WO2016086741A1 - Nouveau système de traitement global de combustion en eau supercritique et procédé de traitement - Google Patents

Nouveau système de traitement global de combustion en eau supercritique et procédé de traitement Download PDF

Info

Publication number
WO2016086741A1
WO2016086741A1 PCT/CN2015/093323 CN2015093323W WO2016086741A1 WO 2016086741 A1 WO2016086741 A1 WO 2016086741A1 CN 2015093323 W CN2015093323 W CN 2015093323W WO 2016086741 A1 WO2016086741 A1 WO 2016086741A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
reactor
water
diverter valve
gas
Prior art date
Application number
PCT/CN2015/093323
Other languages
English (en)
Chinese (zh)
Inventor
王冰
郭仕鹏
高超
Original Assignee
王冰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王冰 filed Critical 王冰
Publication of WO2016086741A1 publication Critical patent/WO2016086741A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation

Definitions

  • the invention relates to a supercritical sewage treatment reactor in the field of environmental protection technology, in particular to a novel supercritical water oxidation comprehensive treatment system and a treatment method.
  • SCWO supercritical water oxidation
  • Supercritical water refers to water in a special state where the temperature exceeds 374.15 ° C and the pressure exceeds 22.12 MPa. Under this condition, the dielectric constant of water is greatly reduced, and oxygen and various organic substances form a uniform phase in the water system, eliminating mass transfer.
  • the resistance converts the heterogeneous reaction which originally occurs between the liquid phase, the solid phase and the gas phase into a homogeneous oxidation reaction in the SCW, and the reaction rate is faster and the residence time is shorter.
  • most of the catalysts are not needed, and the oxidation efficiency is high, and the removal rate of most organic substances can reach more than 99%.
  • the solubility of the inorganic component and the salt in the SCW is very low, and the precipitation can be almost completely precipitated, so that the separation of the salt during the reaction becomes easy.
  • concentration of the organic substance is between 1% by weight and 2% by weight, the temperature required for the reaction can be maintained by the oxidation heat release of the reaction itself, and no external heat is required, and the excess heat energy can be recovered. Since the reaction is carried out in a closed environment, it meets the requirements of a fully enclosed process. The reaction temperature is much lower than incineration and there is no secondary pollutants.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a novel supercritical water oxidation comprehensive treatment system which can effectively overcome pipeline clogging and reactor corrosion, and can realize waste heat recovery and pressure energy recovery, and the system can recover exhaust gas. Production of food grade carbon dioxide, and the separation of oxygen-rich oxidants from the exhaust gas, thereby reducing system operating costs.
  • (1) oxidant supply unit the oxidant storage tank, the booster pump, the oxidant electric heater are connected in series and connected to the oxidant inlet of the reactor;
  • Raw material supply unit the liquid high-pressure metering pump, the first-stage heat exchanger, and the starting electric heater are connected in series and connected to the reactor material inlet;
  • Supercritical water oxidative desalination unit comprising a reactor, a bottom of the reactor is provided with a salt discharge port, a supercritical fluid outlet is formed on the upper part of the reactor, a supercritical fluid outlet is connected to the first stage heat exchanger in series, and the secondary heat exchanger is And a three-stage heat exchanger, wherein a back pressure valve is arranged at a hot fluid outlet of the third-stage heat exchanger;
  • Pressure energy recovery unit including first-stage hydraulic turbine unit, first gas-liquid separator, two-stage hydraulic turbine unit, third diverter valve and serially connected, first-stage hydraulic turbine unit inlet and three-stage a hot fluid outlet connection of the heat exchanger, the hot fluid outlet of the secondary hydraulic turbine unit being connected to the third diverter valve;
  • Waste heat recovery unit including a third heat exchanger, a second diverter valve and an absorption chiller, the fluid separated by the third diverter valve passes through the tertiary heat exchanger for waste heat recovery, and the other is connected to the clean pool;
  • the third heat exchanger is connected to the second diverter valve, the second diverter valve is connected to the absorption chiller to provide a heat source, and the second diverter valve is also connected to a steam product outlet;
  • Carbon dioxide production unit comprising a dehydration tower, a water-cooled heat exchanger, a rectification tower, an absorption chiller and a second gas-liquid separator connected in sequence, the first gas-liquid separator gas outlet is connected to the dehydration tower, and the second gas-liquid is The separator is connected to the food grade carbon dioxide discharge port and the oxygen and nitrogen discharge ports;
  • Evaporative water production unit including a net pool in series, a liquid high pressure metering pump, a secondary heat exchanger, a first diverter valve, a third diverter valve and an absorption chiller are all connected to the clean pool, the first diverter valve Connect to the reactor.
  • the reactor is a countercurrent evaporative wall reactor.
  • the primary heat exchanger, the secondary heat exchanger, and the tertiary heat exchanger are tubular heat exchangers.
