WO2016084731A1 - 有機半導体素子及びその製造方法、有機半導体膜形成用組成物、化合物、並びに、有機半導体膜 - Google Patents

有機半導体素子及びその製造方法、有機半導体膜形成用組成物、化合物、並びに、有機半導体膜 Download PDF

Info

Publication number
WO2016084731A1
WO2016084731A1 PCT/JP2015/082668 JP2015082668W WO2016084731A1 WO 2016084731 A1 WO2016084731 A1 WO 2016084731A1 JP 2015082668 W JP2015082668 W JP 2015082668W WO 2016084731 A1 WO2016084731 A1 WO 2016084731A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
group
formula
semiconductor film
composition
Prior art date
Application number
PCT/JP2015/082668
Other languages
English (en)
French (fr)
Inventor
友樹 平井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016561553A priority Critical patent/JP6363732B2/ja
Publication of WO2016084731A1 publication Critical patent/WO2016084731A1/ja
Priority to US15/497,239 priority patent/US10497881B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Definitions

  • the present invention relates to an organic semiconductor element and a method for producing the same, a composition for forming an organic semiconductor film, a compound, and an organic semiconductor film.
  • organic semiconductors Lightweight, low cost, and flexible, so organic semiconductors can be used for field effect transistors (FETs), RFID (radio frequency identifiers, RF tags) used in liquid crystal displays and organic EL (electroluminescence) displays.
  • FETs field effect transistors
  • RFID radio frequency identifiers, RF tags
  • organic EL electroluminescence
  • An organic transistor having a film is used.
  • conventional organic semiconductors those described in Patent Documents 1 and 2 are known.
  • the problem to be solved by the present invention is to provide an organic semiconductor element and an organic semiconductor film having high mobility and excellent heat resistance, and a method for producing them. Another problem to be solved by the present invention is to provide a novel compound suitable as an organic semiconductor. Furthermore, another problem to be solved by the present invention is a composition for forming an organic semiconductor film, which is excellent in coating film formability, the resulting organic semiconductor element has high mobility, and excellent heat resistance, and the above organic semiconductor. An organic semiconductor element using a film-forming composition and a method for producing the same are provided.
  • X 11 and X 12 each independently represent a chalcogen atom
  • Z 1a to Z 1j each independently represents a hydrogen atom or a halogen atom
  • a 11 represents ⁇ CR A11 — or a nitrogen atom
  • R A11 represents a hydrogen atom or a group represented by R 11
  • a 12 represents ⁇ CR A12 — or a nitrogen atom
  • R A12 represents a hydrogen atom or a group represented by R 12
  • n1 is 0
  • p1 represents an integer of 0 to 2 when A 11 is ⁇ CR A11 —, represents 0 or 1 when A 11 is a nitrogen atom
  • q1 represents A 12 is ⁇ CR A12 —
  • R 11 and R 12 are each independently represented by a halogen atom, an aryl group, a heteroaryl group, or the following formula W Represents a group,
  • T W is an alkyl group, a cyano group, a vinyl group, an ethynyl group, an aryl group, a heteroaryl group, an oxyethylene group, repetition number of oxyethylene units is 2 or more Represents an oligooxyethylene group, an oligosiloxane group having 2 or more silicon atoms, or a trialkylsilyl group,
  • X 21 and X 22 each independently represent a chalcogen atom
  • W 21 and W 22 each independently represent a group represented by Formula W above.
  • ⁇ 9> The organic semiconductor device according to any one of ⁇ 1> to ⁇ 8>, wherein the compound represented by the formula 1 has a line-symmetric structure
  • ⁇ 10> The organic semiconductor element according to any one of ⁇ 1> to ⁇ 9>, wherein the group represented by the formula W has 5 to 40 carbon atoms, ⁇ 11> L W is a single bond, a divalent linking group represented by any one of Formulas L-1 to L-4 and L-13 to L-16, or Formula L-1 to Formula L-16 Any one of ⁇ 1> to ⁇ 10>, which is a divalent linking group in which two or more divalent linking groups represented by any one of L-4 and formulas L-13 to L-16 are bonded.
  • the organic semiconductor element according to one, ⁇ 12> The above L W is a single bond, or a divalent linking group represented by any one of formulas L-1 to L-4 and formulas L-13 to L-16, ⁇ 11> The organic semiconductor element according to any one of ⁇ 13> The organic semiconductor element according to any one of ⁇ 1> to ⁇ 12>, wherein the SW is a single bond, ⁇ 14> Any of ⁇ 1> to ⁇ 13>, wherein L W is a single bond or a divalent linking group represented by any one of formulas L-1 and L-13 to L-16
  • the organic semiconductor element according to any one of the above, ⁇ 15> The organic semiconductor element according to any one of ⁇ 1> to ⁇ 14>, wherein TW is an alkyl group, ⁇ 16> The organic semiconductor element according to any one of ⁇ 1> to ⁇ 15>, wherein the group represented by the formula W is an alkyl group, ⁇ 17> A solvent having a boiling point of 100 ° C.
  • An organic semiconductor film-forming composition characterized by the following: ⁇ 18> The composition for forming an organic semiconductor film according to ⁇ 17>, wherein all of Z 1a to Z 1j are hydrogen atoms, ⁇ 19> The composition for forming an organic semiconductor film according to ⁇ 17> or ⁇ 18>, wherein n1 is 0, ⁇ 20> The composition for forming an organic semiconductor film according to any one of ⁇ 17> to ⁇ 19>, wherein at least one of p1 and q1 is not 0, ⁇ 21> be at least one of the p1 and q1 is 0, and at least one of said R 11 or R 12 is a group represented by the formula W, any one of ⁇ 17> - ⁇ 20> The composition for forming an organic semiconductor film according to the above, ⁇ 22> The composition for forming an organic semiconductor film according to any one of
  • composition for forming an organic semiconductor film according to ⁇ 24> The composition for forming an organic semiconductor film according to any one of ⁇ 17> to ⁇ 22>, wherein the compound represented by the formula 1 is a compound represented by the formula 2; ⁇ 25>
  • the above L W is a single bond, or a divalent linking group represented by any one of Formulas L-1 to L-4 and L-13 to L-16, or Formula L-1 Any one of ⁇ 17> to ⁇ 26>, which is a divalent linking group in which two or more divalent linking groups represented by any of formula L-4 and formula L-13 to formula L-16 are bonded.
  • composition for forming an organic semiconductor film according to any one of the above, ⁇ 28> The above L W is a single bond, a divalent linking group represented by any one of formulas L-1 to L-4 and L-13 to L-16, ⁇ 17> to ⁇ 27 >
  • the composition for forming an organic semiconductor film according to any one of ⁇ 29> The composition for forming an organic semiconductor film according to any one of ⁇ 17> to ⁇ 28>, wherein the SW is a single bond, ⁇ 30> Any of ⁇ 17> to ⁇ 29>, wherein L W is a single bond or a divalent linking group represented by any of formulas L-1 and L-13 to L-16
  • composition for forming an organic semiconductor film according to any one of the above, ⁇ 31> The composition for forming an organic semiconductor film according to any one of ⁇ 17> to ⁇ 30>, wherein TW is an alkyl group, ⁇ 32>
  • a composition for forming an organic semiconductor film, ⁇ 34> a compound represented by the above formula 1, ⁇ 35> An application step of applying the composition for forming an organic semiconductor film according to any one of ⁇ 17> to ⁇ 33> on a substrate, and the boiling point of 100 contained in the composition for forming an organic semiconductor film
  • a method for producing an organic semiconductor film comprising a removal step of removing at least a part of the solvent at a temperature of at least ⁇ 36>
  • An organic semiconductor film obtained by the method according to ⁇ 35> or ⁇ 36>, ⁇ 38> An application step of applying the composition for forming an organic semiconductor film according to any one of ⁇ 17> to ⁇ 33> onto a substrate, and the boiling point contained in the composition for forming an organic semiconductor film
  • a method for producing an organic semiconductor element comprising a removal step of removing at least a
  • the novel compound suitable as an organic semiconductor can be provided.
  • the composition for forming an organic semiconductor film, which is excellent in coating film forming property, the resulting organic semiconductor element has high mobility and excellent heat resistance, and the organic semiconductor film forming composition, The used organic semiconductor element and the manufacturing method thereof can be provided.
  • the organic EL element in the present invention refers to an organic electroluminescence element.
  • groups atomic groups
  • substitution and non-substitution includes not only those having no substituent but also those having a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the chemical structural formula in this specification may be expressed as a simplified structural formula in which a hydrogen atom is omitted.
  • “mass%” and “wt%” are synonymous, and “part by mass” and “part by weight” are synonymous. In the present invention, a combination of preferable embodiments is more preferable.
  • the organic semiconductor element of the present invention includes a compound represented by the above formula 1 (hereinafter, also referred to as “specific compound”) in an organic semiconductor layer.
  • the compound represented by the above formula 1 is preferably an organic semiconductor compound.
  • an organic semiconductor element or an organic semiconductor film containing the compound represented by Formula 1 has high mobility and excellent heat resistance, and completes the present invention.
  • the mechanism of expression of the detailed effect is unknown, but the compound represented by Formula 1 has a certain degree of line symmetry with the center of the molecule as the axis of symmetry, so that the crystallinity is excellent and the mobility is improved.
  • the heat resistance of the organic semiconductor element is improved because the melting point rises.
  • the compound represented by Formula 1 has a molecular shape in which a terminal thiophene ring projects from a rod-like structure such as a phenanthrene structure or a picene structure, and suppresses the expression of a liquid crystal layer, so that it has excellent crystallinity and mobility. I guess that will improve. Further, it is considered that the mechanism of suppressing the expression of the liquid crystal layer as described above also contributes to the improvement of the heat resistance of the organic semiconductor element.
  • X 11 and X 12 each independently represent a chalcogen atom
  • Z 1a to Z 1j each independently represents a hydrogen atom or a halogen atom
  • a 11 represents ⁇ CR A11 — or a nitrogen atom
  • R A11 represents a hydrogen atom or a group represented by R 11
  • a 12 represents ⁇ CR A12 — or a nitrogen atom
  • R A12 represents a hydrogen atom or a group represented by R 12
  • n1 is 0
  • p1 represents an integer of 0 to 2 when A 11 is ⁇ CR A11 —, represents 0 or 1 when A 11 is a nitrogen atom
  • q1 represents A 12 is ⁇ CR A12 — Represents an integer of 0 to 2
  • R 11 and R 12 are each independently represented by a halogen atom, an aryl group, a heteroaryl group, or the following formula W Represents a group.
  • S W represents a single bond or an alkylene group represented by — (CR S 2 ) k —, R S independently represents a hydrogen atom or a halogen atom, and k represents 1 to 17 Represents an integer
  • L W represents a single bond, a divalent linking group represented by any of the following formulas L-1 to L-16, or a divalent linking group represented by the following formulas L-1 to L-16.
  • T W is an alkyl group, a cyano group, a vinyl group, an ethynyl group, an aryl group, a heteroaryl group, an oxyethylene group, repetition number of oxyethylene units is 2 or more Represents an oligooxyethylene group, an oligosiloxane group having 2 or more silicon atoms, or a trialkylsilyl group.
  • R L1 , R L21 , R L22 , R L13 , R L14 , R L15 , and R L16 each independently represent a hydrogen atom or a substituent.
  • the specific compound of the present invention is preferably an organic semiconductor compound.
  • the specific compound of the present invention is a novel compound.
  • the specific compound of this invention can be used suitably for an organic-semiconductor element, an organic-semiconductor film, and the composition for organic-semiconductor film formation.
  • X 11 and X 12 each independently represent a chalcogen atom, preferably an O atom or an S atom, and more preferably both X 11 and X 12 are S atoms.
  • a chalcogen atom refers to a Group 16 atom containing an O atom.
  • Z 1a to Z 1j each independently represents a hydrogen atom or a halogen atom, and preferably all are hydrogen atoms. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
  • a 11 represents ⁇ CR A11 — or a nitrogen atom, and is preferably ⁇ CR A11 —.
  • R A11 represents a hydrogen atom or a group represented by R 11 , and preferably a hydrogen atom.
  • R A11 represents a hydrogen atom or a group represented by R 11 , and preferably a hydrogen atom.
  • R A11 is one of R 11 to number by p1 in the formula 1 is defined refers to an when attached to a carbon atom in A 11 .
  • a 12 represents ⁇ CR A12 — or a nitrogen atom, and is preferably ⁇ CR A12 —.
  • R A12 represents a hydrogen atom or a group represented by R 12 , and preferably a hydrogen atom.
  • R A12 is represented by R 12 is one of R 12 to number by q1 in formula 1 are defined refers to an when attached to a carbon atom in A 12 .
  • n1 0 or 1, and is preferably 0.
  • p1 represents an integer of 0 to 2 when A 11 is ⁇ CR A11 —, preferably 1 or 2, more preferably 1, and 0 or 1 when A 11 is a nitrogen atom. 1 is preferable.
  • a 11 CR A11 - a and, and, if p1 is 1, R 11 is not a carbon atom contained in A 11, be attached to a carbon atom located between A 11 and X 11 Is preferred.
  • q1 represents an integer of 0 to 2 when A 12 is ⁇ CR A12 —, preferably 1 or 2, more preferably 1, and 0 or 1 when A 12 is a nitrogen atom. 1 is preferable.
  • R 11 and R 12 each independently represent a halogen atom, an aryl group, a heteroaryl group, or a group represented by the following formula W, and preferably represents a group represented by the formula W. -S W -L W -T W (W)
  • SW represents a single bond or an alkylene group represented by — (CR S 2 ) k —, and is preferably a single bond.
  • R S each independently represents a hydrogen atom or a halogen atom, preferably a hydrogen atom.
  • k represents an integer of 1 to 17, preferably an integer of 1 to 15, and more preferably an integer of 1 to 10.
  • L W is a single bond, a divalent linking group represented by any of formulas L-1 to L-16, or a divalent linking group represented by formulas L-1 to L-16.
  • a divalent linking group represented by any one of L-1 to L-4 and L-13 to L-16 is more preferred, and is represented by Formula L-1, Formula L-3, Formula L- More preferably, it is a divalent linking group represented by any one of 15 and Formula L-16.
  • L w is preferably a single bond or a divalent linking group represented by any one of formulas L-1 and L-13 to L-16.
  • TW is alkyl group, cyano group, vinyl group, ethynyl group, aryl group, heteroaryl group, oxyethylene group, oligooxyethylene group having 2 or more repeating oxyethylene units, and oligosiloxane having 2 or more silicon atoms
