WO2016084602A1 - 回転電機の回転子及びそれを用いた回転電機 - Google Patents
回転電機の回転子及びそれを用いた回転電機 Download PDFInfo
- Publication number
- WO2016084602A1 WO2016084602A1 PCT/JP2015/081675 JP2015081675W WO2016084602A1 WO 2016084602 A1 WO2016084602 A1 WO 2016084602A1 JP 2015081675 W JP2015081675 W JP 2015081675W WO 2016084602 A1 WO2016084602 A1 WO 2016084602A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- insertion hole
- magnet insertion
- nonmagnetic
- rotating electrical
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
- H02K1/2766—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
- H02K1/2773—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K29/00—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
- H02K29/03—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
Definitions
- the present invention relates to a rotor of a rotating electric machine having a permanent magnet as a field source in the rotor and a rotating electric machine using the same.
- Patent Document 1 discloses a stator structure of a rotating electrical machine in which a hole is provided between a permanent magnet and an outer peripheral portion for the purpose of reducing torque ripple.
- An object of the present invention is to provide a rotating electrical machine in which torque ripple is reduced while suppressing deterioration in strength at high speed rotation.
- a rotor of a rotating electrical machine includes a magnet insertion hole that forms a space into which a permanent magnet is inserted, and a part of the magnet insertion hole that faces the space.
- a non-magnetic portion, and the non-magnetic portion is provided asymmetrically with respect to the d-axis.
- torque ripple can be reduced while suppressing deterioration in strength at high speed rotation.
- FIG. 7 is an enlarged view of a region 80 in FIG. 6 according to the first embodiment. It is a figure which shows a torque ripple waveform about the rotary electric machine by Embodiment 1 and the conventional rotary electric machine. It is the enlarged view to which the rotor 1 pole part was expanded about the modification of the rotary electric machine by Embodiment 1.
- FIG. It is the figure which expanded one pole part of the rotor 10 of the rotary electric machine by Embodiment 2.
- FIG. It is a figure which shows a torque ripple amplitude about the rotary electric machine by Embodiment 2 and the conventional rotary electric machine.
- FIG. 3 is a cross-sectional view showing a cross section viewed from the axial direction of the rotating electrical machine according to the first embodiment.
- FIG. 11 shows the rotor 11 of the rotary electric machine by Embodiment 3.
- FIG. An enlarged view of one pole is shown about the steel plate 300 which concerns on Embodiment 3 and comprises the rotor core 20.
- FIG. FIG. 6 is an enlarged view of one pole of a steel plate 310 constituting the rotor core 20 according to the third embodiment.
- FIG. shows the principal part about the conventional rotary electric machine 100.
- FIG. It is an axial sectional view of a conventional rotating electrical machine 100. It is an external view of the rotor 10 of the conventional rotary electric machine 100.
- FIG. It is the figure which expanded one pole part of the rotor 10 of the conventional rotary electric machine 100.
- FIG. It is the figure which expanded one pole part of the rotor 10 which concerns on the other structure of the conventional rotary electric machine 100.
- FIG. 10 is a diagram showing a main part of the conventional rotating electrical machine 100.
- FIG. 10 is a view of the rotating electrical machine 100 as viewed from the radial direction, and shows only one side with respect to the rotation axis (shown by a one-dot chain line).
- FIG. 11 is an axial cross-sectional view of the A-A ′ cross section of FIG. 10.
- FIG. 12 shows an external view of the rotor core 20.
- FIG. 13 is an enlarged view showing the configuration of the conventional rotating electric machine 100 in the region 80 in FIG.
- the rotating electrical machine 100 includes a rotor 10, a rotor core 20, a stator 30, a stator core 40, an armature winding 50, a permanent magnet 60, and a shaft 70. .
- a plurality of stator slots 41 are arranged in the stator core 40 at substantially equal intervals in the circumferential direction, and a stator winding 50 is wound in the stator slot 41 as shown in FIG. 10.
- the rotor 10 arranged concentrically on the inner peripheral side of the stator core 40, and a plurality of permanent magnets 60 are arranged on the rotor 10 at substantially equal intervals in the circumferential direction.
- the permanent magnet 60 is inserted into a magnet insertion hole 120 provided in the rotor core 20. 110 indicates the d-axis.
- the magnet insertion hole 120 may be divided into two in the circumferential direction, and two permanent magnets 60 may be arranged in the circumferential direction per pole.
- the configuration of the structure is shown by showing the region 80 for one pole of the rotor.
- the effects of the present invention can be obtained by configuring the other poles symmetrically.
- the rotation direction is counterclockwise as in FIG.
- FIG. 6 is a cross-sectional view showing a cross section viewed from the axial direction of the rotating electrical machine according to the first embodiment.
- FIG. 1 is an enlarged view of the region 80 of FIG. 6 according to the first embodiment.
- the rotor 10 includes a rotor core 20, a permanent magnet 60, and a shaft 70 (see FIG. 10).
- the rotor core 20 is configured by laminating a plurality of steel plates.
- the plurality of steel plates are provided with magnet insertion holes 120 by punching or the like.
- the permanent magnet 60 is accommodated in the magnet insertion hole 120.
- a stator 30 (not shown) is disposed on the outer peripheral side of the rotor 10 (see FIG. 10).
- the rotor core 20 is provided with a nonmagnetic portion 130 communicating with the magnet insertion hole 120.
- the nonmagnetic portion 130 is disposed at a position facing the space formed by the magnet insertion hole 120 and forms a part of the magnet insertion hole 120.
- the rotation direction of the rotor 10 is counterclockwise, and this counterclockwise direction is defined as a direction in which the motor is operated.
- the position of the non-magnetic portion 130 is on the rotation direction advance side from the d-axis 110 that is the center of the magnetic pole.
- the non-magnetic portion 130 communicates with the magnet insertion hole 120, and can be provided without being reduced in productivity by being integrally formed when punching from the steel plate.
- a non-magnetic portion 130 is provided between the outer periphery of the rotor core 20 and the permanent magnet 60 without forming an extremely narrow portion of the core width, so that strength at high speed rotation is ensured and magnetic flux is hindered. Therefore, a decrease in torque can be avoided.
- Fig. 2 shows the calculation result of torque ripple waveform.
- the amplitude of the waveform 210 when the nonmagnetic portion 130 is provided is smaller than the waveform 200 when the nonmagnetic portion 130 is not provided, and the torque ripple is reduced.
- the average value of both torques is almost the same.
- the cause of the torque ripple is a change in the magnetic resistance due to the stator slot 41 shown in FIG. 6, but by providing a non-magnetic portion communicating with the magnet insertion hole 120 as in this embodiment, the magnetic resistance is steep. The change is mitigated and, as seen in FIG. 2, the torque ripple can be reduced while maintaining the average value of the torque.
- FIG. 3 is an enlarged view of a rotor having one pole in a variation of the rotating electrical machine according to the first embodiment.
- the magnet insertion hole is divided into a first magnet insertion hole 120a and a second magnet insertion hole 120b at the boundary of the d-axis 110 in the circumferential direction.
- the first permanent magnet 60a is accommodated in the first magnet insertion hole 120a
- the second permanent magnet 60b is accommodated in the second magnet insertion hole 120b.
- the non-magnetic part 131 is formed in a state communicating with the first magnet insertion hole 120a on the rotation direction leading side.
- the nonmagnetic part 132 is formed in a state communicating with the second magnet insertion hole 120b on the rotation direction delay side.
- the nonmagnetic portion 131 is formed larger than the nonmagnetic portion 132 in the circumferential direction. Thereby, torque ripple can be reduced effectively.
- FIG. 4 is an enlarged view of one pole of the rotor 10 of the rotating electrical machine according to the second embodiment.
- the magnetic flux density on the rotation advance side of the rotor 10 is high, and providing the non-magnetic portion 130 on the rotation advance side has a great influence on the torque ripple.
- FIG. 5 shows the relationship between the torque ripple amplitude and the position indicated by the electrical angle from the d-axis of the rotation advance side end and the rotation delay side end of the nonmagnetic portion 130.
- the torque ripple amplitude 220 due to the rotation advance side end position of the nonmagnetic portion 130 is less than 12 ° from the d axis
- the torque ripple amplitude 230 due to the rotation delay side end position of the nonmagnetic portion 130 is greater than 38 ° from the d axis. It can be seen that the torque ripple amplitude 240 is exceeded when no portion is provided.
- the torque ripple can be effectively reduced by setting the circumferential position of the non-magnetic portion 130 within the range of 12 ° to 38 ° in electrical angle from the d-axis 110 in the rotational advance direction. is there.
- FIG. 7 is a view showing the rotor 11 of the rotating electrical machine according to the third embodiment.
- the rotor core 20 is configured by alternately stacking a plurality of steel plates 300 and steel plates 310.
- FIG. 8 is an enlarged view of one pole of the steel plate 300 constituting the rotor core 20 according to the third embodiment.
- FIG. 9 is an enlarged view of one pole of the steel plate 310 constituting the rotor core 20 according to the third embodiment.
- the steel plate 300 is formed such that the non-magnetic portion 133 is arranged on the rotational advance side with respect to the non-magnetic portion 134 of the steel plate 310.
- the steel plate 310 is formed such that the nonmagnetic portion 134 is disposed on the rotation delay side with respect to the nonmagnetic portion 133 of the steel plate 300.
- FIG. 8 and FIG. 9 are cross-sectional views in which FIG. 8 is provided with a slightly wider nonmagnetic portion 133 on the rotation advance side, and FIG. 9 is provided with a slightly narrow nonmagnetic portion 134 on the rotation delay side. It is sectional drawing. By alternately laminating them, the characteristics of the rotor core 20 can be obtained as an intermediate characteristic between the two cross sections.
- a desired order component can be reduced when the influence of harmonics other than the slot is superimposed on the torque due to the influence from the power source or the like.
- the number of sheets combined with the circumferential position of the non-magnetic portion is determined based on calculation and measurement according to desired characteristics, and the number of layers is not limited to one and may be a plurality of layers. Moreover, in order to ensure the holding strength of a permanent magnet, it is good also as a structure which does not provide a nonmagnetic part in some sheets of the laminated steel plate.
- Torque ripple amplitude due to rotation advance side end position of nonmagnetic portion 230 Torque ripple amplitude due to rotation delay side end position of nonmagnetic portion 240. Torque ripple amplitude when no magnetic part is provided 300 ... Steel plate 310 . Steel plate
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
高速回転における強度の悪化を抑えつつ、トルクリプルを低減した回転電機を提供することを課題とする。 本発明に係る回転電機の回転子は、永久磁石が挿入される空間を形成する磁石挿入孔と、前記空間に面しておりかつ前記磁石挿入孔の一部を形成する非磁性部と、を有する回転子鉄心を備え、前記非磁性部は、d軸に対して非対称に設けられる。
Description
本発明は回転子に界磁源となる永久磁石を有する回転電機の回転子及びそれを用いた回転電機に関する。
電気自動車やハイブリッド車等に搭載される回転電機には、トルクリプルの低減が要求されている。例えば特許文献1においては、トルクリプルを低減することを目的として、永久磁石と外周部との間に孔部が設けられた回転電機の固定子構造が開示されている。
しかしながら、特許文献1のように永久磁石と外周部との間に孔部を設けた場合、回転子外周と永久磁石との間の鉄心幅が極端に狭い個所ができることがあり、高速回転時の強度低下やトルク低下につながる可能性がある。
本発明の目的は、高速回転における強度の悪化を抑えつつ、トルクリプルを低減した回転電機を提供することにある。
上記課題を解決するため、本発明に係る回転電機の回転子は、永久磁石が挿入される空間を形成する磁石挿入孔と、前記空間に面しておりかつ前記磁石挿入孔の一部を形成する非磁性部と、を有する回転子鉄心を備え、前記非磁性部は、d軸に対して非対称に設けられる。
本発明ニよれば、高速回転における強度の悪化を抑えつつ、トルクリプルを低減することができる。上記した以外の課題、構成および効果は以下の実施形態の説明により明らかにされる。
以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
図10は、従来の回転電機100について主要部分を示す図である。図10は、回転電機100を径方向から見た図であり、回転軸(一点鎖線で図示される)に関して一方側のみ図示している。図11は、図10のA-A’断面における軸方向断面図である。図12に回転子鉄心20の外観図を示す。図13は従来の回転電機100について図11中の領域80における構成を示した拡大図である。
図10に示されるように、回転電機100は、回転子10と、回転子鉄心20と、固定子30と、固定子鉄心40と、電機子巻線50と、永久磁石60と、シャフト70と、を備える。
図11に示されるように固定子鉄心40には周方向に概ね等間隔に固定子スロット41が複数配置され、図10に示すように固定子スロット41内に固定子巻線50が巻き回されている。図12に示されるように、固定子鉄心40の内周側に同心に配置される回転子10と、前記回転子10に周方向に概ね等間隔に永久磁石60が複数配置されている。図13に示されるように、永久磁石60は回転子鉄心20に設けられた磁石挿入孔120に挿入されている。110は、d軸を示す。
なお、図14のように周方向に磁石挿入孔120が2分割され、永久磁石60が1極あたり周方向に2つ配置されて構成される場合もある。
以下の実施例では、回転子の1極分の領域80について示し、構成を説明する。他の極についても対称に構成することで本発明の効果を得ることができる。
また、以下の実施例において回転方向は図11と同様に反時計方向であるものとする。
図6は、実施形態1による回転電機の軸方向から見た断面を示す断面図である。図1は、実施形態1に係り、図6の領域80を拡大した拡大図である。
回転子10は、回転子鉄心20と、永久磁石60と、シャフト70(図10参照)とにより構成されている。回転子鉄心20は、複数の鋼板が積層されて構成される。複数の鋼板は、打ち抜きなどによって磁石挿入孔120がそれぞれ設けられている。永久磁石60は、この磁石挿入孔120に収納される。回転子10の外周側には図示しない固定子30が配置される(図10参照)。
回転子鉄心20には、磁石挿入孔120と連通した非磁性部130が設けてある。別の言い方をすると、非磁性部130は、磁石挿入孔120により形成される空間に面した位置に配置されかつ磁石挿入孔120の一部を形成する。
本実施形態では図6に示すように、回転子10の回転方向は反時計方向であり、この反時計方向は電動機として運転される方向であると定義する。図1に示すように非磁性部130の位置は、磁極の中心であるd軸110から回転方向進み側としてある。電動機が運転される場合、回転子10の回転進み側の磁束密度が高く、非磁性部130を回転進み側に設けることにより、トルクリプルに及ぼす影響が大きい。
非磁性部130は磁石挿入孔120と連通しており、鋼板から打ち抜く際に一体で形成することで製造性を低下させることなく設けることが可能である。
非磁性部130を磁石挿入孔120と連通して設けることにより、外周部での空気抵抗による損失増加はなく、潤滑や冷却のために油に浸漬される場合においても撹拌による損失が増加することはない。
また、回転子鉄心20の外周と永久磁石60との間には鉄心幅が極端に狭い個所を作らず非磁性部130を設けてあり、高速回転における強度が確保されるとともに、磁束を妨げることもないためトルクの低下を避けることができる。
図2はトルクリプル波形の計算結果である。非磁性部130を設けない場合の波形200に対して、非磁性部130を設けた場合の波形210の振幅は小さくなり、トルクリプルが低減されている。一方、両者のトルクの平均値はほとんど変わらない。トルクリプルの要因は、図6に示される固定子スロット41による磁気抵抗の変化であるが、本実施形態のように磁石挿入孔120と連通した非磁性部を設けたことにより、磁気抵抗の急峻な変化が緩和され、図2に見られるように、トルクの平均値を維持しながらトルクリプルを低減することができる。
図3は、実施形態1による回転電機の変形例について回転子1極分を拡大した拡大図である。磁石挿入孔は、周方向であってd軸110の境に、第1磁石挿入孔120aと第2磁石挿入孔120bに2分割されている。そして、第1永久磁石60aが第1磁石挿入孔120aに収納され、第2永久磁石60bが第2磁石挿入孔120bに収納される。
非磁性部131は、回転方向進み側である第1磁石挿入孔120aに連通した状態で形成される。非磁性部132は、回転方向遅れ側である第2磁石挿入孔120bに連通した状態で形成される。非磁性部131は、周方向において、非磁性部132よりも大きく形成される。これにより、効果的にトルクリプルを低減することができる。
なお非磁性部130ないし132が配置される場所には、磁石挿入孔120と連通していることから、永久磁石60を保持するために、樹脂等を充填してもよい。
図4は、実施形態2による回転電機の回転子10の1極分を拡大した図である。
本実施形態では回転方向は反時計方向、つまり電動機として運転される方向を想定し、非磁性部130の周方向位置を磁極の中心であるd軸110から回転進み方向へ電気角でφ1=12°からφ2=38°の範囲内としている。電動機運転される場合、回転子10の回転進み側の磁束密度が高く、非磁性部130を回転進み側に設けることにより、トルクリプルに及ぼす影響が大きい。
図5に非磁性部130の回転進み側端と回転遅れ側端のd軸からの電気角で示した位置とトルクリプル振幅の関係を示した。非磁性部130の回転進み側端位置によるトルクリプル振幅220ではd軸から12°未満で、非磁性部130の回転遅れ側端位置によるトルクリプル振幅230はd軸から38°よりも大きくなるとそれぞれ非磁性部を設けない場合のトルクリプル振幅240を上回ることが分かる。
本実施の形態では、非磁性部130の周方向位置をd軸110から回転進み方向へ電気角で12°から38°の範囲内にしたことにより、効果的にトルクリプルを低減することが可能である。
図7は、実施形態3による回転電機の回転子11を示す図である。図7に示すように回転子鉄心20は、鋼板300と鋼板310を交互に複数積層して構成される。
図8は、実施形態3に係り、回転子鉄心20を構成する鋼板300について1極分の拡大図を示したものである。図9は、実施形態3に係り、回転子鉄心20を構成する鋼板310について1極分の拡大図を示したものである。
鋼板300は、非磁性部133が鋼板310の非磁性部134よりも回転進み側に配置されるように形成される。鋼板310は、非磁性部134が鋼板300の非磁性部133よりも回転遅れ側に配置されるように形成される。
図8と図9を比較すると、図8が回転進み側へやや幅の広い非磁性部133を設けた断面図であり、図9は回転遅れ側へやや幅の狭い非磁性部134を設けた断面図である。これらを交互に積層することで、回転子鉄心20の特性としては両断面の中間的な特性を得ることができる。
本実施形態によれば、電源からの影響などによりトルクにスロット以外の高調波の影響が重畳している場合に所望の次数成分を低減させることができる。
なお、非磁性部の周方向位置と組み合わせる枚数は所望の特性に合わせて計算、測定に基づいて決め、積層も1枚ごとに限らず複数枚ごとの積層としてもよい。また、永久磁石の保持強度を確保するために、積層する鋼板の何枚かを非磁性部を設けない構成としてもよい。
10…回転子
20…回転子鉄心
30…固定子
40…固定子鉄心
41…固定子スロット
50…電機子巻線
60…永久磁石
60a…第1永久磁石
60b…第2永久磁石
70…シャフト
80…領域
100…回転電機
110…d軸
120…磁石挿入孔
120a…第1磁石挿入孔
120b…第2磁石挿入孔
130…非磁性部
131…非磁性部
132…非磁性部
200…非磁性部130を設けない場合のトルク波形
210…非磁性部130を設けた場合のトルク波形
220…非磁性部の回転進み側端位置によるトルクリプル振幅
230…非磁性部の回転遅れ側端位置によるトルクリプル振幅
240…非磁性部を設けない場合のトルクリプル振幅
300…鋼板
310…鋼板
20…回転子鉄心
30…固定子
40…固定子鉄心
41…固定子スロット
50…電機子巻線
60…永久磁石
60a…第1永久磁石
60b…第2永久磁石
70…シャフト
80…領域
100…回転電機
110…d軸
120…磁石挿入孔
120a…第1磁石挿入孔
120b…第2磁石挿入孔
130…非磁性部
131…非磁性部
132…非磁性部
200…非磁性部130を設けない場合のトルク波形
210…非磁性部130を設けた場合のトルク波形
220…非磁性部の回転進み側端位置によるトルクリプル振幅
230…非磁性部の回転遅れ側端位置によるトルクリプル振幅
240…非磁性部を設けない場合のトルクリプル振幅
300…鋼板
310…鋼板
Claims (6)
- 永久磁石が挿入される空間を形成する磁石挿入孔と、前記空間に面しておりかつ前記磁石挿入孔の一部を形成する非磁性部と、を有する回転子鉄心を備え、
前記非磁性部は、d軸に対して非対称に設けられる回転電機の回転子。 - 請求項1に記載の回転電機の回転子であって、
前記非磁性部が、前記d軸中心から電気角で12度乃至38度の位置に設けられる回転電機の回転子。 - 請求項1に記載の回転電機の回転子であって、
前記d軸は、前記磁石挿入孔の中央部を通る回転電機の回転子。 - 請求項1に記載の回転電機の回転子であって、
前記磁石挿入孔は、第1永久磁石が挿入される第1空間を形成する第1磁石挿入孔と、第2永久磁石が挿入される第2空間を形成する第2磁石挿入孔と、により構成され、
前記非磁性部は、前記第1空間に面しておりかつ前記第1磁石挿入孔の一部を形成する第1非磁性部と、前記第2空間に面しておりかつ前記第2磁石挿入孔の一部を形成する第2非磁性部と、により構成され、
前記第1非磁性部は、前記d軸に対して前記第2非磁性部よりも周方向に大きく形成される回転電機の回転子。 - 請求項1乃至4に記載のいずかの回転電機の回転子において、
前記回転子鉄心は、前記非磁性部の位置が異なる鋼板を交互に積層して構成される回転電機の回転子。 - 請求項1乃至6に記載のいずれかの回転子と、
前記回転子の外周側に空隙を介して設けられた固定子と、を備えた回転電機。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/528,986 US10530207B2 (en) | 2014-11-28 | 2015-11-11 | Rotor of rotary electric machine and rotary electric machine using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014240727A JP6382085B2 (ja) | 2014-11-28 | 2014-11-28 | 回転電機の回転子及びそれを用いた回転電機 |
JP2014-240727 | 2014-11-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016084602A1 true WO2016084602A1 (ja) | 2016-06-02 |
Family
ID=56074171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/081675 WO2016084602A1 (ja) | 2014-11-28 | 2015-11-11 | 回転電機の回転子及びそれを用いた回転電機 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10530207B2 (ja) |
JP (1) | JP6382085B2 (ja) |
WO (1) | WO2016084602A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7308441B2 (ja) | 2019-02-07 | 2023-07-14 | パナソニックIpマネジメント株式会社 | 電動工具 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004215395A (ja) * | 2002-12-27 | 2004-07-29 | Koyo Seiko Co Ltd | ロータ及びモータ |
JP2008029095A (ja) * | 2006-07-20 | 2008-02-07 | Hitachi Industrial Equipment Systems Co Ltd | 永久磁石式回転電機及びそれを用いた圧縮機 |
JP2011004480A (ja) * | 2009-06-17 | 2011-01-06 | Meidensha Corp | 永久磁石埋込式回転電機 |
JP2011083047A (ja) * | 2009-10-02 | 2011-04-21 | Asmo Co Ltd | 回転電動機 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7262526B2 (en) * | 2002-06-20 | 2007-08-28 | Kabushiki Kaisha Toshiba | Rotor for permanent magnet motor of outer rotor type |
JP4599088B2 (ja) * | 2004-05-13 | 2010-12-15 | 東芝コンシューマエレクトロニクス・ホールディングス株式会社 | 回転電機の回転子及びその製造方法 |
DE102006006882A1 (de) * | 2005-11-21 | 2007-05-24 | Robert Bosch Gmbh | Elektromaschine und Rotor für eine Elektromaschine |
JP5288724B2 (ja) | 2007-04-26 | 2013-09-11 | 東芝産業機器製造株式会社 | 回転電機の回転子及び回転電機 |
KR100919403B1 (ko) * | 2007-05-17 | 2009-09-29 | 삼성전자주식회사 | 모터 |
US7847461B2 (en) * | 2007-06-06 | 2010-12-07 | Gm Global Technology Operations, Inc. | Multi-layer magnet arrangement in a permanent magnet machine for a motorized vehicle |
US7800272B2 (en) * | 2007-11-28 | 2010-09-21 | Asmo Co., Ltd. | Embedded magnet motor and manufacturing method of the same |
US8405342B2 (en) * | 2009-10-02 | 2013-03-26 | Asmo Co., Ltd. | Motor |
EP2549624B1 (en) * | 2011-07-22 | 2019-05-01 | LG Innotek Co., Ltd. | Rotor core for motor |
-
2014
- 2014-11-28 JP JP2014240727A patent/JP6382085B2/ja active Active
-
2015
- 2015-11-11 US US15/528,986 patent/US10530207B2/en active Active
- 2015-11-11 WO PCT/JP2015/081675 patent/WO2016084602A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004215395A (ja) * | 2002-12-27 | 2004-07-29 | Koyo Seiko Co Ltd | ロータ及びモータ |
JP2008029095A (ja) * | 2006-07-20 | 2008-02-07 | Hitachi Industrial Equipment Systems Co Ltd | 永久磁石式回転電機及びそれを用いた圧縮機 |
JP2011004480A (ja) * | 2009-06-17 | 2011-01-06 | Meidensha Corp | 永久磁石埋込式回転電機 |
JP2011083047A (ja) * | 2009-10-02 | 2011-04-21 | Asmo Co Ltd | 回転電動機 |
Also Published As
Publication number | Publication date |
---|---|
US20170346355A1 (en) | 2017-11-30 |
JP6382085B2 (ja) | 2018-08-29 |
JP2016103898A (ja) | 2016-06-02 |
US10530207B2 (en) | 2020-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103872868B (zh) | 多间隙式旋转电机 | |
US8487495B2 (en) | Rotor for motor | |
US9716411B2 (en) | Permanent-magnet-type rotating electric mechanism | |
US9893577B2 (en) | Motor including permanent magnet rotor with flux barrier | |
WO2014038062A1 (ja) | 永久磁石埋込型電動機 | |
WO2015156353A1 (ja) | 同期リラクタンス型回転電機 | |
MX2013001030A (es) | Rotor para motor electrico. | |
JP2008278553A (ja) | 回転電機の回転子及び回転電機 | |
WO2018190103A1 (ja) | 回転電機の回転子 | |
WO2016080284A1 (ja) | 誘導電動機 | |
US10680475B2 (en) | Rotor for rotary electric machine | |
JP5073692B2 (ja) | 回転電機 | |
JP5365074B2 (ja) | アキシャルギャップ型回転電機 | |
WO2018066647A1 (ja) | 同期リラクタンス型回転電機 | |
US20130207501A1 (en) | Rotary electric machine | |
JP6507956B2 (ja) | 永久磁石式回転電機 | |
JP2009044893A (ja) | 回転子及び回転電機 | |
JP2010200480A (ja) | 埋め込み磁石式モータ | |
JP6382085B2 (ja) | 回転電機の回転子及びそれを用いた回転電機 | |
JP6357859B2 (ja) | 永久磁石埋め込み式回転電機 | |
JP6573654B2 (ja) | 回転電機のロータ | |
WO2018123830A1 (ja) | 回転電機 | |
JP6357870B2 (ja) | 永久磁石式電動機 | |
JP6929603B2 (ja) | 回転機 | |
JP2011193627A (ja) | 回転子鉄心および回転電機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15862344 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15528986 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15862344 Country of ref document: EP Kind code of ref document: A1 |