WO2016088393A1 - 画像処理装置及び方法、並びにプログラム及び記録媒体 - Google Patents

画像処理装置及び方法、並びにプログラム及び記録媒体 Download PDF

Info

Publication number
WO2016088393A1
WO2016088393A1 PCT/JP2015/065497 JP2015065497W WO2016088393A1 WO 2016088393 A1 WO2016088393 A1 WO 2016088393A1 JP 2015065497 W JP2015065497 W JP 2015065497W WO 2016088393 A1 WO2016088393 A1 WO 2016088393A1
Authority
WO
WIPO (PCT)
Prior art keywords
saturation
saturation conversion
conversion
image processing
value
Prior art date
Application number
PCT/JP2015/065497
Other languages
English (en)
French (fr)
Inventor
秀樹 吉井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201580065631.4A priority Critical patent/CN107004249B/zh
Priority to US15/517,117 priority patent/US10003720B2/en
Priority to JP2015538192A priority patent/JP5840335B1/ja
Publication of WO2016088393A1 publication Critical patent/WO2016088393A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6002Corrections within particular colour systems
    • H04N1/6005Corrections within particular colour systems with luminance or chrominance signals, e.g. LC1C2, HSL or YUV
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/20Processor architectures; Processor configuration, e.g. pipelining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/40Image enhancement or restoration using histogram techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6027Correction or control of colour gradation or colour contrast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6058Reduction of colour to a range of reproducible colours, e.g. to ink- reproducible colour gamut
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/67Circuits for processing colour signals for matrixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/68Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits

Definitions

  • the present invention relates to an image processing apparatus and method.
  • the present invention also relates to a program for causing a computer to execute processing in the above-described image processing apparatus or method, and a computer-readable recording medium on which the program is recorded.
  • a vivid image display may be preferred, and in order to respond to this, there is a method or apparatus aimed at improving natural saturation for an image including a low saturation portion. Proposed.
  • Patent Literature 1 discloses a method for extracting the average saturation value of the input video from the color signal of the input video, determining a saturation improvement function based on the average saturation value, and improving the saturation. Yes.
  • the conventional video display device has a narrow color reproduction range, and the above-described saturation improvement has been made in order to perform a more colorful display within a reproducible color gamut.
  • the color reproduction range of video display devices has been widened, and thus the refinement of color gradation expression has become more important.
  • the video consisting of the low saturation portion and the high saturation portion is not distinguished from the video consisting only of the middle saturation portion, and the saturation is appropriately improved. It may not be possible.
  • saturation enhancement processing is often performed. For this reason, even in a video display device having a relatively narrow color reproduction range, in the case of an input video composed of a low saturation portion and a medium saturation portion, the above saturation enhancement processing is performed with a video display device with a relatively narrow color reproduction range. The difference with the case of doing is reduced. For example, when the input video includes a high saturation portion, if the saturation is improved, color collapse (originally different colors are made the same color and a subtle color difference becomes difficult for the viewer to recognize) occurs. In order to avoid this, when processing that does not improve the saturation in the high saturation part, it is not possible to obtain a higher color gradation expression, and it is possible to fully utilize the advantages of a video display device with a wide color reproduction range. Can not.
  • the image processing apparatus includes: A color feature amount calculation unit that calculates saturation, hue, and brightness for each pixel from the input video signal; A saturation histogram generator for generating a saturation histogram from the saturation; A saturation conversion function generation unit that generates a saturation conversion function from the saturation histogram generated by the saturation histogram generation unit; A saturation conversion unit that converts the saturation of each pixel by the saturation conversion function generated by the saturation conversion function generation unit and outputs the converted saturation; Color component value calculation unit for calculating red, green, and blue color component values from the converted saturation output from the saturation conversion unit and the hue and brightness calculated by the color feature amount calculation unit It is characterized by providing.
  • the image processing apparatus includes: A saturation calculation unit that calculates saturation for each pixel from the input video signal; A saturation histogram generator for generating a saturation histogram from the saturation; A saturation conversion multiplier determination function generation unit that generates a saturation conversion multiplier determination function from the saturation histogram generated by the saturation histogram generation unit; A saturation conversion multiplier determining unit that determines a saturation conversion multiplier for the pixel based on the saturation conversion multiplier determination function and the saturation of each pixel represented by the input video signal; And a multiplier that multiplies the saturation conversion multiplier for each pixel determined by the saturation conversion multiplier determination unit by the color difference of the same pixel represented by the input video signal.
  • the saturation can be appropriately improved regardless of the saturation distribution of the input video, and at the same time, a high color gradation expression can be obtained.
  • FIG. 1 is a block diagram showing a configuration of an image processing apparatus according to Embodiment 1 of the present invention. It is a block diagram which shows an example of the image display apparatus comprised by the image processing apparatus and display part of FIG. (A)-(d) is a figure which shows the example of saturation distribution. (A)-(d) is a figure which shows the example of the saturation conversion function by this invention. (A)-(d) is a figure which shows the example of the saturation conversion function by a prior art example. It is a block diagram which shows the structure of the image processing apparatus which concerns on Embodiment 2 of this invention. It is a figure which shows the example of saturation distribution, and a saturation conversion multiplier determination function.
  • FIG. It is a block diagram which shows the structure of the image processing apparatus which concerns on Embodiment 3 of this invention. It is a block diagram which shows an image processing apparatus comprised with an example of the computer for implement
  • FIG. 1 is a block diagram showing a configuration of an image processing apparatus 10 according to the first embodiment of the present invention.
  • the illustrated image processing apparatus 10 includes input terminals 11r, 11g, and 11b, a color feature amount calculation unit 12, a saturation histogram generation unit 13, a saturation conversion function generation unit 14, a saturation conversion unit 15, and a saturation conversion unit 15.
  • a degree signal delay unit 16 a hue signal delay unit 17, a brightness signal delay unit 18, a color component value calculation unit 19, and output terminals 20r, 20g, and 20b.
  • FIG. 2 shows the image processing apparatus 10 shown in FIG.
  • the display unit 40 can be configured by what is generally called a display. As shown in FIG. 2, the image processing apparatus 10 can be connected to the display unit 40, and color signals ROUT, GOUT, and BOUT output from the output terminals 20r, 20g, and 20b are supplied to the display unit 40 as described later.
  • the display unit 40 displays an image based on the color signals ROUT, GOUT, and BOUT.
  • the image processing apparatus 10 and the display unit 40 constitute a video display apparatus.
  • the input terminals 11r, 11g, and 11b are supplied with standard video signals that can be supported by image display devices such as televisions and computers.
  • the video signal is assumed to be composed of, for example, red, green, and blue color signals RIN, GIN, and BIN.
  • the color feature amount calculation unit 12 calculates the saturation SAa, the hue HUa, and the lightness VAa from the color signals RIN, GIN, and BIN input to the input terminals 11r, 11g, and 11b.
  • the color feature amount calculation unit 12 supplies a signal (saturation signal) representing the calculated saturation SAa to the saturation histogram generation unit 13 and also supplies it to the saturation conversion unit 15 via the saturation signal delay unit 16.
  • the color feature amount calculation unit 12 calculates a color component value of a signal representing the calculated hue HUa (hue signal) and a signal representing the lightness VAa (lightness signal) via the hue signal delay unit 17 and the lightness signal delay unit 18, respectively. Supplied to the unit 19.
  • the saturation signal representing the saturation SAa is indicated by the same sign SAa as the saturation
  • the hue signal representing the hue HUa is indicated by the same sign HUa as the hue
  • the lightness signal representing the brightness VAa is the lightness and It is indicated with the same reference VAa.
  • the saturation histogram generation unit 13 generates a saturation histogram HSTa representing the distribution of the saturation SAa and supplies the saturation histogram HSTa to the saturation conversion function generation unit 14.
  • the saturation conversion function generation unit 14 generates a saturation conversion function Fa from the saturation histogram HSTa input from the saturation histogram generation unit 13 and supplies the generated saturation conversion function Fa to the saturation conversion unit 15.
  • the saturation conversion unit 15 converts the saturation SAa input from the color feature amount calculation unit 12 via the saturation signal delay unit 16 using the saturation conversion function Fa, and converts the converted saturation SAb to a color component. The value is output to the value calculation unit 19.
  • the color component value calculation unit 19 is supplied from the saturation conversion unit 15 and is supplied from the color feature amount calculation unit 12 via the hue signal delay unit 17 and the lightness signal delay unit 18.
  • the color component values ROUT, GOUT, and BOUT of red, green, and blue are calculated from the hue HUa and the lightness VAa, and the color signals ROUT, GOUT, and BOUT indicating the calculated color component values ROUT, GOUT, and BOUT are output to the output terminal 20r. , 20g, and 20b.
  • the saturation signal delay unit 16 inputs the saturation signal SAa output from the color feature amount calculation unit 12 to the saturation conversion unit 15, and outputs the saturation from the saturation conversion function generation unit 14 to the saturation conversion unit 15. It is provided to synchronize with the input of the conversion function Fa.
  • the hue signal delay unit 17 and the lightness signal delay unit 18 input the hue signal HUa and the lightness signal VAa output from the color feature amount calculation unit 12 to the color component value calculation unit 19 and the color component value calculation unit 19 from the color conversion unit 15. This is provided to synchronize with the input of the saturation signal SAb to the value calculation unit 19.
  • the red, green, and blue color signals ROUT, GOUT, and BOUT output from the color component value calculation unit 19 via the output terminals 20r, 20g, and 20b are supplied to the display unit 40.
  • the display unit 40 displays an image based on the red, green, and blue color signals ROUT, GOUT, and BOUT.
  • the color signals RIN, GIN, and BIN input to the input terminals 11r, 11g, and 11b represent the red, green, and blue color component values of each pixel.
  • the color feature amount calculation unit 12 calculates the saturation SAa, the hue HUa, and the lightness VAa from the color component values RIN, GIN, and BIN represented by the color signals input to the input terminals 11r, 11g, and 11b. This calculation is performed by a commonly performed calculation.
  • the saturation histogram generation unit 13 receives the saturation signal SAa from the color feature amount calculation unit 12 and generates a saturation histogram HSTa representing the distribution of the saturation SAa.
  • the appearance frequency Da for each class CLa of gradation values representing the saturation SAa is counted over a certain period or range, for example, one frame.
  • the appearance frequency of the gradation value means the appearance frequency of the pixel having the gradation value.
  • the appearance frequency Da of the gradation value in the class CLa is represented by “Da (CLa)”. The same applies to other values.
  • the frequency of appearance of gradation values in the class CLa may be simply referred to as the frequency of the class CLa.
  • Each class CLa is composed of one gradation value or a plurality of consecutive gradation values, and does not overlap each other.
  • each class is specified by the gradation value of the saturation SAa belonging to the class.
  • the appearance frequency of saturation over a plurality of frames may be obtained, and the appearance frequency per frame may be obtained by dividing by the number of frames.
  • the saturation conversion function generation unit 14 generates a saturation conversion function Fa from the saturation histogram HSTa input from the saturation histogram generation unit 13 and supplies it to the saturation conversion unit 15.
  • the saturation conversion function Fa uses a given saturation (input saturation) SAa as a variable, and gives the value of the converted saturation (output saturation) SAb by the value of the function Fa corresponding to the variable, that is, Represents the relationship between the input saturation SAa and the output saturation SAb.
  • the frequency Da (CLa) of each class CLa of the saturation histogram HSTa is cumulatively added in order from the lower class CLa (the lower gradation value belonging to the class), and the cumulative added value up to each class is
  • the saturation conversion function Fa is generated by setting a representative value of the class, for example, a function value corresponding to the maximum value of the gradation values belonging to the class.
  • the gradation value belonging to each class is the representative value of the class.
  • At least one of the maximum value and the minimum value with respect to the slope of the saturation conversion function Fa (the ratio of the increase in the corresponding output saturation SAb to the increase in the input saturation SAa). May be determined in advance. For example, the adjustment may be performed so that the inclination is not more than a predetermined maximum value and not less than a predetermined minimum value.
  • the upper limit value and the lower limit value corresponding to the maximum value and the minimum value of the gradient are previously set for the frequency Da (CLa) of each class CLa of the saturation histogram HSTa used for generation of the saturation conversion function Fa. It is determined by redistributing the amount exceeding the upper limit and the amount lower than the lower limit.
  • the upper limit value corresponds to the product of the maximum value of the slope, the reciprocal of the number of classes, and the number of pixels used to generate the histogram
  • the lower limit value is the minimum value of the slope and the histogram. This corresponds to the product of the number of pixels used for generation.
  • the frequency Da (CLa) of each class (attention class) CLa exceeds the above upper limit value
  • the excess is transferred to one or more other classes, whereby the attention class
  • the frequency of CLa is decreased to coincide with the above upper limit value, and the frequency of other classes is increased.
  • the portion exceeding the upper limit is divided, and each divided portion is assigned to another class.
  • the frequency of the class is increased by the allocated amount.
  • the frequency of the attention class CLa is reduced by the total of the assignments of the other classes.
  • the frequency Da (CLa) of each class (attention class) CLa is less than the above lower limit value (when it falls below the lower limit value)
  • the amount that is insufficient is 1 or 2 or more. It is inherited from another class, thereby increasing the frequency of the class of interest to coincide with the above lower limit and decreasing the frequency of the other class.
  • the missing part is divided, and each divided part is assigned to another class.
  • the frequency of the class is reduced by the assigned part. Increase the frequency by the allocated amount.
  • the attention class CLa increases the frequency by the sum of the other classes allocated. It can be said that such transfer is a process of transferring a negative value corresponding to the shortage to another class.
  • the maximum value and the minimum value of the slope of the saturation conversion function Fa can be determined separately for each saturation region.
  • the maximum value may be set to a relatively small value, for example, 1 in the low saturation range (a range where the saturation is equal to or less than a predetermined value).
  • the saturation histogram HSTa representing the saturation distribution is as shown in FIGS. 3A to 3D
  • the horizontal axis represents the input saturation SAa, and hence the class CLa corresponding to each gradation value of the input saturation SAa
  • the vertical axis represents the class CLa composed of the input saturation SAa.
  • the appearance frequency Da of the gradation value to which it belongs is shown.
  • the input saturation SAa is represented by a value normalized by the maximum value. That is, the maximum value of the range of possible values for the input saturation SAa is 1. 3 (a) and 3 (b), the average value SAam of the saturation SAa is 0.5, but the shape of the saturation distribution is different. In FIG. 3 (a), the input saturation SAa is medium. In FIG. 3B, the input saturation SAa does not exist so much in the middle saturation region and is distributed in a low saturation region and a high saturation region. Further, in FIG. 3C, a large amount of input saturation SAa is distributed in the low saturation region, and in FIG. 3D, a large amount of input saturation SAa is distributed in the high saturation region.
  • 4 (a) to 4 (d) show the saturation conversion functions Fa corresponding to the saturation distributions shown in FIGS. 3 (a) to 3 (d), respectively.
  • the horizontal axis represents the input saturation SAa
  • the vertical axis represents the output saturation SAb corresponding to the input saturation SAa, that is, the value of the saturation conversion function Fa corresponding to the input saturation SAa.
  • Fa (SAa) is shown.
  • 4A to 4D similarly to FIGS. 3A to 3D, the maximum value of the range of values that can be taken by the input saturation SAa is set to 1, and the output saturation SAb can be taken. The maximum value range is also 1.
  • Each of the saturation conversion functions Fa in FIGS. 4A to 4D is generated so that the inclination thereof falls within a predetermined range from the minimum value to the maximum value.
  • the adjustment for keeping the inclination within the predetermined range is performed by the redistribution of the frequency of each class. This redistribution is performed so that the curve representing the saturation conversion function Fa passes through (0, 0) and (1.0, 1.0) and is continuous as described above.
  • the specific method of frequency redistribution may be the same as the method of frequency redistribution at the time of generating the saturation conversion multiplier determining function, which will be described later with reference to the second embodiment.
  • the generation of the saturation conversion function Fa in the saturation conversion function generation unit 14 is performed for each frame.
  • the saturation histogram generation unit 13 When the saturation histogram generation unit 13 generates the saturation histogram HSTa based on the saturation SAa of the pixels in each frame, the saturation conversion function for the frame based on the saturation SAa of the pixels in the same frame. Fa is generated.
  • the saturation histogram generation unit 13 When the saturation histogram generation unit 13 generates the saturation histogram HSTa based on the saturation SAa of the pixels in the plurality of frames, the saturation of the frame based on the saturation SAa of the pixels of the plurality of frames.
  • the degree conversion function Fa is generated.
  • the code Fa (f) may be used to emphasize the saturation conversion function Fa for each frame Fr (f).
  • the saturation signal delay unit 16 is the time required for the saturation histogram generation unit 13 and the saturation conversion function generation unit 14 to perform the above processing and output the saturation conversion function Fa (the saturation of the saturation signal SAa).
  • the saturation signal SAa is delayed and output to the saturation conversion unit 15 by the time from the input to the histogram generation unit 13 to the output of the saturation conversion function Fa by the saturation conversion function generation unit 14,
  • the saturation conversion function Fa (f) is input for the certain frame Fr (f) from the saturation conversion function generation unit 14 to the saturation conversion unit 15, the saturation of each pixel of the same frame Fr (f)
  • the signal SAa (f, x) is supplied to the saturation conversion unit 15.
  • SAa (f, x) is used to emphasize that it is a saturation signal of each pixel Px (x) of the frame Fr (f). In the case where such enhancement is not necessary, or in the description common to the saturation signals of a plurality of pixels, the symbol SAa is simply used. If there is no need to emphasize which frame's pixel saturation signal, the code SAa (x) may be used. The same applies to other codes.
  • the saturation conversion unit 15 converts the saturation SAa (f, x) of each pixel (target pixel) input from the color feature amount calculation unit 12 using the saturation conversion function Fa (f),
  • the saturation SAb (f, x) is output to the color component value calculation unit 19.
  • the value of the function Fa (f) corresponding to the saturation SAa (f, x), that is, the output saturation SAb (f, x) is output.
  • the saturation conversion in the saturation conversion unit 15 is a process for each pixel.