  • alkyl group an alkyl group having 2 to 18 carbon atoms is preferable, an alkyl group having 3 to 15 carbon atoms is more preferable, and an alkyl group having 4 to 13 carbon atoms is still more preferable.
  • the alkyl group may be linear, branched or cyclic, and may be a combination thereof, but is preferably a linear or branched alkyl group, and is a linear alkyl group. It is more preferable.
  • the alkyl group may be substituted, and preferred substituents include halogen atoms.
  • Examples of the aryl group aromatic hydrocarbon group
  • the aryl group may be substituted, but is preferably not substituted.
  • hetero atom contained in the heteroaryl group include an oxygen atom, a nitrogen atom, and a sulfur atom, preferably an oxygen atom or a sulfur atom, and more preferably a sulfur atom.
  • heteroaryl group include groups in which one hydrogen atom has been removed from a thiophene ring, furan ring, pyran ring, pyrrole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, selenophene ring, imidazole ring, and the like.
  • oligooxyethylene group having 2 or more repeating oxyethylene units is preferably an oligooxyethylene group having 1 to 5 repeats, and more preferably an oligooxyethylene group having 1 to 3 repeats.
  • the oligosiloxane group having 2 or more silicon atoms is preferably an oligosiloxane group having 1 to 5 silicon atoms, and more preferably an oligosiloxane group having 1 to 3 silicon atoms.
  • the wavy line portion represents the coupling position with S w
  • * is selected from the coupling position with T w or another group consisting of L-1 to L-16
  • p13 represents an integer of 0 to 4
  • p14, p15, and p16 each independently represents an integer of 0 to 2
  • R L1 , R L21 , R L22 , R L13 , R L14 , R L15 , and R L16 Each independently represents a hydrogen atom or a substituent.
  • R L1 , R L21 , R L22 , R L13 , R L14 , R L15 , and R L16 each independently represent a hydrogen atom or a substituent, and preferably a hydrogen atom.
  • substituent include various substituents exemplified as Tw in Formula 1 above.
  • a plurality of R L1 , R L13 , R L14 , R L15 , and R L16 may be the same or different.
  • R L1 , R L21 , and R L22 may be bonded to adjacent Tw to form a ring structure, and the ring structure may form a condensed ring.
  • the group represented by the formula W is preferably an alkyl group, more preferably an alkyl group having 2 to 18 carbon atoms, still more preferably an alkyl group having 3 to 15 carbon atoms, and an alkyl group having 4 to 13 carbon atoms. Particularly preferred.
  • the group represented by Formula W is an alkyl group, it is preferable that S W and L W are a single bond and T W is an alkyl group.
  • At least one of p1 and q1 is not 0, at least one of p1 and q1 is not 0, and at least one of R 11 or R 12 is a group represented by Formula W More preferred.
  • p1 and q1 are preferably 1, p1 and q1 are 1, and at least one of R 11 or R 12 is more preferably a group represented by formula W, and p1 and More preferably, q1 is 1 and both R 11 and R 12 are groups represented by the formula W.
  • X 11 and X 12 are both S atoms
  • a 11 is preferably ⁇ CR A11 —
  • a 12 is preferably ⁇ CR A12 —
  • both X 11 and X 12 are S atoms. More preferably, A 11 is ⁇ CR A11 —, A 12 is ⁇ CR A12 —, and R A11 and R A12 are both hydrogen atoms.
  • the compound represented by Formula 1 is preferably a compound represented by Formula 2 below.
  • X 21 and X 22 each independently represent a chalcogen atom, preferably an O atom or an S atom, and more preferably both X 21 and X 22 are S atoms.
  • W 21 and W 22 each independently represent a group represented by the formula W, and preferred embodiments are the same as the preferred embodiments in the description of the group represented by the formula W.
  • the compound represented by Formula 1 preferably has a line-symmetric structure.
  • a compound having a line-symmetric structure means that the structural formula is line-symmetric as a whole molecule.
  • the compound represented by Formula 1 is preferably a compound represented by Formula 3 to Formula 5 below. It is considered that when the compound represented by Formula 1 has a line-symmetric structure, crystallinity and melting point are increased, and mobility and heat resistance of the obtained organic semiconductor element or organic semiconductor film are improved.
  • X 11 , X 12 , Z 1a to Z 1j , A 11 , A 12 , p 1, q 1, R 11 and R 12 are X 11 , X 12 , Z 1a to Z 1j in Formula 1, a 11, a 12, p1, q1, have the same meanings as R 11 and R 12, preferable embodiments thereof are also the same.
  • X 21, X 22, W 21 and W 22 are the same meaning as X 21, X 22, W 21 and W 22 in Formula 2, preferred embodiments are also the same.
  • the compounds represented by Formulas 3 to 5 are all line symmetric with respect to the broken line as the axis of symmetry.
  • Specific examples of the specific compound used in the present invention include compounds 1 to 1475 represented by the following formulas a to c and Tables 1 to 59, but the present invention is limited to these examples. It is not a thing.
  • X a1 , X a2 , R a11 , R a12 , R a21 , R a22 , X b1 , X b2 , R b11 , R b12 , R b21 , R b22 , X in formulas a to c c1 , Xc2 , Rc11 , and Rc21 represent the structures shown in Tables 1 to 59.
  • Ph represents a phenyl group
  • -Ph- represents a phenylene group
  • * represents a bonding site with another structure.
  • the content of the specific compound in the organic semiconductor layer of the organic semiconductor element of the present invention or the organic semiconductor film of the present invention described later is preferably 30 to 100% by mass, and more preferably 50 to 100% by mass. 70 to 100% by mass is more preferable. Further, when the binder polymer described later is not contained, the content is preferably 90 to 100% by mass, and more preferably 95 to 100% by mass.
  • the organic semiconductor layer of the organic semiconductor element of the present invention preferably contains a binder polymer.
  • the organic semiconductor element of the present invention may be an organic semiconductor element having the organic semiconductor layer and a layer containing a binder polymer.
  • the kind in particular of a binder polymer is not restrict
  • the binder polymer include polystyrene resin, acrylic resin, rubber, and thermoplastic elastomer.
  • a polymer compound having a benzene ring (a polymer having a monomer unit having a benzene ring group) is preferable.
  • the content of the monomer unit having a benzene ring group is not particularly limited, but is preferably 50 mol% or more, more preferably 70 mol% or more, and still more preferably 90 mol% or more in all monomer units.
  • the upper limit is not particularly limited, but 100 mol% can be mentioned.
  • the binder polymer include polystyrene, poly ( ⁇ -methylstyrene), polyvinyl cinnamate, poly (4-vinylphenyl), poly (4-methylstyrene) and the like.
  • the weight average molecular weight of the binder polymer is not particularly limited, but is preferably 1,000 to 2,000,000, more preferably 3,000 to 1,000,000, and still more preferably 5,000 to 600,000. Moreover, when using the solvent mentioned later, it is preferable that the binder polymer has higher solubility in the solvent used than the specific compound. It is excellent in the mobility and thermal stability of the organic semiconductor obtained as it is the said aspect.
  • the content of the binder polymer in the organic semiconductor layer of the organic semiconductor element of the present invention is preferably 1 to 200 parts by mass and more preferably 10 to 150 parts by mass with respect to 100 parts by mass of the specific compound. The amount is preferably 20 to 120 parts by mass. It is excellent in the mobility and thermal stability of the organic semiconductor obtained as it is the said range.
  • the organic semiconductor layer in the organic semiconductor element of the present invention may contain other components in addition to the specific compound and the binder polymer. As other components, known additives and the like can be used.
  • the content of the components other than the specific compound and the binder polymer in the organic semiconductor layer is preferably 10% by mass or less, preferably 5% by mass or less, and more preferably 1% by mass or less. It is particularly preferably 1% by mass or less. When it is in the above range, the film-forming property is excellent, and the mobility and thermal stability of the obtained organic semiconductor are excellent.
  • the method for forming the organic semiconductor layer in the organic semiconductor element of the present invention is not particularly limited, and a composition for forming an organic semiconductor film of the present invention described later is applied on the source electrode, the drain electrode, and the gate insulating film, A desired organic semiconductor layer can be formed by performing a drying treatment as necessary.
  • Organic semiconductor element and organic semiconductor film manufacturing method The organic semiconductor element and the organic semiconductor film of the present invention are preferably manufactured using the composition for forming an organic semiconductor film of the present invention described later.
  • a method for producing an organic semiconductor film or an organic semiconductor element using the composition for forming an organic semiconductor film of the present invention is not particularly limited, and a known method can be adopted.
  • a method of producing an organic semiconductor film by applying the composition onto a predetermined substrate and subjecting it to a drying treatment as necessary can be mentioned.
  • the method for applying the composition on the substrate is not particularly limited, and a known method can be adopted, for example, an inkjet printing method, a flexographic printing method, a bar coating method, a spin coating method, a knife coating method, a doctor blade method, or the like.
  • the inkjet printing method and the flexographic printing method are preferable.
  • the aspect using a photosensitive resin plate as a flexographic printing plate is mentioned suitably. By the said aspect, a composition can be printed on a board
  • the manufacturing method of the organic-semiconductor element of this invention and the organic-semiconductor film is the provision process which provides the composition for organic-semiconductor film formation of this invention on a board
  • the composition for forming an organic semiconductor film of the present invention contains a solvent having a boiling point of 100 ° C. or higher (hereinafter also referred to as “specific solvent”).
  • Specific solvents include, for example, octane, decane, toluene, xylene, mesitylene, ethylbenzene, decalin, hydrocarbon solvents such as 1-methylnaphthalene, tetralin and dimethyltetralin, ketone solvents such as methyl isobutyl ketone and cyclohexanone, tetrachloroethane Halogenated hydrocarbon solvents such as chlorobenzene, dichlorobenzene, chlorotoluene, 1-fluoronaphthalene and 1-chloronaphthalene, ester solvents such as butyl acetate and amyl acetate, butanol, pentanol, hexanol
  • Ether solvents such as N, N-dimethylformamide and N, N-dimethylacetamide
  • imide solvents such as 1-methyl-2-pyrrolidone and 1-methyl-2-imidazolidinone
  • dimethylsulfone examples thereof include sulfoxide solvents such as side, and nitrile solvents such as butyronitrile and benzonitrile.
  • a specific solvent may be used individually by 1 type, and may be used in combination of multiple.
  • hydrocarbon solvents, halogenated hydrocarbon solvents and / or ether solvents are preferable, toluene, xylene, mesitylene, tetralin, dichlorobenzene or anisole are more preferable, and toluene is still more preferable.
  • the solvent is the above-mentioned solvent, the coating property is excellent and the organic semiconductor film can be easily formed.
  • the specific solvent has a boiling point of 100 ° C. or higher at normal pressure and 100 to 300 ° C. or higher from the viewpoint of stability of the composition for forming an organic semiconductor film, formation of a uniform film, and drying. It is preferably 100 to 200 ° C, more preferably 100 to 150 ° C.
  • the drying treatment in the removing step is a treatment performed as necessary, and optimal conditions are appropriately selected depending on the type of the specific compound and the solvent used.
  • the heating temperature is preferably 30 ° C. to 100 ° C., more preferably 40 ° C. to 80 ° C., and the heating time is superior in terms of the mobility and thermal stability of the obtained organic semiconductor and excellent productivity. 10 to 300 minutes are preferable, and 30 to 180 minutes are more preferable.
  • the thickness of the organic semiconductor layer to be formed is not particularly limited, but is preferably 10 to 500 nm, more preferably 30 to 200 nm, from the viewpoint of mobility and thermal stability of the obtained organic semiconductor.
  • the organic semiconductor element is not particularly limited, but is preferably an organic semiconductor element having 2 to 5 terminals, and more preferably an organic semiconductor element having 2 or 3 terminals.
  • the organic semiconductor element is preferably not a photoelectric conversion element.
  • the organic semiconductor element of the present invention is preferably a non-light emitting organic semiconductor element. Examples of the two-terminal element include a rectifying diode, a constant voltage diode, a PIN diode, a Schottky barrier diode, a surge protection diode, a diac, a varistor, and a tunnel diode.
  • Examples of the three-terminal element include a bipolar transistor, a Darlington transistor, a field effect transistor, an insulated gate bipolar transistor, a unijunction transistor, a static induction transistor, a gate turn thyristor, a triac, and a static induction thyristor.
  • a rectifying diode and transistors are preferably exemplified, and a field effect transistor is more preferably exemplified.
  • FIG. 1 is a schematic cross-sectional view of one embodiment of the organic semiconductor element (organic thin film transistor (organic TFT)) of the present invention.
  • an organic thin film transistor 100 includes a substrate 10, a gate electrode 20 disposed on the substrate 10, a gate insulating film 30 covering the gate electrode 20, and a side of the gate insulating film 30 opposite to the gate electrode 20 side.
  • a source electrode 40 and a drain electrode 42 in contact with the surface, an organic semiconductor film 50 covering the surface of the gate insulating film 30 between the source electrode 40 and the drain electrode 42, and a sealing layer 60 covering each member are provided.
  • the organic thin film transistor 100 is a bottom gate-bottom contact type organic thin film transistor.
  • the organic semiconductor film 50 corresponds to a film formed from the above-described composition.
  • the substrate, the gate electrode, the gate insulating film, the source electrode, the drain electrode, the organic semiconductor film, the sealing layer, and the respective formation methods will be described in detail.
  • the substrate plays a role of supporting a gate electrode, a source electrode, a drain electrode and the like which will be described later.
  • substrate is not restrict
