WO2016088354A1 - 金属錯体化合物、有機エレクトロルミネッセンス素子用材料、組成物、有機エレクトロルミネッセンス素子及び電子機器 - Google Patents

金属錯体化合物、有機エレクトロルミネッセンス素子用材料、組成物、有機エレクトロルミネッセンス素子及び電子機器 Download PDF

Info

Publication number
WO2016088354A1
WO2016088354A1 PCT/JP2015/005950 JP2015005950W WO2016088354A1 WO 2016088354 A1 WO2016088354 A1 WO 2016088354A1 JP 2015005950 W JP2015005950 W JP 2015005950W WO 2016088354 A1 WO2016088354 A1 WO 2016088354A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
substituted
carbon atoms
unsubstituted
Prior art date
Application number
PCT/JP2015/005950
Other languages
English (en)
French (fr)
Inventor
文雄 奥田
俊裕 岩隈
舟橋 正和
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2016562298A priority Critical patent/JPWO2016088354A1/ja
Publication of WO2016088354A1 publication Critical patent/WO2016088354A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the present invention relates to a metal complex compound, a material for an organic electroluminescence element, a composition, an organic electroluminescence element, and an electronic device on which the same is mounted.
  • Fluorescent materials that emit fluorescence and phosphorescent materials that emit phosphorescence are known as light emitting materials (dopants) that can emit light by converting electrical energy into light.
  • Platinum complexes having a tetradentate ligand are known as phosphorescent materials (Patent Documents 1 to 4, Non-Patent Document 1).
  • an organic electroluminescence element organic electroluminescence element
  • the drive voltage may fluctuate greatly due to the concentration fluctuation of the light emitting material in the light emitting layer. From such a viewpoint, there is a demand for a light emitting material that can maintain a constant device performance with a small fluctuation range of the driving voltage even when the additive concentration cannot be kept strictly constant.
  • the objective of this invention is providing the platinum complex which consists of a novel tetradentate ligand, and an organic electroluminescent element using the same.
  • Another object of the present invention is to provide a platinum complex that can provide an element having a small fluctuation width of the driving voltage of the organic EL element even when the addition concentration in the light emitting layer fluctuates when used as a light emitting material of the organic EL element. And an organic electroluminescence device using the same.
  • One embodiment of the present invention is a compound represented by Formula (1) below.
  • Ring A is an aromatic hydrocarbon ring composed ring carbon atoms 6 to 30 include X 1, or a heterocyclic ring consisting ring atoms 5-30 include X 1.
  • Ring B is an aromatic hydrocarbon ring composed ring carbon atoms 6 to 30 include X 2, or a heterocycle formed ring atoms 5-30 include X 2.
  • Ring C is an aromatic hydrocarbon ring composed ring carbon atoms 6 to 30 include X 3, or a heterocyclic ring consisting ring atoms 5-30 contain X 3.
  • R 1 to R 4 are each independently a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted ring carbon number of 3
  • Y 1 to Y 4 are each independently a carbon atom to which CH and R 4 are bonded, or a nitrogen atom.
  • n 1 to n 4 are each independently 0 to 4. When n 1 to n 4 are each 2 or more, a plurality of R 1 to R 4 may be the same as or different from each other.
  • L 1 and L 2 are groups linking ring A and ring B, and ring B and ring C, respectively, and are independently —C (R 5 ) 2 —, —O—, —S—, —NR. 6 — or —Si (R 7 ) 2 —.
  • R 5 , R 6 and R 7 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or substituted or unsubstituted An unsubstituted heteroaryl group having 5 to 30 ring atoms.
  • a plurality of R 5 and R 7 may be the same as or different from each other.
  • R 1 to R 7 may be bonded to each other adjacent to each other to form a ring, or to the atoms constituting rings A to C or R 1 to Y 4 not substituted with R 4 To form a ring.
  • R 1 to R 4 when n 1 + n 2 + n 3 + n 4 ⁇ 1, at least one of R 1 to R 4 is a substituted or unsubstituted alkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted ring-forming carbon.
  • One embodiment of the present invention is a material for an organic electroluminescence device containing the compound represented by the formula (1).
  • One embodiment of the present invention is a composition containing a compound represented by the formula (1) and an organic solvent.
  • One embodiment of the present invention is an organic electroluminescent element in which one or more organic thin film layers including a light emitting layer are sandwiched between a cathode and an anode. It is an organic electroluminescent element containing the compound represented.
  • One embodiment of the present invention is an electronic device including the organic electroluminescence element.
  • a novel platinum complex composed of a tetradentate ligand and an organic electroluminescence device using the same can be provided.
  • a platinum complex when used as a light emitting material of an organic EL element, a platinum complex that can provide an element having a small fluctuation range of the driving voltage of the organic EL element even when the addition concentration in the light emitting layer varies, And an organic electroluminescent element using the same can be provided.
  • the compound represented by the following formula (1) which is one embodiment of the present invention is a platinum complex compound composed of a novel tetradentate ligand.
  • a compound represented by the following formula (1) (In the formula (1), Ring A is an aromatic hydrocarbon ring composed ring carbon atoms 6 to 30 include X 1, or a heterocyclic ring consisting ring atoms 5-30 include X 1.
  • Ring B is an aromatic hydrocarbon ring composed ring carbon atoms 6 to 30 include X 2, or a heterocycle formed ring atoms 5-30 include X 2.
  • Ring C is an aromatic hydrocarbon ring composed ring carbon atoms 6 to 30 include X 3, or a heterocyclic ring consisting ring atoms 5-30 contain X 3.
  • R 1 to R 4 are each independently a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted ring carbon number of 3 A cycloalkyl group having 20 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
  • Y 1 to Y 4 are each independently a carbon atom to which CH and R 4 are bonded, or a nitrogen atom.
  • n 1 to n 4 are each independently 0 to 4. When n 1 to n 4 are each 2 or more, a plurality of R 1 to R 4 may be the same as or different from each other.
  • L 1 and L 2 are groups linking ring A and ring B, and ring B and ring C, respectively, and are independently —C (R 5 ) 2 —, —O—, —S—, —NR. 6 — or —Si (R 7 ) 2 —.
  • R 5 , R 6 and R 7 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted group; An unsubstituted heteroaryl group having 5 to 30 ring atoms.
  • R 1 to R 7 may be bonded to each other adjacent to each other to form a ring, or to the atoms constituting rings A to C or R 1 to Y 4 not substituted with R 4 To form a ring.
  • R 1 to R 4 is a substituted or unsubstituted alkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted ring-forming carbon.
  • R 1 to R 4 an aryl group having 6 to 30 ring carbon atoms having Z, or a heteroaryl group having 5 to 30 ring atoms having the substituent Z.
  • R 1 to R 4 that are present are not the substituent Z, for example, any of R 1 to R 4 is present (n 1 + n 2 + n 3 + n 4 ⁇ 1), Is a methyl group, a nitro group, a cyano group, a carboxy group, a halogen atom or the like that does not correspond to the substituent Z.
  • the substituent Z is an alkyl group, it is a substituted or unsubstituted alkyl group having 3 to 20 carbon atoms. In the case of a methyl group and an ethyl group, the association between the molecules of the compound represented by the formula (1) may not be sufficiently suppressed.
  • the fact that the ring including Y 1 to Y 4 is not a 5-membered ring but a 6-membered ring also causes a larger twist with ring A, causing loss of planarity in the molecule, It is thought that it contributes to suppressing the association between molecules.
  • the fluctuation range of the driving voltage due to the addition concentration is smaller than that of a conventional platinum complex compound composed of a tetradentate ligand. That is, the allowable range of the addition concentration is wide. Due to this characteristic, even when the additive concentration cannot be maintained strictly constant, the fluctuation range of the drive voltage is small, a constant element performance can be maintained, and the manufacturing efficiency of the organic EL element can be improved.
  • the number of ring-forming atoms means a compound (for example, a monocyclic compound, a condensed ring compound, a bridging compound, a carbocyclic compound, a heterocycle) having a structure in which atoms are bonded in a cyclic manner (for example, a monocyclic ring, a condensed ring, or a ring assembly).
  • a compound for example, a monocyclic compound, a condensed ring compound, a bridging compound, a carbocyclic compound, a heterocycle
  • a cyclic manner for example, a monocyclic ring, a condensed ring, or a ring assembly.
  • Atoms that do not constitute a ring or atoms included in a substituent when the ring is substituted by a substituent are not included in the number of ring-forming atoms.
  • the “number of ring-forming atoms” described below is the same unless otherwise specified.
  • the pyridine ring has 6 ring atoms
  • the quinazoline ring has 10 ring atoms
  • the furan ring has 5 ring atoms.
  • a hydrogen atom bonded to a carbon atom of a pyridine ring or a quinazoline ring or an atom constituting a substituent is not included in the number of ring-forming atoms.
  • a fluorene ring is bonded to the fluorene ring as a substituent (including a spirofluorene ring)
  • the number of atoms of the fluorene ring as a substituent is not included in the number of ring-forming atoms.
  • the “carbon number XX to YY” in the expression “substituted or unsubstituted ZZ group having XX to YY” represents the number of carbon atoms in the case where the ZZ group is unsubstituted. The carbon number of the substituent in the case where it is present is not included.
  • “atom number XX to YY” in the expression “a ZZ group having a substituted or unsubstituted atom number XX to YY” represents the number of atoms when the ZZ group is unsubstituted. In this case, the number of substituent atoms is not included.
  • unsubstituted in the case of “substituted or unsubstituted” means that a hydrogen atom is bonded without being substituted with the substituent.
  • the hydrogen atom includes isotopes having different neutron numbers, that is, light hydrogen (protium), deuterium (triuterium), and tritium.
  • Examples of the aryl group having 6 to 30 ring carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2- Phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 6-chrysenyl group, 1-benzo [c] phenanthryl group, 2-benzo [C] phenanthryl group, 3-benzo [c] phenanthryl group, 4-benzo [c] phenanthryl group, 5-benzo [c] phenanthryl group, 6-benzo [c] phenanthryl group, 1-benzo [g] chrysenyl group 2-benzo [g] chrysenyl group, 3-benzo [g] chrysenyl group, 4-benz
  • phenyl group 1-naphthyl group, 2-naphthyl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-fluorenyl, 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group, 5-benzo [c] phenanthryl group, 4-benzo [a] anthryl group, 7-benzo [a] anthryl group, 1-triphenyl group, 2-triphenyl group .
  • the substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms is represented by —OY 2, and examples of Y 2 are the same as those mentioned for the aryl group having 5 to 30 ring atoms. Is mentioned.
  • the aromatic hydrocarbon ring having 6 to 30 ring carbon atoms is an aromatic ring corresponding to the aryl group having 6 to 30 ring carbon atoms.
  • “Aromatic hydrocarbon ring having 6 to 30 ring carbon atoms including X 1 ” means, for example, if the benzene ring has 6 carbon atoms, X 1 is 6 carbon atoms constituting the benzene ring. Means one of them.
  • rings A to C are aromatic hydrocarbon rings
  • X 1 to X 3 are carbon atoms.
  • heteroaryl groups having 5 to 30 ring atoms include 1-pyrrolyl group, 2-pyrrolyl group, 3-pyrrolyl group, pyrazinyl group, 2-pyridinyl group, 3-pyridinyl group, 4-pyridinyl group, 1 -Indolyl group, 2-indolyl group, 3-indolyl group, 4-indolyl group, 5-indolyl group, 6-indolyl group, 7-indolyl group, 1-isoindolyl group, 2-isoindolyl group, 3-isoindolyl group, 4 -Isoindolyl group, 5-isoindolyl group, 6-isoindolyl group, 7-isoindolyl group, 2-furyl group, 3-furyl group, 2-benzofuranyl group, 3-benzofuranyl group, 4-benzofuranyl group, 5-benzofuranyl group, 6 -Benzofuranyl group,
  • the heterocyclic ring having 5 to 30 ring atoms includes a heteroaromatic ring having 5 to 30 ring atoms and a heteroaliphatic ring having 5 to 30 ring atoms, and is preferably a heteroaromatic ring.
  • the number of ring-forming atoms is preferably 5 to 20, more preferably 5 to 14, and still more preferably 5 to 10.
  • Specific examples of the heteroaromatic ring having 5 to 30 ring atoms include rings corresponding to the above heteroaryl group having 5 to 30 ring atoms.
  • Specific examples of the heteroaliphatic ring having 5 to 30 ring atoms include an aliphatic ring corresponding to the above heteroaromatic ring having 5 to 30 ring atoms.
  • “Containing comprising X 1 ” means, for example, that when “a heterocyclic ring having 5 to 30 ring atoms comprising X 1 ” is pyridine having 6 ring atoms, X 1 is It means one of 5 carbon atoms and 1 nitrogen atom constituting the pyridine ring. Therefore, when rings A to C are heterocycles, X 1 to X 3 can be carbon atoms or nitrogen atoms.
  • alkyl group having 1 to 20 carbon atoms examples include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n- Hexyl, n-heptyl, n-octyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2-hydroxyisobutyl, 1,2-dihydroxyethyl, 1,3-dihydroxyisopropyl 2,3-dihydroxy-t-butyl group, 1,2,3-trihydroxypropyl group, chloromethyl group, 1-chloroethyl group, 2-chloroethyl group, 2-chloroisobutyl group, 1,2-dichloroethyl group 1,3-dichloroisopropyl group, 2,3-dichloro-t-butyl group, 1,2,3
  • the alkyl group preferably has 1 to 10 carbon atoms, and more preferably 3 to 6 carbon atoms.
  • Examples of the cycloalkyl group having 3 to 20 ring carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, 4-methylcyclohexyl group, 1-adamantyl group, 2-adamantyl group, 1-norbornyl group, And 2-norbornyl group.
  • the ring-forming carbon number of the cycloalkyl group is preferably 3 to 10, more preferably 5 to 8, still more preferably 3 to 8, and even more preferably 3 to 6.
  • the alkoxy group having 1 to 20 carbon atoms is a group represented by —OY 1.
  • Y 1 are the alkyl group having 1 to 20 carbon atoms and the cycloalkyl group having 3 to 20 carbon atoms. The thing similar to a thing is mentioned.
  • alkenyl group having 2 to 20 carbon atoms examples include those having an unsaturated double bond corresponding to the alkyl group having 2 to 20 carbon atoms, preferably a vinyl group.
  • alkynyl group having 2 to 20 carbon atoms examples include those having an unsaturated triple bond corresponding to the alkyl group having 2 to 20 carbon atoms, and preferably an ethynyl group.
  • halogen atom examples include fluorine, chlorine, bromine, iodine, and the like, preferably a fluorine atom.
  • the substituted silyl group in the substituted or unsubstituted silyl group is a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted ring-forming carbon.
  • each group in formulas (1) to (9) are each independently a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, or a ring-forming carbon number of 3
  • R 5 is as defined above.
  • a group selected from groups is preferred.
  • These substituents may be further substituted with the above substituents. A plurality of these substituents may be bonded to each other to form a ring.
  • Ring A is (1) a benzene ring configured to include a X 1 (X 1 is carbon atom), (2) heterocyclic (X 1 of configured to include a X 1 ring atoms 5 or 6 A carbon atom or a nitrogen atom), (3) a ring in which a benzene ring constituted by containing X 1 and an aromatic hydrocarbon ring are condensed (X 1 is a carbon atom), or (4) comprising X 1 It is preferably a ring in which an aromatic hydrocarbon ring or a heterocyclic ring is condensed to a heterocyclic ring having 5 or 6 ring atoms (X 1 is a carbon atom or a nitrogen atom).
  • ⁇ X 1 include is configured to include a heterocyclic aliphatic ring ⁇ X 1 a composed ring atoms 5 or 6 including a heteroaromatic ring ⁇ X 1 a composed ring atoms 5 or 6 A ring having a benzene ring fused to a heteroaromatic ring having 5 or 6 ring atoms, or a heteroaromatic ring having 5 or 6 ring atoms that includes X 1 and having 5 or 6 ring atoms Rings fused with heteroaromatic rings
  • heteroaromatic ring ring atoms 5 or 6 configured to include a X 1
  • ring atoms 5 or 6 heteroaromatic configured to include a X 1
  • examples thereof include a ring in which a benzene ring or a heteroaromatic ring having 5 or 6 ring atoms is condensed to the aromatic ring.
  • X 1 is preferably a nitrogen atom.
  • Ring A is imidazole, pyrazole, oxazole, thiazole, pyridine, pyrazine, triazole, imidazoline, isoxazole, isothiazole, pyrimidine, triazine, 1-pyrroline, 2,3,4,5-tetrahydropyridine, benzimidazole, quinoline, It is preferably selected from isoquinoline and quinoxaline.
  • Ring A is preferably selected from a partial structure represented by the following formula. (Wherein R 1 , n 1 and L 1 are as defined above.)
  • Ring B is preferably an aromatic hydrocarbon ring having 6 to 20 ring carbon atoms and containing X 2, and more preferably a benzene ring.
  • Ring C is preferably an aromatic hydrocarbon ring having 6 to 20 ring carbon atoms and containing X 3, and more preferably a benzene ring.
  • the compound represented by the formula (1) is preferably a compound represented by the following formula (2).
  • the ring composed of Y 1 to Y 4 in the formula (1) is a pyridine ring.
  • the compound represented by the formula (2) is preferably a compound represented by the following formula (3).
  • ring C is a benzene ring.
  • A, B, X 1 , X 2 , R 1 to R 4 , n 1 to n 4 , L 1 and L 2 are as defined above.
  • the compound represented by the formula (3) is preferably a compound represented by the following formula (4).
  • X 1 constituting the ring A is a nitrogen atom.
  • A, B, X 2 , R 1 to R 4 , n 1 to n 4 , L 1 and L 2 are as defined above.
  • the compound represented by the formula (1) is preferably a compound represented by the following formula (5).
  • X 1 constituting the ring A in the formula (1) is a nitrogen atom.
  • a to C, X 2 , X 3 , Y 1 to Y 4 , R 1 to R 4 , n 1 to n 4 , L 1 and L 2 are as defined above.
  • the compound represented by the formula (5) is preferably a compound represented by the following formula (6).
  • the ring further including Y 1 to Y 4 is a pyridine ring.
  • a to C, X 2 , X 3 , R 1 to R 4 , n 1 to n 4 , L 1 and L 2 are as defined above.
  • L 1 is preferably —O—, —S— or —NR 5 —.
  • L 1 is —NR 5 —, R 5 is a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms, and the aryl group is bonded to an atom constituting ring B to form a nitrogen atom of L 1 It is preferable to form a pyrrole ring containing
  • the compound represented by the formula (1) is preferably a compound represented by the following formula (7).
  • L 1 is a nitrogen atom substituted with a phenyl group, and the phenyl group is bonded to an element constituting ring B. Form a pyrrole ring.
  • a to C, X 1 to X 3 , Y 1 to Y 4 , R 1 to R 4 , n 1 to n 4 and L 2 are as defined above.
  • the compound represented by the formula (7) is preferably a compound represented by the following formula (8).
  • ring B is a benzene ring.
  • A, X 1 to X 3 , R 1 to R 4 , n 1 to n 4 and L 2 are as defined above.
  • the compound represented by the formula (1) is preferably a compound represented by the following formula (9).
  • ring A is an imidazole ring
  • X 1 is a nitrogen atom
  • R 1 is substituted with the other nitrogen atom. Yes.
  • B, C, R 1 to R 4 , n 2 to n 4 and L 2 are as defined above.
  • At least one of R 1 to R 4 is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted alkyl group having 3 to 20 carbon atoms. It is preferably a group. More preferably, at least one of R 1 to R 4 is a substituted or unsubstituted phenyl group.
  • L 2 is preferably —O— or —S—.
  • L 2 is —C (R 5 ) 2 —, and R 5 is preferably a methyl group or a substituted or unsubstituted phenyl group.
  • n 1 + n 2 + n 3 + n 4 ⁇ 1.
  • n 1 + n 2 + n 3 + n 4 is preferably 1 to 8, and more preferably 1 to 4.
  • the compound of the formula (1) can be synthesized within the scope of the present invention by following the methods described in the Examples and using known alternative reactions and raw materials tailored to the target product.
  • the material for an organic electroluminescence element which is one embodiment of the present invention contains a compound represented by the formula (1).
  • the compound represented by the formula (1) emits blue-green to red light when used as a light-emitting material of an organic EL element.
  • composition contains the compound represented by the formula (1) and an organic solvent. By using this composition, a thin film can be formed by a wet process.
  • the composition which is 1 aspect of this invention can be used for the coating film formation for organic electroluminescent elements.
  • the composition according to one embodiment of the present invention is suitable for forming an organic thin film of an organic EL element.
  • the compound represented by the formula (1) may be dissolved in an organic solvent or may be dispersed.
  • the composition which is one embodiment of the present invention contains the compound represented by the formula (1), a host material for the light emitting layer, and an organic solvent. By using this composition as an ink for an organic EL device, a light emitting layer can be formed by a wet process.
  • Examples of the host material in the composition which is one embodiment of the present invention include the same materials as those described below as the “host material of the light emitting layer”. In the composition which is one embodiment of the present invention, one or more host materials can be used.
  • a solvent represented by the following formula (C1) is preferable.
  • R is a substituent, and n is an integer of 1 to 6.
  • n is 2 or more, the plurality of R may be the same or different.
  • R is an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 ring carbon atoms, an ether bond-containing group, a carbonyl bond-containing group, or an ester bond-containing group.
  • Etc. n is preferably an integer of 1 or more and 3 or less.
  • substituents may be further substituted with an alkyl group, a cycloalkyl group, an aryl group or the like. A plurality of these substituents may be bonded to each other to form a ring.
  • each group in the above formula (C1) is given below.
  • the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, and n-hexyl group. , N-heptyl group, n-octyl group and the like.
  • Examples of the cycloalkyl group having 3 to 10 ring carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group, an adamantyl group, and a norbornyl group.
  • Examples of the ether bond-containing group include a methoxy group, an ethoxy group, a propoxyl group, and a phenoxy group.
  • Examples of the carbonyl bond-containing group include a benzoyl group.
  • Examples of the ester bond-containing group include a methyl ester group, an ethyl ester group, and a propyl ester group.
  • the boiling point of the organic solvent represented by the formula (C1) is preferably 110 ° C. or higher, and more preferably 120 ° C. or higher.
  • the solubility of the solvent in water is preferably 1 wt% or less, and more preferably 0.5 wt% or less. Since the performance of the organic EL element may be remarkably deteriorated due to moisture, a solvent having low solubility in water is desirable.
  • the boiling point and water solubility of the organic solvent are those described on the Health and Safety Information Center website or the US Department of Health and Welfare website (HSDS (Hazard Substances Data Base)).