  • first gas-liquid separator and the second gas-liquid separator are provided with a demisting device and a back pressure valve at the upper portion, and a liquid level control valve is disposed at a lower portion thereof.
  • the absorption chiller is an ammonia water absorption chiller or a lithium bromide absorption chiller.
  • Oxidant supply The oxidant is pressurized by a booster pump and heated by an oxidant electric heater to be supplied to the oxidant inlet of the reactor.
  • the temperature of the pressurized and heated oxidant is controlled at 300-370 ° C. Force control at 22-35Mpa;
  • Raw material supply The organic waste is pressurized by the liquid high-pressure metering pump, heated by the first-stage heat exchanger, and heated by the electric heater to supply to the reactor material inlet.
  • the temperature of the organic waste material is controlled by heat and heat. -370 ° C, pressure control at 22-35Mpa;
  • Waste heat recovery 20-80% water is separated from the third diverter valve to generate saturated steam through the third-stage heat exchanger, the waste heat is recovered, and the rest enters the clean pool; the saturated steam is then separated by the second diverter valve. % saturated steam enters the absorption chiller to provide a heat source, which produces refrigerant medium water, and the rest is steam products;
  • the first gas-liquid separator controls the pressure by 5-10Mpa through the back pressure valve, and the generated gas phase is dehydrated by the dehydration tower, and then cooled to 20-30 °C by the water-cooled heat exchanger and then enters the rectification tower.
  • the liquid chromatograph separates the liquid carbon dioxide and the oxygen-containing gas, and the oxygen-containing gas returns to the oxidant storage tank to realize oxygen recovery.
  • the liquid carbon dioxide is further cooled by the absorption chiller into the second gas-liquid separator, and the pressure-reducing gas-liquid separator pressure is controlled. 2-5Mpa, dissolved oxygen, nitrogen venting, and at the same time obtain food grade carbon dioxide;
  • Evaporative water production In the pressure energy recovery step, the water diverted through the third diverter valve enters the clean water tank, and the refrigerant medium water that supplies heat to the absorption chiller in the waste heat recovery step also enters the clean water tank, and is measured by the liquid high pressure. After the pump is pressurized, it is exchanged by the secondary heat exchanger, and after being diverted by the first diverter valve, it becomes the evaporation wall and enters the reactor. The water of the evaporation wall is controlled by pressure and heat exchange at 22-35Mpa, 200-370. °C.
  • the absorption chiller is an ammonia water absorption chiller or a lithium bromide absorption chiller.
  • the raw material of the invention and the fluid transported by the evaporating water pipeline are subcritical conditions, and there is no pipeline blockage caused by salt deposition, and the counterflow evaporative wall reactor is adopted, and the evaporation wall structure avoids the salt substance in the reactor wall.
  • Figure 1 is a process flow diagram of a novel supercritical water oxidation integrated treatment system.
  • a novel supercritical water oxidation integrated treatment system comprising the following units:
  • Oxidizer supply unit The oxidant storage tank 1, the booster pump 2, and the oxidant electric heater 20 are connected in series and connected to the oxidant inlet of the reactor 3.
  • Raw material supply unit The first liquid high-pressure metering pump 18, the primary heat exchanger 16, and the starting electric heater 21 are connected in series and connected to the reactor material inlet.
  • Supercritical water oxidative desalination unit comprising a reactor, and the reactor is a countercurrent evaporative wall reactor.
  • the bottom of the reactor is provided with a salt discharge port, the upper part of the reactor is provided with a supercritical fluid outlet, the supercritical fluid outlet is connected with the series primary heat exchanger, the secondary heat exchanger 15 and the tertiary heat exchanger 5, and the third stage heat exchange is performed.
  • the back pressure valve is arranged at the outlet of the hot fluid; the primary heat exchanger, the secondary heat exchanger and the tertiary heat exchanger are all tubular heat exchangers.
  • Pressure energy recovery unit including a first-stage hydraulic turbine unit 11 in series, a first gas-liquid separator 12, a two-stage hydraulic turbine unit 13, a third diverter valve 14, and a first-stage hydraulic turbine unit
  • the inlet is connected to the hot fluid outlet of the tertiary heat exchanger, and the hot fluid outlet of the secondary hydraulic turbine unit is connected to the third diverter valve;
  • the upper part of the first gas-liquid separator is provided with a demisting device and a back pressure valve, and the lower part is arranged There is a level control valve.
  • Waste heat recovery unit including a third heat exchanger, a second diverter valve 8 and an absorption chiller 9.
  • the fluid separated by the third diverter valve passes through the tertiary heat exchanger for waste heat recovery, and the other is connected to the purified water.
  • the third heat exchanger is connected to the second diverter valve, the second diverter valve is connected to the absorption chiller to provide a heat source, and the second diverter valve is also connected to a steam product outlet.
  • the absorption chiller is an ammonia water absorption chiller or a lithium bromide absorption chiller.
  • Carbon dioxide production unit comprising a dehydration tower 22, a water-cooling heat exchanger 6, a rectification column 7, an absorption chiller and a second gas-liquid separator 10 connected in series, the first gas-liquid separator gas outlet is connected to the dehydration tower, The second gas-liquid separator is connected to the food-grade carbon dioxide discharge port and the oxygen and nitrogen discharge ports.
  • the upper part of the second gas-liquid separator is provided with a defogging device and a back pressure valve, and the lower part is provided with a liquid level control valve.
  • Evaporative water production unit comprising a net pool 17 connected in series, a second liquid high pressure metering pump 19, a secondary heat exchanger, a first diverter valve 4, a third diverter valve and an absorption chiller are all connected to the clean pool
  • the first diverter valve is connected to the reactor.
  • a novel supercritical water oxidation comprehensive treatment method comprising the following steps:
  • Oxidant supply The oxidant is pressurized by the booster pump and heated by the oxidant electric heater to be supplied to the oxidant inlet of the reactor.
  • the temperature of the pressurized and heated oxidant is controlled at 300-370 ° C, and the pressure is controlled at 22- 35Mpa.
  • Raw material supply The organic waste is pressurized by the liquid high-pressure metering pump, heated by the first-stage heat exchanger, and heated by the electric heater to supply to the reactor material inlet.
  • the temperature of the organic waste material is controlled by heat and heat. -370 ° C, pressure control at 22-35Mpa.
  • Supercritical water oxidative desalination unit After the oxidant and organic waste enter the reactor, they are mixed and burned to produce supercritical fluid and insoluble inorganic salt. The inorganic salt and a small amount of liquid water are discharged from the salt discharge port at the bottom of the reactor.
  • Supercritical fluid The supercritical fluid is discharged from the supercritical fluid outlet at the upper portion of the reactor; the supercritical fluid is sequentially exchanged with the primary heat exchanger, the secondary heat exchanger and the tertiary heat exchanger. The supercritical fluid exits the supercritical fluid outlet and is heated by the primary heat exchanger.
  • the fluid after heat exchange still has a large amount of heat, which can be heated again by the secondary heat exchanger for the evaporated water, and the excess heat is exchanged through the third stage.
  • the heater 5 produces saturated steam at 160 °C.
  • the hot fluid passing through the three-stage heat exchanger passes through the first-stage hydraulic turbine unit, the first gas-liquid separator and the second-stage hydraulic turbine unit, and the hot fluid of the second-stage hydraulic turbine unit
  • the outlet is connected to the third diverter valve.
  • the high-pressure fluid from the three-stage heat exchanger first passes through the hydraulic turbine unit, recovers the pressure energy, and controls the upper back pressure valve of the first gas-liquid separator.
  • the pressure is controlled at 5-10 MPa.
  • the liquid discharged from the first gas-liquid separator still has a very high pressure, and the second hydraulic turbine unit can further recover the pressure energy, and the purified water from the second hydraulic turbine unit has a high heat, 40 -60% split to produce saturated steam at 160 ° C, the remaining mixed absorption of hot water from the refrigerator into the clean pool, clean pool
  • the hot water in the hot water has high heat and can be used as heating and heating.
  • the evaporating water is pumped from here, pressurized by the liquid high-pressure metering pump, and then exchanged in the secondary heat exchanger, and then diverted into the reactor.
  • Waste heat recovery 40-60% water is separated from the third diverter valve and passed through the third-stage heat exchanger to produce saturated steam of >150 °C. The waste heat is recovered, and the rest enters the clean water tank; the saturated steam passes through the second diverter valve. A 5-10% saturated steam is separated into the absorption chiller to provide a heat source, producing ⁇ 25 ° C of refrigerant medium water, and the rest is a steam product.
  • the first gas-liquid separator controls the pressure by 5-10Mpa through the back pressure valve, and the generated gas phase is dehydrated by the dehydration tower, and then cooled to 20-30 °C by the water-cooled heat exchanger and then enters the rectification tower.
  • the liquid separation tube obtains liquid carbon dioxide and oxygen-containing gas, and the oxygen-containing gas returns to the oxidant storage tank to realize oxygen recovery.
  • the liquid carbon dioxide is further cooled to ⁇ -25 ° C through the absorption chiller, and then enters the second gas-liquid separator to control the gas-liquid.
  • the separator pressure is 2-5 MPa for throttling and depressurization, and the dissolved oxygen and nitrogen are decomposed, and food grade carbon dioxide is obtained.
  • Evaporative water production unit In the pressure energy recovery step, the water diverted through the third diverter valve enters the clean water tank, and the refrigerant medium water that supplies heat to the absorption chiller in the waste heat recovery step also enters the clean water pool, and passes through the liquid high pressure. After the metering pump is pressurized, it is exchanged by the secondary heat exchanger, and after being diverted by the first diverter valve, it becomes the evaporation wall and enters the reactor. The evaporation wall is controlled by the pressure and heat exchange at 22-35Mpa, 200- 370 ° C.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

La présente invention concerne un nouveau système de traitement global de combustion en eau supercritique, comprenant les unités suivantes : (1) une unité d'alimentation en oxydant ; (2) une unité d'alimentation en matière première ; (3) une unité de dessalement par combustion en eau supercritique ; (4) une unité de récupération d'énergie de pression ; (5) une unité de récupération de chaleur résiduelle ; (6) une unité de génération de dioxyde de carbone ; et (7) une unité de génération d'eau par évaporation. L'invention concerne également un nouveau procédé de traitement global de combustion en eau supercritique. Au moyen du procédé de traitement, le colmatage d'une canalisation provoqué par le dépôt de sels ne surviendra pas, et le dépôt de substances salines sur la paroi d'un réacteur est évité et la corrosivité est diminuée ; la chaleur résiduelle et la pression sont toutes deux recyclées, le gaz résiduaire enrichi en oxygène est réutilisé, et le coût de fonctionnement est réduit ; et à travers la vente des sous-produits que sont le dioxyde de carbone de qualité alimentaire et la vapeur saturée, il est possible d'obtenir des profits encore supérieurs.
PCT/CN2015/093323 2014-12-05 2015-10-30 Nouveau système de traitement global de combustion en eau supercritique et procédé de traitement WO2016086741A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410734533.2A CN104445573B (zh) 2014-12-05 2014-12-05 一种新型超临界水氧化综合处理系统及处理方法
CN201410734533.2 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016086741A1 true WO2016086741A1 (fr) 2016-06-09

Family

ID=52892432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093323 WO2016086741A1 (fr) 2014-12-05 2015-10-30 Nouveau système de traitement global de combustion en eau supercritique et procédé de traitement

Country Status (2)

Country Link
CN (1) CN104445573B (fr)
WO (1) WO2016086741A1 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108144420A (zh) * 2018-01-23 2018-06-12 陕西科技大学 一种超临界水氧化过量氧回收系统
CN108217909A (zh) * 2018-03-13 2018-06-29 长沙紫宸科技开发有限公司 一种危险废水亚临界/超临界催化氧化器
CN108913209A (zh) * 2018-09-30 2018-11-30 重庆赛迪热工环保工程技术有限公司 一种超临界水多联程资源化处理难分解有机危险废弃物的方法和系统
CN108928907A (zh) * 2018-09-18 2018-12-04 成都九翼环保科技有限公司 超临界水氧化反应器及其自适应压力调控系统和方法
CN110844996A (zh) * 2019-12-03 2020-02-28 北京国原新技术有限公司 超临界水氧化装置
CN110963557A (zh) * 2018-09-28 2020-04-07 中国石油化工股份有限公司 一种含盐废水处理系统以及处理方法
CN111234888A (zh) * 2020-03-11 2020-06-05 西安交通大学 一种超临界水反应产物协同湿生物质资源化的系统与方法
CN112588217A (zh) * 2020-11-27 2021-04-02 湖南汉华京电清洁能源科技有限公司 超临界水氧化加热方法、装置和超临界水氧化系统
CN113880224A (zh) * 2021-11-16 2022-01-04 杭州深瑞水务有限公司 一种新型超临界氧化工艺
CN114574874A (zh) * 2022-02-28 2022-06-03 阳光氢能科技有限公司 一种电解水制氢系统及其热管理系统
US11401180B2 (en) 2019-06-28 2022-08-02 Battelle Memorial Institute Destruction of PFAS via an oxidation process and apparatus suitable for transportation to contaminated sites
CN114858896A (zh) * 2022-05-09 2022-08-05 西安交通大学 一种适用于亚/超临界水环境的多功能电化学研究平台
CN115180708A (zh) * 2022-07-06 2022-10-14 深圳市华尔信环保科技有限公司 一种超临界水气化反应器及能量利用系统
CN115771985A (zh) * 2022-12-16 2023-03-10 湖南汉华京电清洁能源科技有限公司 一种污油泥资源化利用系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104445573B (zh) * 2014-12-05 2016-06-08 王冰 一种新型超临界水氧化综合处理系统及处理方法
CN106315885A (zh) * 2015-04-10 2017-01-11 王冰 一种污水、污泥、生活垃圾同时进行循环利用的系统及方法
CN106630347B (zh) * 2016-12-14 2019-12-06 甘肃银光化学工业集团有限公司 超临界水氧化法处理火炸药生产废水的方法
CN107935287A (zh) * 2017-12-08 2018-04-20 陕西科技大学 一种超临界水氧化能量回收系统
CN108826744B (zh) * 2018-06-12 2021-01-19 西安交通大学 用超临界水氧化系统余能进行冷热电多联供的系统
CN109319861B (zh) * 2018-10-31 2020-05-19 西安交通大学 一种用于高盐废水超临界水氧化系统的多级加热装置及方法
CN110723804A (zh) * 2019-10-24 2020-01-24 北京纬纶华业环保科技股份有限公司 一种超临界水氧化法处理含多氯联苯物质的设备及方法
CN111099780B (zh) * 2019-12-30 2021-05-14 西安交通大学 一种能量综合利用的纳米颗粒超临界水热合成系统及方法
TWI743641B (zh) * 2019-12-31 2021-10-21 國立成功大學 超臨界二氧化碳的廢水處理方法及其裝置
CN111533351B (zh) * 2020-04-30 2023-08-25 克拉玛依九工环保技术有限公司 一种含盐及难氧化有机物分质处理系统及工艺
CN112573542A (zh) * 2021-01-29 2021-03-30 山西长林能源科技有限公司 一种ro膜后污水的深度处理装置和方法
CN114262041A (zh) * 2021-12-22 2022-04-01 湖南汉华京电清洁能源科技有限公司 超临界水氧化尾气回收方法及系统
CN114835282A (zh) * 2022-03-25 2022-08-02 石家庄新奥环保科技有限公司 超临界水氧化处理废水控制系统
CN114685021A (zh) * 2022-04-07 2022-07-01 西安交通大学 一种用于有机废物的超临界水氧化多级处理系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4543190A (en) * 1980-05-08 1985-09-24 Modar, Inc. Processing methods for the oxidation of organics in supercritical water
CN101544419A (zh) * 2008-03-27 2009-09-30 楼龙春 一种超临界水氧化处理含有机物污水或污泥的方法及装置
CN101607772A (zh) * 2009-05-05 2009-12-23 西安交通大学 废有机物的超临界水处理与资源化利用系统
CN101759272A (zh) * 2009-12-29 2010-06-30 三门峡高清环保科技有限公司 超临界水氧化有机废水处理系统
CN102190362A (zh) * 2011-05-12 2011-09-21 西安交通大学 利用辅助燃料补给热量的超临界水氧化反应系统
CN104445573A (zh) * 2014-12-05 2015-03-25 内蒙古天一环境技术有限公司 一种新型超临界水氧化综合处理系统及处理方法
CN204251405U (zh) * 2014-12-05 2015-04-08 内蒙古天一环境技术有限公司 一种新型超临界水氧化综合处理系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328699A (ja) * 1997-05-30 1998-12-15 Hitachi Plant Eng & Constr Co Ltd 超臨界水酸化反応装置
KR100625882B1 (ko) * 2004-09-07 2006-09-20 한화석유화학 주식회사 유기물 함유 폐액의 초임계수 산화 분해 공정
CN201158601Y (zh) * 2007-12-25 2008-12-03 北京能泰高科环保技术有限公司 超临界水氧化技术处理焦化废水或有机废水的系统
CN101209883A (zh) * 2007-12-25 2008-07-02 北京能泰高科环保技术有限公司 超临界水氧化技术处理焦化废水或有机废水工艺
CN101580320B (zh) * 2009-06-05 2012-01-04 西安交通大学 废有机物的超临界水处理系统的操作方法
CN101698517B (zh) * 2009-11-03 2011-06-22 西安交通大学 具有堵塞清理功能的超临界水处理系统及其堵塞清理方法
CN103925587B (zh) * 2014-04-15 2015-07-29 太原理工大学 一种燃煤的超临界水热燃烧发电装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4543190A (en) * 1980-05-08 1985-09-24 Modar, Inc. Processing methods for the oxidation of organics in supercritical water
CN101544419A (zh) * 2008-03-27 2009-09-30 楼龙春 一种超临界水氧化处理含有机物污水或污泥的方法及装置
CN101607772A (zh) * 2009-05-05 2009-12-23 西安交通大学 废有机物的超临界水处理与资源化利用系统
CN101759272A (zh) * 2009-12-29 2010-06-30 三门峡高清环保科技有限公司 超临界水氧化有机废水处理系统
CN102190362A (zh) * 2011-05-12 2011-09-21 西安交通大学 利用辅助燃料补给热量的超临界水氧化反应系统
CN104445573A (zh) * 2014-12-05 2015-03-25 内蒙古天一环境技术有限公司 一种新型超临界水氧化综合处理系统及处理方法
CN204251405U (zh) * 2014-12-05 2015-04-08 内蒙古天一环境技术有限公司 一种新型超临界水氧化综合处理系统

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108144420A (zh) * 2018-01-23 2018-06-12 陕西科技大学 一种超临界水氧化过量氧回收系统
CN108144420B (zh) * 2018-01-23 2023-06-16 陕西科技大学 一种超临界水氧化过量氧回收系统
CN108217909A (zh) * 2018-03-13 2018-06-29 长沙紫宸科技开发有限公司 一种危险废水亚临界/超临界催化氧化器
CN108217909B (zh) * 2018-03-13 2023-10-27 长沙紫宸科技开发有限公司 一种危险废水亚临界/超临界催化氧化器
CN108928907A (zh) * 2018-09-18 2018-12-04 成都九翼环保科技有限公司 超临界水氧化反应器及其自适应压力调控系统和方法
CN108928907B (zh) * 2018-09-18 2023-10-10 成都九翼环保科技有限公司 超临界水氧化反应器及其自适应压力调控系统和方法
CN110963557B (zh) * 2018-09-28 2023-12-12 中国石油化工股份有限公司 一种含盐废水处理系统以及处理方法
CN110963557A (zh) * 2018-09-28 2020-04-07 中国石油化工股份有限公司 一种含盐废水处理系统以及处理方法
CN108913209A (zh) * 2018-09-30 2018-11-30 重庆赛迪热工环保工程技术有限公司 一种超临界水多联程资源化处理难分解有机危险废弃物的方法和系统
CN108913209B (zh) * 2018-09-30 2023-11-03 重庆赛迪热工环保工程技术有限公司 一种超临界水多联程资源化处理难分解有机危险废弃物的方法和系统
US11401180B2 (en) 2019-06-28 2022-08-02 Battelle Memorial Institute Destruction of PFAS via an oxidation process and apparatus suitable for transportation to contaminated sites
US11780753B2 (en) 2019-06-28 2023-10-10 Revive Environmental Technology, Llc Destruction of PFAS via an oxidation process and apparatus suitable for transportation to contaminated sites
US11970409B2 (en) 2019-06-28 2024-04-30 Revive Environmental Technology, Llc Destruction of PFAS via an oxidation process and apparatus suitable for transportation to contaminated sites
CN110844996A (zh) * 2019-12-03 2020-02-28 北京国原新技术有限公司 超临界水氧化装置
CN111234888A (zh) * 2020-03-11 2020-06-05 西安交通大学 一种超临界水反应产物协同湿生物质资源化的系统与方法
CN112588217A (zh) * 2020-11-27 2021-04-02 湖南汉华京电清洁能源科技有限公司 超临界水氧化加热方法、装置和超临界水氧化系统
CN113880224A (zh) * 2021-11-16 2022-01-04 杭州深瑞水务有限公司 一种新型超临界氧化工艺
CN114574874A (zh) * 2022-02-28 2022-06-03 阳光氢能科技有限公司 一种电解水制氢系统及其热管理系统
CN114858896A (zh) * 2022-05-09 2022-08-05 西安交通大学 一种适用于亚/超临界水环境的多功能电化学研究平台
CN115180708A (zh) * 2022-07-06 2022-10-14 深圳市华尔信环保科技有限公司 一种超临界水气化反应器及能量利用系统
CN115180708B (zh) * 2022-07-06 2023-08-22 深圳市华尔信环保科技有限公司 一种超临界水气化反应器及能量利用系统
CN115771985A (zh) * 2022-12-16 2023-03-10 湖南汉华京电清洁能源科技有限公司 一种污油泥资源化利用系统

Also Published As

Publication number Publication date
CN104445573A (zh) 2015-03-25
CN104445573B (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
WO2016086741A1 (fr) Nouveau système de traitement global de combustion en eau supercritique et procédé de traitement
US9328008B2 (en) Supercritical water oxidation treatment system for organic wastewater with high salinity
US10092851B2 (en) System and method for water treatment
CN109399893B (zh) 一种超临界水氧化污泥处理的余热梯级利用系统及方法
CN109264914B (zh) 一种超临界水氧化能量综合利用系统及能量回收方法
JP6298464B2 (ja) 原油および天然ガス処理施設において生成された水の処理プロセス
JP2018522190A5 (fr)
US6709601B2 (en) Hydrothermal treatment system and method
WO2019040277A1 (fr) Systèmes d'oxydation d'eau supercritique pour la récupération d'énergie et leur utilisation
CN111470559A (zh) 用于从有机废水中回收盐的超临界水热燃烧反应器及其应用
CN212374925U (zh) 用于从有机废水中回收盐的超临界水热燃烧反应器及系统
US20230348306A1 (en) Process for the supercritical oxidation of sewage sludge and other waste streams
CN204251405U (zh) 一种新型超临界水氧化综合处理系统
CN112723633A (zh) 一种pta氧化尾气洗涤塔排出液的处理方法和系统
CN102633350B (zh) 超临界水氧化系统中过量氧回用及二氧化碳回收方法
CN111417598B (zh) 一种处理高盐高有机废水并回收能量的系统及方法
JP2021529091A (ja) 廃棄物の超臨界酸化
US10618032B2 (en) Low temperature wet air oxidation
CN205367998U (zh) 含盐废水处理系统
CN205347078U (zh) 含盐废水处理系统
García-Jarana et al. Hybridization of supercritical water oxidation and gasification processes at pilot plant scale
CN205133332U (zh) 含盐废水处理系统
CN205133329U (zh) 含盐废水处理系统
CN205133178U (zh) 含盐废水处理系统
US20240034655A1 (en) A treatment process for waste streams

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865452

Country of ref document: EP

Kind code of ref document: A1