  • the material of the plastic substrate may be a thermosetting resin (for example, epoxy resin, phenol resin, polyimide resin, polyester resin (for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN)) or thermoplastic resin (for example, phenoxy).
  • Resin polyether sulfone, polysulfone, polyphenylene sulfone, etc.
  • the material for the ceramic substrate include alumina, aluminum nitride, zirconia, silicon, silicon nitride, silicon carbide, and the like.
  • the glass substrate material include soda glass, potash glass, borosilicate glass, quartz glass, aluminum silicate glass, and lead glass.
  • Metal conductive oxide such as InO 2 , SnO 2 , indium tin oxide (ITO); conductive polymer such as polyaniline, polypyrrole, polythiophene, polyacetylene, polydiacetylene; semiconductor such as silicon, germanium, gallium arsenide; fullerene And carbon materials such as carbon nanotubes and graphite.
  • a metal is preferable, and silver or aluminum is more preferable.
  • the thicknesses of the gate electrode, source electrode, and drain electrode are not particularly limited, but are preferably 20 to 200 nm.
  • the method for forming the gate electrode, the source electrode, and the drain electrode is not particularly limited, and examples thereof include a method of vacuum-depositing or sputtering an electrode material on a substrate, and a method of applying or printing an electrode-forming composition.
  • examples of the patterning method include a photolithography method; a printing method such as ink jet printing, screen printing, offset printing, letterpress printing; and a mask vapor deposition method.
  • ⁇ Gate insulation film Materials for the gate insulating film include polymethyl methacrylate, polystyrene, polyvinyl phenol, polyimide, polycarbonate, polyester, polyvinyl alcohol, polyvinyl acetate, polyurethane, polysulfone, polybenzoxazole, polysilsesquioxane, epoxy resin, phenol resin And the like; oxides such as silicon dioxide, aluminum oxide, and titanium oxide; and nitrides such as silicon nitride. Of these materials, a polymer is preferable in view of compatibility with the organic semiconductor film. When a polymer is used as the material for the gate insulating film, it is preferable to use a crosslinking agent (for example, melamine) in combination. By using a crosslinking agent in combination, the polymer is crosslinked and the durability of the formed gate insulating film is improved.
  • the thickness of the gate insulating film is not particularly limited, but is preferably 100 to 1,000 nm.
  • the method for forming the gate insulating film is not particularly limited, and examples thereof include a method of applying a composition for forming a gate insulating film on a substrate on which a gate electrode is formed, and a method of depositing or sputtering a gate insulating film material. It is done.
  • the method for applying the gate insulating film forming composition is not particularly limited, and known methods (bar coating method, spin coating method, knife coating method, doctor blade method) can be used.
  • a gate insulating film forming composition When a gate insulating film forming composition is applied to form a gate insulating film, it may be heated (baked) after application for the purpose of solvent removal, crosslinking, and the like.
  • the organic semiconductor film in the present invention is a film formed from the composition for forming an organic semiconductor film of the present invention.
  • the method for forming the organic semiconductor film is not particularly limited, and the above-described composition is applied on the source electrode, the drain electrode, and the gate insulating film, and is subjected to a drying treatment as necessary, thereby obtaining a desired organic semiconductor.
  • a film can be formed.
  • the organic semiconductor element of the present invention preferably has a binder polymer layer between the organic semiconductor layer and the insulating film, and more preferably has a binder polymer layer between the organic semiconductor layer and the gate insulating film.
  • the thickness of the binder polymer layer is not particularly limited, but is preferably 20 to 500 nm.
  • the said binder polymer layer should just be a layer containing the said polymer, it is preferable that it is a layer which consists of the said binder polymer.
  • the method for forming the binder polymer layer is not particularly limited, and a known method (bar coating method, spin coating method, knife coating method, doctor blade method, ink jet method) can be used.
  • a binder polymer layer forming composition When a binder polymer layer forming composition is applied to form a binder polymer layer, it may be heated (baked) after application for the purpose of solvent removal, crosslinking and the like.
  • the organic semiconductor element of the present invention preferably includes a sealing layer as the outermost layer from the viewpoint of durability.
  • a well-known sealing agent can be used for a sealing layer.
  • the thickness of the sealing layer is not particularly limited, but is preferably 0.2 to 10 ⁇ m.
  • the method for forming the sealing layer is not particularly limited.
  • the composition for forming the sealing layer is applied onto the substrate on which the gate electrode, the gate insulating film, the source electrode, the drain electrode, and the organic semiconductor film are formed.
  • the method etc. are mentioned.
  • a specific example of the method of applying the sealing layer forming composition is the same as the method of applying the gate insulating film forming composition.
  • an organic semiconductor film is formed by applying the sealing layer forming composition, it may be heated (baked) after application for the purpose of solvent removal, crosslinking and the like.
  • FIG. 2 is a schematic cross-sectional view of another embodiment of the organic semiconductor element (organic thin film transistor) of the present invention.
  • the organic thin film transistor 200 includes a substrate 10, a gate electrode 20 disposed on the substrate 10, a gate insulating film 30 covering the gate electrode 20, and an organic semiconductor film 50 disposed on the gate insulating film 30.
  • the source electrode 40 and the drain electrode 42 disposed on the organic semiconductor film 50 and the sealing layer 60 covering each member are provided.
  • the source electrode 40 and the drain electrode 42 are formed using the composition of the present invention described above.
  • the organic thin film transistor 200 is a top contact type organic thin film transistor.
  • the substrate, gate electrode, gate insulating film, source electrode, drain electrode, organic semiconductor film, and sealing layer are as described above.
  • the embodiments of the bottom gate-bottom contact type organic thin film transistor and the bottom gate-top contact type organic thin film transistor have been described in detail.
  • the organic semiconductor element of the present invention has a top gate-bottom type. It can also be suitably used for contact type organic thin film transistors and top gate-top contact type organic thin film transistors.
  • the organic thin-film transistor mentioned above can be used conveniently for electronic paper, a display device, etc.
  • composition for forming an organic semiconductor film of the present invention contains a solvent having a boiling point of 100 ° C. or higher and a compound represented by the formula 1, and the content of the compound represented by the formula 1 is a composition for forming an organic semiconductor film. It is 20 mass% or less with respect to the total amount of a thing, It is characterized by the above-mentioned. Moreover, it is preferable that the composition for organic-semiconductor film formation of this invention contains a binder polymer.
  • the specific compound, binder polymer, and solvent in the composition for forming an organic semiconductor film of the present invention are synonymous with the specific compound, binder polymer, and solvent described above, and the preferred embodiments are also the same.
  • the content of the specific compound in the composition for forming an organic semiconductor film of the present invention is 20% by mass or less, preferably 0.001 to 15% by mass, based on the total amount of the composition for forming an organic semiconductor film. More preferred is 0.01 to 10 mass.
  • the total content of a specific compound exists in the said range.
  • the content of the specific compound is preferably 30 to 100% by mass, more preferably 50 to 100% by mass, and more preferably 70 to 100% by mass of the total solid content of the composition for forming an organic semiconductor film.
  • the total content is preferably 90 to 100% by mass, and more preferably 95 to 100% by mass.
  • solid content is the quantity of the component except volatile components, such as a solvent.
  • the content of the binder polymer in the composition for forming an organic semiconductor film of the present invention is preferably more than 0% by mass and 20% by mass or less with respect to the total amount of the composition for forming an organic semiconductor film. More preferably, it is more preferably 0.25 to 10% by mass. It is excellent in the mobility and heat resistance of the organic semiconductor obtained as it is in the said range.
  • the composition for forming an organic semiconductor film of the present invention may contain other components in addition to the specific compound and the binder polymer. As other components, known additives and the like can be used.
  • the content of the components other than the specific compound and the binder polymer in the composition for forming an organic semiconductor film of the present invention is preferably 10% by mass or less, more preferably 5% by mass or less based on the total solid content.
  • the content is more preferably 1% by mass or less, and particularly preferably 0.1% by mass or less. When it is in the above range, the film-forming property is excellent, and the mobility and thermal stability of the obtained organic semiconductor are excellent.
  • the viscosity of the composition for forming an organic semiconductor film of the present invention is not particularly limited, but is preferably 3 to 100 mPa ⁇ s, more preferably 5 to 50 mPa ⁇ s, and more preferably 9 to 40 mPa ⁇ s in terms of better coating properties. Further preferred.
  • the viscosity in this invention is a viscosity in 25 degreeC.
  • a measuring method of a viscosity it is preferable that it is a measuring method based on JISZ8803.
  • the method for producing the composition for forming an organic semiconductor film of the present invention is not particularly limited, and a known method can be adopted.
  • a desired composition can be obtained by adding a predetermined amount of a specific compound in a solvent and appropriately stirring.
  • a specific compound and a binder polymer can be added simultaneously or sequentially, and a composition can be produced suitably.
  • E-2 to E-10 were also synthesized in the same manner as E-1, except that the organozinc compound condensed with the intermediate M1 was changed to an appropriate compound.
  • Examples 1 to 10, Comparative Examples 1 and 2 ⁇ TFT device fabrication> What mixed the specific compound or comparative compound (1 mg) of Table 60, and toluene (1 mL), and heated to 100 degreeC was made into the composition for organic-semiconductor film formation.
  • This composition was cast on an FET characteristic measurement substrate heated to 90 ° C. in a nitrogen atmosphere to form an organic semiconductor film to obtain an organic thin film transistor element for FET characteristic measurement.
  • a silicon substrate having a gate / bottom contact structure was used.
  • the obtained composition was provided on the substrate for FET characteristic measurement by flexographic printing.
  • a flexo suitability tester F1 manufactured by IG Testing Systems Co., Ltd.
  • AFP DSH 1.70% manufactured by Asahi Kasei Co., Ltd.
  • Solid image was used as the flexographic resin plate.
  • the pressure between the plate and the substrate is 60 N, printing is performed at a conveyance speed of 0.4 m / second, and then dried at 40 ° C. for 2 hours to form an organic semiconductor film.
  • a thin film transistor element (organic TFT element) was obtained.
  • a silicon substrate having a gate / bottom contact structure was used.
  • the ink was applied onto the FET characteristic measurement substrate by ink jet printing. Specifically, a solid film was formed at a discharge frequency of 2 Hz and a dot pitch of 20 ⁇ m using a DPP2831 (manufactured by FUJIFILM Graphic Systems Co., Ltd.), 10 pL head as an inkjet apparatus.
  • an organic semiconductor film was formed by drying at 70 ° C. for 1 hour to obtain an organic TFT element for measuring FET characteristics.
  • the evaluation of the mobility, amulet film forming property, and heat resistance, which will be described later, of the organic TFT element obtained by inkjet printing is the evaluation of the organic TFT element obtained by casting the composition. And all were the same.
  • Id (w / 2L) ⁇ Ci (Vg ⁇ Vth) 2
  • L is the gate length
  • W is the gate width
  • Ci is the capacitance per unit area of the insulating layer
  • Vg is the gate voltage
  • Vth is the threshold voltage.
  • the numerical value of the carrier mobility is practically required to be 0.01 or more, preferably 0.1 or more, and more preferably 0.3 or more. In the table, “no characteristics” means that the created element did not have TFT characteristics.
  • ⁇ Coating film forming property> The compound of the present invention or the comparative compound (5 mg) and toluene (1 mL) were mixed and heated to 100 ° C. to obtain a non-luminescent organic semiconductor solution. An organic semiconductor thin film was formed by casting this coating solution on the entire surface of the substrate on which channels for 50 elements were heated to 90 ° C. in a nitrogen atmosphere, and 50 organic thin film transistor elements for measuring FET characteristics were obtained. .
  • the evaluation criteria of the coating film forming property are as follows, and the evaluation results are shown in Table 60. ⁇ Evaluation criteria ⁇ A: 45 or more elements driven as organic thin film transistor elements among the obtained 50 elements B: Less than 45 elements driven as organic thin film transistor elements among the 50 elements obtained
  • Carrier mobility maintenance ratio after heating is 95% or more
  • Carrier mobility maintenance ratio after heating is 70% or more and less than 95%
  • Carrier mobility maintenance ratio after heating is 40% or more and less than 70%
  • Carrier mobility maintenance ratio after heating is 20% or more and less than 40%
  • Carrier mobility maintenance ratio after heating is less than 20%
  • Example 11 to 16, Comparative Examples 3 to 4 ⁇ TFT device fabrication>
  • a specific compound of the present invention or comparative compound described in Table 61, a binder polymer described in Table 61, and a solvent described in Table 61 were mixed so as to have the concentration described in Table 61, and heated to 100 ° C.
  • Various evaluations were performed in the same manner as in Examples 1 to 10 and Comparative Examples 1 and 2 except that the composition for forming an organic semiconductor film was used. The respective evaluation results are shown in Table 61.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