  • solvent represented by the formula (C1) examples include toluene, xylene, ethylbenzene, diethylbenzene, methicylene, propylbenzene, cyclohexylbenzene, dimethoxybenzene, anisole, ethoxytoluene, phenoxytoluene, isopropylbiphenyl, dimethylanisole, and acetic acid.
  • examples include phenyl, phenyl propionate, methyl benzoate, and ethyl benzoate.
  • the contents of the compound represented by formula (1), the host material and the organic solvent in the composition which is one embodiment of the present invention are not particularly limited and may be appropriately determined.
  • the content of the represented compound is preferably in the range of 0.01 to 1.5% by weight, and more preferably in the range of 0.01 to 0.5% by weight.
  • the content of the host material is preferably in the range of 0.1 to 15% by weight, and more preferably in the range of 0.5 to 10% by weight.
  • the ink composition according to one embodiment of the present invention may include known additives as necessary. May be.
  • additives can be blended with appropriate resins, various additives, and the like as long as the object of the present invention is not impaired.
  • Usable resins include, for example, insulating resins such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, and cellulose, and copolymers thereof, poly-N-vinylcarbazole.
  • photoconductive resins such as polysilane, and conductive resins such as polythiophene and polypyrrole.
  • examples of various additives include antioxidants, ultraviolet absorbers, and plasticizers.
  • the total content of the compound represented by the formula (1) and the organic solvent is 90 wt% or more, 95 wt% or more, 98 wt% or more, 100 wt% of the entire composition. It may be. Further, when the ink composition according to one embodiment of the present invention further contains a host material of the light emitting layer in addition to the compound represented by the formula (1) and the organic solvent, the ink composition is represented by the formula (1). 90 wt% or more, 95 wt% or more, 98 wt% or more, or 100 wt% may be added.
  • the ink composition according to one embodiment of the present invention is formed by a known wet method such as a coating method, an injection method, a spray method, a spinner method, a dampening coating method, a screen printing method, a roll coater method, an LB method, and the like. I can make a film.
  • the organic electroluminescent element which is one embodiment of the present invention is an organic electroluminescent element in which one or more organic thin film layers including a light emitting layer are sandwiched between a cathode and an anode, and at least one of the organic thin film layers includes:
  • the compound represented by the formula (1) is contained.
  • the compound represented by Formula (1) may be contained independently, and may be contained as a component of a mixture.
  • the light emitting layer of the organic electroluminescent element which is 1 aspect of this invention contains the compound and host material which are represented by Formula (1).
  • the compound represented by the formula (1) is preferably a dopant material in the light emitting layer. When used as a dopant material, the emission color can be obtained.
  • each layer of the organic EL element which is one embodiment of the present invention may be performed by any of dry film forming methods such as vacuum deposition, sputtering, plasma, and ion plating, and wet film forming methods such as spin coating, dipping, and flow coating. Can be applied.
  • the film thickness is not particularly limited, but must be set to an appropriate film thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, and the efficiency may deteriorate. If the film thickness is too thin, pinholes and the like are generated, and there is a possibility that sufficient emission luminance cannot be obtained even when an electric field is applied.
  • the normal film thickness is suitably in the range of 5 nm to 10 ⁇ m, but more preferably in the range of 10 nm to 0.2 ⁇ m.
  • an appropriate resin or additive may be used for improving the film formability and preventing pinholes in the film.
  • other known light-emitting materials may be contained in the above composition for forming a light-emitting layer as desired, as long as the object of the present invention is not impaired.
  • a light-emitting layer containing another known light-emitting material may be stacked on the formed light-emitting layer.
  • the light emitting layer may be formed by a dry method such as a vacuum evaporation method.
  • the substrate is used as a support for the light emitting element.
  • the substrate for example, glass, quartz, plastic, or the like can be used.
  • a flexible substrate may be used.
  • the flexible substrate is a substrate that can be bent (flexible), and examples thereof include plastic substrates made of polycarbonate, polyarylate, polyethersulfone, polypropylene, polyester, polyvinyl fluoride, and polyvinyl chloride. .
  • an inorganic vapor deposition film can also be used.
  • anode For the anode formed on the substrate, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a high work function (specifically, 4.0 eV or more). Specifically, for example, indium tin oxide (ITO), indium oxide-tin oxide containing silicon or silicon oxide, indium oxide-zinc oxide, tungsten oxide, and indium oxide containing zinc oxide. And graphene.
  • ITO indium tin oxide
  • ITO indium oxide-tin oxide containing silicon or silicon oxide
  • indium oxide-zinc oxide silicon oxide
  • tungsten oxide tungsten oxide
  • indium oxide containing zinc oxide and graphene.
  • gold Au
  • platinum Pt
  • nickel Ni
  • tungsten W
  • Cr chromium
  • Mo molybdenum
  • iron Fe
  • Co cobalt
  • Cu copper
  • palladium Pd
  • titanium Ti
  • a metal material nitride for example, titanium nitride
  • indium oxide-zinc oxide is a target in which 1 to 10 wt% zinc oxide is added to indium oxide, tungsten oxide, and indium oxide containing zinc oxide is 0.5 to 0.5 in tungsten oxide relative to indium oxide.
  • a target containing 5 wt% and zinc oxide 0.1 to 1 wt% it can be formed by a sputtering method.
  • the hole injection layer formed in contact with the anode is formed using a composite material that facilitates hole injection regardless of the work function of the anode.
  • a material that can be used as an electrode material for example, a metal, an alloy, an electrically conductive compound, and a mixture thereof, and also an element belonging to Group 1 or Group 2 of the periodic table) can be used.
  • Elements belonging to Group 1 or Group 2 of the Periodic Table of Elements which are materials having a low work function, that is, alkali metals such as lithium (Li) and cesium (Cs), and magnesium (Mg), calcium (Ca), and strontium Alkaline earth metals such as (Sr), and alloys containing these (eg, MgAg, AlLi), rare earth metals such as europium (Eu), ytterbium (Yb), and alloys containing these can also be used.
  • alkali metals such as lithium (Li) and cesium (Cs), and magnesium (Mg), calcium (Ca), and strontium Alkaline earth metals such as (Sr), and alloys containing these (eg, MgAg, AlLi), rare earth metals such as europium (Eu), ytterbium (Yb), and alloys containing these can also be used.
  • a vacuum evaporation method or a sputtering method can be used.
  • the hole injection layer is a layer containing a substance having a high hole injection property.
  • Substances with high hole injection properties include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide, Tungsten oxide, manganese oxide, or the like can be used.
  • Polymer compounds (oligomers, dendrimers, polymers, etc.) can also be used.
  • poly (N-vinylcarbazole) (abbreviation: PVK)
  • poly (4-vinyltriphenylamine) (abbreviation: PVTPA)
  • PVTPA poly (4-vinyltriphenylamine)
  • PTPDMA poly [N- (4- ⁇ N ′-[4- (4-diphenylamino)] Phenyl] phenyl-N′-phenylamino ⁇ phenyl) methacrylamide]
  • PTPDMA poly [N, N′-bis (4-butylphenyl) -N, N′-bis (phenyl) benzidine]
  • Polymer compounds such as Poly-TPD).
  • a polymer compound to which an acid such as poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonic acid) (PEDOT / PSS), polyaniline / poly (styrenesulfonic acid) (PAni / PSS) is added is used. You can also.
  • the hole transport layer is a layer containing a substance having a high hole transport property.
  • An aromatic amine compound, a carbazole derivative, an anthracene derivative, or the like can be used for the hole transport layer.
  • NPB 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • TPD N-naphthyl-N-phenylamino
  • TPD N ′-Diphenyl- [1,1'-biphenyl] -4,4'-diamine
  • BAFLP 4-phenyl-4 '-(9-phenylfluoren-9-yl) triphenylamine
  • BAFLP 4,4′-bis [N- (9,9-dimethylfluoren-2-yl) -N-phenylamino] biphenyl
  • carbazole derivatives such as CBP, CzPA, and PCzPA
  • anthracene derivatives such as t-BuDNA, DNA, and DPAnth
  • a high molecular compound such as poly (N-vinylcarbazole) (abbreviation: PVK) or poly (4-vinyltriphenylamine) (abbreviation: PVTPA) can also be used.
  • PVK N-vinylcarbazole
  • PVTPA poly (4-vinyltriphenylamine
  • the layer containing a substance having a high hole-transport property is not limited to a single layer, and two or more layers containing the above substances may be stacked.
  • the light-emitting layer is a layer including a substance having high light-emitting properties, and various materials can be used in addition to the compound represented by the formula (1).
  • a fluorescent compound that emits fluorescence or a phosphorescent compound that emits phosphorescence can be used as the substance having high light-emitting property.
  • a fluorescent compound is a compound that can emit light from a singlet excited state
  • a phosphorescent compound is a compound that can emit light from a triplet excited state.
  • pyrene derivatives As a blue fluorescent material that can be used for the light emitting layer, pyrene derivatives, styrylamine derivatives, chrysene derivatives, fluoranthene derivatives, fluorene derivatives, diamine derivatives, triarylamine derivatives, and the like can be used.
  • N, N′-bis [4- (9H-carbazol-9-yl) phenyl] -N, N′-diphenylstilbene-4,4′-diamine (abbreviation: YGA2S)
  • 4- (9H -Carbazol-9-yl) -4 '-(10-phenyl-9-anthryl) triphenylamine (abbreviation: YGAPA)
  • 4- (10-phenyl-9-anthryl) -4'-(9-phenyl-9H -Carbazol-3-yl) triphenylamine abbreviation: PCBAPA
  • An aromatic amine derivative or the like can be used as a green fluorescent material that can be used for the light emitting layer.
  • Tetracene derivatives, diamine derivatives, and the like can be used as red fluorescent materials that can be used for the light emitting layer.
  • N, N, N ′, N′-tetrakis (4-methylphenyl) tetracene-5,11-diamine (abbreviation: p-mPhTD), 7,14-diphenyl-N, N, N ′, And N′-tetrakis (4-methylphenyl) acenaphtho [1,2-a] fluoranthene-3,10-diamine (abbreviation: p-mPhAFD).
  • a metal complex such as an iridium complex, an osmium complex, or a platinum complex is used.
  • a metal complex such as an iridium complex, an osmium complex, or a platinum complex
  • a metal complex such as an iridium complex, an osmium complex, or a platinum complex.
  • FIr6 bis [2- (4 ′, 6′-difluorophenyl) pyridinato-N, C2 ′] iridium (III) picolinate (abbreviation: FIrpic), bis [2- (3 ′, 5′bistrifluoromethylphenyl) pyridinato-N, C2 ′] iridium (III ) Picolinate (abbreviation: Ir (CF3ppy) 2 (pic)), bis [2- (4 ′, 6′-difluorophenyl)
  • An iridium complex or the like is used as a green phosphorescent material that can be used for the light emitting layer.
  • a metal complex such as an iridium complex, a platinum complex, a terbium complex, or a europium complex is used.
  • a metal complex such as an iridium complex, a platinum complex, a terbium complex, or a europium complex is used.
  • iridium complex bis [2- (2′-benzo [4,5- ⁇ ] thienyl) pyridinato-N, C3 ′] iridium (III) acetylacetonate (abbreviation: Ir (btp) 2 (acac)), Bis (1-phenylisoquinolinato-N, C2 ′) iridium (III) acetylacetonate (abbreviation: Ir (piq) 2 (acac)), (acetylacetonato) bis [2,3-bis (4-fluoro Phenyl) quinoxalinato] iridium (III) (abbreviation: Ir (Fdp
  • tris (acetylacetonato) (monophenanthroline) terbium (III) (abbreviation: Tb (acac) 3 (Phen)
  • tris (1,3-diphenyl-1,3-propanedionato) (monophenanthroline) europium (III) (abbreviation: Eu (DBM) 3 (Phen)
  • tris [1- (2-thenoyl) -3,3,3-trifluoroacetonato] (monophenanthroline) europium (III) (abbreviation: Eu ( A rare earth metal complex such as TTA) 3 (Phen)) emits light from a rare earth metal ion (electron transition between different multiplicity), and thus can be used as a phosphorescent compound.
  • the light-emitting layer may have a structure in which the above-described highly light-emitting substance (guest material) is dispersed in another substance (host material).
  • Various materials can be used as a material for dispersing a highly luminescent substance.
  • the lowest unoccupied orbital level (LUMO level) is higher than that of a highly luminescent substance, and the highest occupied orbital level ( It is preferable to use a substance having a low HOMO level.
  • Substances (host materials) for dispersing highly luminescent substances include 1) metal complexes such as aluminum complexes, beryllium complexes, or zinc complexes, 2) oxadiazole derivatives, benzimidazole derivatives, phenanthroline derivatives, etc. Heterocyclic compounds, 3) condensed aromatic compounds such as carbazole derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, or chrysene derivatives, 3) aromatic amine compounds such as triarylamine derivatives, or condensed polycyclic aromatic amine derivatives used.
  • tris (8-quinolinolato) aluminum (III) (abbreviation: Alq)
  • tris (4-methyl-8-quinolinolato) aluminum (III) abbreviation: Almq3)
  • bis (10-hydroxybenzo [h] Quinolinato) beryllium (II) (abbreviation: BeBq2)
  • bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) abbreviations: BAlq
  • bis (8-quinolinolato) zinc (II) ( Abbreviations: Znq)
  • bis [2- (2-benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO), bis [2- (2-benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ), etc.
  • Specific examples of compounds suitable as a phosphorescent host in the organic EL element which is one embodiment of the present invention include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, and pyrazolones.
  • the host material examples include 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (abbreviation: PBD), 1,3-bis [5- (p-tert-butylphenyl) -1,3,4-oxadiazol-2-yl] benzene (abbreviation: OXD-7), 3- (4-biphenylyl) -4-phenyl-5- ( 4-tert-butylphenyl) -1,2,4-triazole (abbreviation: TAZ), 2,2 ′, 2 ′′-(1,3,5-benzenetriyl) tris (1-phenyl-1H-benzo Imidazole) (abbreviation: TPBI), and heterocyclic compounds such as bathophenanthroline (abbreviation: BPhen), bathocuproin (abbreviation: BCP), 9- [4- (10-phenyl-9-anthryl) phenyl
  • the electron transport layer is a layer containing a substance having a high electron transport property.
  • metal complexes such as aluminum complexes, beryllium complexes and zinc complexes
  • heteroaromatic compounds such as imidazole derivatives, benzimidazole derivatives, azine derivatives, carbazole derivatives and phenanthroline derivatives
  • 3) polymer compounds can be used.
  • Alq tris (4-methyl-8-quinolinolato) aluminum (abbreviation: Almq3), bis (10-hydroxybenzo [h] quinolinato) beryllium (abbreviation: BeBq 2 ), Liq , Metal complexes such as BAlq, Znq, ZnPBO, and ZnBTZ can be used.
  • the substances described here are mainly substances having an electron mobility of 10 ⁇ 6 cm 2 / Vs or higher. Note that a substance other than the above substance may be used for the electron transport layer as long as the substance has a higher electron transport property than the hole transport property. Further, the electron-transport layer is not limited to a single layer, and two or more layers including the above substances may be stacked.
  • the electron injection layer is a layer containing a substance having a high electron injection property.
  • a substance having a high electron injection property lithium (Li), cesium (Cs), calcium (Ca), lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF2), lithium oxide (LiOx), etc.
  • Such alkali metals, alkaline earth metals, or compounds thereof can be used.
  • a substance containing an electron transporting property containing an alkali metal, an alkaline earth metal, or a compound thereof, specifically, a substance containing magnesium (Mg) in Alq may be used. In this case, electron injection from the cathode can be performed more efficiently.
  • a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer.
  • a composite material is excellent in electron injecting property and electron transporting property because electrons are generated in the organic compound by the electron donor.
  • the organic compound is preferably a material excellent in transporting the generated electrons.
  • a substance (metal complex, heteroaromatic compound, or the like) constituting the electron transport layer described above is used. be able to.
  • the electron donor may be any substance that exhibits an electron donating property to the organic compound.
  • alkali metals, alkaline earth metals, and rare earth metals are preferable, and lithium, cesium, magnesium, calcium, erbium, ytterbium, and the like can be given.
  • Alkali metal oxides and alkaline earth metal oxides are preferable, and lithium oxide, calcium oxide, barium oxide, and the like can be given.
  • a Lewis base such as magnesium oxide can also be used.
  • an organic compound such as tetrathiafulvalene (abbreviation: TTF) can be used.
  • cathode For the cathode, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a low work function (specifically, 3.8 eV or less).
  • a cathode material include elements belonging to Group 1 or Group 2 of the periodic table of elements, that is, alkali metals such as lithium (Li) and cesium (Cs), and magnesium (Mg) and calcium (Ca ), Alkaline earth metals such as strontium (Sr), and alloys containing these (for example, rare earth metals such as MgAg, AlLi), europium (Eu), ytterbium (Yb), and alloys containing these.
  • a vacuum evaporation method or a sputtering method can be used.
  • coating method, the inkjet method, etc. can be used.
  • a cathode is formed using various conductive materials such as indium oxide-tin oxide containing Al, Ag, ITO, graphene, silicon or silicon oxide regardless of the work function. can do. These conductive materials can be formed by a sputtering method, an inkjet method, a spin coating method, or the like.
  • the organic electroluminescence element which is one embodiment of the present invention can be used in various electronic devices, for example, a flat light emitter such as a flat panel display of a wall-mounted television, a light source such as a copying machine, a printer, a backlight of a liquid crystal display, or instruments. It can be used for display boards, beacon lights, etc.
  • the compound of this invention can be used not only in an organic EL element but in fields, such as an electrophotographic photoreceptor, a photoelectric conversion element, a solar cell, an image sensor.
  • an organic EL element was produced and evaluated.
  • the compound used for manufacture of an organic EL element is shown below.
  • Example 3 (Production and Evaluation of Organic EL Element) A glass substrate with an ITO transparent electrode (anode) having a thickness of 25 mm ⁇ 75 mm ⁇ 1.1 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes. The ITO film thickness was 130 nm. The glass substrate with the transparent electrode line after the cleaning is mounted on the substrate holder of the vacuum evaporation apparatus, and first, the compound HT-1 is vapor-deposited so as to cover the transparent electrode on the surface where the transparent electrode line is formed. A compound HT-1 film having a thickness of 5 nm was formed. This HT-1 film functions as a hole injection layer.
  • compound HT-2 was vapor-deposited to form a 90 nm-thick HT-2 film on the HT-1 film.
  • This HT-2 film functions as a first hole transport layer.
  • the compound HT-3 was vapor-deposited to form a 60 nm-thick HT-3 film on the HT-2 film.
  • This HT-3 film functions as a second hole transport layer.
  • compound H-1 (host material) and compound 1 (dopant material) were co-evaporated so that the ratio of compound 1 was 5% by weight to form a light-emitting layer having a thickness of 40 nm.
  • ET-1 was vapor-deposited on this light emitting layer to form an electron transport layer having a thickness of 30 nm.
  • LiF was vapor-deposited on this electron injection layer to form a 1-nm thick LiF film.
  • Metal Al was vapor-deposited on this LiF film to form a metal cathode having a thickness of 80 nm.
  • the organic EL element of Example 3 was produced.
  • Examples 4 to 6 and Comparative Examples 1 and 2 An organic EL device was produced in the same manner as in Example 3 except that the type and ratio of the dopant were as shown in Table 1.
  • the organic EL devices of Examples 3 to 6 using the compounds 1 and 2 according to the present invention are compared with the organic EL devices of Comparative Examples 1 and 2 using the conventional light emitting material (comparative compound).
  • the fluctuation range of the driving voltage is small when the concentration of the light emitting material (dopant) in the light emitting layer is changed from 5 wt% to 10 wt%.
  • Example 7 (Production and Evaluation of Organic EL Element Using Wet Film Formation) A glass substrate with an ITO transparent electrode (anode) having a thickness of 25 mm ⁇ 75 mm ⁇ 1.1 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes. The ITO film thickness was 130 nm. On the ITO substrate, CLEVIOUS AI4083 (trade name) manufactured by HERAEUS Co., Ltd. was formed by spin coating with a film thickness of 30 nm. After film formation, unnecessary portions were removed with acetone, and then baked in the air on a hot plate at 200 ° C. for 10 minutes. This film functions as a hole transport layer.
  • Compound H-1 (host material) and compound 2 (dopant material) were prepared as a 1.4 wt% toluene solution in a mixing ratio (weight ratio) in which the ratio of compound H-1: compound 2 was 90:10. .
  • the film was applied on the hole transport layer film by spin coating so as to have a film thickness of 50 nm. After application, unnecessary portions were removed with toluene and heated on a hot plate at 150 ° C. for 10 minutes. This film functions as a light emitting layer. All the operations for forming the light emitting layer were performed in a glove box in a nitrogen atmosphere.
  • the laminated substrate was conveyed into a vapor deposition apparatus, and ET-1 was vapor-deposited to form an electron transport layer having a thickness of 50 nm.
  • LiF was vapor-deposited on this electron injection layer to form a 1-nm thick LiF film.
  • Metal Al was vapor-deposited on this LiF film to form a metal cathode having a thickness of 80 nm.
  • the organic EL element of Example 7 was produced.
  • the concentration of the obtained organic EL element in the light emitting layer was 10% by weight, the driving voltage was 4.85 V, the current efficiency was 33 lm / W, and the emission main wavelength was 530 nm.
  • reaction solution was put into 300 mL of saturated brine, stirred for a while, and then extracted with 200 mL of methylene chloride.
  • the organic layer was dried over magnesium sulfate, and the oil obtained by removing the solvent was purified by silica column with hexane / ethyl acetate (7/3) (silica gel 60N, 100-210 ⁇ m, manufactured by Kanto Chemical Co., Ltd.) to obtain compound 70-1. 0.31 g was obtained (yield 36%).
  • Examples 9 and 10 An organic EL device was prepared and evaluated in the same manner as in Example 3 except that the dopant type and ratio were as shown in Table 2.
  • the organic EL elements of Examples 9 and 10 using the compound 70 according to the present invention are compared with the organic EL elements of Comparative Examples 1 and 2 using the conventional light emitting material (comparative compound). It can be seen that the fluctuation range of the driving voltage is small when the concentration of the light emitting material (dopant) in the light emitting layer is changed from 5 wt% to 10 wt%.

Abstract

下記式(1)で表される化合物。

Description

金属錯体化合物、有機エレクトロルミネッセンス素子用材料、組成物、有機エレクトロルミネッセンス素子及び電子機器
 本発明は、金属錯体化合物、有機エレクトロルミネッセンス素子用材料、組成物、有機エレクトロルミネッセンス素子、及びそれを搭載する電子機器に関する。
 電気エネルギーを光に変換して発光できる発光材料(ドーパント)として、蛍光を発光する蛍光発光材料と、燐光を発光する燐光発光材料が知られている。燐光発光材料として4座配位子を有する白金錯体が知られている(特許文献1~4、非特許文献1)。
特許第4110173号公報 US2013/0168656号公報 WO2012/116231 WO2014/031977
Organic Electronics 15(2014) 1862-1867
 有機エレクトロルミネッセンス素子(有機EL素子)の製造において、一定の素子性能の素子を効率よく製造できることが求められている。しかし、従来の発光材料では、発光層中における発光材料の濃度変動によって、駆動電圧が大きく変動してしまうという場合があった。このような観点より、添加濃度を厳密に一定に維持できない場合であっても、駆動電圧の変動幅が小さく、一定の素子性能を維持できる発光材料が求められている。
 本発明の目的は、新規な4座配位子からなる白金錯体、及びこれを用いた有機エレクトロルミネッセンス素子を提供することである。また、本発明の目的は、有機EL素子の発光材料として用いた場合に、発光層における添加濃度が変動した場合にも、有機EL素子の駆動電圧の変動幅が小さい素子を提供できる白金錯体、及びこれを用いた有機エレクトロルミネッセンス素子を提供することである。
 本発明の一態様によれば、以下の新規化合物、有機エレクトロルミネッセンス素子用材料、組成物、有機エレクトロルミネッセンス素子用のインク、有機エレクトロルミネッセンス素子、及び電子機器が提供される。
 本発明の一態様は、下記式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000001
(式(1)中、
 環Aは、Xを含んで構成される環形成炭素数6~30の芳香族炭化水素環、又はXを含んで構成される環形成原子数5~30の複素環である。
 環Bは、Xを含んで構成される環形成炭素数6~30の芳香族炭化水素環、又はXを含んで構成される環形成原子数5~30の複素環である。
 環Cは、Xを含んで構成される環形成炭素数6~30の芳香族炭化水素環、又はXを含んで構成される環形成原子数5~30の複素環である。
 R~Rは、それぞれ独立して、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、置換若しくは無置換の炭素数2~20のアルケニル基、置換若しくは無置換の炭素数2~20のアルキニル基、置換若しくは無置換の環形成炭素数6~30のアリール基、置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、置換若しくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換のアミノ基、置換もしくは無置換のシリル基、ニトロ基、シアノ基、カルボキシ基、又はハロゲン原子である。
 Y~Yは、それぞれ独立して、CH、Rが結合した炭素原子、又は窒素原子である。
 n~nは、それぞれ独立して、0~4である。
 n~nがそれぞれ2以上の場合、複数存在するR~Rは、互いに同一であっても異なっていてもよい。
 L及びLは、それぞれ環Aと環B、及び環Bと環Cを連結する基であり、それぞれ独立して-C(R-、-O-、-S-、-NR-又は-Si(R-である。
 R、R及びRは、それぞれ独立して水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。複数存在するR及びRは、互いに同一であっても異なっていてもよい。
 R~Rは、隣接するもの同士がそれぞれ互いに結合して環を形成してもよいし、環A~Cを構成する原子又はRが置換していないY~Yと互いに結合して環を形成してもよい。
 但し、n+n+n+n≧1の場合、存在するR~Rの少なくとも1つは、置換もしくは無置換の炭素数3~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、ハロゲン原子、又は、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアリール基、及び置換もしくは無置換の環形成炭素数6~30のアリールオキシ基から選択される基で置換されたシリル基からなる群から選択される置換基Zであるか、又は
 n+n+n+n=0であるか、若しくはn+n+n+n≧1であって存在するR~Rの全てが前記置換基Zではない場合、L及びLの少なくとも1つは、-C(R-、-NR-又は-Si(R-であり、存在するR~Rの少なくとも1つは、前記置換基Zを有する環形成炭素数6~30のアリール基、又は前記置換基Zを有する環形成原子数5~30のヘテロアリール基である。)
 本発明の一態様は、前記式(1)で表される化合物を含有する有機エレクトロルミネッセンス素子用材料である。
 本発明の一態様は、前記式(1)で表される化合物と有機溶媒を含有する組成物である。
 本発明の一態様は、陰極と陽極の間に、発光層を含む1以上の有機薄膜層が挟持されてなる有機エレクトロルミネッセンス素子において、前記有機薄膜層の少なくとも一層が、前記式(1)で表される化合物を含有する有機エレクトロルミネッセンス素子である。
 本発明の一態様は、前記有機エレクトロルミネッセンス素子を搭載した電子機器である。
 本発明によれば、新規な4座配位子からなる白金錯体、及びこれを用いた有機エレクトロルミネッセンス素子が提供できる。また、本発明によれば、有機EL素子の発光材料として用いた場合に、発光層における添加濃度が変動した場合にも、有機EL素子の駆動電圧の変動幅が小さい素子を提供できる白金錯体、及びこれを用いた有機エレクトロルミネッセンス素子を提供できる。
(新規化合物)
 本発明の一態様である下記式(1)で表される化合物は、新規な4座配位子からなる白金錯体化合物である。
 下記式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000002
(式(1)中、
 環Aは、Xを含んで構成される環形成炭素数6~30の芳香族炭化水素環、又はXを含んで構成される環形成原子数5~30の複素環である。
 環Bは、Xを含んで構成される環形成炭素数6~30の芳香族炭化水素環、又はXを含んで構成される環形成原子数5~30の複素環である。
 環Cは、Xを含んで構成される環形成炭素数6~30の芳香族炭化水素環、又はXを含んで構成される環形成原子数5~30の複素環である。
 R~Rは、それぞれ独立して、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、置換若しくは無置換の炭素数2~20のアルケニル基、置換若しくは無置換の炭素数2~20のアルキニル基、置換若しくは無置換の環形成炭素数6~30のアリール基、置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、置換若しくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換のアミノ基、置換もしくは無置換のシリル基、ニトロ基、シアノ基、カルボキシ基、又はハロゲン原子である。
 Y~Yは、それぞれ独立して、CH、Rが結合した炭素原子、又は窒素原子である。
 n~nは、それぞれ独立して、0~4である。
 n~nがそれぞれ2以上の場合、複数存在するR~Rは、互いに同一であっても異なっていてもよい。
 L及びLは、それぞれ環Aと環B、及び環Bと環Cを連結する基であり、それぞれ独立して-C(R-、-O-、-S-、-NR-又は-Si(R-である。
 R、R及びRは、それぞれ独立して水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。複数存在するR及びRは、互いに同一であっても異なっていてもよい。
 R~Rは、隣接するもの同士がそれぞれ互いに結合して環を形成してもよいし、環A~Cを構成する原子又はRが置換していないY~Yと互いに結合して環を形成してもよい。
 但し、n+n+n+n≧1の場合、存在するR~Rの少なくとも1つは、置換もしくは無置換の炭素数3~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、ハロゲン原子、又は、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアリール基、及び置換もしくは無置換の環形成炭素数6~30のアリールオキシ基から選択される基で置換されたシリル基からなる群から選択される置換基Zであるか、又は
 n+n+n+n=0であるか、若しくはn+n+n+n≧1であって存在するR~Rの全てが前記置換基Zではない場合、L及びLの少なくとも1つは、-C(R-、-NR-又は-Si(R-であり、存在するR~Rの少なくとも1つは、前記置換基Zを有する環形成炭素数6~30のアリール基、又は前記置換基Zを有する環形成原子数5~30のヘテロアリール基である。)
 式(1)で表される化合物は、少なくとも1つの特定の嵩高い置換基Zを導入することにより、分子間の会合が抑制される(スタック性が低減される)。
 R~Rが存在し(n+n+n+n≧1の場合)、R~Rの少なくとも1つは、分子間の会合を抑制するための嵩高い置換基Zであるか、R~Rが存在しない場合(n+n+n+n=0の場合)若しくは存在するR~Rの全てが前記置換基Zではない場合には、L及びLの少なくとも1つは、-C(R-、-NR-又は-Si(R-であり、存在するR~Rの少なくとも1つは、前記嵩高い置換基Zを有する環形成炭素数6~30のアリール基、又は前記置換基Zを有する環形成原子数5~30のヘテロアリール基である。存在するR~Rの全てが前記置換基Zではない場合とは、例えば、R~Rのいずれかは存在する(n+n+n+n≧1である)が、それが置換基Zには該当しないメチル基、ニトロ基、シアノ基、カルボキシ基、ハロゲン原子等である場合が挙げられる。
 置換基Zがアルキル基である場合には、置換もしくは無置換の炭素数3~20のアルキル基である。メチル基及びエチル基では、式(1)で表される化合物の分子間の会合を十分に抑制できないおそれがある。
 また、Y~Yを含んで構成される環が、5員環ではなく6員環であることも、環Aとの間でより大きなねじれを生じ、分子内の平面性を失わせ、分子間の会合を抑制するのに寄与すると考えられる。
 分子間の会合が抑制されることにより、発光の量子収率の低下や発光波長のレッドシフト、ブロード化を抑制でき、錯体単一の本来の特性を引き出すことができる。このことは、有機EL素子にした場合において、色純度や発光特性の改善に有利となる。
 従って、式(1)で表される化合物を有機EL素子に用いると、その添加濃度による駆動電圧の変動幅が、従来の4座配位子からなる白金錯体化合物に比べて小さい。即ち、添加濃度の許容幅が広い。この特性により、添加濃度を厳密に一定に維持できない場合であっても、駆動電圧の変動幅が小さく、一定の素子性能を維持でき、有機EL素子の製造効率を向上させることができる。
 本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば単環、縮合環、環集合)の化合物(例えば単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記載される「環形成原子数」については、特筆しない限り同様とする。例えば、ピリジン環は環形成原子数は6であり、キナゾリン環は環形成原子数が10であり、フラン環の環形成原子数が5である。ピリジン環やキナゾリン環の炭素原子にそれぞれ結合している水素原子や置換基を構成する原子については、環形成原子数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の原子数は環形成原子数の数に含めない。
 本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表すものであり、置換されている場合の置換基の炭素数は含めない。
 本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表すものであり、置換されている場合の置換基の原子数は含めない。
 本明細書において、「置換もしくは無置換の」という場合における「無置換」とは前記置換基で置換されておらず、水素原子が結合していることを意味する。
 本明細書において、水素原子とは、中性子数が異なる同位体、即ち、軽水素(protium)、重水素(deuterium)、三重水素(tritium)、を包含する。
 本明細書において、特に断らない限り、隣接する置換基同士で環を形成してもよい。
 上記式(1)及び後記する式(2)~(9)における各基の具体例を以下に挙げる。
 環形成炭素数6~30のアリール基の例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、6-クリセニル基、1-ベンゾ[c]フェナントリル基、2-ベンゾ[c]フェナントリル基、3-ベンゾ[c]フェナントリル基、4-ベンゾ[c]フェナントリル基、5-ベンゾ[c]フェナントリル基、6-ベンゾ[c]フェナントリル基、1-ベンゾ[g]クリセニル基、2-ベンゾ[g]クリセニル基、3-ベンゾ[g]クリセニル基、4-ベンゾ[g]クリセニル基、5-ベンゾ[g]クリセニル基、6-ベンゾ[g]クリセニル基、7-ベンゾ[g]クリセニル基、8-ベンゾ[g]クリセニル基、9-ベンゾ[g]クリセニル基、10-ベンゾ[g]クリセニル基、11-ベンゾ[g]クリセニル基、12-ベンゾ[g]クリセニル基、13-ベンゾ[g]クリセニル基、14-ベンゾ[g]クリセニル基、1-ベンゾ[a]アントリル基、2-ベンゾ[a]アントリル基、3-ベンゾ[a]アントリル基、4-ベンゾ[a]アントリル基、5-ベンゾ[a]アントリル基、6-ベンゾ[a]アントリル基、7-ベンゾ[a]アントリル基、8-ベンゾ[a]アントリル基、9-ベンゾ[a]アントリル基、10-ベンゾ[a]アントリル基、11-ベンゾ[a]アントリル基、12-ベンゾ[a]アントリル基、13-ベンゾ[a]アントリル基、14-ベンゾ[a]アントリル基、1-トリフェニル基、2-トリフェニル基、1-フルオレニル、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、2-ビフェニルイル基、3-ビフェニルイル基、4-ビフェニルイル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、等が挙げられる。
 好ましくは、フェニル基、1-ナフチル基、2-ナフチル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-フルオレニル、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、5-ベンゾ[c]フェナントリル基、4-ベンゾ[a]アントリル基、7-ベンゾ[a]アントリル基、1-トリフェニル基、2-トリフェニル基である。
 置換もしくは無置換の環形成炭素数6~30のアリールオキシ基は、-OYと表され、Yの例としては前記環形成原子数5~30のアリール基において挙げたものと同様のものが挙げられる。
 環形成炭素数6~30の芳香族炭化水素環は、上記環形成炭素数6~30のアリール基に対応する芳香族環である。
 「Xを含んで構成される環形成炭素数6~30の芳香族炭化水素環」は、例えば、炭素数6のベンゼン環であれば、Xがベンゼン環を構成する6個の炭素原子のうちの1つであることを意味する。環A~Cが芳香族炭化水素環である場合には、X~Xは炭素原子である。
 環形成原子数5~30のヘテロアリール基の例としては、1-ピロリル基、2-ピロリル基、3-ピロリル基、ピラジニル基、2-ピリジニル基、3-ピリジニル基、4-ピリジニル基、1-インドリル基、2-インドリル基、3-インドリル基、4-インドリル基、5-インドリル基、6-インドリル基、7-インドリル基、1-イソインドリル基、2-イソインドリル基、3-イソインドリル基、4-イソインドリル基、5-イソインドリル基、6-イソインドリル基、7-イソインドリル基、2-フリル基、3-フリル基、2-ベンゾフラニル基、3-ベンゾフラニル基、4-ベンゾフラニル基、5-ベンゾフラニル基、6-ベンゾフラニル基、7-ベンゾフラニル基、1-イソベンゾフラニル基、3-イソベンゾフラニル基、4-イソベンゾフラニル基、5-イソベンゾフラニル基、6-イソベンゾフラニル基、7-イソベンゾフラニル基、1-ジベンゾフラニル基、2-ジベンゾフラニル基、3-ジベンゾフラニル基、4-ジベンゾフラニル基、1-ジベンゾチオフェニル基、2-ジベンゾチオフェニル基、3-ジベンゾチオフェニル基、4-ジベンゾチオフェニル基、2-ベンゾフラチオフェニル基、3-ベンゾチオフェニル基、4-ベンゾチオフェニル基、5-ベンゾチオフェニル基、6-ベンゾチオフェニル基、7-ベンゾチオフェニル基、キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、2-キノキサリニル基、5-キノキサリニル基、6-キノキサリニル基、2-キナゾリニル基、4-キナゾリニル基、5-キナゾリニル基、6-キナゾリニル基、7-キナゾリニル基、8-キナゾリニル基、1-フェナントリジニル基、2-フェナントリジニル基、3-フェナントリジニル基、4-フェナントリジニル基、6-フェナントリジニル基、7-フェナントリジニル基、8-フェナントリジニル基、9-フェナントリジニル基、10-フェナントリジニル基、1-アクリジニル基、2-アクリジニル基、3-アクリジニル基、4-アクリジニル基、9-アクリジニル基、1,7-フェナントロリン-2-イル基、1,7-フェナントロリン-3-イル基、1,7-フェナントロリン-4-イル基、1,7-フェナントロリン-5-イル基、1,7-フェナントロリン-6-イル基、1,7-フェナントロリン-8-イル基、1,7-フェナントロリン-9-イル基、1,7-フェナントロリン-10-イル基、1,8-フェナントロリン-2-イル基、1,8-フェナントロリン-3-イル基、1,8-フェナントロリン-4-イル基、1,8-フェナントロリン-5-イル基、1,8-フェナントロリン-6-イル基、1,8-フェナントロリン-7-イル基、1,8-フェナントロリン-9-イル基、1,8-フェナントロリン-10-イル基、1,9-フェナントロリン-2-イル基、1,9-フェナントロリン-3-イル基、1,9-フェナントロリン-4-イル基、1,9-フェナントロリン-5-イル基、1,9-フェナントロリン-6-イル基、1,9-フェナントロリン-7-イル基、1,9-フェナントロリン-8-イル基、1,9-フェナントロリン-10-イル基、1,10-フェナントロリン-2-イル基、1,10-フェナントロリン-3-イル基、1,10-フェナントロリン-4-イル基、1,10-フェナントロリン-5-イル基、2,9-フェナントロリン-1-イル基、2,9-フェナントロリン-3-イル基、2,9-フェナントロリン-4-イル基、2,9-フェナントロリン-5-イル基、2,9-フェナントロリン-6-イル基、2,9-フェナントロリン-7-イル基、2,9-フェナントロリン-8-イル基、2,9-フェナントロリン-10-イル基、2,8-フェナントロリン-1-イル基、2,8-フェナントロリン-3-イル基、2,8-フェナントロリン-4-イル基、2,8-フェナントロリン-5-イル基、2,8-フェナントロリン-6-イル基、2,8-フェナントロリン-7-イル基、2,8-フェナントロリン-9-イル基、2,8-フェナントロリン-10-イル基、2,7-フェナントロリン-1-イル基、2,7-フェナントロリン-3-イル基、2,7-フェナントロリン-4-イル基、2,7-フェナントロリン-5-イル基、2,7-フェナントロリン-6-イル基、2,7-フェナントロリン-8-イル基、2,7-フェナントロリン-9-イル基、2,7-フェナントロリン-10-イル基、1-フェナジニル基、2-フェナジニル基、1-フェノチアジニル基、2-フェノチアジニル基、3-フェノチアジニル基、4-フェノチアジニル基、10-フェノチアジニル基、1-フェノキサジニル基、2-フェノキサジニル基、3-フェノキサジニル基、4-フェノキサジニル基、10-フェノキサジニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、2-オキサジアゾリル基、5-オキサジアゾリル基、3-フラザニル基、2-チエニル基、3-チエニル基、1-ベンズイミダゾリル基、2-ベンズイミダゾリル基、4-ベンズイミダゾリル基、5-ベンズイミダゾリル基、6-ベンズイミダゾリル基、7-ベンズイミダゾリル基、2-イミダゾ[1,2-a]ピリジニル基、3-イミダゾ[1,2-a]ピリジニル基、5-イミダゾ[1,2-a]ピリジニル基、6-イミダゾ[1,2-a]ピリジニル基、7-イミダゾ[1,2-a]ピリジニル基、8-イミダゾ[1,2-a]ピリジニル基、ベンズイミダゾール-2-オン-1-イル基、ベンズイミダゾール-2-オン-3-イル基、ベンズイミダゾール-2-オン-4-イル基、ベンズイミダゾール-2-オン-5-イル基、ベンズイミダゾール-2-オン-6-イル基、ベンズイミダゾール-2-オン-7-イル基等が挙げられる。
 好ましくは、ピラジニル基、2-ピリジニル基、3-ピリジニル基、4-ピリジニル基、1-ジベンゾフラニル基、2-ジベンゾフラニル基、3-ジベンゾフラニル基、4-ジベンゾフラニル基、1-ジベンゾチオフェニル基、2-ジベンゾチオフェニル基、3-ジベンゾチオフェニル基、又は4-ジベンゾチオフェニル基である。
 環形成原子数5~30の複素環は、環形成原子数5~30の複素芳香族環、及び環形成原子数5~30の複素脂肪族環を含み、複素芳香族環が好ましい。環形成原子数は5~20が好ましく、5~14がより好ましく、5~10がさらに好ましい。
 環形成原子数5~30の複素芳香族環の具体例としては、上記環形成原子数5~30のヘテロアリール基に対応する環が挙げられる。
 環形成原子数5~30の複素脂肪族環の具体例としては、上記環形成原子数5~30の複素芳香族環に対応する脂肪族環が挙げられる。
 「Xを含んで構成される」とは、例えば、「Xを含んで構成される環形成原子数5~30の複素環」が環形成原子数6のピリジンであれば、Xがピリジン環を構成する5個の炭素原子及び1個の窒素原子のうちの1つであることを意味する。従って、環A~Cが複素環である場合、X~Xは、炭素原子にも窒素原子にもなり得る。
 炭素数1~20のアルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、2-ヒドロキシイソブチル基、1,2-ジヒドロキシエチル基、1,3-ジヒドロキシイソプロピル基、2,3-ジヒドロキシ-t-ブチル基、1,2,3-トリヒドロキシプロピル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、2-クロロイソブチル基、1,2-ジクロロエチル基、1,3-ジクロロイソプロピル基、2,3-ジクロロ-t-ブチル基、1,2,3-トリクロロプロピル基、ブロモメチル基、1-ブロモエチル基、2-ブロモエチル基、2-ブロモイソブチル基、1,2-ジブロモエチル基、1,3-ジブロモイソプロピル基、2,3-ジブロモ-t-ブチル基、1,2,3-トリブロモプロピル基、ヨードメチル基、1-ヨードエチル基、2-ヨードエチル基、2-ヨードイソブチル基、1,2-ジヨードエチル基、1,3-ジヨードイソプロピル基、2,3-ジヨード-t-ブチル基、1,2,3-トリヨードプロピル基、アミノメチル基、1-アミノエチル基、2-アミノエチル基、2-アミノイソブチル基、1,2-ジアミノエチル基、1,3-ジアミノイソプロピル基、2,3-ジアミノ-t-ブチル基、1,2,3-トリアミノプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基、2-シアノイソブチル基、1,2-ジシアノエチル基、1,3-ジシアノイソプロピル基、2,3-ジシアノ-t-ブチル基、1,2,3-トリシアノプロピル基、ニトロメチル基、1-ニトロエチル基、2-ニトロエチル基、2-ニトロイソブチル基、1,2-ジニトロエチル基、1,3-ジニトロイソプロピル基、2,3-ジニトロ-t-ブチル基、1,2,3-トリニトロプロピル基等が挙げられる。
 好ましくは、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基から選ばれる。
 アルキル基の炭素数は1~10であることが好ましく、3~6であることがより好ましい。
 環形成炭素数3~20のシクロアルキル基の例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-ノルボルニル基、2-ノルボルニル基等が挙げられる。
 シクロアルキル基の環形成炭素数は、3~10が好ましく、5~8がさらに好ましい環形成炭素数3~8がより好ましくは、環形成炭素数3~6が特に好ましい。
 炭素数1~20のアルコキシ基は、-OYで表される基であり、Yの例としては、前記炭素数1~20のアルキル基および炭素数3~20のシクロアルキル基として挙げたものと同様のものが挙げられる。
 炭素数2~20のアルケニル基は、前記炭素数2~20のアルキル基に対応する不飽和二重結合を有するものが挙げられ、好ましくはビニル基である。
 炭素数2~20のアルキニル基は、前記炭素数2~20のアルキル基に対応する不飽和三重結合を有するものが挙げられ、好ましくはエチニル基である。
 ハロゲン原子として、フッ素、塩素、臭素、ヨウ素等が挙げられ、好ましくはフッ素原子である。
 置換若しくは無置換のシリル基における置換シリル基とは、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアリール基、及び置換もしくは無置換の環形成炭素数6~30のアリールオキシ基から選択される基で置換されたシリル基である。
 式(1)~(9)中の各基の「置換若しくは無置換の」における置換基は、それぞれ独立して、ハロゲン原子、シアノ基、炭素数1~20のアルキル基、環形成炭素数3~20のシクロアルキル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、環形成炭素数6~30のアリール基、環形成炭素数6~30のアリールオキシ基、環形成原子数5~30のヘテロアリール基及び-Si(Rで表される基(式中、Rは前記定義の通りである。)で表される基から選択される基であることが好ましい。
 これらの置換基は、上記の置換基によってさらに置換されてもよい。また、これらの置換基は複数が互いに結合して環を形成してもよい。
 環Aは、(1)Xを含んで構成されるベンゼン環(Xは炭素原子)、(2)Xを含んで構成される環形成原子数5又は6の複素環(Xは炭素原子又は窒素原子)、(3)Xを含んで構成されるベンゼン環と芳香族炭化水素環が縮合した環(Xは炭素原子)、又は、(4)Xを含んで構成される環形成原子数5又は6の複素環に芳香族炭化水素環若しくは複素環が縮合した環(Xは炭素原子又は窒素原子)であることが好ましい。
 Xを含んで構成される環Aが複素環である場合の好ましい例としては、次のものが挙げられる。
・Xを含んで構成される環形成原子数5若しくは6の複素芳香族環
・Xを含んで構成される環形成原子数5若しくは6の複素脂肪族環
・Xを含んで構成される環形成原子数5若しくは6の複素芳香族環にベンゼン環が縮合した環
・Xを含んで構成される環形成原子数5若しくは6の複素芳香族環に環形成原子数5若しくは6の複素芳香族環が縮合した環
 環Aのより好ましい例としては、Xを含んで構成される環形成原子数5若しくは6の複素芳香族環、又は、Xを含んで構成される環形成原子数5若しくは6の複素芳香族環にベンゼン環若しくは環形成原子数5又は6の複素芳香族環が縮合した環が挙げられる。
 Xは窒素原子であることが好ましい。
 環Aは、イミダゾール、ピラゾール、オキサゾール、チアゾール、ピリジン、ピラジン、トリアゾール、イミダゾリン、イソオキサゾール、イソチアゾール、ピリミジン、トリアジン、1-ピロリン、2,3,4,5-テトラヒドロピリジン、ベンゾイミダゾール、キノリン、イソキノリン、及びキノキサリンから選択されることが好ましい。
 環Aは、下記式で表される部分構造から選択されることが好ましい。
Figure JPOXMLDOC01-appb-C000003
(式中、R、n及びLは、前記定義の通りである。)
 環Bは、Xを含んで構成される環形成炭素数6~20の芳香族炭化水素環であることが好ましく、ベンゼン環であることがより好ましい。
 環Cは、Xを含んで構成される環形成炭素数6~20の芳香族炭化水素環であることが好ましく、ベンゼン環であることがより好ましい。
 式(1)で表される化合物は、下記式(2)で表される化合物であることが好ましい。式(2)で表される化合物は、式(1)においてY~Yを含んで構成される環がピリジン環である。
Figure JPOXMLDOC01-appb-C000004
(式(2)中、A~C、X~X、R~R、n~n、L及びLは、前記定義の通りである。)
 式(2)で表される化合物は、さらに下記式(3)で表される化合物であることが好ましい。式(3)で表される化合物は、さらに環Cがベンゼン環である。
Figure JPOXMLDOC01-appb-C000005
(式(3)中、A、B、X、X、R~R、n~n、L及びLは、前記定義の通りである。)
 式(3)で表される化合物は、さらに下記式(4)で表される化合物であることが好ましい。式(4)で表される化合物は、さらに環Aを構成するXが窒素原子である。
Figure JPOXMLDOC01-appb-C000006
(式(4)中、A、B、X、R~R、n~n、L及びLは、前記定義の通りである。)
 式(1)で表される化合物は、下記式(5)で表される化合物であることが好ましい。式(5)で表される化合物は、式(1)において環Aを構成するXが窒素原子である。
Figure JPOXMLDOC01-appb-C000007
(式(5)中、A~C、X、X、Y~Y、R~R、n~n、L及びLは、前記定義の通りである。)
 式(5)で表される化合物は、さらに下記式(6)で表される化合物であることが好ましい。式(6)で表される化合物は、さらにY~Yを含んで構成される環がピリジン環である。
Figure JPOXMLDOC01-appb-C000008
(式(6)中、A~C、X、X、R~R、n~n、L及びLは、前記定義の通りである。)
 式(1)において、Lが、-O-、-S-又は-NR-であることが好ましい。
 Lが-NR-であり、Rが置換もしくは無置換の環形成炭素数6~20のアリール基であり、該アリール基が環Bを構成する原子と結合してLの窒素原子を含むピロール環を形成していることが好ましい。
 式(1)で表される化合物は、下記式(7)で表される化合物であることが好ましい。式(7)で表される化合物は、式(1)で表される化合物において、Lがフェニル基が置換した窒素原子であり、かつ、当該フェニル基が環Bを構成する元素と結合してピロール環を形成している。
Figure JPOXMLDOC01-appb-C000009
(式(7)中、A~C、X~X、Y~Y、R~R、n~n及びLは、前記定義の通りである。)
 尚、式(7)においてn+n+n+n=0の場合には、下記式(7-1)で表される。
Figure JPOXMLDOC01-appb-C000010
(式(7-1)中、A~C、X~X、Y~Y及びLは、前記定義の通りである。)
 式(7)で表される化合物は、さらに下記式(8)で表される化合物であることが好ましい。式(8)で表される化合物は、さらに環Bがベンゼン環である。
Figure JPOXMLDOC01-appb-C000011
(式(8)中、A、X~X、R~R、n~n及びLは、前記定義の通りである。)
 式(1)で表される化合物は、下記式(9)で表される化合物であることが好ましい。式(9)で表される化合物は、式(1)で表される化合物において、環Aがイミダゾール環であり、Xが窒素原子であり、Rがもう一方の窒素原子に置換している。
Figure JPOXMLDOC01-appb-C000012
(式(9)中、B、C、R~R、n~n及びLは、前記定義の通りである。)
 式(1)で表される化合物においてR~Rの少なくとも1つは、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の炭素数3~20のアルキル基であることが好ましい。
 R~Rの少なくとも1つは、置換もしくは無置換のフェニル基であることがより好ましい。
 式(1)で表される化合物においてLは、-O-又は-S-であることが好ましい。
 あるいは、Lは、-C(R-であり、Rがメチル基、又は置換もしくは無置換のフェニル基であることが好ましい。
 n+n+n+n≧1であることが好ましい。さらに、n+n+n+nは、1~8であることが好ましく、1~4であることがより好ましい。
 以下、式(1)の化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 式(1)の化合物は、実施例に記載の方法に倣い、目的物に合わせた既知の代替反応や原料を用いることで、本発明の範囲内の化合物を合成することができる。
(有機エレクトロルミネッセンス素子用材料)
 本発明の一態様である有機エレクトロルミネッセンス素子用材料は、前記式(1)で表される化合物を含有する。
 式(1)で表される化合物は、有機EL素子の発光材料として用いると、青緑色~赤色の発光を示す。
(組成物)
 本発明の一態様である組成物は、前記式(1)で表される化合物と有機溶媒を含有する。この組成物を用いることで、湿式プロセスによる薄膜形成が可能である。本発明の一態様である組成物は、有機エレクトロルミネッセンス素子用の塗布膜形成に用いることができる。本発明の一態様に係る組成物は、有機EL素子の有機薄膜形成に好適である。
 この組成物において、式(1)で表される化合物は、有機溶媒に溶解していてもよいし、分散していてもよい。
 本発明の一態様である組成物は、前記式(1)で表される化合物と、発光層のホスト材料と、有機溶媒を含有する。この組成物を、有機EL素子用のインクとして用いることで、湿式プロセスによる発光層の薄膜形成が可能である。
 本発明の一態様である組成物におけるホスト材料としては、後述する「発光層のホスト材料」として挙げるものと同様のものが挙げられる。本発明の一態様である組成物において、ホスト材料は、1種又は2種以上を用いることができる。
 本発明の一態様である組成物において含有される有機溶媒としては、下記式(C1)で表される溶媒が好ましい。
Figure JPOXMLDOC01-appb-C000019
(式(C1)中、Rは置換基であり、nは1以上6以下の整数である。nが2以上の場合、複数のRはそれぞれ同一でも異なっていてもよい。)
 上記式(C1)において、R(置換基)としては、炭素数1~20のアルキル基、環形成炭素数3~10のシクロアルキル基、エーテル結合含有基、カルボニル結合含有基、エステル結合含有基等が挙げられる。
 nは好ましくは1以上3以下の整数である。
 これらの置換基は、アルキル基、シクロアルキル基、アリール基等によってさらに置換されてもよい。また、これらの置換基は複数が互いに結合して環を形成してもよい。
 上記式(C1)における各基の具体例を以下に挙げる。
 炭素数1~20のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等が挙げられる。
 環形成炭素数3~10のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、アダマンチル基、ノルボルニル基等が挙げられる。
 エーテル結合含有基は、メトキシ基、エトキシ基、プロポキシル基、フェノキシ基が挙げられる。
 カルボニル結合含有基としては、ベンゾイル基等が挙げられる。
 エステル結合含有基としては、メチルエステル基、エチルエステル基、プロピルエステル基が挙げられる。
 式(C1)で表される有機溶媒の沸点は、110℃以上であることが好ましく、120℃以上であることがより好ましい。
 また、溶媒の水への溶解度は1wt%以下であることが好ましく、より好ましくは0.5wt%以下である。
 有機EL素子は、水分により著しく性能が劣化するおそれがあるため、水への溶解性が低い溶媒が望ましい。
 有機溶媒の沸点及び水への溶解度は、安全衛生情報センターホームページ又はアメリカ合衆国保険福祉省ホームページ(HSDS(Hazard Substances Data Base))に記載のものである。
 式(C1)で表される溶媒としては、具体的にはトルエン、キシレン、エチルベンゼン、ジエチルベンゼン、メチシレン、プロピルベンゼン、シクロヘキシルベンゼン、ジメトキシベンゼン、アニソール、エトキシトルエン、フェノキシトルエン、イソプロピルビフェニル、ジメチルアニソール、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル等が挙げられる。
 式(C1)で表される溶媒は、1種又は2種以上を用いることができる。さらに、有機EL素子用のインクとして用いる場合には、必要に応じて、式(C1)で表される溶媒以外の溶媒を含有してもよい。
 本発明の一態様である組成物中における式(1)で表される化合物、ホスト材料及び有機溶媒の含有量は特に限定されるものではなく、適宜決定すればよいが、式(1)で表される化合物の含有量は、0.01~1.5重量%の範囲内であることが好ましく、0.01~0.5重量%の範囲内であることがより好ましい。
 ホスト材料の含有量は、0.1~15重量%の範囲内であることが好ましく、0.5~10重量%の範囲内であることがより好ましい。上記範囲のインク組成物であれば、有機EL素子の発光層を作製する際に、膜厚10nm~200nmの膜厚を容易に形成することができる。
 本発明の一態様に係るインク組成物は、前記式(1)で表される化合物、上述した有機溶媒、及び上述した発光層のホスト材料の他に、必要に応じて公知の添加剤を添加してもよい。添加剤は、製膜性の向上や膜のピンホール防止等のために、本発明の目的が損なわれない範囲で、所望により、適切な樹脂や各種添加剤等を配合することができる。使用可能な樹脂としては、例えばポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリウレタン、ポリスルホン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性樹脂及びそれらの共重合体、ポリ-N-ビニルカルバゾール、ポリシラン等の光導電性樹脂、ポリチオフェン、ポリピロール等の導電性樹脂等が挙げられる。また、各種添加剤としては、例えば酸化防止剤、紫外線吸収剤、可塑剤等が挙げられる。
 本発明の一態様に係るインク組成物において、前記式(1)で表される化合物及び有機溶媒の含有量の総和が、組成物全体の90wt%以上、95wt%以上、98wt%以上、100wt%であってもよい。
 また、本発明の一態様に係るインク組成物が、前記式(1)で表される化合物及び有機溶媒に加えて、さらに発光層のホスト材料を含有する場合、前記式(1)で表される化合物と有機溶媒と発光層のホスト材料の含有量の総和が、90wt%以上、95wt%以上、98wt%以上、100wt%であってもよい。
 本発明の一態様に係るインク組成物は、公知の湿式法、例えば、塗布法、インジェクト法、スプレー法、スピンナ法、湿漬塗布法、スクリーン印刷法、ロールコーター法、LB法等により成膜できる。
(有機エレクトロルミネッセンス素子)
 本発明の一態様である有機エレクトロルミネッセンス素子は、陰極と陽極の間に、発光層を含む1以上の有機薄膜層が挟持されてなる有機エレクトロルミネッセンス素子において、前記有機薄膜層の少なくとも一層が、前記式(1)で表される化合物を含有する。
 式(1)で表される化合物は、これを含有する有機薄膜層において、単独で含まれていてもよいし、混合物の成分として含まれていてもよい。
 本発明の一態様である有機エレクトロルミネッセンス素子の発光層は、式(1)で表される化合物とホスト材料を含有することが好ましい。
 式(1)で表される化合物は、発光層において、ドーパント材料であることが好ましい。ドーパント材料として用いた場合、前記発光色が得られる。
 本発明の一態様である有機EL素子の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング等の湿式成膜法のいずれの方法を適用することができる。膜厚は特に限定されるものではないが、適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなるおそれがある。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られないおそれがある。通常の膜厚は5nm~10μmの範囲が適しているが、10nm~0.2μmの範囲がさらに好ましい。
 いずれの有機薄膜層においても、成膜性向上、膜のピンホール防止等のため適切な樹脂や添加剤を使用してもよい。
 本発明の一実施形態において、本発明の目的が損なわれない範囲で、所望により発光層形成する上記組成物に、他の公知の発光材料を含有させてもよく、また、上記の組成物から成膜された発光層に、他の公知の発光材料を含む発光層を積層してもよい。尚、この場合、発光層を真空蒸着法等の乾式法で形成してもよい。
 以下、有機EL素子の構成要素の材料等について説明する。
(基板)
 基板は、発光素子の支持体として用いられる。基板としては、例えば、ガラス、石英、プラスチック等を用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニルからなるプラスチック基板等が挙げられる。また、無機蒸着フィルムを用いることもできる。
(陽極)
 基板上に形成される陽極には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、およびこれらの混合物等を用いることが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素若しくは酸化珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン、および酸化亜鉛を含有した酸化インジウム、グラフェン等が挙げられる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)、又は金属材料の窒化物(例えば、窒化チタン)等が挙げられる。
 これらの材料は、通常、スパッタリング法により成膜される。例えば、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1~10wt%の酸化亜鉛を加えたターゲットを、酸化タングステン、および酸化亜鉛を含有した酸化インジウムは、酸化インジウムに対し酸化タングステンを0.5~5wt%、酸化亜鉛を0.1~1wt%含有したターゲットを用いることにより、スパッタリング法で形成することができる。その他、真空蒸着法、塗布法、インクジェット法、スピンコート法等により作製してもよい。
 陽極上に形成されるEL層のうち、陽極に接して形成される正孔注入層は、陽極の仕事関数に関係なく正孔(ホール)注入が容易である複合材料を用いて形成されるため、電極材料として可能な材料(例えば、金属、合金、電気伝導性化合物、およびこれらの混合物、その他、元素周期表の第1族又は第2族に属する元素も含む)を用いることができる。
 仕事関数の小さい材料である、元素周期表の第1族又は第2族に属する元素、即ちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等を用いることもできる。なお、アルカリ金属、アルカリ土類金属、およびこれらを含む合金を用いて陽極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。さらに、銀ペースト等を用いる場合には、塗布法やインクジェット法等を用いることができる。
(正孔注入層)
 正孔注入層は、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物等を用いることができる。
 低分子の有機化合物である4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、4,4’-ビス(N-{4-[N’-(3-メチルフェニル)-N’-フェニルアミノ]フェニル}-N-フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物等も挙げられる。