  • the saturation conversion unit 15 converts the saturation SAa (f, x) of each pixel of each frame Fr (f) and obtains the converted saturation SAb (f, x), the same frame Fr ( The saturation conversion function Fa (f) defined for f) is used.
  • the saturation histogram generation unit 13 and the saturation conversion function generation unit 14 perform the above processing to output the saturation conversion function Fa (f).
  • the time required for the degree conversion unit 15 to perform the above processing and output the converted saturation signal SAb (from the input of the saturation signal SAa to the saturation histogram generation unit 13 to the conversion by the saturation conversion unit 15)
  • the hue signal HUa and the lightness signal VAa are delayed by the time until the output of the subsequent saturation signal SAb), whereby the saturation conversion unit 15 sends the color component value calculation unit 19 to a pixel in a certain frame Fr (f).
  • the saturation signal SAb (f, x) for Px (f, x) is supplied, the hue signal HUa (f, x) and the lightness signal VAa (f, x) of the same pixel in the same frame are colored. Supplied to the component value calculator 19 To be.
  • the color component value calculation unit 19 calculates the red, green, and blue color component values ROUT from the saturation signal SAb output from the saturation conversion unit 15 and the hue HUa and lightness VAa output from the color feature amount calculation unit 12.
  • GOUT, BOUT representing color signals ROUT, GOUT, BOUT are output. This process is also performed for each pixel. That is, from the saturation signal SAb (x) for each pixel (target pixel), the hue signal HUa (x) and the lightness signal VAa (x) for the same pixel, red, green, and blue color signals for the same pixel.
  • ROUT (x), GOUT (x), and BOUT (x) are output.
  • the calculation of the color component values ROUT, GOUT, and BOUT is performed by a generally performed method.
  • FIGS. 5A to 5D show the saturation conversion function Fc according to the conventional example.
  • FIGS. 5A to 5D show saturation conversion functions Fc corresponding to the saturation distributions shown in FIGS. 3A to 3D, respectively. Since the average saturation is the same in FIGS. 3 (a) and 3 (b), the saturation conversion function Fc according to the conventional example is the same as shown in FIGS. 5 (a) and 5 (b).
  • the saturation conversion function Fc according to the conventional example is the same as shown in FIGS. 5 (a) and 5 (b).
  • both the conventional example and the present embodiment are as shown in FIGS. 5C and 4C.
  • the improvement in saturation can be expected in almost the same way.
  • FIG. 3D when the input saturation SAa is widely distributed in the high saturation region, in the conventional example, as shown in FIG.
  • the slope of the saturation conversion function Fa in the high saturation region can be further increased, and the high saturation can be achieved. And the color gradation expression can be obtained.
  • the maximum value and the minimum value of the gradient of the saturation conversion function Fa for each saturation region, different conversion characteristics can be provided for each saturation region. For example, by setting the maximum value of the slope of the saturation conversion function Fa in the low saturation region to be small (such as 1), the high saturation in the low saturation region is suppressed, and the color noise and the like are suppressed from being noticeable. be able to. Also, by setting a large maximum value in the intermediate saturation area where there are many colors intended to be reproduced, it is possible to emphasize the color difference in the intermediate saturation area. Furthermore, by providing the minimum value, it is possible to prevent the difference in saturation from being compressed and the difference in color from becoming too small. On the other hand, by setting the maximum value, it is possible to avoid sudden conversion of the function value.
  • the saturation can be controlled in accordance with the characteristics of the display device used. Will improve. For example, a display device with a narrow color reproduction range cannot display dark colors (highly saturated colors), but displays intermediate colors that are often included in general content in dark (with higher saturation).
  • a saturation conversion function (a curve represented by the function) is changed according to the input video, and at the same time, at least one of the maximum value and the minimum value of the slope of the function is controlled. By doing so, the saturation conversion function can be adapted to the characteristics of the display device.
  • each class of the saturation histogram HSTa is composed of a single gradation value, but each class may be composed of a plurality of gradation values.
  • FIG. FIG. 6 is a block diagram showing a configuration of the image processing apparatus 10b according to the second embodiment of the present invention.
  • the illustrated image processing apparatus 10b includes input terminals 21y, 21cb and 21cr, a saturation calculation unit 22, a saturation histogram generation unit 13b, a saturation conversion multiplier determination function generation unit 23, and a saturation conversion multiplier determination unit 24.
  • a saturation signal delay unit 25 color difference signal delay units 28 and 29, a luminance signal delay unit 30, multipliers 26 and 27, and output terminals 31y, 31cb, and 31cr.
  • Video signals of a standard that can be supported by an image display device such as a television or a computer are input to the input terminals 21y, 21cb, and 21cr.
  • the video signal is composed of, for example, a luminance signal YIN, a color difference (blue) signal CbIN, and a color difference (red) signal CrIN.
  • the video signal composed of the luminance signal YIN and the color difference signals CbIN and CrIN is input, and the luminance signal YOUT and the color difference signals CbOUT and CrOUT are output. Accordingly, as the display unit 40, a display that receives the luminance signal YOUT and the color difference signals CbOUT and CrOUT is used.
  • the saturation calculation unit 22 calculates a saturation SAc from the luminance signal YIN and the color difference signals CbIN, CrIN input to the input terminals 21y, 21cb, 21cr, and generates a saturation histogram of the saturation signal SAc representing the saturation SAc.
  • the signal is supplied to the unit 13 b and output to the saturation conversion multiplier determination unit 24 via the saturation signal delay unit 25.
  • the saturation histogram generation unit 13b generates a saturation histogram HSTb representing the distribution of the saturation SAc, and outputs the saturation histogram HSTb to the saturation conversion multiplier determination function generation unit 23.
  • the saturation conversion multiplier determination function generation unit 23 generates a saturation conversion multiplier determination function Fb from the saturation histogram HSTb input from the saturation histogram generation unit 13b, and outputs it to the saturation conversion multiplier determination unit 24.
  • the saturation conversion multiplier determination unit 24 receives the saturation signal SAc input from the saturation calculation unit 22 via the saturation signal delay unit 25 and the saturation conversion multiplier input from the saturation conversion multiplier determination function generation unit 23.
  • the saturation conversion multiplier Kb is determined from the determination function Fb and output to the multipliers 26 and 27.
  • the multipliers 26 and 27 respectively receive the color difference signals CbIN and CrIN supplied from the input terminals 21cb and 21cr via the color difference signal delay units 28 and 29, and the saturation conversion multiplier Kb input from the saturation conversion multiplier determination unit 24. And the multiplication result is output to the output terminals 31cb and 31cr as output color difference signals CbOUT and CrOUT.
  • the luminance signal YIN input to the input terminal 11y is delayed by the luminance signal delay unit 30, and then output from the output terminal 31y as the output luminance signal YOUT.
  • the saturation signal delay unit 25 receives the input of the saturation signal SAc output from the saturation calculation unit 22 to the saturation conversion multiplier determination unit 24 from the saturation conversion multiplier determination function generation unit 23 to the saturation conversion multiplier determination unit. This is provided to synchronize with the input of the saturation conversion multiplier determination function Fb to 24.
  • the color difference signal delay units 28 and 29 input the color difference signal CbIN and the signal CrIN input to the input terminals 21cb and 21cr to the multipliers 26 and 27, respectively, and the chroma conversion multiplier determination unit 24 to the multipliers 26 and 27. Is provided to synchronize with the input of the saturation conversion multiplier Kb.
  • the luminance signal delay unit 30 synchronizes the output of the luminance signal YIN input to the input terminal 21y to the output terminal 31y from the multipliers 26 and 27 to the output terminals 31cb and 31cr with the output of the output color difference signals CbOUT and CrOUT. It is provided for this purpose.
  • the luminance signal YIN input to the input terminal 21y represents the luminance value of each pixel.
  • the color difference signals CbIN and CrIN input to the input terminals 21cb and 21cr represent the color difference component values of each pixel.
  • the saturation calculation unit 22 calculates the saturation SAc from the luminance signal YIN and the color difference signals CbIN, CrIN input to the input terminals 21y, 21cb, 21cr. This calculation is performed by a commonly performed calculation.
  • the saturation histogram generation unit 13b generates a saturation histogram HSTb representing the distribution of the saturation SAc.
  • the appearance frequency Db of the gradation value representing the saturation SAc for each class CLb is counted over a certain range, for example, one frame.
  • the frequency Db of the class CLb is represented by “Db (CLb)”.
  • Each class CLb is composed of one gradation value or a plurality of consecutive gradation values, and does not overlap each other.
  • the gradation value is represented by 10 bits and takes values from 0 to 1023, and is divided into 16 classes. Therefore, a case where each class is composed of 64 gradation values will be described.
  • the appearance frequency of saturation over a plurality of frames may be obtained, and the appearance frequency per frame may be obtained by dividing by the number of frames.
  • the saturation conversion multiplier determination function generation unit 23 generates a saturation conversion multiplier determination function Fb from the saturation histogram HSTb input from the saturation histogram generation unit 13 b and supplies the generated saturation conversion multiplier determination function Fb to the saturation conversion multiplier determination unit 24.
  • the saturation conversion multiplier determination function Fb has a saturation (input saturation) SAc as a variable, and a saturation conversion multiplier based on the ratio Ks of the value SAd of the function Fb corresponding to the input saturation SAc to the input saturation SAc. It represents Kb.
  • the frequency Dc (CLb) of each class CLb of the saturation histogram HSTb is cumulatively added in order from the lower class CLb (the lowest gradation value belonging to the class), and the cumulative addition value up to each class is
  • the saturation conversion multiplier determination function Fb is generated by setting a representative value of the class, for example, a function value corresponding to the maximum value of the gradation values belonging to the class.
  • the maximum value and the slope of the saturation conversion multiplier determination function Fb (the ratio of the increase in the value SAd of the corresponding function Fb to the increase in the input saturation SAc) At least one of the minimum values may be determined in advance. For example, the adjustment may be performed so that the inclination is not more than a predetermined maximum value and not less than a predetermined minimum value.
  • This adjustment is performed, for example, with respect to the frequency Db (CLb) of each class CLb of the saturation histogram HSTb used for generation of the saturation conversion multiplier determination function Fb, the upper limit value and the lower limit value corresponding to the maximum value and the minimum value of the above-described gradient. Is determined in advance, and the portion exceeding the upper limit and the portion lower than the lower limit are redistributed.
  • the upper limit value corresponds to the product of the maximum value of the slope and the number of pixels used for generating the histogram
  • the lower limit value is the minimum value of the slope and the pixel value used for generating the histogram. Corresponds to product with number.
  • the frequency Dc (CLb) of each class (attention class) CLb exceeds the above upper limit value
  • the excess is transferred to one or more other classes, whereby the attention class
  • the frequency of CLb is decreased to coincide with the above upper limit value, and the frequency of other classes is increased.
  • the portion exceeding the upper limit is divided, and each divided portion is assigned to another class.
  • the frequency of the class is increased by the allocated amount.
  • the attention class CLb the frequency is decreased by the allocated amount.
  • the target class CLb is reduced in frequency by the sum of the other classes assigned.
  • the missing amount is 1 or 2 or more. It is inherited from another class, thereby increasing the frequency of the class of interest to coincide with the above lower limit and decreasing the frequency of the other class.
  • the missing part is divided, and each divided part is assigned to another class.
  • the frequency of the class is reduced by the assigned part. Increase the frequency by the allocated amount.
  • the target class CLb increases the frequency by the sum of the other classes assigned. It can be said that such transfer is a process of transferring a negative value corresponding to the shortage to another class.
  • the maximum value and minimum value of the slope of the saturation conversion multiplier determination function Fb can be determined separately for each saturation region.
  • the maximum value may be set to a relatively low value, for example, 1 in the low saturation range (a range where the saturation is equal to or less than a predetermined value).
  • FIG. 7 shows the saturation distribution and the saturation conversion multiplier determination function Fb superimposed on each other.
  • the bar graph of FIG. 7 represents the appearance frequency Db for each class of the saturation histogram HSTb, and the broken line represents the value SAd of the saturation conversion multiplier determination function Fb.
  • the saturation conversion multiplier determination function Fb is generated so that the slope of the saturation conversion multiplier determination function Fb is increased.
  • the saturation conversion multiplier determination function Fb is obtained in the same manner as the saturation conversion function Fa of the first embodiment. However, in the saturation conversion function Fa, the relationship between the input saturation SAa and the value (output saturation) SAb of the function Fa corresponding to the input saturation SAa is used for determining the output saturation SAb. Thus, the saturation conversion multiplier determination function Fb has a relationship between the input saturation SAc and the ratio Ks of the value (output saturation) of the function Fb corresponding to the input saturation SAc to the input saturation SAc. Used to determine Kb. Specifically, the ratio Ks corresponding to the input saturation SAc is used as the saturation conversion multiplier Kb for the input saturation SAc.
  • FIG. 8 is a diagram for explaining processing for setting the maximum value to the slope of the saturation conversion multiplier determination function Fb.
  • the upper limit value UL corresponding to the maximum value of the inclination is set in the frequency of each class CLb to exceed the upper limit value UL. In some cases, hand over the frequency to another class. For example, when the saturation distribution is as shown in FIG. 7 and the upper limit value UL is set as shown in FIG.
  • the frequency of the class with the gradation value of saturation SAc from 640 to 704 is the upper limit. Exceeds value. In that case, the frequency of the class whose chroma gradation value is from 640 to 704 is changed to the upper limit value UL, and the frequency exceeding the upper limit value UL is transferred to another class. For example, it is divided into other 15 classes and handed over. That is, distribute. In this distribution, all classes may be assigned equally, or more may be assigned to closer classes.
  • a saturation conversion multiplier determination function Fb is generated based on the new saturation distribution (adjusted histogram) thus created.
  • the saturation conversion multiplier determination function generation unit 23 generates the saturation conversion multiplier determination function Fb for each frame.
  • the saturation histogram generation unit 13b When the saturation histogram generation unit 13b generates the saturation histogram HSTb based on the saturation SAc of the pixels in each frame, the saturation conversion multiplier for the frame based on the saturation SAc of the pixels in the same frame.
  • the determination function Fb is generated.
  • the saturation histogram generation unit 13b generates the saturation histogram HSTb based on the saturation SAc of the pixels in the plurality of frames, the saturation of the frame based on the saturation SAc of the pixels of the plurality of frames.
  • the degree conversion multiplier determination function Fb is generated.
  • the code Fb (f) may be used to emphasize the saturation conversion multiplier determination function Fb for each frame Fr (f).
  • the saturation signal delay unit 25 is the time required for the saturation histogram generation unit 13b and the saturation conversion multiplier determination function generation unit 23 to perform the above processing and output the saturation conversion multiplier determination function Fb (saturation signal).
  • the saturation conversion multiplier is obtained by delaying the saturation signal SAc by the time from the input of the SAc to the saturation histogram generation unit 13b until the output of the saturation conversion multiplier determination function Fb by the saturation conversion multiplier determination function generation unit 23).
  • the saturation conversion multiplier determination function Fb (f) for a certain frame Fr (f) is input from the saturation conversion multiplier determination function generation unit 23 to the saturation conversion multiplier determination unit 24.
  • the saturation signal SAc (f, x) of each pixel in the same frame is supplied to the saturation conversion multiplier determining unit 24.
  • the saturation conversion multiplier determination unit 24 refers to the saturation conversion multiplier determination function Fb generated by the method as described above, and the saturation conversion multiplier corresponding to the saturation signal SAc input from the saturation calculation unit 22. Kb is determined.
  • the determination of the saturation conversion multiplier Kb is a process for each pixel. That is, the corresponding saturation conversion multiplier Kb (f, x) is determined for the saturation SAc (f, x) of each pixel (target pixel) of each frame.
  • the saturation defined for the same frame Fr (f) A conversion multiplier determination function Fb (f) is used.
  • FIG. 9 is a diagram for explaining the saturation conversion multiplier determining unit 24.
  • the broken line shown in FIG. 9 indicates the saturation conversion multiplier determination function Fb.
  • the broken point of the broken line represents a function value in which the position in the horizontal axis direction represents a representative value of each class, and the position in the vertical axis direction corresponds to the representative value.
  • the conversion multiplier Kb Represents the conversion multiplier Kb.
  • the output for the input saturation SAc is output.
  • the ratio Ks (x) corresponding to the input saturation SAc (x) is obtained by interpolation from the ratios Ksa and Ksb corresponding to the input saturations SAca and SAcb, and the obtained ratio Ks (x) is determined as the target pixel Px ( A saturation conversion multiplier Kb (x) for x).
  • the interpolation of the ratio Ks (x) can be expressed by the following equation (1).
  • Ks (x) (Ksa ⁇ Db + Ksb ⁇ Da) / (Da + Db) (1)
  • the output saturation SAd (x) corresponding to the input saturation SAc (x) for the target pixel Px (x) is obtained by interpolation, and the obtained output is obtained.
  • the ratio of the pixel of interest Px (x) that is, the saturation conversion multiplier Kb (x) may be obtained. Is equivalent to determining the ratio Ks (x) by interpolation.
  • the input saturation SAc (x) of the target pixel does not match any of the saturation SAci corresponding to the 16 break points
  • the input saturation SAc (x) is located on both sides.
  • An output saturation SAd (x) corresponding to the input saturation SAc (x) is obtained by interpolation from the values of the functions corresponding to the input saturation SAca, SAcb corresponding to the break point, that is, the output saturation SAda, SAdb.
  • a ratio Ks (x) of the output saturation SAd (x) to the input saturation SAc (x) is set as a saturation conversion multiplier Kb (x) for the target pixel.
  • the interpolation of the output saturation SAd (x) can be expressed by the following equation (2).
  • SAd (x) (SAd (a) ⁇ Db + SAd (b) ⁇ Da) / (Da + Db) (2)
  • Kb (x) SAd (x) / SAc (x) (3)
  • the chrominance signal delay units 28 and 29 respectively convert the chrominance signals CbIN and CrIN input from the input terminals 21cb and 21cr into a saturation calculation unit 22, a saturation histogram generation unit 13b, a saturation conversion multiplier determination function generation unit 23, and Delayed by the time required for processing in the saturation conversion multiplier determining unit 24 (time from the input of the color difference signals CbIN and CrIN to the input terminals 21cb and 21cr to the output of the saturation conversion multiplier Kb) and output to the multipliers 26 and 27
  • the saturation conversion multiplier Kb (f, x) for the pixel Px (x) of the frame Fr (f) in the multipliers 26 and 27 is supplied from the saturation conversion multiplier determination unit 24.
  • color difference signals CbIN (f, x) and CrIN (f, x) of the same pixel in the same frame are supplied to the multipliers 26 and 27.
  • the multipliers 26 and 27 respectively add the saturation conversion multiplier determining unit 24 to the color difference signals CbIN (f, x) and CrIN (f, x) of each pixel (target pixel) output from the color difference signal delay units 28 and 29, respectively. Is multiplied by the saturation conversion multiplier Kb (f, x) for the same pixel in the same frame, and the multiplication result is output as the output color difference signals CbOUT (f, x) and CrOUT (f, x) for the same pixel. Output as.
  • the luminance signal delay unit 30 converts the luminance signal YIN input from the input terminal 21y into a saturation calculation unit 22, a saturation histogram generation unit 13b, a saturation conversion multiplier determination function generation unit 23, a saturation conversion multiplier determination unit 24, And the time required for processing in the multipliers 26 and 27 (the time from the input of the luminance signal YIN and the color difference signals CbIN and CrIN to the input terminals 21y, 21cb and 21cr to the output of the output color difference signals CbOUT and CrOUT).
  • the color difference signals CbOUT (f, x) and CrOUT (f) for the pixel Px (x) of a certain frame Fr (f) are output from the multipliers 26 and 27 to the output terminals 31cb and 31cr.
  • X) is supplied, the luminance signal YIN (f, x) of the same pixel in the same frame is supplied to the output terminal 31y.
  • a saturation conversion multiplier determination function Fb is generated, a saturation conversion multiplier is determined from the saturation conversion multiplier determination function Fb, and the color difference signal is multiplied by the determined saturation conversion multiplier.
  • the color difference signal is multiplied by the determined saturation conversion multiplier.
  • the method for generating the saturation conversion multiplier determination function Fb, the value referring to the saturation conversion multiplier determination function Fb, and the value by which the determined saturation conversion multiplier is multiplied can be selected independently, versatility is high.
  • the “value to be multiplied by the determined saturation conversion multiplier” is CbIN and CrIN in the example of FIG.
  • the “value referring to the saturation conversion multiplier determination function Fb” is the saturation SAc. The fact that they can be selected independently means that the same processing can be applied even if a value other than the above is selected.
  • the maximum value and the minimum value of the slope of the saturation conversion multiplier determination function Fb for each saturation region, different conversion characteristics can be provided for each saturation region. For example, by setting the maximum value of the slope of the saturation conversion multiplier determination function Fb in the low saturation region to a small value (such as 1), the high saturation in the low saturation region is suppressed, and color noise and the like are not conspicuous. can do. Also, by setting a large maximum value in the intermediate saturation area where there are many colors intended to be reproduced, it is possible to emphasize the color difference in the intermediate saturation area. Furthermore, by providing the minimum value, it is possible to prevent the difference in saturation from being compressed and the difference in color from becoming too small. On the other hand, by setting the maximum value, it is possible to avoid sudden conversion of the function value.
  • a small value such as 1
  • the saturation can be controlled in accordance with the characteristics of the display device to be used, and the image quality is improved.
  • a display device with a narrow color reproduction range cannot display dark colors (highly saturated colors), but displays intermediate colors that are often included in general content in dark (with higher saturation).
  • the minimum value of the intermediate saturation region to a large value and setting the maximum value of the high saturation region to a small value, as shown in FIG. 7, a curve that protrudes upward from the intermediate saturation region to the high saturation region Is more likely to be generated.
  • the present invention is characterized in that a saturation conversion multiplier determining function (a curve represented by the function) is changed in accordance with the input video, and at least one of the maximum value and the minimum value of the slope of the function is also included.
  • the saturation conversion multiplier determining function can be adapted to the characteristics of the display device.
  • each class of the histogram HSTb is composed of 64 gradation values, but the number of gradation values belonging to each gradation may be other than 64.
  • each class of the histogram HSTb may be composed of only one gradation value. In that case, the process of interpolating the ratio of the output saturation to the input saturation described with reference to FIG. 9 becomes unnecessary.
  • the color component values ROUT, GOUT, and BOUT are calculated using the converted saturation SAb generated by performing the saturation conversion by the saturation conversion unit 15.
  • the chroma conversion multiplier Kb is used to convert the color difference signals CbIN and CrIN, thereby realizing saturation conversion. That is, saturation conversion is realized without converting a signal representing the saturation SAc.
  • the processing is relatively simple, The scale of the circuit can be reduced.
  • FIG. 10 is a block diagram showing a configuration of an image processing apparatus 10c according to Embodiment 3 of the present invention.
  • the illustrated image processing apparatus 10c includes input terminals 11r, 11g, and 11b, a saturation calculation unit 22, a saturation histogram generation unit 13b, a saturation conversion multiplier determination function generation unit 23, and a saturation conversion multiplier determination unit 24.
  • Multipliers 26 and 27, color feature amount calculation unit 31, saturation signal delay unit 25, color difference signal delay units 28 and 29, luminance signal delay unit 30, color component value calculation unit 32, and output Terminals 20r, 20g, and 20b are provided.
  • Video signals of a standard that can be supported by an image display device such as a television or a computer are input to the input terminals 11r, 11g, and 11b.
  • the video signals are, for example, red, green, and blue signals RIN, GIN, and BIN.
  • the image processing apparatus 10c in FIG. 10 can be used in place of the image processing apparatus 10 in FIG.
  • a video signal composed of the color signals RIN, GIN, and BIN is input, and the color signals ROUT, GOUT, and BOUT are output.
  • the display unit 40 a display unit that receives the color signals ROUT, GOUT, and BOUT is used as in the case of using the image processing apparatus 10.
  • the saturation calculation unit 22 calculates the saturation SAe from the red, green, and blue signals RIN, GIN, and BIN input to the input terminals 11r, 11g, and 11b, and the saturation signal SAe that represents the saturation SAe.
  • the data is output to the histogram generation unit 13b and the saturation conversion multiplier determination unit 24.
  • the saturation histogram generation unit 13b generates a saturation histogram HSTb representing the distribution of saturation and outputs it to the saturation conversion multiplier determination function generation unit 23.
  • the saturation conversion multiplier determination function generation unit 23 generates a saturation conversion multiplier determination function Fb from the saturation histogram HSTb and outputs it to the saturation conversion multiplier determination unit 24.
  • the saturation conversion multiplier determination unit 24 receives the saturation signal SAe input from the saturation calculation unit 22 via the saturation signal delay unit 25 and the saturation conversion multiplier input from the saturation conversion multiplier determination function generation unit 23.
  • the saturation conversion multiplier Kb is determined from the determination function Fb and output to the multipliers 26 and 27.
  • the color feature amount calculation unit 31 calculates the luminance signal Y and the color difference signals Cb and Cr from the red, green, and blue signals RIN, GIN, and BIN input to the input terminals 11r, 11g, and 11b.
  • the color difference signal Cb and Cr are supplied to the multipliers 26 and 27 via the color difference signal delay units 28c and 29c.
  • the multipliers 26 and 27 include the color difference signals Cb and Cr supplied from the color feature amount calculation unit 31 via the color difference signal delay units 28c and 29c, and the saturation conversion multiplier Kb input from the saturation conversion multiplier determination unit 24. And the multiplication result is output to the color component value calculation unit 32 as enhanced color difference signals CbM and CrM.
  • the saturation signal delay unit 25 receives the input of the saturation signal SAe output from the saturation calculation unit 22c to the saturation conversion multiplier determination unit 24 from the saturation conversion multiplier determination function generation unit 23 to the saturation conversion multiplier determination unit. This is provided to synchronize with the input of the saturation conversion multiplier determination function Fb to 24.
  • the color difference signal delay units 28 c and 29 c input the color difference signals Cb and Cr output from the color feature quantity calculation unit 31 to the multipliers 26 and 27, and the chroma conversion multiplier determination unit 24 to the multipliers 26 and 27. This is provided to synchronize with the input of the saturation conversion multiplier.
  • the luminance signal delay unit 30 c receives the luminance signal YIN output from the color feature amount calculation unit 31 and inputs the color component value calculation unit 32 to the color components of the color difference signals CbM and CrM output from the multipliers 26 and 27. This is provided to synchronize with the input to the value calculation unit 32.
  • the color component value calculation unit 32 receives the luminance signal Y input from the color feature amount calculation unit 31 via the luminance signal delay unit 30c and the color difference signals CbM and CrM input from the multipliers 26 and 27 from red, green, Blue color component values ROUT, GOUT, BOUT are calculated, and color signals ROUT, GOUT, BOUT representing the color component values ROUT, GOUT, BOUT are output from the output terminals 20r, 20g, 20b.
  • the calculation of the saturation in the saturation calculation unit 22 is performed in the same manner as the calculation of the saturation in the color feature amount calculation unit 12 of the first embodiment.
  • the generation of the saturation histogram HSTb in the saturation histogram generation unit 13b is performed in the same manner as the generation of the saturation histogram HSTb in the saturation histogram generation unit 13 of the second embodiment.
  • the generation of the saturation conversion multiplier determination function Fb by the saturation conversion multiplier determination function generation unit 23 is performed in the same manner as the generation of the saturation conversion multiplier determination function Fb by the saturation conversion multiplier determination function generation unit 23 in the second embodiment. .
  • the saturation signal delay unit 25 is the time required for the saturation histogram generation unit 13b and the saturation conversion multiplier determination function generation unit 23 to perform the above processing and output the saturation conversion multiplier determination function Fb (saturation signal).
  • the saturation conversion multiplier is obtained by delaying the saturation signal SAe by the time from the input to the saturation histogram generation unit 13b of SAe until the output of the saturation conversion multiplier determination function Fb by the saturation conversion multiplier determination function generation unit 23).
  • the saturation conversion multiplier determination function Fb (f) for a certain frame Fr (f) is input from the saturation conversion multiplier determination function generation unit 23 to the saturation conversion multiplier determination unit 24.
  • the saturation signal SAe (f, x) of each pixel in the same frame is supplied to the saturation conversion multiplier determining unit 24.
  • the determination of the saturation conversion multiplier by the saturation conversion multiplier determination unit 24 is performed in the same manner as the determination of the saturation conversion multiplier by the saturation conversion multiplier determination unit 24 in the second embodiment.
  • the color difference signal delay units 28c and 29c convert the color difference signals Cb and Cr output from the color feature amount calculation unit 31 into a saturation calculation unit 22c, a saturation histogram generation unit 13b, a saturation conversion multiplier determination function generation unit 23, and
  • the time required for processing in the color feature quantity calculation unit 31 from the time required for processing in the saturation conversion multiplier determination unit 24 (time from generation of the color signals RIN, GIN, BIN to generation of the saturation conversion multiplier Kb) (color signal) RIN, GIN, and BIN are subtracted by a time obtained by subtracting the time from the input of RIN, GIN, and BIN), and output to multipliers 26 and 27.
  • the multiplication of the saturation conversion multiplier Kb by the multipliers 26 and 27 is performed in the same manner as the multiplication of the saturation conversion multiplier Kb by the multipliers 26 and 27 in the second embodiment, and is output from the multipliers 26 and 27.
  • the obtained color difference signals CbM and CrM are supplied to the color component value calculation unit 32.
  • the luminance signal delay unit 30c converts the luminance signal Y output from the color feature amount calculation unit 31 into a saturation calculation unit 22c, a saturation histogram generation unit 13b, a saturation conversion multiplier determination function generation unit 23, and a saturation conversion multiplier determination.
  • the time required for processing in the color feature quantity calculation unit 31 from the time required for processing in the unit 24 and the multipliers 26 and 27 (time from the input of the color signals RIN, GIN, and BIN to the output of the saturation conversion multiplier Kb) (The time from the input of the signals RIN, GIN, and BIN to the output of the color difference signals Cb, Cr) is delayed by a time that is subtracted and output to the color component value calculation unit 32, whereby the multipliers 26 and 27 output the color component values.
  • the color component value calculation unit 32 converts the luminance signal Y and the color difference signals CbM and CrM into red, green and blue color component values ROUT, GOUT and BOUT, and represents a color signal representing the color component values ROUT, GOUT and BOUT.
  • ROUT, GOUT, and BOUT are output from the output terminals 20r, 20g, and 20b.
  • the calculation of the red, green, and blue color component values ROUT, GOUT, and BOUT based on the luminance signal Y and the color difference signals CbM and CrM is performed by a generally performed method.
  • the process of calculating the color component values of red, green, and blue from the luminance and color difference is relatively simple and can be realized with a relatively small circuit.
  • the effect of the third embodiment will be described. Even if the input signal or the output signal is a color signal of red, green, or blue, since the calculation of hue or brightness is unnecessary as in the second embodiment, the scale of the circuit, specifically, the IC is reduced. . Thereby, cost reduction is possible.
  • the color component values ROUT, GOUT, and BOUT are calculated using the converted saturation SAb generated by performing the saturation conversion by the saturation conversion unit 15.
  • the color difference signals CbM and CrM are converted using the saturation conversion multiplier Kb, and the color component values ROUT, GOUT and BOUT are calculated using the converted color difference signals CbM and CrM. Saturation conversion is realized. That is, saturation conversion is realized without converting a signal representing the saturation SAe.
  • the process of calculating the color component values of red, green, and blue from the luminance and color difference is relatively simple and can be realized with a relatively small circuit.
  • the processing is relatively It is simple and the scale of the circuit for processing can be reduced.
  • each part of the image processing apparatuses 10, 10b, and 10c (part illustrated as a functional block) is realized by a processing circuit.
  • the processing circuit may be dedicated hardware or a CPU that executes a program stored in a memory.
  • the functions of each part in FIG. 1, FIG. 6, or FIG. 10 may be realized by a processing circuit, or the functions of a plurality of parts may be realized by a processing circuit.
  • the processing circuit When the processing circuit is a CPU, the function of each part of the image processing apparatus is realized by software, firmware, or a combination of software and firmware.
  • Software or firmware is described as a program and stored in a memory.
  • the processing circuit reads out and executes the program stored in the memory, thereby realizing the function of each unit.
  • the image processing apparatus is a memory for storing a program in which the functions of the respective parts shown in FIG. 1, FIG. 6, or FIG. 10 are executed as a result when executed by the processing circuit. Is provided. These programs can also be said to cause a computer to execute a processing method or a procedure in an image processing method implemented by the image processing apparatus.
  • each part of the image processing apparatus may be realized by dedicated hardware, and a part may be realized by software or firmware.
  • the processing circuit can realize the functions described above by hardware, software, firmware, or a combination thereof.
  • FIG. 11 shows an example of the configuration when the above processing circuit is a CPU and all the functions of the image processing apparatus are realized by a computer (indicated by reference numeral 50) including a single CPU, together with the display unit 40.
  • the computer 50 and the display unit 40 constitute a video display device.
  • a computer 50 shown in FIG. 11 includes a CPU 51, a memory 52, an input interface 53, and an output interface 54, which are connected by a bus 55.
  • the input interface 53 receives a standard video signal that can be supported by an image display device such as a television or a computer.
  • This video signal is composed of color signals RIN, GIN, and BIN in the first and third embodiments, and is composed of a luminance signal YIN and color difference signals CbIN, CrIN in the second embodiment. .
  • the CPU 51 operates in accordance with a program stored in the memory 52, and processes each part of the image processing apparatus according to the first, second, or third embodiment on the video signal input via the input interface 53,
  • the output signal obtained as a result of the above is output from the output interface 54 and supplied to the display unit 40.
  • This output signal is composed of color signals ROUT, GOUT and BOUT in the first and third embodiments, and is composed of a luminance signal YOUT and color difference signals CbOUT and CrOUT in the second embodiment.
  • the content of the processing by the CPU 51 is the same as that described in the first, second or third embodiment. Data generated in the course of processing is held in the memory 52.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Image Processing (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

 入力映像の彩度のヒストグラムに基づいて彩度変換関数(Fa)を決定し、決定した彩度変換関数(Fa)を参照して入力映像の各画素の彩度(SAa)を変換する。代わりに上記ヒストグラムから彩度変換乗数決定関数を生成し、彩度変換乗数決定関数と彩度とにより彩度変換乗数を決定し、決定された彩度変換乗数を色差に掛ける。入力映像がどのような彩度分布を有していても、彩度を適切に向上させることができ、同時に高い色階調表現を得ることができる。

Description

画像処理装置及び方法、並びにプログラム及び記録媒体
 本発明は、画像処理装置及び方法に関する。本発明はまた、上記の画像処理装置又は方法における処理をコンピュータに実行させるためのプログラム、及び該プログラムを記録したコンピュータで読み取可能な記録媒体に関する。
 カラー画像を扱う装置においては、色鮮やかな映像表示が好まれることがあり、これに応えるため、低彩度部分を含む映像に対して、自然な彩度向上を目的とした方法、或いは装置が提案されている。
 例えば、特許文献1には、入力映像のカラー信号から入力映像の平均彩度値を抽出し、平均彩度値に基づいて彩度向上関数を決定し、彩度を向上させる方法が開示されている。
 また、従来の映像表示装置は色再現範囲が狭く、再現可能な色域の中で、より色鮮やかな表示を行うために、上述した彩度向上がなされてきた。これに対し、近年技術向上により映像表示装置の色再現範囲が広がる中で、色階調表現の精細化がより重要視されるようになっている。
 さらに、超高精細度テレビの普及に向けた、映像フォーマットの新たな規格により、従来の規格の色域よりも広い色域が規定されている。その結果、従来の規格の映像信号と新たな規格の映像信号とがともに用いられる状況も想定されている。
特許第3749722号公報(段落0008)
 平均彩度値に基づいて彩度を向上させる場合、例えば、低彩度部分と高彩度部分とから成る映像と、中彩度部分のみから成る映像とが区別されず、彩度を適切に向上させることができない場合がある。
 また、上記のように、色再現範囲が比較的狭い映像表示装置などでも、彩度向上処理がされることが多い。このため、色再現範囲が広い映像表示装置であっても、低彩度部分と中彩度部分とから成る入力映像の場合、色再現範囲が比較的狭い映像表示装置で上記の彩度向上処理をした場合との違いが少なくなる。例えば、入力映像が高彩度部分を含む場合に、彩度を向上させると、色つぶれ(本来違う色が同じ色とされてしまい、微妙な色の差が視聴者に認知されにくくなる)がおきる。これを避けるために、高彩度部分は彩度を向上させないという処理を行った場合、より高い色階調表現を得ることはできず、色再現範囲が広い映像表示装置の長所を十分に生かすことができない。
 本発明の第1の態様の画像処理装置は、
 入力映像信号から各画素単位で彩度、色相、明度を算出する色特徴量算出部と、
 前記彩度から彩度ヒストグラムを生成する彩度ヒストグラム生成部と、
 前記彩度ヒストグラム生成部で生成された前記彩度ヒストグラムから彩度変換関数を生成する彩度変換関数生成部と、
 前記彩度変換関数生成部で生成された前記彩度変換関数により、各画素の前記彩度を変換して変換後の彩度を出力する彩度変換部と、
 前記彩度変換部から出力された、前記変換後の彩度と、前記色特徴量算出部で算出された色相及び明度とから赤、緑、青の色成分値を算出する色成分値算出部とを備える
 ことを特徴とする。
 本発明の第2の態様の画像処理装置は、
 入力映像信号から各画素単位で彩度を算出する彩度算出部と、
 前記彩度から彩度ヒストグラムを生成する彩度ヒストグラム生成部と、
 前記彩度ヒストグラム生成部で生成された前記彩度ヒストグラムから彩度変換乗数決定関数を生成する彩度変換乗数決定関数生成部と、
 前記彩度変換乗数決定関数と前記入力映像信号で表される各画素の前記彩度とにより当該画素についての彩度変換乗数を決定する彩度変換乗数決定部と、
 前記彩度変換乗数決定部により決定された前記各画素についての前記彩度変換乗数と、前記入力映像信号で表される同じ画素の色差とを乗算する乗算器とを備える
 ことを特徴とする。
 この発明の画像処理装置によれば、入力映像がどのような彩度分布を有していても、彩度を適切に向上させることができ、同時に高い色階調表現を得ることができる。
本発明の実施の形態1に係る画像処理装置の構成を示すブロック図である。 図1の画像処理装置と表示部とで構成される画像表示装置の一例を示すブロック図である。 (a)~(d)は、彩度分布の例を示す図である。 (a)~(d)は、本発明による彩度変換関数の例を示す図である。 (a)~(d)は、従来例による彩度変換関数の例を示す図である。 本発明の実施の形態2に係る画像処理装置の構成を示すブロック図である。 彩度分布の例と彩度変換乗数決定関数を示す図である。 彩度変換乗数決定関数を表す曲線の傾きに最大値を設定する場合について説明するための図である。 彩度変換乗数決定部24を説明するための図である。 本発明の実施の形態3に係る画像処理装置の構成を示すブロック図である。 本発明の実施の形態1、2又は3の画像処理装置の処理を実現するためのコンピュータの一例と、表示部とで構成される画像処理装置を示すブロック図である。
実施の形態1.
 図1は、本発明の実施の形態1の画像処理装置10の構成を示すブロック図である。図示の画像処理装置10は、入力端子11r、11g、11bと、色特徴量算出部12と、彩度ヒストグラム生成部13と、彩度変換関数生成部14と、彩度変換部15と、彩度信号遅延部16と、色相信号遅延部17と、明度信号遅延部18と、色成分値算出部19と、出力端子20r、20g、20bとを備えている。
 図2は、図1に示される画像処理装置10を表示部40とともに示す。表示部40は一般的にディスプレイと呼ばれるもので構成され得る。画像処理装置10は、図2に示すように、表示部40に接続可能であり、後述のように出力端子20r、20g、20bから出力される色信号ROUT、GOUT、BOUTが表示部40に供給され、表示部40では、色信号ROUT、GOUT、BOUTに基づいて映像の表示を行う。
 画像処理装置10と表示部40とで、映像表示装置が構成されている。
 入力端子11r、11g、11bには、テレビ、コンピュータ等の画像表示装置が対応可能な規格の映像信号が入力される。本実施の形態では、映像信号は、例えば赤、緑、青の色信号RIN、GIN、BINで構成されているものとする。
 色特徴量算出部12は、入力端子11r、11g、11bに入力された色信号RIN、GIN、BINから彩度SAa、色相HUa及び明度VAaを算出する。
 色特徴量算出部12は、算出した彩度SAaを表す信号(彩度信号)を彩度ヒストグラム生成部13に供給するとともに、彩度信号遅延部16を介して彩度変換部15に供給する。
 色特徴量算出部12は、算出した色相HUaを表す信号(色相信号)及び明度VAaを表す信号(明度信号)を、それぞれ色相信号遅延部17及び明度信号遅延部18を介して色成分値算出部19に供給する。
 彩度SAaを表す彩度信号は、該彩度と同じ符号SAaで示され、色相HUaを表す色相信号は、該色相と同じ符号HUaで示され、明度VAaを表す明度信号は、該明度と同じ符号VAaで示される。以下、他の信号についても同様である。
 彩度ヒストグラム生成部13は、彩度SAaの分布を表す彩度ヒストグラムHSTaを生成し、彩度変換関数生成部14に供給する。
 彩度変換関数生成部14は、彩度ヒストグラム生成部13から入力された彩度ヒストグラムHSTaから彩度変換関数Faを生成して、彩度変換部15に供給する。
 彩度変換部15は、色特徴量算出部12から彩度信号遅延部16を介して入力された彩度SAaを上記彩度変換関数Faにより変換して、変換後の彩度SAbを色成分値算出部19に出力する。
 色成分値算出部19は、彩度変換部15から供給された、変換後の彩度SAbと、色特徴量算出部12から色相信号遅延部17及び明度信号遅延部18を介して供給された色相HUa及び明度VAaとから、赤、緑、青の色成分値ROUT、GOUT、BOUTを算出し、算出した色成分値ROUT、GOUT、BOUTを示す色信号ROUT、GOUT、BOUTを、出力端子20r、20g、20bを介して出力する。
 彩度信号遅延部16は、色特徴量算出部12から出力された彩度信号SAaの彩度変換部15への入力を、彩度変換関数生成部14から彩度変換部15への彩度変換関数Faの入力に同期させるために設けられたものである。
 色相信号遅延部17及び明度信号遅延部18は、色特徴量算出部12から出力された色相信号HUa及び明度信号VAaの色成分値算出部19への入力を、彩度変換部15から色成分値算出部19への彩度信号SAbの入力に同期させるために設けられたものである。
 色成分値算出部19から、出力端子20r、20g、20bを介して出力された、赤、緑、青の色信号ROUT、GOUT、BOUTは、表示部40に供給される。
 表示部40は、赤、緑、青の色信号ROUT、GOUT、BOUTに基づいて映像を表示する。
 以下、各機能について、詳細に説明する。
 入力端子11r、11g、11bに入力される色信号RIN、GIN、BINは、各画素の赤、緑、青の色成分値を表すものである。
 色特徴量算出部12は、入力端子11r、11g、11bに入力された色信号で表される色成分値RIN、GIN、BINから彩度SAa、色相HUa、及び明度VAaを算出する。この算出は、一般的に行われている計算により行われる。
 彩度ヒストグラム生成部13は、色特徴量算出部12から彩度信号SAaを受けて、彩度SAaの分布を表す彩度ヒストグラムHSTaを生成する。
 彩度ヒストグラムHSTaの生成においては、彩度SAaを表す階調値の階級CLa毎の出現度数Daを一定の期間乃至範囲、例えば1フレームにわたり、計数する。階調値の出現度数とは、当該階調値を有する画素の出現度数を意味する。階級CLaにおける階調値の出現度数Daを「Da(CLa)」で表す。他の値についても同様である。階級CLaにおける階調値の出現度数を、単に階級CLaの度数と言うこともある。
 各階級CLaは、1個の階調値から、又は相連続する複数個の階調値から成り、互いに重なり合わない。以下では各階級が1個の階調値から成る場合について説明する。この場合各階級は、該階級に属する彩度SAaの階調値によって特定される。
 映像信号の時間的揺れを考慮して、複数フレームにわたり彩度の出現度数を求め、フレーム数で割ることで1フレームあたりの出現度数を求めるようにしても良い。
 彩度変換関数生成部14は、彩度ヒストグラム生成部13から入力された彩度ヒストグラムHSTaから彩度変換関数Faを生成して、彩度変換部15に供給する。
 彩度変換関数Faは、与えられる彩度(入力彩度)SAaを変数として、該変数に対応する関数Faの値により、変換後の彩度(出力彩度)SAbの値を与えるもの、即ち、入力彩度SAaと出力彩度SAbの関係を表すものである。
 例えば、彩度ヒストグラムHSTaの各階級CLaの度数Da(CLa)を、階級CLaの低い方(階級に属する階調値の低い方)から順に累積加算し、各階級までの累積加算値を、当該階級の代表値、例えば当該階級に属する階調値の最大値に対応する関数の値とすることで、彩度変換関数Faが生成される。各階級が1個の階調値から成る場合には、各階級に属する階調値が当該階級の代表値となる。
 この彩度変換関数Faの生成に当たり、彩度変換関数Faの傾き(入力彩度SAaの増加分に対する、対応する出力彩度SAbの増加分の比)に対し、最大値及び最小値の少なくとも一方を予め定めておくこととしても良い。例えば上記の傾きが予め定められた最大値以下で且つ予め定められた最小値以上となるように調整を行うこととしても良い。
 この調整は例えば彩度変換関数Faの生成に用いられる彩度ヒストグラムHSTaの各階級CLaの度数Da(CLa)に対し、上記の傾きの最大値及び最小値に対応する上限値及び下限値を予め定めておき、上限値を超えた分及び下限値を下回る分を再配分することにより行われる。
 上記の上限値は、傾きの最大値と、階級の数の逆数と、ヒストグラムの生成に用いられた画素の数との積に対応し、上記の下限値は、傾きの最小値と、ヒストグラムの生成に用いられた画素の数との積に対応する。
 例えば、各階級(注目階級)CLaの度数Da(CLa)が、上記の上限値を超えている場合には、超えている分を1又は2以上の他の階級に譲り渡し、これにより、注目階級CLaの度数を減少させて上記の上限値に一致させるとともに、他の階級の度数を増加させる。
 2以上の他の階級への譲り渡しの際には、上限値を超えている分を分割し、各分割部分を他の階級に割り当て、割り当てられた階級では、当該階級の度数を割り当て分だけ多くし、注目階級CLaでは、当該割り当て分だけ度数を少なくする。このような処理を、割り当てられた他の階級のすべてについて行う結果、注目階級CLaでは、他の階級の割り当て分の合計だけ、度数が少なくなる。
 逆に、各階級(注目階級)CLaの度数Da(CLa)が、上記の下限値未満である場合(下限値を下回る場合)には、足りない分(下回る分)を、1又は2以上の他の階級から譲り受け、これにより、注目階級の度数を増加させて上記の下限値に一致させるとともに、他の階級の度数を減少させる。
 2以上の他の階級からの譲り受けにおいては、足りない分を分割し、各分割部分を他の階級に割り当て、割り当てられた階級では、当該階級の度数を割り当て分だけ少なくし、注目階級CLaでは、当該割り当て分だけ度数を多くする。このような処理を、割り当てられた他の階級のすべてについて行う結果、注目階級CLaでは、他の階級の割り当て分の合計だけ、度数が多くなる。
 このような譲り受けは、足りない分に相当する負の値を他の階級に譲り渡す処理であるとも言える。
 彩度変換関数Faの傾きの最大値及び最小値は、彩度域毎に別箇に定め得る。例えば、低彩度域(彩度が予め定められた値以下の範囲)では、最大値を比較的小さい値、例えば1にしても良い。また、最大値及び最小値の一方のみで制約を与えることとしても良い。
 なお、上記の再配分のための割り当て分の決定は、彩度変換関数Faを表す曲線が(0,0)と(1.0,1.0)と通り、且つ連続となるように行われる。
 例えば彩度の分布を表す彩度ヒストグラムHSTaが図3(a)~(d)に示すものである場合について説明する。図3(a)~(d)で、横軸は、入力彩度SAa、従って入力彩度SAaの各階調値に対応する階級CLaを示し、縦軸は、入力彩度SAaから成る階級CLaに属する階調値の出現度数Daを示す。
 図3(a)~(d)で、入力彩度SAaはその最大値で正規化された値で示される。即ち、入力彩度SAaはその取り得る値の範囲の最大値を1としている。
 図3(a)及び図3(b)はいずれも彩度SAaの平均値SAamは0.5であるが、彩度分布の形状は異なり、図3(a)では、入力彩度SAaが中彩度域に多く分布し、図3(b)では、入力彩度SAaが、中彩度域にはあまり存在せず、低彩度域及び高彩度域に多く分布している。また、図3(c)では入力彩度SAaが低彩度域に多く分布し、図3(d)では入力彩度SAaが高彩度域に多く分布している。
 図4(a)~(d)は、それぞれ図3(a)~(d)に示した彩度分布に対応した彩度変換関数Faを示す。図4(a)~(d)で横軸は、入力彩度SAa、縦軸は、入力彩度SAaに対応する出力彩度SAb、即ち入力彩度SAaに対応する彩度変換関数Faの値Fa(SAa)を示す。図4(a)~(d)では、図3(a)~(d)と同様に、入力彩度SAaの取り得る値の範囲の最大値を1とするとともに、出力彩度SAbの取り得る値の範囲の最大値も1としている。
 図4(a)~(d)の彩度変換関数Faは、いずれも、その傾きが予め定められた最小値から最大値までの範囲に収まるように生成されたものである。傾きが予め定められた範囲内に収まるようにするための調整は、上記のように、各階級の度数の再配分によって行われる。この再配分は、上記のように、彩度変換関数Faを表す曲線が(0,0)と(1.0,1.0)を通り、且つ連続となるように行われる。
 度数の再配分の具体的方法は、後に実施の形態2に関して説明される、彩度変換乗数決定関数の生成の際の度数の再配分の方法と同様であっても良い。
 彩度変換関数生成部14における彩度変換関数Faの生成は、フレーム毎に行われる。
 彩度ヒストグラム生成部13で各フレーム内の画素の彩度SAaに基づいて彩度ヒストグラムHSTaを生成する場合には、同じフレームの画素の彩度SAaに基づいて、当該フレームについての彩度変換関数Faの生成が行われることになる。
 彩度ヒストグラム生成部13で複数のフレーム内の画素の彩度SAaに基づいて彩度ヒストグラムHSTaを生成する場合には、該複数のフレームの画素の彩度SAaに基づいて、当該フレームについての彩度変換関数Faの生成が行われることになる。
 各フレームFr(f)についての彩度変換関数Faであることを強調するために符号Fa(f)を用いることがある。
 彩度信号遅延部16は、彩度ヒストグラム生成部13及び彩度変換関数生成部14が上記の処理を行って、彩度変換関数Faを出力するのに要する時間(彩度信号SAaの彩度ヒストグラム生成部13への入力から、彩度変換関数生成部14による彩度変換関数Faの出力までの時間)だけ、彩度信号SAaを遅延させて彩度変換部15に出力し、これにより、彩度変換関数生成部14から彩度変換部15へ、あるフレームFr(f)について彩度変換関数Fa(f)が入力されているときに、同じフレームFr(f)の各画素の彩度信号SAa(f,x)が彩度変換部15へ供給されるようにする。
 符号「SAa(f,x)」はフレームFr(f)の各画素Px(x)の彩度信号であることを強調するために用いられている。このような強調が必要ない場合、あるいは、複数の画素の彩度信号に共通の説明に際しては単に符号SAaが用いられる。また、どのフレームの画素の彩度信号であるかを強調する必要がない場合には符号SAa(x)を用いる場合がある。他の符号についても同様である。
 彩度変換部15は、色特徴量算出部12から入力された各画素(注目画素)の彩度SAa(f,x)を上記彩度変換関数Fa(f)により変換して、変換後の彩度SAb(f,x)を色成分値算出部19に出力する。彩度変換関数Fa(f)による変換においては、彩度SAa(f,x)に対応する関数Fa(f)の値、即ち出力彩度SAb(f,x)を出力する。
 彩度変換部15における彩度変換は画素毎の処理である。
 彩度変換部15で各フレームFr(f)の各画素の彩度SAa(f,x)を変換して、変換後の彩度SAb(f,x)を求める際には、同じフレームFr(f)について定められた彩度変換関数Fa(f)が用いられる。
 色相信号遅延部17及び明度信号遅延部18は、彩度ヒストグラム生成部13及び彩度変換関数生成部14が上記の処理を行って、彩度変換関数Fa(f)を出力し、さらに、彩度変換部15が上記の処理を行って、変換後の彩度信号SAbを出力するのに要する時間(彩度信号SAaの彩度ヒストグラム生成部13への入力から、彩度変換部15による変換後の彩度信号SAbの出力までの時間)だけ色相信号HUa及び明度信号VAaを遅延させ、これにより、彩度変換部15から色成分値算出部19に、あるフレームFr(f)のある画素Px(f,x)についての彩度信号SAb(f,x)が供給されているときに、同じフレームの同じ画素の色相信号HUa(f,x)及び明度信号VAa(f,x)が色成分値算出部19に供給されるようにする。
 色成分値算出部19は、彩度変換部15から出力された彩度信号SAbと、色特徴量算出部12から出力された色相HUa及び明度VAaから、赤、緑、青の色成分値ROUT、GOUT、BOUTを表す色信号ROUT、GOUT、BOUTを出力する。この処理も画素毎に行われる。即ち、各画素(注目画素)についての彩度信号SAb(x)と、同じ画素についての色相信号HUa(x)及び明度信号VAa(x)から、同じ画素についての赤、緑、青の色信号ROUT(x)、GOUT(x)、BOUT(x)が出力される。
 色成分値ROUT、GOUT、BOUTの算出は、一般的に行われている方法で行われる。
 ここで、実施の形態1による効果を説明する。図5(a)~(d)に従来例による彩度変換関数Fcを示す。図5(a)~(d)は、それぞれ図3(a)~(d)に示した彩度分布に対応した彩度変換関数Fcである。図3(a)及び(b)では平均彩度が同じであるため、従来例による彩度変換関数Fcは、図5(a)、(b)に示すように同じものとなり、それらを用いて変換を行うと、全体に彩度が向上するが、分布が多い図3(a)の場合の中彩度域及び図3(b)の場合の高彩度域では、図5(a)及び図5(b)に示すように、分布の広がりが却って小さくなり、色階調表現が悪化している。これに対し、本実施の形態1による彩度変換では、図4(a)及び(b)に示すように、分布が多い図3(a)の場合の中彩度域及び図3(b)の場合の高彩度域においても彩度変換関数Faの傾きが大きくなっており、分布の広がりが大きくなり高い色階調表現を得ることができる。
 図3(c)のような入力彩度SAaが低彩度域に多く分布している場合には、従来例でも本実施の形態でも、図5(c)及び図4(c)に示すように、ほぼ同様に彩度の向上が望める。一方、図3(d)のように、入力彩度SAaが高彩度域に多く分布している場合には、従来例では、図5(d)に示すように、高彩度化を控える処理 (彩度変換関数の傾きを1に近づける処理)に留まるが、本実施の形態では、図4(d)に示すように、高彩度域での彩度変換関数Faの傾きをより大きくすることができ、高彩度の分布が広がり、高い色階調表現を得ることができる。
 また、彩度域毎に彩度変換関数Faの傾きの最大値及び最小値の少なくとも一方を設定することにより、彩度域毎に異なる変換特性を持たせることができる。例えば、低彩度域での彩度変換関数Faの傾きの最大値を小さく(1にするなど)設定することで、低彩度域の高彩度化を抑え、色ノイズなどが目立つのを抑制することができる。
 また、再現を意図した色が多い中間彩度の領域の最大値を大きく設定することで、中間彩度の領域における色の違いを強調することができる。
 さらに、最小値を設けることで、彩度の差が圧縮されて、色の違いが小さくなり過ぎるのを防ぐことができる。一方、最大値を設定することで、関数の値が急に変換するのを避けることができる。
 さらにまた、彩度域毎に彩度変換関数Faの傾きの最大値及び最小値の少なくとも一方を設定することにより、使用する表示装置の特性に合わせて、彩度を制御することができ、画質が向上する。
 例えば、色再現範囲が狭い表示装置では、濃い色(彩度の高い色)は表示できないが、一般的なコンテンツに多く含まれる中間的な色を濃く(より高い彩度で)表示するため、中間彩度領域の最小値を大き目に設定し、高彩度領域の最大値を小さめに設定することにより、図4(a)に示すように、中彩度領域から高彩度領域に掛けて、上に凸となる曲線が生成されやすくなる。
 本発明は、入力映像に応じて彩度変換関数(該関数で表される曲線)を変化させることが特徴であるが、これとともに、該関数の傾きの最大値及び最小値の少なくとも一方を制御することで、彩度変換関数を表示装置の特性に適合するようにすることができる。
 なお、上記の例では、彩度ヒストグラムHSTaの各階級が単一の階調値から成るが、各階級が複数の階調値からなるようにしても良い。
実施の形態2.
 図6は、本発明の実施の形態2の画像処理装置10bの構成を示すブロック図である。図示の画像処理装置10bは、入力端子21y、21cb及び21crと、彩度算出部22と、彩度ヒストグラム生成部13bと、彩度変換乗数決定関数生成部23と、彩度変換乗数決定部24と、彩度信号遅延部25と、色差信号遅延部28、29と、輝度信号遅延部30と、乗算器26、27と、出力端子31y、31cb、31crとを備えている。
 入力端子21y、21cb、21crには、テレビ、コンピュータ等の画像表示装置が対応可能な規格の映像信号が入力される。本実施の形態では、映像信号は、例えば輝度信号YIN、色差(青)信号CbIN、及び色差(赤)信号CrINで構成されているものとする。
 図6の画像処理装置10bは、図2において、画像処理装置10の代わりに用い得るものである。但し、輝度信号YIN、及び色差信号CbIN、CrINで構成される映像信号を入力とし、輝度信号YOUT、色差信号CbOUT、CrOUTを出力する。従って、表示部40としては、輝度信号YOUT、色差信号CbOUT、CrOUTを入力とするものが用いられる。
 彩度算出部22は、入力端子21y、21cb、21crに入力された輝度信号YIN及び色差信号CbIN、CrINから彩度SAcを算出し、彩度SAcを表す彩度信号SAcを、彩度ヒストグラム生成部13bに供給するとともに、彩度信号遅延部25を介して彩度変換乗数決定部24に出力する。
 彩度ヒストグラム生成部13bは、彩度SAcの分布を表す彩度ヒストグラムHSTbを生成し、彩度変換乗数決定関数生成部23に出力する。
 彩度変換乗数決定関数生成部23は、彩度ヒストグラム生成部13bから入力された彩度ヒストグラムHSTbから彩度変換乗数決定関数Fbを生成し、彩度変換乗数決定部24に出力する。
 彩度変換乗数決定部24は、彩度算出部22から彩度信号遅延部25を介して入力された彩度信号SAcと、彩度変換乗数決定関数生成部23から入力された彩度変換乗数決定関数Fbとから、彩度変換乗数Kbを決定し、乗算器26、27に出力する。
 乗算器26及び27は、それぞれ入力端子21cb及び21crから色差信号遅延部28及び29を介して供給された色差信号CbIN及びCrINと、彩度変換乗数決定部24から入力された彩度変換乗数Kbを乗算して、乗算結果を、出力色差信号CbOUT及びCrOUTとして、出力端子31cb及び31crに出力する。
 入力端子11yに入力された輝度信号YINは、輝度信号遅延部30で遅延された後、出力輝度信号YOUTとして出力端子31yから出力される。
 彩度信号遅延部25は、彩度算出部22から出力された彩度信号SAcの彩度変換乗数決定部24への入力を、彩度変換乗数決定関数生成部23から彩度変換乗数決定部24への彩度変換乗数決定関数Fbの入力に同期させるために設けられたものである。
 色差信号遅延部28及び29は、それぞれ入力端子21cb及び21crに入力された色差信号CbIN及び信号CrINの、乗算器26及び27への入力を、彩度変換乗数決定部24から乗算器26及び27への彩度変換乗数Kbの入力に同期させるために設けられたものである。
 輝度信号遅延部30は、入力端子21yに入力された輝度信号YINの、出力端子31yへの出力を、乗算器26及び27から出力端子31cb及び31crへ出力色差信号CbOUT及びCrOUTの出力に同期させるために設けられたものである。
 ここで、各機能について、詳細に説明する。
 入力端子21yに入力される輝度信号YINは、各画素の輝度値を表すものである。入力端子21cb、21crに入力される色差信号CbIN、CrINは、各画素の色差成分値を表すものである。
 彩度算出部22は、入力端子21y、21cb、21crに入力された輝度信号YIN、色差信号CbIN、CrINから彩度SAcを算出する。この算出は、一般的に行われている計算により算出する。
 彩度ヒストグラム生成部13bは、実施の形態1と同様に、彩度SAcの分布を表す彩度ヒストグラムHSTbを生成する。
 彩度ヒストグラムHSTbの生成においては、彩度SAcを表す階調値の階級CLb毎の出現度数Dbを一定の範囲、例えば1フレームにわたり、計数する。階級CLbの度数Dbを「Db(CLb)」で表す。
 各階級CLbは、1個の階調値から、又は相連続する複数個の階調値から成り、互いに重なり合わない。以下では階調値が10ビットで表されて0から1023までの値を取り、16個の階級に分けられており、従って、各階級が64個の階調値から成る場合について説明する。
 映像信号の時間的揺れを考慮して、複数フレームにわたり彩度の出現度数を求め、フレーム数で割ることで1フレームあたりの出現度数を求めるようにしても良い。
 彩度変換乗数決定関数生成部23は、彩度ヒストグラム生成部13bから入力された彩度ヒストグラムHSTbから彩度変換乗数決定関数Fbを生成し、彩度変換乗数決定部24に供給する。
 彩度変換乗数決定関数Fbは、与えられる彩度(入力彩度)SAcを変数として、入力彩度SAcに対応する関数Fbの値SAdの、入力彩度SAcに対する比Ksにより、彩度変換乗数Kbを表すものである。
 例えば、彩度ヒストグラムHSTbの各階級CLbの度数Dc(CLb)を、階級CLbの低い方(階級に属する階調値の低い方)から順に累積加算し、各階級までの累積加算値を、当該階級の代表値、例えば当該階級に属する階調値の最大値に対応する関数の値とすることで、彩度変換乗数決定関数Fbが生成される。
 この彩度変換乗数決定関数Fbの生成に当たり、彩度変換乗数決定関数Fbの傾き(入力彩度SAcの増加分に対する、対応する関数Fbの値SAdの増加分の比)に対し、最大値及び最小値の少なくとも一方を予め定めておくこととしても良い。例えば上記の傾きが予め定められた最大値以下で且つ予め定められた最小値以上となるように調整を行うこととしても良い。
 この調整は例えば彩度変換乗数決定関数Fbの生成に用いられる彩度ヒストグラムHSTbの各階級CLbの度数Db(CLb)に対し、上記の傾きの最大値及び最小値に対応する上限値及び下限値を予め定めておき、上限値を超えた分及び下限値を下回る分を再配分することにより行われる。
 上記の上限値は、傾きの最大値と、ヒストグラムの生成に用いられた画素の数との積に対応し、上記の下限値は、傾きの最小値と、ヒストグラムの生成に用いられた画素の数との積に対応する。
 例えば、各階級(注目階級)CLbの度数Dc(CLb)が、上記の上限値を超えている場合には、超えている分を1又は2以上の他の階級に譲り渡し、これにより、注目階級CLbの度数を減少させて上記の上限値に一致させるとともに、他の階級の度数を増加させる。
 2以上の他の階級への譲り渡しの際には、上限値を超えている分を分割し、各分割部分を他の階級に割り当て、割り当てられた階級では、当該階級の度数を割り当て分だけ多くし、注目階級CLbでは、当該割り当て分だけ度数を少なくする。このような処理を、割り当てられた他の階級のすべてについて行う結果、注目階級CLbでは、他の階級の割り当て分の合計だけ、度数が少なくなる。
 逆に、各階級(注目階級)CLbの度数Db(CLb)が、上記の下限値未満である場合(下限値を下回る場合)には、足りない分(下回る分)を、1又は2以上の他の階級から譲り受け、これにより、注目階級の度数を増加させて上記の下限値に一致させるとともに、他の階級の度数を減少させる。
 2以上の他の階級からの譲り受けにおいては、足りない分を分割し、各分割部分を他の階級に割り当て、割り当てられた階級では、当該階級の度数を割り当て分だけ少なくし、注目階級CLbでは、当該割り当て分だけ度数を多くする。このような処理を、割り当てられた他の階級のすべてについて行う結果、注目階級CLbでは、他の階級の割り当て分の合計だけ、度数が多くなる。
 このような譲り受けは、足りない分に相当する負の値を他の階級に譲り渡す処理であるとも言える。
 彩度変換乗数決定関数Fbの傾きの最大値及び最小値は、彩度域毎に別箇に定め得る。例えば、低彩度域(彩度が予め定められた値以下の範囲)では、最大値を比較的低い値、例えば1にしても良い。また、最大値及び最小値の一方のみで制約を与えることとしても良い。
 なお、上記の再配分のための割り当て分の決定は、彩度変換乗数決定関数Fbを表す曲線が(0,0)と(1.0,1.0)とを通り、且つ連続となるように行われる。
 図7は、彩度の分布と彩度変換乗数決定関数Fbを重ねて描いたものである。
 図7の棒グラフが彩度ヒストグラムHSTbの階級毎の出現度数Dbを表し、折れ線が彩度変換乗数決定関数Fbの値SAdを表している。出現度数が多い箇所では、彩度変換乗数決定関数Fbの傾きが大きくなるように彩度変換乗数決定関数Fbが生成される。
 彩度変換乗数決定関数Fbは、実施の形態1の彩度変換関数Faと同様にして得られるものである。しかし、彩度変換関数Faは、入力彩度SAaと、入力彩度SAaに対応する関数Faの値(出力彩度)SAbとの関係が、出力彩度SAbの決定に利用されるのに対して、彩度変換乗数決定関数Fbは、入力彩度SAcと、入力彩度SAcに対応する該関数Fbの値(出力彩度)の入力彩度SAcに対する比Ksの関係が、彩度変換乗数Kbの決定に利用される。具体的には、入力彩度SAcに対応する上記の比Ksが、当該入力彩度SAcに対する彩度変換乗数Kbとして用いられる。
 上記のように、彩度変換乗数決定関数Fbを生成する時に、彩度変換乗数決定関数Fbの傾きに最大値が設定される場合がある。図8は、彩度変換乗数決定関数Fbの傾きに最大値を設定する処理を説明するための図である。傾きが最大値を超えないようにするため、本実施の形態では、上記のように、各階級CLbの度数に、傾きの最大値に対応する上限値ULを設定して、上限値ULを超える場合には、他の階級に度数を譲り渡す。例えば、彩度の分布が図7に示す如くであり、上限値ULが図8に示したように設定されている場合、彩度SAcの階調値が640から704までの階級の度数が上限値を超える。その場合、彩度の階調値が640から704までの階級の度数を、上限値ULに改め、上限値ULを超えた度数を他の階級に譲り渡す。例えば、他の15の階級に分割して譲り渡す。即ち、分配する。
 この分配に当たっては、すべての階級に均等に割り当てても良く、より近い階級により多く割り当てても良い。そのようにしてできた新たな彩度分布(調整後のヒストグラム)を基に彩度変換乗数決定関数Fbを生成する。
 彩度変換乗数決定関数生成部23における、彩度変換乗数決定関数Fbの生成は、フレーム毎に行われる。
 彩度ヒストグラム生成部13bで各フレーム内の画素の彩度SAcに基づいて彩度ヒストグラムHSTbを生成する場合には、同じフレームの画素の彩度SAcに基づいて、当該フレームについての彩度変換乗数決定関数Fbの生成が行われることになる。
 彩度ヒストグラム生成部13bで複数のフレーム内の画素の彩度SAcに基づいて彩度ヒストグラムHSTbを生成する場合には、該複数のフレームの画素の彩度SAcに基づいて、当該フレームについての彩度変換乗数決定関数Fbの生成が行われることになる。
 各フレームFr(f)についての彩度変換乗数決定関数Fbであることを強調するために符号Fb(f)を用いることがある。
 彩度信号遅延部25は、彩度ヒストグラム生成部13b及び彩度変換乗数決定関数生成部23が上記の処理を行って、彩度変換乗数決定関数Fbを出力するのに要する時間(彩度信号SAcの彩度ヒストグラム生成部13bへの入力から、彩度変換乗数決定関数生成部23による彩度変換乗数決定関数Fbの出力までの時間)だけ、彩度信号SAcを遅延させて彩度変換乗数決定部24に出力し、これにより、彩度変換乗数決定関数生成部23から彩度変換乗数決定部24へ、あるフレームFr(f)についての彩度変換乗数決定関数Fb(f)が入力されているときに、同じフレームの各画素の彩度信号SAc(f,x)が彩度変換乗数決定部24へ供給されるようにする。
 彩度変換乗数決定部24は、上述のような方法で生成された彩度変換乗数決定関数Fbを参照して、彩度算出部22から入力された彩度信号SAcに対応する彩度変換乗数Kbを決定する。彩度変換乗数Kbの決定は画素毎の処理である。即ち、各フレームの各画素(注目画素)の彩度SAc(f,x)に対して、対応する彩度変換乗数Kb(f,x)が決定される。
 各フレームFr(f)の各画素の彩度SAc(f,x)から対応する彩度変換乗数Kb(f,x)を決定する際には、同じフレームFr(f)について定められた彩度変換乗数決定関数Fb(f)が用いられる。
 図9は、彩度変換乗数決定部24を説明するための図である。
 図9に示した折れ線は、彩度変換乗数決定関数Fbを示している。折れ線の折れ点は、横軸方向位置が各階級の代表値を表し、縦軸方向位置が上記代表値に対応する、関数の値を表す。そして、折れ線上の各点に対応する入力彩度SAcに対する関数の値、即ち出力彩度SAd(=Fb(SAc))の比Ks(=SAd/SAc)が、当該入力彩度SAcに対する彩度変換乗数Kbを表す。
 従って、注目画素の入力彩度SAc(x)が、16個の折れ点Qi(i=1~16)に対応する入力彩度SAciのいずれかに一致するときは、当該入力彩度SAcに対する出力彩度SAdi(=Fb(SAci))の比Ks(=SAdi/SAci)が、当該注目画素についての彩度変換乗数Kb(x)となる。
 注目画素の入力彩度SAc(x)が、16個の折れ点に対応する入力彩度SAciのいずれとも一致しないときは、当該入力彩度SAc(x)の両側に位置する、折れ点に対応する入力彩度SAca、SAcbに対応する比Ksa、Ksbから、当該入力彩度SAc(x)に対応する比Ks(x)を補間により求め、求めた比Ks(x)を、注目画素Px(x)についての彩度変換乗数Kb(x)とする。
 比Ks(x)の補間は下記の式(1)で表すことができる。
 Ks(x)=(Ksa×Db+Ksb×Da)/(Da+Db) (1)
 式(1)で、Da、Dbは、
 Da=SAc(x)-SAca
 Db=SAcb-SAc(x)
 以上のように、比Ks(x)を補間により求める代わりに、注目画素Px(x)についての入力彩度SAc(x)に対応する出力彩度SAd(x)を補間により求め、求めた出力彩度SAd(x)を、入力彩度SAc(x)で割ることで、注目画素Px(x)についての比、即ち彩度変換乗数Kb(x)を求めることとしても良く、そのような処理は、上記の比Ks(x)を補間により求めるのと等価である。
 具体的には、注目画素の入力彩度SAc(x)が、16個の折れ点に対応する彩度SAciのいずれとも一致しないときは、当該入力彩度SAc(x)の両側に位置する、折れ点に対応する入力彩度SAca、SAcbに対応する関数の値、即ち出力彩度SAda、SAdbから、当該入力彩度SAc(x)に対応する出力彩度SAd(x)を補間により求め、入力彩度SAc(x)に対する出力彩度SAd(x)の比Ks(x)を、注目画素についての彩度変換乗数Kb(x)とする。
 出力彩度SAd(x)の補間は下記の式(2)で表すことができる。
 SAd(x)=(SAd(a)×Db+SAd(b)×Da)/(Da+Db)