 高移動度であり、耐熱性に優れた有機半導体素子及び有機半導体膜、並びに、それらの製造方法を提供すること、有機半導体として好適な新規な化合物を提供すること、並びに、塗布成膜性に優れ、得られる有機半導体素子が高移動度であり、耐熱性に優れる有機半導体膜形成用組成物、及び、上記有機半導体膜形成用組成物を用いた有機半導体素子及びその製造方法を提供することを目的とする。 本発明の有機半導体素子は、下記式1で表される化合物を有機半導体層に含むことを特徴とする。

Description

有機半導体素子及びその製造方法、有機半導体膜形成用組成物、化合物、並びに、有機半導体膜
 本発明は、有機半導体素子及びその製造方法、有機半導体膜形成用組成物、化合物、並びに、有機半導体膜。
 軽量化、低コスト化、柔軟化が可能であることから、液晶ディスプレイや有機EL(エレクトロルミネッセンス)ディスプレイに用いられるFET(電界効果トランジスタ)、RFID(Radio Frequency Identifier、RFタグ)等に、有機半導体膜(有機半導体層)を有する有機トランジスタが利用されている。
 従来の有機半導体としては、特許文献1及び2に記載されたものが知られている。
特開2010-177637号公報 国際公開第2013/168048号
 本発明が解決しようとする課題は、高移動度であり、耐熱性に優れた有機半導体素子及び有機半導体膜、並びに、それらの製造方法を提供することである。
 また、本発明が解決しようとする他の課題は、有機半導体として好適な新規な化合物を提供することである。
 更に、本発明が解決しようとする他の課題は、塗布成膜性に優れ、得られる有機半導体素子が高移動度であり、耐熱性に優れる有機半導体膜形成用組成物、並びに、上記有機半導体膜形成用組成物を用いた有機半導体素子及びその製造方法を提供することである。
 本発明の上記課題は、以下の<1>、<17>、<34>、<35>、<37>、<38>及び、<40>に記載の手段により解決された。好ましい実施態様である<1>~<16>、<18>~<33>、<36>及び<39>と共に以下に記載する。
 <1> 下記式1で表される化合物を有機半導体層に含むことを特徴とする有機半導体素子、
Figure JPOXMLDOC01-appb-C000009
 式1中、X11及びX12はそれぞれ独立に、カルコゲン原子を表し、Z1a~Z1jはそれぞれ独立に、水素原子又はハロゲン原子を表し、A11は=CRA11-又は窒素原子を表し、RA11は、水素原子又はR11で表される基を表し、A12は=CRA12-又は窒素原子を表し、RA12は、水素原子又はR12で表される基を表し、n1は0又は1を表し、p1はA11が=CRA11-の場合は0~2の整数を表し、A11が窒素原子の場合は0又は1を表し、q1はA12が=CRA12-の場合は0~2の整数を表し、A12が窒素原子の場合は0又は1を表し、R11及びR12はそれぞれ独立に、ハロゲン原子、アリール基、ヘテロアリール基、又は下記式Wで表される基を表す、
 -SW-LW-TW  (W)
 式W中、SWは単結合、又は、-(CRS 2k-で表されるアルキレン基を表し、RSはそれぞれ独立に、水素原子又はハロゲン原子を表し、kは1~17の整数を表し、LWは単結合、下記式L-1~L-16のいずれかで表される2価の連結基、又は、下記式L-1~L-16で表される2価の連結基のいずれかが2つ以上結合した基を表し、TWはアルキル基、シアノ基、ビニル基、エチニル基、アリール基、ヘテロアリール基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、ケイ素原子数が2以上のオリゴシロキサン基、又はトリアルキルシリル基を表す、
Figure JPOXMLDOC01-appb-C000010
 式L-1~L-16中、*及び波線部分は他の構造との結合位置を表し、p13は0~4の整数を表し、p14、p15及びp16はそれぞれ独立に、0~2の整数を表し、RL1、RL21、RL22、RL13、RL14、RL15、及び、RL16はそれぞれ独立に、水素原子又は置換基を表す、
 <2> 上記Z1a~Z1jがいずれも水素原子である、<1>に記載の有機半導体素子、
 <3> 上記n1が0である、<1>又は<2>に記載の有機半導体素子、
 <4> 上記p1及びq1の少なくとも一方が0でない、<1>~<3>のいずれか一つに記載の有機半導体素子、
 <5> 上記p1及びq1の少なくとも一方が0でなく、かつ、上記R11又はR12の少なくとも一方が上記式Wで表される基である、<1>~<4>のいずれか一つに記載の有機半導体素子、
 <6> 上記p1及びq1が1である、<1>~<5>のいずれか一つに記載の有機半導体素子、
 <7> 上記X11及びX12がいずれもS原子であり、上記A11が=CRA11-であり、上記A12が=CRA12-である、<1>~<6>のいずれか一つに記載の有機半導体素子、
 <8> 上記式1で表される化合物が、下記式2で表される化合物である、<1>~<6>のいずれか一つに記載の有機半導体素子、
Figure JPOXMLDOC01-appb-C000011
 式2中、X21及びX22はそれぞれ独立に、カルコゲン原子を表し、W21及びW22はそれぞれ独立に、上記式Wで表される基を表す、
 <9> 上記式1で表される化合物が、線対称構造である、<1>~<8>のいずれか一つに記載の有機半導体素子、
 <10> 上記式Wで表される基の炭素数が5~40である、<1>~<9>のいずれか一つに記載の有機半導体素子、
 <11> 上記LWが単結合、式L-1~式L-4及び式L-13~式L-16のいずれかで表される2価の連結基、又は、式L-1~式L-4及び式L-13~式L-16のいずれかで表される2価の連結基が2つ以上結合した2価の連結基である、<1>~<10>のいずれか一つに記載の有機半導体素子、
 <12> 上記LWが単結合、又は、式L-1~式L-4及び式L-13~式L-16のいずれかで表される2価の連結基である、<1>~<11>のいずれか一つに記載の有機半導体素子、
 <13> 上記SWが単結合である、<1>~<12>のいずれか一つに記載の有機半導体素子、
 <14> 上記LWが単結合、又は、式L-1及び式L-13~式L-16のいずれかで表される2価の連結基である、<1>~<13>のいずれか一つに記載の有機半導体素子、
 <15> 上記TWがアルキル基である、<1>~<14>のいずれか一つに記載の有機半導体素子、
 <16> 上記式Wで表される基がアルキル基である、<1>~<15>のいずれか一つに記載の有機半導体素子、
 <17> 沸点100℃以上の溶媒と、式1で表される化合物とを含有し、式1で表される化合物の含有量が、有機半導体膜形成用組成物の総量に対し、20質量%以下であることを特徴とする有機半導体膜形成用組成物、
 <18> 上記Z1a~Z1jがいずれも水素原子である、<17>に記載の有機半導体膜形成用組成物、
 <19> 上記n1が0である、<17>又は<18>に記載の有機半導体膜形成用組成物、
 <20> 上記p1及びq1の少なくとも一方が0でない、<17>~<19>のいずれか一つに記載の有機半導体膜形成用組成物、
 <21> 上記p1及びq1の少なくとも一方が0でなく、かつ、上記R11又はR12の少なくとも一方が上記式Wで表される基である、<17>~<20>のいずれか一つに記載の有機半導体膜形成用組成物、
 <22> 上記p1及びq1が1である、<17>~<21>のいずれか一つに記載の有機半導体膜形成用組成物、
 <23> 上記X11及びX12がいずれもS原子であり、上記A11が=CRA11-であり、上記A12が=CRA12-である、<17>~<22>のいずれか一つに記載の有機半導体膜形成用組成物、
 <24> 上記式1で表される化合物が、上記式2で表される化合物である、<17>~<22>のいずれか一つに記載の有機半導体膜形成用組成物、
 <25> 上記式1で表される化合物が、線対称構造である、<17>~<24>のいずれか一つに記載の有機半導体膜形成用組成物、
 <26> 上記式Wで表される基の炭素数が5~40である、<17>~<25>のいずれか一つに記載の有機半導体膜形成用組成物、
 <27> 上記LWが単結合、又は、式L-1~式L-4及び式L-13~式L-16のいずれかで表される2価の連結基、又は、式L-1~式L-4及び式L-13~式L-16のいずれかで表される2価の連結基が2つ以上結合した2価の連結基である、<17>~<26>のいずれか一つに記載の有機半導体膜形成用組成物、
 <28> 上記LWが単結合、式L-1~式L-4及び式L-13~式L-16のいずれかで表される2価の連結基である、<17>~<27>のいずれか一つに記載の有機半導体膜形成用組成物、
 <29> 上記SWが単結合である、<17>~<28>のいずれか一つに記載の有機半導体膜形成用組成物、
 <30> 上記LWが単結合、又は、式L-1及び式L-13~式L-16のいずれかで表される2価の連結基である、<17>~<29>のいずれか一つに記載の有機半導体膜形成用組成物、
 <31> 上記TWがアルキル基である、<17>~<30>のいずれか一つに記載の有機半導体膜形成用組成物、
 <32> 上記式Wで表される基がアルキル基である、<17>~<31>のいずれか一つに記載の有機半導体膜形成用組成物、
 <33> バインダーポリマーを更に含み、上記バインダーポリマーの含有量が、有機半導体膜形成用組成物の総量に対し、10質量%以下である、<17>~<32>のいずれか一つに記載の有機半導体膜形成用組成物、
 <34> 上記式1で表される化合物、
 <35> <17>~<33>のいずれか1つに記載の有機半導体膜形成用組成物を基板上に付与する付与工程、及び、上記有機半導体膜形成用組成物に含まれる上記沸点100℃以上の溶媒の、少なくとも一部を除去する除去工程を含む、有機半導体膜の製造方法、
 <36> 上記付与工程が、インクジェット法又はフレキソ印刷法により行われる、<35>に記載の有機半導体膜の製造方法、
 <37> <35>又は<36>に記載の方法により得られた有機半導体膜、
 <38> <17>~<33>のいずれか1つに記載の有機半導体膜形成用組成物を、基板上に付与する付与工程、及び、上記有機半導体膜形成用組成物に含まれる上記沸点100℃以上の溶媒の、少なくとも一部を除去する除去工程を含む有機半導体素子の製造方法、
 <39> 上記付与工程が、インクジェット法又はフレキソ印刷法により行われる、<38>に記載の有機半導体素子の製造方法、
 <40> <38>又は<39>に記載の方法により製造された有機半導体素子。
 本発明によれば、高移動度であり、耐熱性に優れた有機半導体素子及び有機半導体膜、並びに、それらの製造方法を提供することができる。
 また、本発明によれば、有機半導体として好適な新規な化合物を提供することができる。
 更に、本発明によれば、塗布成膜性に優れ、得られる有機半導体素子が高移動度であり、耐熱性に優れる有機半導体膜形成用組成物、並びに、上記有機半導体膜形成用組成物を用いた有機半導体素子及びその製造方法を提供することができる。
本発明の有機半導体素子の一態様の断面模式図である。 本発明の有機半導体素子の別の一態様の断面模式図である。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本願明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。また、本発明における有機EL素子とは、有機エレクトロルミネッセンス素子のことをいう。
 本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 また、本明細書における化学構造式は、水素原子を省略した簡略構造式で記載する場合もある。
 また、本発明において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 また、本発明において、好ましい態様の組み合わせは、より好ましい。
(有機半導体素子、及び、化合物)
 本発明の有機半導体素子は、上記式1で表される化合物(以下、「特定化合物」ともいう。)を有機半導体層に含むことを特徴とする。
 上記式1で表される化合物は、有機半導体化合物であることが好ましい。
 本発明者は鋭意検討を重ねた結果、式1で表される化合物を含有する有機半導体素子や有機半導体膜が高移動度であり、かつ、耐熱性に優れることを見いだし、本発明を完成するに至ったものである。
 詳細な効果の発現機構については不明であるが、式1で表される化合物が分子中央を対称軸としたある程度以上の線対称性を有することにより、結晶性に優れるため移動度が向上し、また融点が上昇するため有機半導体素子の耐熱性を改善していると推測している。
 更に、式1で表される化合物は、フェナントレン構造やピセン構造といった棒状の構造から末端チオフェン環が張り出した分子形状を有し、液晶層の発現が抑制されるため、結晶性に優れ、移動度が向上すると推測している。また上記のような液晶層の発現抑制のメカニズムは、有機半導体素子の耐熱性向上にも寄与していると考えている。
<特定化合物>
 本発明において、特定化合物は、下記式1で表される。
Figure JPOXMLDOC01-appb-C000012
 式1中、X11及びX12はそれぞれ独立に、カルコゲン原子を表し、Z1a~Z1jはそれぞれ独立に、水素原子又はハロゲン原子を表し、A11は=CRA11-又は窒素原子を表し、RA11は、水素原子又はR11で表される基を表し、A12は=CRA12-又は窒素原子を表し、RA12は、水素原子又はR12で表される基を表し、n1は0又は1を表し、p1はA11が=CRA11-の場合は0~2の整数を表し、A11が窒素原子の場合は0又は1を表し、q1はA12が=CRA12-の場合は0~2の整数を表し、A12が窒素原子の場合は0又は1を表し、R11及びR12はそれぞれ独立に、ハロゲン原子、アリール基、ヘテロアリール基、又は下記式Wで表される基を表す。
 -SW-LW-TW  (W)
 式W中、SWは単結合、又は、-(CRS 2k-で表されるアルキレン基を表し、RSはそれぞれ独立に、水素原子又はハロゲン原子を表し、kは1~17の整数を表し、LWは単結合、下記式L-1~L-16のいずれかで表される2価の連結基、又は、下記式L-1~L-16で表される2価の連結基のいずれかが2つ以上結合した基を表し、TWはアルキル基、シアノ基、ビニル基、エチニル基、アリール基、ヘテロアリール基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、ケイ素原子数が2以上のオリゴシロキサン基、又はトリアルキルシリル基を表す。
Figure JPOXMLDOC01-appb-C000013
 式L-1~L-16中、*及び波線部分は他の構造との結合位置を表し、p13は0~4の整数を表し、p14、p15及びp16はそれぞれ独立に、0~2の整数を表し、RL1、RL21、RL22、RL13、RL14、RL15、及び、RL16はそれぞれ独立に、水素原子又は置換基を表す。
 本発明の特定化合物は、有機半導体化合物であることが好ましい。
 本発明の特定化合物は、新規な化合物である。
 また、本発明の特定化合物は、有機半導体素子、有機半導体膜、及び、有機半導体膜形成用組成物に好適に用いることができる。
 式1中、X11及びX12はそれぞれ独立に、カルコゲン原子を表し、O原子又はS原子であることが好ましく、X11及びX12がいずれもS原子であることがより好ましい。カルコゲン原子とは、O原子を含む第16族原子をいう。
 Z1a~Z1jはそれぞれ独立に、水素原子又はハロゲン原子を表し、いずれも水素原子であることが好ましい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示され、フッ素原子が好ましい。
 A11は=CRA11-又は窒素原子を表し、=CRA11-であることが好ましい。
 RA11は、水素原子又はR11で表される基を表し、水素原子が好ましい。なお、RA11がR11で表される基を表すとは、式1中のp1により数が規定されているR11のうちの1つがA11中の炭素原子に結合している場合をいう。
 A12は=CRA12-又は窒素原子を表し、=CRA12-であることが好ましい。
 RA12は、水素原子又はR12で表される基を表し、水素原子が好ましい。なお、RA12がR12で表される基を表すとは、式1中のq1により数が規定されているR12のうちの1つがA12中の炭素原子に結合している場合をいう。
 n1は0又は1を表し、0であることが好ましい。
 p1は、A11が=CRA11-の場合は0~2の整数を表し、1又は2であることが好ましく、1であることがより好ましく、A11が窒素原子の場合は0又は1を表し、1であることが好ましい。また、A11が=CRA11-であり、かつ、p1が1である場合、R11はA11に含まれる炭素原子ではなく、A11とX11の間に位置する炭素原子と結合することが好ましい。
 q1は、A12が=CRA12-の場合は0~2の整数を表し、1又は2であることが好ましく、1であることがより好ましく、A12が窒素原子の場合は0又は1を表し、1であることが好ましい。また、A12が=CRA12-であり、かつ、q1が1である場合、R12はA12に含まれる炭素原子ではなく、A12とX12の間に位置する炭素原子と結合することが好ましい。
 R11及びR12はそれぞれ独立に、ハロゲン原子、アリール基、ヘテロアリール基、又は下記式Wで表される基を表し、式Wで表される基を表すことが好ましい。