 高分子化合物(オリゴマー、デンドリマー、ポリマー等)を用いることもできる。例えば、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)ベンジジン](略称:Poly-TPD)等の高分子化合物が挙げられる。また、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子化合物を用いることもできる。
(正孔輸送層)
 正孔輸送層は、正孔輸送性の高い物質を含む層である。正孔輸送層には、芳香族アミン化合物、カルバゾール誘導体、アントラセン誘導体等を使用する事ができる。具体意的には、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)やN,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BAFLP)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)等の芳香族アミン化合物等を用いることができる。ここに述べた物質は、主に10-6cm/Vs以上の正孔移動度を有する物質である。
 正孔輸送層には、CBP、CzPA、PCzPAのようなカルバゾール誘導体や、t-BuDNA、DNA、DPAnthのようなアントラセン誘導体を用いても良い。ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。
 但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。なお、正孔輸送性の高い物質を含む層は、単層のものだけでなく、上記物質からなる層が二層以上積層したものとしてもよい。
(発光層のゲスト材料)
 発光層は、発光性の高い物質を含む層であり、式(1)で表される化合物の他、種々の材料を用いることができる。例えば、発光性の高い物質としては、蛍光を発光する蛍光性化合物や燐光を発光する燐光性化合物を用いることができる。蛍光性化合物は一重項励起状態から発光可能な化合物であり、燐光性化合物は三重項励起状態から発光可能な化合物である。
 発光層に用いることができる青色系の蛍光発光材料として、ピレン誘導体、スチリルアミン誘導体、クリセン誘導体、フルオランテン誘導体、フルオレン誘導体、ジアミン誘導体、トリアリールアミン誘導体等が使用できる。具体的には、N,N’-ビス[4-(9H-カルバゾール-9-イル)フェニル]-N,N’-ジフェニルスチルベン-4,4’-ジアミン(略称:YGA2S)、4-(9H-カルバゾール-9-イル)-4’-(10-フェニル-9-アントリル)トリフェニルアミン(略称:YGAPA)、4-(10-フェニル-9-アントリル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBAPA)等が挙げられる。
 発光層に用いることができる緑色系の蛍光発光材料として、芳香族アミン誘導体等を使用できる。具体的には、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCABPhA)、N-(9,10-ジフェニル-2-アントリル)-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPABPhA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)]-N-[4-(9H-カルバゾール-9-イル)フェニル]-N-フェニルアントラセン-2-アミン(略称:2YGABPhA)、N,N,9-トリフェニルアントラセン-9-アミン(略称:DPhAPhA)等が挙げられる。
 発光層に用いることができる赤色系の蛍光発光材料として、テトラセン誘導体、ジアミン誘導体等が使用できる。具体的には、N,N,N’,N’-テトラキス(4-メチルフェニル)テトラセン-5,11-ジアミン(略称:p-mPhTD)、7,14-ジフェニル-N,N,N’,N’-テトラキス(4-メチルフェニル)アセナフト[1,2-a]フルオランテン-3,10-ジアミン(略称:p-mPhAFD)等が挙げられる。
 発光層に用いることができる青色系の燐光発光材料として、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体が使用される。具体的には、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)テトラキス(1-ピラゾリル)ボラート(略称:FIr6)、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス[2-(3’,5’ビストリフルオロメチルフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:Ir(CF3ppy)2(pic))、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)アセチルアセトナート(略称:FIracac)等が挙げられる。
 発光層に用いることができる緑色系の燐光発光材料として、イリジウム錯体等が使用される。トリス(2-フェニルピリジナト-N,C2’)イリジウム(III)(略称:Ir(ppy)3)、ビス(2-フェニルピリジナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(ppy)2(acac))、ビス(1,2-ジフェニル-1H-ベンゾイミダゾラト)イリジウム(III)アセチルアセトナート(略称:Ir(pbi)2(acac))、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:Ir(bzq)2(acac))等が挙げられる。
 発光層に用いることができる赤色系の燐光発光材料として、イリジウム錯体、白金錯体、テルビウム錯体、ユーロピウム錯体等の金属錯体が使用される。具体的には、ビス[2-(2’-ベンゾ[4,5-α]チエニル)ピリジナト-N,C3’]イリジウム(III)アセチルアセトナート(略称:Ir(btp)2(acac))、ビス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(piq)2(acac))、(アセチルアセトナト)ビス[2,3-ビス(4-フルオロフェニル)キノキサリナト]イリジウム(III)(略称:Ir(Fdpq)2(acac))、2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィリン白金(II)(略称:PtOEP)等の有機金属錯体が挙げられる。
 また、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:Tb(acac)3(Phen))、トリス(1,3-ジフェニル-1,3-プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:Eu(DBM)3(Phen))、トリス[1-(2-テノイル)-3,3,3-トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:Eu(TTA)3(Phen))等の希土類金属錯体は、希土類金属イオンからの発光(異なる多重度間の電子遷移)であるため、燐光性化合物として用いることができる。
(発光層のホスト材料)
 発光層としては、上述した発光性の高い物質(ゲスト材料)を他の物質(ホスト材料)に分散させた構成としてもよい。発光性の高い物質を分散させるための物質としては、各種のものを用いることができ、発光性の高い物質よりも最低空軌道準位(LUMO準位)が高く、最高被占有軌道準位(HOMO準位)が低い物質を用いることが好ましい。
 発光性の高い物質を分散させるための物質(ホスト材料)としては、1)アルミニウム錯体、ベリリウム錯体、若しくは亜鉛錯体等の金属錯体、2)オキサジアゾール誘導体、ベンゾイミダゾール誘導体、若しくはフェナントロリン誘導体等の複素環化合物、3)カルバゾール誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、若しくはクリセン誘導体等の縮合芳香族化合物、3)トリアリールアミン誘導体、若しくは縮合多環芳香族アミン誘導体等の芳香族アミン化合物が使用される。具体的には、トリス(8-キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4-メチル-8-キノリノラト)アルミニウム(III)(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq2)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)等の金属錯体、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(略称:TAZ)、2,2’,2’’-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(略称:TPBI)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)等の複素環化合物や、9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:CzPA)、3,6-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:DPCzPA)、9,10-ビス(3,5-ジフェニルフェニル)アントラセン(略称:DPPA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、2-tert-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、9,9’-ビアントリル(略称:BANT)、9,9’-(スチルベン-3,3’-ジイル)ジフェナントレン(略称:DPNS)、9,9’-(スチルベン-4,4’-ジイル)ジフェナントレン(略称:DPNS2)、3,3’,3’’-(ベンゼン-1,3,5-トリイル)トリピレン(略称:TPB3)、9,10-ジフェニルアントラセン(略称:DPAnth)、6,12-ジメトキシ-5,11-ジフェニルクリセン等の縮合芳香族化合物、N,N-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:CzA1PA)、4-(10-フェニル-9-アントリル)トリフェニルアミン(略称:DPhPA)、N,9-ジフェニル-N-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:PCAPA)、N,9-ジフェニル-N-{4-[4-(10-フェニル-9-アントリル)フェニル]フェニル}-9H-カルバゾール-3-アミン(略称:PCAPBA)、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、NPB(又はα-NPD)、TPD、DFLDPBi、BSPB等の芳香族アミン化合物等を用いることができる。また、発光性の高い物質(ゲスト材料)を分散させるための物質(ホスト材料)は複数種用いることができる。
 本発明の一態様である有機EL素子において、燐光ホストとして好適な化合物の具体例としては、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。燐光ホストは単独で使用してもよいし、2種以上を併用してもよい。
 ホスト材料としての具体例としては、例えば、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(略称:TAZ)、2,2’,2’’-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(略称:TPBI)、およびバソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)等の複素環化合物、9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:CzPA)、3,6-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:DPCzPA)、9,10-ビス(3,5-ジフェニルフェニル)アントラセン(略称:DPPA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、2-tert-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、9,9’-ビアントリル(略称:BANT)、9,9’-(スチルベン-3,3’-ジイル)ジフェナントレン(略称:DPNS)、9,9’-(スチルベン-4,4’-ジイル)ジフェナントレン(略称:DPNS2)、3,3’,3’’-(ベンゼン-1,3,5-トリイル)トリピレン(略称:TPB3)、9,10-ジフェニルアントラセン(略称:DPAnth)、および6,12-ジメトキシ-5,11-ジフェニルクリセン等の縮合芳香族化合物、N,N-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:CzA1PA)、4-(10-フェニル-9-アントリル)トリフェニルアミン(略称:DPhPA)、N,9-ジフェニル-N-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:PCAPA)、N,9-ジフェニル-N-{4-[4-(10-フェニル-9-アントリル)フェニル]フェニル}-9H-カルバゾール-3-アミン(略称:PCAPBA)、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、NPB(又はα-NPD)、TPD、DFLDPBi、およびBSPB等の芳香族アミン化合物等が挙げられる。
(電子輸送層)
 電子輸送層は、電子輸送性の高い物質を含む層である。電子輸送層には、1)アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体、2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、フェナントロリン誘導体等の複素芳香族化合物、3)高分子化合物を使用することができる。具体的には低分子の有機化合物として、Alq、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq2)、Liq、BAlq、Znq、ZnPBO、ZnBTZ等の金属錯体等を用いることができる。また、金属錯体以外にも、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(ptert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)等の複素芳香族化合物も用いることができる。ここに述べた物質は、主に10-6cm/Vs以上の電子移動度を有する物質である。尚、正孔輸送性よりも電子輸送性の高い物質であれば、上記以外の物質を電子輸送層として用いてもよい。また、電子輸送層は、単層のものだけでなく、上記物質からなる層が二層以上積層したものとしてもよい。
(電子注入層)
 電子注入層は、電子注入性の高い物質を含む層である。電子注入層には、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF2)、リチウム酸化物(LiOx)等のようなアルカリ金属、アルカリ土類金属、又はそれらの化合物を用いることができる。その他、電子輸送性を有する物質にアルカリ金属、アルカリ土類金属、又はそれらの化合物を含有させたもの、具体的にはAlq中にマグネシウム(Mg)を含有させたもの等を用いてもよい。尚、この場合には、陰極からの電子注入をより効率良く行うことができる。
 あるいは、電子注入層に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
(陰極)
 陰極には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物等を用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族又は第2族に属する元素、即ちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等が挙げられる。
 尚、アルカリ金属、アルカリ土類金属、これらを含む合金を用いて陰極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペースト等を用いる場合には、塗布法やインクジェット法等を用いることができる。
 尚、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、グラフェン、珪素若しくは酸化珪素を含有した酸化インジウム-酸化スズ等様々な導電性材料を用いて陰極を形成することができる。これらの導電性材料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することができる。
 本発明の一態様である有機エレクトロルミネッセンス素子は、様々な電子機器に使用でき、例えば壁掛けテレビのフラットパネルディスプレイ等の平面発光体、複写機、プリンター、液晶ディスプレイのバックライト又は計器類等の光源、表示板、標識灯等に利用できる。また、本発明の化合物は、有機EL素子だけでなく、電子写真感光体、光電変換素子、太陽電池、イメージセンサー等の分野においても使用できる。
 以下、実施例を示して本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1. 化合物1の製造
Figure JPOXMLDOC01-appb-C000020
(1)化合物1-5の製造
 500mLのフラスコに2-ブロモカルバゾール8.36g(34mmol)、ヨウ化銅0.64g(3.4mmol)、L-プロリン0.78g(6.8mmol)及び炭酸カリウム11.7g(85.0mmol)を入れて、系内を窒素パージを行った。次いで、窒素気流下でジメチルスルホキシド200mL、2-ヨウ化ピリジン10.5g(50.9mmol)を加えて、100℃で10時間反応させた。
 得られた反応溶液を水500mL中に投入し、塩化メチレン200mLで2回抽出した。取り出した塩化メチレン層をさらに水100mLで2回洗浄した後、硫酸マグネシウムで乾燥させた。乾燥材をろ別後、溶媒を除去することで濃褐色オイルを得た。ヘキサン/塩化メチレン(1/1)でシリカカラム精製(関東化学製シリカゲル60N,100~210μm)を行い、白色結晶の化合物1-5 10.8gを得た(収率99%)。
H-NMR(CDCl):δ8.73(s,1H)、8.08(d,1H)、8.01(s,1H)、7.94-7.96(m,2H)、7.77(d,1H)、7.62(d,1H)、7.41-7.45(m,2H)、7.32-7.34(m,2H)
(2)化合物1-4の製造
 300mLのフラスコに入れたN,N-ジメチルエタノール4.5mLのヘキサン50mL溶液に0℃、窒素下でn-BuLi(1.63Mヘキサン溶液)55.3mL(90.2mmol)を少しずつ滴下し、1時間反応させた。次いで、4-フェニルピリジン2.3g(15mmol)のヘキサン10mL溶液を0℃で少しずつ添加した。添加後さらに2時間反応させた後、-78℃下で四臭化炭素17.9g(54.1mmol)のヘキサン35mL溶液を30分かけて滴下した。滴下終了後、室温に戻しながら4時間反応させた。
 得られた反応溶液に水50mLを少しずつ添加し、数分間室温で撹拌後、溶媒を除去した。内容物を塩化メチレン200mLで抽出し、硫酸マグネシウムで乾燥した。次いで乾燥材をろ別後し、溶媒を除去することで濃褐色固体を得た。ヘキサン/酢酸エチル(9/1)でシリカカラム精製(富士シリシア製BW-820MH)を行い、淡褐色結晶の化合物1-4 1.2gを得た(収率32%)。
H-NMR(CDCl):δ8.41(d,1H)、7.70(s,1H)、7.62-7.66(m,2H)、7.45-7.52(m,4H)
(3)化合物1-3の製造
 200mLのフラスコに化合物1-4 1.2g(5.1mmol)、3-メトキシフェニルボロン酸0.85g(5.6mmol)、テトラキストリフェニルホスフィンパラジウム0.12g(0.11mmol)を入れて、系内を窒素パージを行った。次いで、窒素気流下で1,2-ジメトキシエタン60mL、水12mLに溶解させた炭酸ナトリウム0.81g(7.6mmol)を加えて、18時間加熱還流させた。
 得られた反応溶液に酢酸エチル150mLを加えて抽出後、硫酸マグネシウムで乾燥させた。乾燥材をろ別後、溶媒を除去することで濃褐色オイルを得た。ヘキサン/酢酸エチル(8/2)でシリカカラム精製(関東化学製シリカゲル60N,100~210μm)を行い、化合物1-2 1.1gを得た(収率81%)。
H-NMR(CDCl):δ8.72(d,1H)、7.91(d,1H)、7.59-7.69(m,4H)、7.38-7.53(m,5H)、6.97-7.00(m,1H)、3.90(d,3H)
(4)化合物1-2の製造
 200mLのフラスコに化合物1-3 1.1g(4.3mmol)を入れて、系内を窒素パージ後、窒素気流下で塩化メチレン70mLを加えた。0℃下で三臭化ホウ素(1M塩化メチレン溶液)8.6mL(8.6mmol)を滴下後、室温にもどしながら、4時間反応させた。
 得られた反応溶液に水20mLを少しずつ添加後、炭酸水素ナトリウム水溶液により、pHを7に調節した。酢酸エチル100mLで抽出後、硫酸マグネシウムで乾燥させた。乾燥材をろ別後、溶媒を除去することで褐色固体を得た。ヘキサン/酢酸エチル(1/1)でシリカカラム精製(関東化学製シリカゲル60N,100~210μm)を行い、化合物1-2 0.49gを得た(収率46%)。
H-NMR(CDCl):δ8.71(d,1H)、7.91(s,1H)、7.68(d,2H)、7.60(s,1H)、7.45-7.54(m,5H)、7.36(t,1H)、6.93-6.94(m,1H)
(5)化合物1-1の製造
 100mLのフラスコに化合物1-5 0.76g(2.4mmol)、化合物1-2 0.49g(1.98mmol)、ヨウ化銅0.19g(0.99mmol)、2-ピコリン酸0.64g(5.2mmol)及びリン酸カリウム1.7g(8.1mmol)を入れて、系内を窒素パージを行った。次いで、窒素気流下でジメチルスルホキシド37mLを加えて、165℃で8時間反応させた。