                               (2)
 式(2)で得られた出力彩度SAd(x)を、入力彩度SAc(x)で割ることで、注目画素についての彩度変換乗数Kb(x)を得ることができる。この演算は、下記の式(3)で表される。
 Kb(x)=SAd(x)/SAc(x)   (3)
 色差信号遅延部28及び29は、それぞれ入力端子21cb及び21crから入力された色差信号CbIN及びCrINを、彩度算出部22、彩度ヒストグラム生成部13b、彩度変換乗数決定関数生成部23、及び彩度変換乗数決定部24における処理に要する時間(色差信号CbIN、CrINの入力端子21cb及び21crへの入力から彩度変換乗数Kbを出力までの時間)だけ遅延させて乗算器26及び27に出力し、これにより、彩度変換乗数決定部24から乗算器26及び27にあるフレームFr(f)のある画素Px(x)についての彩度変換乗数Kb(f,x)が供給されているときに、同じフレーム同じ画素の色差信号CbIN(f,x)及びCrIN(f,x)が乗算器26及び27に供給されるようにする。
 乗算器26及び27は、それぞれ色差信号遅延部28及び29から出力された各画素(注目画素)の色差信号CbIN(f,x)及びCrIN(f,x)に、彩度変換乗数決定部24から出力された、同じフレームの同じ画素についての彩度変換乗数Kb(f,x)を乗算し、乗算結果を、同じ画素についての出力色差信号CbOUT(f,x)及びCrOUT(f,x)として出力する。
 輝度信号遅延部30は、入力端子21yから入力された輝度信号YINを、彩度算出部22、彩度ヒストグラム生成部13b、彩度変換乗数決定関数生成部23、彩度変換乗数決定部24、及び乗算器26、27における処理に要する時間(輝度信号YIN、及び色差信号CbIN、CrINの入力端子21y、21cb、21crへの入力から出力色差信号CbOUT、CrOUTの出力までの時間)だけ遅延させて出力端子31yに出力し、これにより、乗算器26及び27から出力端子31cb及び31crに、あるフレームFr(f)のある画素Px(x)についての色差信号CbOUT(f,x)及びCrOUT(f,x)が供給されているときに、同じフレーム同じ画素の輝度信号YIN(f,x)が出力端子31yに供給されるようにする。
 ここで、実施の形態2による効果を説明する。本実施の形態では、彩度変換乗数決定関数Fbを生成し、彩度変換乗数決定関数Fbから彩度変換乗数を決定し、決定した彩度変換乗数を色差信号に乗算することとしている。このように色差信号に対する乗算を行うことで、彩度の向上を達成することができ、一方、色相或いは明度の計算が不要であるので、回路、具体的にはICの規模が小さくなる。これにより、低コスト化が可能である。
 また、彩度変換乗数決定関数Fbの生成方法と、彩度変換乗数決定関数Fbを参照する値、決定された彩度変換乗数を乗算する値が、独立して選べるため、汎用性が高い。ここで、「決定された彩度変換乗数を乗算する値」は図6の例ではCbIN、CrINである。「彩度変換乗数決定関数Fbを参照する値」は、彩度SAcである。これらが独立して選べるとは、上記以外の値を選択しても同様の処理を適用し得ることを意味する。
 また、彩度域毎に彩度変換乗数決定関数Fbの傾きの最大値及び最小値の少なくとも一方を設定することにより、彩度域毎に異なる変換特性を持たせることができる。例えば、低彩度域での彩度変換乗数決定関数Fbの傾きの最大値を小さく(1にするなど)設定することで低彩度域の高彩度化を抑え、色ノイズなどが目立つのを抑制することができる。
 また、再現を意図した色が多い中間彩度の領域の最大値を大きく設定することで、中間彩度の領域における色の違いを強調することができる。
 さらに、最小値を設けることで、彩度の差が圧縮されて、色の違いが小さくなり過ぎるのを防ぐことができる。一方、最大値を設定することで、関数の値が急に変換するのを避けることができる。
 さらにまた、彩度変換乗数決定関数の傾きに最大値及び最小値の少なくとも一方を設定することにより、使用する表示装置の特性に合わせて、彩度を制御することができ、画質が向上する。
 例えば、色再現範囲が狭い表示装置では、濃い色(彩度の高い色)は表示できないが、一般的なコンテンツに多く含まれる中間的な色を濃く(より高い彩度で)表示するため、中間彩度領域の最小値を大き目に設定し、高彩度領域の最大値を小さめに設定することにより、図7に示すように、中彩度領域から高彩度領域に掛けて、上に凸となる曲線が生成されやすくなる。
 本発明は、入力映像に応じて彩度変換乗数決定関数(該関数で表される曲線)を変化させることが特徴であるが、これとともに、該関数の傾きの最大値及び最小値の少なくとも一方を制御することで、彩度変換乗数決定関数を表示装置の特性に適合するようにすることができる。
 実施の形態2ではヒストグラムHSTbの各階級が64の階調値からなるが、各階調に属する階調値の数は64以外であっても良い。また、実施の形態1と同様に、ヒストグラムHSTbの各階級が一つの階調値のみからなることとしても良い。その場合には、図9を参照して説明されている入力彩度に対する出力彩度の比を補間する処理は不要となる。
 実施の形態1では、彩度変換部15により彩度変換を行うことで生成された、変換後の彩度SAbを用いて、色成分値ROUT、GOUT、BOUTを算出している。しかし、一般に彩度、色相及び明度から色成分値を算出するには、複雑な処理、従って大規模な回路が必要である。彩度、色相及び明度から輝度及び色差を算出する場合も同様である。
 実施の形態2では、彩度変換乗数Kbを用いて、色差信号CbIN、CrINを変換し、これにより彩度の変換を実現している。即ち、彩度SAcを表す信号の変換を行うことなく、彩度の変換を実現している。実施の形態2では、輝度YOUT及び色差GbOUT、CrOUTの算出のために、彩度の変換及び変換後の彩度に基づく計算のいずれをも必要としないので、処理が比較的簡単であり、処理のための回路の規模を小さくすることができる。
実施の形態3.
 図10は、本発明の実施の形態3に係る画像処理装置10cの構成を示すブロック図である。図示の画像処理装置10cは、入力端子11r、11g、11bと、彩度算出部22と、彩度ヒストグラム生成部13bと、彩度変換乗数決定関数生成部23と、彩度変換乗数決定部24と、乗算器26、27と、色特徴量算出部31と、彩度信号遅延部25と、色差信号遅延部28、29と、輝度信号遅延部30と、色成分値算出部32と、出力端子20r、20g、20bとを備えている。
 入力端子11r、11g、11bには、テレビ、コンピュータ等の画像表示装置が対応可能な規格の映像信号が入力される。本実施の形態では、映像信号は、例えば赤、緑、青の信号RIN、GIN、BINであるものとする。
 図10の画像処理装置10cは、図2において、画像処理装置10の代わりに用い得るものである。そして、画像処理装置10と同様に、色信号RIN、GIN、BINで構成される映像信号を入力とし、色信号ROUT、GOUT、BOUTを出力する。従って、表示部40としては、画像処理装置10を用いる場合と同様に、色信号ROUT、GOUT、BOUTを入力とするものが用いられる。
 彩度算出部22は、入力端子11r、11g、11bに入力された赤、緑、青の信号RIN、GIN、BINから彩度SAeを算出し、彩度SAeを表す彩度信号SAeを彩度ヒストグラム生成部13b及び彩度変換乗数決定部24に出力する。
 彩度ヒストグラム生成部13bは、彩度の分布を表す彩度ヒストグラムHSTbを生成し、彩度変換乗数決定関数生成部23に出力する。
 彩度変換乗数決定関数生成部23は、彩度ヒストグラムHSTbから彩度変換乗数決定関数Fbを生成し、彩度変換乗数決定部24に出力する。
 彩度変換乗数決定部24は、彩度算出部22から彩度信号遅延部25を介して入力された彩度信号SAeと、彩度変換乗数決定関数生成部23から入力された彩度変換乗数決定関数Fbとから、彩度変換乗数Kbを決定し、乗算器26、27に出力する。
 色特徴量算出部31は、入力端子11r、11g、11bに入力された赤、緑、青の信号RIN、GIN、BINから輝度信号Y、及び色差信号Cb,Crを算出し、輝度信号Yを、輝度信号遅延部30cを介して色成分値算出部32に供給し、色差信号Cb、Crを、色差信号遅延部28c、29cを介して乗算器26、27に供給する。
 乗算器26及び27は、色特徴量算出部31から色差信号遅延部28c及び29cを介して供給された色差信号Cb及びCrと、彩度変換乗数決定部24から入力された彩度変換乗数Kbを乗算して、乗算結果を、増強された色差信号CbM及びCrMとして、色成分値算出部32に出力する。
 彩度信号遅延部25は、彩度算出部22cから出力された彩度信号SAeの彩度変換乗数決定部24への入力を、彩度変換乗数決定関数生成部23から彩度変換乗数決定部24への彩度変換乗数決定関数Fbの入力に同期させるために設けられたものである。
 色差信号遅延部28c及び29cは、色特徴量算出部31から出力された色差信号Cb及びCrの、乗算器26及び27への入力を、彩度変換乗数決定部24から乗算器26及び27への彩度変換乗数の入力に同期させるために設けられたものである。
 輝度信号遅延部30cは、色特徴量算出部31から出力された輝度信号YINの、色成分値算出部32への入力を、乗算器26及び27から出力された色差信号CbM及びCrMの色成分値算出部32への入力に同期させるために設けられたものである。
 色成分値算出部32は、色特徴量算出部31から輝度信号遅延部30cを介して入力された輝度信号Yと、乗算器26、27から入力された色差信号CbM、CrMから赤、緑、青の色成分値ROUT、GOUT、BOUTを算出し、色成分値ROUT、GOUT、BOUTを表す色信号ROUT、GOUT、BOUTを出力端子20r、20g、20bから出力する。
 ここで、各機能について、詳細に説明する。
 彩度算出部22における彩度の算出は、実施の形態1の色特徴量算出部12における彩度の算出と同様に行われる。
 彩度ヒストグラム生成部13bにおける彩度ヒストグラムHSTbの生成は、実施の形態2の彩度ヒストグラム生成部13における彩度ヒストグラムHSTbの生成と同様に行われる。
 彩度変換乗数決定関数生成部23による彩度変換乗数決定関数Fbの生成は、実施の形態2における彩度変換乗数決定関数生成部23による彩度変換乗数決定関数Fbの生成と同様に行われる。
 彩度信号遅延部25は、彩度ヒストグラム生成部13b及び彩度変換乗数決定関数生成部23が上記の処理を行って、彩度変換乗数決定関数Fbを出力するのに要する時間(彩度信号SAeの彩度ヒストグラム生成部13bへの入力から、彩度変換乗数決定関数生成部23による彩度変換乗数決定関数Fbの出力までの時間)だけ、彩度信号SAeを遅延させて彩度変換乗数決定部24に出力し、これにより、彩度変換乗数決定関数生成部23から彩度変換乗数決定部24へ、あるフレームFr(f)についての彩度変換乗数決定関数Fb(f)が入力されているときに、同じフレームの各画素の彩度信号SAe(f,x)が彩度変換乗数決定部24へ供給されるようにする。
 彩度変換乗数決定部24による彩度変換乗数の決定は、実施の形態2における彩度変換乗数決定部24による彩度変換乗数の決定と同様に行われる。
 色差信号遅延部28c及び29cは、色特徴量算出部31から出力された色差信号Cb及びCrを、彩度算出部22c、彩度ヒストグラム生成部13b、彩度変換乗数決定関数生成部23、及び彩度変換乗数決定部24における処理に要する時間(色信号RIN、GIN、BINの入力から彩度変換乗数Kbを生成するまでの時間)から色特徴量算出部31における処理に要する時間(色信号RIN、GIN、BINの入力から色差信号Cb、Crを生成するまでの時間)を引いた時間だけ遅延させて乗算器26、27に出力し、これにより、彩度変換乗数決定部24から乗算器26及び27にあるフレームFr(f)のある画素Px(x)についての彩度変換乗数Kb(f,x)が供給されているときに、同じフレーム同じ画素の色差信号Cb(f,x)及びCr(f,x)が乗算器26及び27に供給されるようにする。
 乗算器26及び27による彩度変換乗数Kbの乗算は、実施の形態2における乗算器26及び27による彩度変換乗数Kbの乗算と同様に行われ、乗算器26及び27から出力される、増強された色差信号CbM及びCrMは、色成分値算出部32に供給される。
 輝度信号遅延部30cは、色特徴量算出部31から出力された輝度信号Yを、彩度算出部22c、彩度ヒストグラム生成部13b、彩度変換乗数決定関数生成部23、彩度変換乗数決定部24、及び乗算器26、27における処理に要する時間(色信号RIN、GIN、BINの入力から彩度変換乗数Kbの出力までの時間)から色特徴量算出部31における処理に要する時間(色信号RIN、GIN、BINの入力から色差信号Cb、Crの出力までの時間)を引いた時間だけ遅延させて色成分値算出部32に出力し、これにより、乗算器26及び27から色成分値算出部32にあるフレームFr(f)のある画素Px(x)についての色差信号Cb(f,x)及びCr(f,x)が供給されているときに、同じフレーム同じ画素の輝度信号YIN(f,x)が色成分値算出部32に供給されるようにする。
 色成分値算出部32は、輝度信号Y及び色差信号CbM、CrMを、赤、緑、青の色成分値ROUT、GOUT、BOUTに変換して、色成分値ROUT、GOUT、BOUTを表す色信号ROUT、GOUT、BOUTを出力端子20r、20g、20bから出力する。
 輝度信号Y及び色差信号CbM、CrMに基づく赤、緑、青の色成分値ROUT、GOUT、BOUTの算出は、一般的に行われている方法で行われる。輝度及び色差から赤、緑、青の色成分値を算出する処理は、比較的簡単であり、比較的小さい規模の回路で実現することができる。
 ここで、実施の形態3による効果を説明する。入力信号或いは出力信号が赤、緑、青の色信号であっても、実施の形態2と同様に、色相或いは明度の計算が不要であるため、回路、具体的にはICの規模が小さくなる。これにより、低コスト化が可能である。
 先に述べたように、実施の形態1では、彩度変換部15により彩度変換を行うことで生成された、変換後の彩度SAbを用いて、色成分値ROUT、GOUT、BOUTを算出しており、彩度、色相及び明度から色成分値、或いは輝度及び色差を算出するには、複雑な処理、従って大規模な回路が必要である。
 実施の形態3では、彩度変換乗数Kbを用いて、色差信号CbM、CrMを変換し、変換後の色差信号CbM、CrMを用いて色成分値ROUT、GOUT、BOUTの算出を行うことで、彩度の変換を実現している。即ち、彩度SAeを表す信号の変換を行うことなく、彩度の変換を実現している。上記のように、輝度、色差から赤、緑、青の色成分値を算出する処理は、比較的簡単であり、比較的小さい規模の回路で実現することができる。このように、実施の形態3では、色成分値ROUT、BOUT、BOUTの算出のために、彩度の変換及び変換後の彩度に基づく計算のいずれをも必要としないので、処理が比較的簡単であり、処理のための回路の規模を小さくすることができる。
 以上、本発明の画像処理装置について説明したが、上記の画像処理装置で実施される画像処理方法もまた本発明の一部を成す。
 以上実施の形態1、2、及び3において、画像処理装置10、10b、10cの各部分(機能ブロックとして図示した部分)は、処理回路により実現される。処理回路は、専用のハードウェアであっても、メモリに格納されるプログラムを実行するCPUであっても良い。
 例えば、図1、図6、又は図10の各部分の機能をそれぞれ処理回路で実現してもよいし、複数の部分の機能をまとめて処理回路で実現しても良い。
 処理回路がCPUの場合、画像処理装置の各部分の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア或いはファームウェアはプログラムとして記述され、メモリに格納される。処理回路は、メモリに記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、画像処理装置は、処理回路により実行されるときに、図1、図6、又は図10に示される各部分の機能が、結果的に実行されることになるプログラムを格納するためのメモリを備える。また、これらのプログラムは、画像処理装置で実施される画像処理方法における処理の方法、或いはその手順をコンピュータに実行させるものであるともいえる。
 なおまた、画像処理装置の各部分の機能のうち、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしても良い。
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。
 図11に上記の処理回路がCPUであって、単一のCPUを含むコンピュータ(符号50で示す)で画像処理装置のすべての機能を実現する場合の構成の一例を、表示部40とともに示す。コンピュータ50と表示部40とで映像表示装置が構成されている。
 図11に示されるコンピュータ50は、CPU51と、メモリ52と、入力インターフェース53と、出力インターフェース54とを備え、これらはバス55で接続されている。
 入力インターフェース53には、テレビ、コンピュータ等の画像表示装置が対応可能な規格の映像信号が入力される。この映像信号は、実施の形態1及び3の場合には、色信号RIN、GIN、BINで構成され、実施の形態2の場合には、輝度信号YIN、及び色差信号CbIN、CrINで構成される。
 CPU51は、メモリ52に記憶されたプログラムに従って動作し、入力インターフェース53を介して入力された映像信号に対して、実施の形態1、2又は3の画像処理装置の各部の処理を行って、処理の結果得られた出力信号を出力インターフェース54から出力し、表示部40に供給する。
 この出力信号は、実施の形態1及び3では色信号ROUT、GOUT、BOUTで構成され、実施の形態2では輝度信号YOUT、及び色差信号CbOUT、CrOUTで構成される。
 CPU51による処理の内容は、実施の形態1、2又は3で説明したのと同様である。処理の過程で生成されるデータはメモリ52に保持される。
 画像処理装置で実施される画像処理方法、画像処理装置の各部分の処理、或いは画像処理方法における各処理をコンピュータに実行させるプログラムについても、画像処理装置について述べたのと同様の効果が得られる。
 10、10b、10c 画像処理装置、 12 色特徴量算出部、 13、13b 彩度ヒストグラム生成部、 14 彩度変換関数生成部、 15 彩度変換部、 16 彩度信号遅延部、 17 色相信号遅延部、 18 明度信号遅延部、 19 色成分値算出部、 22 彩度算出部、 23 彩度変換乗数決定関数生成部、 24 彩度変換乗数決定部、 25 彩度信号遅延部、 26 乗算器、 27 乗算器  28 色差信号遅延部、 29 色差信号遅延部、 30 輝度信号遅延部、 31 色特徴量算出部、 32 色成分値算出部、 40 表示部、 50 コンピュータ、 51 CPU、 52 メモリ。