 -SW-LW-TW  (W)
 式W中、SWは単結合、又は、-(CRS 2k-で表されるアルキレン基を表し、単結合であることが好ましい。
 RSはそれぞれ独立に、水素原子又はハロゲン原子を表し、水素原子が好ましい。
 kは1~17の整数を表し、1~15の整数が好ましく、1~10の整数がより好ましい。
 LWは単結合、式L-1~L-16のいずれかで表される2価の連結基、又は、式L-1~L-16で表される2価の連結基のいずれかが2つ以上結合した基を表し、単結合、式L-1~式L-4及び式L-13~式L-16のいずれかで表される2価の連結基、又は、式L-1~式L-4及び式L-13~式L-16のいずれかで表される2価の連結基が2つ以上結合した2価の連結基であることが好ましく、単結合、又は、式L-1~式L-4及び式L-13~式L-16のいずれかで表される2価の連結基であることがより好ましく、式L-1、式L-3、式L-15、式L-16のいずれかで表される2価の連結基であることが更に好ましい。
 また、Lwは単結合、又は、式L-1及び式L-13~式L-16のいずれかで表される2価の連結基であることが好ましい。
 TWはアルキル基、シアノ基、ビニル基、エチニル基、アリール基、ヘテロアリール基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、ケイ素原子数が2以上のオリゴシロキサン基、又はトリアルキルシリル基を表す。
 アルキル基としては、炭素数2~18のアルキル基が好ましく、炭素数3~15のアルキル基がより好ましく、炭素数4~13のアルキル基が更に好ましい。上記アルキル基は、直鎖状、分岐状又は環状のいずれでもよく、これらを組み合わせた構造でもよいが、直鎖状又は分岐状のアルキル基であることが好ましく、直鎖状のアルキル基であることがより好ましい。
 上記アルキル基は置換されていてもよく、好ましい置換基としてはハロゲン原子が挙げられる。
 アリール基(芳香族炭化水素基)としては、ベンゼン、ナフタレン、アントラセン等から水素を1つ除いた基が例示され。ベンゼンから水素を一つ除いた基が好ましい。
 また、上記アリール基は置換されていてもよいが、置換されていないことが好ましい。
 ヘテロアリール基(芳香族複素環基)に含まれるヘテロ原子としては、酸素原子、窒素原子、硫黄原子が挙げられ、酸素原子又は硫黄原子が好ましく、硫黄原子がより好ましい。
 また、ヘテロアリール基としては、チオフェン環、フラン環、ピラン環、ピロール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、セレノフェン環、イミダゾール環等から水素原子を1つ除いた基が挙げられ、チオフェン環又はフラン環から水素原子を1つ除いた基であることがより好ましく、チオフェン環から水素原子を1つ除いた基であることが更に好ましい。
 また、上記ヘテロアリール基は更に置換されていてもよいが、置換されていないことが好ましい。
 オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基としては、繰り返し数が1~5のオリゴオキシエチレン基が好ましく、繰り返し数が1~3のオリゴオキシエチレン基がより好ましい。
 ケイ素原子数が2以上のオリゴシロキサン基としては、ケイ素原子数が1~5のオリゴシロキサン基が好ましく、ケイ素原子数が1~3のオリゴシロキサン基がより好ましい。
 式L-1~L-16中、波線部分はSwとの結合位置を表し、*は、Twとの結合位置、又は、他のL-1~L-16よりなる群から選択される2価の連結基との結合位置を表すことが好ましい。
 p13は0~4の整数を表し、p14、p15及びp16はそれぞれ独立に、0~2の整数を表し、RL1、RL21、RL22、RL13、RL14、RL15、及び、RL16はそれぞれ独立に、水素原子又は置換基を表す。
 なお、LWが、上記式L-1~式L-16のいずれかで表される2価の連結基が結合した連結基を表す場合、式L-1~式L-16のいずれかで表される2価の連結基の結合数は、2~4であることが好ましく、2又は3であることがより好ましい。
 RL1、RL21、RL22、RL13、RL14、RL15、及び、RL16はそれぞれ独立に、水素原子又は置換基を表し、水素原子が好ましい。置換基としては、上記式1におけるTwとして例示した各種の置換基が例示される。
 また、複数存在するRL1、RL13、RL14、RL15、及び、RL16は同一でも異なっていてもよい。また、RL1、RL21、RL22は、それぞれ隣接するTwと結合して環構造を形成してもよく、上記環構造として、縮合環を形成していてもよい。
 式Wで表される基は、アルキル基であることが好ましく、炭素数2~18のアルキル基がより好ましく、炭素数3~15のアルキル基が更に好ましく、炭素数4~13のアルキル基が特に好ましい。式Wで表される基が、アルキル基である場合、SW及びLWが単結合であり、TWがアルキル基であることが好ましい。
 式1中、p1及びq1の少なくとも一方が0でないことが好ましく、p1及びq1の少なくとも一方が0でなく、かつ、R11又はR12の少なくとも一方が式Wで表される基であることがより好ましい。
 式1中、p1及びq1が1であることが好ましく、p1及びq1が1であり、かつ、R11又はR12の少なくとも一方が式Wで表される基であることがより好ましく、p1及びq1が1であり、かつ、上記R11又はR12の両方が式Wで表される基であることが更に好ましい。
 式1中、X11及びX12がいずれもS原子であり、A11が=CRA11-であり、A12が=CRA12-であることが好ましく、X11及びX12がいずれもS原子であり、A11が=CRA11-であり、A12が=CRA12-であり、RA11及びRA12がいずれも水素原子であることがより好ましい。
 また、式1で表される化合物は、下記式2で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
 式2中、X21及びX22はそれぞれ独立に、カルコゲン原子を表し、O原子又はS原子であることが好ましく、X21及びX22がいずれもS原子であることがより好ましい。W21及びW22はそれぞれ独立に、上記式Wで表される基を表し、好ましい態様は、上記式Wで表される基の説明における好ましい態様と同様である。
 上記式1で表される化合物は、線対称構造であることが好ましい。
 化合物が線対称構造であるとは、構造式が分子全体として線対称であることをいう。具体的には、式1で表される化合物は、下記式3~式5で表される化合物であることが好ましい。
 式1で表される化合物が線対称構造であることにより、結晶性や融点が高められ、得られる有機半導体素子又は有機半導体膜の移動度や耐熱性が向上すると考えられる。
Figure JPOXMLDOC01-appb-C000015
 式3又は式4中、X11、X12、Z1a~Z1j、A11、A12、p1、q1、R11及びR12は式1におけるX11、X12、Z1a~Z1j、A11、A12、p1、q1、R11及びR12と同義であり、好ましい態様も同様である。
 式5中、X21、X22、W21及びW22は式2におけるX21、X22、W21及びW22と同義であり、好ましい態様も同様である。
 また、式3~式5で表される化合物はいずれも破線を対称軸として線対称である。
 本発明に用いられる特定化合物の具体例としては、下記式a~式c及び表1~59により表される、化合物1~1475が好ましく例示されるが、本発明はこれらの例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000016
 化合物1~1475において、式a~式c中のXa1、Xa2、Ra11、Ra12、Ra21、Ra22、Xb1、Xb2、Rb11、Rb12、Rb21、Rb22、Xc1、Xc2、Rc11、Rc21は表1~59に表される構造を表す。また、表1~59中、Phはフェニル基を、-Ph-はフェニレン基を、*は他の構造との結合部位をそれぞれ表す。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
 本発明の有機半導体素子の有機半導体層又は後述する本発明の有機半導体膜における、特定化合物の含有量は、30~100質量%であることが好ましく、50~100質量%であることがより好ましく、70~100質量%であることが更に好ましい。また、後述するバインダーポリマーを含有しない場合は、上記含有量が、90~100質量%であることが好ましく、95~100質量%であることがより好ましい。
<バインダーポリマー>
 本発明の有機半導体素子の有機半導体層は、バインダーポリマーを含有することが好ましい。
 また、本発明の有機半導体素子は、上記有機半導体層とバインダーポリマーを含む層を有する有機半導体素子であってもよい。
 バインダーポリマーの種類は特に制限されず、公知のバインダーポリマーを用いることができる。
 バインダーポリマーとしては、ポリスチレン樹脂、アクリル樹脂、ゴム、熱可塑性エラストマー等が挙げられる。
 中でも、バインダーポリマーとしては、ベンゼン環を有する高分子化合物(ベンゼン環基を有する単量体単位を有する高分子)が好ましい。ベンゼン環基を有する単量体単位の含有量は特に制限されないが、全単量体単位中、50モル%以上が好ましく、70モル%以上がより好ましく、90モル%以上が更に好ましい。上限は特に制限されないが、100モル%が挙げられる。
 上記バインダーポリマーとしては、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルシンナメート、ポリ(4-ビニルフェニル)、ポリ(4-メチルスチレン)などが挙げられる。
 バインダーポリマーの重量平均分子量は、特に制限されないが、1,000~200万が好ましく、3,000~100万がより好ましく、5,000~60万が更に好ましい。
 また、後述する溶媒を用いる場合、バインダーポリマーは、使用する溶媒への溶解度が、特定化合物よりも高いことが好ましい。上記態様であると、得られる有機半導体の移動度及び熱安定性により優れる。
 本発明の有機半導体素子の有機半導体層におけるバインダーポリマーの含有量は、特定化合物の含有量100質量部に対し、1~200質量部であることが好ましく、10~150質量部であることがより好ましく、20~120質量部であることが更に好ましい。上記範囲であると、得られる有機半導体の移動度及び熱安定性により優れる。
<その他の成分>
 本発明の有機半導体素子における有機半導体層には、特定化合物及びバインダーポリマー以外に他の成分が含まれていてもよい。
 その他の成分としては、公知の添加剤等を用いることができる。
 上記有機半導体層における特定化合物及びバインダーポリマー以外の成分の含有量は、10質量%以下であることが好ましく、5質量%以下であることが好ましく、1質量%以下であることが更に好ましく、0.1質量%以下であることが特に好ましい。上記範囲であると、膜形成性に優れ、得られる有機半導体の移動度及び熱安定性により優れる。
(有機半導体層の形成方法)
 本発明の有機半導体素子における有機半導体層の形成方法は特に制限されず、後述する本発明の有機半導体膜形成用組成物を、ソース電極、ドレイン電極、及び、ゲート絶縁膜上に付与して、必要に応じて乾燥処理を施すことにより、所望の有機半導体層を形成することができる。
(有機半導体素子及び有機半導体膜の製造方法)
 本発明の有機半導体素子及び有機半導体膜は、後述する本発明の有機半導体膜形成用組成物を用いて製造されたものであることが好ましい。
 本発明の有機半導体膜形成用組成物を用いて有機半導体膜や有機半導体素子を製造する方法は、特に制限されず、公知の方法を採用できる。例えば、組成物を所定の基材上に付与して、必要に応じて乾燥処理を施して、有機半導体膜を製造する方法が挙げられる。
 基材上に組成物を付与する方法は特に制限されず、公知の方法を採用でき、例えば、インクジェット印刷法、フレキソ印刷法、バーコート法、スピンコート法、ナイフコート法、ドクターブレード法などが挙げられ、インクジェット印刷法、フレキソ印刷法が好ましい。
 なお、フレキソ印刷法としては、フレキソ印刷版として感光性樹脂版を用いる態様が好適に挙げられる。上記態様によって、組成物を基板上に印刷して、パターンを容易に形成することができる。
 中でも、本発明の有機半導体素子及び有機半導体膜の製造方法は、本発明の有機半導体膜形成用組成物を基板上に付与する付与工程、及び、上記有機半導体膜形成用組成物に含まれる上記沸点100℃以上の溶媒の、少なくとも一部を除去する除去工程を含むことが好ましい。
<沸点100℃以上の溶媒>
 本発明の有機半導体膜形成用組成物は、沸点100℃以上の溶媒(以下、「特定溶媒」ともいう。)を含有する。
 特定溶媒としては、例えば、オクタン、デカン、トルエン、キシレン、メシチレン、エチルベンゼン、デカリン、1-メチルナフタレン、テトラリン、ジメチルテトラリンなどの炭化水素系溶媒、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒、テトラクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロトルエン、1-フルオロナフタレン、1-クロロナフタレンなどのハロゲン化炭化水素系溶媒、酢酸ブチル、酢酸アミルなどのエステル系溶媒、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、エチレングリコールなどのアルコール系溶媒、ジブチルエーテル、ジオキサン、アニソール、4-ターシャリブチルアニソール、m-ジメトキシベンゼンなどのエーテル系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒、1-メチル-2-ピロリドン、1-メチル-2-イミダゾリジノン等のイミド系溶媒、ジメチルスルフォキサイドなどのスルホキシド系溶媒、ブチロニトリル、ベンゾニトリルなどのニトリル系溶媒が挙げられる。
 特定溶媒は、1種単独で用いてもよく、複数組み合わせて用いてもよい。
 これらの中でも、炭化水素系溶媒、ハロゲン化炭化水素系溶媒及び/又はエーテル系溶媒が好ましく、トルエン、キシレン、メシチレン、テトラリン、ジクロロベンゼン又はアニソールがより好ましく、トルエンが更に好ましい。
 上記の溶媒であると、塗布性に優れ、容易に有機半導体膜を形成することができる。
 特定溶媒は、有機半導体膜形成用組成物の安定性、及び、均一な膜を形成する観点、及び、乾燥させる観点から、常圧における沸点が100℃以上であり、100~300℃以上であることが好ましく、100~200℃であることがより好ましく、100~150℃であることが更に好ましい。
 上記除去工程における乾燥処理は、必要に応じて実施される処理であり、使用される特定化合物及び溶媒の種類により適宜最適な条件が選択される。中でも、得られる有機半導体の移動度及び熱安定性により優れ、また、生産性に優れる点で、加熱温度としては30℃~100℃が好ましく、40℃~80℃がより好ましく、加熱時間としては10~300分が好ましく、30~180分がより好ましい。
 形成される有機半導体層の厚さは、特に制限されないが、得られる有機半導体の移動度及び熱安定性の観点から、10~500nmが好ましく、30~200nmがより好ましい。
<有機半導体素子>
 有機半導体素子としては、特に制限はないが、2~5端子の有機半導体素子であることが好ましく、2又は3端子の有機半導体素子であることがより好ましい。
 また、有機半導体素子としては、光電変換素子でないことが好ましい。
 更に、本発明の有機半導体素子は、非発光性有機半導体素子であることが好ましい。
 2端子素子としては、整流用ダイオード、定電圧ダイオード、PINダイオード、ショットキーバリアダイオード、サージ保護用ダイオード、ダイアック、バリスタ、トンネルダイオード等が挙げられる。
 3端子素子としては、バイポーラトランジスタ、ダーリントントランジスタ、電界効果トランジスタ、絶縁ゲートバイポーラトランジスタ、ユニジャンクショントランジスタ、静電誘導トランジスタ、ゲートターンサイリスタ、トライアック、静電誘導サイリスタ等が挙げられる。
 これらの中でも、整流用ダイオード、及び、トランジスタ類が好ましく挙げられ、電界効果トランジスタがより好ましく挙げられる。
 本発明の有機薄膜トランジスタの一態様について図面を参照して説明する。
 図1は、本発明の有機半導体素子(有機薄膜トランジスタ(有機TFT))の一態様の断面模式図である。
 図1において、有機薄膜トランジスタ100は、基板10と、基板10上に配置されたゲート電極20と、ゲート電極20を覆うゲート絶縁膜30と、ゲート絶縁膜30のゲート電極20側とは反対側の表面に接するソース電極40及びドレイン電極42と、ソース電極40とドレイン電極42との間のゲート絶縁膜30の表面を覆う有機半導体膜50と、各部材を覆う封止層60とを備える。有機薄膜トランジスタ100は、ボトムゲート-ボトムコンタクト型の有機薄膜トランジスタである。
 なお、図1においては、有機半導体膜50が、上述した組成物より形成される膜に該当する。
 以下、基板、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、有機半導体膜及び封止層並びにそれぞれの形成方法について詳述する。
<基板>