 得られた反応溶液を水350mL中に投入し、塩化メチレン100mLで抽出した。取り出した塩化メチレン層を硫酸マグネシウムで乾燥後、溶媒を除去することで褐色オイルを得た。ヘキサン/酢酸エチル(6/4)でシリカカラム精製(関東化学製シリカゲル60N,100~210μm)を行い、白色結晶の化合物1-1 0.89gを得た(収率92%)。
H-NMR(CDCl):δ8.69(d,1H)、8.67(d,1H)、8.06(d,2H)、7.88-7.91(m,2H)、7.76-7.82(m,3H)、7.59-7.65(m,4H)、7.39-7.49(m,6H)、7.24-7.29(m,2H)、7.05-7.09(m,2H)
(6)化合物1の製造
 100mLのフラスコに化合物1-1 0.89g(1.8mmol)、テトラクロロ白金(II)酸カリウム 0.83g(1.99mmol)を入れて、系内を真空ポンプで減圧にして窒素パージを行った。次いで、窒素気流下で2-エトキシエタノール53mL及び水16mLを加えて、7時間加熱還流させた。
 放冷後、得られた黄色溶液に塩化メチレン150mL、水150mLを加えて抽出後、取り出した塩化メチレン層を硫酸マグネシウムで乾燥後、溶媒を除去することで暗オレンジ色結晶を得た。塩化メチレンのみでシリカカラム精製(関東化学製シリカゲル60N,100~210μm)を2回行い、黄色結晶の化合物1 0.30gを得た(収率24%)。マススペクトル分析の結果、分子量682.13に対し、m/e=682だった。
H-NMR(CDCl):δ9.12(dd,1H)、8.76(d,1H)、8.21-8.25(m,2H)、8.05(d,1H)、7.98(t,2H)、7.79-7.84(m,3H)、7.68(d,1H)、7.64(dd,1H)、7.56-7.60(m,3H)、7.44(t,1H)、7.39(t,1H)、7.30(t,2H)、7.22(t,2H)
実施例2. 化合物2の製造
Figure JPOXMLDOC01-appb-C000021
(1)化合物2-5の製造
 300mLのフラスコに3,5-ジブロモアニソール 8.3g(31.1mmol)、フェニルボロン酸3.8g(31.1mmol)、テトラキストリフェニルホスフィンパラジウム0.72g(0.62mmol)を入れて、系内を窒素パージを行った。次いで、窒素気流下で1,2-ジメトキシエタン120mL、水35mLに溶解させた炭酸ナトリウム4.9g(46.7mmol)を加えて、8時間加熱還流させた。
 得られた反応溶液から溶媒を除去し、塩化メチレン200mLを加えて抽出後、硫酸マグネシウムで乾燥させた。乾燥材をろ別後、溶媒を除去することで淡黄色オイルを得た。ヘキサン/塩化メチレン(9/1)でシリカカラム精製(関東化学製シリカゲル60N,100~210μm)を行い、化合物2-5 4.7gを得た(収率57%)。
H-NMR(CDCl):δ7.53(d,2H)、7.42(t,2H)、7.32-7.38(m,2H)、7.03(d,2H)、3.80(s,3H)
(2)化合物2-4の製造
 300mLのフラスコに入れた化合物2-5 4.7g(17.7mmol)のテトラヒドロフラン120mL溶液に-78℃、窒素下でn-BuLi(1.63Mヘキサン溶液)13.1mL(21.3mmol)を少しずつ滴下し、1.5時間反応させた。次いで、ホウ酸トリイソプロピル6.7g(35.5mmol)のテトラヒドロフラン10mL溶液を-78℃で滴下した。滴下後、室温にもどしながら、5.5時間反応させた。
 得られた白濁溶液に3NのHCl水溶液50mLを滴下し、溶媒を除去した。酢酸エチル150mLを加えて抽出し、硫酸マグネシウムで乾燥後、溶媒を除去することで白色結晶を得た。ヘキサン/トルエンから再結晶を行い、白色の化合物2-4 3.4gを得た(収率85%)。
(3)化合物2-3の製造
 300mLのフラスコに化合物2-4 2.1g(9.1mmol)、テトラキストリフェニルホスフィンパラジウム0.21g(0.18mmol)を入れて、系内を窒素パージを行った。次いで、窒素気流下で1,2-ジメトキシエタン90mL、2-ブロモピリジン 1.4g(9.1mmol)及び水24mLに溶解させた炭酸ナトリウム1.4g(13.6mmol)を加えて、7時間加熱還流させた。
 得られた反応溶液から溶媒を除去し、塩化メチレン80mLを加えて抽出後、硫酸マグネシウムで乾燥させた。乾燥材をろ別後、溶媒を除去することで黄色オイルを得た。ヘキサン/酢酸エチル(80/20~75/25)でシリカカラム精製(関東化学製シリカゲル60N,100~210μm)を行い、化合物2-3 1.9gを得た(収率80%)。
H-NMR(CDCl):δ8.70(s,1H)、7.78(s,3H)、7.67(d,2H)、7.57(s,1H)、7.43-7.47(m,2H)、7.37(d,1H)、7.23-7.26(m,1H)、7.18(s,1H)、3.94(s,3H)
(4)化合物2-2の製造
 300mLのフラスコに化合物2-3 1.9g(7.3mmol)を入れて、系内を窒素パージ後、窒素気流下で塩化メチレン120mLを加えた。0℃下で三臭化ホウ素(1M塩化メチレン溶液)15mL(15mmol)を滴下後、室温にもどしながら、5時間反応させた。
 得られた反応溶液に水20mLを少しずつ添加後、炭酸水素ナトリウム水溶液により、pHを7に調節した。酢酸エチル100mLで抽出後、硫酸マグネシウムで乾燥させた。乾燥材をろ別後、溶媒を除去することで褐色固体を得た。ヘキサン/酢酸エチル(1/1)でシリカカラム精製(関東化学製シリカゲル60N,100~210μm)を行い、化合物2-2 0.6gを得た(収率33%)。
H-NMR(CDCl):δ8.70(s,1H)、7.76-7.81(m,2H)、7.72(d,1H)、7.63(d,2H)、7.53(m,1H)、7.44(t,2H)、7.36(t,1H)、7.27-7.29(m,1H)、7.13-7.14(m,1H)
(5)化合物2-1の製造
 300mLのフラスコに化合物1-5 1.5g(4.6mmol)、化合物2-2 0.9g(3.8mmol)、ヨウ化銅0.36g(1.9mmol)、2-ピコリン酸1.2g(10mmol)及びリン酸カリウム3.3g(15.5mmol)を入れて、系内を窒素パージを行った。次いで、窒素気流下でジメチルスルホキシド72mLを加えて、165℃で6.5時間反応させた。
 得られた反応溶液を水250mL中に投入し、塩化メチレン150mLで2回抽出した。取り出した塩化メチレン層を硫酸マグネシウムで乾燥後、溶媒を除去することで濃褐色オイルを得た。ヘキサン/酢酸エチル(6/4)でシリカカラム精製(関東化学製シリカゲル60N,100~210μm)を行い、白色結晶の化合物2-1 1.4gを得た(収率75%)。
H-NMR(CDCl):δ8.67(s,2H)、8.08(d,2H)、7.98(s,1H)、7.87-7.90(m,1H)、7.81(d,1H)、7.70-7.76(m,2H)7.62-7.64(m,5H)、7.40-7.44(m,3H)、7.32-7.36(m,3H)、7.23-7.26(m,2H)、7.09(d,1H)
(6)化合物2の製造
 100mLのフラスコに化合物2-1 1.4g(2.9mmol)、テトラクロロ白金(II)酸カリウム 1.3g(3.1mmol)を入れて、系内を真空ポンプで減圧にして窒素パージを行った。次いで、窒素気流下で2-エトキシエタノール85mL及び水26mLを加えて、9時間加熱還流させた。
 放冷後、得られた黄色溶液に塩化メチレン150mL、水200mLを加えて抽出後、取り出した塩化メチレン層を硫酸マグネシウムで乾燥後、溶媒を除去することで暗オレンジ色結晶を得た。塩化メチレンのみでシリカカラム精製(関東化学製シリカゲル60N,100~210μm)を2回行い、さらにヘキサン/塩化メチレン(5/5~4/6)で精製を行ったところ、黄色結晶の化合物2 0.88gを得た(収率44%)。マススペクトル分析の結果、分子量682.13に対し、m/e=682だった。
H-NMR(CDCl):δ9.08(dd,1H)、8.77(d,1H)、8.24(d,1H)、8.11(d,1H)、8.06(d,1H)、7.97-8.04(m,3H)、7.78-7.83(m,4H)、7.48(t,2H)、7.44-7.46(m,3H)、7.38-7.41(m,2H)、7.33(d,1H)、7.21(t,1H)
 次に有機EL素子の作製及び評価を行った。有機EL素子の製造に用いた化合物を下記に示す。
Figure JPOXMLDOC01-appb-C000022
実施例3(有機EL素子の作製、評価)
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITO膜厚は130nmとした。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HT-1を蒸着し、膜厚5nmの化合物HT-1膜を形成した。このHT-1膜は、正孔注入層として機能する。
 このHT-1膜の成膜に続けて、化合物HT-2を蒸着し、HT-1膜上に膜厚90nmのHT-2膜を成膜した。このHT-2膜は、第一の正孔輸送層として機能する。
 さらにHT-2膜の成膜に続けて、化合物HT-3を蒸着し、HT-2膜上に膜厚60nmのHT-3膜を成膜した。このHT-3膜は、第二の正孔輸送層として機能する。
 このHT-2膜上に化合物H-1(ホスト材料)および化合物1(ドーパント材料)を化合物1の割合が5重量%となるように共蒸着し、膜厚40nmの発光層を成膜した。
 この発光層上にET-1を蒸着して、膜厚30nmの電子輸送層を形成した。
 この電子注入層上にLiFを蒸着して、膜厚1nmのLiF膜を形成した。
 このLiF膜上に金属Alを蒸着して、膜厚80nmの金属陰極を形成した。
 このようにして、実施例3の有機EL素子を作製した。
実施例4~6、及び比較例1及び2
 ドーパントの種類及び割合を表1に示す通りとした以外は実施例3と同様にして有機EL素子を作製した。
<有機EL素子の評価>
 上記の手順で作製した有機EL素子について、以下の評価を行った。結果を表1に示す。
・初期性能
 電流密度が10mA/cmとなるように有機EL素子に電圧を印加し、そのときの駆動電圧(V)、電流効率(lm/W)およびEL発光スペクトルの発光主波長を分光放射輝度計(CS-1000:コニカミノルタ社製)にて計測した。
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、本発明に係る化合物1及び2を用いた実施例3~6の有機EL素子は、従来の発光材料(比較化合物)を用いた比較例1及び2の有機EL素子と比較して、発光層中の発光材料(ドーパント)の濃度が5wt%から10wt%へと変動した際の駆動電圧の変動幅が小さいことがわかる。
実施例7(湿式成膜を用いた有機EL素子の作製、評価)
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITO膜厚は130nmとした。
 前記のITO基板上にHERAEUS社製CLEVIOUS AI4083(商品名)を膜厚30nmでスピンコート法により成膜した。成膜後、アセトンにより不要な部分を除去し、次いで大気中で200℃のホットプレートで10分間焼成した。この膜は正孔輸送層として機能する。
 化合物H-1(ホスト材料)および化合物2(ドーパント材料)を、化合物H-1:化合物2の割合が90:10となる混合比(重量比)で1.4重量%のトルエン溶液を調整した。このトルエン溶液を用い、前記正孔輸送層膜の上にスピンコート法により、50nmの膜厚になるように塗布した。塗布後、不要部分をトルエンにて除去し、150℃のホットプレートで10分間加熱した。この膜は発光層として機能する。尚、発光層の成膜にかかる全ての操作は窒素雰囲気のグローブボックス中で実施した。
 上記積層基板を蒸着装置中に搬送し、ET-1を蒸着して、膜厚50nmの電子輸送層を形成した。この電子注入層上にLiFを蒸着して、膜厚1nmのLiF膜を形成した。
 このLiF膜上に金属Alを蒸着して、膜厚80nmの金属陰極を形成した。
 このようにして、実施例7の有機EL素子を作製した。
 得られた有機EL素子の発光層における濃度は10重量%、駆動電圧は4.85V、電流効率は33lm/W、発光主波長は530nmであった。
実施例8. 化合物70の製造
Figure JPOXMLDOC01-appb-C000023
(1)化合物70-8の製造
 500mLのフラスコに3-ブロモフェニルボロン酸 9.7g(48.4mmol)、炭酸ナトリウム 11.3g(106.5mmol)、テトラキストリフェニルホスフィンパラジウム0.56g(0.48mmol)を入れて、系内の窒素パージを行った。次いで、窒素気流下で1,2-ジメトキシエタン120mL、エタノール40mL、水53mL及び2-ブロモピリジン 7.6g(48.4mmol)を加えて、16時間加熱還流させた。
 得られた反応溶液から溶媒を除去し、塩化メチレン200mLを加えて抽出後、硫酸マグネシウムで乾燥させた。乾燥剤をろ別後、溶媒を除去することで橙色オイルを得た。ヘキサン/酢酸エチル(10/1)でシリカカラム精製(富士シリシアBW-820MH)を行い、化合物70-8 9.9gを得た(収率88%)。
H-NMR(CDCl):δ8.70(d,1H)、8.18(dd,1H)、7.93(dd,1H)、7,76-7.79(m,1H)、7.69-7.74(m,1H)、7.53-7.55(m,1H)7.32-7.36(m,1H)、7.24-7.25(m,1H)
(2)化合物70-7の製造
 300mLのフラスコに2-ブロモニトロベンゼン 4.1g(20.2mmol)、4-メトキシフェニルボロン酸 3.1g(20.2mmol)、テトラキストリフェニルホスフィンパラジウム0.47g(0.40mmol)を入れて、系内の窒素パージを行った。次いで、窒素気流下で1,2-ジメトキシエタン180mL、水45mLに溶解させた炭酸ナトリウム 3.2g(30.3mmol)を加えて、8時間加熱還流させた。
 得られた反応溶液から溶媒を除去し、塩化メチレン200mL、水100mLを加えて抽出後、塩化メチレン層を硫酸マグネシウムで乾燥させた。乾燥剤をろ別後、溶媒を除去することで黄色オイルを得た。ヘキサン/酢酸エチル(8/2)でシリカカラム精製(関東化学製シリカゲル60N,100~210μm)を行い、化合物70-7 4.5gを得た(収率97%)。
H-NMR(CDCl):δ7.80(d,1H)、7.56-7.60(m,1H)、7.44(dd,2H)、7.22-7.25(m,2H)、6.93-6.96(m,2H)、3.84(s,3H)
(3)化合物70-6の製造
 200mLのフラスコに化合物70-7 4.5g(19.7mmol)、トリフェニルホスフィン 12.9g(49.2mmol)を入れて、系内の窒素パージを行った。次いでo-ジクロロベンゼン 45mLを入れて、17時間加熱反応させた(オイルバス温度190℃)。
 得られた溶液から、o-ジクロロベンゼンを減圧蒸留にて除去した後、残渣をヘキサン/酢酸エチル(8/2~5/5)でシリカカラム精製(関東化学製シリカゲル60N,100~210μm)を行い、化合物70-6 2.9gを得た(収率74%)。
H-NMR(CDCl):δ7.92-7.96(m,3H)、7.33-7.39(m,2H)、7.20(s,1H)、6.92(d,1H)、6.86(dd,1H)、3.90(s,3H)
(4)化合物70-5の製造
 300mLのフラスコにイミダゾール 10.4g(153mmol)、ヨウ化銅 4.1g(21.8mmol)及びリン酸カリウム 46.4g(218mmol))を入れて、系内の窒素パージを行った。次いで、窒素気流下でN,N-ジメチルホルムアミド 110mL、2-ヨード-m-キシレン 25.3g(109mmol)を加えて、25時間加熱させた(オイルバス温度190℃)。
 得られた反応溶液を水300mL中に投入し、しばらく撹拌した後、塩化メチレン200mLにて抽出を行った。有機層を硫酸マグネシウムで乾燥し、溶媒を除去することで得たオイルをヘキサン/酢酸エチル(7/3~5/5)で2回シリカカラム精製(関東化学製シリカゲル60N,100~210μm)を行い、化合物70-5 7.1gを得た(収率38%)。
H-NMR(CDCl):δ7.46(s,1H)、7.25(d,2H)、7.15(d,2H)、6.92(s,1H)、2.05(s,6H)
(5)化合物70-4の製造
  300mLのフラスコに化合物70-5 5.7g(32.9mmol)を入れて、系内を窒素パージ後、窒素気流下でテトラヒドロフラン120mLを加えた。-78℃下でn-ブチルリチウム(1.55Mヘキサン溶液)23mL(36mmol)を滴下後、その温度でさらに2時間反応させた。次いで、-78℃でテトラヒドロフラン70mLに溶解させたヨウ素 10g(39mmol)を滴下後、室温に戻しながら、1時間反応させた。
 得られた溶液に水60mLを少しづつ添加し、酢酸エチル300mLにて抽出を行った。有機層を硫酸マグネシウムで乾燥し、溶媒を除去することで濃褐色結晶を得た。ヘキサン/酢酸エチル(85/15~80/20)でシリカカラム精製(関東化学製シリカゲル60N,100~210μm)を行い、化合物70-4 9.4gを得た(収率96%)。
H-NMR(CDCl):δ7.26-7.33(m,2H)、7.18(d,2H)、7.03(s,1H)、2.05(s,6H)
(6)化合物70-3の製造
 300mLのフラスコに化合物70-4 4.1g(13.7mmol)、化合物70-6 2.7g(13.7mmol)、ヨウ化銅 1.1g(5.7mmol)及びリン酸カリウム 4.8g(22.9mmol)を入れて、系内の窒素パージを行った。次いで、窒素気流下で1,4-ジオキサン 160mL、trans-1,2-ジアミノシクロヘキサン 6.5g(57.2mmol)を加えて、29時間加熱還流させた。
 得られた反応溶液から溶媒を除去し、塩化メチレン300mL、飽和塩化ナトリウム水溶液300mLを加えて抽出後、塩化メチレン層を硫酸マグネシウムで乾燥させた。乾燥剤をろ別後、溶媒を除去することで濃褐色オイルを得た。ヘキサン/酢酸エチル(85/15~70/30)で2回シリカカラム精製(関東化学製シリカゲル60N,100~210μm)を行い、化合物70-3 2.1gを得た(収率41%)。
H-NMR(CDCl):δ7.80-7.85(m,2H)、7.40(s,1H)、7.14-7.25(m,3H)、7.11(s,1H)、7.01-7.05(m,1H)、6.93(d,2H)、6.81(d,1H)、6.74(d,1H)、3.79(s,3H)、2.05(s,6H)
(7)化合物70-2の製造
 300mLのフラスコに化合物70-3 1.05g(2.9mmol)を入れて、系内を窒素パージ後、窒素気流下で塩化メチレン100mLを加えた。-78℃下で三臭化ホウ素(1M塩化メチレン溶液)14.3mL(14.3mmol)を滴下後、室温にもどしながら、6時間反応させた。
 得られた反応溶液に水100mLを少しずつ添加後、炭酸水素ナトリウム水溶液により、pHを7に調節した。酢酸エチル100mLで抽出後、硫酸マグネシウムで乾燥させた。乾燥材をろ別後、溶媒を除去することで褐色固体を得た。ヘキサン/酢酸エチル(1/1)でシリカカラム精製(関東化学製シリカゲル60N,100~210μm)を行い、化合物70-2 0.7gを得た(収率69%)。
(8)化合物70-1の製造
 200mLのフラスコに化合物70-2 0.6g(1.7mmol)、ヨウ化銅 0.16g(0.8mmol)、2-ピコリン酸 0.55g(4.5mmol)及びリン酸カリウム 1.4g(6.8mmol)を入れて、系内の窒素パージを行った。次いで、窒素気流下でジメチルスルホキシド 63mLに溶解させた化合物70-8 0.51g(2.2mmol)を加えて、18時間加熱した(オイルバス温度165℃)。
 得られた反応溶液を飽和食塩水300mL中に投入し、しばらく撹拌した後、塩化メチレン200mLにて抽出を行った。有機層を硫酸マグネシウムで乾燥し、溶媒を除去することで得たオイルをヘキサン/酢酸エチル(7/3)でシリカカラム精製(関東化学製シリカゲル60N,100~210μm)を行い、化合物70-1 0.31gを得た(収率36%)。
H-NMR(CDCl):δ8.68(d,1H)、7.89-7.93(m,2H)、7.66-7.77(m,3H)、7.52(m,1H)、7.20-7.40(m,7H)、6.80-7.03(m,6H)、1.90(s,6H)
(9)化合物70の製造
 100mLのフラスコに化合物70-1 0.86g(1.7mmol)、テトラクロロ白金(II)酸カリウム 0.72g(1.7mmol)及びテトラn-ブチルアンモニウムクロライド 0.02gを入れて、系内を真空ポンプで減圧にして窒素パージを行った。次いで、窒素気流下で酢酸 100mLを加えて、18時間加熱還流させた。
 放冷後、沈殿した黄色結晶をろ別し、メタノールで洗浄した。塩化メチレンのみでシリカカラム精製(関東化学製シリカゲル60N,100~210μm)、次いでヘキサン/塩化メチレン(3/7)でシリカカラム精製(富士シリシア製Chromatorex NH)を行い、黄色結晶の化合物70 0.77gを得た(収率63%)
 マススペクトル分析の結果、分子量699.68に対し、m/e=699であった。
H-NMR(CDCl):δ9.10(d,1H)、7.9-8.1(m,2H)、7.82(d,1H)、7.77(d,1H)、7.67(dd,1H)、7.55(dd,1H)、7.40-7.45(m,1H)、7.26-7.31(m,2H)、7.17(dd,1H)、7.00-7.08(m,3H)、6.92(br,2H)、6.82(br,1H)、6.73(t,1H)、1.80(br,6H)
実施例9及び10
 ドーパントの種類及び割合を表2に示す通りとした以外は実施例3と同様にして有機EL素子を作製し、評価した。
Figure JPOXMLDOC01-appb-T000002
 表2の結果より、本発明に係る化合物70を用いた実施例9及び10の有機EL素子は、従来の発光材料(比較化合物)を用いた比較例1及び2の有機EL素子と比較して、発光層中の発光材料(ドーパント)の濃度が5wt%から10wt%へと変動した際の駆動電圧の変動幅が小さいことがわかる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (29)

  1.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000024
    (式(1)中、
     環Aは、Xを含んで構成される環形成炭素数6~30の芳香族炭化水素環、又はXを含んで構成される環形成原子数5~30の複素環である。
     環Bは、Xを含んで構成される環形成炭素数6~30の芳香族炭化水素環、又はXを含んで構成される環形成原子数5~30の複素環である。
     環Cは、Xを含んで構成される環形成炭素数6~30の芳香族炭化水素環、又はXを含んで構成される環形成原子数5~30の複素環である。
     R~Rは、それぞれ独立して、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、置換若しくは無置換の炭素数2~20のアルケニル基、置換若しくは無置換の炭素数2~20のアルキニル基、置換若しくは無置換の環形成炭素数6~30のアリール基、置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、置換若しくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換のアミノ基、置換もしくは無置換のシリル基、ニトロ基、シアノ基、カルボキシ基、又はハロゲン原子である。
     Y~Yは、それぞれ独立して、CH、Rが結合した炭素原子、又は窒素原子である。
     n~nは、それぞれ独立して、0~4である。
     n~nがそれぞれ2以上の場合、複数存在するR~Rは、互いに同一であっても異なっていてもよい。
     L及びLは、それぞれ環Aと環B、及び環Bと環Cを連結する基であり、それぞれ独立して-C(R-、-O-、-S-、-NR-又は-Si(R-である。
     R、R及びRは、それぞれ独立して水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。複数存在するR及びRは、互いに同一であっても異なっていてもよい。
     R~Rは、隣接するもの同士がそれぞれ互いに結合して環を形成してもよいし、環A~Cを構成する原子又はRが置換していないY~Yと互いに結合して環を形成してもよい。
     但し、n+n+n+n≧1の場合、存在するR~Rの少なくとも1つは、置換もしくは無置換の炭素数3~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、ハロゲン原子、又は、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアリール基、及び置換もしくは無置換の環形成炭素数6~30のアリールオキシ基から選択される基で置換されたシリル基からなる群から選択される置換基Zであるか、又は
     n+n+n+n=0であるか、若しくはn+n+n+n≧1であって存在するR~Rの全てが前記置換基Zではない場合、L及びLの少なくとも1つは、-C(R-、-NR-又は-Si(R-であり、存在するR~Rの少なくとも1つは、前記置換基Zを有する環形成炭素数6~30のアリール基、又は前記置換基Zを有する環形成原子数5~30のヘテロアリール基である。)
  2.  下記式(2)で表される請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000025
    (式(2)中、A~C、X~X、R~R、n~n、L及びLは、前記定義の通りである。)
  3.  下記式(3)で表される請求項1又は2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000026
    (式(3)中、A、B、X、X、R~R、n~n、L及びLは、前記定義の通りである。)
  4.  下記式(4)で表される請求項1~3のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000027
    (式(4)中、A、B、X、R~R、n~n、L及びLは、前記定義の通りである。)
  5.  下記式(5)で表される請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000028
    (式(5)中、A~C、X、X、Y~Y、R~R、n~n、L及びLは、前記定義の通りである。)
  6.  下記式(6)で表される請求項1又は5に記載の化合物。
    Figure JPOXMLDOC01-appb-C000029
    (式(6)中、A~C、X、X、R~R、n~n、L及びLは、前記定義の通りである。)
  7.  Lが、-O-、-S-又は-NR-である請求項1~6のいずれかに記載の化合物。
  8.  Lが-NR-であり、Rが置換もしくは無置換の環形成炭素数6~20のアリール基であり、該アリール基が環Bを構成する原子と結合してLの窒素原子を含むピロール環を形成している請求項1~7のいずれかに記載の化合物。
  9.  下記式(7)で表される請求項1~3、7及び8のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000030
    (式(7)中、A~C、X~X、Y~Y、R~R、n~n及びLは、前記定義の通りである。Rは、前記置換基Zであり、nは0~4の整数であり、nが2~4の整数の場合、複数のRは互いに同一であっても異なっていてもよい。)
  10.  下記式(8)で表される請求項1~3及び7~9のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000031
    (式(8)中、A、R~R、n~n及びLは、前記定義の通りである。Rは、前記置換基Zであり、nは0~4の整数であり、nが2~4の整数の場合、複数のRは互いに同一であっても異なっていてもよい。)
  11.  環Aが、Xを含んで構成される環形成原子数5若しくは6の複素芳香族環、又は、Xを含んで構成される環形成原子数5若しくは6の複素芳香族環にベンゼン環若しくは環形成原子数5又は6の複素芳香族環が縮合した環である請求項1~10のいずれかに記載の化合物。
  12.  環Aが、イミダゾール、ピラゾール、オキサゾール、チアゾール、ピリジン、ピラジン、トリアゾール、イミダゾリン、イソオキサゾール、イソチアゾール、ピリミジン、トリアジン、1-ピロリン、2,3,4,5-テトラヒドロピリジン、ベンゾイミダゾール、キノリン、イソキノリン、及びキノキサリンから選択される請求項1~11のいずれかに記載の化合物。
  13.  環Aが、下記式で表される部分構造から選択される請求項1~12のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000032
    (式中、R、n及びLは、前記定義の通りである。)
  14.  下記式(9)で表される請求項1、5及び13のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000033
    (式(9)中、B、C、X、X、Y~Y、R~R、n~n及びLは、前記定義の通りである。)
  15.  n+n+n+n≧1である、請求項1~14のいずれかに記載の化合物。
  16.  n+n+n+n≧1であり、R~Rの少なくとも1つが、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の炭素数3~20のアルキル基である請求項1~15のいずれかに記載の化合物。
  17.  n+n+n+n≧1であり、R~Rの少なくとも1つが、置換もしくは無置換のフェニル基である請求項1~16のいずれかに記載の化合物。
  18.  Lが、-O-又は-S-である請求項1~17のいずれかに記載の化合物。
  19.  Lが-C(R-であり、Rがメチル基、又は置換もしくは無置換のフェニル基である請求項1~18のいずれかに記載の化合物。
  20.  環Bが、Xを含んで構成される環形成炭素数6~20の芳香族炭化水素環である請求項1~9及び11~19のいずれかに記載の化合物。
  21.  環Cが、Xを含んで構成される環形成炭素数6~20の芳香族炭化水素環である請求項1、2、5~9及び11~20のいずれかに記載の化合物。
  22.  請求項1~21のいずれかに記載の化合物を含有する有機エレクトロルミネッセンス素子用材料。
  23.  請求項1~21のいずれかに記載の化合物と有機溶媒を含有する組成物。
  24.  さらに、ホスト材料を含有する請求項23に記載の組成物。
  25.  前記有機溶媒が、下記式(C1)で表される請求項23又は24に記載の組成物。
    Figure JPOXMLDOC01-appb-C000034
    (式(C1)中、Rは置換基であり、nは1以上6以下の整数である。nが2以上の場合、複数のRはそれぞれ同一でも異なっていてもよい。)
  26.  陰極と陽極の間に、発光層を含む1以上の有機薄膜層が挟持されてなる有機エレクトロルミネッセンス素子において、前記有機薄膜層の少なくとも一層が、請求項1~21のいずれかに記載の化合物を含有する有機エレクトロルミネッセンス素子。
  27.  前記発光層が、前記化合物を含有する請求項26に記載の有機エレクトロルミネッセンス素子。
  28.  前記化合物が、ドーパント材料である請求項26又は27に記載の有機エレクトロルミネッセンス素子。
  29.  請求項26~28のいずれかに記載の有機エレクトロルミネッセンス素子を搭載した電子機器。
PCT/JP2015/005950 2014-12-05 2015-11-30 金属錯体化合物、有機エレクトロルミネッセンス素子用材料、組成物、有機エレクトロルミネッセンス素子及び電子機器 WO2016088354A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016562298A JPWO2016088354A1 (ja) 2014-12-05 2015-11-30 金属錯体化合物、有機エレクトロルミネッセンス素子用材料、組成物、有機エレクトロルミネッセンス素子及び電子機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-247314 2014-12-05
JP2014247314 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016088354A1 true WO2016088354A1 (ja) 2016-06-09

Family

ID=56091317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005950 WO2016088354A1 (ja) 2014-12-05 2015-11-30 金属錯体化合物、有機エレクトロルミネッセンス素子用材料、組成物、有機エレクトロルミネッセンス素子及び電子機器

Country Status (2)

Country Link
JP (1) JPWO2016088354A1 (ja)
WO (1) WO2016088354A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180182981A1 (en) * 2016-12-28 2018-06-28 Universal Display Corporation Organic electroluminescent materials and devices
KR20190000812A (ko) * 2017-06-23 2019-01-03 유니버셜 디스플레이 코포레이션 유기 전계발광 물질 및 디바이스
CN111205273A (zh) * 2020-03-02 2020-05-29 南京工业大学 一种二价铂络合物及其制备方法和应用
CN113024609A (zh) * 2019-12-09 2021-06-25 环球展览公司 有机电致发光材料和装置
US11046658B2 (en) 2018-07-02 2021-06-29 Incyte Corporation Aminopyrazine derivatives as PI3K-γ inhibitors
US20210230198A1 (en) * 2012-10-26 2021-07-29 Arizona Board Of Regents On Behalf Of Arizona State University Metal Complexes, Methods, and Uses Thereof
US11084838B2 (en) 2017-04-21 2021-08-10 Universal Display Corporation Organic electroluminescent materials and device
US11647643B2 (en) 2017-10-17 2023-05-09 Arizona Board Of Regents On Behalf Of Arizona State University Hole-blocking materials for organic light emitting diodes
US11653560B2 (en) 2014-11-10 2023-05-16 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US11708385B2 (en) 2017-01-27 2023-07-25 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing pyrido-pyrrolo-acridine and analogues
US11785838B2 (en) 2019-10-02 2023-10-10 Arizona Board Of Regents On Behalf Of Arizona State University Green and red organic light-emitting diodes employing excimer emitters
US11839144B2 (en) 2014-06-02 2023-12-05 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US11878988B2 (en) 2019-01-24 2024-01-23 Arizona Board Of Regents On Behalf Of Arizona State University Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues
US11926616B2 (en) 2018-03-08 2024-03-12 Incyte Corporation Aminopyrazine diol compounds as PI3K-γ inhibitors
US11930698B2 (en) 2014-01-07 2024-03-12 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US11945985B2 (en) 2020-05-19 2024-04-02 Arizona Board Of Regents On Behalf Of Arizona State University Metal assisted delayed fluorescent emitters for organic light-emitting diodes
US11974495B2 (en) 2021-07-19 2024-04-30 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complexes based on biscarbazole and analogues

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504663A (ja) * 2009-09-10 2013-02-07 住友化学株式会社 エレクトロルミネセンスインクにおけるイオン塩の組合せ
WO2013161468A1 (ja) * 2012-04-23 2013-10-31 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
EP2711999A2 (en) * 2012-09-25 2014-03-26 Universal Display Corporation Electroluminescent element
WO2014109814A2 (en) * 2012-10-26 2014-07-17 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Metal complexes, methods, and uses thereof
US20150162552A1 (en) * 2013-12-09 2015-06-11 Jian Li Stable emitters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504663A (ja) * 2009-09-10 2013-02-07 住友化学株式会社 エレクトロルミネセンスインクにおけるイオン塩の組合せ
WO2013161468A1 (ja) * 2012-04-23 2013-10-31 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
EP2711999A2 (en) * 2012-09-25 2014-03-26 Universal Display Corporation Electroluminescent element
WO2014109814A2 (en) * 2012-10-26 2014-07-17 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Metal complexes, methods, and uses thereof
US20150162552A1 (en) * 2013-12-09 2015-06-11 Jian Li Stable emitters

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TYLER FLEETHAM ET AL.: "Efficient ''Pure'' Blue OLEDs Employing Tetradentate Pt Complexes with a Narrow Spectral Bandwidth", ADVANCED MATERIALS, vol. 26, no. 41, pages 7116 - 7121 *
TYLER FLEETHAM ET AL.: "Efficient Red-Emitting Platinum Complex with Long Operational Stability", APPLIED MATERIALS & INTERFACES, vol. 7, no. 30, pages 16240 - 16246 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210230198A1 (en) * 2012-10-26 2021-07-29 Arizona Board Of Regents On Behalf Of Arizona State University Metal Complexes, Methods, and Uses Thereof
US11930698B2 (en) 2014-01-07 2024-03-12 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US11839144B2 (en) 2014-06-02 2023-12-05 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US11653560B2 (en) 2014-11-10 2023-05-16 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US11152579B2 (en) * 2016-12-28 2021-10-19 Universal Display Corporation Organic electroluminescent materials and devices
CN108250248A (zh) * 2016-12-28 2018-07-06 环球展览公司 有机电致发光材料与装置
US20180182981A1 (en) * 2016-12-28 2018-06-28 Universal Display Corporation Organic electroluminescent materials and devices
US11708385B2 (en) 2017-01-27 2023-07-25 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing pyrido-pyrrolo-acridine and analogues
US11566035B2 (en) 2017-04-21 2023-01-31 Universal Display Corporation Organic electroluminescent materials and devices
US11084838B2 (en) 2017-04-21 2021-08-10 Universal Display Corporation Organic electroluminescent materials and device
KR102657297B1 (ko) 2017-06-23 2024-04-12 유니버셜 디스플레이 코포레이션 유기 전계발광 물질 및 디바이스
KR20190000812A (ko) * 2017-06-23 2019-01-03 유니버셜 디스플레이 코포레이션 유기 전계발광 물질 및 디바이스
US11647643B2 (en) 2017-10-17 2023-05-09 Arizona Board Of Regents On Behalf Of Arizona State University Hole-blocking materials for organic light emitting diodes
US11926616B2 (en) 2018-03-08 2024-03-12 Incyte Corporation Aminopyrazine diol compounds as PI3K-γ inhibitors
US11046658B2 (en) 2018-07-02 2021-06-29 Incyte Corporation Aminopyrazine derivatives as PI3K-γ inhibitors
US11878988B2 (en) 2019-01-24 2024-01-23 Arizona Board Of Regents On Behalf Of Arizona State University Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues
US11785838B2 (en) 2019-10-02 2023-10-10 Arizona Board Of Regents On Behalf Of Arizona State University Green and red organic light-emitting diodes employing excimer emitters
CN113024609A (zh) * 2019-12-09 2021-06-25 环球展览公司 有机电致发光材料和装置
CN111205273A (zh) * 2020-03-02 2020-05-29 南京工业大学 一种二价铂络合物及其制备方法和应用
US11945985B2 (en) 2020-05-19 2024-04-02 Arizona Board Of Regents On Behalf Of Arizona State University Metal assisted delayed fluorescent emitters for organic light-emitting diodes
US11974495B2 (en) 2021-07-19 2024-04-30 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complexes based on biscarbazole and analogues

Also Published As

Publication number Publication date
JPWO2016088354A1 (ja) 2017-09-07

Similar Documents

Publication Publication Date Title
WO2016088354A1 (ja) 金属錯体化合物、有機エレクトロルミネッセンス素子用材料、組成物、有機エレクトロルミネッセンス素子及び電子機器
JP6235663B2 (ja) 発光素子、発光装置、電子機器および照明装置
EP3663288B1 (en) Compound, organic electroluminescent element material, organic electroluminescent element, and electronic device
WO2019132040A1 (ja) 新規化合物及び有機エレクトロルミネッセンス素子
JP6879559B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2018164265A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2017022729A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2017038728A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
US10941144B2 (en) Organic electroluminescence device and electronic device
WO2018043435A1 (ja) 有機エレクトロルミネッセンス素子及びそれを搭載した電子機器
CN112119066A (zh) 化合物、有机电致发光元件用材料、有机电致发光元件、和电子设备
CN112334456A (zh) 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
CN114423733A (zh) 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
WO2016204151A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2016056640A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2017047670A1 (ja) 有機エレクトロルミネッセンス素子
CN114787137A (zh) 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
KR20230162933A (ko) 화합물, 유기 전기발광 소자용 재료, 유기 전기발광 소자 및 전자 기기
KR20240026285A (ko) 화합물, 유기 전기발광 소자용 재료, 유기 전기발광 소자, 및 전자 기기
KR20240036479A (ko) 유기 전기발광 소자 및 전자 기기
CN116802256A (zh) 有机电致发光元件和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016562298

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865450

Country of ref document: EP

Kind code of ref document: A1