Claims (20)

  1.  入力映像信号から各画素単位で彩度、色相、明度を算出する色特徴量算出部と、
     前記彩度から彩度ヒストグラムを生成する彩度ヒストグラム生成部と、
     前記彩度ヒストグラム生成部で生成された前記彩度ヒストグラムから彩度変換関数を生成する彩度変換関数生成部と、
     前記彩度変換関数生成部で生成された前記彩度変換関数により、各画素の前記彩度を変換して変換後の彩度を出力する彩度変換部と、
     前記彩度変換部から出力された、前記変換後の彩度と、前記色特徴量算出部で算出された色相及び明度とから赤、緑、青の色成分値を算出する色成分値算出部とを備える
     ことを特徴とする画像処理装置。
  2.  前記彩度変換関数生成部は、前記彩度ヒストグラム生成部で生成された前記彩度ヒストグラムの各階級の度数を、低い側から順に累積加算することで、前記彩度変換関数を生成する
     ことを特徴とする請求項1に記載の画像処理装置。
  3.  前記彩度変換関数生成部は、前記度数の累積加算により得られる、各階級までの累積加算値を、当該階級の代表値に対応する前記彩度変換関数の値とすることで、前記彩度変換関数を生成することを特徴とする請求項2に記載の画像処理装置。
  4.  前記彩度変換関数生成部は、各階級の前記度数が予め定められた上限値を超えている場合には、超えている分を、他の階級に譲り渡し、該譲り渡し後の度数を用いて、前記累積加算値の算出を行うことを特徴とする請求項3に記載の画像処理装置。
  5.  前記彩度変換関数生成部は、各階級の前記度数が予め定められた下限値を下回る場合には、下回る分を、他の階級から譲り受け、該譲り受け後の度数を用いて、前記累積加算値の算出を行うことを特徴とする請求項3又は4に記載の画像処理装置。
  6.  前記彩度変換関数生成部で生成される前記彩度変換関数の傾きに対して、予め最大値及び最小値の少なくとも一方が設定されている
     ことを特徴とする請求項1から3のいずれか1項に記載の画像処理装置。
  7.  前記彩度変換部は、前記彩度変換関数の、各画素の前記彩度に対応する値を、当該画素の前記変換後の彩度として出力する
     ことを特徴とする請求項1から6のいずれか1項に記載の画像処理装置。
  8.  入力映像信号から各画素単位で彩度を算出する彩度算出部と、
     前記彩度から彩度ヒストグラムを生成する彩度ヒストグラム生成部と、
     前記彩度ヒストグラム生成部で生成された前記彩度ヒストグラムから彩度変換乗数決定関数を生成する彩度変換乗数決定関数生成部と、
     前記彩度変換乗数決定関数と前記入力映像信号で表される各画素の前記彩度とにより当該画素についての彩度変換乗数を決定する彩度変換乗数決定部と、
     前記彩度変換乗数決定部により決定された前記各画素についての前記彩度変換乗数と、前記入力映像信号で表される同じ画素の色差とを乗算する乗算器とを備える
     ことを特徴とする画像処理装置。
  9.  前記彩度変換乗数決定関数生成部は、前記彩度ヒストグラム生成部で生成された前記彩度ヒストグラムの各階級の度数を、低い側から順に累積加算することで、前記彩度変換乗数決定関数を生成する
     ことを特徴とする請求項8に記載の画像処理装置。
  10.  前記彩度変換乗数決定関数生成部は、前記度数の累積加算により得られる、各階級までの累積加算値を、当該階級の代表値に対応する前記彩度変換乗数決定関数の値とすることで、前記彩度変換乗数決定関数を生成することを特徴とする請求項9に記載の画像処理装置。
  11.  前記彩度変換乗数決定関数生成部は、各階級の前記度数が予め定められた上限値を超えている場合には、超えている分を、他の階級に譲り渡し、該譲り渡し後の度数を用いて、前記累積加算値の算出を行うことを特徴とする請求項10に記載の画像処理装置。
  12.  前記彩度変換乗数決定関数生成部は、各階級の前記度数が予め定められた下限値を下回る場合には、下回る分を、他の階級から譲り受け、該譲り受け後の度数を用いて、前記累積加算値の算出を行うことを特徴とする請求項10又は11に記載の画像処理装置。
  13.  前記彩度変換乗数決定関数生成部で生成される前記彩度変換乗数決定関数の傾きに対して、予め最大値及び最小値の少なくとも一方が設定されている
     ことを特徴とする請求項8から10のいずれか1項に記載の画像処理装置。
  14.  前記彩度変換乗数決定部は、前記彩度変換乗数決定関数の、各画素の前記彩度に対応する値の、前記彩度に対する比を、当該画素についての彩度変換乗数として抽出する
     ことを特徴とする請求項8から13のいずれか1項に記載の画像処理装置。
  15.  前記入力映像信号が輝度信号及び色差信号で構成され、
     前記彩度算出部は、前記輝度信号及び前記色差信号から前記彩度を算出し、
     前記乗算器は、前記入力映像信号を構成する前記色差信号で表される色差に、前記彩度変換乗数を乗算する
     ことを特徴とする請求項8から14のいずれか1項に記載の画像処理装置。
  16.  前記入力映像信号が赤、緑、青の色信号で構成され、
     前記彩度算出部は、前記赤、緑、青の色信号から前記彩度を算出し、
     前記赤、緑、青の色信号から輝度及び色差を算出する色特徴量算出部をさらに有し、
     前記乗算器は、前記色特徴量算出部で算出された前記色差に、前記彩度変換乗数を乗算し、
     前記色特徴量算出部で算出された前記輝度と、前記乗算器での乗算の結果得られた色差とから赤、緑、青の色成分値を算出する色成分値算出部をさらに有する
     ことを特徴とする請求項8から14のいずれか1項に記載の画像処理装置。
  17.  入力映像信号から各画素単位で彩度、色相、明度を算出する色特徴量算出ステップと、
     前記彩度から彩度ヒストグラムを生成する彩度ヒストグラム生成ステップと、
     前記彩度ヒストグラム生成ステップで生成された前記彩度ヒストグラムから彩度変換関数を生成する彩度変換関数生成ステップと、
     前記彩度変換関数生成ステップで生成された前記彩度変換関数により、各画素の前記彩度を変換して変換後の彩度を出力する彩度変換ステップと、
     前記彩度変換ステップから出力された、前記変換後の彩度と、前記色特徴量算出ステップで算出された色相及び明度とから赤、緑、青の色成分値を算出する色成分値算出ステップとを備える
     ことを特徴とする画像処理方法。
  18.  入力映像信号から各画素単位で彩度を算出する彩度算出ステップと、
     前記彩度から彩度ヒストグラムを生成する彩度ヒストグラム生成ステップと、
     前記彩度ヒストグラム生成ステップで生成された前記彩度ヒストグラムから彩度変換乗数決定関数を生成する彩度変換乗数決定関数生成ステップと、
     前記彩度変換乗数決定関数と前記入力映像信号で表される各画素の前記彩度とにより当該画素についての彩度変換乗数を決定する彩度変換乗数決定ステップと、
     前記彩度変換乗数決定ステップにより決定された前記各画素についての前記彩度変換乗数と、前記入力映像信号で表される同じ画素の色差とを乗算する乗算ステップとを備える
     ことを特徴とする画像処理方法。
  19.  請求項17又は18に記載の画像処理方法を各ステップの処理をコンピュータに実行させるためのプログラム。
  20.  請求項19に記載のプログラムを記録したコンピュータで読み取り可能な記録媒体。
     
PCT/JP2015/065497 2014-12-05 2015-05-29 画像処理装置及び方法、並びにプログラム及び記録媒体 WO2016088393A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580065631.4A CN107004249B (zh) 2014-12-05 2015-05-29 图像处理装置、方法及记录介质
US15/517,117 US10003720B2 (en) 2014-12-05 2015-05-29 Image processing apparatus and method, and program and recording medium
JP2015538192A JP5840335B1 (ja) 2014-12-05 2015-05-29 画像処理装置及び方法、並びにプログラム及び記録媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014246393 2014-12-05
JP2014-246393 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016088393A1 true WO2016088393A1 (ja) 2016-06-09

Family

ID=56091355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065497 WO2016088393A1 (ja) 2014-12-05 2015-05-29 画像処理装置及び方法、並びにプログラム及び記録媒体

Country Status (3)

Country Link
US (1) US10003720B2 (ja)
CN (1) CN107004249B (ja)
WO (1) WO2016088393A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020520145A (ja) * 2017-05-05 2020-07-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 復号された高ダイナミックレンジ画像の彩度を最適化すること
JP2021007482A (ja) * 2019-06-28 2021-01-28 富士フイルム株式会社 医用画像処理装置及び内視鏡システム並びに医用画像処理装置の作動方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020123917A (ja) * 2019-01-31 2020-08-13 富士通株式会社 画像処理プログラム、画像処理装置及び画像処理方法
CN113483682B (zh) * 2021-06-16 2023-05-19 苏州赛腾精密电子股份有限公司 一种基于机器视觉的缝隙测量方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248681A (ja) * 1991-02-04 1992-09-04 Nippon Telegr & Teleph Corp <Ntt> カラー画像強調・弛緩処理方法
JPH1023279A (ja) * 1996-06-28 1998-01-23 Fuji Xerox Co Ltd 画像処理装置
US6192149B1 (en) * 1998-04-08 2001-02-20 Xerox Corporation Method and apparatus for automatic detection of image target gamma
JP2004007202A (ja) * 2002-05-31 2004-01-08 Fuji Photo Film Co Ltd 画像処理装置
JP2004007301A (ja) * 2002-06-03 2004-01-08 Kddi Media Will Corp 画像処理装置
JP2008072252A (ja) * 2006-09-12 2008-03-27 Canon Inc 画像処理装置およびその方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4250214B2 (ja) 1997-04-18 2009-04-08 富士フイルム株式会社 色変換方法
JP2000316095A (ja) 1999-04-30 2000-11-14 Matsushita Research Institute Tokyo Inc 画像処理装置および画像処理方法
JP3631108B2 (ja) * 2000-06-21 2005-03-23 キヤノン株式会社 画像処理方法、装置および記録媒体
TWI231701B (en) * 2001-06-14 2005-04-21 Matsushita Electric Ind Co Ltd Automatic tone correction device, automatic tone correction method, and tone correction program recording medium
KR100453038B1 (ko) * 2001-12-24 2004-10-15 삼성전자주식회사 컬러 영상의 채도 조절 장치 및 방법
BRPI0302384B1 (pt) * 2002-07-20 2018-06-19 Samsung Electronics Co., Ltd. "método para intensificar de forma adaptativa uma cor, e equipamento para intensificar de forma adaptativa a cor de uma imagem"
EP1843602A3 (en) * 2002-12-12 2007-12-05 Samsung Electronics Co., Ltd. Method and apparatus for generating illumination characteristic data around image display device, and method and apparatus for compensating for color variation using the method and apparatus
JP3880553B2 (ja) * 2003-07-31 2007-02-14 キヤノン株式会社 画像処理方法および装置
JP4424216B2 (ja) * 2004-03-30 2010-03-03 セイコーエプソン株式会社 画像処理装置、画像処理方法、および、画像処理プログラム
KR100612494B1 (ko) * 2004-06-07 2006-08-14 삼성전자주식회사 칼러 영상의 채도 조절 장치 및 방법
JP2007104151A (ja) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd 画像処理装置および画像処理プログラム
US7734114B1 (en) * 2005-12-07 2010-06-08 Marvell International Ltd. Intelligent saturation of video data
TWI350701B (en) * 2006-06-06 2011-10-11 Realtek Semiconductor Corp Method and apparatus for adjusting saturation level
US7856141B2 (en) * 2006-09-01 2010-12-21 Mediatek Inc. Method for adjusting saturation and contrast of an area of an image and apparatus thereof
KR101321396B1 (ko) * 2007-07-20 2013-10-25 삼성전자주식회사 영상의 색 향상 장치 및 이를 이용한 영상의 색 향상 방법.
JP5116393B2 (ja) * 2007-07-31 2013-01-09 キヤノン株式会社 画像処理装置及び画像処理方法
CN101325663B (zh) * 2008-07-25 2010-06-09 北京中星微电子有限公司 一种提高图像质量的方法和装置
CN101668108A (zh) * 2008-09-05 2010-03-10 比亚迪股份有限公司 一种图像色彩饱和度的调节方法及系统
JP4831173B2 (ja) 2009-01-22 2011-12-07 株式会社日立製作所 映像表示装置
JP5669489B2 (ja) 2009-10-15 2015-02-12 オリンパス株式会社 画像処理装置、画像処理方法および画像処理プログラム
JP6212713B2 (ja) * 2013-01-17 2017-10-18 パナソニックIpマネジメント株式会社 映像投写装置および映像投写方法
JP6287337B2 (ja) * 2014-02-28 2018-03-07 富士ゼロックス株式会社 画像処理装置、画像処理方法、画像処理システムおよびプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248681A (ja) * 1991-02-04 1992-09-04 Nippon Telegr & Teleph Corp <Ntt> カラー画像強調・弛緩処理方法
JPH1023279A (ja) * 1996-06-28 1998-01-23 Fuji Xerox Co Ltd 画像処理装置
US6192149B1 (en) * 1998-04-08 2001-02-20 Xerox Corporation Method and apparatus for automatic detection of image target gamma
JP2004007202A (ja) * 2002-05-31 2004-01-08 Fuji Photo Film Co Ltd 画像処理装置
JP2004007301A (ja) * 2002-06-03 2004-01-08 Kddi Media Will Corp 画像処理装置
JP2008072252A (ja) * 2006-09-12 2008-03-27 Canon Inc 画像処理装置およびその方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020520145A (ja) * 2017-05-05 2020-07-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 復号された高ダイナミックレンジ画像の彩度を最適化すること
JP7313285B2 (ja) 2017-05-05 2023-07-24 コーニンクレッカ フィリップス エヌ ヴェ 復号された高ダイナミックレンジ画像の彩度を最適化すること
JP2021007482A (ja) * 2019-06-28 2021-01-28 富士フイルム株式会社 医用画像処理装置及び内視鏡システム並びに医用画像処理装置の作動方法
JP7096788B2 (ja) 2019-06-28 2022-07-06 富士フイルム株式会社 医用画像処理装置及び内視鏡システム並びに医用画像処理装置の作動方法

Also Published As

Publication number Publication date
US20170318190A1 (en) 2017-11-02
CN107004249B (zh) 2020-06-09
US10003720B2 (en) 2018-06-19
CN107004249A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
TWI734978B (zh) 用於執行高動態範圍視訊的色調映射的方法及裝置
JP6134755B2 (ja) 画像データ変換のための方法及び装置
JP2021114327A (ja) Hdr信号の変換用の方法及び装置
US8767004B2 (en) Interpolation of color gamut for display on target display
KR20070111389A (ko) 화상 보정 회로, 화상 보정 방법, 및 화상 디스플레이
WO2016088393A1 (ja) 画像処理装置及び方法、並びにプログラム及び記録媒体
US10223778B2 (en) Image contrast enhancement method and apparatus thereof
US8064693B2 (en) Methods of and apparatus for adjusting colour saturation in an input image
KR101393487B1 (ko) 디스플레이장치 및 그의 화질개선방법
KR20020025868A (ko) 히스토그램 변형 수단을 갖는 비디오 장치
US8570341B1 (en) Method and system for enhancing color saturation
US8036459B2 (en) Image processing apparatus
JP2006228184A (ja) 動的画像コントラスト処理装置
CN102752605A (zh) 一种调整图像/视频色彩饱和度的方法和系统
JP2014220815A (ja) 画像色調整方法及びその電子装置
Kwon et al. CAM-based HDR image reproduction using CA–TC decoupled JCh decomposition
JP5840335B1 (ja) 画像処理装置及び方法、並びにプログラム及び記録媒体
CN107786865A (zh) 一种视频帧的处理方法和装置
TWI697873B (zh) 一種圖像飽和度調整方法和裝置
TWI390958B (zh) 影像濾波電路及應用其之影像處理電路及影像處理方法
TWI495352B (zh) Color adjustment device and color adjustment method
US20180102108A1 (en) Image processing apparatus and image processing method
KR20160007319A (ko) 전자 장치 및 이의 제어 방법
KR100461018B1 (ko) 디지털 텔레비젼의 자연영상 생성장치 및 방법
JP6655149B1 (ja) 輝度色度表示装置及びそのプログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015538192

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866156

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15517117

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866156

Country of ref document: EP

Kind code of ref document: A1