 基板は、後述するゲート電極、ソース電極、ドレイン電極などを支持する役割を果たす。
 基板の種類は特に制限されず、例えば、プラスチック基板、ガラス基板、セラミック基板などが挙げられる。中でも、各デバイスへの適用性及びコストの観点から、ガラス基板又はプラスチック基板であることが好ましい。
 プラスチック基板の材料としては、熱硬化性樹脂(例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)など)又は熱可塑性樹脂(例えば、フェノキシ樹脂、ポリエーテルスルフォン、ポリスルホン、ポリフェニレンスルフォンなど)が挙げられる。
 セラミック基板の材料としては、例えば、アルミナ、窒化アルミニウム、ジルコニア、シリコン、窒化シリコン、シリコンカーバイドなどが挙げられる。
 ガラス基板の材料としては、例えば、ソーダガラス、カリガラス、ホウケイ酸ガラス、石英ガラス、アルミケイ酸ガラス、鉛ガラスなどが挙げられる。
<ゲート電極、ソース電極、ドレイン電極>
 ゲート電極、ソース電極、ドレイン電極の材料としては、例えば、金(Au)、銀、アルミニウム(Al)、銅、クロム、ニッケル、コバルト、チタン、白金、タンタル、マグネシウム、カルシウム、バリウム、ナトリウム等の金属;InO2、SnO2、酸化インジウムスズ(ITO)等の導電性の酸化物;ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリジアセチレン等の導電性高分子;シリコン、ゲルマニウム、ガリウム砒素等の半導体;フラーレン、カーボンナノチューブ、グラファイト等の炭素材料などが挙げられる。中でも、金属であることが好ましく、銀又はアルミニウムであることがより好ましい。
 ゲート電極、ソース電極、ドレイン電極の厚みは特に制限されないが、20~200nmであることが好ましい。
 ゲート電極、ソース電極、ドレイン電極を形成する方法は特に制限されないが、例えば、基板上に、電極材料を真空蒸着又はスパッタする方法、電極形成用組成物を塗布又は印刷する方法などが挙げられる。また、電極をパターニングする場合、パターニングする方法としては、例えば、フォトリソグラフィー法;インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法;マスク蒸着法などが挙げられる。
<ゲート絶縁膜>
 ゲート絶縁膜の材料としては、ポリメチルメタクリレート、ポリスチレン、ポリビニルフェノール、ポリイミド、ポリカーボネート、ポリエステル、ポリビニルアルコール、ポリ酢酸ビニル、ポリウレタン、ポリスルホン、ポリベンゾキサゾール、ポリシルセスキオキサン、エポキシ樹脂、フェノール樹脂等のポリマー;二酸化珪素、酸化アルミニウム、酸化チタン等の酸化物;窒化珪素等の窒化物などが挙げられる。これらの材料のうち、有機半導体膜との相性から、ポリマーであることが好ましい。
 ゲート絶縁膜の材料としてポリマーを用いる場合、架橋剤(例えば、メラミン)を併用することが好ましい。架橋剤を併用することで、ポリマーが架橋されて、形成されるゲート絶縁膜の耐久性が向上する。
 ゲート絶縁膜の膜厚は特に制限されないが、100~1,000nmであることが好ましい。
 ゲート絶縁膜を形成する方法は特に制限されないが、例えば、ゲート電極が形成された基板上に、ゲート絶縁膜形成用組成物を塗布する方法、ゲート絶縁膜材料を蒸着又はスパッタする方法などが挙げられる。ゲート絶縁膜形成用組成物を塗布する方法は特に制限されず、公知の方法(バーコート法、スピンコート法、ナイフコート法、ドクターブレード法)を使用することができる。
 ゲート絶縁膜形成用組成物を塗布してゲート絶縁膜を形成する場合、溶媒除去、架橋などを目的として、塗布後に加熱(ベーク)してもよい。
<有機半導体膜>
 本発明における有機半導体膜は、本発明の有機半導体膜形成用組成物より形成される膜である。
 有機半導体膜の形成方法は特に制限されず、上述した組成物を、ソース電極、ドレイン電極、及び、ゲート絶縁膜上に付与して、必要に応じて乾燥処理を施すことにより、所望の有機半導体膜を形成することができる。
<バインダーポリマー層>
 本発明の有機半導体素子は、有機半導体層と絶縁膜との間にバインダーポリマー層を有することが好ましく、有機半導体層とゲート絶縁膜との間にバインダーポリマー層を有することがより好ましい。上記バインダーポリマー層の膜厚は特に制限されないが、20~500nmであることが好ましい。上記バインダーポリマー層は、上記ポリマーを含む層であればよいが、上記バインダーポリマーからなる層であることが好ましい。
 バインダーポリマー層を形成する方法は特に制限されないが、公知の方法(バーコート法、スピンコート法、ナイフコート法、ドクターブレード法、インクジェット法)を使用することができる。
 バインダーポリマー層形成用組成物を塗布してバインダーポリマー層を形成する場合、溶媒除去、架橋などを目的として、塗布後に加熱(ベーク)してもよい。
<封止層>
 本発明の有機半導体素子は、耐久性の観点から、最外層に封止層を備えることが好ましい。封止層には公知の封止剤を用いることができる。
 封止層の厚さは特に制限されないが、0.2~10μmであることが好ましい。
 封止層を形成する方法は特に制限されないが、例えば、ゲート電極とゲート絶縁膜とソース電極とドレイン電極と有機半導体膜とが形成された基板上に、封止層形成用組成物を塗布する方法などが挙げられる。封止層形成用組成物を塗布する方法の具体例は、ゲート絶縁膜形成用組成物を塗布する方法と同じである。封止層形成用組成物を塗布して有機半導体膜を形成する場合、溶媒除去、架橋などを目的として、塗布後に加熱(ベーク)してもよい。
 また、図2は、本発明の有機半導体素子(有機薄膜トランジスタ)の別の一態様の断面模式図である。
 図2において、有機薄膜トランジスタ200は、基板10と、基板10上に配置されたゲート電極20と、ゲート電極20を覆うゲート絶縁膜30と、ゲート絶縁膜30上に配置された有機半導体膜50と、有機半導体膜50上に配置されたソース電極40及びドレイン電極42と、各部材を覆う封止層60とを備える。ここで、ソース電極40及びドレイン電極42は、上述した本発明の組成物を用いて形成されたものである。有機薄膜トランジスタ200は、トップコンタクト型の有機薄膜トランジスタである。
 基板、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、有機半導体膜及び封止層については、上述のとおりである。
 上記では図1及び図2において、ボトムゲート-ボトムコンタクト型の有機薄膜トランジスタ、及び、ボトムゲート-トップコンタクト型の有機薄膜トランジスタの態様について詳述したが、本発明の有機半導体素子は、トップゲート-ボトムコンタクト型の有機薄膜トランジスタ、及び、トップゲート-トップコンタクト型の有機薄膜トランジスタにも好適に使用できる。
 なお、上述した有機薄膜トランジスタは、電子ペーパー、ディスプレイデバイスなどに好適に使用できる。
(有機半導体膜形成用組成物)
 本発明の有機半導体膜形成用組成物は、沸点100℃以上の溶媒と、式1で表される化合物とを含有し、式1で表される化合物の含有量が、有機半導体膜形成用組成物の総量に対し、20質量%以下であることを特徴とする。
 また、本発明の有機半導体膜形成用組成物は、バインダーポリマーを含有することが好ましい。
 本発明の有機半導体膜形成用組成物における特定化合物、バインダーポリマー及び溶媒は、上述した特定化合物、バインダーポリマー及び溶媒と同義であり、好ましい態様も同様である。
 本発明の有機半導体膜形成用組成物における特定化合物の含有量は、有機半導体膜形成用組成物の総量に対し、20質量%以下であり、0.001~15質量%であることが好ましく、0.01~10質量がより好ましい。なお、特定化合物を2種以上併用する場合、特定化合物の総含有量が上記範囲にあることが好ましい。特定化合物の含有量が上記範囲内であると、高い移動度及び駆動安定性を有する有機半導体素子を得ることができ、有機半導体膜形成用組成物の保存安定性も良好である。
 また、特定化合物の含有量は、有機半導体膜形成用組成物の固形分総量の30~100質量%であることが好ましく、50~100質量%であることがより好ましく、70~100質量%であることが更に好ましい。また、後述するバインダーポリマーを含有しない場合は、上記総含有量が、90~100質量%であることが好ましく、95~100質量%であることがより好ましい。なお、固形分とは、溶媒等の揮発性成分を除いた成分の量である。
 本発明の有機半導体膜形成用組成物におけるバインダーポリマーの含有量は、有機半導体膜形成用組成物の総量に対し、0質量%を超え20質量%以下であることが好ましく、0.01~15質量%であることがより好ましく、0.25~10質量%であることが更に好ましい。上記範囲内であると、得られる有機半導体の移動度及び耐熱性により優れる。
 本発明の有機半導体膜形成用組成物は、特定化合物及びバインダーポリマー以外に他の成分を含んでいてもよい。
 その他の成分としては、公知の添加剤等を用いることができる。
 本発明の有機半導体膜形成用組成物における特定化合物及びバインダーポリマー以外の成分の含有量は、全固形分に対し、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることが更に好ましく、0.1質量%以下であることが特に好ましい。上記範囲であると、膜形成性に優れ、得られる有機半導体の移動度及び熱安定性により優れる。
 本発明の有機半導体膜形成用組成物の粘度は、特に制限されないが、塗布性がより優れる点で、3~100mPa・sが好ましく、5~50mPa・sがより好ましく、9~40mPa・sが更に好ましい。なお、本発明における粘度は、25℃での粘度である。
 粘度の測定方法としては、JIS Z8803に準拠した測定方法であることが好ましい。
 本発明の有機半導体膜形成用組成物の製造方法は、特に制限されず、公知の方法を採用できる。例えば、溶媒中に所定量の特定化合物を添加して、適宜撹拌処理を施すことにより、所望の組成物を得ることができる。また、バインダーポリマーを用いる場合は、特定化合物及びバインダーポリマーを同時又は逐次に添加して好適に組成物を作製することができる。
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。なお、特に断りのない限り、「部」、「%」は質量基準である。
(特定化合物及び合成例)
 実施例に用いたE-1~E-10、及び、比較例に用いたC-1~C-2の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
<E-1の合成>
 下記のスキームX1に従って中間体M1の合成を行った。
Figure JPOXMLDOC01-appb-C000079
 中間体M1とオクチルジンククロライドを根岸カップリング反応により縮合させ、化合物E-1を合成した。
Figure JPOXMLDOC01-appb-C000080
<E-2~E-10の合成>
 E-2~E-10に関しても、中間体M1と縮合させる有機亜鉛化合物を適切な化合物へと変更した以外は、E-1と同様の方法により合成した。
<C-1の合成>
 化合物C-1は、特開2010-177637号公報に記載の方法に従って合成を行った。
<C-2の合成>
 化合物C-2は、国際公開第2013/168048号に記載の方法に従って合成を行った。
(実施例1~10、比較例1~2)
<TFT素子作製>
 表60に記載の特定化合物又は比較化合物(1mg)とトルエン(1mL)を混合し、100℃に加熱したものを、有機半導体膜形成用組成物とした。
 この組成物を窒素雰囲気下、90℃に加熱したFET特性測定用基板上にキャストすることにより有機半導体膜を形成し、FET特性測定用の有機薄膜トランジスタ素子を得た。FET特性測定用基板としては、ソース及びドレイン電極としてくし型に配置されたクロム/金(ゲート幅W=100mm、ゲート長L=100μm)、絶縁膜としてSiO2(膜厚200nm)を備えたボトムゲート・ボトムコンタクト構造のシリコン基板を用いた。
 また、得られた組成物をフレキソ印刷によってFET特性測定用基板上に付与した。具体的には、印刷装置としてフレキソ適性試験機F1(アイジーティ・テスティングシステムズ(株)製)、フレキソ樹脂版としてAFP DSH1.70%(旭化成(株)製)/ベタ画像を用いた。版と基板との間の圧力は、60N、搬送速度0.4m/秒で印刷を行った後、そのまま、40℃で2時間乾燥することにより有機半導体膜を形成し、FET特性測定用の有機薄膜トランジスタ素子(有機TFT素子)を得た。
 FET特性測定用基板としては、ソース及びドレイン電極としてくし型に配置されたクロム/金(ゲート幅W=100mm、ゲート長L=100μm)、絶縁膜としてSiO2(膜厚200nm)を備えたボトムゲート・ボトムコンタクト構造のシリコン基板を用いた。
 また、上記インクをインクジェット印刷によってFET特性測定用基板上に付与した。具体的には、インクジェット装置としてDPP2831(富士フイルムグラフィックシステムズ(株)製)、10pLヘッドを用い、吐出周波数2Hz、ドット間ピッチ20μmでベタ膜を形成した。その後70℃で1時間乾燥することにより有機半導体膜を形成し、FET特性測定用の有機TFT素子を得た。
 各実施例又は比較例において、インクジェット印刷により得られた有機TFT素子の、後述する移動度、護符製膜性、耐熱性の評価は、組成物をキャストすることにより得られた有機TFT素子の評価と全て同じであった。
<キャリア移動度(移動度)>
 各実施例及び比較例の有機薄膜トランジスタ素子のFET特性は、セミオートプローバー(ベクターセミコン製、AX-2000)を接続した半導体パラメーターアナライザー(Agilent製、4156C)を用いて常圧・窒素雰囲気下で、キャリア移動度を評価した。
 各有機薄膜トランジスタ素子(FET素子)のソース電極-ドレイン電極間に-80Vの電圧を印加し、ゲート電圧を20V~-100Vの範囲で変化させ、ドレイン電流Idを表す下記式を用いてキャリア移動度μを算出した。
 Id=(w/2L)μCi(Vg-Vth)2
 式中、Lはゲート長、Wはゲート幅、Ciは絶縁層の単位面積当たりの容量、Vgはゲート電圧、Vthは閾値電圧を表す。キャリア移動度の数値は、実用上0.01以上であることが必要であり、0.1以上であることが好ましく、0.3以上であることがより好ましい。
 なお、表中の「特性なし」とは、作成した素子がTFT特性を有さなかったことを表す。
<塗布製膜性>
 本発明の化合物又は比較化合物(5mg)とトルエン(1mL)を混合し、100℃に加熱したものを、非発光性有機半導体溶液とした。この塗布溶液を窒素雰囲気下、90℃に加熱した50素子分のチャネルを形成した基板上全面にキャストすることにより有機半導体薄膜を形成し、50個のFET特性測定用の有機薄膜トランジスタ素子を得た。塗布製膜性の評価基準は下記の通りとし、評価結果は表60に記載した。
〔評価基準〕
 A:得られた50個の素子のうち、有機薄膜トランジスタ素子として駆動した素子が45個以上
 B:得られた50個の素子のうち、有機薄膜トランジスタ素子として駆動した素子が45個未満
<耐熱性>
 作製した各有機薄膜トランジスタ素子を、窒素グローブボックス中130℃にて1時間加熱した後に、キャリア移動度μを測定し、下記式より加熱後のキャリア移動度維持率を算出した。
 加熱後のキャリア移動度維持率(%)=キャリア移動度(加熱後)/キャリア移動度(初期値)×100
 得られた結果を以下の評価基準に従って評価した。評価結果は表60に記載した。なお、表中のN/Aとは、作成した素子がTFT特性を有していないため、耐熱性試験を実施しなかったことを表す。
〔評価基準〕
 A:加熱後のキャリア移動度維持率が95%以上
 B:加熱後のキャリア移動度維持率が70%以上、95%未満
 C:加熱後のキャリア移動度維持率が40%以上、70%未満
 D:加熱後のキャリア移動度維持率が20%以上、40%未満
 E:加熱後のキャリア移動度維持率が20%未満
Figure JPOXMLDOC01-appb-T000081
(実施例11~16、比較例3~4)
<TFT素子作製>
 表61に記載の本発明の特定化合物又は比較化合物、表61に記載のバインダーポリマー、及び、表61に記載の溶媒を表61に記載の濃度となるよう混合し、100℃に加熱したものを有機半導体膜形成用組成物として用いる以外は、実施例1~10及び比較例1~2と同様にして、各種評価を行った。それぞれの評価結果は表61に記載した。
 なお、表61中で使用されている略語の内容は以下の通りである。
 ・PαMS:ポリ(α-メチルスチレン)、Mw=300,000、Aldrich社製)
 ・THF:テトラヒドロフラン
Figure JPOXMLDOC01-appb-T000082
(比較例5~21)
 表60及び表61に記載の特定化合物とトルエン(1mL)と、表61に記載のある例については更にバインダーポリマー(5mg)とを、各特定化合物の含量が21質量%となるように秤量、混合し、100℃に加熱したものを有機半導体膜形成用組成物とした以外は実施例1~16と同様に有機半導体膜を形成したが、いずれも不溶物のために欠陥が多数発生し、TFT特性を発現しなかった。
 10:基板、20:ゲート電極、30:ゲート絶縁膜、40:ソース電極、42:ドレイン電極、50:有機半導体膜、60:封止層、100,200:有機薄膜トランジスタ

Claims (40)

  1.  下記式1で表される化合物を有機半導体層に含むことを特徴とする
     有機半導体素子。
    Figure JPOXMLDOC01-appb-C000001
     式1中、X11及びX12はそれぞれ独立に、カルコゲン原子を表し、Z1a~Z1jはそれぞれ独立に、水素原子又はハロゲン原子を表し、A11は=CRA11-又は窒素原子を表し、RA11は、水素原子又はR11で表される基を表し、A12は=CRA12-又は窒素原子を表し、RA12は、水素原子又はR12で表される基を表し、n1は0又は1を表し、p1はA11が=CRA11-の場合は0~2の整数を表し、A11が窒素原子の場合は0又は1を表し、q1はA12が=CRA12-の場合は0~2の整数を表し、A12が窒素原子の場合は0又は1を表し、R11及びR12はそれぞれ独立に、ハロゲン原子、アリール基、ヘテロアリール基、又は下記式Wで表される基を表す。
     -SW-LW-TW  (W)
     式W中、SWは単結合、又は、-(CRS 2k-で表されるアルキレン基を表し、RSはそれぞれ独立に、水素原子又はハロゲン原子を表し、kは1~17の整数を表し、LWは単結合、下記式L-1~L-16のいずれかで表される2価の連結基、又は、下記式L-1~L-16で表される2価の連結基のいずれかが2つ以上結合した基を表し、TWはアルキル基、シアノ基、ビニル基、エチニル基、アリール基、ヘテロアリール基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、ケイ素原子数が2以上のオリゴシロキサン基、又はトリアルキルシリル基を表す。
    Figure JPOXMLDOC01-appb-C000002
     式L-1~L-16中、*及び波線部分は他の構造との結合位置を表し、p13は0~4の整数を表し、p14、p15及びp16はそれぞれ独立に、0~2の整数を表し、RL1、RL21、RL22、RL13、RL14、RL15、及び、RL16はそれぞれ独立に、水素原子又は置換基を表す。
  2.  前記Z1a~Z1jがいずれも水素原子である、請求項1に記載の有機半導体素子。
  3.  前記n1が0である、請求項1又は2に記載の有機半導体素子。
  4.  前記p1及びq1の少なくとも一方が0でない、請求項1~3のいずれか一項に記載の有機半導体素子。
  5.  前記p1及びq1の少なくとも一方が0でなく、かつ、前記R11又はR12の少なくとも一方が前記式Wで表される基である、請求項1~4のいずれか一項に記載の有機半導体素子。
  6.  前記p1及びq1が1である、請求項1~5のいずれか一項に記載の有機半導体素子。
  7.  前記X11及びX12がいずれもS原子であり、前記A11が=CRA11-であり、前記A12が=CRA12-である、請求項1~6のいずれか一項に記載の有機半導体素子。
  8.  前記式1で表される化合物が、下記式2で表される化合物である、請求項1~6のいずれか一項に記載の有機半導体素子。
    Figure JPOXMLDOC01-appb-C000003
     式2中、X21及びX22はそれぞれ独立に、カルコゲン原子を表し、W21及びW22はそれぞれ独立に、前記式Wで表される基を表す。
  9.  前記式1で表される化合物が、線対称構造である、請求項1~8のいずれか一項に記載の有機半導体素子。
  10.  前記式Wで表される基の炭素数が5~40である、請求項1~9のいずれか一項に記載の有機半導体素子。
  11.  前記LWが単結合、式L-1~式L-4及び式L-13~式L-16のいずれかで表される2価の連結基、又は、式L-1~式L-4及び式L-13~式L-16のいずれかで表される2価の連結基が2つ以上結合した2価の連結基である、請求項1~10のいずれか一項に記載の有機半導体素子。
  12.  前記LWが単結合、又は、式L-1~式L-4及び式L-13~式L-16のいずれかで表される2価の連結基である、請求項1~11のいずれか一項に記載の有機半導体素子。
  13.  前記SWが単結合である、請求項1~12のいずれか一項に記載の有機半導体素子。
  14.  前記LWが単結合、又は、式L-1及び式L-13~式L-16のいずれかで表される2価の連結基である、請求項1~13のいずれか一項に記載の有機半導体素子。
  15.  前記TWがアルキル基である、請求項1~14のいずれか一項に記載の有機半導体素子。
  16.  前記式Wで表される基がアルキル基である、請求項1~15のいずれか一項に記載の有機半導体素子。
  17.  沸点100℃以上の溶媒と、
     式1で表される化合物とを含有し、
     式1で表される化合物の含有量が、有機半導体膜形成用組成物の総量に対し、20質量%以下であることを特徴とする
     有機半導体膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000004
     式1中、X11及びX12はそれぞれ独立に、カルコゲン原子を表し、Z1a~Z1jはそれぞれ独立に、水素原子又はハロゲン原子を表し、A11は=CRA11-又は窒素原子を表し、RA11は、水素原子又はR11で表される基を表し、A12は=CRA12-又は窒素原子を表し、RA12は、水素原子又はR12で表される基を表し、n1は0又は1を表し、p1はA11が=CRA11-の場合は0~2の整数を表し、A11が窒素原子の場合は0又は1を表し、q1はA12が=CRA12-の場合は0~2の整数を表し、A12が窒素原子の場合は0又は1を表し、R11及びR12はそれぞれ独立に、ハロゲン原子、アリール基、ヘテロアリール基、又は下記式Wで表される基を表す。
     -SW-LW-TW  (W)
     式W中、SWは単結合、又は、-(CRS 2k-で表されるアルキレン基を表し、RSはそれぞれ独立に、水素原子又はハロゲン原子を表し、kは1~17の整数を表し、LWは単結合、下記式L-1~L-16のいずれかで表される2価の連結基、又は、下記式L-1~L-16で表される2価の連結基のいずれかが2つ以上結合した基を表し、TWはアルキル基、シアノ基、ビニル基、エチニル基、アリール基、ヘテロアリール基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、ケイ素原子数が2以上のオリゴシロキサン基、又はトリアルキルシリル基を表す。
    Figure JPOXMLDOC01-appb-C000005
     式L-1~L-16中、*及び波線部分は他の構造との結合位置を表し、p13は0~4の整数を表し、p14、p15及びp16はそれぞれ独立に、0~2の整数を表し、RL1、RL21、RL22、RL13、RL14、RL15、及び、RL16はそれぞれ独立に、水素原子又は置換基を表す。
  18.  前記Z1a~Z1jがいずれも水素原子である、請求項17に記載の有機半導体膜形成用組成物。
  19.  前記n1が0である、請求項17又は18に記載の有機半導体膜形成用組成物。
  20.  前記p1及びq1の少なくとも一方が0でない、請求項17~19のいずれか一項に記載の有機半導体膜形成用組成物。
  21.  前記p1及びq1の少なくとも一方が0でなく、かつ、前記R11又はR12の少なくとも一方が前記式Wで表される基である、請求項17~20のいずれか一項に記載の有機半導体膜形成用組成物。
  22.  前記p1及びq1が1である、請求項17~21のいずれか一項に記載の有機半導体膜形成用組成物。
  23.  前記X11及びX12がいずれもS原子であり、前記A11が=CRA11-であり、前記A12が=CRA12-である、請求項17~22のいずれか一項に記載の有機半導体膜形成用組成物。
  24.  前記式1で表される化合物が、下記式2で表される化合物である、請求項17~22のいずれか一項に記載の有機半導体膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000006
     式2中、X21及びX22はそれぞれ独立に、カルコゲン原子を表し、W21及びW22はそれぞれ独立に、前記式Wで表される基を表す。
  25.  前記式1で表される化合物が、線対称構造である、請求項17~24のいずれか一項に記載の有機半導体膜形成用組成物。
  26.  前記式Wで表される基の炭素数が5~40である、請求項17~25のいずれか一項に記載の有機半導体膜形成用組成物。
  27.  前記LWが単結合、式L-1~式L-4及び式L-13~式L-16のいずれかで表される2価の連結基、又は、式L-1~式L-4及び式L-13~式L-16のいずれかで表される2価の連結基が2つ以上結合した2価の連結基である、請求項17~26のいずれか一項に記載の有機半導体膜形成用組成物。
  28.  前記LWが単結合、又は、式L-1~式L-4及び式L-13~式L-16のいずれかで表される2価の連結基である、請求項17~27のいずれか一項に記載の有機半導体膜形成用組成物。
  29.  前記SWが単結合である、請求項17~28のいずれか一項に記載の有機半導体膜形成用組成物。
  30.  前記LWが単結合、又は、式L-1及び式L-13~式L-16のいずれかで表される2価の連結基である、請求項17~29のいずれか一項に記載の有機半導体膜形成用組成物。
  31.  前記TWがアルキル基である、請求項17~30のいずれか一項に記載の有機半導体膜形成用組成物。
  32.  前記式Wで表される基がアルキル基である、請求項17~31のいずれか一項に記載の有機半導体膜形成用組成物。
  33.  バインダーポリマーを更に含み、前記バインダーポリマーの含有量が、有機半導体膜形成用組成物の総量に対し、10質量%以下である、請求項17~32のいずれか一項に記載の有機半導体膜形成用組成物。
  34.  下記式1で表される化合物。
    Figure JPOXMLDOC01-appb-C000007
     式1中、X11及びX12はそれぞれ独立に、カルコゲン原子を表し、Z1a~Z1jはそれぞれ独立に、水素原子又はハロゲン原子を表し、A11は=CRA11-又は窒素原子を表し、RA11は、水素原子又はR11で表される基を表し、A12は=CRA12-又は窒素原子を表し、RA12は、水素原子又はR12で表される基を表し、n1は0又は1を表し、p1はA11が=CRA11-の場合は0~2の整数を表し、A11が窒素原子の場合は0又は1を表し、q1はA12が=CRA12-の場合は0~2の整数を表し、A12が窒素原子の場合は0又は1を表し、R11及びR12はそれぞれ独立に、ハロゲン原子、アリール基、ヘテロアリール基、又は下記式Wで表される基を表す。
     -SW-LW-TW  (W)
     式W中、SWは単結合、又は、-(CRS 2k-で表されるアルキレン基を表し、RSはそれぞれ独立に、水素原子又はハロゲン原子を表し、kは1~17の整数を表し、LWは単結合、下記式L-1~L-16のいずれかで表される2価の連結基、又は、下記式L-1~L-16で表される2価の連結基のいずれかが2つ以上結合した基を表し、TWはアルキル基、シアノ基、ビニル基、エチニル基、アリール基、ヘテロアリール基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、ケイ素原子数が2以上のオリゴシロキサン基、又はトリアルキルシリル基を表す。
    Figure JPOXMLDOC01-appb-C000008
     式L-1~L-16中、*及び波線部分は他の構造との結合位置を表し、p13は0~4の整数を表し、p14、p15及びp16はそれぞれ独立に、0~2の整数を表し、RL1、RL21、RL22、RL13、RL14、RL15、及び、RL16はそれぞれ独立に、水素原子又は置換基を表す。
  35.  請求項17~33のいずれか1項に記載の有機半導体膜形成用組成物を基板上に付与する付与工程、及び、
     前記有機半導体膜形成用組成物に含まれる前記沸点100℃以上の溶媒の、少なくとも一部を除去する除去工程を含む
     有機半導体膜の製造方法。
  36.  前記付与工程が、インクジェット法又はフレキソ印刷法により行われる、請求項35に記載の有機半導体膜の製造方法。
  37.  請求項35又は36に記載の方法により得られた有機半導体膜。
  38.  請求項17~33のいずれか1項に記載の有機半導体膜形成用組成物を、基板上に付与する付与工程、及び、
     前記有機半導体膜形成用組成物に含まれる前記沸点100℃以上の溶媒の、少なくとも一部を除去する除去工程を含む
     有機半導体素子の製造方法。
  39.  前記付与工程が、インクジェット法又はフレキソ印刷法により行われる、請求項38に記載の有機半導体素子の製造方法。
  40.  請求項38又は39に記載の方法により製造された有機半導体素子。
PCT/JP2015/082668 2014-11-25 2015-11-20 有機半導体素子及びその製造方法、有機半導体膜形成用組成物、化合物、並びに、有機半導体膜 WO2016084731A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016561553A JP6363732B2 (ja) 2014-11-25 2015-11-20 有機半導体素子及びその製造方法、有機半導体膜形成用組成物、化合物、並びに、有機半導体膜
US15/497,239 US10497881B2 (en) 2014-11-25 2017-04-26 Organic semiconductor element, manufacturing method thereof, composition for forming organic semiconductor film, compound, and organic semiconductor film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-237888 2014-11-25
JP2014237888 2014-11-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/497,239 Continuation US10497881B2 (en) 2014-11-25 2017-04-26 Organic semiconductor element, manufacturing method thereof, composition for forming organic semiconductor film, compound, and organic semiconductor film

Publications (1)

Publication Number Publication Date
WO2016084731A1 true WO2016084731A1 (ja) 2016-06-02

Family

ID=56074294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082668 WO2016084731A1 (ja) 2014-11-25 2015-11-20 有機半導体素子及びその製造方法、有機半導体膜形成用組成物、化合物、並びに、有機半導体膜

Country Status (3)

Country Link
US (1) US10497881B2 (ja)
JP (1) JP6363732B2 (ja)
WO (1) WO2016084731A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013273A1 (ja) * 2021-08-05 2023-02-09 パナソニックIpマネジメント株式会社 縮合環化合物、半導体材料および電子デバイス

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220150316A (ko) * 2020-03-04 2022-11-10 도소 가부시키가이샤 방향족 화합물, 유기 반도체층, 및 유기 박막 트랜지스터

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218333A (ja) * 2008-03-10 2009-09-24 Mitsui Chemicals Inc 有機トランジスタ
WO2013125599A1 (ja) * 2012-02-22 2013-08-29 Jnc株式会社 新規なカルコゲン含有有機化合物およびその用途
JP2014209597A (ja) * 2013-03-22 2014-11-06 富士フイルム株式会社 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177637A (ja) 2009-02-02 2010-08-12 Mitsui Chemicals Inc 有機トランジスタ
US9231215B2 (en) 2012-05-07 2016-01-05 Basf Se Phenacene compounds for organic electronics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218333A (ja) * 2008-03-10 2009-09-24 Mitsui Chemicals Inc 有機トランジスタ
WO2013125599A1 (ja) * 2012-02-22 2013-08-29 Jnc株式会社 新規なカルコゲン含有有機化合物およびその用途
JP2014209597A (ja) * 2013-03-22 2014-11-06 富士フイルム株式会社 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BRIGITTE WEX: "New organic semiconductors and their device performance as a function of thiophene orientation", JOURNAL OF MATERIALS CHEMISTRY, vol. 16, 2005, pages 1121 - 1124, XP055227198, DOI: doi:10.1039/B512191D *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013273A1 (ja) * 2021-08-05 2023-02-09 パナソニックIpマネジメント株式会社 縮合環化合物、半導体材料および電子デバイス

Also Published As

Publication number Publication date
US10497881B2 (en) 2019-12-03
US20170229662A1 (en) 2017-08-10
JP6363732B2 (ja) 2018-07-25
JPWO2016084731A1 (ja) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6275874B2 (ja) 有機半導体素子及びその製造方法、有機半導体組成物、並びに、有機半導体膜
US10074813B2 (en) Organic semiconductor composition and method for manufacturing organic semiconductor element
WO2016031707A1 (ja) 有機半導体素子及びその製造方法、並びにトポケミカル重合性有機半導体化合物
US20170288151A1 (en) Composition for forming organic semiconductor film and organic semiconductor element
JP6363732B2 (ja) 有機半導体素子及びその製造方法、有機半導体膜形成用組成物、化合物、並びに、有機半導体膜
JP6243049B2 (ja) 有機半導体インク、有機半導体素子及びその製造方法、並びに、化合物
JP6363496B2 (ja) 有機半導体インク、有機半導体膜、並びに、有機半導体素子及びその製造方法
EP3605630B1 (en) Organic semiconductor element, organic semiconductor composition, method of manufacturing organic semiconductor film, organic semiconductor film, and compound and polymer using for use therein
JP6205074B2 (ja) 有機半導体素子及びその製造方法、化合物、有機半導体膜形成用組成物、並びに、有機半導体膜
JP6239457B2 (ja) 有機半導体膜形成用組成物、及び、有機半導体素子の製造方法
JP6328535B2 (ja) 有機半導体膜形成用組成物、有機半導体膜、及び、有機半導体素子
US20170125694A1 (en) Organic semiconductor composition and organic semiconductor element
JP6297709B2 (ja) 有機半導体膜形成用組成物、及び有機半導体膜の製造方法
WO2016009891A1 (ja) 有機半導体膜形成用組成物、及び、有機半導体素子の製造方法
JP6328792B2 (ja) 有機半導体素子及び化合物
JP6328791B2 (ja) 有機半導体素子及び化合物
WO2016084730A1 (ja) 有機半導体素子及びその製造方法、有機半導体組成物、有機半導体膜、化合物、並びに、オリゴマー又はポリマー
JP6325128B2 (ja) 有機半導体素子及び化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561553

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863022

Country of ref document: EP

Kind code of ref document: A1