WO2016084974A1 - 作業車両の原動機制御装置 - Google Patents

作業車両の原動機制御装置 Download PDF

Info

Publication number
WO2016084974A1
WO2016084974A1 PCT/JP2015/083558 JP2015083558W WO2016084974A1 WO 2016084974 A1 WO2016084974 A1 WO 2016084974A1 JP 2015083558 W JP2015083558 W JP 2015083558W WO 2016084974 A1 WO2016084974 A1 WO 2016084974A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
mode
speed ratio
rotational speed
prime mover
Prior art date
Application number
PCT/JP2015/083558
Other languages
English (en)
French (fr)
Inventor
勇 青木
幸次 兵藤
田中 哲二
祐樹 抜井
Original Assignee
日立建機株式会社
株式会社Kcm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社, 株式会社Kcm filed Critical 日立建機株式会社
Priority to CN201580045365.9A priority Critical patent/CN106574558B/zh
Priority to EP15863424.6A priority patent/EP3225822B1/en
Priority to US15/508,554 priority patent/US10071629B2/en
Priority to KR1020177004782A priority patent/KR101909844B1/ko
Publication of WO2016084974A1 publication Critical patent/WO2016084974A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/02Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically
    • B60K31/04Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of an electrical signal which is fed into the controlling means
    • B60K31/042Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of an electrical signal which is fed into the controlling means where at least one electrical quantity is set by the vehicle operator
    • B60K31/045Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of an electrical signal which is fed into the controlling means where at least one electrical quantity is set by the vehicle operator in a memory, e.g. a capacitor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/02Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically
    • B60K31/04Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of an electrical signal which is fed into the controlling means
    • B60K31/042Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of an electrical signal which is fed into the controlling means where at least one electrical quantity is set by the vehicle operator
    • B60K31/045Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of an electrical signal which is fed into the controlling means where at least one electrical quantity is set by the vehicle operator in a memory, e.g. a capacitor
    • B60K31/047Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of an electrical signal which is fed into the controlling means where at least one electrical quantity is set by the vehicle operator in a memory, e.g. a capacitor the memory being digital
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • F02D31/009Electric control of rotation speed controlling fuel supply for maximum speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/0205Circuit arrangements for generating control signals using an auxiliary engine speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/0225Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the gear ratio or shift lever position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/46Inputs being a function of speed dependent on a comparison between speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/70Inputs being a function of gearing status dependent on the ratio established
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • F01P2023/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/604Engine control mode selected by driver, e.g. to manually start particle filter regeneration or to select driving style
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/16End position calibration, i.e. calculation or measurement of actuator end positions, e.g. for throttle or its driving actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/26Control of the engine output torque by applying a torque limit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/12Engine control specially adapted for a transmission comprising a torque converter or for continuously variable transmissions

Definitions

  • the present invention relates to a prime mover control device used for a work vehicle.
  • the engine speed limiting device described in Patent Document 1 has a state in which the engine speed is largely limited and a state in which the restriction is relaxed, and switches between two states according to a predetermined condition.
  • a prime mover control device for a work vehicle is a prime mover control device for a work vehicle that transmits the rotation of the prime mover to a wheel via a torque converter and a transmission, according to an operation amount of an accelerator pedal.
  • a speed control unit that controls the speed of the prime mover, a speed ratio calculation unit that calculates a speed ratio between the input shaft and the output shaft of the torque converter, and a speed ratio calculated by the speed ratio calculation unit in advance
  • the maximum speed of the prime mover is set to the maximum speed when the speed ratio is larger and the speed ratio is smaller than the preset speed ratio range.
  • the maximum speed of the prime mover is changed to a maximum speed that is higher than the limited maximum speed that is limited to be lower by the speed limiter.
  • the maximum engine speed suitable for the traveling load can be set.
  • FIG. 1 is a side view of a wheel loader that is an example of a work vehicle to which the prime mover control device according to the present embodiment is applied.
  • the wheel loader 100 includes a front vehicle body 110 having an arm 111, a bucket 112, tires 6 and the like, and a rear vehicle body 120 having a driver's cab 121, an engine compartment 122, tires 6 and the like.
  • the front vehicle body 110 and the rear vehicle body 120 are rotatably connected to each other by a center pin 101, and the front vehicle body 110 is refracted left and right with respect to the rear vehicle body 120 by expansion and contraction of a steering cylinder (not shown).
  • the bucket 112 is moved up and down by the lift arm cylinder 114 and rotated by the bucket cylinder 115.
  • FIG. 2 is a block diagram relating to speed control and shift control of the wheel loader 100.
  • the wheel loader 100 shifts the output of the torque converter 2, the controller 10 which is the center of control, the engine 1 whose rotational speed is controlled by the controller 10, the torque converter 2 which transmits the power of the engine 1 to the transmission 3.
  • a transmission 3, a transmission control device 11 that controls the speed stage of the transmission 3, and an axle 5 and a propeller shaft 4 that apply driving force to the tire 6 by the output of the transmission 3 are provided.
  • the controller 10 includes an accelerator pedal angle sensor 12a for detecting the depression angle of the accelerator pedal 12, a brake pedal angle sensor 13a for detecting the depression angle of the brake pedal 13, and a shift mode selection switch 7 for switching between automatic shift and manual shift.
  • the shaft speed sensor 15 and the vehicle speed sensor 16 are connected by a signal line, and signals are input from these devices.
  • the controller 10 includes a CPU, a ROM, a flash memory, and a RAM.
  • the ROM stores a mode determination program 10a, a rotation speed determination program 10b, and a restriction mode that can be rewritten as needed by the mode determination program 10a.
  • the restriction mode is any one of modes A to C, and the restriction mode is set to A immediately after the controller 10 is activated.
  • the controller 10 executes the mode determination program 10a and the rotation speed determination program 10b every predetermined time, for example, every second, and controls the rotation speed of the engine 1.
  • the mode determination program 10a refers to the outputs of the torque converter input shaft rotational speed sensor 14 and the torque converter output shaft rotational speed sensor 15 to grasp the operation state of the wheel loader 100, and sets the limit mode to any one of A to C. Determine and write to the RAM of the controller 10.
  • the rotational speed determination program 10b uses the accelerator pedal angle sensor 12a, the limit selection switch 18, the output of the torque converter input shaft rotational speed sensor 14, the output of the torque converter output shaft rotational speed sensor 15, and the limiting mode stored in the RAM. Thus, the target rotational speed of the engine 1 is calculated.
  • the engine 1 is controlled in its rotational speed by the controller 10 and transmits the engine output to the torque converter 2.
  • the rotational speed of the engine 1 is measured by the engine rotational speed sensor 1 a and the measured value is output to the controller 10.
  • the torque converter 2 is a fluid clutch including an impeller, a turbine, and a stator, and the rotation of the engine 1 is transmitted to the transmission 3 via the torque converter 2.
  • the torque converter 2 has a function of increasing the output torque with respect to the input torque.
  • the torque converter speed ratio also represents the magnitude of the load. For example, when the traveling load increases due to the wheel loader 100 starting to climb a hill with the engine speed being constant, the output shaft speed, that is, the vehicle speed is reduced. However, the torque converter speed ratio becomes small.
  • Detection signals from the torque converter input shaft rotational speed sensor 14 that measures the input shaft rotational speed Ni and the torque converter output shaft rotational speed sensor 15 that measures the output shaft rotational speed Nt are output to the controller 10.
  • the transmission 3 is an automatic transmission having a solenoid valve corresponding to each speed stage, and shifts the output of the torque converter 2 and transmits it to the propeller shaft 4. These solenoid valves are driven by the transmission control device 11, and the speed stage is changed between the first speed to the second speed and the reverse speed.
  • the propeller shaft 4 transmits the output of the transmission 3 to the tire 6 via the axle 5, and the wheel loader 100 travels.
  • the rotation speed of the propeller shaft 4, that is, the vehicle speed is measured by the vehicle speed sensor 16 and output to the controller 10.
  • the accelerator pedal 12 is operated by an operator, and the amount of depression is measured by the accelerator pedal angle sensor 12a and output to the controller 10.
  • the forward / reverse selector switch 9 is operated by an operator and transmits a change in the traveling direction of the wheel loader 100 to the controller 10.
  • the shift switch 8 is operated by an operator and transmits an instruction to change the speed stage of the transmission 3 by the operator to the transmission control device 11 through the controller 10.
  • the transmission mode selection switch 7 is operated to be “automatic” or “manual” by the operator, and outputs to the controller 10 whether the speed stage of the transmission 3 is changed by the controller 10 or the shift switch 8.
  • the restriction selection switch 18 is operated to “normal” or “restricted” by the operator, and outputs to the controller 10 whether or not to limit the rotational speed of the engine 1.
  • the controller 10 controls the engine speed in accordance with the depression angle detected by the accelerator pedal angle sensor 12a.
  • the limit selection switch 18 outputs “limited”, the maximum speed calculated by the speed determination program 10b.
  • the rotation speed is set as the upper limit.
  • the transmission control device 11 changes the speed stage of the transmission 3 based on the control command received from the controller 10.
  • FIG. 3 is a diagram schematically showing the shift control by the controller 10.
  • the horizontal axis in FIG. 3 represents the torque converter speed ratio e, and the vertical axis represents the speed stage. The higher the speed stage, the faster the operation is possible. However, when the speed stage becomes higher, the torque may decrease and the required driving force may not be obtained.
  • the speed stage is the first speed
  • the torque converter speed ratio reaches a predetermined value eu, for example, 0.8
  • the speed stage is increased to the second speed. Since the torque decreases when the speed stage is increased, the torque converter speed ratio decreases to eu0, for example, 0.35.
  • the speed stage is 2nd speed and the torque converter speed ratio decreases to a predetermined value ed, for example, 0.3
  • the speed stage is lowered to 1st speed.
  • the torque increases, and the torque converter speed ratio increases to ed0, for example, 0.75.
  • the difference between the torque converter speed ratio immediately after increasing the speed stage, that is, eu0, and the predetermined torque converter speed ratio ed that serves as a reference for decreasing the speed stage should not be too small. And ed values are set.
  • the rotational speed determination program 10b is the highest engine 1 based on the torque converter speed ratio calculated from the outputs of the torque converter input shaft rotational speed sensor 14 and the torque converter output shaft rotational speed sensor 15 and the restriction mode stored in the RAM of the controller 10.
  • the rotational speed (hereinafter referred to as “maximum rotational speed”) is determined as follows.
  • the engine speed shown below has a relationship of R4 ⁇ R3 ⁇ R2 ⁇ R1, and the torque converter speed ratio has a relationship of 0 ⁇ e1 ⁇ e2 ⁇ e23 ⁇ e3 ⁇ 1.
  • ed and eu shown in FIG. 3 have a relationship of ed ⁇ e1 ⁇ e2 ⁇ eu.
  • the range of e1 ⁇ e ⁇ e2 in which the torque converter speed ratio e is set in advance corresponds to the time when the wheel loader 100 is climbing a slope.
  • the range where the torque converter speed ratio e is smaller than the previously set speed ratio range (e1 ⁇ e ⁇ e2) and 0 ⁇ e ⁇ e1 corresponds to the time of excavation work or dosing work of the wheel loader 100.
  • the range in which the torque converter speed ratio e is larger than the preset speed ratio range (e1 ⁇ e ⁇ e2) and e3 ⁇ e ⁇ 1 corresponds to the case where the wheel loader 100 travels on a flat road at a high speed. .
  • FIGS. 4A and 4B are diagrams showing the relationship between the torque converter speed ratio and the maximum rotation speed when the limit selection switch 18 is set to “limited”.
  • FIG. 4A shows mode A
  • FIG. 4B shows mode B
  • (C) shows mode C
  • (d) shows the correlation of each mode. 4A to 4D
  • the horizontal axis represents the torque converter speed ratio
  • the vertical axis represents the maximum rotational speed.
  • the maximum rotational speed is constant at N0 when the torque converter speed ratio e is in the range of 0 ⁇ e ⁇ e1
  • the maximum rotational speed is when the torque converter speed ratio e is in the range of e1 ⁇ e ⁇ e2.
  • the torque converter speed ratio e is larger than the maximum speed N0 of the engine 1 when the small torque converter speed ratio e is in the range of 0 ⁇ e ⁇ e1 and the preset speed ratio range (e1 ⁇ e ⁇ e2).
  • the maximum engine speed R4 of the engine 1 is set so as to be lower than the maximum engine speed R2 of the engine 1 when e3 ⁇ e ⁇ 1. Since the rotational speed N0 is adjusted according to the characteristics of the individual wheel loader 100, the magnitude relationship with R3 and R4 varies from individual to individual. The reason why the maximum rotational speed is constant in the range of e3 ⁇ e is to prevent the rotational speed of the engine 1 from fluctuating due to slight load fluctuations when traveling at a constant high speed. .
  • the maximum rotational speed is constant at N0 when the torque converter speed ratio e is in the range of 0 ⁇ e ⁇ e1, and the maximum rotational speed is when the torque converter speed ratio e is in the range of e1 ⁇ e ⁇ e23.
  • Is constant at R3 and when the torque converter speed ratio e is in the range of e23 ⁇ e ⁇ e3, the maximum rotational speed increases from R3 to R2 as the torque converter speed ratio increases, and is highest in the range of the torque converter speed ratio e of e3 ⁇ e ⁇ 1.
  • the rotation speed is constant at R2. As shown in FIG.
  • the maximum rotational speed is constant at N0 when the torque converter speed ratio e is in the range of 0 ⁇ e ⁇ e1, and the maximum rotational speed is when the torque converter speed ratio e is in the range of e1 ⁇ e ⁇ 1. Is constant at R1.
  • FIG. 4D shows the correlation of each mode. Characteristics common to mode A and mode A and other modes are indicated by solid lines, characteristics of only mode B are indicated by two-dot chain lines, and characteristics of only mode C are indicated by one-dot chain lines.
  • the torque converter speed ratio e is in the range of 0 ⁇ e ⁇ e1
  • the maximum rotational speed is constant at N0 regardless of the mode.
  • the torque converter speed ratio e is in the range of e1 ⁇ e ⁇ e23
  • the maximum rotation speed of mode B is higher than the maximum rotation speed of mode A
  • the maximum rotation speed of mode C is higher than the maximum rotation speed of mode B
  • e e23
  • the maximum number of revolutions in mode A and mode B is the same R3.
  • the torque converter speed ratio e When the torque converter speed ratio e is in the range of e23 ⁇ e, the highest rotational speeds of mode A and mode B are the same, and the highest rotational speed of mode C is higher than that of modes A and B.
  • R0 higher than R1 is the maximum rotation speed regardless of the torque converter speed ratio.
  • the torque converter speed ratio e4 has a relationship of e3 ⁇ e4 and is used when the mode is changed.
  • the controller 10 sets the maximum rotational speed to R4. Since the torque converter speed ratio becomes equal to or greater than e2 at time t3, the maximum rotational speed also increases after time t3. Since the torque converter speed ratio reaches e3 at time t4, the controller 10 sets the maximum rotational speed to R2, which is the highest rotational speed in mode A. Although the torque converter speed ratio increases after time t4, the maximum rotational speed is constant at R2.
  • the controller 10 When the wheel loader 100 starts to climb uphill at time t5, the traveling load increases and the torque converter speed ratio starts to decrease.
  • the controller 10 successively changes the maximum rotation speed from R2 to a smaller value.
  • the maximum rotational speed is set to R4.
  • the controller 10 enters the limit mode at time t8 when Ta has elapsed from time t7. A is changed to mode B. Accordingly, the maximum rotation speed is changed to R3.
  • the controller 10 After the maximum rotational speed is set to R3, if the torque converter speed ratio continues and the state of e1 or more and less than e2 continues for a predetermined time Tb, the controller 10 enters the limit mode at time t9 when Tb has elapsed from time t8. From B to mode C, the maximum rotational speed is changed to R1. After time t9, the torque converter speed ratio repeatedly increases and decreases, but since the mode remains C, the maximum rotation speed is not changed from R1.
  • the controller 10 After the torque converter speed ratio reaches e4 at time t10, if the torque converter speed ratio continues to be equal to or greater than e4 until a predetermined time Tc elapses, at time t11 when Tc has elapsed from time t10, the controller 10 The mode is changed from C to A. Accordingly, the maximum rotational speed is changed to R2. After time t11, the torque converter speed ratio is greater than e3 and less than e4, so the maximum rotational speed is not changed from R2.
  • the controller 10 determines the maximum number of rotations using the limit mode and torque converter speed ratio stored in the RAM.
  • the relationship between the torque converter speed ratio and the maximum rotational speed for each mode is as shown in FIG.
  • mode A when the operation state in which the torque converter speed ratio e is e1 ⁇ e ⁇ e2 continues for a predetermined time Ta, the controller 10 changes the mode from A to B and accordingly changes the maximum rotational speed from R4 to R3. To do. That is, the controller 10 determines that the travel load is high and the engine output is insufficient because the low torque converter speed ratio continues for a predetermined time, and increases the maximum engine speed to increase the output of the engine 1.
  • the controller 10 changes the mode from B to C and accordingly increases the maximum rotational speed. Change from R3 to R1. That is, when the state where the torque converter speed ratio is low continues, the controller 10 changes the mode from A to B and from B to C, raises the maximum rotational speed, increases the output of the engine 1, and finishes the work in a short time.
  • the mode determination program 10a determines a restriction mode necessary for calculating the target rotational speed of the engine 1.
  • the mode determination program 10a is stored in the ROM of the controller 10, and is expanded in the RAM of the controller 10 and executed by the CPU every predetermined time, for example, every second.
  • the execution subject of each step described below is the CPU of the controller 10.
  • step S201 the controller 10 reads the state of the restriction selection switch 18 operated by the operator, and determines whether or not “restricted” is set. If the controller 10 determines that “limited” is set, the process proceeds to step S202. If the controller 10 determines that it is not set to “restricted”, that is, is set to “normal”, the program whose operation is represented by FIG. 6 is terminated.
  • step S202 the controller 10 reads the current mode stored in the RAM and determines which mode it is. If it is determined that the mode is A, the process proceeds to step S203. If it is determined that the mode is B, the process proceeds to step S209. If it is determined that the mode is C, the process proceeds to step S214. In step S203, the controller 10 starts counting by a timer and proceeds to step S204. In step S204, the controller 10 reads the outputs of the torque converter input shaft rotational speed sensor 14 and the torque converter output shaft rotational speed sensor 15, calculates the torque converter speed ratio, and proceeds to step S205.
  • step S205 the controller 10 determines whether or not the torque converter speed ratio e calculated in step S204 satisfies e1 ⁇ e ⁇ e2. If it is determined that e1 ⁇ e ⁇ e2 is satisfied, the process proceeds to step S206.
  • step S206 the controller 10 determines whether or not the timer t that has started counting from step S203 has elapsed for a time Ta, for example, 3 seconds or more. If the controller 10 determines that the time Ta or more has elapsed, the process proceeds to step S207.
  • step S207 the controller 10 changes the restriction mode stored in the RAM from mode A to mode B, and proceeds to step S208.
  • step S208 the controller 10 ends the time count started from step S203, S209, or S214, and ends the program whose operation is represented by the flowchart of FIG.
  • step S205 if the controller 10 determines that the torque converter speed ratio e does not satisfy e1 ⁇ e ⁇ e2, the controller 10 ends the timer in step S208 and ends the program whose operation is represented by the flowchart of FIG.
  • step S206 when the controller 10 determines that the timer t that has started counting from step S203 is less than the time Ta, the controller 10 returns to step S204.
  • Steps S209 to S213 and steps S214 to S218 are steps that are executed when the restriction mode is determined to be mode B and mode C in step S202, respectively, and these processes are similar to the processes in steps S203 to S207. .
  • Step S212 is different in that the threshold value in step S206 is changed to Tb.
  • Step S213 is different in that the restriction mode is changed from mode B to mode C.
  • Step S216 differs from Step S205 in that it determines whether the torque converter speed ratio e is equal to or greater than e4.
  • Step S217 is different in that the threshold value in step S206 is changed to Tc.
  • Step S218 is different in that the restriction mode is changed from mode C to mode A.
  • the rotation speed determination program 10b for calculating the target rotational speed of the engine 1 will be described with reference to FIG.
  • the rotation speed determination program 10b is stored in the ROM of the controller 10, and is expanded in the RAM of the controller 10 and executed by the CPU every predetermined time, for example, every second.
  • the execution subject of each step described below is the CPU of the controller 10.
  • step S301 the controller 10 reads the output of the accelerator pedal angle sensor 12a and proceeds to step S302.
  • step S302 the controller 10 calculates the target engine speed Na of the engine 1 from the output of the accelerator pedal angle sensor 12a, and proceeds to step S303.
  • the controller 10 reads the output of the restriction selection switch 18 operated by the operator, and determines whether it is “with restriction” or “normal”. If it is determined that it is “limited”, the process proceeds to step S304, and if it is determined that it is “normal”, the process proceeds to step S320.
  • step S304 the controller 10 reads the outputs of the torque converter input shaft rotational speed sensor 14 and the torque converter output shaft rotational speed sensor 15, calculates the torque converter speed ratio, and proceeds to step S305.
  • step S305 the controller 10 evaluates the magnitude of the torque converter speed ratio calculated in step S304. If it is determined that it is less than e1, the process proceeds to step S306. If it is determined that e1 is less than e2, the process proceeds to step S307. If it is determined that e2 is less than e3, the process proceeds to step S311. If YES, the process proceeds to step S315. For example, e1 to e4 are 0.4, 0.7, 0.9, and 0.95.
  • step S306 the controller 10 assigns a predetermined constant N0 to the variable Nmax, and proceeds to step S318. If it is determined that the torque converter speed ratio is greater than or equal to e1 and less than e2, in step S307, the controller 10 reads the limit mode stored in the RAM and determines which limit mode it is. If it is determined that the restriction mode is mode A, the process proceeds to step S308. If it is determined that it is mode B, the process proceeds to step S309. If it is determined that it is mode C, the process proceeds to step S310.
  • step S308 the controller 10 assigns a predetermined constant R4 to the variable Nmax, and proceeds to step S318.
  • step S309 the controller 10 assigns a predetermined constant R3 to the variable Nmax, and proceeds to step S318.
  • step S310 the controller 10 substitutes a predetermined constant R1 for the variable Nmax, and proceeds to step S318. If it is determined that the torque converter speed ratio is greater than or equal to e2 and less than e3, in step S311, the controller 10 reads the limit mode stored in the RAM and determines which limit mode it is. If it is determined that the restriction mode is mode A, the process proceeds to step S312, if it is determined that it is mode B, the process proceeds to step S313, and if it is determined that it is mode C, the process proceeds to step S314.
  • step S312 the controller 10 substitutes the calculation result of the function f (e) for the variable Nmax, and proceeds to step S318.
  • f (e) is an expression representing a straight line connecting (e2, R4) and (e3, R2) on a two-dimensional plane.
  • step S313 the controller 10 substitutes the larger one of R3 or f (e) for the variable Nmax, and proceeds to step S318.
  • step S314 the controller 10 substitutes a predetermined constant R1 for the variable Nmax, and proceeds to step S318.
  • step S315 the controller 10 reads the mode stored in the RAM and determines which of the limit modes it is. If it is determined that the restriction mode is mode A or B, the process proceeds to step S316. If it is determined that the restriction mode is mode C, the process proceeds to step S317. In step S316, the controller 10 assigns a predetermined constant R2 to the variable Nmax, and proceeds to step S318. In step S317, the controller 10 substitutes a predetermined constant R1 for the variable Nmax, and proceeds to step S318.
  • step S3108 the controller 10 determines whether or not the target rotational speed Na calculated in step S302 is larger than Nmax into which the value is substituted in steps S306 to S317.
  • the process proceeds to step S319, and when it is determined that Nmax is equal to or less than Na, the process proceeds to step S320.
  • step S319 the controller 10 substitutes Nmax for the target rotational speed N of the engine 1 and ends the program whose operation is represented by FIG.
  • step S320 the controller 10 substitutes Na for the target rotational speed N of the engine 1 and ends the program whose operation is represented by FIG.
  • the mode determination program 10a executed by the controller 10 calculates the torque converter speed ratio, determines the restriction mode as one of modes A to C, and stores it in the RAM.
  • the restriction on the maximum rotational speed is relaxed in mode B than in mode A, and the restriction on the maximum rotational speed is relaxed in mode C than in mode B.
  • the limit mode is changed to mode B if the torque converter speed ratio e continues for a predetermined time Ta or longer for e1 ⁇ e ⁇ e2.
  • the limit mode is changed to mode C if the torque converter speed ratio e continues for a predetermined time Tb or longer for e1 ⁇ e ⁇ e2.
  • the rotational speed determination program 10b executed by the controller 10 limits the maximum rotational speed of the engine 1 from the read restriction mode and the calculated torque converter speed ratio. Even if the torque converter speed ratio is constant, when the limit mode is changed from mode A to mode B and from mode B to mode C, the limitation on the rotational speed is relaxed. That is, when the torque converter speed ratio e satisfies e1 ⁇ e ⁇ e2 over a predetermined time or more, it is determined that the engine output is insufficient compared to the traveling load, and the engine 1 is changed by changing the limit mode. Relax the maximum speed limit.
  • the controller 10 of the wheel loader 100 includes a rotation speed control unit (step S302 in FIG. 7) that controls the rotation speed of the engine 1 according to the operation amount of the accelerator pedal 12, and an input shaft and an output shaft of the torque converter 2.
  • a speed ratio calculation unit (step S304 in FIG. 7) that calculates the speed ratio of the engine 1 and a rotation speed limiting unit (step S319 in FIG. 7) that limits the maximum rotation speed of the engine 1.
  • the controller 10 takes modes A to C having different characteristics, that is, one of the first to third limiting states, and in mode A, that is, the first limiting state, the calculated speed ratio of 1 or less is
  • Mode B that is, the second limit state
  • Mode B the operation state in which the calculated speed ratio is greater than or equal to e1 and less than e2
  • Mode C that is, the third limit state.
  • the mode A when the operation state in which the calculated speed ratio is e4 or more continues for a predetermined time or longer, the mode A is changed to the mode A (step S202 in FIG. 6). S218).
  • R3 which is the highest speed in mode B
  • R4 which is the highest speed in mode A
  • R2 which is the highest speed in mode C
  • the controller 10 causes the speed ratio to exceed e2 in a short time if the traveling load is small, and therefore the controller 10 is allowed to travel without changing the restriction mode from mode A while the restriction on the rotational speed of the engine 1 is large. As the traveling load increases, the speed ratio is less likely to increase.
  • the controller 10 changes the limit mode to mode B or mode C and relaxes the maximum speed limit. That is, the controller 10 can set the maximum rotational speed suitable for the traveling load in order to relax the limitation on the maximum rotational speed as time passes. Further, the amount of fuel consumption is small compared to the case where the maximum rotational speed is not limited, and the same work, for example, the climbing work, can be completed in a short time compared to the case where the maximum rotational speed is uniformly limited.
  • the controller 10 In the operation state in which the calculated speed ratio is equal to or greater than e2, the controller 10 has a maximum rotational speed in mode B that is equal to or higher than the maximum rotational speed in mode A, and the maximum rotational speed in mode C is the maximum rotational speed in mode B. It is more than a number. Therefore, according to the limit mode in which the torque converter speed ratio e is determined in the range of e1 ⁇ e ⁇ e2, the maximum rotation speed is determined even in the region where the torque converter speed ratio is e2 or more, and the maximum rotation speed is not unnecessarily increased. . In other words, even in a region where the torque converter speed ratio is e2 or more, it is possible to set the maximum rotational speed suitable for the traveling load.
  • the controller 10 does not depend on the magnitude of the calculated speed ratio, that is, in any operating state where the calculated speed ratio is equal to or greater than e3, in any of the restricted states of modes A to C. Regardless of how much the speed ratio is greater than e3, the maximum engine speed is constant. Therefore, in a state where the speed ratio is larger than e3 and the vehicle is traveling at a high speed, the maximum rotation speed of the engine 1 can be kept constant even if the traveling load slightly changes due to road surface undulations.
  • the controller 10 In the operating state where the calculated speed ratio is equal to or greater than e1, the controller 10 continuously changes the maximum engine speed when the speed ratio changes in the same mode. Therefore, the operator does not feel discomfort or discomfort due to a sudden change in the rotational speed of the engine 1.
  • the maximum rotational speed of the engine 1 in the operating state where the speed ratio e is e1 ⁇ e ⁇ e2 in the mode C is higher than the maximum rotational speed of the engine 1 in any speed ratio in the mode A. Therefore, in mode C where the traveling load is high, the maximum rotational speed of the engine 1 is greatly reduced, and the time required for work can be reduced, thereby reducing the burden on the operator.
  • the restriction mode is changed only from mode A to B, mode B to C, and mode C to A, and not changed from mode B to A.
  • the change of the restriction mode is not limited to this.
  • the limit mode is mode B
  • the limit mode may be changed to mode A if the state where the torque converter speed ratio is larger than a predetermined threshold continues for a predetermined time or longer.
  • the controller 10 changes to the mode A when the operation state in which the calculated speed ratio is e23 or more continues for a predetermined time or more.
  • the threshold value of the torque converter speed ratio for changing the limit mode from mode B to A may be at least larger than e2. In particular, if the threshold value is greater than or equal to e23, the maximum rotational speed takes a continuous value when the restriction mode is changed from mode B to mode A, and the operator may feel uncomfortable with changes in the rotational speed of the engine 1. Absent.
  • FIG. 8 is a diagram illustrating an operation when the controller 10 uses the vehicle speed to control the speed stage.
  • the horizontal axis in FIG. 8 represents the vehicle speed, and the vertical axis represents the speed stage.
  • the controller 10 issues a command to the transmission control device 11 to set the speed stage to the second speed.
  • the controller 10 issues a command for setting the speed stage to the first speed to the transmission control device 11.
  • the controller 10 may control the speed stage using both the torque converter speed ratio and the vehicle speed.
  • the controller 10 may issue a command to change the speed stage to the transmission control device 11 when the torque converter speed ratio satisfies a predetermined condition and the vehicle speed satisfies a predetermined condition.
  • the controller 10 may issue a command to change the speed stage to the transmission control device 11 when the torque converter speed ratio satisfies a predetermined condition or when the vehicle speed satisfies a predetermined condition.
  • FIG. 9 is a flowchart showing the operation of the program executed by the controller 10 instead of the program whose operation is shown in FIG. 7 in the embodiment described above in the third modification.
  • the flowchart shown in FIG. 9 is different in that step S401 is newly provided between step S303 and step S304 of the flowchart shown in FIG.
  • step S401 the controller 10 evaluates the current speed stage of the transmission 3, and if it is determined that the speed stage is 3rd speed or higher, the process proceeds to step S320, and if it is determined that the speed stage is 2nd speed or lower, step S401 is performed. The process proceeds to S304. That is, when the speed stage is set to the third speed or higher, the restriction selection switch 18 may always be regarded as being set to “normal” and processed.
  • Mode 4 In the above-described embodiment, three restriction modes, modes A to C, are provided, but the number of restriction modes is not limited to this.
  • the limiting mode is changed every time a predetermined time elapses, and the maximum rotational speed of the engine 1 is gradually limited. It may be made smaller.
  • Controller motor control device
  • Mode determination program rotation speed limiter
  • rotational speed determination program rotational speed controller, speed ratio calculator, rotational speed limiter

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 トルクコンバータを備える作業車両の原動機制御装置であって、トルクコンバータの入力軸と出力軸の速度比を算出する速度比算出部と、速度比が予め設定した速度比の範囲内にあるときに、原動機の最高回転数を、速度比が予め設定した速度比の範囲以外にあるときの最高回転数に比べて低くなるように制限する回転数制限部とを備え、回転数制限部は、速度比算出部により算出された速度比が、予め設定した速度比の範囲内にある状態が所定時間継続した場合に、原動機の最高回転数を、回転数制限部により低くなるように制限した最高回転数に比べて高い最高回転数に変更する。

Description

作業車両の原動機制御装置
 本発明は、作業車両に用いられる原動機制御装置に関する。
 エンジンおよびトルクコンバータを備える作業車両において、燃料の消費量を削減するためにエンジン回転数を制限する装置が知られている。特許文献1に記載のエンジン回転数制限装置は、エンジン回転数を大きく制限する状態と制限を緩和する状態とを有し、所定の条件により2つの状態を切り替える。
日本国特開2011-2049
 特許文献1に記載されている発明では、最高エンジン回転数の制限の緩和が1状態しかないため、走行負荷に適した最高エンジン回転数に設定することが難しい。
 本発明の第1の態様によると、作業車両の原動機制御装置は、原動機の回転をトルクコンバータおよびトランスミッションを介して車輪に伝達する作業車両の原動機制御装置であって、アクセルペダルの操作量に応じて前記原動機の回転数を制御する回転数制御部と、前記トルクコンバータの入力軸と出力軸の速度比を算出する速度比算出部と、前記速度比算出部により算出された速度比が、予め設定した速度比の範囲内にあるときに、前記原動機の最高回転数を、前記予め設定した速度比の範囲に比べて速度比が大きい範囲及び速度比が小さい範囲にあるときの最高回転数に比べて、低くなるように制限する回転数制限部とを備え、前記回転数制限部は、前記速度比算出部により算出された速度比が、前記予め設定した速度比の範囲内にある状態が所定時間継続した場合に、前記原動機の最高回転数を、前記回転数制限部により低くなるように制限された前記制限した最高回転数に比べて高い最高回転数に変更することを特徴とする。
 本発明によれば、走行負荷に適した最高エンジン回転数に設定することができる。
建設車両の外観図 建設車両のブロック図 トルコン速度比による変速制御を示す図 回転数制限時のモード別の最高エンジン回転数を示す図 動作例を示す時系列図 モード決定プログラムの動作を示すフローチャート 回転数決定プログラムの動作を示すフローチャート 変形例2における車速による変速制御を示す図 変形例3における回転数決定プログラムの動作を示すフローチャート
 以下、図1~7を参照して本発明による作業車両の原動機制御装置の一実施形態を説明する。
 図1は、本実施の形態に係る原動機制御装置が適用される作業車両の一例であるホイールローダの側面図である。ホイールローダ100は、アーム111、バケット112、タイヤ6等を有する前部車体110と、運転室121、エンジン室122、タイヤ6等を有する後部車体120とで構成される。前部車体110と後部車体120はセンタピン101により互いに回動自在に連結され、ステアリングシリンダ(不図示)の伸縮により後部車体120に対し前部車体110が左右に屈折する。バケット112は、リフトアームシリンダ114により昇降され、バケットシリンダ115により回動される。
 図2は、ホイールローダ100の速度制御および変速制御に係るブロック図である。ホイールローダ100は、制御の中心となるコントローラ10と、コントローラ10により回転数が制御されるエンジン1と、エンジン1の動力をトランスミッション3に伝達するトルクコンバータ2と、トルクコンバータ2の出力を変速するトランスミッション3と、トランスミッション3の速度段を制御するトランスミッション制御装置11と、トランスミッション3の出力でタイヤ6に駆動力を与えるアクスル5およびプロペラシャフト4とを備える。コントローラ10には、アクセルペダル12の踏込み角度を検出するアクセルペダル角度センサ12aと、ブレーキペダル13の踏込み角度を検出するブレーキペダル角度センサ13aと、自動変速と手動変速を切り替える変速モード選択スイッチ7と、前後進切り替えスイッチ9と、シフトスイッチ8と、エンジン1の回転数の制限の有無を切り替える制限選択スイッチ18と、エンジン回転数センサ1aと、トルクコンバータ入力軸回転数センサ14と、トルクコンバータ出力軸回転数センサ15と、車速センサ16とが信号線により接続され、これら各機器からそれぞれ信号が入力される。
 コントローラ10は、CPU、ROM、フラッシュメモリ、およびRAMを備え、ROMにはモード決定プログラム10a、回転数決定プログラム10b、およびモード決定プログラム10aが随時書き換える制限モードが格納される。制限モードはモードA~Cのいずれかであり、コントローラ10の起動直後には制限モードはAに設定される。コントローラ10は一定時間、たとえば1秒ごとにモード決定プログラム10a、および回転数決定プログラム10bを実行し、エンジン1の回転数を制御する。
 モード決定プログラム10aは、トルクコンバータ入力軸回転数センサ14およびトルクコンバータ出力軸回転数センサ15の出力などを参照してホイールローダ100の動作状態を把握し、制限モードをA~Cのいずれかに決定し、コントローラ10のRAMに書き込む。
 回転数決定プログラム10bは、アクセルペダル角度センサ12a、制限選択スイッチ18、トルクコンバータ入力軸回転数センサ14、およびトルクコンバータ出力軸回転数センサ15の出力、ならびにRAMに保存されている制限モードを用いて、エンジン1の目標回転数を算出する。
 エンジン1は、コントローラ10によりその回転数を制御され、トルクコンバータ2にエンジン出力を伝達する。エンジン1の回転数は、エンジン回転数センサ1aにより測定されて測定値がコントローラ10に出力される。
 トルクコンバータ2は、インペラ、タービン、ステータからなる流体クラッチであり、エンジン1の回転はトルクコンバータ2を介してトランスミッション3に伝達される。トルクコンバータ2は入力トルクに対して出力トルクを増大させる機能を有する。トルクコンバータ2の入力軸回転数Niと出力軸回転数Ntの比であるトルコン速度比e(=Nt/Ni)は0~1の値をとり、トルコン速度比が小さいほどトルクが増大されていることを示す。このトルコン速度比は負荷の大きさも表しており、例えば、エンジン回転数が一定の状態でホイールローダ100が坂を登り始めたことなどにより走行負荷が大きくなると、出力軸回転数、すなわち車速が減速し、トルコン速度比が小さくなる。
 入力軸回転数Niを測定するトルクコンバータ入力軸回転数センサ14、および出力軸回転数Ntを測定するトルクコンバータ出力軸回転数センサ15の検出信号は、コントローラ10に出力される。
 トランスミッション3は、各速度段に対応したソレノイド弁を有する自動変速機であり、トルクコンバータ2の出力を変速してプロペラシャフト4に伝達する。これらのソレノイド弁は、トランスミッション制御装置11によって駆動され、1速~2速、および後進の間で速度段が変更される。
 プロペラシャフト4は、トランスミッション3の出力をアクスル5を介してタイヤ6に伝達し、ホイールローダ100が走行する。プロペラシャフト4の回転数、すなわち車速は車速センサ16により測定されてコントローラ10に出力される。
 アクセルペダル12は、オペレータにより操作され、その踏込量はアクセルペダル角度センサ12aにより測定されてコントローラ10に出力される。
 前後進切り替えスイッチ9は、オペレータにより操作されホイールローダ100の進行方向の変更をコントローラ10に伝達する。
 シフトスイッチ8は、オペレータにより操作され、オペレータによるトランスミッション3の速度段の変更指令を、コントローラ10を通じてトランスミッション制御装置11に伝達する。
 変速モード選択スイッチ7は、オペレータにより「自動」または「手動」に操作され、トランスミッション3の速度段の変更をコントローラ10とシフトスイッチ8のいずれにより行うかを、コントローラ10に出力する。
 制限選択スイッチ18は、オペレータにより「通常」または「制限あり」に操作され、エンジン1の回転数を制限するか否かをコントローラ10に出力する。コントローラ10は、アクセルペダル角度センサ12aが検出する踏込み角度に応じてエンジン回転数を制御するが、制限選択スイッチ18が「制限あり」を出力する場合は、回転数決定プログラム10bにより算出される最高回転数が上限とされる。
 トランスミッション制御装置11は、コントローラ10から受信する制御指令に基づきトランスミッション3の速度段を変更する。
(変速制御)
 オペレータにより変速モード選択スイッチ7が「自動」に設定されると、トランスミッション3の速度段はコントローラ10により、ホイールローダ100の動作状態に基づき制御される。速度段の制御には、トルコン速度比を用いる方法と車速を用いる方法があるが、本実施の形態では以下のようにトルコン速度比を用いる。
 図3は、コントローラ10による変速制御を模式的に表した図である。図3の横軸はトルコン速度比eを、縦軸は速度段を表している。速度段が高いほど高速な動作が可能であるが、速度段が高くなるとトルクが減少し必要な駆動力が得られない恐れがある。そのため、速度段が1速の場合にトルコン速度比が所定の値eu、たとえば0.8に達すると速度段を2速に上げる。速度段を上げるとトルクが減少するので、トルコン速度比はeu0、たとえば0.35まで減少する。速度段が2速の場合にトルコン速度比が所定の値ed、たとえば0.3にまで減少すると速度段を1速に下げる。速度段を下げるとトルクが増加し、トルコン速度比がed0、たとえば0.75に増加する。
 変速のハンチング現象を防止するために、速度段を上げた直後のトルコン速度比、すなわちeu0と、速度段を下げる基準となる所定のトルコン速度比edとの差が小さくなりすぎないように、euとedの値が設定されている。
(最高回転数の制限)
 オペレータにより制限選択スイッチ18が「制限あり」に設定されると、エンジン1の回転数はホイールローダ100の動作状態に基づき以下のように制限される。回転数決定プログラム10bは、トルクコンバータ入力軸回転数センサ14およびトルクコンバータ出力軸回転数センサ15の出力から算出されるトルコン速度比と、コントローラ10のRAMに保存される制限モードからエンジン1の最高回転数(以下、「最高回転数」と呼ぶ)を以下のように決定する。
 以下に示すエンジン回転数は、R4<R3<R2<R1の関係を有し、トルコン速度比は0<e1<e2<e23<e3<1の関係を有する。なお、図3に示したedおよびeuとは、ed<e1<e2<euの関係を有する。トルコン速度比eが予め設定したe1≦e<e2の範囲は、ホイールローダ100が坂道を登っている時などが該当する。上記予め設定した速度比の範囲(e1≦e<e2)に比べて小さいトルコン速度比eが0≦e<e1の範囲は、ホイールローダ100の掘削作業時やドージング作業時などが該当する。上記予め設定した速度比の範囲(e1≦e<e2)に比べて大きいトルコン速度比eがe3≦e≦1の範囲は、ホイールローダ100が平坦な道路を高速に走行する時などが該当する。
 図4は、制限選択スイッチ18が「制限あり」に設定された場合の、トルコン速度比と最高回転数の関係を示す図であり、(a)はモードAを、(b)はモードBを、(c)はモードCを示し、(d)は各モードの相関を示す。図4の(a)~(d)はいずれも、横軸はトルコン速度比、縦軸は最高回転数を示す。
 図4(a)に示すようにモードAでは、トルコン速度比eが0≦e<e1の範囲では最高回転数はN0で一定、トルコン速度比eがe1≦e<e2の範囲では最高回転数はR4で一定、トルコン速度比eがe2≦e<e3の範囲では最高回転数はトルコン速度比の増加に伴いR4からR2まで増加し、トルコン速度比eがe3≦e≦1の範囲では最高回転数はR2で一定である。このように、後述する回転数決定プログラム10bにおいては、トルコン速度比eが予め設定したe1≦e<e2の範囲にあるときには、上記予め設定した速度比の範囲(e1≦e<e2)に比べて小さいトルコン速度比eが0≦e<e1の範囲にあるときのエンジン1の最高回転数N0及び上記予め設定した速度比の範囲(e1≦e<e2)に比べて大きいトルコン速度比eがe3≦e≦1の範囲にあるときのエンジン1の最高回転数R2と比較して、エンジン1の最高回転数R4を低くなるように制限して設定してある。回転数N0は、ホイールローダ100の個体の特性に合わせて調整するため、R3およびR4との大小関係は個体ごとに異なる。e3≦eの範囲において最高回転数が一定となっているのは、高速に一定速で走行している際にわずかな負荷の変動によりエンジン1の回転数が変動することを防止するためである。
 図4(b)に示すようにモードBでは、トルコン速度比eが0≦e<e1の範囲では最高回転数はN0で一定、トルコン速度比eがe1≦e<e23の範囲では最高回転数はR3で一定、トルコン速度比eがe23≦e<e3の範囲では最高回転数はトルコン速度比の増加に伴いR3からR2まで増加し、トルコン速度比eがe3≦e≦1の範囲では最高回転数はR2で一定である。
 図4(c)に示すようにモードCでは、トルコン速度比eが0≦e<e1の範囲では最高回転数はN0で一定、トルコン速度比eがe1≦e≦1の範囲では最高回転数はR1で一定である。
 図4(d)は各モードの相関を示している。モードAおよびモードAと他のモードに共通する特性を実線で、モードBのみの特性を2点鎖線で、モードCのみの特性を1点鎖線で示している。トルコン速度比eが0≦e<e1の範囲では、モードによらず最高回転数はN0で一定である。トルコン速度比eがe1≦e<e23の範囲では、モードBの最高回転数がモードAの最高回転数より高く、モードCの最高回転数がモードBの最高回転数より高く、e=e23になるとモードAとモードBの最高回転数は同一のR3である。トルコン速度比eがe23≦eの範囲では、モードAとモードBの最高回転数が同一で、モードCの最高回転数はモードAおよびBよりも高い。なお、制限選択スイッチ18が「通常」に設定されている場合は、トルコン速度比にかかわらず、R1よりも高いR0が最高回転数となる。
 なお、ここまでの説明において登場していないが、トルコン速度比e4はe3<e4の関係にありモード変更の際に使用される。
(動作例)
 図5を用いて、制限選択スイッチ18が「制限あり」、変速モード選択スイッチ7が「自動」に設定されている場合の、最高回転数、トルコン速度比、モード、速度段の遷移を説明する。いずれのグラフも横軸は時間の進行を表しており、縦の点線で示す各グラフの時刻は一致している。
 時刻t0において、ホイールローダ100は、ed<e<e1を満たすトルコン速度比、2速の速度段、モードAの制限モードにて動作している。トルコン速度比がe1未満なので、コントローラ10により最高回転数はN0に設定される。
 その後、ホイールローダ100のトルコン速度比は増加し、時刻t1でトルコン速度比がe1以上になると、コントローラ10により最高回転数はR4に設定される。時刻t3でトルコン速度比がe2以上となるので、最高回転数も時刻t3以降上昇する。時刻t4でトルコン速度比がe3に達したので、コントローラ10により最高回転数はモードAにおける最も高い回転数であるR2に設定される。時刻t4以降もトルコン速度比は増加するが、最高回転数はR2で一定である。
 時刻t5でホイールローダ100が上り坂を登り始めると、走行負荷が増加しトルコン速度比が減少をはじめる。時刻t6以降でトルコン速度比がe3未満になると、コントローラ10により最高回転数がR2からより小さい値に次々に変更される。時刻t7でトルコン速度比がe2未満になると、最高回転数がR4に設定される。
 最高回転数がR4に設定された後、トルコン速度比が継続してe1以上かつe2未満の状態が所定時間Ta継続すると、時刻t7からTaが経過した時刻t8において、コントローラ10により制限モードがモードAからモードBに変更される。それにともない最高回転数がR3に変更される。
 最高回転数がR3に設定された後、トルコン速度比が継続してe1以上かつe2未満の状態が所定時間Tb継続すると、時刻t8からTbが経過した時刻t9では、コントローラ10により制限モードがモードBからモードCに変更され、それにともない最高回転数がR1に変更される。
 時刻t9以降トルコン速度比は増減を繰り返すが、モードがCのままなので最高回転数はR1から変更されない。
 時刻t10で、トルコン速度比がe4に達した後、所定時間Tcが経過するまでトルコン速度比が継続してe4以上である状態が継続すると、時刻t10からTcが経過した時刻t11では、コントローラ10によりモードがCからAに変更される。それにともない最高回転数がR2に変更される。時刻t11以降では、トルコン速度比がe3より大きくe4未満であるため最高回転数はR2から変更されない。
 以上説明したように制限選択スイッチ18が「制限あり」の場合には、コントローラ10は、RAMに保存される制限モードおよびトルコン速度比を用いて最高回転数を決定する。モードごとのトルコン速度比と最高回転数の関係は図4に示したとおりである。モードAにおいて、トルコン速度比eがe1≦e<e2である動作状態が所定の時間Taにわたって継続すると、コントローラ10はモードをAからBに変更し、それに伴い最高回転数をR4からR3に変更する。すなわち、コントローラ10は、トルコン速度比が低い状態が所定の時間にわたって継続したことから、走行負荷が高くエンジンの出力が不足していると判断し、最高回転数を引き上げてエンジン1の出力を増加させる。コントローラ10はさらに、モードBにおいて、トルコン速度比eがe1≦e<e2である動作状態が所定の時間Tbにわたって継続すると、コントローラ10はモードをBからCに変更し、それに伴い最高回転数をR3からR1に変更する。すなわち、コントローラ10は、トルコン速度比が低い状態が継続すると、AからB、BからCへモードを変更し最高回転数を引き上げてエンジン1の出力を増加させ、短い時間で仕事を終了させる。
(モード決定プログラム)
 図6を用いて、モード決定プログラム10aの動作を説明する。モード決定プログラム10aは、エンジン1の目標回転数の算出に必要な制限モードを決定する。モード決定プログラム10aは、コントローラ10のROMに格納されており、コントローラ10のRAMに展開されてCPUにより所定の時間ごと、たとえば1秒ごとに実行される。以下で説明する各ステップの実行主体は、コントローラ10のCPUである。
 ステップS201において、コントローラ10はオペレータにより操作される制限選択スイッチ18の状態を読み込み、「制限あり」に設定されているか否かを判断する。コントローラ10は、「制限あり」に設定されていると判断する場合はステップS202に進む。コントローラ10は、「制限あり」に設定されていない、すなわち「通常」に設定されていると判断する場合は、図6により動作が表されるプログラムを終了する。
 ステップS202において、コントローラ10は、RAMに保存されている現在のモードを読み込み、いずれのモードであるか判断する。モードAであると判断する場合はステップS203に進み、モードBであると判断する場合はステップS209に進み、モードCであると判断する場合はステップS214に進む。
 ステップS203において、コントローラ10は、タイマーによるカウントを開始させてステップS204に進む。
 ステップS204において、コントローラ10は、トルクコンバータ入力軸回転数センサ14、およびトルクコンバータ出力軸回転数センサ15の出力を読み取り、トルコン速度比を算出してステップS205に進む。
 ステップS205において、コントローラ10は、ステップS204において算出したトルコン速度比eがe1≦e<e2を満たすか否かを判断する。e1≦e<e2を満たすと判断する場合はステップS206に進む。ステップS206において、コントローラ10は、ステップS203からカウントを開始したタイマーtが時間Ta、たとえば3秒以上経過しているか否かを判断し、時間Ta以上経過していると判断するとステップS207に進む。ステップS207において、コントローラ10は、RAMに保存している制限モードをモードAからモードBに変更してステップS208に進む。ステップS208において、コントローラ10は、ステップS203、S209、またはS214から開始した時間カウントを終了し、図6のフローチャートにより動作が表されるプログラムを終了する。
 ステップS205において、コントローラ10は、トルコン速度比eがe1≦e<e2を満たさないと判断すると、ステップS208でタイマを終了させて、図6のフローチャートにより動作が表されるプログラムを終了する。
 ステップS206において、コントローラ10は、ステップS203からカウントを開始したタイマーtが時間Ta未満であると判断するとステップS204に戻る。
 ステップS209~S213、およびステップS214~S218は、それぞれステップS202において制限モードがモードBおよびモードCと判断された場合に実行されるステップであり、それらの処理はステップS203~S207における処理と類似する。以下に相違点を説明する。
 ステップS212は、ステップS206における閾値をTbに変更した点が異なる。ステップS213は、制限モードをモードBからモードCに変更する点が異なる。ステップS216は、トルコン速度比eがe4以上であるかを判断する点がステップS205と異なる。ステップS217は、ステップS206における閾値をTcに変更した点が異なる。ステップS218は、制限モードをモードCからモードAに変更する点が異なる。
(回転数決定プログラム)
 図7を用いて、エンジン1の目標回転数を算出する回転数決定プログラム10bの動作を説明する。回転数決定プログラム10bは、コントローラ10のROMに格納されており、コントローラ10のRAMに展開されてCPUにより所定の時間ごと、たとえば1秒ごとに実行される。以下で説明する各ステップの実行主体は、コントローラ10のCPUである。
 ステップS301において、コントローラ10は、アクセルペダル角度センサ12aの出力を読み込みステップS302に進む。
 ステップS302において、コントローラ10は、アクセルペダル角度センサ12aの出力からエンジン1の目標回転数Naを算出し、ステップS303に進む。たとえばアクセルペダル角度センサ12aの出力が最小の場合にはNaはあらかじめ設定されたアイドル回転数、最大の場合にはNaはR0である。ただし、R0は前述のとおり制限選択スイッチ18が「通常」に設定されている場合の最高回転数である。
 ステップS303において、コントローラ10は、オペレータにより操作される制限選択スイッチ18の出力を読み込み、「制限あり」であるか「通常」であるかを判断する。「制限あり」であると判断するとステップS304に進み、「通常」であると判断するとステップS320に進む。
 ステップS304において、コントローラ10は、トルクコンバータ入力軸回転数センサ14、およびトルクコンバータ出力軸回転数センサ15の出力を読み取り、トルコン速度比を算出してステップS305に進む。
 ステップS305において、コントローラ10は、ステップS304において算出したトルコン速度比の大きさを評価する。e1未満であると判断する場合はステップS306に進み、e1以上e2未満であると判断する場合はステップS307に進み、e2以上e3未満であると判断する場合はステップS311に進み、e3以上であると判断する場合はステップS315に進む。たとえば、e1~e4は、0.4、0.7、0.9、0.95である。
 ステップS306において、コントローラ10は、変数Nmaxに所定の定数N0を代入してステップS318に進む。
 トルコン速度比がe1以上e2未満であると判断するとステップS307では、コントローラ10は、RAMに保存されている制限モードを読み込み、いずれの制限モードであるかを判別する。制限モードがモードAであると判断する場合はステップS308に進み、モードBであると判断する場合はステップS309に進み、モードCであると判断する場合はステップS310に進む。
 ステップS308において、コントローラ10は、変数Nmaxに所定の定数R4を代入してステップS318に進む。ステップS309において、コントローラ10は、変数Nmaxに所定の定数R3を代入してステップS318に進む。ステップS310において、コントローラ10は、変数Nmaxに所定の定数R1を代入してステップS318に進む。
 トルコン速度比がe2以上e3未満であると判断するとステップS311では、コントローラ10は、RAMに保存されている制限モードを読み込み、いずれの制限モードであるかを判別する。制限モードがモードAであると判断する場合はステップS312に進み、モードBであると判断する場合はステップS313に進み、モードCであると判断する場合はステップS314に進む。
 ステップS312において、コントローラ10は、変数Nmaxに関数f(e)の算出結果を代入してステップS318に進む。ただしf(e)とは、二次元平面上で(e2、R4)と(e3、R2)とを結ぶ直線を表す式である。ステップS313において、コントローラ10は、変数NmaxにR3またはf(e)のうち大きい方を代入してステップS318に進む。ステップS314において、コントローラ10は、変数Nmaxに所定の定数R1を代入してステップS318に進む。
 トルコン速度比がe3以上であると判断するとステップS315では、コントローラ10は、RAMに保存されているモードを読み込み、いずれの制限モードであるかを判別する。制限モードがモードAまたはBであると判断する場合はステップS316に進み、モードCであると判断する場合はステップS317に進む。
 ステップS316において、コントローラ10は、変数Nmaxに所定の定数R2を代入してステップS318に進む。ステップS317において、コントローラ10は、変数Nmaxに所定の定数R1を代入してステップS318に進む。
 ステップS318において、コントローラ10は、ステップS302において算出した目標回転数Naが、ステップS306~S317において値が代入されたNmaxよりも大きいか否かを判断する。NmaxよりもNaが大きいと判断する場合はステップS319に進み、NmaxがNa以下であると判断する場合はステップS320に進む。
 ステップS319において、コントローラ10は、エンジン1の目標回転数NにNmaxを代入して図7により動作が表されるプログラムを終了する。
 ステップS320において、コントローラ10は、エンジン1の目標回転数NにNaを代入して図7により動作が表されるプログラムを終了する。
(動作のまとめ)
 コントローラ10により実行されるモード決定プログラム10aは、トルコン速度比を算出して制限モードをモードA~Cのいずれかに決定し、RAMに保存する。モードAよりもモードBの方が最高回転数の制限が緩和されており、モードBよりもモードCの方が最高回転数の制限が緩和されている。制限モードがモードAに設定されている場合に、トルコン速度比eがe1≦e<e2を満たす状態が所定の時間Ta以上継続されると、制限モードがモードBに変更される。制限モードがモードBに設定されている場合に、トルコン速度比eがe1≦e<e2を満たす状態が所定の時間Tb以上継続されると、制限モードがモードCに変更される。
 コントローラ10により実行される回転数決定プログラム10bは、読込んだ制限モードおよび算出したトルコン速度比からエンジン1の最高回転数を制限する。トルコン速度比が一定であっても、制限モードがモードAからB、モードBからCに変更されると回転数の制限が緩和される。
 すなわち、トルコン速度比eが所定の時間以上にわたってe1≦e<e2に該当する場合は、走行負荷に比べてエンジンの出力が不足していると判断し、制限モードを変更することによってエンジン1の最高回転数の制限を緩和する。
 上述した実施の形態によれば、次の作用効果が得られる。
(1)ホイールローダ100のコントローラ10は、アクセルペダル12の操作量に応じてエンジン1の回転数を制御する回転数制御部(図7のステップS302)と、トルクコンバータ2の入力軸と出力軸の速度比を算出する速度比算出部(図7のステップS304)と、エンジン1の最高回転数を制限する回転数制限部(図7のステップS319)とを備える。コントローラ10は、特性の異なるモードA~C、すなわち第1乃至第3の制限状態のいずれかの制限状態をとり、モードA、すなわち第1の制限状態において、算出された1以下の速度比がe1以上かつe2未満である動作状態が所定時間以上継続するとモードB、すなわち第2の制限状態に変更し、モードBにおいて、算出された速度比がe1以上かつe2未満である動作状態が所定時間以上継続するとモードC、すなわち第3の制限状態に変更し、モードCにおいて、算出された速度比がe4以上である動作状態が所定時間以上継続するとモードAに変更する(図6のステップS202~S218)。算出された速度比がe1以上かつe2未満である動作状態では、モードBにおける最高回転数であるR3はモードAにおける最高回転数であるR4より大きく、モードCにおける最高回転数であるR2はモードBにおける最高回転数であるR3より大きい。
 本実施の形態におけるコントローラ10は、走行負荷が小さければ短い時間で速度比がe2を超えるので、制限モードをモードAから変更せずエンジン1の回転数の制限が大きいまま走行させる。走行負荷が大きいほど速度比が増加しにくく、所定の時間が経過するとコントローラ10は、制限モードをモードB、モードCに変更して最高回転数の制限を緩和する。すなわち、コントローラ10は、時間の経過とともに最高回転数の制限を緩和するため、走行負荷に適した最高回転数に設定することができる。また、最高回転数を制限しない場合に比べて燃料消費量が少なく、最高回転数を一律に大きく制限する場合に比べて同一の仕事、たとえば登坂作業を短い時間で完了させることができる。
(2)コントローラ10は、算出された速度比がe2以上である動作状態では、モードBにおける最高回転数はモードAにおける最高回転数以上であり、モードCにおける最高回転数はモードBにおける最高回転数以上である。
 そのため、トルコン速度比eがe1≦e<e2の範囲において決定された制限モードに応じて、トルコン速度比がe2以上の領域においても最高回転数を決定し、不必要に最高回転数を上げない。すなわち、トルコン速度比がe2以上の領域においても走行負荷に適した最高回転数に設定することができる。
(3)コントローラ10は、少なくとも算出された速度比がe3以上である動作状態では、モードA~Cのいずれの制限状態においても、算出された速度比の大きさによらず、すなわち算出された速度比がe3よりもどのぐらい大きいかに関わらず、エンジン1の最高回転数は一定とする。
 そのため、速度比がe3よりも大きく、高速に走行している状態において、路面の起伏などにより走行負荷が多少変化してもエンジン1の最高回転数を一定に保つことができる。
(4)コントローラ10は、算出された速度比がe1以上である動作状態では、同一のモードにおいて速度比が変化した際にエンジン1の最高回転数は連続に変化する。
 そのため、オペレータがエンジン1の回転数が急激に変化することによる違和感や不快感を感じることがない。
(5)モードCにおいて速度比eがe1≦e<e2である動作状態のエンジン1の最高回転数は、モードAにおいていずれの速度比である場合のエンジン1の最高回転数よりも高い。
 そのため、走行負荷が高いモードCではエンジン1の最高回転数を大きく緩和し、作業に要する時間を削減することで、オペレータの負担を軽減できる。
(変形例1)
 上述した実施の形態では、制限モードはモードAからB、モードBからC、モードCからAにのみ変更し、モードBからAへは変更しなかった。しかし制限モードの変更はこれに限定されない。制限モードがモードBの場合に、トルコン速度比が所定の閾値よりも大きい状態が所定の時間以上継続すると、制限モードをモードAに変更してもよい。
 この変形例1によれば、以下の作用効果を奏する。
(1)コントローラ10は、モードBにおいて、算出された速度比がe23以上である動作状態が所定時間以上継続するとモードAに変更する。
 制限モードをモードBからAに変更するトルコン速度比の閾値は少なくともe2より大きければよい。特に閾値がe23以上の値であれば、制限モードがモードBからAに変更された際に最高回転数が連続な値をとるので、オペレータがエンジン1の回転数の変化に違和感を感じることがない。
(変形例2)
 上述した実施の形態では、変速モード選択スイッチ7がオペレータにより「自動」に設定されていると、コントローラ10は、トルコン速度比の大きさを評価して速度段を制御したが、速度段の制御方法はこれに限定されない。
 コントローラ10は、車速センサ16の測定する車速を用いて速度段を制御してもよい。図8は、コントローラ10が速度段の制御に車速を用いる場合の動作に表した図である。図8の横軸は車速を、縦軸は速度段を表している。コントローラ10は、速度段が1速に設定されている場合に車速センサ16の測定する車速が所定の速度V12を超えると、トランスミッション制御装置11に速度段を2速とする指令を出す。コントローラ10は、2速の場合に車速センサ16の測定する車速が所定の速度V21未満になると、トランスミッション制御装置11に速度段を1速とする指令を出す。
 コントローラ10は、トルコン速度比および車速の両方を用いて速度段を制御してもよい。コントローラ10は、トルコン速度比が所定の条件を満たし、なおかつ車速が所定の条件を満たした場合に、トランスミッション制御装置11に速度段を変更する指令を出してもよい。コントローラ10は、トルコン速度比が所定の条件を満たすか、または車速が所定の条件を満たす場合にトランスミッション制御装置11に速度段を変更する指令を出してもよい。
(変形例3)
 上述した実施の形態では、トランスミッション3の速度段は1速または2速しか設定できなかったが、3速以上に設定可能でもよい。さらに、コントローラ10の回転数決定プログラム10bの動作を図9に示すように変更してもよい。
 図9は、変形例3において上述した実施の形態における図7で動作が表されるプログラムに代わって、コントローラ10により実行されるプログラムの動作を表すフローチャートである。図9に示すフローチャートは、図7に示すフローチャートのステップS303とステップS304の間に新たにステップS401が設けられている点が異なる。ステップS401において、コントローラ10はトランスミッション3の現在の速度段を評価し、速度段が3速以上であると判断する場合はステップS320に進み、速度段が2速以下であると判断する場合はステップS304に進む。
 すなわち、速度段が3速以上に設定されている場合には、常に制限選択スイッチ18が「通常」に設定されているとみなしても処理してもよい。
(変形例4)
 上述した実施の形態では、制限モードをモードA~Cの3とおり設けたが、制限モードの数はこれに限定されない。4つ以上の制限モードを設けて、トルコン速度比eがe1≦e<e2に該当する場合は、所定の時間が経過するごとに制限モードを変更し、エンジン1の最高回転数の制限を徐々に小さくしてもよい。
 上述した各実施の形態および変形例は、それぞれ組み合わせてもよい。
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 上記実施の形態では、速度比eが予め設定した速度比の範囲内(たとえばe1≦e<e2)にある状態が継続した場合に、エンジン1の最高回転数をR4から順にR3,R1に変更する例を示したが、本発明は、速度比eが予め設定した速度比の範囲内(たとえばe1≦e<e2)にある状態が継続した場合に、エンジン1の最高回転数をR4からR3に変更する例も含まれる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2014年第241570号(2014年11月28日出願)
 10  … コントローラ(原動機制御装置)
 10a … モード決定プログラム(回転数制限部)
 10b … 回転数決定プログラム(回転数制御部、速度比算出部、回転数制限部)
 100 … ホイールローダ(作業車両)

Claims (5)

  1.  原動機の回転をトルクコンバータおよびトランスミッションを介して車輪に伝達する作業車両の原動機制御装置であって、
     アクセルペダルの操作量に応じて前記原動機の回転数を制御する回転数制御部と、
     前記トルクコンバータの入力軸と出力軸の速度比を算出する速度比算出部と、
     前記速度比算出部により算出された速度比が、予め設定した速度比の範囲内にあるときに、前記原動機の最高回転数を、前記予め設定した速度比の範囲に比べて速度比が大きい範囲及び速度比が小さい範囲にあるときの最高回転数に比べて、低くなるように制限する回転数制限部とを備え、
     前記回転数制限部は、
     前記速度比算出部により算出された速度比が、前記予め設定した速度比の範囲内にある状態が所定時間継続した場合に、前記原動機の最高回転数を、前記回転数制限部により低くなるように制限された前記制限した最高回転数に比べて高い最高回転数に変更することを特徴とする作業車両の原動機制御装置。
  2.  請求項1に記載の作業車両の原動機制御装置において、
     回転数制限部は、特性の異なる第1乃至第3のモードのいずれかのモードを有し、
     前記回転数制限部は、
     前記原動機の最高回転数が前記低くなるように制限した最高回転数に設定される前記第1のモードにおいて、算出された1以下の速度比が、第1の所定値以上かつ前記第1の所定値よりも大きい第2の所定値未満である動作状態が所定時間以上継続した場合に、前記低くなるように制限した最高回転数に比べて高い最高回転数に設定される前記第2のモードに変更し、
     前記第2のモードにおいて、算出された1以下の速度比が、前記第1の所定値以上かつ前記第2の所定値未満である動作状態が所定時間以上継続すると前記第2のモードにおける最高回転数に比べて高い最高回転数に設定される前記第3のモードに変更することを特徴とする作業車両の原動機制御装置。
  3.  請求項2に記載の作業車両の原動機制御装置において、
     前記回転数制限部は、
     前記第2のモードにおいて、算出された1以下の速度比が、前記第2の所定値より大きく第3の所定値より小さい第4の所定値以上である動作状態が所定時間以上継続すると前記第1のモードに変更することを特徴とする作業車両の原動機制御装置。
  4.  請求項2に記載の作業車両の原動機制御装置において、
     前記第3のモードにおいて、算出された1以下の速度比が、前記第2の所定値よりも大きい第3の所定値以上である動作状態が所定時間以上継続すると前記第1のモードに変更することを特徴とする作業車両の原動機制御装置。
  5.  請求項2に記載の作業車両の原動機制御装置において、
     前記回転数制限部は、
     算出された1以下の速度比が、前記第2の所定値以上である動作状態では、前記第2のモードにおける前記原動機の最高回転数は、前記第1のモードにおける前記原動機の最高回転数以上であり、前記第3のモードにおける前記原動機の最高回転数は、前記第2のモードにおける前記原動機の最高回転数より高いことを特徴とする作業車両の原動機制御装置。
PCT/JP2015/083558 2014-11-28 2015-11-30 作業車両の原動機制御装置 WO2016084974A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580045365.9A CN106574558B (zh) 2014-11-28 2015-11-30 作业车辆的原动机控制装置
EP15863424.6A EP3225822B1 (en) 2014-11-28 2015-11-30 Prime mover control device of work vehicle
US15/508,554 US10071629B2 (en) 2014-11-28 2015-11-30 Prime mover control device of work vehicle
KR1020177004782A KR101909844B1 (ko) 2014-11-28 2015-11-30 작업 차량의 원동기 제어 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-241570 2014-11-28
JP2014241570A JP6189280B2 (ja) 2014-11-28 2014-11-28 作業車両の原動機制御装置

Publications (1)

Publication Number Publication Date
WO2016084974A1 true WO2016084974A1 (ja) 2016-06-02

Family

ID=56074517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083558 WO2016084974A1 (ja) 2014-11-28 2015-11-30 作業車両の原動機制御装置

Country Status (6)

Country Link
US (1) US10071629B2 (ja)
EP (1) EP3225822B1 (ja)
JP (1) JP6189280B2 (ja)
KR (1) KR101909844B1 (ja)
CN (1) CN106574558B (ja)
WO (1) WO2016084974A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6555592B2 (ja) * 2016-09-28 2019-08-07 日立建機株式会社 作業車両
DE102017214838A1 (de) * 2017-08-24 2019-02-28 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Antriebsstranges eines Kraftfahrzeugs
US10427687B2 (en) * 2017-10-05 2019-10-01 Deere & Company Speed ratio based governor selection
US11112005B2 (en) * 2018-03-28 2021-09-07 Cnh Industrial America Llc Transmission system for a work vehicle
US10518779B2 (en) * 2018-03-29 2019-12-31 Caterpilliar Inc. Inhibiting high speed directional shifts based on whether controlled throttle shifting is enabled or disabled

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054499A1 (ja) * 2007-10-24 2009-04-30 Tcm Corporation 作業車両の原動機制御装置
JP2011002049A (ja) * 2009-06-19 2011-01-06 Tcm Corp 作業車両の原動機制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511399B2 (en) * 2001-04-25 2003-01-28 General Motors Corporation Torque and power control in a powertrain
CN101529128B (zh) * 2006-11-30 2014-05-14 日立建机株式会社 工业车辆的变速控制装置
JP4466880B2 (ja) * 2007-05-15 2010-05-26 三菱自動車工業株式会社 車両の制御装置
JP2010180848A (ja) * 2009-02-09 2010-08-19 Tcm Corp 作業車両の原動機制御装置
JP5164933B2 (ja) * 2009-06-19 2013-03-21 日立建機株式会社 作業車両の制御装置
KR20120036846A (ko) * 2009-06-19 2012-04-18 히다찌 겐끼 가부시키가이샤 작업 차량의 원동기 제어 장치
US8406971B2 (en) * 2010-09-03 2013-03-26 Paccar Inc. Speed control management systems and methods
US8442732B1 (en) * 2011-10-27 2013-05-14 Eaton Corporation Method and system for determining a driveline ratio for a powertrain having an auxiliary transmission
IN2014DN10273A (ja) * 2012-06-20 2015-08-07 Toyota Motor Co Ltd
JP6183304B2 (ja) * 2014-07-01 2017-08-23 トヨタ自動車株式会社 車両制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054499A1 (ja) * 2007-10-24 2009-04-30 Tcm Corporation 作業車両の原動機制御装置
JP2011002049A (ja) * 2009-06-19 2011-01-06 Tcm Corp 作業車両の原動機制御装置

Also Published As

Publication number Publication date
KR20170034412A (ko) 2017-03-28
CN106574558B (zh) 2019-10-08
US10071629B2 (en) 2018-09-11
CN106574558A (zh) 2017-04-19
JP2016102458A (ja) 2016-06-02
KR101909844B1 (ko) 2018-10-18
EP3225822A4 (en) 2018-07-04
EP3225822A1 (en) 2017-10-04
US20170274770A1 (en) 2017-09-28
EP3225822B1 (en) 2020-05-06
JP6189280B2 (ja) 2017-08-30

Similar Documents

Publication Publication Date Title
WO2016084974A1 (ja) 作業車両の原動機制御装置
JP5388303B2 (ja) 無段変速機の変速制御装置
EP2169251B1 (en) Working vehicle, and vehicle speed control method for a working vehicle
KR101860192B1 (ko) 차량용 구동력 제어 장치
JP5025630B2 (ja) 車両の制御装置
WO2012086684A1 (ja) ホイールローダ
JP5727035B2 (ja) 自動変速機の制御装置
US9945101B2 (en) Work vehicle
US8954245B2 (en) Method of controlling gear ratio rate of change in continuously variable transmission
JP4272094B2 (ja) 作業車両の車速制御装置
JP6224546B2 (ja) 産業車両の変速制御装置
JP6380311B2 (ja) 駆動力制御装置
JP2012131426A (ja) 車両の走行制御装置
JP4750836B2 (ja) 作業車両の車速制御装置
WO2020195727A1 (ja) 作業機械、及び作業機械の制御方法
JP2017223324A (ja) 無段変速機の制御装置
JP2009144783A (ja) 車両の車速制限装置
JP2010180848A (ja) 作業車両の原動機制御装置
JP2010185484A (ja) 作業車両の変速制御装置
JP5157834B2 (ja) 車両用駆動力制御装置
JP2006151127A (ja) 車両の減速制御装置
JP2010121709A (ja) 自動変速機の制御装置
JP2015117795A (ja) 車両用自動変速機の変速制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863424

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177004782

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15508554

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015863424

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015863424

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE