2(a))。本工程は第1の実施形態と同じである。
本工程では、図2(a)に示す単結晶炭化珪素基板1のハンドル基板4と貼り合わせを行う面(イオン注入面)を表面粗さRMS1.00nm以下の平滑な面とする。この場合、表面粗さRMS1.00nm以下の平滑な面を有する市販品の単結晶炭化珪素ウェーハを用意してもよいし、イオン注入処理後にCMP処理を施して表面粗さRMS1.00nm以下の平滑な面に仕上げるようにしてもよい。
本工程においても図2(b)に示すハンドル基板4の単結晶炭化珪素基板1と貼り合わせを行う面を表面粗さRMS1.00nm以下の平滑な面とする。この場合も、市販品として表面粗さRMS1.00nm以下の平滑な面を有するハンドル基板を用意してもよいし、CMP処理を施して表面粗さRMS1.00nm以下の平滑な面に仕上げるようにしてもよい。
次に、単結晶炭化珪素基板1とハンドル基板4の貼り合わせをする表面について、表面活性化処理としてプラズマ活性化処理、真空イオンビーム処理又はオゾン水への浸漬処理を行う。処理条件等は第1の実施形態と同じである。
表面活性化処理が終了した単結晶炭化珪素基板1及びハンドル基板4の表面活性化処理をした表面を接合面として貼り合わせる(図2(c))。
貼り合わせ基板5について、イオン注入した部分に熱的エネルギー又は機械的エネルギーを付与して、イオン注入領域2で単結晶炭化珪素基板1aを剥離させ、ハンドル基板4上に単結晶炭化珪素薄膜6を有する複合基板7’を作製する(図2(d))。剥離方法は、第1の実施形態と同じである。
ハンドル基板4上の単結晶炭化珪素薄膜6表面を鏡面仕上げする(図2(e))。
なお、表面粗さRMSは、原子間力顕微鏡(AFM)によりその基板の表面を測定して求めた。測定条件は、測定領域10μm×10μmとした。
単結晶炭化珪素基板1として、市販品の直径3インチの単結晶炭化珪素ウェーハ(ポリタイプ4H、厚さ400μm)を用意し、これに100KeV,ドーズ量8.8×1016atom/cm2で水素イオン(H+)を注入した。なお、この単結晶炭化珪素ウェーハは表面がCMP処理で仕上げられており、その表面粗さRMSが0.90nmであった。
次に、ハンドル基板4として、直径3インチの多結晶炭化珪素ウェーハ(厚さ400μm)を用意し、その主面に薄膜3bとしてPECVD法によって厚さ100nmの酸化珪素(SiO2)薄膜を形成した後、この薄膜をCMP処理により研磨した。その表面粗さRMSは0.60nmであった。
次いで、単結晶炭化珪素基板のイオン注入した表面及びハンドル基板の薄膜形成面にプラズマ活性化表面処理を施した後、両者を貼り合わせた。このとき、貼り合わせた基板に対して、150℃で5時間熱処理を施して接合体を得た。
次いで、この接合体をボートにセットした後に、加熱炉にて950℃まで加熱したところ、イオン注入領域にて熱剥離を起こし、多結晶炭化珪素ウェーハに酸化珪素薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、「単結晶炭化珪素薄膜が均一に転写された」とは、目視観察でイオン注入領域以外の積層部分で剥離していないということである。
複合基板の単結晶炭化珪素薄膜転写面の表面粗さRMSは8.2nmであった。
本発明の複合基板の製造方法において、下記2種類のハンドル基板を用いて、剥離方法を機械剥離法として複合基板を以下のように作製した。
単結晶炭化珪素基板1として、市販品の直径3インチの単結晶炭化珪素ウェーハ(ポリタイプ4H、厚さ400μm)を用意し、これに100KeV,ドーズ量8.8×1016atom/cm2で水素イオン(H+)を注入した。なお、この単結晶炭化珪素ウェーハは表面がCMP処理で仕上げられており、その表面粗さRMSが0.90nmであった。
次に、ハンドル基板4として、直径3インチの多結晶炭化珪素ウェーハ(厚さ400μm)を用意し、その主面に薄膜3bとしてPECVD法によって厚さ100nmの酸化珪素(SiO2)薄膜を形成した後、この薄膜をCMP処理により研磨した。その表面粗さRMSは0.60nmであった。
次いで、単結晶炭化珪素基板のイオン注入した表面及びハンドル基板の薄膜形成面にプラズマ活性化表面処理を施した後、両者を貼り合わせた。このとき、貼り合わせた基板に対して、150℃で5時間熱処理を施して接合体を得た。
次いで、この接合体をボートにセットした後に、加熱炉にて熱剥離が生じない程度の低温熱処理として880℃まで加熱し、30分の加熱処理時間が経過した後にイオン注入領域の一端に機械的衝撃を付与したところ、イオン注入領域にて機械剥離を起こし、多結晶炭化珪素ウェーハに酸化珪素薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。
この複合基板の単結晶炭化珪素薄膜転写面の表面粗さRMSは4.7nmであった。
実施例2-1において、ハンドル基板4を直径3インチのアモルファス炭化珪素ウェーハ(厚さ400μm)とし、それ以外は実施例2-1と同様にして複合基板を作製した。
その結果、アモルファス炭化珪素ウェーハに酸化珪素薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、ハンドル基板4の薄膜形成面のCMP処理後の表面粗さは0.60nmであり、複合基板の単結晶炭化珪素薄膜転写面の表面粗さRMSは5.1nmであった。
以上のように、剥離方法を機械剥離法とすることにより複合基板の単結晶炭化珪素薄膜転写面の表面粗さを低減することができ、この転写面を鏡面仕上げする際の負担を軽減することが可能である。
本発明の複合基板の製造方法において、単結晶炭化珪素基板1、ハンドル基板4それぞれに6種類の薄膜3a、3bを形成して表面の平滑化を図り、複合基板を以下のように作製した。
単結晶炭化珪素基板1として、市販品の直径3インチの単結晶炭化珪素ウェーハ(ポリタイプ4H、厚さ400μm)を用意し、これに100KeV,ドーズ量8.8×1016atom/cm2で水素イオン(H+)を注入した。
次いで、この単結晶炭化珪素基板1のイオン注入面に薄膜3aとしてPECVD法によって厚さ100nmの酸化珪素(SiO2)薄膜を形成した後、この薄膜をCMP処理により研磨した。その表面粗さRMSは0.60nmであった。
次に、ハンドル基板4として、直径3インチの多結晶炭化珪素ウェーハ(厚さ400μm)を用意し、その主面に薄膜3bとしてPECVD法によって厚さ100nmの酸化珪素(SiO2)薄膜を形成した後、この薄膜をCMP処理により研磨した。その表面粗さRMSは0.60nmであった。
次いで、単結晶炭化珪素基板の薄膜形成面及びハンドル基板の薄膜形成面にプラズマ活性化表面処理を施した後、両者を貼り合わせた。このとき、貼り合わせた基板に対して、150℃で5時間熱処理を施して接合体を得た。
次いで、この接合体をボートにセットした後に、加熱炉にて熱剥離が生じない程度の低温熱処理として880℃まで加熱し、30分の加熱処理時間が経過した後にイオン注入領域の一端に機械的衝撃を付与したところ、イオン注入領域にて機械剥離を起こし、多結晶炭化珪素ウェーハに酸化珪素薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。
実施例3-1において、薄膜3a、3bとして、それぞれスパッタリング法によって厚さ100nmの窒化珪素(SiN)薄膜を形成した後、この薄膜をCMP処理により研磨して仕上げるようにし、それ以外は実施例3-1と同様にして複合基板を作製した。
その結果、多結晶炭化珪素ウェーハに窒化珪素薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面のCMP処理後の表面粗さはそれぞれ0.63nmであった。
実施例3-1において、薄膜3a、3bとして、それぞれスパッタリング法によって厚さ100nmのアモルファス炭化珪素(SiC)薄膜を形成した後、この薄膜をCMP処理により研磨して仕上げるようにし、それ以外は実施例3-1と同様にして複合基板を作製した。
その結果、多結晶炭化珪素ウェーハに炭化珪素薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面のCMP処理後の表面粗さはそれぞれ0.68nmであった。
実施例3-1において、薄膜3a、3bとして、それぞれスパッタリング法によって厚さ100nmのアモルファスシリコン(Si)薄膜を形成した後、この薄膜をCMP処理により研磨して仕上げるようにし、それ以外は実施例3-1と同様にして複合基板を作製した。
その結果、多結晶炭化珪素ウェーハにシリコン薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面のCMP処理後の表面粗さはそれぞれ0.65nmであった。
実施例3-1において、薄膜3a、3bとして、それぞれ電子ビーム蒸着法によって厚さ20nmのチタン(Ti)薄膜を形成した後、CMP処理することなくそのままとし、それ以外は実施例3-1と同様にして複合基板を作製した。
その結果、多結晶炭化珪素ウェーハにチタン薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面の表面粗さはそれぞれ0.71nmであった。
実施例3-1において、薄膜3a、3bとして、それぞれ電子ビーム蒸着法によって厚さ20nmのチタン(Ti)薄膜と厚さ20nmの金(Au)薄膜を形成した後、CMP処理することなくそのままとし、それ以外は実施例3-1と同様にして複合基板を作製した。
その結果、多結晶炭化珪素ウェーハにチタン薄膜と金薄膜の積層薄膜(Ti/Au/Au/Tiの4層構造の薄膜)を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面の表面粗さはそれぞれ0.75nmであった。
実施例3において、ハンドル基板4を直径3インチのアモルファス炭化珪素ウェーハ(厚さ400μm)とし、それ以外は実施例3と同様にして複合基板を作製した。詳しくは以下の通りである。
実施例3-1において、ハンドル基板4を直径3インチのアモルファス炭化珪素ウェーハ(厚さ400μm)とし、それ以外は実施例3-1と同様にして複合基板を作製した。
その結果、アモルファス炭化珪素ウェーハに酸化珪素薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面のCMP処理後の表面粗さはそれぞれ0.60nmであった。
実施例3-2において、ハンドル基板4を直径3インチのアモルファス炭化珪素ウェーハ(厚さ400μm)とし、それ以外は実施例3-2と同様にして複合基板を作製した。
その結果、アモルファス炭化珪素ウェーハに窒化珪素薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面のCMP処理後の表面粗さはそれぞれ0.63nmであった。
実施例3-3において、ハンドル基板4を直径3インチのアモルファス炭化珪素ウェーハ(厚さ400μm)とし、それ以外は実施例3-3と同様にして複合基板を作製した。
その結果、アモルファス炭化珪素ウェーハに炭化珪素薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面のCMP処理後の表面粗さはそれぞれ0.68nmであった。
実施例3-4において、ハンドル基板4を直径3インチのアモルファス炭化珪素ウェーハ(厚さ400μm)とし、それ以外は実施例3-4と同様にして複合基板を作製した。
その結果、アモルファス炭化珪素ウェーハにシリコン薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面のCMP処理後の表面粗さはそれぞれ0.65nmであった。
実施例3-5において、ハンドル基板4を直径3インチのアモルファス炭化珪素ウェーハ(厚さ400μm)とし、それ以外は実施例3-5と同様にして複合基板を作製した。
その結果、アモルファス炭化珪素ウェーハにチタン薄膜を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面の表面粗さはそれぞれ0.71nmであった。
実施例3-6において、ハンドル基板4を直径3インチのアモルファス炭化珪素ウェーハ(厚さ400μm)とし、それ以外は実施例3-6と同様にして複合基板を作製した。
その結果、アモルファス炭化珪素ウェーハにチタン薄膜と金薄膜の積層薄膜(Ti/Au/Au/Tiの4層構造の薄膜)を介して単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。なお、単結晶炭化珪素基板1及びハンドル基板4の薄膜形成面の表面粗さはそれぞれ0.75nmであった。
本発明の第2の実施形態の複合基板の製造方法において、貼り合わせ前の表面活性化処
理の条件を変更し、複合基板を以下のように作製した。
単結晶炭化珪素基板1として、市販品の直径3インチの単結晶炭化珪素ウェーハ(ポリタイプ4H、厚さ400μm)を用意し、これに100KeV,ドーズ量8.8×1016atom/cm2で水素イオン(H+)を注入した。なお、この単結晶炭化珪素ウェーハは表面がCMP処理で仕上げられており、その表面粗さRMSが0.90nmであった。
次に、ハンドル基板4として、直径3インチの多結晶炭化珪素ウェーハ(厚さ400μm)を用意した。なお、この多結晶炭化珪素ウェーハは表面がCMP処理で仕上げられており、その表面粗さRMSが0.95nmであった。
次いで、単結晶炭化珪素基板のイオン注入した表面及びハンドル基板の貼り合わせ予定面にプラズマ活性化表面処理を施した後、両者を貼り合わせた。次いで、貼り合わせた基板に対して、150℃で5時間熱処理を施して接合体を得た。
次いで、この接合体をボートにセットした後に、加熱炉にて熱剥離が生じない程度の低温熱処理として880℃まで加熱し、30分の加熱処理時間が経過した後にイオン注入領域の一端に機械的衝撃を付与したところ、イオン注入領域にて機械剥離を起こし、多結晶炭化珪素ウェーハに単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。
実施例5-1において、貼り合わせ前の表面活性化処理として真空イオンビーム処理を単結晶炭化珪素基板のイオン注入した表面及びハンドル基板の貼り合わせ予定面に施し、それ以外は実施例5-1と同様にして複合基板を作製した。なお、真空イオンビーム処理は、Arイオンを表面に照射することにより行なった。
その結果、多結晶炭化珪素ウェーハに単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。
実施例5-1において、貼り合わせ前の表面活性化処理としてオゾン水による浸漬処理を単結晶炭化珪素基板のイオン注入した表面及びハンドル基板の貼り合わせ予定面に施し、それ以外は実施例5-1と同様にして複合基板を作製した。なお、オゾン水による浸漬処理は、超純水にオゾンを含ませた容器の中に10分間浸漬することで行なった。
その結果、多結晶炭化珪素ウェーハに単結晶炭化珪素薄膜が均一に転写された複合基板を得た(剥離結果良好)。
実施例5-1において、貼り合わせ前の表面活性化処理を行わず未処理とし、それ以外は実施例5-1と同様にして複合基板を作製した。
その結果、得られた複合基板において、目視観察で一部(面積率にして5%程度)に単結晶炭化珪素薄膜の多結晶炭化珪素ウェーハからの剥がれが発生したが、大部分の単結晶炭化珪素薄膜は多結晶炭化珪素ウェーハに密着よく転写されており、ナノカーボン膜形成用として使用可能な状態であった。
本発明の第2の実施形態の複合基板の製造方法において、貼り合わせ前の表面活性化処理の条件を変更し、複合基板を以下のように作製した。
単結晶炭化珪素基板1として、市販品の直径3インチの単結晶炭化珪素ウェーハ(ポリタイプ4H、厚さ400μm)を用意し、これに100KeV,ドーズ量8.8×1016atom/cm2で水素イオン(H+)を注入した。なお、この単結晶炭化珪素ウェーハは表面がCMP処理で仕上げられており、その表面粗さRMSが0.95nmであった。
次に、ハンドル基板4として、直径3インチの多結晶炭化珪素ウェーハ(厚さ400μm)を用意した。なお、この多結晶炭化珪素ウェーハは表面がCMP処理で仕上げられており、その表面粗さRMSが1.05nmであった。
次いで、単結晶炭化珪素基板のイオン注入した表面及びハンドル基板の貼り合わせ予定面にプラズマ活性化表面処理を施した後、両者を貼り合わせた。次いで、貼り合わせた基板に対して、150℃で5時間熱処理を施して接合体を得た。
次いで、この接合体をボートにセットした後に、加熱炉にて熱剥離が生じない程度の低温熱処理として880℃まで加熱し、30分の加熱処理時間が経過した後にイオン注入領域の一端に機械的衝撃を付与したところ、イオン注入領域にて機械剥離を起こし、多結晶炭化珪素ウェーハに単結晶炭化珪素薄膜が転写された複合基板を得た。この得られた複合基板において、目視観察で単結晶炭化珪素薄膜の大部分(面積率にして90%程度)が多結晶炭化珪素ウェーハから剥がれ、ナノカーボン膜形成用として使用不可能な状態であった。
比較例1-1において、貼り合わせ前の表面活性化処理として真空イオンビーム処理を単結晶炭化珪素基板のイオン注入した表面及びハンドル基板の貼り合わせ予定面に施し、それ以外は比較例1-1と同様にして複合基板を作製した。なお、真空イオンビーム処理は、Arイオンを表面に照射することにより行なった。
その結果、得られた複合基板において、目視観察で単結晶炭化珪素薄膜の大部分(面積率にして90%程度)が多結晶炭化珪素ウェーハから剥がれ、ナノカーボン膜形成用として使用不可能な状態であった。
比較例1-1において、貼り合わせ前の表面活性化処理としてオゾン水による浸漬処理を単結晶炭化珪素基板のイオン注入した表面及びハンドル基板の貼り合わせ予定面に施し、それ以外は比較例1-1と同様にして複合基板を作製した。なお、オゾン水による浸漬処理は、超純水にオゾンを含ませた容器の中に10分間浸漬することで行なった。
その結果、得られた複合基板において、目視観察で単結晶炭化珪素薄膜の大部分(面積率にして90%程度)が多結晶炭化珪素ウェーハから剥がれ、ナノカーボン膜形成用として使用不可能な状態であった。
比較例1-1において、貼り合わせ前の表面活性化処理を行わず未処理とし、それ以外は比較例1-1と同様にして複合基板を作製した。
その結果、得られた複合基板において、目視観察で単結晶炭化珪素薄膜の大部分(面積率にして90%程度)が多結晶炭化珪素ウェーハから剥がれ、ナノカーボン膜形成用として使用不可能な状態であった。
2 イオン注入領域
3a、3b 薄膜
3 介在層
4 ハンドル基板
5 貼り合わせ基板
6 単結晶炭化珪素薄膜
7、7’ 複合基板
Claims (10)
- 単結晶炭化珪素基板の表面からイオンを注入してイオン注入領域を形成し、上記単結晶
炭化珪素基板のイオン注入した面とハンドル基板の主面とを貼り合わせた後、上記イオン
注入領域で単結晶炭化珪素基板を剥離させて、ハンドル基板上に単結晶炭化珪素薄膜を転
写させた複合基板の製造方法であって、上記単結晶炭化珪素基板及びハンドル基板の貼り
合わせを行うそれぞれの面の表面粗さRMSが1.00nm以下であることを特徴とする
複合基板の製造方法。 - 上記ハンドル基板が耐熱温度1,100℃以上の耐熱材料(ただし、単結晶炭化珪素を
除く)からなることを特徴とする請求項1に記載の複合基板の製造方法。 - 上記ハンドル基板がアモルファス炭化珪素又は多結晶炭化珪素からなることを特徴とす
る請求項1又は2に記載の複合基板の製造方法。 - 上記単結晶炭化珪素基板のイオン注入面及び/又はハンドル基板の主面に酸化珪素、窒
化珪素、酸化アルミニウム、窒化アルミニウム、酸化ジルコニウム、シリコン及び炭化珪
素から選ばれる少なくとも1種の材料からなる薄膜を形成し、該薄膜を研磨してその面の
表面粗さRMSを1.00nm以下とすることを特徴とする請求項1~3のいずれか1項
に記載の複合基板の製造方法。 - 上記単結晶炭化珪素基板のイオン注入面及び/又はハンドル基板の主面にTi、Au、
Ag、Cu、Ni、Co、Fe、Cr、Zr、Mo、Ta及びWから選ばれる少なくとも
1種の金属材料からなる薄膜を形成してその面の表面粗さRMSを1.00nm以下とす
ることを特徴とする請求項1~3のいずれか1項に記載の複合基板の製造方法。 - 上記炭化珪素基板及び/又はハンドル基板の貼り合わせを行う面について表面活性化処
理を施した後に、上記貼り合わせを行うことを特徴とする請求項1~5のいずれか1項に
記載の複合基板の製造方法。 - 上記表面活性化処理は、プラズマ活性化処理、真空イオンビーム処理又はオゾン水への
浸漬処理であることを特徴とする請求項6記載の複合基板の製造方法。 - 上記単結晶炭化珪素基板とハンドル基板とを貼り合わせた後、イオン注入領域に物理的
衝撃を加えて単結晶炭化珪素基板を剥離させることを特徴とする請求項1~7のいずれか
1項に記載の複合基板の製造方法。 - 請求項1~8のいずれか1項に記載の複合基板の製造方法により得られた複合基板。
- ナノカーボン膜形成用である請求項9記載の複合基板。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG11201703377SA SG11201703377SA (en) | 2014-12-05 | 2015-10-22 | Composite substrate manufacturing method and composite substrate |
JP2016562345A JPWO2016088466A1 (ja) | 2014-12-05 | 2015-10-22 | 複合基板の製造方法及び複合基板 |
US15/532,517 US20170330747A1 (en) | 2014-12-05 | 2015-10-22 | Composite substrate manufacturing method and composite substrate |
EP15864392.4A EP3229260A4 (en) | 2014-12-05 | 2015-10-22 | Composite substrate manufacturing method and composite substrate |
CN201580066099.8A CN107004573A (zh) | 2014-12-05 | 2015-10-22 | 复合基板的制造方法和复合基板 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-246797 | 2014-12-05 | ||
JP2014246797 | 2014-12-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016088466A1 true WO2016088466A1 (ja) | 2016-06-09 |
Family
ID=56091422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/079763 WO2016088466A1 (ja) | 2014-12-05 | 2015-10-22 | 複合基板の製造方法及び複合基板 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20170330747A1 (ja) |
EP (1) | EP3229260A4 (ja) |
JP (1) | JPWO2016088466A1 (ja) |
CN (1) | CN107004573A (ja) |
SG (2) | SG11201703377SA (ja) |
WO (1) | WO2016088466A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018088093A1 (ja) * | 2016-11-11 | 2018-05-17 | 信越化学工業株式会社 | 複合基板、表面弾性波デバイスおよび複合基板の製造方法 |
JP2020109796A (ja) * | 2019-01-04 | 2020-07-16 | 富士通株式会社 | 半導体装置、半導体装置の製造方法及び基板接合方法 |
TWI804550B (zh) * | 2017-12-28 | 2023-06-11 | 日商日本碍子股份有限公司 | 壓電性材料基板與支持基板的接合體及其製造方法 |
TWI829629B (zh) * | 2017-01-18 | 2024-01-21 | 日商信越化學工業股份有限公司 | 複合基板及複合基板的製造方法 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107108218A (zh) * | 2014-12-22 | 2017-08-29 | 信越化学工业株式会社 | 复合基板、纳米碳膜的制作方法和纳米碳膜 |
EP3378094B1 (en) * | 2015-11-20 | 2021-09-15 | Globalwafers Co., Ltd. | Manufacturing method of smoothing a semiconductor surface |
CN110078017B (zh) * | 2018-01-26 | 2021-11-05 | 沈阳硅基科技有限公司 | 一种贯穿空腔结构硅片的加工方法 |
CN109678106B (zh) * | 2018-11-13 | 2020-10-30 | 中国科学院上海微系统与信息技术研究所 | 一种硅基异质集成4H-SiC外延薄膜结构的制备方法 |
CN109686656A (zh) * | 2018-11-13 | 2019-04-26 | 中国科学院上海微系统与信息技术研究所 | 一种硅基异质集成碳化硅薄膜结构的制备方法 |
WO2020138202A1 (ja) * | 2018-12-28 | 2020-07-02 | 国立研究開発法人産業技術総合研究所 | グラファイト薄膜/シリコン基板積層体、及びその製造方法、高排熱型電子デバイス用基板 |
CN110473778B (zh) * | 2019-08-17 | 2021-10-15 | 哈尔滨工业大学 | 一种利用等离子体活化直接键合氧化锆和三氧化二铝的方法 |
FR3101726B1 (fr) | 2019-10-04 | 2021-10-01 | Commissariat Energie Atomique | procédé de fabrication d’un dispositif électronique |
CN111893558B (zh) * | 2020-07-01 | 2021-08-17 | 中国科学院上海微系统与信息技术研究所 | 一种用于单晶硅生长炉的薄膜隔热片及单晶硅生长炉 |
FR3128057B1 (fr) * | 2021-10-07 | 2023-09-15 | Soitec Silicon On Insulator | Procede de fabrication d’une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic poly-cristallin |
CN114525489B (zh) * | 2022-01-25 | 2023-04-25 | 中国科学院上海微系统与信息技术研究所 | 一种硅基碳化硅薄膜材料制备方法 |
CN114864529B (zh) * | 2022-05-18 | 2024-07-19 | 北京青禾晶元半导体科技有限责任公司 | 一种碳化硅复合基板及其制造方法与应用 |
CN115148584A (zh) * | 2022-07-05 | 2022-10-04 | 苏州璋驰光电科技有限公司 | 一种高品质因子的衬底材料、制备方法及应用 |
CN116817804B (zh) * | 2023-08-24 | 2023-11-03 | 江苏集创原子团簇科技研究院有限公司 | 一种多层石墨烯中离子注入深度精确标定方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008062267A (ja) * | 2006-09-06 | 2008-03-21 | Mitsubishi Heavy Ind Ltd | 常温接合方法及び常温接合装置 |
JP2009117533A (ja) * | 2007-11-05 | 2009-05-28 | Shin Etsu Chem Co Ltd | 炭化珪素基板の製造方法 |
WO2014061337A1 (ja) * | 2012-10-15 | 2014-04-24 | 信越化学工業株式会社 | ナノカーボン膜の作製方法及びナノカーボン膜 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101521155B (zh) * | 2008-02-29 | 2012-09-12 | 信越化学工业株式会社 | 制备具有单晶薄膜的基板的方法 |
JP5496598B2 (ja) * | 2008-10-31 | 2014-05-21 | 信越化学工業株式会社 | シリコン薄膜転写絶縁性ウェーハの製造方法 |
JP2012182201A (ja) * | 2011-02-28 | 2012-09-20 | Shin Etsu Chem Co Ltd | 半導体ウェーハの製造方法 |
-
2015
- 2015-10-22 WO PCT/JP2015/079763 patent/WO2016088466A1/ja active Application Filing
- 2015-10-22 SG SG11201703377SA patent/SG11201703377SA/en unknown
- 2015-10-22 EP EP15864392.4A patent/EP3229260A4/en not_active Withdrawn
- 2015-10-22 SG SG10202008808TA patent/SG10202008808TA/en unknown
- 2015-10-22 CN CN201580066099.8A patent/CN107004573A/zh active Pending
- 2015-10-22 US US15/532,517 patent/US20170330747A1/en not_active Abandoned
- 2015-10-22 JP JP2016562345A patent/JPWO2016088466A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008062267A (ja) * | 2006-09-06 | 2008-03-21 | Mitsubishi Heavy Ind Ltd | 常温接合方法及び常温接合装置 |
JP2009117533A (ja) * | 2007-11-05 | 2009-05-28 | Shin Etsu Chem Co Ltd | 炭化珪素基板の製造方法 |
WO2014061337A1 (ja) * | 2012-10-15 | 2014-04-24 | 信越化学工業株式会社 | ナノカーボン膜の作製方法及びナノカーボン膜 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3229260A4 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018088093A1 (ja) * | 2016-11-11 | 2018-05-17 | 信越化学工業株式会社 | 複合基板、表面弾性波デバイスおよび複合基板の製造方法 |
KR20190075924A (ko) * | 2016-11-11 | 2019-07-01 | 신에쓰 가가꾸 고교 가부시끼가이샤 | 복합 기판, 표면탄성파 디바이스 및 복합 기판의 제조 방법 |
JPWO2018088093A1 (ja) * | 2016-11-11 | 2019-09-26 | 信越化学工業株式会社 | 複合基板、表面弾性波デバイスおよび複合基板の製造方法 |
KR102433349B1 (ko) * | 2016-11-11 | 2022-08-16 | 신에쓰 가가꾸 고교 가부시끼가이샤 | 복합 기판, 표면탄성파 디바이스 및 복합 기판의 제조 방법 |
TWI776822B (zh) * | 2016-11-11 | 2022-09-11 | 日商信越化學工業股份有限公司 | 複合基板、表面彈性波裝置及複合基板之製造方法 |
US11800805B2 (en) | 2016-11-11 | 2023-10-24 | Shin-Etsu Chemical Co., Ltd. | Composite substrate, surface acoustic wave device, and method for manufacturing composite substrate |
TWI829629B (zh) * | 2017-01-18 | 2024-01-21 | 日商信越化學工業股份有限公司 | 複合基板及複合基板的製造方法 |
TWI804550B (zh) * | 2017-12-28 | 2023-06-11 | 日商日本碍子股份有限公司 | 壓電性材料基板與支持基板的接合體及其製造方法 |
US11689172B2 (en) | 2017-12-28 | 2023-06-27 | Ngk Insulators, Ltd. | Assembly of piezoelectric material substrate and support substrate, and method for manufacturing said assembly |
JP2020109796A (ja) * | 2019-01-04 | 2020-07-16 | 富士通株式会社 | 半導体装置、半導体装置の製造方法及び基板接合方法 |
JP7205233B2 (ja) | 2019-01-04 | 2023-01-17 | 富士通株式会社 | 半導体装置、半導体装置の製造方法及び基板接合方法 |
Also Published As
Publication number | Publication date |
---|---|
US20170330747A1 (en) | 2017-11-16 |
SG11201703377SA (en) | 2017-05-30 |
CN107004573A (zh) | 2017-08-01 |
SG10202008808TA (en) | 2020-10-29 |
JPWO2016088466A1 (ja) | 2017-08-31 |
EP3229260A1 (en) | 2017-10-11 |
EP3229260A4 (en) | 2018-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016088466A1 (ja) | 複合基板の製造方法及び複合基板 | |
JP6369566B2 (ja) | ナノカーボン膜作製用複合基板及びナノカーボン膜の作製方法 | |
CN108028183B (zh) | SiC复合基板及其制造方法 | |
CN108138358B (zh) | SiC复合基板的制造方法 | |
CN108140540B (zh) | SiC复合基板的制造方法和半导体基板的制造方法 | |
TWI613145B (zh) | 奈米碳膜之製作方法及奈米碳膜 | |
JP2007220782A (ja) | Soi基板およびsoi基板の製造方法 | |
CN108140541B (zh) | SiC复合基板的制造方法 | |
TW200818255A (en) | Method of producing bonded wafer | |
TW201140662A (en) | Method for the preparation of a multi-layered crystalline structure | |
JP6866150B2 (ja) | 2つの構造体間の直接接合を実行する方法 | |
JP7262415B2 (ja) | 複合基板およびその製造方法 | |
JP6737378B2 (ja) | SiC複合基板 | |
TW202205357A (zh) | 用於製作複合結構之方法,該複合結構包含一單晶sic薄層在一sic載體底材上 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15864392 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016562345 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11201703377S Country of ref document: SG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15532517 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015864392 Country of ref document: EP |