WO2016086682A1 - Mems扭转式静电驱动器的制作方法 - Google Patents

Mems扭转式静电驱动器的制作方法 Download PDF

Info

Publication number
WO2016086682A1
WO2016086682A1 PCT/CN2015/085765 CN2015085765W WO2016086682A1 WO 2016086682 A1 WO2016086682 A1 WO 2016086682A1 CN 2015085765 W CN2015085765 W CN 2015085765W WO 2016086682 A1 WO2016086682 A1 WO 2016086682A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon layer
upper plate
buried oxide
layer
oxide layer
Prior art date
Application number
PCT/CN2015/085765
Other languages
English (en)
French (fr)
Inventor
荆二荣
Original Assignee
无锡华润上华半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡华润上华半导体有限公司 filed Critical 无锡华润上华半导体有限公司
Priority to EP15865926.8A priority Critical patent/EP3228584A4/en
Priority to US15/327,230 priority patent/US9834437B2/en
Publication of WO2016086682A1 publication Critical patent/WO2016086682A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00182Arrangements of deformable or non-deformable structures, e.g. membrane and cavity for use in a transducer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00555Achieving a desired geometry, i.e. controlling etch rates, anisotropy or selectivity
    • B81C1/00603Aligning features and geometries on both sides of a substrate, e.g. when double side etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0118Cantilevers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0315Cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/04Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/05Type of movement
    • B81B2203/058Rotation out of a plane parallel to the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0102Surface micromachining
    • B81C2201/0105Sacrificial layer
    • B81C2201/0109Sacrificial layers not provided for in B81C2201/0107 - B81C2201/0108
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0111Bulk micromachining

Definitions

  • the present invention relates to the field of semiconductor device technologies, and in particular, to a method for fabricating a MEMS torsional electrostatic actuator.
  • MEMS microactuators also known as actuators or actuators, are devices that convert energy into controllable motion and power output under the control of a signal.
  • Micro-actuators are an important MEMS device with a wide range of applications in the fields of optics, communications, biomedicine, and microfluidics.
  • the core of the microdrive includes a transducer that converts electrical energy into mechanical energy, and a microstructure that performs energy output.
  • actuators can be divided into electrical, magnetic, thermal, optical, mechanical, acoustic, and chemical and biological actuators.
  • Commonly used driving methods include static electricity, electromagnetic, electrothermal, piezoelectric, memory alloy, electrostrictive, Magnetostriction and the like.
  • the electrostatic actuator utilizes electrostatic attraction between the live conductors to drive. Electrostatic drive is highly efficient at small sizes (1-10 microns) and is easy to implement, precise to control, requires no special materials, and is the most widely used drive.
  • the electrostatic actuator includes a flat-plate capacitor structure, a comb-finger structure, a rotary electrostatic motor, and a linear long-distance actuator, etc., which utilize electrostatic forces in the vertical and parallel directions, respectively.
  • the flat-plate capacitor driver is a commonly used electrostatic actuator.
  • the lower plate of the capacitor is fixed, and the upper plate can be moved under the support of the elastic structure.
  • a driving voltage is applied between the upper and lower plates, the electrostatic attraction between the plates drives the upper plate to be vertically vertical.
  • the flat-panel capacitor driver is simple to manufacture, easy to control and use, but has a small driving distance and a small output force.
  • the driving force of the output is nonlinear with the capacitance, and it is easy to generate a pull-down phenomenon during voltage control, which limits the effective driving distance.
  • the plate capacitor has a large damping of the diaphragm during dynamics, which limits the dynamic range.
  • the torsional electrostatic actuator uses a twisted cantilever beam and an electrostatic force to twist the upper plate of the capacitor for output.
  • the torsional electrostatic actuator has better performance because the torsional motion can output a larger driving force than the vertical motion.
  • Conventional torsional electrostatic actuators are limited by the manufacturing process and have a small drive output force.
  • a method for manufacturing a MEMS torsional electrostatic actuator comprising the steps of:
  • the substrate comprising a first silicon layer, a buried oxide layer and a second silicon layer sequentially stacked;
  • the back cavity is located on a second silicon layer corresponding to the upper plate and covering the upper plate corresponding region 40 % to 60% of the area, the back cavity is near one end of the cantilever beam;
  • Upper and lower contact electrodes are formed on the peripheral region and the second silicon layer exposed by the recess, respectively.
  • the MEMS torsional electrostatic actuator is fabricated by using a silicon-on-insulator (SOI) substrate as a substrate, and patterning the first silicon layer, the buried oxide layer, and the second silicon layer.
  • SOI silicon-on-insulator
  • the silicon layer forms an upper plate
  • the second silicon layer forms a lower plate (a region of the second silicon layer corresponding to the upper plate not covered by the back cavity)
  • the buried oxide layer is used between the upper and lower plates
  • the insulating layer and the sacrificial layer material, the upper plate and the lower plate approximately overlap 40% to 60% of the area. When a voltage is applied to the upper contact electrode and the lower contact electrode, the upper plate moves due to the electrostatic force.
  • MEMS torsional electrostatic actuator also called MEMS torsion.
  • Capacitor driver MEMS torsional electrostatic actuators use twisted cantilever beams and electrostatic forces to twist the upper plate to achieve greater drive force and greater dynamic range.
  • SOI has a large thickness, good consistency and low residual stress, so the fabrication process is relatively easy to control, and the fabricated MEMS Torsional electrostatic actuators also have better performance due to lower residual stresses.
  • FIG. 1 is a flow chart of a method of fabricating a MEMS torsional electrostatic actuator according to an embodiment
  • FIG. 2 is a schematic structural view of a substrate
  • FIG. 3 is a schematic structural view of the first silicon layer after being patterned
  • FIG. 4 is a schematic plan view showing the first silicon layer after being patterned
  • Figure 5 is a schematic view showing the structure after removing a portion of the buried oxide layer to suspend the upper plate and the cantilever beam;
  • Fig. 6 is a schematic view showing the structure after the upper contact electrode and the lower contact electrode are formed.
  • the MEMS torsional electrostatic actuator also called the MEMS torsion capacitor driver, includes a stationary lower plate and a movable upper plate, which are twisted by the uneven electrostatic force received by the upper plate to realize the output of the driving force.
  • MEMS torsional electrostatic actuators have better performance because torsional motion can output greater driving force and dynamic range than vertical motion.
  • a method for fabricating a MEMS torsional electrostatic actuator includes the steps of:
  • Step S100 providing a substrate 10, the substrate 10 including a first silicon layer 100, a buried oxide layer 200, and sequentially stacked The second silicon layer 300.
  • the substrate 10 may be a silicon-on-insulator (SOI) having a large thickness, good uniformity, and low residual stress.
  • SOI silicon-on-insulator
  • the resistivity of the first silicon layer 100 and the second silicon layer 300 should be relatively low, and can be directly used as a conductive material, for example, a resistivity of 0.001 ⁇ cm to 0.01 ⁇ cm.
  • the material of the first silicon layer 100 and the second silicon layer 300 may be single crystal silicon, and the single crystal silicon easily conforms to the manufacturing requirements of the MEMS torsional electrostatic actuator in terms of residual stress and surface finish.
  • the first silicon layer 100 is 5 microns to 50 microns thick
  • the buried oxide layer 200 is 0.5 microns to 2 microns thick
  • the second silicon layer 300 is 400 microns to 600 microns thick.
  • the buried oxide layer 200 is a silicon dioxide layer in this embodiment, and may be other insulating layers in other embodiments.
  • the buried oxide layer 200 has a thickness equal to the gap of the torsional capacitance as an insulating layer and a sacrificial layer between the first silicon layer 100 and the second silicon layer 300.
  • Step S200 patterning the first silicon layer 100 and exposing the buried oxide layer 200 to form a rectangular upper plate 120 spaced apart from the peripheral region 140.
  • the upper plate 120 and the peripheral region 140 are connected only by the cantilever beam 130, and A recess 110 exposing the buried oxide layer 200 is formed on the peripheral region 140.
  • the first silicon layer 100 is etched from the front side of the substrate 10 by a silicon etching process until etching to the buried oxide layer 200.
  • the first silicon layer 100 is divided into two quadrangular upper plates 120 and a peripheral region 140 by two "U" shaped grooves which are mutually abutted, and are intertwined in the "U" shaped grooves.
  • Two small cantilever beams 130 are formed at the location.
  • the cantilever beam 130 connects the upper plate 120 and the peripheral region 140, and the quadrangular recess 110 is located in the peripheral region 140.
  • the cantilever beam 130 should be sufficiently small to be susceptible to deformation distortion under the action of electrostatic force and to cause the upper plate 120 to be twisted.
  • Step S300 patterning the second silicon layer 300 and exposing the buried oxide layer 200 to form the back cavity 310.
  • the second silicon layer 300 is etched from the back surface of the substrate 10 until etching to the buried oxide layer 200.
  • the back cavity 310 corresponds to the shape of the upper plate 120 and is also quadrangular.
  • the back cavity 310 is located on the second silicon layer 300 corresponding to the upper plate 120, and the back cavity 310 covers the area 320 corresponding to the area corresponding to the upper plate 120.
  • the back cavity 310 is adjacent to any cantilever beam.
  • the inner side is shown in Figure 4. Such a design is such that the cantilever beam 130 can be easily deformed and twisted under the action of an electrostatic force, and the upper plate 120 is twisted.
  • the back cavity 310 covers the area corresponding to the upper plate 120 that is close to 50% of the inner end of any cantilever beam, that is, the etched pattern should cover the half area corresponding to the corresponding region of the upper plate.
  • Step S400 removing the buried oxide layer exposed by the recess 110 to expose the second silicon layer 300, and removing a portion of the buried oxide layer to suspend the upper plate 120 and the cantilever beam 130.
  • a portion of the buried oxide layer 210 is left to support the peripheral region 140.
  • the buried oxide layer 200 exposed by the recess 110 is removed by hydrofluoric acid to expose the second silicon layer 300
  • the partially buried oxide layer 200 is removed by hydrofluoric acid to suspend the upper plate 120 and the cantilever beam 130. Locations that are difficult to remove can be removed by drilling with hydrofluoric acid.
  • FIG. 5 is a schematic view showing the structure after removing a portion of the buried oxide layer to suspend the upper plate and the cantilever beam.
  • Step S500 forming an upper contact electrode 400 and a lower contact electrode 500 on the second silicon layer exposed by the peripheral region 140 and the recess 110, respectively.
  • the upper contact electrode 400 and the lower contact electrode 500 are respectively formed on the second silicon layer exposed by the peripheral region 140 and the recess 110 by depositing a metal layer and patterning. It is easy to know that both the upper contact electrode 400 and the lower contact electrode 500 are metal electrodes, the upper contact electrode 400 is electrically connected to the upper plate 120, and the lower contact electrode 500 is electrically connected to the lower plate 320.
  • the upper plate 120 is moved due to the electrostatic force.
  • the force received by the upper plate 120 is not uniform.
  • the portion of the upper plate 120 corresponding to the lower plate 320 receives an electrostatic force greater than the electrostatic force received by the corresponding portion of the back cavity 310, causing the cantilever beam 130 to be twisted and the upper plate 120 to be twisted.
  • the MEMS torsional electrostatic actuator is fabricated by using a silicon-on-insulator (SOI) substrate as a substrate, and patterning the first silicon layer, the buried oxide layer, and the second silicon layer.
  • SOI silicon-on-insulator
  • the silicon layer forms an upper plate
  • the second silicon layer forms a lower plate (a region of the second silicon layer corresponding to the upper plate not covered by the back cavity)
  • the buried oxide layer is used between the upper and lower plates
  • the insulating layer and the sacrificial layer material, the upper plate and the lower plate approximately overlap 40% to 60% of the area. When a voltage is applied to the upper contact electrode and the lower contact electrode, the upper plate moves due to the electrostatic force.
  • MEMS torsional electrostatic actuator also called MEMS torsion.
  • Capacitor driver MEMS torsional electrostatic actuators use twisted cantilever beams and electrostatic forces to twist the upper plate to achieve greater drive force and greater dynamic range.
  • SOI has a larger thickness and Good consistency and low residual stress make the fabrication process relatively easy to control, and the fabricated MEMS torsional electrostatic actuators also have better performance due to lower residual stress.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Micromachines (AREA)

Abstract

一种MEMS扭转式静电驱动器的制作方法,包括:提供基片(10),基片(10)包括依次层叠的第一硅层(100)、埋氧化层(200)和第二硅层(300);将第一硅层(100)图形化并暴露埋氧化层(200)以形成与周边区域(140)相互间隔的矩形的上极板(120),上极板(120)与周边区域(140)仅通过悬臂梁(130)连接,同时还在周边区域(140)上形成暴露埋氧化层(200)的凹部(110);将第二硅层(300)图形化并暴露埋氧化层(200)以形成背腔(310),背腔(310)位于第二硅层(300)上与上极板(120)对应的区域,并覆盖与上极板(120)对应区域40%~60%的面积,背腔(310)靠近悬臂梁(130)的一端;暴露第二硅层(300),悬空上极板(120)和悬臂梁(130);及在第二硅层(300)上分别形成上接触电极(400)和下接触电极(500)。

Description

MEMS扭转式静电驱动器的制作方法 【技术领域】
本发明涉及半导体器件技术领域,特别涉及一种MEMS扭转式静电驱动器的制作方法。
【背景技术】
MEMS微驱动器(actuator),也称为执行器或致动器,是在控制信号的作用下将能量转换为可控运动和功率输出的器件。微驱动器是一种重要的MEMS器件,在光学、通信、生物医学、微流体等领域有着广泛的应用。微驱动器的核心包括把电能转换为机械能的换能器,以及执行能量输出的微结构。根据能量的来源,执行器可以分为电、磁、热、光、机械、声,以及化学和生物执行器,常用的驱动方式包括静电、电磁、电热、压电、记忆合金、电致伸缩、磁致伸缩等。
静电驱动器利用带电导体之间的静电引力实现驱动。静电驱动在小尺寸(1-10微米)时效率很高,并且容易实现、控制精确、不需要特殊材料,是应用最广泛的驱动方式。静电驱动器包括平板电容结构、梳状叉指结构、旋转静电马达,以及线形长距离执行器等,分别利用到垂直和平行方向的静电力。
平板电容驱动器是常用的静电驱动器,电容的下极板固定,上极板在弹性结构的支撑下可以移动,当上下极板间施加驱动电压时,极板间的静电引力驱动上极板整体垂直运动,实现输出。平板电容驱动器制造简单,控制和使用容易,但是驱动距离较小,输出力也较小。输出的驱动力与电容为非线性关系,并且在电压控制时容易产生下拉现象,限制了有效驱动距离。另外,在动态时平板电容压膜阻尼较大,限制了动态范围。
而扭转式静电驱动器利用扭曲的悬臂梁和静电力使电容的上极板扭转实现输出,扭转式静电驱动器具有较好的性能,这是因为扭转运动比垂直运动可以输出更大的驱动力。传统的扭转式静电驱动器受限于制作工艺,其驱动输出力都较小。
【发明内容】
基于此,有必要提供一种MEMS扭转式静电驱动器的制作方法,该MEMS扭转式静电驱动器的制作方法可以制作出拥有较大输出力的MEMS扭转式静电驱动器。
一种MEMS扭转式静电驱动器的制作方法,包括步骤:
提供基片,所述基片包括依次层叠的第一硅层、埋氧化层和第二硅层;
将第一硅层图形化并暴露所述埋氧化层以形成与周边区域相互间隔的矩形的上极板,所述上极板与所述周边区域仅通过悬臂梁连接,同时还在所述周边区域上形成暴露埋氧化层的凹部;
将第二硅层图形化并暴露所述埋氧化层以形成背腔,所述背腔位于第二硅层上与所述上极板对应的区域,并覆盖所述与上极板对应区域40%~60%的面积,所述背腔靠近所述悬臂梁的一端;
去除所述凹部暴露出来的埋氧化层以暴露第二硅层,去除部分埋氧化层以悬空所述上极板和悬臂梁;及
在所述周边区域上和所述凹部暴露出来的第二硅层上分别形成上接触电极和下接触电极。
上述MEMS扭转式静电驱动器的制作方法,以基于绝缘体的硅晶片(SOI,Sili con on Insulator)为基片,通过对第一硅层、埋氧化层和第二硅层的图形化,在第一硅层形成上极板,在第二硅层形成下极板(背腔并没有覆盖的位于第二硅层与所述上极板对应的区域),埋氧化层用作上下极板之间的绝缘层和牺牲层材料,上极板和下极板大概重合40%~60%的面积。当在上接触电极和下接触电极施加电压时,由于静电力的作用,上极板会发生运动。因为上极板和下极板不完全对应重合(相差40%~60%),所以上极板受到的力不均匀。上极板与下极板对应的部分受到的静电力大于与背腔对应部分受到的静电力,导致悬臂梁发生扭曲和上极板发生扭转运动,这就是MEMS扭转式静电驱动器,也叫MEMS扭转电容驱动器。MEMS扭转式静电驱动器利用扭曲的悬臂梁和静电力使上极板扭转实现输出较大的驱动力和更大的动态范围。而且,SOI具有较大的厚度、较好的一致性和较低的残余应力,因而制作过程相对较易控制,制作出来的MEMS 扭转式静电驱动器也因为较低的残余应力而拥有更好的性能。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1是一实施例MEMS扭转式静电驱动器的制作方法的流程图;
图2是基片的结构示意图;
图3是将第一硅层图形化后的结构示意图;
图4是将第一硅层图形化后的俯视示意图;
图5是去除部分埋氧化层以悬空上极板和悬臂梁后的结构示意图;
图6是制作上接触电极和下接触电极后的结构示意图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的具体实施方式进行详细描述。
MEMS扭转式静电驱动器,也叫MEMS扭转电容驱动器,包括不动的下极板和可动的上极板,利用上极板受到的不均匀静电力而发生扭转实现驱动力的输出。MEMS扭转式静电驱动器具有较好的性能,这是因为扭转运动比垂直运动可以输出更大的驱动力和动态范围。
请参阅图1,一实施例的MEMS扭转式静电驱动器的制作方法,包括步骤:
步骤S100:提供基片10,基片10包括依次层叠的第一硅层100、埋氧化层200和 第二硅层300。
请一并参阅图2。基片10可以是基于绝缘体的硅晶片(SOI,Silicon on Insulator),SOI具有较大的厚度、较好的一致性和较低的残余应力。
第一硅层100、第二硅层300的电阻率应该是比较低的,可以直接用作导电材料,比如电阻率为0.001Ω·cm~0.01Ω·cm。第一硅层100、第二硅层300的材质可以为单晶硅,单晶硅在残余应力和表面光洁度等方面都容易符合MEMS扭转式静电驱动器的制作需求。
第一硅层100厚5微米~50微米,埋氧化层200厚0.5微米~2微米,第二硅层300厚400微米~600微米。埋氧化层200在本实施例中为二氧化硅层,在其他实施例中还可以是其他的绝缘层。埋氧化层200的厚度等于扭转电容的间隙,作为第一硅层100和第二硅层300之间的绝缘层和牺牲层。
步骤S200:将第一硅层100图形化并暴露埋氧化层200以形成与周边区域140相互间隔的矩形的上极板120,上极板120与周边区域140仅通过悬臂梁130连接,同时还在周边区域140上形成暴露埋氧化层200的凹部110。利用硅刻蚀工艺从基片10正面对第一硅层100进行刻蚀图形化,直至刻蚀到埋氧化层200。
请一并参阅图3和图4,第一硅层100被两个相互拼靠的“U”型槽分划为四边形的上极板120和周边区域140,并在“U”型槽相互拼靠之处形成两条细小的悬臂梁130。悬臂梁130连接上极板120和周边区域140,四边形的凹部110位于周边区域140。悬臂梁130应该足够细小,使在静电力的作用下能够容易发生形变扭曲,并使得上极板120发生扭转。
步骤S300:将第二硅层300图形化并暴露埋氧化层200以形成背腔310。从基片10背面对第二硅层300进行刻蚀图形化,直至刻蚀到埋氧化层200。背腔310与上极板120的形状相对应,也为四边形。背腔310位于第二硅层300上与上极板120对应的区域,背腔310覆盖该与上极板120对应的区域40%~60%的面积320,背腔310靠近任一悬臂梁的内侧端,见图4。这样的设计,是为了悬臂梁130在静电力的作用下能够容易发生形变扭曲,并使得上极板120发生扭转。在本实施例中,背腔310覆盖该与上极板120对应的区域靠近任一悬臂梁的内侧端50%的面积,即刻蚀图形应覆盖对应上极板对应的区域的半边区域。
步骤S400:去除凹部110暴露出来的埋氧化层以暴露第二硅层300,去除部分埋氧化层以悬空上极板120和悬臂梁130。去除部分埋氧化层后,留下部分埋氧化层210以支撑周边区域140。在本实施例中,利用氢氟酸去除凹部110暴露出来的埋氧化层200以暴露第二硅层300,利用氢氟酸去除部分埋氧化层200以悬空上极板120和悬臂梁130,比较难去除的位置可以通过钻孔再利用氢氟酸去除。由于上极板和和第二硅层300之间悬空,上极板120在第二硅层300上投影对应的部分就成为了下极板,留下的部分埋氧化层210在此处相当于支撑结构的作用。图5是去除部分埋氧化层以悬空上极板和悬臂梁后的结构示意图。
步骤S500:在周边区域140和凹部110暴露出来的第二硅层上分别形成上接触电极400和下接触电极500。请参阅图6,在周边区域140和凹部110暴露出来的第二硅层上通过淀积金属层并图形化分别形成上接触电极400和下接触电极500。容易得知,上接触电极400和下接触电极500都为金属电极,上接触电极400与上极板120形成电连接,下接触电极500与下极板320形成电连接。当在上接触电极400和下接触电极500施加电压时,由于静电力的作用,上极板120会发生运动。因为上极板120和下极板320不完全对应重合(相差40%~60%),所以上极板120受到的力不均匀。上极板120与下极板320对应的部分受到的静电力大于与背腔310对应部分受到的静电力,导致悬臂梁130发生扭曲和上极板120发生扭转运动。
上述MEMS扭转式静电驱动器的制作方法,以基于绝缘体的硅晶片(SOI,Sili con on Insulator)为基片,通过对第一硅层、埋氧化层和第二硅层的图形化,在第一硅层形成上极板,在第二硅层形成下极板(背腔并没有覆盖的位于第二硅层与所述上极板对应的区域),埋氧化层用作上下极板之间的绝缘层和牺牲层材料,上极板和下极板大概重合40%~60%的面积。当在上接触电极和下接触电极施加电压时,由于静电力的作用,上极板会发生运动。因为上极板和下极板不完全对应重合(相差40%~60%),所以上极板受到的力不均匀。上极板与下极板对应的部分受到的静电力大于与背腔对应部分受到的静电力,导致悬臂梁发生扭曲和上极板发生扭转运动,这就是MEMS扭转式静电驱动器,也叫MEMS扭转电容驱动器。MEMS扭转式静电驱动器利用扭曲的悬臂梁和静电力使上极板扭转实现输出较大的驱动力和更大的动态范围。而且,SOI具有较大的厚度、较 好的一致性和较低的残余应力,因而制作过程相对较易控制,制作出来的MEMS扭转式静电驱动器也因为较低的残余应力而拥有更好的性能。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种MEMS扭转式静电驱动器的制作方法,其特征在于,包括:
    提供基片,所述基片包括依次层叠的第一硅层、埋氧化层和第二硅层;
    将第一硅层图形化并暴露所述埋氧化层以形成与周边区域相互间隔的矩形的上极板,所述上极板与所述周边区域仅通过悬臂梁连接,同时还在所述周边区域上形成暴露埋氧化层的凹部;
    将第二硅层图形化并暴露所述埋氧化层以形成背腔,所述背腔位于第二硅层上与所述上极板对应的区域,并覆盖所述与上极板对应区域40%~60%的面积,所述背腔靠近所述悬臂梁的一端;
    去除所述凹部暴露出来的埋氧化层以暴露第二硅层,去除部分埋氧化层以悬空所述上极板和悬臂梁;及
    在所述周边区域上和所述凹部暴露出来的第二硅层上分别形成上接触电极和下接触电极。
  2. 根据权利要求1所述的方法,其特征在于,所述第一硅层、第二硅层的电阻率为0.001Ω·cm~0.01Ω·cm。
  3. 根据权利要求1所述的方法,其特征在于,所述第一硅层、第二硅层的材质为单晶硅。
  4. 根据权利要求1所述的方法,其特征在于,所述第一硅层厚5微米~50微米。
  5. 根据权利要求1所述的方法,其特征在于,所述埋氧化层厚0.5微米~2微米。
  6. 根据权利要求1所述的方法,其特征在于,所述第二硅层厚400微米~600微米。
  7. 根据权利要求1所述的方法,其特征在于,所述悬臂梁数量为两条,所述背腔靠近其中任一悬臂梁的内侧端。
  8. 根据权利要求1所述的方法,其特征在于,利用氢氟酸去除所述凹部暴露出来的埋氧化层以暴露第二硅层,利用氢氟酸去除部分埋 氧化层以悬空所述上极板和悬臂梁。
  9. 根据权利要求1所述的方法,其特征在于,所述背腔位于第二硅层上与所述上极板对应的区域,并覆盖所述与上极板对应区域40%~60%的面积。
  10. 根据权利要求1所述的方法,其特征在于,所述背腔位于第二硅层上与所述上极板对应的区域,并覆盖所述与上极板对应区域50%的面积。
  11. 根据权利要求1所述的方法,其特征在于,在所述周边区域上和所述凹部暴露出来的第二硅层上通过淀积金属层并图形化分别形成上接触电极和下接触电极。
PCT/CN2015/085765 2014-12-02 2015-07-31 Mems扭转式静电驱动器的制作方法 WO2016086682A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15865926.8A EP3228584A4 (en) 2014-12-02 2015-07-31 Method for manufacturing mems torsional electrostatic actuator
US15/327,230 US9834437B2 (en) 2014-12-02 2015-07-31 Method for manufacturing MEMS torsional electrostatic actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410724507.1 2014-12-02
CN201410724507.1A CN105712288B (zh) 2014-12-02 2014-12-02 Mems扭转式静电驱动器的制作方法

Publications (1)

Publication Number Publication Date
WO2016086682A1 true WO2016086682A1 (zh) 2016-06-09

Family

ID=56090952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085765 WO2016086682A1 (zh) 2014-12-02 2015-07-31 Mems扭转式静电驱动器的制作方法

Country Status (4)

Country Link
US (1) US9834437B2 (zh)
EP (1) EP3228584A4 (zh)
CN (1) CN105712288B (zh)
WO (1) WO2016086682A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10384928B1 (en) * 2018-02-08 2019-08-20 Pixart Imaging Inc. Manufacturing method of sensor package
CN113031251B (zh) * 2019-12-09 2024-03-26 觉芯电子(无锡)有限公司 一种静电驱动式微镜及其制作方法
WO2021134688A1 (zh) * 2019-12-31 2021-07-08 瑞声声学科技(深圳)有限公司 一种制作mems驱动器的方法
CN111170267A (zh) * 2019-12-31 2020-05-19 瑞声声学科技(深圳)有限公司 一种制作mems驱动器的方法
CN111232913B (zh) * 2020-01-17 2020-12-18 上海芯物科技有限公司 一种旋转结构的制备方法以及旋转结构
CN111537921B (zh) * 2020-04-22 2022-02-01 西安交通大学 一种悬臂梁式mems磁传感器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1552615A (zh) * 2003-05-26 2004-12-08 联华电子股份有限公司 悬臂梁式微机电系统的制作方法
US20050139993A1 (en) * 2003-12-26 2005-06-30 Lee Dae S. Plastic microfabricated structure for biochip, microfabricated thermal device, microfabricated reactor, microfabricated reactor array, and micro array using the same
CN102175891B (zh) * 2011-01-05 2012-11-07 江苏大学 一种三轴热对流加速度传感器芯片的制作方法
CN103345057A (zh) * 2013-05-31 2013-10-09 华中科技大学 一种微型的桥式结构及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084374A1 (en) * 2001-04-12 2002-10-24 Onix Microsystems Mems mirrors with precision clamping mechanism
CN1180286C (zh) * 2002-10-30 2004-12-15 吉林大学 倾斜下电极结构的扭臂式静电驱动光开关及其制作方法
WO2005069331A1 (en) * 2003-12-30 2005-07-28 Massachusetts Institute Of Technology Low-voltage micro-switch actuation technique
JP4446038B2 (ja) * 2004-05-11 2010-04-07 国立大学法人東北大学 トーションバーを用いた静電駆動型マイクロミラーデバイス
JP4138736B2 (ja) * 2004-12-02 2008-08-27 富士通株式会社 マイクロ揺動素子
JP4573664B2 (ja) * 2005-02-16 2010-11-04 富士通株式会社 マイクロ揺動素子およびその製造方法
DE102007034888B3 (de) * 2007-07-16 2009-01-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrosystem und Verfahren zum Herstellen eines Mikrosystems
CN101827781B (zh) * 2007-10-31 2012-05-30 富士通株式会社 微型可动元件以及微型可动元件阵列
CN101549848A (zh) * 2009-05-12 2009-10-07 中国科学院上海微系统与信息技术研究所 一种大角度扭转微镜面驱动器制作方法
CN101587240A (zh) * 2009-05-12 2009-11-25 中国科学院上海微系统与信息技术研究所 大角度扭转微镜面驱动器及其在光开关中的应用
CN101840781B (zh) * 2010-04-16 2011-09-14 清华大学 一种框架式可变电容器及其制备方法
CN101907769B (zh) * 2010-07-01 2011-11-16 西北工业大学 一种基于soi晶圆双掩膜刻蚀的垂直梳齿驱动微扭转镜及其制作方法
JP2012047910A (ja) * 2010-08-25 2012-03-08 Toyota Central R&D Labs Inc 光偏向装置
CN103288034A (zh) * 2012-03-01 2013-09-11 北京大学 一种离面静电驱动器及其制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1552615A (zh) * 2003-05-26 2004-12-08 联华电子股份有限公司 悬臂梁式微机电系统的制作方法
US20050139993A1 (en) * 2003-12-26 2005-06-30 Lee Dae S. Plastic microfabricated structure for biochip, microfabricated thermal device, microfabricated reactor, microfabricated reactor array, and micro array using the same
CN102175891B (zh) * 2011-01-05 2012-11-07 江苏大学 一种三轴热对流加速度传感器芯片的制作方法
CN103345057A (zh) * 2013-05-31 2013-10-09 华中科技大学 一种微型的桥式结构及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3228584A4 *

Also Published As

Publication number Publication date
CN105712288B (zh) 2017-10-27
CN105712288A (zh) 2016-06-29
US20170174508A1 (en) 2017-06-22
US9834437B2 (en) 2017-12-05
EP3228584A4 (en) 2018-07-04
EP3228584A1 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
WO2016086682A1 (zh) Mems扭转式静电驱动器的制作方法
US7876026B2 (en) Large force and displacement piezoelectric MEMS lateral actuation
US7295726B1 (en) Gimbal-less micro-electro-mechanical-system tip-tilt and tip-tilt-piston actuators and a method for forming the same
JP4206102B2 (ja) 垂直くし型電極を具備したアクチュエータ
US8549715B2 (en) Piezoelectric microspeaker and method of fabricating the same
Chang et al. A rotary comb-actuated microgripper with a large displacement range
JP5855602B2 (ja) 静電誘導型電気機械変換素子およびナノピンセット
CN105050022A (zh) 声音再现系统与用于操作及制造声换能器的方法
Flynn Piezoelectric ultrasonic micromotors
JP3723431B2 (ja) マイクロ電気機械光学デバイス
US8816565B2 (en) Two-dimensional comb-drive actuator and manufacturing method thereof
JP2006159356A (ja) 圧電駆動型mems装置
TW202104065A (zh) 具有大流體有效表面之微機電系統(mems)
EP1932803B1 (en) MEMS device with Z-axis asymetry
CN105712290B (zh) Mems静电驱动器的制作方法
Lin et al. Two-cavity MEMS variable capacitor for power harvesting
Luo et al. Enhancing displacement of lead–zirconate–titanate (PZT) thin-film membrane microactuators via a dual electrode design
JP2000164105A (ja) マイクロマシン、マイクロアクチュエータ及びマイクロリレー
KR100442824B1 (ko) 마이크로구조물소자및그제조방법
Gao et al. A piezoelectric micro-actuator with a three-dimensional structure and its micro-fabrication
JP5863705B2 (ja) 静電トランス
US8810881B2 (en) Micro structure, micro actuators, method of fabricating micro structure and micro actuators
US11713240B2 (en) Cellular array electrostatic actuator
JP3775082B2 (ja) 微小物体輸送装置、微小物体輸送装置の製造方法、および微小物体の輸送方法
JP2009238546A (ja) 微小電気機械スイッチ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865926

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15327230

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015865926

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015865926

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE