WO2016084407A1 - Sorting device - Google Patents

Sorting device Download PDF

Info

Publication number
WO2016084407A1
WO2016084407A1 PCT/JP2015/064561 JP2015064561W WO2016084407A1 WO 2016084407 A1 WO2016084407 A1 WO 2016084407A1 JP 2015064561 W JP2015064561 W JP 2015064561W WO 2016084407 A1 WO2016084407 A1 WO 2016084407A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
chips
wafer
wafer sheet
rank
Prior art date
Application number
PCT/JP2015/064561
Other languages
French (fr)
Japanese (ja)
Inventor
日出夫 南
Original Assignee
上野精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上野精機株式会社 filed Critical 上野精機株式会社
Publication of WO2016084407A1 publication Critical patent/WO2016084407A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • the present invention relates to a classification apparatus that selectively picks up individual chips from a wafer attached to a wafer sheet.
  • the wafer sticking step is a step of sticking the wafer before being cut into individual pieces to a wafer sheet having adhesiveness on the surface and sticking it to the ring.
  • the dicing process is a process of dividing the wafer attached to the wafer sheet into individual semiconductor elements by cutting. Such individual semiconductor elements are hereinafter referred to as chips.
  • Each chip included in the wafer is subjected to a probe inspection in which electrical characteristics are inspected by a stylus in advance, and the control device holds information regarding the non-defective and defective products of each chip and the position thereof. ing. Information obtained by such probe inspection is called map data.
  • an appearance inspection based on an image captured by an imaging unit such as a camera may be performed.
  • an appearance inspection is performed in addition to the probe inspection, a combination of the probe inspection result and the appearance inspection result may be referred to as map data.
  • the pick-up device picks up only non-defective chips and performs the attaching process, mounting process or taping process.
  • the pasting step is a step of pasting non-defective chips picked up by the pick-up device to the stretched wafer sheet by the pasting device in order to manage and ship in units of wafer sheets.
  • the mounting process is a process of picking up individual chips in order and bonding them to a lead frame or a substrate.
  • the taping step is a step of sticking the picked-up chip to the tape.
  • the wafer sheet from which the non-defective chip is picked up is stretched so as to be easily picked up. Further, the wafer sheet to which the non-defective chip is attached is also stretched so as to be easily attached. Such stretching is called expanding.
  • the affixing device affixes chips to the expanded wafer sheet at regular intervals.
  • an apparatus for performing such replacement is provided with one unit for holding a wafer sheet, one on the pickup side and one on the attachment side. That is, there is a one-to-one relationship between the wafer sheet on the pickup side and the attachment side.
  • An apparatus has also been proposed in which processing is speeded up by attaching chips to a plurality of wafer sheets in parallel. However, in this case as well, a plurality of one-to-one pairs on the pickup side and the pasting side are provided.
  • the inspection result of each chip includes rank information indicating the degree of quality, not just two types of information, that is, non-defective or defective.
  • rank information indicating the degree of quality, not just two types of information, that is, non-defective or defective.
  • the wafer sheet needs to be expanded for pick-up and pasting. Since expansion and contraction are repeated for replacement, it is preferable to reduce the number of replacements from the viewpoint of pick-up and pasting accuracy. In particular, it is desirable not to replace the wafer sheet on the pasting side until the wafer sheet is full in order to prevent misalignment due to expansion and contraction. For this reason, when the pickup side and the pasting side are one-to-one devices, the pick-up side picks up chips with different ranks, exchanges them before the pasting side is full, and collects chips with different ranks for each wafer sheet. I could n’t.
  • the present invention has been proposed in order to solve the above-described problems of the prior art, and the purpose thereof is to classify the two rank chips into two wafer sheets and efficiently place them in an accurate position. It is to provide a classification device to be pasted.
  • the classification device of the present invention has the following configuration. (1) A wafer in which chips having different ranks indicating the degree of quality are mixed is affixed and a wafer sheet in which the chips are separated into pieces by dicing is supported, and the wafer sheet supported by the support apparatus is extended.
  • a pickup device that selectively picks up the chips separated by the rank based on the rank, a transfer device that transfers the chips picked up by the pickup device in a transfer path of a circular orbit, and the transfer device
  • a measuring device that measures the posture deviation of the chip to be corrected, a correction device that is disposed in the vicinity of the conveyance path and corrects the posture of the chip based on the posture deviation measured by the measurement device; and
  • 1 A first collecting device that supports a wafer sheet to which a chip of a rank of affixed is attached, and a chip that is disposed downstream of the first collecting device in the vicinity of the transfer path and whose posture is corrected by the correcting device
  • the second collection device that supports the wafer sheet to which the other one type of chip is attached, and the chips conveyed by the conveyance device are the wafer sheet of the first collection device and the second collection device.
  • the wafer sheet of the collecting device is attached to the wafer sheet in a corresponding rank and the wafer sheet of the support device is picked up after all of the two rank chips are picked up from the wafer sheet of the support device.
  • an exchange device for sequentially exchanging the wafer sheets before picking up.
  • the two types of ranks may be the two types of ranks having the largest number in the number distribution of chips in the same wafer by rank.
  • the transport device transports the chip in an intermittent operation with a predetermined pitch, and the sticking device is in the intermittent operation in a state where the number of the specific one rank and the other one rank is the same.
  • a chip may be attached to either the wafer sheet of the first collection device or the wafer sheet of the second collection device.
  • the pickup device and the sticking device are holding devices that hold a tip at a tip
  • the transport device includes a rotating body that rotates intermittently at a predetermined pitch
  • a plurality of the holding devices are configured to rotate the rotation device.
  • the plurality of holding devices provided on the body may be arranged at positions where tips are aligned at equal intervals corresponding to the predetermined pitch on the transport path.
  • a holding device that comes to a position corresponding to the first collecting device and a holding device that comes to a position corresponding to the second collecting device simultaneously hold chips of the same rank in the pickup. Also good.
  • a coordinate detection unit that detects position coordinates of a wafer sheet of the first collection device and a chip attached to the wafer sheet of the second collection device, the first collection device, and the second collection device
  • the collection device may adjust the chip attachment position based on the coordinates of the attached chip detected by the coordinate detection unit.
  • the measurement device includes a pre-measurement unit that measures a posture deviation of the chip upstream of the correction device in the transport path and a post-measurement unit that measures a posture shift of the chip downstream of the correction device in the transport path.
  • the correction device corrects the posture of the chip based on the posture deviation measured by the pre-measurement unit, and the first collection device and the second collection device are configured to perform the post-measurement.
  • the posture of the chip may be corrected based on the posture deviation measured by the unit.
  • An imaging unit that captures an image of a chip divided into individual pieces while moving relative to the wafer sheet based on coordinate data by extending the wafer sheet supported by the support device; Based on the image data captured by the unit, a reference chip with a specific mark is found among the chips in the wafer, and the coordinate data of the reference chip is determined based on the coordinate data for the relative movement of the imaging unit.
  • Identify the coordinate data of each chip based on the data and the coordinate data for relative movement of the imaging unit A scanning unit that performs a scanning process, and the pickup device moves relative to the wafer sheet based on the coordinate data of each chip specified by the scanning unit and the rank information of each chip.
  • the chip may be selectively picked up.
  • the posture of the chip is corrected by the correction device after the pickup and before the attachment, and the two rank chips are attached to the wafer sheet of the first collection device and the wafer sheet of the second collection device. Therefore, two different ranks of chips can be accurately attached in parallel to the two wafer sheets without exchanging the wafer sheet on the attachment side. Further, by exchanging the wafer sheet on the pickup side until one of the two wafer sheets is full, it is not necessary to replace the two wafer sheets during the pasting.
  • the simplified top view which shows the structure of the classification device used for 1st Embodiment
  • the side view which shows the support apparatus in embodiment
  • the top view which shows the structure of the ring in embodiment, and the wafer sheet affixed on this Simplified side view showing an autoloader in an embodiment
  • a side view (a) and a top view (b) of a correction device in an embodiment are shown.
  • a side view showing the 1st collection device and the 2nd collection device in an embodiment The block diagram which shows the structure of the control apparatus in embodiment
  • the flowchart which shows the whole process of embodiment Explanatory drawing which shows the whole process of embodiment A flowchart showing batch scan processing of an embodiment Explanatory drawing which shows the positioning process to the target chip
  • Explanatory diagram showing the number distribution of chips by rank Explanatory drawing which shows the order of the rank of the chip which a holding device picks up and affixes
  • This embodiment is a classification device that classifies chips picked up from wafer sheets and ranks them on two wafer sheets.
  • This embodiment can also be regarded as a transfer device for transferring chips from a wafer sheet to a wafer sheet.
  • the chip applied to the present embodiment is a component used for an electrical product, and examples thereof include a semiconductor element and a resistor or capacitor other than the semiconductor element. Examples of the semiconductor element include discrete semiconductors such as transistors, diodes, LEDs, capacitors, and thyristors, and integrated circuits such as ICs and LSIs.
  • map data includes chip discrimination information and chip position information.
  • the chip distinction information is information that distinguishes the chips according to a predetermined standard.
  • This distinction information includes rank information obtained by classifying chips in accordance with the degree of quality of the chips obtained by a quality inspection performed in advance in the previous process. This rank is divided into a plurality of grades.
  • the quality inspection includes at least one of a probe inspection and an appearance inspection.
  • the discrimination information includes information for discriminating between a chip to be a product (product chip) and other chips.
  • the distinction information of the present embodiment includes information indicating that it is a reference chip.
  • the reference chip is a chip with a mark (reference mark) that can be identified from the appearance in order to be a reference for the position of the product chip on the wafer.
  • the reference chip should just be provided with the aspect which can be identified from an external appearance.
  • the chip position information is relative position information in the row direction and the column direction of each chip viewed from the reference point on the wafer.
  • the map data includes information indicating which row and column each chip hits, information indicating which rank of A to D, etc. if it is a product chip, and a reference chip. It can be expressed as raster data consisting of the indicated information.
  • each reference chip guarantees the position of the chip on the wafer. That is, the entire area of the wafer is divided into a plurality of guaranteed areas, and a reference chip is set for each guaranteed area.
  • the position of each reference chip can be used as a reference for the position of the chip in the guaranteed area to which each reference chip belongs.
  • the coordinate data is position information of each chip when a wafer sheet is set in the apparatus.
  • an imaging unit, a pickup device, etc. which will be described later, are positioned based on this coordinate data.
  • the imaging unit and the pickup device may be moved relative to the wafer.
  • this relative movement is realized by moving a ring moving mechanism in which a wafer ring to which a wafer sheet is attached is set.
  • the coordinate data can be acquired as coordinate values (x, y, ⁇ ) of encoder information of the ring moving mechanism described later.
  • the classification device 1 includes a support device 100, an autoloader 5A, a holding device 200, a transport device 300, a measurement device 400, a correction device 500, a first collection device 600, an autoloader 5B, and a second device.
  • the support device 100 is a device that supports a wafer sheet Da to which a wafer W in which chips S having different ranks indicating quality levels are mixed is attached and the chips S are separated into individual pieces by dicing. As shown in FIG. 2, the support device 100 includes a ring moving mechanism 2A, an expanding mechanism 3A, and a separating mechanism 4A.
  • the ring moving mechanism 2A is a device that moves the wafer ring Ra mounted on the ring holder 21 in a predetermined direction.
  • the wafer ring Ra is a plate-like member that holds and holds the wafer sheet Da so that a circular hole formed inside is covered as shown in FIG.
  • a wafer W is attached to the wafer sheet Da.
  • the wafer W is cut into a plurality of chips S by dicing.
  • the ring moving mechanism 2A is provided so that the ring holder 21 can be positioned in the X-axis direction and the Y-axis direction along a guide rail (not shown).
  • the ring moving mechanism 2A is provided so that the ring holder 21 can be positioned in the ⁇ direction by a belt, a pulley, and the like that transmit a driving force of a motor (not shown).
  • the expanding mechanism 3A is a mechanism that creates a gap between the individual chips S by extending the wafer sheet Da.
  • the expanding mechanism 3 ⁇ / b> A has a cylindrical tensile portion 31.
  • the tension portion 31 is configured to stretch the wafer sheet Da as follows. First, one end of the cylinder of the tension portion 31 is pressed against the opposite side of the wafer W on the wafer sheet Da from the back of the wafer ring Ra.
  • the pulling portion 31 moves so as to protrude to the front side of the wafer ring Ra with the wafer sheet Da interposed between the outer periphery thereof and the inner periphery of the circular hole of the wafer ring Ra.
  • the wafer sheet Da is stretched by a force in a direction from the inside to the outside of the circle surrounding the wafer W.
  • the tension portion 31 is provided so as to be able to advance and retreat by a cylinder or the like (not shown).
  • the separation mechanism 4A is a device that separates the chips S from the wafer sheet Da.
  • the separation mechanism 4A has pins 41a facing the chip S with the wafer sheet Da interposed therebetween. This pin 41a is provided so as to be movable in a direction in which the tip S that has come to the opposite position is pressed via the wafer sheet Da by the tip as the ring moving mechanism 2A moves.
  • the autoloader 5 ⁇ / b> A is an exchange device that exchanges the wafer sheet Da in the support device 100.
  • the autoloader 5A after all the two types of chips S are picked up from the wafer sheet Da, the picked-up wafer sheet Da is used as the wafer sheet Da from which the two types of chips S are not picked up. Replace sequentially.
  • the autoloader 5A stores a plurality of wafer rings Ra holding the wafer sheet Da to which the wafer W is attached in a cassette, and attaches and removes the wafer ring Ra to and from the ring moving mechanism 2A.
  • the autoloader 5A includes, for example, a housing part 110 and a ring transport mechanism 120 as shown in FIG.
  • the accommodating part 110 is an apparatus that accommodates a plurality of wafer rings Ra.
  • the accommodating part 110 is arrange
  • the accommodating part 110 has the supply magazine 111 and the raising / lowering apparatus which is not shown in figure.
  • the supply magazine 111 stores a plurality of horizontal wafer rings Ra stacked between a pair of side walls.
  • the plurality of wafer rings Ra are supported at intervals in the vertical direction by guides provided on the side walls.
  • the lifting device is a mechanism that lifts and lowers the supply magazine 111.
  • it can be constituted by a vertical ball screw rotated by a drive source, a vertical guide rail, or the like.
  • the storage position of the wafer ring Ra at a desired level is positioned at the loading / unloading position by the lifting device.
  • the number of wafer rings Ra that can be stored in the supply magazine 111 can be about 10 to 20, but is not limited to a specific number.
  • the ring transport mechanism 120 is a device that takes out the wafer ring Ra accommodated in the accommodating portion 110, transfers it to the ring moving mechanism 2A, receives the wafer ring Ra from the ring moving mechanism 2A, and returns it to the accommodating portion 110. As shown in FIG. 4, the ring transport mechanism 120 moves the wafer ring Ra in and out of the supply magazine 111 at the loading / unloading position of the storage unit 110.
  • the ring transport mechanism 120 slides and removes the wafer ring Ra from the supply magazine 111 and accommodates the wafer ring Ra in the supply magazine 111 by sliding it horizontally. Further, the ring transport mechanism 120 supplies the wafer ring Ra to the link moving mechanism 2A by vertically inserting the wafer ring Ra into the opening from below, and takes out the wafer ring Ra from the ring moving mechanism 2A by vertically sliding the wafer ring Ra.
  • the ring transport mechanism 120 has a clamp 121 and a fork 122.
  • a pair of clamps 121 are provided corresponding to two opposite edges of the wafer ring Ra.
  • the fork 122 is a member provided on each clamp 121 and having two teeth arranged in parallel. The clamp 121 clamps and releases the wafer ring Ra by moving the fork 122 closer to and away from the fork 122.
  • the ring transport mechanism 120 has a rotation mechanism that displaces the clamp 121 between a horizontal direction facing the supply magazine 111 and a vertical position facing the ring moving mechanism 2A.
  • the ring transport mechanism 120 includes an advance / retreat mechanism that advances and retracts the clamp 121 toward the supply magazine 111 and advances and retracts toward the ring moving mechanism 2A.
  • the holding device 200 is a device that holds the chip S at the tip.
  • the holding device 200 is a pickup device that selectively picks up the chips S divided into individual pieces based on the ranks when the wafer sheet supported by the support device 100 is stretched.
  • the holding device 200 attaches the chips S transferred by the transfer device 300 to the wafer sheet Db of the first collection device 600 and the wafer sheet Dc of the second collection device 700, which will be described later, in a rank.
  • Device That is, the holding device 200 is a device having functions of both a pickup device and a sticking device.
  • the holding device 200 has a suction nozzle 210, for example.
  • the suction nozzle 210 is a hollow cylinder having an opening at the tip of the nozzle, the tip of the nozzle is directed outward in the radial direction of the table, and the inside of the nozzle communicates with a pneumatic circuit of a vacuum generator via a tube.
  • the suction nozzle 210 sucks the chip S by generating a negative pressure by a vacuum generator, and detaches the chip S by generating a vacuum or generating a positive pressure.
  • the holding device 200 includes imaging units 60a, 60b, and 60c as shown in FIGS.
  • the imaging unit 60a is a mechanism that captures images of the wafer sheet Da and the chip S of the support device 100 as illustrated in FIG.
  • the imaging unit 60a includes a camera 61a and an optical system member 62a.
  • the camera 61a is an apparatus that images the chip S on the wafer sheet Da and outputs image data.
  • the optical system member 62a is a prism that changes the direction of the optical axis so that an image of one surface of the chip S on the wafer sheet Da is guided to the camera 61a.
  • the imaging unit 60b is a mechanism that captures images of the wafer sheet Db and the chip S of the first collection device 600, which will be described later, as shown in FIG.
  • the imaging unit 60b includes a camera 61b and an optical system member 62b.
  • the camera 61b is a device that images the chip S on the wafer sheet Db and outputs image data.
  • the optical system member 62b is a prism that changes the direction of the optical axis so as to guide the image of the wafer sheet Db to the camera 61b.
  • the imaging unit 60c is a mechanism that captures images of the wafer sheet Dc and the chip S of the second collection device 700 described later, as shown in FIG.
  • the imaging unit 60c includes a camera 61c and an optical system member 62c.
  • the camera 61c is a device that images the chip S on the wafer sheet Dc and outputs image data.
  • the optical system member 62c is a prism that changes the direction of the optical axis so as to guide the image of the wafer sheet Dc to the camera 61c.
  • the transport device 300 is a device that transports the chip S picked up by the holding device 200 on a transport path T of a circular orbit.
  • the transport apparatus 300 includes a rotating body 310.
  • the rotating body 310 is a member that intermittently rotates at a predetermined pitch.
  • the rotating body 310 has a shape such as a disk or a star that expands radially around one point.
  • the rotating body 310 is arranged in the horizontal direction, and the radiation center is supported by a rotating shaft of a motor (not shown). This motor is controlled to rotate the rotating body 310 intermittently.
  • a plurality of holding devices 200 are provided on the rotating body 310.
  • the holding device 200 is disposed at a position where the tips are aligned on the transport path T at regular intervals corresponding to a predetermined pitch.
  • a plurality of holding devices 200 are provided at the same distance from the circumferentially spaced position formed by the rotation of the rotating body 310 and the radial center of the rotating body 310.
  • the tips of the plurality of holding devices 200 protrude outward and are arranged at equal intervals on a circular orbit conveyance path T that follows as the rotating body 310 rotates.
  • the conveyance path T is a circular orbit followed by the tip of the holding device 200 that intermittently rotates with the rotating body 310 by a predetermined angle. That is, the chip S moves along the circular orbit by rotating the rotating body 310 while holding the chip S by the holding device 200.
  • the pitch of the intermittent rotation of the rotating body 310 is equal to the arrangement interval of the holding device 200.
  • the plurality of holding devices 200 follow a common movement track and sequentially stop at a common stop position.
  • the rotating body 310 and the holding device 200 as described above are configured as a rotary pickup.
  • the holding device 200 can advance and retract along the radial direction of the rotating body 310, in other words, along a line extending outward from the center of the rotating body 310.
  • an advance / retreat drive device (not shown) that gives a propelling force to advance and retreat with respect to the holding device 200 is arranged at several stop points of the holding device 200. Some stop points are the pickup point K shown in FIG. 2 and the pasting points N1 and N2 shown in FIG.
  • the holding device 200 stopped at the pickup point K faces the surface of the wafer sheet Da of the first support device 100 so that the advancing and retreating directions are orthogonal to each other. Then, the tip S positioned at the tip of the holding device 200 by the ring moving mechanism 2 ⁇ / b> A and pushed out by the separation mechanism 4 ⁇ / b> A becomes the suction target of the suction nozzle 210.
  • the holding device 200 stopped at the pasting points N1 and N2 is opposed to the surfaces of wafer sheets Db and Dc, which will be described later, so that the advancing and retreating directions are perpendicular to each other. And the location of wafer sheet Db, Dc positioned at the front-end
  • the measuring device 400 is a device that measures the posture deviation of the chip S conveyed by the conveying device 300. As illustrated in FIG. 1, the measurement device 400 includes a front measurement unit 40A and a rear measurement unit 40B.
  • the pre-measurement unit 40A is a component that measures the positional deviation of the chip S upstream of the correction device 500 in the transport path T.
  • the post-measurement unit 40B is a component that measures the posture deviation of the chip S downstream of the correction device 500 in the transport path T.
  • the upstream is the side that passes first in the conveying direction of the chip S indicated by the arrow in FIG. 1, and the downstream is the side that passes later.
  • the pre-measurement unit 40A and the post-measurement unit 40B take an image of the chip S held by the holding device 200, and perform image processing to generate a position shift of the chip S, that is, a position shift represented by the XY axis direction and a direction shift represented by the ⁇ axis rotation. To detect. That is, the pre-measurement unit 40A and the post-measurement unit 40B include an imaging device that captures an image of the chip S and an arithmetic device that detects an orientation shift of the chip S by image processing.
  • the posture includes a position and a direction.
  • the attitude shift is a positional shift and a direction shift from the holding reference point in the holding device 200.
  • the reference point is, for example, the center point of the suction region of the suction nozzle 210.
  • the XY axis direction refers to the direction in which the suction surface of the chip S expands.
  • the detection result of the measuring device 400 is output as information indicating the amount of positional deviation of the chip S in the X-axis direction, the amount of positional deviation in the Y-axis direction, and the amount of positional deviation in the ⁇ -axis direction.
  • a direction orthogonal to the suction surface of the chip S is referred to as a Z-axis direction.
  • the holding device 200 that moves forward and backward in the radial direction of the rotating body 310 moves the tip S forward and backward in the Z-axis direction.
  • the pre-measurement unit 40A performs the above measurement at the stop position on the upstream side of the correction device 500 in the transport path T before correction by the correction device 500.
  • the post-measurement unit 40B performs the above measurement on the downstream side of the correction device 500 in the transport path T, after correction by the correction device 500, and before collection by the first collection device 600 and the second collection device 700.
  • the correction device 500 is a device that is disposed in the vicinity of the transport path T and corrects the posture of the chip S based on the posture deviation measured by the measurement device 400.
  • the correction device 500 refers to the information on the positional deviation amount and the direction deviation amount, and moves the chip S in the XY-axis direction and rotates it around the ⁇ axis so as to eliminate the positional deviation of the chip S. Thus, the posture of the chip S is corrected.
  • FIG. 5 shows a detailed configuration of the correction device 500.
  • 5A is a side view and FIG. 5B is a plan view.
  • the correction device 500 includes a collet 51 and a gantry 52 provided on the base B.
  • the base B is set up in the vertical direction on the classification device 1.
  • the gantry 52 is equipped with a Z-axis moving mechanism 55 that moves the collet 51 in the Z-axis direction.
  • the collet 51 is mounted on the gantry 52 via the Z-axis moving mechanism 55.
  • the gantry 52 includes an X-axis moving mechanism 53 and a Y-axis moving mechanism 54 configured by sliders that slide on the rail, and is movable in the X-axis and Y-axis directions. Further, the gantry 52 is equipped with a ⁇ -axis rotating mechanism 56 that rotates the collet 51 around the ⁇ -axis by a belt drive.
  • the collet 51 is a substantially cone formed of rubber or metal.
  • the vertex of the collet 51 is a flat surface.
  • the chip S is placed on the flat surface of the collet 51.
  • the collet 51 is formed with an internal passage leading to a flat surface, and the internal passage communicates with a pneumatic circuit of a negative pressure generating device such as a vacuum pump or an ejector. By generating a negative pressure in the pneumatic circuit, the collet 51 holds the chip S on a flat surface, and detaches the chip S by a vacuum break or air release.
  • the Z-axis moving mechanism 55 includes a cam mechanism 6, a voice coil motor 7, and compression springs 8 and 55b.
  • the cam mechanism 6 moves the support frame 55a movable in the Z-axis direction in the Z-axis direction by urging the cam follower 6a fixed thereto according to the rotation of the cylindrical cam 6b.
  • the boil coil motor 7 and the compression spring 55b are fixed to the support frame 55a, and the collet 51 is moved toward the holding device 200 in the Z-axis according to the Z-axis movement of the support frame 55a.
  • the compression spring 8 moves the collet 51 in the direction away from the holding device 200 in the Z axis.
  • the voice coil motor 7 absorbs an excessive load applied to the chip S sandwiched between the collet 51 and the suction nozzle 210 and applies a predetermined load to the chip S.
  • the voice coil motor 7 generates a counter thrust that antagonizes the load applied to the coil bobbin 71 at the same time as driving the collet 51 by the cam mechanism 6 to rise along the Z-axis direction.
  • the counter thrust antagonizes the load applied to the coil bobbin 71 in a situation where the collet 51 does not reach the chip S.
  • the load applied to the coil bobbin 71 is a difference in urging force between the compression spring 8 and the compression spring 55b.
  • the coil bobbin 71 maintains the relative positional relationship with the voice coil motor 7 when it does not reach the chip S, and when it reaches the chip S, the chip S when it tries to advance further. It is defeated by the load received from and retracts along the Z-axis direction so as to be buried in the voice coil motor 7. That is, the voice coil motor 7 absorbs an excessive load generated in the chip S when the chip S and the collet 51 come into contact with each other and further advance.
  • the delivery of the chip S between the holding device 200 and the correction device 500 is performed as follows.
  • the holding device 200 is not protruded. Instead, the collet 51 of the correction device 500 is protruded in the Z-axis direction, approaches the holding device 200, picks up the chip S by itself, and performs the suction by the negative pressure while releasing the suction of the holding device 200.
  • the correction device 500 moves the collet 51 in the Z-axis direction away from the holding device 200 to overlap the retreat and re-projection while retreating the chip S from the holding device 200, thereby moving the collet 51 left and right.
  • the posture of the chip S is corrected by moving it in the (XY axis direction) and further rotating the collet 51 by ⁇ . Further, the collet 51 approaches the holding device 200 due to re-projection in the Z-axis direction, and the suction is released when the holding device 200 starts sucking.
  • the first collection device 600 basically has the same configuration as the support device 100. That is, the first collection device 600 also includes a ring moving mechanism 2B, an expanding mechanism 3B, and an autoloader 5B other than the separation mechanism.
  • the ring moving mechanism 2B has a wafer ring Rb that holds and holds the wafer sheet Db. There may be a member that supports the back surface of the wafer sheet Db.
  • the autoloader 5B is an exchange device similar to the autoloader 5A. That is, the autoloader 5 ⁇ / b> B also includes the storage unit 110 and the ring transport mechanism 120.
  • the second collection device 700 is basically configured similarly to the support device 100. That is, the second collection device 700 also includes a ring moving mechanism 2C, an expanding mechanism 3C, and an autoloader 5C other than the separation mechanism.
  • the ring moving mechanism 2C has a wafer ring Rc that holds the wafer sheet Dc. There may be a member that supports the back surface of the wafer sheet Dc.
  • the autoloader 5C is also an exchange device similar to the autoloader 5A. That is, the autoloader 5 ⁇ / b> C also includes the storage unit 110 and the ring transport mechanism 120.
  • the first collection device 600 and the second collection device 700 adjust the attachment position of the chip S based on the coordinates of the attached chip S detected by the coordinate detection unit 18 described later. Further, the first collection device 600 and the second collection device 700 can also correct the posture of the chip S based on the posture deviation measured by the post-measurement unit 40B.
  • the support device 100, the measurement device 400, the correction device 500, the first collection device 600, and the second collection device 700 are arranged in the vicinity of the conveyance path T around the conveyance device 300. From the upstream in the conveying direction of the chip S, the support device 100, the front measurement unit 40A of the measurement device 400, the correction device 500, the rear measurement unit 40B of the measurement device 400, the first collection device 600, and the second collection device 700 are arranged in this order. It is arranged.
  • the support device 100 is opposed to the first collection device 600, and the correction device 500 is opposed to the second collection device 700.
  • the space around the transfer device 300 is effectively used to realize the accurate parallel bonding of the two types of ranks S.
  • the control device 800 includes a mechanism control unit 11, a reference detection unit 12, a scan unit 13, a reference inspection unit 14, a pickup instruction unit 15, a correction instruction unit 16, a paste instruction unit 17, a coordinate detection unit 18, and a storage unit 19.
  • the mechanism control unit 11 is a processing unit that controls each mechanism and the operation of each unit.
  • the imaging by the imaging units 60a, 60b, and 60c and the capture of the image data are performed in accordance with the scanning of the ring moving mechanisms 2A, 2B, and 2C based on the encoder information. This is done by relative movement on Dc.
  • the reference detection unit 12 is a processing unit that performs a reference detection process of detecting coordinate data of a reference chip among the dicing chips S attached to the wafer sheet Da of the first support device 100.
  • a reference detection process based on the image data picked up by the image pickup unit 60a, a reference chip by collation with a reference mark registered in advance is found, and encoder information of the ring moving mechanism 2A is acquired as coordinate data thereof. Is done.
  • the scanning unit 13 is a processing unit that performs a scanning process for detecting coordinate data of all the chips S attached to the wafer sheet Da in the first support device 100.
  • the coordinate data of the chip S is detected by the imaging unit 60a positioned on the chip S by the ring moving mechanism 2A obtaining the image data by imaging the chip S and using the encoder information of the ring moving mechanism 2A as the coordinate data. It is done by acquiring.
  • all the chips S here are product chips, and are ranked in advance as described above.
  • the wafer attached to the wafer sheet Da is diced.
  • the expanding mechanism 3A extends the wafer sheet Da, so that a gap is formed between the individual chips S so that the holding device 200 as a pickup device can easily pick up. Since this extension is performed by the wafer ring Ra and the pulling portion 31 described above, it is performed by a force by which the wafer sheet Da is pulled from the inside of the circle surrounding the wafer W to the outside.
  • the reference inspection unit 14 scans the ring moving mechanism 2A and starts the reference chip as a starting point, and after a predetermined amount of scanning processing of the chip S is performed, the reference inspection unit 14 returns to the reference chip at the starting point, and the coordinate data matches (the deviation occurs). It is a processing unit that checks whether or not. As will be described later, various modes are conceivable as to how much the scan amount returns to the reference chip.
  • the pickup instruction unit 15 is a processing unit that instructs the chip S to be picked up by the holding device 200 by controlling the support device 100 and the holding device 200 based on a preset pickup criterion.
  • the pickup reference includes the rank of the chip S picked up by the holding device 200 and the order of picking up.
  • any two kinds of ranks are used. This is preferably set to two ranks having the largest number in the number distribution of chips S in the same wafer W by rank. For example, rank A and rank B are assumed. More preferably, in the normal distribution of the number of chips S, two ranks closest to the median can be considered. These two types are usually the top two types with the better quality.
  • the holding device 200 is one of the wafer sheet Db of the first collection device 600 and the wafer sheet Dc of the second collection device 700 at the stop timing in the intermittent operation when the two types of ranks are the same number. It is more desirable to attach the chip S to the substrate. That is, it is preferable that at least one of the holding device 200 that has come to the position facing the wafer sheet Db and the holding device 200 that has come to the position facing the wafer sheet Dc at the same time picks up the chip S so as to stick. .
  • the rank of the picked-up chip S and the identification information of each holding device 200 are associated with each other and stored in the storage unit 19. A specific example of such a pickup will be described later.
  • the correction instruction unit 16 is a processing unit that instructs the correction device 500 to correct the posture deviation of the chip S based on the posture deviation of the chip S detected by the front measurement unit 40A of the measurement device 400.
  • the correction instruction unit 16 calculates the movement amount of the chip S in the XY-axis direction and the rotation amount in the ⁇ -axis direction for eliminating the posture deviation, and instructs the correction device 500 to operate with this movement amount and rotation amount. To do.
  • the correction instruction unit 16 applies to the ring moving mechanisms 2B and 2C in the first collection device 600 and the second collection device 700 based on the posture deviation of the chip S detected by the rear measurement unit 40B of the measurement device 400. It is also possible to instruct correction of the positional deviation of the chip S.
  • the correction instruction unit 16 calculates the movement amount of the ring moving mechanisms 2B and 2C for eliminating the posture deviation in the XY-axis direction and the rotation amount in the ⁇ -axis direction, Instruct the moving mechanisms 2B and 2C.
  • the sticking instruction unit 17 is a processing unit that supports the sticking of the chip S to the holding device 200. Whether the sticking support unit 17 sticks the chip S to the wafer sheets Db and Dc by the advancing and retreating operation with respect to the holding device 200 that has come to a position facing the first collecting device 600 and the second collecting device 700. Instruct whether or not. This instruction is based on the rank information of the chip S associated with the identification information of each holding device 200. For example, the paste instructing unit 17 issues a paste instruction when the rank S chip S comes to the first collection device 600, but issues a paste instruction when the rank A chip S comes. Without passing through. Conversely, when a rank A chip S arrives at the second collection device 700, a sticking instruction is issued, but when a rank B chip S has already been pasted and the holding device 200 is empty. Pass through.
  • the coordinate detection unit 18 is a processing unit that detects the position coordinates of the chips S attached to the wafer sheet Db of the first collection device 600 and the wafer sheet Dc of the second collection device 700.
  • the position coordinates are acquired from the encoder information of the ring moving mechanisms 2B and 2C together with the imaging by the imaging units 60b and 60c.
  • the storage unit 19 is a processing unit that stores various types of information necessary for the present embodiment. Various types of information include the map data and the coordinate data. The information stored in the storage unit 19 also includes image data for determining a reference mark by collating with captured image data, and various settings such as a scanning path reference by the scanning unit 13. Further, the above-described pickup reference and posture deviation are also included in the information stored in the storage unit 19.
  • the input unit 81 is a processing unit for inputting information necessary for processing of each unit, selecting a process, and inputting an instruction.
  • the input unit 81 includes input devices that can be used now or in the future, such as an operation panel, a touch panel, a switch, a keyboard, and a mouse.
  • the output unit 82 is a processing unit that outputs information such as an interface for operation, various data, images, processing results, and alarms.
  • the output unit 82 includes any output device that can be used now or in the future, such as a display device, a printer, a speaker, a buzzer, and a lamp.
  • All or part of the control device 800 can be realized by controlling the computer with a predetermined program.
  • the program in this case realizes the processing of each unit as described above by physically utilizing computer hardware including a CPU.
  • a method, a program, and a recording medium storing the program for executing the processing of each unit described above are also one aspect of the present invention.
  • any storage medium that can be used now or in the future can be used.
  • a register or the like used for calculation can also be regarded as the storage unit 19.
  • the mode of storage includes not only a mode in which memory is stored for a long time but also a mode in which data is temporarily stored for processing and deleted or updated in a short time.
  • all or a part of each processing unit, storage unit 19, input unit 81, and output unit 82 constituting the control device 800 can be configured as a part of each of the above devices, or can be connected via a network. It can also be configured by a computer.
  • various data in the process can be appropriately output (displayed, printed out, etc.) to the output unit 82 so that the operator can visually recognize the data.
  • map data, coordinate data, captured image data, results of reference detection processing, scan processing and reference inspection processing, pickup criteria, posture deviation, etc. may be displayed and printed out and used for processing confirmation.
  • the autoloader 5A sets the wafer ring Ra on which the chip S is picked up on the ring moving mechanism 2A of the support device 100 (step S101). Further, the autoloader 5B and the autoloader 5C set the wafer rings Rb and Rc to which the chips S are attached to the ring moving mechanisms 2B and 2C of the first collection device 600 and the second collection device 700, respectively.
  • the control device 800 controls each unit to perform a collective scan on the chips S attached to the wafer sheet Da of the support device 100 (step S102). Then, the holding device 200 picks up the two types of chips S (step S103). In the present embodiment, for example, in the number distribution of chips S in the same wafer W by rank, the two types of chips S of ranks A and B that are closest to the median are picked up as the chips S of the indicated rank. Thereafter, the transfer device 300 intermittently moves the chip S picked up by the holding device 200 along the transfer path T of the circular orbit together with the holding device 200.
  • the pre-measurement unit 40A of the measurement device 400 measures the posture deviation of the chip S in the transport path T (Step S104).
  • the correction device 500 corrects the posture of the chip S based on the posture deviation measured by the measurement device 400 (step S105).
  • the rear measurement unit 40B of the measurement device 400 confirms the posture of the chip S whose posture has been corrected (step S106).
  • the holding device 200 attaches the rank B chip S to the wafer sheet Db (step S108). If the rank A chip S has arrived at the first collection device 600 (YES in step S107), the holding device 200 passes without being pasted (step S109). When the rank A chip S comes to the second collection device 700, the holding device 200 attaches the rank A chip S to the wafer sheet Dc (step S110).
  • the chips S of the instruction ranks A and B remain on the support device 100 (YES in step S111), and the wafer sheet Db of the first collection device 600 or the wafer sheet Dc of the second collection device 700 is full. If not (NO in step S112), the processing after the pickup of the chip S is continued (steps S103 to S111).
  • it is sufficient that at least a sufficient number of chips S as a product are attached. For example, it includes a state in which the number set in advance as a product is pasted or a state in which the number is pasted in a region previously determined as a product. An area that can be physically attached may remain.
  • step S111 When the chips S of the instruction ranks A and B do not remain in the support device 100 (NO in step S111) and the unprocessed wafer ring Ra remains in the storage unit 110 (YES in step S113), once.
  • the autoloader 5A replaces the next wafer ring Ra (step S114). Then, processing after the batch scan of the chip S is performed (steps S102 to S111).
  • step S112 When the wafer sheet Db of the first collection device 600 or the wafer sheet Dc of the second collection device 700 is full (YES in step S112), after the transfer device 300 is temporarily stopped, the autoloader 5B or 5C is full. The wafer ring Rb or the wafer ring Rc that is the new one is replaced (step S115). Then, the transfer device 300 is operated to continue the processing after the pickup of the chip S (steps S103 to S111).
  • (1) to (11) correspond to (1) to (11) in FIG.
  • a wafer sheet Da to which a wafer W is stuck is attached to a plurality of wafer rings Ra housed in the autoloader 5A.
  • These wafers W are divided into chips S by dicing.
  • a probe test is performed in advance, and map data as a result of the test is stored in the storage unit 19.
  • map data each chip S is classified into ranks A to D according to the quality level of the inspection result.
  • the map data also includes reference chip data (indicated by R) as described above.
  • wafer sheets Db and Dc are attached to the plurality of wafer rings Rb and Rc stored in the autoloaders 5B and 5C.
  • the support device 100 that is, the autoloader 5A on the pickup side, stores a plurality of wafer rings Ra to which the wafer sheet Da to which the chip S is attached is attached.
  • the autoloader 5A takes out one wafer ring Ra and sets it on the ring moving mechanism 2A.
  • the expanding mechanism 3A opens the gap between the chips S by extending the wafer sheet Da.
  • the first collection device 600 and the second collection device 700 that is, the autoloaders 5B and 5C on the pasting side, are attached with the wafer sheets Db and Dc to which the chip S is not pasted.
  • a plurality of wafer rings Rb and Rc are accommodated.
  • the autoloaders 5B and 5C take out the wafer rings one by one and set them on the ring moving mechanisms 2B and 2C.
  • the expanding mechanisms 3B and 3C extend the wafer sheets Db and Dc.
  • each chip S is imaged by the imaging unit 60a, and coordinate data of each chip S is acquired by the scanning unit 13.
  • the scanning unit 13 stores the coordinate data of each chip S in the storage unit 19 in association with the map data.
  • the holding device 200 moves the chip S while the ring moving mechanism 2A scans the holding device 200 so as to sequentially position the chips S based on the coordinate data of each chip S acquired by the scanning process. Pick up. This pickup is performed only for chips S of a specific rank based on the map data. In the present embodiment, two types of chips S are picked up in accordance with the above pickup criteria. Further, the holding device 200 picks up the chips S in the order in which the chips S are attached as will be described later.
  • the example of FIG. 9 is the case where the chips S of ranks A and B are picked up.
  • the start end rank A or rank B chip S is positioned with respect to the holding device 200 based on the coordinate data at the time of scanning. After this is picked up by the holding device 200, the next rank A or rank B chip S is moved to the target. At this time, chips S and reference chips other than the target rank are not picked up even if moved to the coordinates.
  • the picked-up information for the picked-up chip S is recorded in the map data.
  • the chip S is positioned at a position where the chip S exists, including when picking up, if the position of the chip S based on the image data captured by the imaging unit 60a is shifted, the result of measuring the shift Is fed back to correct the coordinate data of the next chip S. It is possible to increase the speed by positioning only on the chip S to be picked up based on the coordinate data, or to ensure the accuracy by positioning and correcting each chip S.
  • Chip Transfer The chip S picked up by the holding device 200 is transferred along the transfer path T of the circular orbit according to the intermittent rotation of the rotating body 310 of the transfer device 300.
  • the holding device 200 moves the chip S while repeating the movement and the stop at the stop position.
  • the post-measurement unit 40B performs photographing and posture shift measurement for the corrected chip S stopped at a position facing the post-measurement unit 40B. Since this chip S is after being corrected by the correction device 500, there is no or very little posture deviation remaining.
  • Chip Affixing The specific rank of chips S that have been transported to the first collection device 600 and stopped at a position facing the wafer sheet Db are affixed to the wafer sheet Db as the holding device 200 advances and retreats. It is done.
  • the ring moving mechanism 2 ⁇ / b> B operates so that the wafer sheet Db that has been stretched is sequentially attached from the start end of the attaching region. For example, scanning is performed on a plurality of parallel scanning lines set from the start end of the pasting region to the opposite end thereof, and pasting is performed at the time of reciprocation. Thereby, chips S of a specific rank are collected on one wafer sheet Db. In the present embodiment, B-ranked chips S are collected.
  • the movement calculated by the correction instruction unit 16 is corrected so that, for example, when the posture deviation detected by the post-measurement unit 40B exceeds a threshold value set in the storage unit 19 in advance, the posture deviation is corrected.
  • the amount of movement and the amount of rotation of the ring moving mechanism 2B are corrected by the amount and the amount of rotation.
  • the pasted chip S is imaged by the imaging unit 60b, and the coordinate data for each chip S is stored in the storage unit 19.
  • the coordinate data can be acquired as coordinate values (x, y, ⁇ ) of the encoder information of the ring moving mechanism 2B. This coordinate data is referred to when the next chip S is pasted, and the ring moving mechanism 2B adjusts the amount of movement and the amount of rotation so that it can be pasted accurately next to the chip S pasted last time.
  • chips S of a specific rank that have been transported to the second collection device 700 and stopped at a position facing the wafer sheet Dc are attached to the wafer sheet Dc as the holding device 200 advances and retreats.
  • chips A of rank A are collected.
  • the pasting operation, posture deviation correcting operation, coordinate data storage, and the like are the same as those of the first collection device 600 described above.
  • the autoloader 5A removes the wafer ring Ra attached with the wafer sheet Da after selectively picking up the chips S from the ring moving mechanism 2A and stores the wafer ring Ra in the storage unit 110 again. To do.
  • the wafer sheet Da is in a state (chip missing state) in which chips S of a specific rank are missing and chips S of other ranks remain.
  • the wafer ring Ra of the wafer sheet Da from which only the chips S of ranks A and B have been removed is accommodated in the accommodating portion 110 and replaced with the next wafer ring Ra.
  • the ring transport mechanism 120 of the autoloader 5B removes the wafer ring Rb on which the wafer sheet Db on which specific one-rank chips S are collected from the ring moving mechanism 2B. Then, it is stored again in the storage unit 110. If there is a wafer ring Rb to be attached next, the ring transport mechanism 120 takes out the next wafer ring Rb and transfers it to the ring moving mechanism 2B. Similarly, the autoloader 5C removes the wafer ring Rc to which the wafer sheet Dc on which the specific one-ranked chips S are collected is attached from the ring moving mechanism 2C and stores the wafer ring Rc in the storage unit 110 again. Further, the wafer ring Rc to be attached next is transferred to the ring moving mechanism 2C.
  • step S01 the ring moving mechanism 2A scans to a position estimated to be a position where the reference chip exists based on, for example, map data. You may scan exhaustively from the chip
  • the reference detection unit 12 checks whether or not a reference chip exists by collating image data captured by the imaging unit 60a during scanning with a reference mark registered in advance (YES in Step S02) (Step S02). SNO is determined.
  • the reference detection unit 12 finds a reference chip by collation (YES in step S02)
  • the reference detection unit 12 acquires coordinate data of the found reference chip based on the encoder information of the ring moving mechanism 2A, and the reference chip in the map data
  • the information is stored in the storage unit 19 in association with the position information (step S03).
  • the scanning unit 13 starts a scanning process (step S04).
  • the ring moving mechanism 2A can be covered so that all the chips S in the guaranteed area can be covered.
  • the target chip S is sequentially imaged by operating so as to move at a predetermined pitch (step S05).
  • the predetermined pitch is, for example, a horizontal pitch set in advance for the ring moving mechanism 2A as one row and a vertical pitch set as one row.
  • the process of specifying the coordinate data will be described with reference to FIG.
  • scanning and imaging are performed while positioning the target chip S so as to be within a predetermined imaging region. That is, when the target chip S is imaged for the first time, as shown in FIG. 11A, a rectangular image that is set in advance on any of the eight chips S around the target chip S is captured. It is assumed that there is a part that does not fit in the region F. Then, as shown in FIG. 11B, the ring moving mechanism 2A performs an alignment operation so that the outer edge side of the eight chips S coincides with the rectangular imaging region.
  • the alignment pitch is, for example, a finer pitch than the pitch set for one column and one row. The alignment is also performed when there is a deviation in the ⁇ direction.
  • the scanning unit 13 After the alignment operation, the scanning unit 13 obtains the center of each of the nine chips S included in the rectangular imaging area by detecting corners or four sides. Then, the scanning unit 13 obtains the coordinate data of the centers of the nine chips S based on the encoder value of the ring moving mechanism 2A, and associates it with the position information of each corresponding chip S of the map data in the storage unit 19. Store (step S07, FIG. 11C). Then, a scanned flag is set for each chip S (step S08). Such a coordinate data specifying method can also be applied when specifying the coordinate data of the reference chip and the surrounding chip S.
  • step S08 If there is no chip S that should exist on the map data due to dropping from the wafer sheet Da (NO in step S06), the coordinate data cannot be acquired. However, the scanned flag is set (step S08).
  • step S09 a part of the guaranteed area of the reference chip (hereinafter referred to as a partial area) is covered (NO in step S09, steps S05 to 08). That is, as shown in FIG. 11D, the third chip S is moved as the target chip S, and the processes of FIGS. 11A to 11D are repeated.
  • the upper left partial area Ex1 of the reference chip RS1 in the guarantee area E1 is divided into a lower left partial area Ex2, an upper right partial area Ex3, and a lower right partial area Ex4.
  • the partial area can be defined based on the coordinate data of the reference chip, the data indicating the guaranteed area of the map data (which defines the limit of scanning), and the reference setting of the scanning path.
  • the following criteria (a) to (d) may be selectively combined as the scanning path criteria for covering the chips S in such a partial region.
  • FIG. 12B shows an example of routes (a) to (d) in the partial region Ex1.
  • the method to cover is not limited to this.
  • the reference inspection unit 14 performs the reference inspection (step S10). That is, the ring moving mechanism 2A returns the imaging position by the imaging unit 60a to the reference chip. Then, it is determined whether there is any deviation between the coordinate data of the reference chip stored in the storage unit 19 and the coordinate data based on the encoder information of the ring moving mechanism 2A when returning to the reference chip.
  • step S11 If the coordinate data are different, an error has occurred (YES in step S11), and the coordinate data of the reference chip is updated with the coordinate data based on the encoder information of the ring moving mechanism 2A when returning to the reference chip. Then, based on the new coordinate data, the scan result of the partial area is cleared, and the same partial area is scanned again (steps S04 to 09).
  • the operator is notified by causing the output unit 82 to output an alarm sound, displaying a screen notifying the occurrence of the error, or the like.
  • the reference chip, the partial area, or the guaranteed area where the error has occurred may be displayed on the screen.
  • step S11 If the coordinate data match, the scan results so far are determined to be correct (NO in step S11). If the scan in the guarantee area is not completed (NO in step S12), the scan of other partial areas in the guarantee area is performed based on the coordinate data of the same reference chip (steps S05 to S11). . For example, the partial areas Ex2, Ex3, and Ex4 in FIG. 12 are sequentially scanned.
  • step S12 If the scanned flag is set for the chip S in the guaranteed area and the scanning is completed (YES in step S12), if the scanning of all areas is not completed (NO in step S13), the next reference chip is set. Based on this, the guaranteed area of the reference chip is scanned (steps S01 to S12).
  • the ring moving mechanism 2A moves the imaging area of the imaging unit 60a based on the coordinate data of the scanned reference chip and the position information of the reference chip of the map data so that the moving distance becomes the shortest, Discovery of the next reference chip, acquisition of coordinate data, and scanning processing are performed.
  • the scan process is performed on the guarantee area E2 of the reference chip RS2, the guarantee area E4 of the reference chip RS3, and the guarantee area E3 of the reference chip RS4 of FIG.
  • step S13 the processing for specifying the coordinate data of the chip S is terminated. Even if the wafer sheet Da has already been picked up with the two ranks of chips S, the remaining chips S are picked up with the two ranks of chips S and classified into two wafer sheets Db and Dc. Can be pasted.
  • FIGS. 14 to 17 show a simplified form in which the holding device 200 holding the chips S by intermittent rotation of the transfer device 300 is attached to the wafer sheets Db and Dc.
  • the black chip S is rank A
  • the white chip S is rank B.
  • the holding device 200 only half of the attachment side is shown, and the half of the pickup side is not shown.
  • each holding device 200 is numbered as identification information.
  • the chip S closest to the median of ranks A and B is picked up.
  • the one close to the median is often the top two ranks of quality. For example, as shown in FIG. 13, when ranks A to D are in order of good quality, the number of rank A and rank B is larger than the number of other ranks.
  • the rank A and rank B chips S affixed to the wafer sheet Da can be picked up in a reciprocating manner in the order in which they are arranged in rows or columns. In this case, it is not particularly determined which holding device 200 picks up the rank A chip S or the rank B chip S. Even in this case, if the number of ranks A and B is approximate, the speed at which the wafer sheets Db and Dc are full can be approximated. However, if the chip S to be attached to the wafer sheets Db and Dc does not exist and the number of cases where the wafer sheets Db and Dc are full is increased, there is a delay in the attaching speed until the wafer sheets Db and Dc become full.
  • the number 1 holding device 200 removes the rank A chip S from the wafer. Affixed to the sheet Dc.
  • the sixth holding device 200 attaches the rank B chip S to the wafer sheet Db. Attached.
  • both the third holding device 200 and the seventh holding device 200 cannot perform the pasting. For this reason, at this timing, the sheet is fed without being pasted.
  • the holding device 200 that is located at a position facing the wafer sheet Db of the first collection device 600, and at the same time the second device It is conceivable that the holding device 200 at a position facing the wafer sheet Dc of the collecting device 700 always picks up chips S of different ranks. In this way, the half holding device 200 can be attached to the wafer sheets Db and Dc at the same time. However, the subsequent half of the holding devices 200 are idle fed. That is, as shown in FIG. 15 (A), after the first to ninth holding devices 200 are attached together, as shown in FIG. 15 (B), the fifth to 13th holding devices 200. After the idle feed, as shown in FIG.
  • the first and ninth to sixteenth holding devices 200 perform the pasting simultaneously.
  • the speed at which the wafer sheets Db and Dc become full can be more approximated.
  • the time during which the idle feeding continues is long, it may affect the accuracy of attaching to the wafer sheets Db and Dc.
  • the chips S are attached to either the wafer sheet Da of the first collection device 600 or the wafer sheet Db of the second collection device 700 at the stop timing in the intermittent operation. It is desirable to attach. That is, for each intermittent rotation of the transfer device 300 by one pitch, the rank B chip S is attached to the wafer sheet Db of the first collection device 600 and the rank A of the wafer A is collected to the wafer sheet Dc of the second collection device 700. Pickup is performed so that one of the attachments of the chip S is always performed.
  • the holding device 200 facing the wafer sheet Db of the first collection device 600 and the wafer sheet Dc of the second collection device 700 always has the same rank chip.
  • Pick up to be S That is, chips S of the same rank are picked up for each number obtained by subtracting 1 from the number of holding devices 200 from the first collecting device 600 to the second collecting device 700. This is because, when the wafer sheet Db of the first collection device 600 and the wafer sheet Dc of the second collection device 700 are arranged in the tangential direction perpendicular to the conveyance path T of the circular orbit, the chips of the same rank every time 90 ° is advanced. S will be picked up.
  • the fifth holding device 200 attaches the rank B chip S to the wafer sheet Db. ing.
  • the second holding device 200 applies the rank A chip S to the wafer sheet. Affixed to Dc.
  • the seventh holding device 200 applies the rank B chip S to the wafer sheet Db. Paste. For this reason, there is no timing for feeding the first collection device 600 and the second collection device 700 without pasting them.
  • each holding device 200 alternately holds the chip S of rank A and the chip S of rank B.
  • FIGS. 17A, 17B, and 17C if chips S of the same rank are picked up every 90 °, even if the chips S of a plurality of ranks are included. Good.
  • only one rank S of the chips S of the two ranks S to be picked up is already picked up on the wafer sheet Da of the support device 100, and the other rank of the chips S.
  • the classification device 1 includes a support device 100 that supports a wafer sheet Da on which a wafer W in which chips S having different ranks indicating quality levels are mixed is attached and the chips S are separated into individual pieces by dicing, and a support device.
  • the holding device 200 that selectively picks up the chips S separated by the expansion of the wafer sheet Da supported by 100 based on the rank, and the chips S picked up by the holding device 200 are conveyed in a circular orbit.
  • a transport apparatus 300 that transports the path T is included.
  • the classification device 1 is disposed in the vicinity of the conveyance path T and the measurement device 400 that measures the posture deviation of the chip S conveyed by the conveyance device 300, and based on the posture deviation measured by the measurement device 400.
  • a correction device 500 that corrects the posture of the chip S is provided. Further, in the present embodiment, a wafer that is disposed downstream of the correction device 500 in the vicinity of the transport path T and to which one type of chip S is attached among the chips S whose posture is corrected by the correction device 500.
  • the first collection device 600 that supports the sheet Db and the other one of the chips S that are disposed downstream of the first collection device 600 in the vicinity of the conveyance path T and whose posture is corrected by the correction device 500.
  • the second collection device 700 that supports the wafer sheet Dc to which the chips S of different ranks are attached, and the chips S conveyed by the conveyance device 300 are used as the wafer sheet Db and the second collection of the first collection device 600.
  • the holding device 200 is attached to the wafer sheet Dc of the apparatus 700 in a corresponding rank.
  • the classification device 1 does not pick up the picked-up wafer sheet Da after the two types of chips S are picked up from the wafer sheet Da of the support device 100.
  • An exchange device for sequentially exchanging wafer sheets is provided.
  • the posture of the chip S is corrected by the correction device 500 after the pickup and before the attachment, and the two ranks of chips S are the wafer sheet Db of the first collection device 600 and the wafer sheet Dc of the second collection device 700. Since the wafer sheets Db and Dc on the attachment side are not exchanged, the two different ranks of chips S are attached to the two wafer sheets Db and Dc in an accurate and efficient manner. be able to.
  • the two types of ranks are the two types of ranks having the largest number in the number distribution of the chips S in the same wafer W by rank. For this reason, the number of exchanges of the wafer sheet Da can be reduced, and the production efficiency of the bonded wafer sheets Db and Dc can be increased. If the numbers of the two types of chips S are approximate, the time for filling both the wafer sheets Db and Dc with the chips S can be approximated. In this case, after one side becomes full, the time to wait until the other becomes full is reduced, and even if the wafer sheets Db and Dc are replaced at the same time, there is little time loss.
  • the two types of ranks closest to the median may have a larger number than the other ranks, and the number of both may be approximated. Therefore, by classifying and attaching the two types of ranks of chips S to the wafer sheets Db and Dc, it is possible to approximate the time for filling both the wafer sheets Db and Dc with the chips S.
  • the transport device 300 transports the chip S in an intermittent operation with a predetermined pitch, and the sticking device has a stop timing in the intermittent operation in the same number of specific one type of rank and the other one type of rank. Then, the chip S is attached to one of the wafer sheet Db of the first collection device 600 and the wafer sheet Dc of the second collection device 700.
  • the pickup device and the sticking device are the holding device 200 that holds the chip S at the tip
  • the transport device 300 includes a rotating body 310 that rotates intermittently at a predetermined pitch
  • the plurality of holding devices 200 rotate.
  • the plurality of holding devices 200 provided on the body 310 are arranged at positions where the tips are arranged on the transport path T at equal intervals corresponding to a predetermined pitch.
  • the device configuration can be simplified.
  • the holding device 200 that comes to the position corresponding to the first collecting device 600 and the holding device 200 that comes to the position corresponding to the second collecting device 700 at the same time pick up the chips S of the same rank in the pickup. Hold.
  • It has the coordinate detection part 18 which detects the position coordinate of the chip
  • the measuring device 400 includes a pre-measurement unit 40A that measures the posture deviation of the chip S upstream of the correction device 500, and a post-measurement unit 40B that measures the posture deviation of the chip S downstream of the correction device 500. Then, the correction device 500 corrects the posture of the chip S based on the posture deviation measured by the front measurement unit 40A, and the first collection device 600 and the second collection device 700 are measured by the rear measurement unit 40B. The posture of the chip S is corrected based on the posture deviation.
  • the imaging unit 60a that captures images of the chips S divided into pieces while moving relative to the wafer sheet Da based on the coordinate data. Based on the image data captured by the imaging unit 60a, a reference chip with a specific mark is found among the chips S in the wafer W, and based on the coordinate data for the relative movement of the imaging unit 60a, The reference detection unit 12 that performs reference detection processing for specifying the coordinate data of the reference chip, and the imaging unit 60a with respect to the wafer sheet Da on the basis of the reference chip coordinate data and the relative position information of each chip S in the wafer W. Image data obtained by imaging each chip S with relative movement and coordinate data for the relative movement of the imaging unit 60a.
  • a scanning unit 13 that performs a scanning process for specifying the coordinate data of each chip S based on the data
  • the holding device 200 includes the coordinate data of each chip S specified by the scan unit 13 and each chip. Based on the rank information of S, the chip S is selectively picked up while moving relative to the wafer sheet Da.
  • the coordinate data of each chip S can be obtained accurately by performing a collective scan based on the reference chip with respect to the chip S in the expanded wafer before picking up. For this reason, even if there is a movement of the chip S due to expansion, a dropout of the chip S, etc., the individual chips S can be accurately picked up based on the acquired coordinate data. Accordingly, even if the pickup-side wafer sheet Da is replaced and expanded while the two-ranked chips S are classified and pasted to the first collecting device 600 and the second collecting device 700, A desired chip S can be accurately picked up.
  • the rank is determined for each of the wafer sheets Db and Dc, and product management becomes easy.
  • an accurate pick-up can be achieved simply by moving it with a feed operation set at a pitch from the reference chip.
  • the chips S of the other rank can be accurately picked up based on the accurate coordinate data of each chip S. The portion of the tooth missing where the chip S has been picked up can be moved without picking up, whereby efficient and high-speed processing can be performed.
  • Reference inspection processing for inspecting whether the reference chip coordinate data by the reference detection processing is correct based on the image data captured by the imaging unit 60a and the coordinate data for the relative movement of the imaging unit 60a
  • a reference inspection unit 14 is provided.
  • a reference check is performed to check whether the coordinate data of the reference chip is correct. If there is an error, the chip S scan process is performed again. Therefore, even if the wafer W has a large amount of minute chips S, coordinate data obtained by the entire scan can be obtained accurately.
  • a reference chip is set for each of a plurality of guaranteed areas that divide the wafer W, and the scan unit 13 performs a scanning process based on the reference chip for each guaranteed area of the reference chip.
  • the scanning unit 13 sets a flag indicating that the scanning process has been completed for each chip S, and performs the scanning process until there is no more scanned chip S.
  • the chip S that should be present in the map data is dropped from the wafer sheet, and the scanning process is continued by setting a scanned flag even at a position where the coordinate data cannot be obtained. It can be determined that there is no S. Therefore, efficient movement and high-speed processing can be performed by moving the portion without picking up.
  • the imaging unit 60a relatively moves in units of a plurality of chips S, and the scanning unit 13 specifies coordinate data for each of the plurality of chips S included in the image data captured by the imaging unit 60a.
  • the relative movement path of the imaging unit 60a is set to minimize the overlap. For this reason, if no overlap occurs in the scan path, it is possible to save the extra movement time and realize a high-speed scan process.
  • the distance of relative movement from the imaging position of the reference chip of the imaging unit 60a to the imaging position of another reference chip is set to be the shortest. For this reason, high-speed processing can be realized by shortening the moving distance between the reference chips as much as possible.
  • a reference chip is set for each of a plurality of guaranteed areas that divide the wafer W, the scan unit 13 performs a scan process based on the reference chip for each guaranteed area of the reference chip, and the reference inspection unit 14 A reference inspection is performed for each guarantee area.
  • the scan unit 13 performs a scan process based on the reference chip for each partial region obtained by dividing the guaranteed region into a plurality of regions, and the reference inspection unit 14 performs a reference inspection for each partial region. For this reason, the accuracy of the position of the chip S can be ensured by performing the reference inspection for each guarantee area.
  • an output unit 82 for notifying the outside is provided.
  • the output unit 82 notifies this, so the operator can know the occurrence of an abnormality and can respond quickly. For example, when the frequency of notification is high, it is preferable to stop the device early. Moreover, if an error location can be identified, it can be used for adjustment of the apparatus.
  • the pickup device and the sticking device are configured as the common holding device 200.
  • the pickup device and the sticking device may be configured independently.
  • Such an example will be described with reference to FIGS. 18 and 19 do not display the first collection device 600 and the second collection device 700 separately, but it is actually assumed that they are arranged as shown in FIG. .
  • the pickup device 32 is a device that selectively picks up the chips S divided into individual pieces based on the rank when the wafer sheet Da supported by the support device 100 is extended. It is. The pickup device 32 is performed while moving relative to the wafer sheet Da based on the coordinate data of each chip S specified by the scanning unit 13.
  • the pickup device 32 has a holding portion 32a.
  • the holding unit 32 a is a device that receives the chip S from the wafer sheet Da by passing between the wafer sheet Da and the transfer device 300 and passes it to the transfer device 300.
  • the holding part 32a may be plural or singular.
  • FIG. 18 shows an example using a four-way cross arm in which the four holding portions 32a are formed in a cross shape.
  • the configuration of the holding unit 32a is basically the same as that of the holding device 200 described above. That is, the holding part 32a is configured by a suction nozzle provided so as to be able to advance and retract in the radial direction from the center of rotation. The suction nozzle sucks the chip S into the suction hole at the tip by generation of negative pressure by a vacuum generator (not shown), and detaches the chip S from the suction hole at the tip by vacuum break or generation of positive pressure.
  • the pickup device 32 is intermittently rotated by 90 ° about the center of the cross formed by the holding portion 32a by a driving source (not shown). Thereby, the tip of each holding part 32a is positioned at the pick-up position of the chip S of the wafer sheet Da and the delivery position of the chip S to the transfer device 300 described later.
  • a driving source not shown
  • one holding portion 32a sequentially comes to the pickup position of the chip S of the wafer sheet Da.
  • another one holding portion 32a comes to a position where the chip S is delivered to the holding portion 32a of the transfer device 300 described later.
  • the single holding unit 32a may be configured to reciprocate between the pickup position of the wafer sheet Da and the transfer position of the chip S to the transfer device 300.
  • one holding portion 32a may be configured to reciprocate by 90 °.
  • the number of the plurality of holding portions 32a is arbitrary. For example, you may comprise as an 8 series arm.
  • the transfer device 300 is a device that transfers the chip S picked up by the pickup device 32 on a transfer path T of a circular orbit.
  • the transport apparatus 300 includes a rotating body 310 as in the above embodiment. However, the rotating body 310 of the present embodiment is provided with a plurality of holding portions 22.
  • the holding unit 22 has the same configuration as that of the holding device 200 described above. However, the holding part 22 is attached to the lower surface of the rotating body 310 at regular intervals along a circumference concentric with the rotating body 310.
  • the holding unit 22 receives and holds the chip S from the holding unit 32a of the pickup device 32 at the delivery position. And the chip
  • the arrangement interval of the holding portions 22 is equal to the rotation angle of one pitch of the rotator 310.
  • the holding unit 22 is configured by a suction nozzle provided on the lower surface of the rotating body 310 so as to be movable back and forth in the vertical direction.
  • the suction nozzle sucks the chip S into the suction hole at the tip by generation of negative pressure by a vacuum generator (not shown), and detaches the chip S from the suction hole at the tip by vacuum break or generation of positive pressure.
  • the sticking device 33 is a device for sticking the chips S transported by the transport device 300 to the wafer sheet Db of the first collecting device 600 and the wafer sheet Dc of the second collecting device 700 in a corresponding rank. It is.
  • the sticking device 33 is provided corresponding to each of the first collecting device 600 and the second collecting device 700.
  • the sticking device 33 has a holding portion 33 a similar to the holding portion 32 a of the pickup device 32.
  • a plurality of holding portions 33a that rotate intermittently can be used, or as shown in FIG. 19, a holding portion 33a that can reciprocate can be used.
  • the tip of the holding unit 33a is received at the receiving position facing the holding unit 22 of the transfer device 300, and receives the chip S from the holding unit 22, and is attached at the bonding position facing the wafer sheet Db and the wafer sheet Dc.
  • the chip S is attached to the wafer sheet Db and the wafer sheet Dc.
  • a unique batch scan is used as the pickup method. Accordingly, even if the wafer sheet Da has a variation in the position of the chip S due to expansion and contraction, accurate pickup can be performed. Therefore, even if the exchange frequency of the wafer sheet Da increases, the accuracy of pickup and pasting can be increased. There is an advantage that it can be maintained.
  • the pickup method is not limited to this, and any technology that can be used at present or in the future can be applied.
  • the transport path T is a horizontal circular orbit, but may be a vertical circular orbit.
  • the support device 100, the transport device 300, the measurement device 400, the correction device 500, the first collection device 600, and the second collection device 700 are arranged around the support device 100. May be.
  • the pitch of intermittent rotation, the number of stop positions, the number of holding devices, the number of holding units, and the like of the transfer device 300 are not limited to those exemplified in the above embodiment.
  • the measuring apparatus 400 may omit the post-measurement unit 40B.
  • a reference chip, a partial area or a guarantee area where an error has occurred, an error frequency, and the like are recorded by the storage unit 19 and output by the output unit 82 to analyze an area where an error is likely to occur. May be useful.
  • the number and position of reference chips, the number and range of guaranteed areas corresponding thereto, and the number and range of partial areas can be freely set as long as the scanning process can be performed comprehensively. If these numbers are large, there is an advantage that the range of scan processing re-executed due to the occurrence of an error is reduced. If these numbers are small, the number of reference inspections is small, and if there are few errors, the speed can be increased. Therefore, it is sufficient to make an appropriate setting based on the balance between the two.
  • the wafer sheet, the imaging unit, and the pickup device may be in a relative moving relationship.
  • the wafer ring to which the wafer sheet is stuck may be fixed by the ring support mechanism, and the relative movement may be realized by the moving mechanism (scanning mechanism) of the imaging unit and the pickup device.
  • the coordinate data in this case can be acquired as coordinate values (x, y, ⁇ ) of the encoder information of the moving mechanism.
  • the storage unit for storing the wafer ring and the ring transport mechanism for setting the wafer ring in the ring moving mechanism are not limited to those exemplified in the above embodiment, and any known technique can be applied. Further, a discharge device for discharging the ring from the ring moving mechanism may be provided. As the holding device and the holding unit, any technique capable of holding a chip can be applied. For example, an electrostatic chuck, a Bernoulli chuck, a mechanical chuck, or the like may be applied in addition to the suction nozzle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Dicing (AREA)

Abstract

Provided is a sorting device that sorts two ranks of chips onto two wafer sheets, and that efficiently attaches the chips at the correct position. This sorting device has: a support device 100 that supports a wafer sheet Da to which a wafer W is attached; a holding device 200 that selectively picks up, on the basis of rank, chips S that have been separated from each other by expansion of the wafer sheet Da; transport devices 300 that transport the chips S; measurement devices 400 that measure deviation in the posture of the chips S; a correction device 500 that corrects the posture of the chips S; a first collection device 600 that supports a wafer sheet Db to which chips S of a first type of rank are attached; a second collection device 700 that supports a wafer sheet Dc to which chips S of another type of rank are attached; a holding device 200 that attaches the chips S, divided into the ranks, to the wafer sheets Db, Dc; and an auto-loader 5A that sequentially replaces the wafer sheet Da after all of the two types of ranks of chips S have been picked up from the wafer sheet Da.

Description

分類装置Classification device
 本発明は、ウェハシートに貼り付けられたウェハから、個片のチップを選択的にピックアップする分類装置に関する。 The present invention relates to a classification apparatus that selectively picks up individual chips from a wafer attached to a wafer sheet.
 半導体の製造工程では、ウェハ貼付工程、ダイシング工程が実施される。ウェハ貼付工程は、個片に切断される前のウェハを、表面に粘着性を有するウェハシートに貼付して、これをリングに張り付ける工程である。ダイシング工程は、ウェハシートに貼付されたウェハを切断することにより、個片の半導体素子に分割する工程である。このような個片の半導体素子を、以下、チップと呼ぶ。 In the semiconductor manufacturing process, a wafer pasting process and a dicing process are performed. The wafer sticking step is a step of sticking the wafer before being cut into individual pieces to a wafer sheet having adhesiveness on the surface and sticking it to the ring. The dicing process is a process of dividing the wafer attached to the wafer sheet into individual semiconductor elements by cutting. Such individual semiconductor elements are hereinafter referred to as chips.
 ウェハに含まれる各チップに対しては、あらかじめ触針により電気的特性を検査するプローブ検査が行われ、その結果である各チップの良品、不良品及びその位置に関する情報を、制御装置が保持している。このようなプローブ検査によって得られた情報は、マップデータと呼ばれる。 Each chip included in the wafer is subjected to a probe inspection in which electrical characteristics are inspected by a stylus in advance, and the control device holds information regarding the non-defective and defective products of each chip and the position thereof. ing. Information obtained by such probe inspection is called map data.
 また、各チップに対しては、カメラ等の撮像部により撮像された画像に基づく外観検査が行われる場合もある。プローブ検査に加えて、外観検査が行われた場合、プローブ検査の結果と外観検査の結果を合わせたものも、マップデータと呼ぶ場合もある。 In addition, for each chip, an appearance inspection based on an image captured by an imaging unit such as a camera may be performed. When an appearance inspection is performed in addition to the probe inspection, a combination of the probe inspection result and the appearance inspection result may be referred to as map data.
 このようなマップデータに基づいて、ピックアップ装置は、良品のチップのみをピックアップして、貼り付け工程、マウンティング工程又はテーピング工程が行われる。貼り付け工程は、ウェハシート単位で管理、出荷等するために、ピックアップ装置によってピックアップした良品のチップを、貼り付け装置によって、伸張されたウェハシートに貼り付ける工程である。 Based on such map data, the pick-up device picks up only non-defective chips and performs the attaching process, mounting process or taping process. The pasting step is a step of pasting non-defective chips picked up by the pick-up device to the stretched wafer sheet by the pasting device in order to manage and ship in units of wafer sheets.
 マウンティング工程は、個片化されたチップを順次ピックアップし、リードフレームや基板に接着する工程である。テーピング工程は、ピックアップされたチップを、テープに貼付する工程である。 The mounting process is a process of picking up individual chips in order and bonding them to a lead frame or a substrate. The taping step is a step of sticking the picked-up chip to the tape.
特開2006-13012公報JP 2006-13012 A
 ウェハシートからピックアップした良品のチップを、ウェハシートに貼り替える装置の場合、良品がピックアップされるウェハシートは、ピックアップし易いように伸張される。また、良品のチップを貼り付けるウェハシートも、貼り付けし易いように伸張される。このような伸張は、エキスパンドと呼ばれる。貼り付け装置は、エキスパンドしたウェハシートに対して、チップを一定の間隔で貼り付けて行く。 In the case of an apparatus that replaces a non-defective chip picked up from a wafer sheet with a wafer sheet, the wafer sheet from which the non-defective chip is picked up is stretched so as to be easily picked up. Further, the wafer sheet to which the non-defective chip is attached is also stretched so as to be easily attached. Such stretching is called expanding. The affixing device affixes chips to the expanded wafer sheet at regular intervals.
 このような貼り替えを行う装置は、一般的には、ウェハシートを保持するユニットが、ピックアップ側と貼り付け側で1基ずつ設けられている。つまり、ピックアップ側と貼り付け側のウェハシートが一対一の関係となっている。複数のウェハシートに対して、並行してチップを貼り付けることにより、処理の高速化を図った装置も提案されている。但し、この場合も、ピックアップ側と貼り付け側が一対一の組が、複数設けられているに過ぎない。 In general, an apparatus for performing such replacement is provided with one unit for holding a wafer sheet, one on the pickup side and one on the attachment side. That is, there is a one-to-one relationship between the wafer sheet on the pickup side and the attachment side. An apparatus has also been proposed in which processing is speeded up by attaching chips to a plurality of wafer sheets in parallel. However, in this case as well, a plurality of one-to-one pairs on the pickup side and the pasting side are provided.
 各チップの検査結果は、単に良品か不良品かの2種の情報ではなく、品質の程度を示すランクの情報が含まれている。上記のようなピックアップ側と貼り付け側が一対一の装置の場合、ランクの情報に基づいて、いずれか1種のランクのチップをピックアップして、貼り付けを行うことにより、特定のランクのチップを集めることができる。 The inspection result of each chip includes rank information indicating the degree of quality, not just two types of information, that is, non-defective or defective. When the pickup side and the pasting side are one-to-one devices as described above, a chip of a specific rank is obtained by picking up and pasting any one type of chips based on the rank information. Can be collected.
 しかし、ウェハシート毎に、異なるランクのチップを収集したい場合、以下のような問題が生じる。
(1) 特定の1種のランクのチップをピックアップしているウェハシートから、当該ランクのチップがなくなった場合、そのウェハシートを交換する必要がある。また、貼り付け側のウェハシートが、特定の1種のランクのチップで満杯となった場合には、貼り付け側を新しいウェハシートに交換する必要がある。
However, when it is desired to collect chips having different ranks for each wafer sheet, the following problems arise.
(1) If there is no chip of the rank from the wafer sheet picking up a chip of one specific type, it is necessary to replace the wafer sheet. Further, when the wafer sheet on the pasting side is filled with a specific type of rank of chips, it is necessary to replace the pasting side with a new wafer sheet.
 そして、特定の1種のランクのチップの収集を終えた後に、別の1種のランクのチップの貼り付けを行う場合には、貼り付け側を新しいウェハシートに交換するとともに、ピックアップ側を、特定の1種のランクのチップをピックアップ済であるが、別の1種のランクのチップが残存しているウェハシートに交換する必要がある。つまり、ピックアップするチップのランクを変える毎に、ウェハシートを交換する必要があり、交換頻度が多くなり時間がかかるため、処理効率が悪かった。 Then, after the collection of chips of a specific one type of rank is completed, when a chip of another type of rank is pasted, the pasting side is replaced with a new wafer sheet, and the pickup side is A specific one type of rank chip has been picked up, but another one type of rank chip needs to be replaced with a remaining wafer sheet. That is, every time the rank of the chip to be picked up is changed, the wafer sheet needs to be exchanged, and the exchange frequency increases and it takes time, so the processing efficiency is poor.
 これに対処するため、ピックアップ側と貼り付け側が一対一の貼り替え装置を、複数設けて、特定の1種のランクのチップの貼り替えと並行して、別の1種のランクのチップの貼り替えを行うことも考えられる。しかし、この場合、装置が全体として大型化するとともに、ピックアップ側から貼り付け側へチップを搬送する搬送装置の種類によっては、配置スペースが限定されてしまうため、設置が困難となる可能性がある。例えば、回転による搬送装置を用いる場合、各処理装置を搬送装置の周囲に干渉がないように配置することは困難であり、たとえ配置できても、さらに別の機能を持つ処理装置を追加することはできない。 In order to deal with this, a plurality of one-to-one replacement devices on the pickup side and the attachment side are provided, and in parallel with the replacement of a specific one-type rank chip, another one-type rank chip is attached. It is also possible to make a replacement. However, in this case, the apparatus becomes large as a whole, and the arrangement space may be limited depending on the type of the conveying apparatus that conveys the chip from the pickup side to the affixing side, which may make installation difficult. . For example, when using a conveyor device by rotation, it is difficult to arrange each processing device so that there is no interference around the conveyor device. Even if it can be arranged, a processing device having another function is added. I can't.
(2) また、ウェハシートはピックアップや貼り付けのために、エキスパンドを行う必要がある。入れ替えのためにエキスパンドと収縮を繰り返すことになるので、ピックアップと貼り付けの精度の観点からも、交換の回数は少なくすることが好ましい。特に、貼り付け側のウェハシートは、エキスパンドと収縮による位置ずれを防止するため、ウェハシートが満杯となるまで、交換しないことが望ましい。このため、ピックアップ側と貼り付け側が一対一の装置の場合、ピックアップ側が異なるランクのチップをピックアップしながら、貼り付け側が満杯となる前に交換して、ウェハシート毎に異なるランクのチップを収集していくことができなかった。 (2) In addition, the wafer sheet needs to be expanded for pick-up and pasting. Since expansion and contraction are repeated for replacement, it is preferable to reduce the number of replacements from the viewpoint of pick-up and pasting accuracy. In particular, it is desirable not to replace the wafer sheet on the pasting side until the wafer sheet is full in order to prevent misalignment due to expansion and contraction. For this reason, when the pickup side and the pasting side are one-to-one devices, the pick-up side picks up chips with different ranks, exchanges them before the pasting side is full, and collects chips with different ranks for each wafer sheet. I could n’t.
(3) さらに、伸縮するウェハシートからピックアップしたチップは、姿勢が一定でないため、ピックアップしたままの姿勢でウェハシートに貼り付ける場合、貼り付けられたチップの姿勢が揃わない場合がある。 (3) Further, since the posture of the chip picked up from the expanding / contracting wafer sheet is not constant, when pasted on the wafer sheet in the picked-up posture, the posture of the stuck chip may not be aligned.
 本発明は、上記のような従来技術の問題点を解決するために提案されたものであり、その目的は、2ランクのチップを、2つのウェハシートに分類して、効率良く正確な位置に貼り付けられる分類装置を提供することにある。 The present invention has been proposed in order to solve the above-described problems of the prior art, and the purpose thereof is to classify the two rank chips into two wafer sheets and efficiently place them in an accurate position. It is to provide a classification device to be pasted.
 上記の目的を達成するため、本発明の分類装置は、以下のような構成を有する。
(1)品質の程度を示すランクが異なるチップが混在したウェハが貼付され、ダイシングにより前記チップが個片に分かれたウェハシートを支持する支持装置と、前記支持装置に支持されたウェハシートが伸張されることにより分離されたチップを、ランクに基づいて選択的にピックアップするピックアップ装置と、前記ピックアップ装置によりピックアップされたチップを、円軌道の搬送経路において搬送する搬送装置と、前記搬送装置により搬送されるチップの姿勢ズレを計測する計測装置と、前記搬送経路の近傍に配設され、前記計測装置により計測された姿勢ズレに基づいて、チップの姿勢を補正する補正装置と、前記搬送経路の近傍における前記補正装置の後流に配設され、前記補正装置により姿勢を補正されたチップのうち、1種のランクのチップが貼り付けられるウェハシートを支持する第1の収集装置と、前記搬送経路の近傍における前記第1の収集装置の後流に配設され、前記補正装置により姿勢を補正されたチップのうち、他の1種のランクのチップが貼り付けられるウェハシートを支持する第2の収集装置と、前記搬送装置により搬送されたチップを、前記第1の収集装置のウェハシート及び前記第2の収集装置のウェハシートに、それぞれに対応するランクに分けて貼り付ける貼付装置と、前記支持装置のウェハシートから、前記2種のランクのチップが全てピックアップされた後に、ピックアップ済みのウェハシートを、ピックアップ前のウェハシートに順次交換する交換装置と、を有する。
In order to achieve the above object, the classification device of the present invention has the following configuration.
(1) A wafer in which chips having different ranks indicating the degree of quality are mixed is affixed and a wafer sheet in which the chips are separated into pieces by dicing is supported, and the wafer sheet supported by the support apparatus is extended. A pickup device that selectively picks up the chips separated by the rank based on the rank, a transfer device that transfers the chips picked up by the pickup device in a transfer path of a circular orbit, and the transfer device A measuring device that measures the posture deviation of the chip to be corrected, a correction device that is disposed in the vicinity of the conveyance path and corrects the posture of the chip based on the posture deviation measured by the measurement device; and Of the chips that are arranged in the wake of the correction device in the vicinity and whose posture is corrected by the correction device, 1 A first collecting device that supports a wafer sheet to which a chip of a rank of affixed is attached, and a chip that is disposed downstream of the first collecting device in the vicinity of the transfer path and whose posture is corrected by the correcting device Among the above, the second collection device that supports the wafer sheet to which the other one type of chip is attached, and the chips conveyed by the conveyance device are the wafer sheet of the first collection device and the second collection device. The wafer sheet of the collecting device is attached to the wafer sheet in a corresponding rank and the wafer sheet of the support device is picked up after all of the two rank chips are picked up from the wafer sheet of the support device. And an exchange device for sequentially exchanging the wafer sheets before picking up.
(2)前記2種のランクは、同一ウェハ内にあるチップのランク別の個数分布において、個数が最も多い2種のランクであってもよい。 (2) The two types of ranks may be the two types of ranks having the largest number in the number distribution of chips in the same wafer by rank.
(3)前記搬送装置は、所定のピッチの間欠動作で前記チップを搬送し、前記貼付装置は、前記特定の1種のランクと他の1種のランクが同数の状態では、前記間欠動作における停止タイミングで、前記第1の収集装置のウェハシート及び前記第2の収集装置のウェハシートのいずれか一方にチップを貼り付けてもよい。 (3) The transport device transports the chip in an intermittent operation with a predetermined pitch, and the sticking device is in the intermittent operation in a state where the number of the specific one rank and the other one rank is the same. At the stop timing, a chip may be attached to either the wafer sheet of the first collection device or the wafer sheet of the second collection device.
(4)前記ピックアップ装置及び前記貼付装置は、先端にチップを保持する保持装置であり、前記搬送装置は、所定のピッチで間欠回転する回転体を有し、複数の前記保持装置は、前記回転体に設けられ、複数の前記保持装置は、先端が前記搬送経路上に前記所定のピッチに対応する等間隔で並ぶ位置に配設されていてもよい。 (4) The pickup device and the sticking device are holding devices that hold a tip at a tip, the transport device includes a rotating body that rotates intermittently at a predetermined pitch, and a plurality of the holding devices are configured to rotate the rotation device. The plurality of holding devices provided on the body may be arranged at positions where tips are aligned at equal intervals corresponding to the predetermined pitch on the transport path.
(5)前記第1の収集装置に対応する位置に来る保持装置と、これと同時に前記第2の収集装置に対応する位置に来る保持装置とが、ピックアップにおいて、同じランクのチップを保持してもよい。 (5) A holding device that comes to a position corresponding to the first collecting device and a holding device that comes to a position corresponding to the second collecting device simultaneously hold chips of the same rank in the pickup. Also good.
(6)前記第1の収集装置のウェハシート及び前記第2の収集装置のウェハシートに貼り付けられたチップの位置座標を検出する座標検出部と、前記第1の収集装置及び前記第2の収集装置は、前記座標検出部により検出された貼り付け済みのチップの座標に基づいて、チップの貼り付け位置を調整してもよい。 (6) a coordinate detection unit that detects position coordinates of a wafer sheet of the first collection device and a chip attached to the wafer sheet of the second collection device, the first collection device, and the second collection device The collection device may adjust the chip attachment position based on the coordinates of the attached chip detected by the coordinate detection unit.
(7)前記計測装置は、前記搬送経路における前記補正装置の上流においてチップの姿勢ズレを計測する前計測部と、前記搬送経路における前記補正装置の下流においてチップの姿勢ズレを計測する後計測部と、を有し、前記補正装置は、前記前計測部により計測された姿勢ズレに基づいて、チップの姿勢を補正し、前記第1の収集装置及び前記第2の収集装置は、前記後計測部により計測された姿勢ズレに基づいて、チップの姿勢を補正してもよい。 (7) The measurement device includes a pre-measurement unit that measures a posture deviation of the chip upstream of the correction device in the transport path and a post-measurement unit that measures a posture shift of the chip downstream of the correction device in the transport path. The correction device corrects the posture of the chip based on the posture deviation measured by the pre-measurement unit, and the first collection device and the second collection device are configured to perform the post-measurement. The posture of the chip may be corrected based on the posture deviation measured by the unit.
(8)前記支持装置に支持されたウェハシートが伸張されることにより、個片に分かれたチップを、座標データに基づいて、ウェハシートに対して相対移動しながら撮像する撮像部と、前記撮像部が撮像した画像データに基づいて、ウェハ内のチップのうち特定のマークが付されたリファレンスチップを発見し、前記撮像部が相対移動するための座標データに基づいて、リファレンスチップの座標データを特定するリファレンス検出処理を行うリファレンス検出部と、リファレンスチップの座標データ及びウェハ内における各チップの相対位置情報を基準として、前記撮像部がウェハシートに対して相対移動しながら各チップを撮像した画像データと、前記撮像部が相対移動するための座標データとに基づいて、各チップの座標データを特定するスキャン処理を行うスキャン部と、を有し、前記ピックアップ装置は、前記スキャン部により特定された各チップの座標データと、各チップのランク情報とに基づいて、ウェハシートに対して相対移動しながら、チップを選択的にピックアップしてもよい。 (8) An imaging unit that captures an image of a chip divided into individual pieces while moving relative to the wafer sheet based on coordinate data by extending the wafer sheet supported by the support device; Based on the image data captured by the unit, a reference chip with a specific mark is found among the chips in the wafer, and the coordinate data of the reference chip is determined based on the coordinate data for the relative movement of the imaging unit. An image obtained by capturing each chip while the image capturing unit moves relative to the wafer sheet based on the reference detection unit that performs the reference detection process to be identified, and the reference chip coordinate data and the relative position information of each chip in the wafer. Identify the coordinate data of each chip based on the data and the coordinate data for relative movement of the imaging unit A scanning unit that performs a scanning process, and the pickup device moves relative to the wafer sheet based on the coordinate data of each chip specified by the scanning unit and the rank information of each chip. However, the chip may be selectively picked up.
 本発明によれば、ピックアップ後、貼り付け前に、チップの姿勢が補正装置により補正され、2ランクのチップが第1の収集装置のウェハシート、第2の収集装置のウェハシートに貼り付けられて行くので、貼り付け側のウェハシートを交換することなく、2つのウェハシートに並行して異なる2種のランクのチップを、正確に貼り付けることができる。また、2つのウェハシートのいずれかが満杯になるまで、ピックアップ側のウェハシートを交換していくことにより、2つのウェハシートを貼り付け途中に交換する必要がない。 According to the present invention, the posture of the chip is corrected by the correction device after the pickup and before the attachment, and the two rank chips are attached to the wafer sheet of the first collection device and the wafer sheet of the second collection device. Therefore, two different ranks of chips can be accurately attached in parallel to the two wafer sheets without exchanging the wafer sheet on the attachment side. Further, by exchanging the wafer sheet on the pickup side until one of the two wafer sheets is full, it is not necessary to replace the two wafer sheets during the pasting.
第1の実施形態に用いられる分類装置の構成を示す簡略平面図The simplified top view which shows the structure of the classification device used for 1st Embodiment 実施形態における支持装置を示す側面図The side view which shows the support apparatus in embodiment 実施形態におけるリング及びこれに張り付けられたウェハシートの構成を示す平面図The top view which shows the structure of the ring in embodiment, and the wafer sheet affixed on this 実施形態におけるオートローダを示す簡略側面図Simplified side view showing an autoloader in an embodiment 実施形態における補正装置の側面図(a)、平面図(b)を示すA side view (a) and a top view (b) of a correction device in an embodiment are shown. 実施形態における第1の収集装置及び第2の収集装置を示す側面図A side view showing the 1st collection device and the 2nd collection device in an embodiment 実施形態における制御装置の構成を示すブロック図The block diagram which shows the structure of the control apparatus in embodiment 実施形態の全体処理を示すフローチャートThe flowchart which shows the whole process of embodiment 実施形態の全体処理を示す説明図Explanatory drawing which shows the whole process of embodiment 実施形態の一括スキャン処理を示すフローチャートA flowchart showing batch scan processing of an embodiment 実施形態の目標チップへの位置決め処理を示す説明図Explanatory drawing which shows the positioning process to the target chip | tip of embodiment 実施形態のスキャン処理の領域を示す説明図Explanatory drawing which shows the area | region of the scanning process of embodiment チップのランク別の個数分布を示す説明図Explanatory diagram showing the number distribution of chips by rank 保持装置がピックアップして貼り付けるチップのランクの順序を示す説明図Explanatory drawing which shows the order of the rank of the chip which a holding device picks up and affixes 保持装置がピックアップして貼り付けるチップのランクの順序を示す説明図Explanatory drawing which shows the order of the rank of the chip which a holding device picks up and affixes 保持装置がピックアップして貼り付けるチップのランクの順序を示す説明図Explanatory drawing which shows the order of the rank of the chip which a holding device picks up and affixes 保持装置がピックアップして貼り付けるチップのランクの順序を示す説明図Explanatory drawing which shows the order of the rank of the chip which a holding device picks up and affixes ピックアップ装置と貼付装置が別体になっている他の実施形態を示す簡略側面図Simplified side view showing another embodiment in which the pickup device and the sticking device are separated. ピックアップ装置と貼付装置が別体になっている他の実施形態を示す簡略側面図Simplified side view showing another embodiment in which the pickup device and the sticking device are separated.
 本発明の実施形態を、図面を参照して説明する。
1.第1の実施形態
 本実施形態は、ウェハシートからピックアップしたチップを、ランク別に分類して2つのウェハシートに貼り付ける分類装置である。本実施形態は、ウェハシートからウェハシートまで、チップを移載する移載装置として捉えることもできる。
[A.チップ]
 本実施形態に適用されるチップは、電気製品に使用される部品であり、半導体素子、及び半導体素子以外の抵抗やコンデンサ等を挙げることができる。半導体素子としては、トランジスタ、ダイオード、LED、コンデンサ、及びサイリスタ等のディスクリート半導体、ICやLSI等の集積回路等を挙げることができる。 
Embodiments of the present invention will be described with reference to the drawings.
1. First Embodiment This embodiment is a classification device that classifies chips picked up from wafer sheets and ranks them on two wafer sheets. This embodiment can also be regarded as a transfer device for transferring chips from a wafer sheet to a wafer sheet.
[A. Chip]
The chip applied to the present embodiment is a component used for an electrical product, and examples thereof include a semiconductor element and a resistor or capacitor other than the semiconductor element. Examples of the semiconductor element include discrete semiconductors such as transistors, diodes, LEDs, capacitors, and thyristors, and integrated circuits such as ICs and LSIs.
[B.データ]
 次に、本実施形態で用いられる各種のデータは、以下の通りである。
[1.マップデータ]
 マップデータは、チップの区別情報及びチップの位置情報を含む。チップの区別情報は、チップを所定の基準で区別した情報である。この区別情報には、前工程において、あらかじめ行われた品質検査によるチップの良不良の程度に応じて、チップを分類したランクの情報が含まれる。このランクは、複数の等級に分かれている。品質検査には、プローブ検査及び外観検査の少なくとも一方を含む。
[B. data]
Next, various data used in this embodiment are as follows.
[1. Map data]
The map data includes chip discrimination information and chip position information. The chip distinction information is information that distinguishes the chips according to a predetermined standard. This distinction information includes rank information obtained by classifying chips in accordance with the degree of quality of the chips obtained by a quality inspection performed in advance in the previous process. This rank is divided into a plurality of grades. The quality inspection includes at least one of a probe inspection and an appearance inspection.
 また、区別情報は、製品となるチップ(製品チップ)とそれ以外のチップとを区別する情報も含む。特に、本実施形態の区別情報は、リファレンスチップであることを示す情報を含む。リファレンスチップは、ウェハ上の製品チップの位置の基準とするために、外観から識別できるマーク(リファレンスマーク)が付されたチップである。なお、リファレンスチップは、外観から識別できる態様を備えていればよい。 Further, the discrimination information includes information for discriminating between a chip to be a product (product chip) and other chips. In particular, the distinction information of the present embodiment includes information indicating that it is a reference chip. The reference chip is a chip with a mark (reference mark) that can be identified from the appearance in order to be a reference for the position of the product chip on the wafer. In addition, the reference chip should just be provided with the aspect which can be identified from an external appearance.
 また、チップの位置情報は、ウェハにおける基準点から見た各チップの行方向、列方向の相対的な位置情報である。 Further, the chip position information is relative position information in the row direction and the column direction of each chip viewed from the reference point on the wafer.
 具体的には、マップデータは、各チップが、何行何列目に当たるかという情報と、それが製品チップであればA~D等のどのランクかを示す情報と、リファレンスチップであることを示す情報からなるラスタデータとして表現できる。 Specifically, the map data includes information indicating which row and column each chip hits, information indicating which rank of A to D, etc. if it is a product chip, and a reference chip. It can be expressed as raster data consisting of the indicated information.
 さらに、マップデータには、各リファレンスチップが、ウェハ上のチップの位置を保証する領域が設定されている。つまり、ウェハ全体の領域が、複数の保証領域に区分され、保証領域毎に、リファレンスチップが設定されている。各リファレンスチップの位置は、各リファレンスチップが属する保証領域におけるチップの位置の基準とすることができる。 Furthermore, in the map data, an area in which each reference chip guarantees the position of the chip on the wafer is set. That is, the entire area of the wafer is divided into a plurality of guaranteed areas, and a reference chip is set for each guaranteed area. The position of each reference chip can be used as a reference for the position of the chip in the guaranteed area to which each reference chip belongs.
[2.座標データ]
 座標データは、装置にウェハシートがセットされた場合の各チップの位置情報である。本実施形態においては、この座標データに基づいて、後述する撮像部、ピックアップ装置等の位置決めがなされる。なお、撮像部、ピックアップ装置は、ウェハに対して相対的に移動すればよい。本実施形態では、後述するように、ウェハシートを張り付けたウェハリングをセットしたリング移動機構が移動することにより、この相対移動を実現している。座標データは、後述するリング移動機構のエンコーダ情報の座標値(x,y,θ)として取得できる。
[2. Coordinate data]
The coordinate data is position information of each chip when a wafer sheet is set in the apparatus. In the present embodiment, an imaging unit, a pickup device, etc., which will be described later, are positioned based on this coordinate data. The imaging unit and the pickup device may be moved relative to the wafer. In this embodiment, as will be described later, this relative movement is realized by moving a ring moving mechanism in which a wafer ring to which a wafer sheet is attached is set. The coordinate data can be acquired as coordinate values (x, y, θ) of encoder information of the ring moving mechanism described later.
[C.分類装置]
 次に、本実施形態の分類装置1を、図1~図17を参照して説明する。分類装置1は、図1及び図7に示すように、支持装置100、オートローダ5A、保持装置200、搬送装置300、計測装置400、補正装置500、第1の収集装置600、オートローダ5B、第2の収集装置700、オートローダ5C及び制御装置800を有する。
[C. Classification device]
Next, the classification device 1 of the present embodiment will be described with reference to FIGS. As shown in FIGS. 1 and 7, the classification device 1 includes a support device 100, an autoloader 5A, a holding device 200, a transport device 300, a measurement device 400, a correction device 500, a first collection device 600, an autoloader 5B, and a second device. Collecting device 700, autoloader 5C and control device 800.
[1.支持装置]
 支持装置100は、品質の程度を示すランクが異なるチップSが混在したウェハWが貼付され、ダイシングによりチップSが個片に分かれたウェハシートDaを支持する装置である。支持装置100は、図2に示すように、リング移動機構2A、エキスパンド機構3A、分離機構4Aを有する。
[1. Support device]
The support device 100 is a device that supports a wafer sheet Da to which a wafer W in which chips S having different ranks indicating quality levels are mixed is attached and the chips S are separated into individual pieces by dicing. As shown in FIG. 2, the support device 100 includes a ring moving mechanism 2A, an expanding mechanism 3A, and a separating mechanism 4A.
(リング移動機構)
 リング移動機構2Aは、リングホルダ21に装着されたウェハリングRaを、所定の方向に移動させる装置である。
(Ring moving mechanism)
The ring moving mechanism 2A is a device that moves the wafer ring Ra mounted on the ring holder 21 in a predetermined direction.
 ウェハリングRaは、図3に示すように、内部に形成された円形の穴が覆われるように、ウェハシートDaを張り付け保持するプレート状の部材である。このウェハシートDaには、ウェハWが貼り付けられている。そして、ウェハWは、ダイシングにより、複数のチップSに切断されている。 The wafer ring Ra is a plate-like member that holds and holds the wafer sheet Da so that a circular hole formed inside is covered as shown in FIG. A wafer W is attached to the wafer sheet Da. The wafer W is cut into a plurality of chips S by dicing.
 リング移動機構2Aは、リングホルダ21を、図示しないガイドレール等に沿って、X軸方向及びY軸方向に位置決め可能に設けられている。また、リング移動機構2Aは、図示しないモータの駆動力を伝達するベルト及びプーリ等によって、リングホルダ21をθ方向に位置決め可能に設けられている。 The ring moving mechanism 2A is provided so that the ring holder 21 can be positioned in the X-axis direction and the Y-axis direction along a guide rail (not shown). The ring moving mechanism 2A is provided so that the ring holder 21 can be positioned in the θ direction by a belt, a pulley, and the like that transmit a driving force of a motor (not shown).
(エキスパンド機構)
 エキスパンド機構3Aは、ウェハシートDaを伸張することにより、個片のチップS間に隙間を空ける機構である。このエキスパンド機構3Aは、円筒状の引張部31を有する。引張部31は、以下のように、ウェハシートDaを伸張するように構成されている。まず、引張部31の円筒の一端を、ウェハリングRaの背後からウェハシートDaにおけるウェハWの貼付面の反対側に押し当てる。
(Expanding mechanism)
The expanding mechanism 3A is a mechanism that creates a gap between the individual chips S by extending the wafer sheet Da. The expanding mechanism 3 </ b> A has a cylindrical tensile portion 31. The tension portion 31 is configured to stretch the wafer sheet Da as follows. First, one end of the cylinder of the tension portion 31 is pressed against the opposite side of the wafer W on the wafer sheet Da from the back of the wafer ring Ra.
 そして、引張部31が、その外周とウェハリングRaの円形の穴の内周との間にウェハシートDaを挟んで、ウェハリングRaの正面側に突出するように移動する。これにより、ウェハシートDaが、ウェハWを囲む円の内側から外側へ向かう方向の力によって伸張する。引張部31は、このような動作を実現するために、図示しないシリンダ等により進退可能に設けられている。 Then, the pulling portion 31 moves so as to protrude to the front side of the wafer ring Ra with the wafer sheet Da interposed between the outer periphery thereof and the inner periphery of the circular hole of the wafer ring Ra. As a result, the wafer sheet Da is stretched by a force in a direction from the inside to the outside of the circle surrounding the wafer W. In order to realize such an operation, the tension portion 31 is provided so as to be able to advance and retreat by a cylinder or the like (not shown).
(分離機構)
 分離機構4Aは、ウェハシートDaから、個別にチップSを分離する装置である。この分離機構4Aは、ウェハシートDaを挟んでチップSに対向するピン41aを有する。このピン41aは、リング移動機構2Aの移動に従って、対向する位置に来たチップSを、先端によりウェハシートDaを介して押圧する方向に移動可能に設けられている。
(Separation mechanism)
The separation mechanism 4A is a device that separates the chips S from the wafer sheet Da. The separation mechanism 4A has pins 41a facing the chip S with the wafer sheet Da interposed therebetween. This pin 41a is provided so as to be movable in a direction in which the tip S that has come to the opposite position is pressed via the wafer sheet Da by the tip as the ring moving mechanism 2A moves.
[2.オートローダ5A]
 オートローダ5Aは、支持装置100におけるウェハシートDaを交換する交換装置である。本実施形態では、オートローダ5Aは、ウェハシートDaから2種のランクのチップSが全てピックアップされた後に、ピックアップ済みのウェハシートDaを、2種のランクのチップSをピックアップしていないウェハシートDaに順次交換する。より具体的には、オートローダ5Aは、ウェハWが貼り付けられたウェハシートDaを保持するウェハリングRaを、カセット内に複数枚収納し、リング移動機構2Aに対して装着、取り外しを行う。このオートローダ5Aは、例えば、図4に示すように、収容部110、リング搬送機構120を有する。
[2. Autoloader 5A]
The autoloader 5 </ b> A is an exchange device that exchanges the wafer sheet Da in the support device 100. In the present embodiment, the autoloader 5A, after all the two types of chips S are picked up from the wafer sheet Da, the picked-up wafer sheet Da is used as the wafer sheet Da from which the two types of chips S are not picked up. Replace sequentially. More specifically, the autoloader 5A stores a plurality of wafer rings Ra holding the wafer sheet Da to which the wafer W is attached in a cassette, and attaches and removes the wafer ring Ra to and from the ring moving mechanism 2A. The autoloader 5A includes, for example, a housing part 110 and a ring transport mechanism 120 as shown in FIG.
(収容部)
 収容部110は、複数のウェハリングRaを収容する装置である。収容部110は、リング移動機構2AにセットされたウェハシートDaにおけるチップSの貼付面と反対側に配置されている。収容部110は、供給マガジン111、図示しない昇降装置を有している。
(Container)
The accommodating part 110 is an apparatus that accommodates a plurality of wafer rings Ra. The accommodating part 110 is arrange | positioned on the opposite side to the sticking surface of the chip | tip S in the wafer sheet Da set to 2 A of ring moving mechanisms. The accommodating part 110 has the supply magazine 111 and the raising / lowering apparatus which is not shown in figure.
 供給マガジン111は、一対の側壁の間に、複数の水平方向のウェハリングRaを積層して収容する。複数のウェハリングRaは、側壁に設けられたガイドによって、上下に間隔を空けて支持されている。 The supply magazine 111 stores a plurality of horizontal wafer rings Ra stacked between a pair of side walls. The plurality of wafer rings Ra are supported at intervals in the vertical direction by guides provided on the side walls.
 昇降装置は、供給マガジン111を昇降させる機構である。例えば、駆動源により回動する垂直方向のボールねじ、垂直方向のガイドレール等により構成できる。 The lifting device is a mechanism that lifts and lowers the supply magazine 111. For example, it can be constituted by a vertical ball screw rotated by a drive source, a vertical guide rail, or the like.
 供給マガジン111は、昇降装置によって、所望の階層のウェハリングRaの収納位置が、搬入搬出位置に位置決めされる。供給マガジン111のウェハリングRaの収納可能枚数は、10~20枚程度が考えられるが、特定の枚数には限定されない。 In the supply magazine 111, the storage position of the wafer ring Ra at a desired level is positioned at the loading / unloading position by the lifting device. The number of wafer rings Ra that can be stored in the supply magazine 111 can be about 10 to 20, but is not limited to a specific number.
(リング搬送機構)
 リング搬送機構120は、収容部110に収容されたウェハリングRaを取り出して、リング移動機構2Aへ受け渡し、リング移動機構2AからウェハリングRaを受け取って、収容部110に戻す装置である。図4に示すように、リング搬送機構120は、収容部110の搬入搬出位置において、供給マガジン111との間でウェハリングRaを出し入れする。
(Ring transport mechanism)
The ring transport mechanism 120 is a device that takes out the wafer ring Ra accommodated in the accommodating portion 110, transfers it to the ring moving mechanism 2A, receives the wafer ring Ra from the ring moving mechanism 2A, and returns it to the accommodating portion 110. As shown in FIG. 4, the ring transport mechanism 120 moves the wafer ring Ra in and out of the supply magazine 111 at the loading / unloading position of the storage unit 110.
 より具体的には、リング搬送機構120は、供給マガジン111からウェハリングRaを水平にスライドさせて取り出し、供給マガジン111へウェハリングRaを水平にスライドさせて収容する。また、リング搬送機構120は、下方から開口にウェハリングRaを垂直に挿入することでリンク移動機構2Aへ供給し、ウェハリングRaを下方へ垂直にスライドさせることでリング移動機構2Aから取り出す。 More specifically, the ring transport mechanism 120 slides and removes the wafer ring Ra from the supply magazine 111 and accommodates the wafer ring Ra in the supply magazine 111 by sliding it horizontally. Further, the ring transport mechanism 120 supplies the wafer ring Ra to the link moving mechanism 2A by vertically inserting the wafer ring Ra into the opening from below, and takes out the wafer ring Ra from the ring moving mechanism 2A by vertically sliding the wafer ring Ra.
 このため、リング搬送機構120は、クランプ121、フォーク122を有する。クランプ121は、ウェハリングRaの相反する2つの縁部に対応して一対設けられている。フォーク122は、各クランプ121に設けられ、それぞれ2本の歯を平行に並べた部材である。クランプ121は、フォーク122を接近及び離反させることでウェハリングRaを挟持及び解放する。 For this reason, the ring transport mechanism 120 has a clamp 121 and a fork 122. A pair of clamps 121 are provided corresponding to two opposite edges of the wafer ring Ra. The fork 122 is a member provided on each clamp 121 and having two teeth arranged in parallel. The clamp 121 clamps and releases the wafer ring Ra by moving the fork 122 closer to and away from the fork 122.
 リング搬送機構120は、図示はしないが、クランプ121を供給マガジン111に対向する水平方向と、リング移動機構2Aに対向する垂直位置との間で変位させる回動機構を有する。また、リング搬送機構120は、図示はしないが、クランプ121を供給マガジン111に向けて進退させ、リング移動機構2Aに向けて進退させる進退機構を有する。 Although not shown, the ring transport mechanism 120 has a rotation mechanism that displaces the clamp 121 between a horizontal direction facing the supply magazine 111 and a vertical position facing the ring moving mechanism 2A. Although not shown, the ring transport mechanism 120 includes an advance / retreat mechanism that advances and retracts the clamp 121 toward the supply magazine 111 and advances and retracts toward the ring moving mechanism 2A.
 クランプ121が水平方向となった場合、クランプ121の一端は、収容部110の搬入搬出位置に対向する。クランプ121が垂直方向となった場合、クランプ121の一端は、リング移動機構2Aに対向する。 When the clamp 121 is in the horizontal direction, one end of the clamp 121 is opposed to the carry-in / carry-out position of the storage unit 110. When the clamp 121 is in the vertical direction, one end of the clamp 121 faces the ring moving mechanism 2A.
[3.保持装置]
 保持装置200は、先端にチップSを保持する装置である。保持装置200は、支持装置100に支持されたウェハシートが伸張されることにより、個片に分かれたチップSを、ランクに基づいて選択的にピックアップするピックアップ装置である。また、保持装置200は、搬送装置300により搬送されたチップSを、後述する第1の収集装置600のウェハシートDb及び第2の収集装置700のウェハシートDcに、ランクに分けて貼り付ける貼付装置である。つまり、保持装置200は、ピックアップ装置及び貼付装置の両者の機能を有する装置である。
[3. Holding device]
The holding device 200 is a device that holds the chip S at the tip. The holding device 200 is a pickup device that selectively picks up the chips S divided into individual pieces based on the ranks when the wafer sheet supported by the support device 100 is stretched. In addition, the holding device 200 attaches the chips S transferred by the transfer device 300 to the wafer sheet Db of the first collection device 600 and the wafer sheet Dc of the second collection device 700, which will be described later, in a rank. Device. That is, the holding device 200 is a device having functions of both a pickup device and a sticking device.
 この保持装置200は、例えば、吸着ノズル210を有する。吸着ノズル210は、ノズル先端が開口した中空状の筒であり、ノズル先端をテーブル半径方向外方に向けており、またノズル内部は真空発生装置の空気圧回路とチューブを介して連通している。この吸着ノズル210は、真空発生装置による負圧の発生によってチップSを吸着し、真空破壊又は正圧の発生によってチップSを離脱させる。 The holding device 200 has a suction nozzle 210, for example. The suction nozzle 210 is a hollow cylinder having an opening at the tip of the nozzle, the tip of the nozzle is directed outward in the radial direction of the table, and the inside of the nozzle communicates with a pneumatic circuit of a vacuum generator via a tube. The suction nozzle 210 sucks the chip S by generating a negative pressure by a vacuum generator, and detaches the chip S by generating a vacuum or generating a positive pressure.
 また、保持装置200は、図2、図6に示すように、撮像部60a、60b、60cを有する。撮像部60aは、図2に示すように、支持装置100のウェハシートDa及びチップSの画像を撮像する機構である。撮像部60aは、カメラ61aと光学系部材62aを有する。カメラ61aは、ウェハシートDa上のチップSを撮像し、画像データを出力する装置である。光学系部材62aは、ウェハシートDa上のチップSの1面の像をカメラ61aに導くように、光軸の方向を変換するプリズムである。 Also, the holding device 200 includes imaging units 60a, 60b, and 60c as shown in FIGS. The imaging unit 60a is a mechanism that captures images of the wafer sheet Da and the chip S of the support device 100 as illustrated in FIG. The imaging unit 60a includes a camera 61a and an optical system member 62a. The camera 61a is an apparatus that images the chip S on the wafer sheet Da and outputs image data. The optical system member 62a is a prism that changes the direction of the optical axis so that an image of one surface of the chip S on the wafer sheet Da is guided to the camera 61a.
 撮像部60bは、図6に示すように、後述する第1の収集装置600のウェハシートDb及びチップSの画像を撮像する機構である。撮像部60bは、カメラ61bと光学系部材62bを有する。カメラ61bは、ウェハシートDb上のチップSを撮像し、画像データを出力する装置である。光学系部材62bは、ウェハシートDbの像をカメラ61bに導くように、光軸の方向を変換するプリズムである。 The imaging unit 60b is a mechanism that captures images of the wafer sheet Db and the chip S of the first collection device 600, which will be described later, as shown in FIG. The imaging unit 60b includes a camera 61b and an optical system member 62b. The camera 61b is a device that images the chip S on the wafer sheet Db and outputs image data. The optical system member 62b is a prism that changes the direction of the optical axis so as to guide the image of the wafer sheet Db to the camera 61b.
 撮像部60cは、図6に示すように、後述する第2の収集装置700のウェハシートDc及びチップSの画像を撮像する機構である。撮像部60cは、カメラ61cと光学系部材62cを有する。カメラ61cは、ウェハシートDc上のチップSを撮像し、画像データを出力する装置である。光学系部材62cは、ウェハシートDcの像をカメラ61cに導くように、光軸の方向を変換するプリズムである。 The imaging unit 60c is a mechanism that captures images of the wafer sheet Dc and the chip S of the second collection device 700 described later, as shown in FIG. The imaging unit 60c includes a camera 61c and an optical system member 62c. The camera 61c is a device that images the chip S on the wafer sheet Dc and outputs image data. The optical system member 62c is a prism that changes the direction of the optical axis so as to guide the image of the wafer sheet Dc to the camera 61c.
[4.搬送装置]
 搬送装置300は、保持装置200によりピックアップされたチップSを、円軌道の搬送経路Tにおいて搬送する装置である。
[4. Transport device]
The transport device 300 is a device that transports the chip S picked up by the holding device 200 on a transport path T of a circular orbit.
 搬送装置300は、回転体310を有する。回転体310は、所定のピッチで間欠回転する部材である。回転体310は、一点を中心に放射状に拡がる円盤や星形等の形状を有する。回転体310は、水平方向に配置され、放射中心が図示しないモータの回転軸で軸支されている。このモータが、回転体310を間欠回転させるように制御される。 The transport apparatus 300 includes a rotating body 310. The rotating body 310 is a member that intermittently rotates at a predetermined pitch. The rotating body 310 has a shape such as a disk or a star that expands radially around one point. The rotating body 310 is arranged in the horizontal direction, and the radiation center is supported by a rotating shaft of a motor (not shown). This motor is controlled to rotate the rotating body 310 intermittently.
 保持装置200は、回転体310に複数設けられている。保持装置200は、先端が前記搬送経路T上に所定のピッチに対応する等間隔で並ぶ位置に配設されている。複数の保持装置200は、回転体310の回転により形成される円周の等配位置、及び回転体310の放射中心から同一距離に複数備えられている。複数の保持装置200の先端は、外方に突出しており、回転体310の回転とともに辿る円軌道の搬送経路Tに等間隔に並べて配設されている。  A plurality of holding devices 200 are provided on the rotating body 310. The holding device 200 is disposed at a position where the tips are aligned on the transport path T at regular intervals corresponding to a predetermined pitch. A plurality of holding devices 200 are provided at the same distance from the circumferentially spaced position formed by the rotation of the rotating body 310 and the radial center of the rotating body 310. The tips of the plurality of holding devices 200 protrude outward and are arranged at equal intervals on a circular orbit conveyance path T that follows as the rotating body 310 rotates.
 搬送経路Tは、回転体310とともに所定角度ずつ間欠回転する保持装置200の先端が辿る円軌道である。つまり、保持装置200でチップSを保持しつつ、回転体310を回転させることで、チップSが円軌道に沿って移動する。回転体310の間欠回転のピッチは、保持装置200の配置間隔に等しい。複数の保持装置200は、共通の移動軌跡を辿り、共通の停止ポジションに順次停止する。 The conveyance path T is a circular orbit followed by the tip of the holding device 200 that intermittently rotates with the rotating body 310 by a predetermined angle. That is, the chip S moves along the circular orbit by rotating the rotating body 310 while holding the chip S by the holding device 200. The pitch of the intermittent rotation of the rotating body 310 is equal to the arrangement interval of the holding device 200. The plurality of holding devices 200 follow a common movement track and sequentially stop at a common stop position.
 以上のような回転体310及び保持装置200は、ロータリーピックアップとして構成されている。保持装置200は、回転体310の半径方向に沿って、換言すると、回転体310の中心から外方に向かう線に沿って進出及び退入可能となっている。また、保持装置200の幾つかの停止箇所には、保持装置200に対して進出及び退入の推進力を与える図示しない進退駆動装置が配置されている。幾つかの停止箇所とは、図2に示すピックアップ地点K、図6に示す貼り付け地点N1、N2である。 The rotating body 310 and the holding device 200 as described above are configured as a rotary pickup. The holding device 200 can advance and retract along the radial direction of the rotating body 310, in other words, along a line extending outward from the center of the rotating body 310. Further, an advance / retreat drive device (not shown) that gives a propelling force to advance and retreat with respect to the holding device 200 is arranged at several stop points of the holding device 200. Some stop points are the pickup point K shown in FIG. 2 and the pasting points N1 and N2 shown in FIG.
 ピックアップ地点Kに停止した保持装置200は、第1の支持装置100のウェハシートDaの面に対して、進退方向が直交する方向となるように対向する。そして、リング移動機構2Aにより保持装置200の先端に位置決めされ、分離機構4Aにより押し出されたチップSが、吸着ノズル210の吸着対象となる。一方、貼り付け地点N1、N2に停止した保持装置200は、後述するウェハシートDb、Dcの面に対して、進退方向が直交する方向となるように対向する。そして、後述するリング移動機構2B、2Cにより保持装置200の先端に位置決めされたウェハシートDb、Dcの箇所が、チップSの貼り付け箇所となる。 The holding device 200 stopped at the pickup point K faces the surface of the wafer sheet Da of the first support device 100 so that the advancing and retreating directions are orthogonal to each other. Then, the tip S positioned at the tip of the holding device 200 by the ring moving mechanism 2 </ b> A and pushed out by the separation mechanism 4 </ b> A becomes the suction target of the suction nozzle 210. On the other hand, the holding device 200 stopped at the pasting points N1 and N2 is opposed to the surfaces of wafer sheets Db and Dc, which will be described later, so that the advancing and retreating directions are perpendicular to each other. And the location of wafer sheet Db, Dc positioned at the front-end | tip of the holding | maintenance apparatus 200 by the ring moving mechanism 2B, 2C mentioned later becomes an attachment location of the chip S.
[5.計測装置]
 計測装置400は、搬送装置300により搬送されるチップSの姿勢ズレを計測する装置である。計測装置400は、図1に示すように、前計測部40A、後計測部40Bを有する。前計測部40Aは、搬送経路Tにおける補正装置500の上流においてチップSの姿勢ズレを計測する構成部である。後計測部40Bは、搬送経路Tにおける補正装置500の下流においてチップSの姿勢ズレを計測する構成部である。上流とは、図1の矢印で示すチップSの搬送方向において、先に通過する側であり、下流とは後に通過する側である。
[5. Measuring device]
The measuring device 400 is a device that measures the posture deviation of the chip S conveyed by the conveying device 300. As illustrated in FIG. 1, the measurement device 400 includes a front measurement unit 40A and a rear measurement unit 40B. The pre-measurement unit 40A is a component that measures the positional deviation of the chip S upstream of the correction device 500 in the transport path T. The post-measurement unit 40B is a component that measures the posture deviation of the chip S downstream of the correction device 500 in the transport path T. The upstream is the side that passes first in the conveying direction of the chip S indicated by the arrow in FIG. 1, and the downstream is the side that passes later.
 前計測部40A、後計測部40Bは、保持装置200により保持されたチップSを撮影し、画像処理によりチップSの姿勢ズレ、即ちXY軸方向で表す位置ズレ及びθ軸回転で表す方向ズレを検出する。つまり、前計測部40A、後計測部40Bは、チップSを撮像する撮像装置と、画像処理によりチップSの姿勢ズレを検出する演算装置とを有している。姿勢とは位置及び方向を含む。 The pre-measurement unit 40A and the post-measurement unit 40B take an image of the chip S held by the holding device 200, and perform image processing to generate a position shift of the chip S, that is, a position shift represented by the XY axis direction and a direction shift represented by the θ axis rotation. To detect. That is, the pre-measurement unit 40A and the post-measurement unit 40B include an imaging device that captures an image of the chip S and an arithmetic device that detects an orientation shift of the chip S by image processing. The posture includes a position and a direction.
 姿勢ズレとは、保持装置200における保持の基準点からの位置ズレ及び方向ズレである。基準点としては、例えば、吸着ノズル210の吸着領域の中心点である。XY軸方向は、チップSの吸着面が拡がる方向をいう。計測装置400の検出結果は、チップSのX軸方向の位置ズレの量、Y軸方向の位置ズレの量、及びθ軸方向の方向ズレの量を示す情報として出力される。なお、チップSの吸着面と直交する方向をZ軸方向という。上記のように回転体310の半径方向に進退する保持装置200は、Z軸方向にチップSを進退させる。 The attitude shift is a positional shift and a direction shift from the holding reference point in the holding device 200. The reference point is, for example, the center point of the suction region of the suction nozzle 210. The XY axis direction refers to the direction in which the suction surface of the chip S expands. The detection result of the measuring device 400 is output as information indicating the amount of positional deviation of the chip S in the X-axis direction, the amount of positional deviation in the Y-axis direction, and the amount of positional deviation in the θ-axis direction. A direction orthogonal to the suction surface of the chip S is referred to as a Z-axis direction. As described above, the holding device 200 that moves forward and backward in the radial direction of the rotating body 310 moves the tip S forward and backward in the Z-axis direction.
 前計測部40Aは、搬送経路Tにおける補正装置500の上流側の停止ポジションにおいて、補正装置500による補正前に、上記の計測を行う。後計測部40Bは、搬送経路Tにおける補正装置500の下流側において、補正装置500による補正後、第1の収集装置600、第2の収集装置700による収集前に、上記の計測を行う。 The pre-measurement unit 40A performs the above measurement at the stop position on the upstream side of the correction device 500 in the transport path T before correction by the correction device 500. The post-measurement unit 40B performs the above measurement on the downstream side of the correction device 500 in the transport path T, after correction by the correction device 500, and before collection by the first collection device 600 and the second collection device 700.
[6.補正装置]
 補正装置500は、搬送経路Tの近傍に配設され、計測装置400により計測された姿勢ズレに基づいて、チップSの姿勢を補正する装置である。補正装置500は、位置ズレの量及び方向ズレの量の情報を参照して、チップSの姿勢ズレを解消するように、チップSをXY軸方向に移動させ、またθ軸回りに回転させることで、チップSの姿勢を正す。
[6. Correction device]
The correction device 500 is a device that is disposed in the vicinity of the transport path T and corrects the posture of the chip S based on the posture deviation measured by the measurement device 400. The correction device 500 refers to the information on the positional deviation amount and the direction deviation amount, and moves the chip S in the XY-axis direction and rotates it around the θ axis so as to eliminate the positional deviation of the chip S. Thus, the posture of the chip S is corrected.
 図5は、この補正装置500の詳細構成を示す。図5(a)は側面図、図5(b)は平面図である。補正装置500は、基台Bに設けられたコレット51及び架台52を有する。基台Bは分類装置1に垂直方向に立ち上げて設置されている。架台52には、コレット51をZ軸方向に移動させるZ軸移動機構55が搭載されている。コレット51はZ軸移動機構55を介して架台52に搭載されている。 FIG. 5 shows a detailed configuration of the correction device 500. 5A is a side view and FIG. 5B is a plan view. The correction device 500 includes a collet 51 and a gantry 52 provided on the base B. The base B is set up in the vertical direction on the classification device 1. The gantry 52 is equipped with a Z-axis moving mechanism 55 that moves the collet 51 in the Z-axis direction. The collet 51 is mounted on the gantry 52 via the Z-axis moving mechanism 55.
 また、架台52は、レール上をスライド移動するスライダにより構成されたX軸移動機構53及びY軸移動機構54を備えており、X軸及びY軸方向に移動可能となっている。さらに、架台52には、ベルトドライブにより、コレット51をθ軸周りに回転させるθ軸回転機構56が搭載されている。 The gantry 52 includes an X-axis moving mechanism 53 and a Y-axis moving mechanism 54 configured by sliders that slide on the rail, and is movable in the X-axis and Y-axis directions. Further, the gantry 52 is equipped with a θ-axis rotating mechanism 56 that rotates the collet 51 around the θ-axis by a belt drive.
 コレット51は、ゴムや金属により形成される略円錐体である。コレット51の頂点は平坦面となっている。チップSはコレット51の平坦面に載置される。コレット51には平坦面に通じる内部通路が形成されており、その内部通路は真空ポンプやエジェクタ等の負圧発生装置の空気圧回路と連通している。空気圧回路に負圧を発生させることにより、コレット51は平坦面でチップSを保持し、真空破壊や大気解放によってチップSを離脱させる。 The collet 51 is a substantially cone formed of rubber or metal. The vertex of the collet 51 is a flat surface. The chip S is placed on the flat surface of the collet 51. The collet 51 is formed with an internal passage leading to a flat surface, and the internal passage communicates with a pneumatic circuit of a negative pressure generating device such as a vacuum pump or an ejector. By generating a negative pressure in the pneumatic circuit, the collet 51 holds the chip S on a flat surface, and detaches the chip S by a vacuum break or air release.
 Z軸移動機構55は、カム機構6、ボイスコイルモータ7、圧縮バネ8、55bにより構成されている。カム機構6は、Z軸方向に移動可能な支持フレーム55aを、これに固定されたカムフォロア6aを円筒カム6bの回転に従って付勢することにより、Z軸方向に移動させる。この支持フレーム55aにボイルコイルモータ7、圧縮バネ55bが固定され、支持フレーム55aのZ軸移動に従って、コレット51を保持装置200へ向けてZ軸移動させる。圧縮バネ8は、コレット51を保持装置200から離れる方向にZ軸移動させる。ボイスコイルモータ7は、コレット51と吸着ノズル210とで挟み込んだチップSへの過大な荷重を吸収し、所定の荷重をチップSにかける。 The Z-axis moving mechanism 55 includes a cam mechanism 6, a voice coil motor 7, and compression springs 8 and 55b. The cam mechanism 6 moves the support frame 55a movable in the Z-axis direction in the Z-axis direction by urging the cam follower 6a fixed thereto according to the rotation of the cylindrical cam 6b. The boil coil motor 7 and the compression spring 55b are fixed to the support frame 55a, and the collet 51 is moved toward the holding device 200 in the Z-axis according to the Z-axis movement of the support frame 55a. The compression spring 8 moves the collet 51 in the direction away from the holding device 200 in the Z axis. The voice coil motor 7 absorbs an excessive load applied to the chip S sandwiched between the collet 51 and the suction nozzle 210 and applies a predetermined load to the chip S.
 ボイスコイルモータ7は、カム機構6によるコレット51をZ軸方向に沿って上昇させるための駆動と同時に、コイルボビン71にかかる荷重と拮抗する対抗推力を発生させている。対抗推力は、コレット51がチップSへ未達の状況下における、コイルボビン71にかかる荷重と拮抗する。このコイルボビン71にかかる荷重とは圧縮バネ8と圧縮バネ55bの付勢力の差である。 The voice coil motor 7 generates a counter thrust that antagonizes the load applied to the coil bobbin 71 at the same time as driving the collet 51 by the cam mechanism 6 to rise along the Z-axis direction. The counter thrust antagonizes the load applied to the coil bobbin 71 in a situation where the collet 51 does not reach the chip S. The load applied to the coil bobbin 71 is a difference in urging force between the compression spring 8 and the compression spring 55b.
 そのため、コイルボビン71は、チップSへ未達の際は、ボイスコイルモータ7との相対的な位置関係を維持しつつ、チップSへ到達した際は、それ以上進もうとするときの当該チップSから受ける荷重に押し負けて、ボイスコイルモータ7に埋没するようにZ軸方向に沿って後退する。すなわち、ボイスコイルモータ7は、チップSとコレット51とが当接し、更に進もうとする際にチップSに発生する過大な荷重を吸収する。  Therefore, the coil bobbin 71 maintains the relative positional relationship with the voice coil motor 7 when it does not reach the chip S, and when it reaches the chip S, the chip S when it tries to advance further. It is defeated by the load received from and retracts along the Z-axis direction so as to be buried in the voice coil motor 7. That is, the voice coil motor 7 absorbs an excessive load generated in the chip S when the chip S and the collet 51 come into contact with each other and further advance.
 保持装置200と補正装置500との間のチップSの受け渡しは、以下のように行う。補正装置500へのチップSの受け渡しでは保持装置200を突出させない。代わりに、補正装置500のコレット51をZ軸方向に突出させて保持装置200に近づき、自らチップSを迎えに行き、保持装置200の吸着解除とともに、負圧による吸着を行う。 The delivery of the chip S between the holding device 200 and the correction device 500 is performed as follows. When the chip S is delivered to the correction device 500, the holding device 200 is not protruded. Instead, the collet 51 of the correction device 500 is protruded in the Z-axis direction, approaches the holding device 200, picks up the chip S by itself, and performs the suction by the negative pressure while releasing the suction of the holding device 200.
 そして、補正装置500は、コレット51を保持装置200から離れる方向にZ軸移動させることで、チップSを保持装置200から後退させながら、その後退及び再突出とオーバーラップさせて、コレット51を左右(XY軸方向)に移動させ、更には、コレット51をθ回転させることで、チップSの姿勢を補正する。さらに、コレット51のZ軸方向への再突出により保持装置200に近づき、保持装置200の吸着開始とともに、吸着を解除する。 Then, the correction device 500 moves the collet 51 in the Z-axis direction away from the holding device 200 to overlap the retreat and re-projection while retreating the chip S from the holding device 200, thereby moving the collet 51 left and right. The posture of the chip S is corrected by moving it in the (XY axis direction) and further rotating the collet 51 by θ. Further, the collet 51 approaches the holding device 200 due to re-projection in the Z-axis direction, and the suction is released when the holding device 200 starts sucking.
[7.第1の収集装置]
 第1の収集装置600は、基本的には、支持装置100と同様の構成である。つまり、第1の収集装置600も、分離機構以外のリング移動機構2B、エキスパンド機構3B、オートローダ5Bを有する。リング移動機構2Bは、ウェハシートDbを張り付け保持するウェハリングRbを有している。なお、ウェハシートDbの背面を支持する部材があってもよい。なお、オートローダ5Bも、オートローダ5Aと同様の交換装置である。つまり、オートローダ5Bも、収容部110、リング搬送機構120を有する。
[7. First collection device]
The first collection device 600 basically has the same configuration as the support device 100. That is, the first collection device 600 also includes a ring moving mechanism 2B, an expanding mechanism 3B, and an autoloader 5B other than the separation mechanism. The ring moving mechanism 2B has a wafer ring Rb that holds and holds the wafer sheet Db. There may be a member that supports the back surface of the wafer sheet Db. The autoloader 5B is an exchange device similar to the autoloader 5A. That is, the autoloader 5 </ b> B also includes the storage unit 110 and the ring transport mechanism 120.
[9.第2の収集装置]
 第2の収集装置700も、基本的には、支持装置100と同様の構成である。つまり、第2の収集装置700も、分離機構以外のリング移動機構2C、エキスパンド機構3C、オートローダ5Cを有する。リング移動機構2Cは、ウェハシートDcを張り付け保持するウェハリングRcを有している。なお、ウェハシートDcの背面を支持する部材があってもよい。なお、オートローダ5Cも、オートローダ5Aと同様の交換装置である。つまり、オートローダ5Cも、収容部110、リング搬送機構120を有する。
[9. Second collection device]
The second collection device 700 is basically configured similarly to the support device 100. That is, the second collection device 700 also includes a ring moving mechanism 2C, an expanding mechanism 3C, and an autoloader 5C other than the separation mechanism. The ring moving mechanism 2C has a wafer ring Rc that holds the wafer sheet Dc. There may be a member that supports the back surface of the wafer sheet Dc. The autoloader 5C is also an exchange device similar to the autoloader 5A. That is, the autoloader 5 </ b> C also includes the storage unit 110 and the ring transport mechanism 120.
 第1の収集装置600及び第2の収集装置700は、後述する座標検出部18により検出された貼り付け済みのチップSの座標に基づいて、チップSの貼り付け位置を調整する。さらに、第1の収集装置600及び第2の収集装置700は、後計測部40Bにより計測された姿勢ズレに基づいて、チップSの姿勢を補正することもできる。 The first collection device 600 and the second collection device 700 adjust the attachment position of the chip S based on the coordinates of the attached chip S detected by the coordinate detection unit 18 described later. Further, the first collection device 600 and the second collection device 700 can also correct the posture of the chip S based on the posture deviation measured by the post-measurement unit 40B.
 支持装置100、計測装置400、補正装置500、第1の収集装置600、第2の収集装置700は、搬送装置300の周囲の搬送経路Tの近傍に配設されている。チップSの搬送方向の上流から、支持装置100、計測装置400の前計測部40A、補正装置500、計測装置400の後計測部40B、第1の収集装置600、第2の収集装置700の順に配設されている。支持装置100には、第1の収集装置600が対向し、補正装置500には、第2の収集装置700が対向している。これにより、搬送装置300の周囲のスペースを有効に利用して、2種のランクのチップSの正確な並行貼り付けを実現する。 The support device 100, the measurement device 400, the correction device 500, the first collection device 600, and the second collection device 700 are arranged in the vicinity of the conveyance path T around the conveyance device 300. From the upstream in the conveying direction of the chip S, the support device 100, the front measurement unit 40A of the measurement device 400, the correction device 500, the rear measurement unit 40B of the measurement device 400, the first collection device 600, and the second collection device 700 are arranged in this order. It is arranged. The support device 100 is opposed to the first collection device 600, and the correction device 500 is opposed to the second collection device 700. Thus, the space around the transfer device 300 is effectively used to realize the accurate parallel bonding of the two types of ranks S.
[10.制御装置]
 次に、上記の各装置を制御する制御装置800の構成を、図7のブロック図を参照して説明する。制御装置800は、機構制御部11、リファレンス検出部12、スキャン部13、リファレンス検査部14、ピックアップ指示部15、補正指示部16、貼付指示部17、座標検出部18、記憶部19を有する。
[10. Control device]
Next, the configuration of the control device 800 that controls each of the above devices will be described with reference to the block diagram of FIG. The control device 800 includes a mechanism control unit 11, a reference detection unit 12, a scan unit 13, a reference inspection unit 14, a pickup instruction unit 15, a correction instruction unit 16, a paste instruction unit 17, a coordinate detection unit 18, and a storage unit 19.
 機構制御部11は、上記の各機構及び各部の動作を制御する処理部である。特に、撮像部60a、60b、60cによる撮像と画像データの取り込みは、エンコーダ情報に基づくリング移動機構2A、2B、2Cの走査に従って、カメラ61a、61b、61cの光軸がウェハシートDa、Db、Dc上を相対移動することにより行われる。 The mechanism control unit 11 is a processing unit that controls each mechanism and the operation of each unit. In particular, the imaging by the imaging units 60a, 60b, and 60c and the capture of the image data are performed in accordance with the scanning of the ring moving mechanisms 2A, 2B, and 2C based on the encoder information. This is done by relative movement on Dc.
 リファレンス検出部12は、第1の支持装置100のウェハシートDaに貼り付けられたダイシング済みのチップSのうち、リファレンスチップの座標データを検出するリファレンス検出処理を行う処理部である。このリファレンス検出処理は、撮像部60aにより撮像された画像データに基づいて、あらかじめ登録されたリファレンスマークとの照合によるリファレンスチップを発見し、その座標データとして、リング移動機構2Aのエンコーダ情報を取得することにより行われる。 The reference detection unit 12 is a processing unit that performs a reference detection process of detecting coordinate data of a reference chip among the dicing chips S attached to the wafer sheet Da of the first support device 100. In this reference detection process, based on the image data picked up by the image pickup unit 60a, a reference chip by collation with a reference mark registered in advance is found, and encoder information of the ring moving mechanism 2A is acquired as coordinate data thereof. Is done.
 スキャン部13は、第1の支持装置100におけるウェハシートDaに貼り付けられた全てのチップSの座標データを検出するスキャン処理を行う処理部である。チップSの座標データの検出は、リング移動機構2AによりチップSに位置決めされた撮像部60aが、チップSを撮像することにより画像データを得て、その座標データとしてリング移動機構2Aのエンコーダ情報を取得することにより行われる。なお、ここでいう全てのチップSとは、製品チップであり、上記のようにあらかじめランク付けされている。 The scanning unit 13 is a processing unit that performs a scanning process for detecting coordinate data of all the chips S attached to the wafer sheet Da in the first support device 100. The coordinate data of the chip S is detected by the imaging unit 60a positioned on the chip S by the ring moving mechanism 2A obtaining the image data by imaging the chip S and using the encoder information of the ring moving mechanism 2A as the coordinate data. It is done by acquiring. Here, all the chips S here are product chips, and are ranked in advance as described above.
 リファレンス検出処理の前に、ウェハシートDaに貼付されたウェハは、ダイシングされている。そして、上記のエキスパンド機構3Aが、ウェハシートDaを伸張することにより、ピックアップ装置としての保持装置200がピックアップし易いように個片のチップSの間に隙間が空いている。この伸張は、上記のウェハリングRaと引張部31により行うので、ウェハシートDaがウェハWを囲む円の内側から外側へ引っ張られる力により行われる。 Before the reference detection process, the wafer attached to the wafer sheet Da is diced. The expanding mechanism 3A extends the wafer sheet Da, so that a gap is formed between the individual chips S so that the holding device 200 as a pickup device can easily pick up. Since this extension is performed by the wafer ring Ra and the pulling portion 31 described above, it is performed by a force by which the wafer sheet Da is pulled from the inside of the circle surrounding the wafer W to the outside.
 リファレンス検査部14は、リング移動機構2Aの走査により、リファレンスチップを始点として、チップSのスキャン処理が所定量行われた後、始点のリファレンスチップに戻り、座標データが一致するか(ずれが生じていないか)否かを検査する処理部である。どの程度のスキャン量でリファレンスチップに戻るか否かは、後述するように、種々の態様が考えられる。 The reference inspection unit 14 scans the ring moving mechanism 2A and starts the reference chip as a starting point, and after a predetermined amount of scanning processing of the chip S is performed, the reference inspection unit 14 returns to the reference chip at the starting point, and the coordinate data matches (the deviation occurs). It is a processing unit that checks whether or not. As will be described later, various modes are conceivable as to how much the scan amount returns to the reference chip.
 ピックアップ指示部15は、あらかじめ設定されたピックアップ基準に基づいて、支持装置100及び保持装置200を制御することにより、保持装置200がピックアップするチップSを指示する処理部である。ピックアップ基準は、保持装置200がピックアップするチップSのランク、ピックアップする順序を含む。ピックアップするチップSのランクとしては、いずれか2種のランクとする。これは、同一ウェハW内にあるチップSのランク別の個数分布において、個数が最も多い2種のランクとすることが好ましい。例えば、ランクA、ランクBとする。なお、より好ましくは、チップSの個数の正規分布において、中央値に最も近い2種のランクとすることが考えられる。この2種は、通常は、品質の良い方の上位の2種である。また、既に2種のランクのチップSをピックアップした後、さらにピックアップする場合には、残存するチップSのうち、個数が最も多い2種のランクとすればよい。つまり、個数が最も多い2種のランクとは、同一ウェハW内に残存するチップSの中から選択されればよい。 The pickup instruction unit 15 is a processing unit that instructs the chip S to be picked up by the holding device 200 by controlling the support device 100 and the holding device 200 based on a preset pickup criterion. The pickup reference includes the rank of the chip S picked up by the holding device 200 and the order of picking up. As the rank of the chip S to be picked up, any two kinds of ranks are used. This is preferably set to two ranks having the largest number in the number distribution of chips S in the same wafer W by rank. For example, rank A and rank B are assumed. More preferably, in the normal distribution of the number of chips S, two ranks closest to the median can be considered. These two types are usually the top two types with the better quality. In addition, after picking up two types of ranks S and then picking up more, it is only necessary to select the two ranks with the largest number of remaining chips S. That is, the two types of ranks having the largest number may be selected from the chips S remaining in the same wafer W.
 ピックアップする順序としては、単純に2種のランクのチップSを各行方向又は各列方向において隣接する順序にピックアップしていくことが考えられる。各行又は各列において、一方向のみでピックアップしてもよいが、往路及び復路の双方でピックアップする方が効率は良い。 As the order of picking up, it is conceivable to simply pick up the chips S of two types in the order adjacent to each other in each row direction or each column direction. Although it may be picked up in only one direction in each row or column, it is more efficient to pick up in both the forward path and the return path.
 さらに、保持装置200は、2種のランクが互いに同数の状態では、間欠動作における停止タイミングで、第1の収集装置600のウェハシートDb及び第2の収集装置700のウェハシートDcのいずれか一方にチップSを貼り付けることが、より望ましい。つまり、ウェハシートDbに対向する位置に来た保持装置200と、これと同時にウェハシートDcに対向する位置に来た保持装置200の少なくとも一方が、チップSを貼り付けるようにピックアップすることが好ましい。 Further, the holding device 200 is one of the wafer sheet Db of the first collection device 600 and the wafer sheet Dc of the second collection device 700 at the stop timing in the intermittent operation when the two types of ranks are the same number. It is more desirable to attach the chip S to the substrate. That is, it is preferable that at least one of the holding device 200 that has come to the position facing the wafer sheet Db and the holding device 200 that has come to the position facing the wafer sheet Dc at the same time picks up the chip S so as to stick. .
 なお、ピックアップされたチップSのランクと、各保持装置200の識別情報とが関連付けられて、記憶部19に記憶される。このようなピックアップの具体例は、後述する。 Note that the rank of the picked-up chip S and the identification information of each holding device 200 are associated with each other and stored in the storage unit 19. A specific example of such a pickup will be described later.
 補正指示部16は、計測装置400の前計測部40Aにより検出されたチップSの姿勢ズレに基づいて、補正装置500にチップSの姿勢ズレの補正を指示する処理部である。補正指示部16は、姿勢ズレを解消するためのチップSのXY軸方向の移動量、θ軸方向の回動量を演算し、この移動量、回動量で動作するように、補正装置500に指示する。また、補正指示部16は、計測装置400の後計測部40Bにより検出されたチップSの姿勢ズレに基づいて、第1の収集装置600、第2の収集装置700におけるリング移動機構2B、2Cに、チップSの姿勢ズレの補正を指示することもできる。つまり、補正指示部16は、姿勢ズレを解消するリング移動機構2B、2CのXY軸方向の移動量、θ軸方向の回動量を演算し、この移動量、回動量で動作するように、リング移動機構2B、2Cに指示する。 The correction instruction unit 16 is a processing unit that instructs the correction device 500 to correct the posture deviation of the chip S based on the posture deviation of the chip S detected by the front measurement unit 40A of the measurement device 400. The correction instruction unit 16 calculates the movement amount of the chip S in the XY-axis direction and the rotation amount in the θ-axis direction for eliminating the posture deviation, and instructs the correction device 500 to operate with this movement amount and rotation amount. To do. Further, the correction instruction unit 16 applies to the ring moving mechanisms 2B and 2C in the first collection device 600 and the second collection device 700 based on the posture deviation of the chip S detected by the rear measurement unit 40B of the measurement device 400. It is also possible to instruct correction of the positional deviation of the chip S. In other words, the correction instruction unit 16 calculates the movement amount of the ring moving mechanisms 2B and 2C for eliminating the posture deviation in the XY-axis direction and the rotation amount in the θ-axis direction, Instruct the moving mechanisms 2B and 2C.
 貼付指示部17は、保持装置200に対して、チップSの貼り付けを支持する処理部である。貼付支持部17は、第1の収集装置600、第2の収集装置700に対向する位置に来た保持装置200に対して、進退動作によりウェハシートDb、Dcに対するチップSの貼り付けを行うか否かを指示する。この指示は、各保持装置200の識別情報に関連付けられたチップSのランク情報に基づく。例えば、貼り付け指示部17は、第1の収集装置600にランクBのチップSが来た場合には貼り付け指示を出すが、ランクAのチップSが来た場合には貼り付け指示を出さずに、そのまま通過させる。逆に、第2の収集装置700にランクAのチップSが来た場合には貼り付け指示を出すが、ランクBのチップSを貼り付け済みで空となった保持装置200が来た場合には、そのまま通過させる。 The sticking instruction unit 17 is a processing unit that supports the sticking of the chip S to the holding device 200. Whether the sticking support unit 17 sticks the chip S to the wafer sheets Db and Dc by the advancing and retreating operation with respect to the holding device 200 that has come to a position facing the first collecting device 600 and the second collecting device 700. Instruct whether or not. This instruction is based on the rank information of the chip S associated with the identification information of each holding device 200. For example, the paste instructing unit 17 issues a paste instruction when the rank S chip S comes to the first collection device 600, but issues a paste instruction when the rank A chip S comes. Without passing through. Conversely, when a rank A chip S arrives at the second collection device 700, a sticking instruction is issued, but when a rank B chip S has already been pasted and the holding device 200 is empty. Pass through.
 座標検出部18は、第1の収集装置600のウェハシートDb及び第2の収集装置700のウェハシートDcに貼り付けられたチップSの位置座標を検出する処理部である。この位置座標は、撮像部60b、60cによる撮像とともに、リング移動機構2B、2Cのエンコーダ情報から取得する。 The coordinate detection unit 18 is a processing unit that detects the position coordinates of the chips S attached to the wafer sheet Db of the first collection device 600 and the wafer sheet Dc of the second collection device 700. The position coordinates are acquired from the encoder information of the ring moving mechanisms 2B and 2C together with the imaging by the imaging units 60b and 60c.
 記憶部19は、本実施形態に必要な各種の情報を記憶する処理部である。各種の情報としては、上記のマップデータ及び座標データを含む。また、撮像した画像データとの照合によりリファレンスマークを判定するための画像データ、スキャン部13による走査経路の基準等の各種設定も、記憶部19に記憶される情報に含まれる。また、上記のピックアップ基準、姿勢ズレも、記憶部19に記憶される情報に含まれる。 The storage unit 19 is a processing unit that stores various types of information necessary for the present embodiment. Various types of information include the map data and the coordinate data. The information stored in the storage unit 19 also includes image data for determining a reference mark by collating with captured image data, and various settings such as a scanning path reference by the scanning unit 13. Further, the above-described pickup reference and posture deviation are also included in the information stored in the storage unit 19.
 さらに、制御装置800には、入力部81及び出力部82が接続されている。入力部81は、各部の処理に必要な情報の入力、処理の選択や指示を入力する処理部である。入力部81としては、操作パネル、タッチパネル、スイッチ、キーボード、マウス等、現在又は将来において利用可能な入力装置を含む。 Furthermore, an input unit 81 and an output unit 82 are connected to the control device 800. The input unit 81 is a processing unit for inputting information necessary for processing of each unit, selecting a process, and inputting an instruction. The input unit 81 includes input devices that can be used now or in the future, such as an operation panel, a touch panel, a switch, a keyboard, and a mouse.
 出力部82は、操作のためのインタフェース、各種のデータ、画像、処理結果、アラーム等の情報を出力する処理部である。出力部82としては、表示装置、プリンタ、スピーカ、ブザー、ランプ等、現在又は将来において利用可能なあらゆる出力装置を含む。 The output unit 82 is a processing unit that outputs information such as an interface for operation, various data, images, processing results, and alarms. The output unit 82 includes any output device that can be used now or in the future, such as a display device, a printer, a speaker, a buzzer, and a lamp.
 上記の制御装置800の全部若しくは一部は、コンピュータを所定のプログラムで制御することによって実現できる。この場合のプログラムは、CPUを含むコンピュータのハードウェアを物理的に活用することで、上記のような各部の処理を実現するものである。上記の各部の処理を実行する方法、プログラム及びプログラムを記録した記録媒体も、本発明の一態様である。 All or part of the control device 800 can be realized by controlling the computer with a predetermined program. The program in this case realizes the processing of each unit as described above by physically utilizing computer hardware including a CPU. A method, a program, and a recording medium storing the program for executing the processing of each unit described above are also one aspect of the present invention.
 ハードウェアで処理する範囲、プログラムを含むソフトウェアで処理する範囲をどのように設定するかは、特定の態様には限定されない。例えば、上記の各部のいずれかを、それぞれの処理を実現する回路として構成することも可能である。 How to set the range to be processed by hardware and the range to be processed by software including a program is not limited to a specific mode. For example, any of the above-described units can be configured as a circuit that realizes each process.
 また、記憶部19としては、現在又は将来において利用可能なあらゆる記憶媒体を利用可能である。演算に用いるレジスタ等も、記憶部19として捉えることができる。記憶の態様も、長時間記憶が保持される態様のみならず、処理のために一時的に記憶され、短時間で消去又は更新される態様も含まれる。さらに、制御装置800を構成する各処理部、記憶部19、入力部81、出力部82の全部又は一部について、上記の各装置の一部として構成することもできるし、ネットワークを介して接続されたコンピュータにより構成することもできる。 Further, as the storage unit 19, any storage medium that can be used now or in the future can be used. A register or the like used for calculation can also be regarded as the storage unit 19. The mode of storage includes not only a mode in which memory is stored for a long time but also a mode in which data is temporarily stored for processing and deleted or updated in a short time. Further, all or a part of each processing unit, storage unit 19, input unit 81, and output unit 82 constituting the control device 800 can be configured as a part of each of the above devices, or can be connected via a network. It can also be configured by a computer.
 さらに、上記の処理の過程における各種のデータは、いずれも、適宜、出力部82に出力(表示、プリントアウト等)して、オペレータが視認可能とすることもできる。例えば、マップデータ、座標データ、撮像した画像データ、リファレンス検出処理、スキャン処理及びリファレンス検査処理の結果、ピックアップ基準、姿勢ズレ等を、表示、プリントアウトして、処理の確認に用いてもよい。 Furthermore, various data in the process can be appropriately output (displayed, printed out, etc.) to the output unit 82 so that the operator can visually recognize the data. For example, map data, coordinate data, captured image data, results of reference detection processing, scan processing and reference inspection processing, pickup criteria, posture deviation, etc. may be displayed and printed out and used for processing confirmation.
[D.作用]
 以上のような本実施形態の作用の一例を、図8~図16を参照して説明する。なお、上記の各機構及び各部は、機構制御部11、ピックアップ指示部15、補正指示部16、貼付指示部17が、以下に説明する動作を行うように制御する。
[D. Action]
An example of the operation of the present embodiment as described above will be described with reference to FIGS. Each mechanism and each part described above are controlled so that the mechanism control unit 11, the pickup instruction unit 15, the correction instruction unit 16, and the sticking instruction unit 17 perform the operations described below.
[1.全体処理]
 まず、分類装置1の全体処理を、図8のフローチャートを参照して説明する。なお、図8のフローチャートは、1つのチップSの処理の流れのみに着目している部分がある。しかし、このときも、他の複数のチップSに対して、同時並行にピックアップ、姿勢補正、貼り付け等の処理が行われている。
[1. Overall processing]
First, the overall processing of the classification apparatus 1 will be described with reference to the flowchart of FIG. Note that the flowchart of FIG. 8 has a portion that focuses only on the processing flow of one chip S. However, also at this time, processes such as pick-up, posture correction, and pasting are performed on the plurality of other chips S in parallel.
 オートローダ5Aは、チップSのピックアップが行われるウェハリングRaを、支持装置100のリング移動機構2Aにセットする(ステップS101)。また、オートローダ5B、オートローダ5Cは、チップSの貼り付けが行われるウェハリングRb、Rcを、第1の収集装置600、第2の収集装置700のリング移動機構2B、2Cにセットする。 The autoloader 5A sets the wafer ring Ra on which the chip S is picked up on the ring moving mechanism 2A of the support device 100 (step S101). Further, the autoloader 5B and the autoloader 5C set the wafer rings Rb and Rc to which the chips S are attached to the ring moving mechanisms 2B and 2C of the first collection device 600 and the second collection device 700, respectively.
 制御装置800は、後述するように、各部を制御することにより、支持装置100のウェハシートDaに貼り付けられたチップSに対する一括スキャンを行う(ステップS102)。そして、保持装置200が、2種のランクのチップSをピックアップする(ステップS103)。本実施形態では、例えば、同一ウェハW内にあるチップSのランク別の個数分布において、中央値に最も近い2種のランクA、BのチップSを、指示ランクのチップSとしてピックアップする。この後、搬送装置300が、保持装置200にピックアップされたチップSを、保持装置200とともに円軌道の搬送経路Tを間欠移動させる。 As will be described later, the control device 800 controls each unit to perform a collective scan on the chips S attached to the wafer sheet Da of the support device 100 (step S102). Then, the holding device 200 picks up the two types of chips S (step S103). In the present embodiment, for example, in the number distribution of chips S in the same wafer W by rank, the two types of chips S of ranks A and B that are closest to the median are picked up as the chips S of the indicated rank. Thereafter, the transfer device 300 intermittently moves the chip S picked up by the holding device 200 along the transfer path T of the circular orbit together with the holding device 200.
 計測装置400の前計測部40Aは、搬送経路TにおけるチップSの姿勢ズレを計測する(ステップS104)。補正装置500は、計測装置400により計測された姿勢ズレに基づいて、チップSの姿勢を補正する(ステップS105)。計測装置400の後計測部40Bは、姿勢が補正されたチップSの姿勢を確認する(ステップS106)。 The pre-measurement unit 40A of the measurement device 400 measures the posture deviation of the chip S in the transport path T (Step S104). The correction device 500 corrects the posture of the chip S based on the posture deviation measured by the measurement device 400 (step S105). The rear measurement unit 40B of the measurement device 400 confirms the posture of the chip S whose posture has been corrected (step S106).
 第1の収集装置600に、ランクBのチップSが来た場合には(ステップS107のNO)、保持装置200が、ランクBのチップSをウェハシートDbに貼り付ける(ステップS108)。第1の収集装置600に、ランクAのチップSが来た場合には(ステップS107のYES)、保持装置200は貼り付けを行わずに通過する(ステップS109)。そして、第2の収集装置700にランクAのチップSが来た場合に、保持装置200は、ランクAのチップSをウェハシートDcに貼り付ける(ステップS110)。 When the rank B chip S comes to the first collection device 600 (NO in step S107), the holding device 200 attaches the rank B chip S to the wafer sheet Db (step S108). If the rank A chip S has arrived at the first collection device 600 (YES in step S107), the holding device 200 passes without being pasted (step S109). When the rank A chip S comes to the second collection device 700, the holding device 200 attaches the rank A chip S to the wafer sheet Dc (step S110).
 支持装置100に、指示ランクのA、BのチップSが残存し(ステップS111のYES)、第1の収集装置600のウェハシートDb又は第2の収集装置700のウェハシートDcが満杯となっていない場合(ステップS112のNO)、チップSのピックアップ以降の処理を継続する(ステップS103~S111)。なお、満杯となるとは、少なくとも、製品として十分な数のチップSが貼り付けられればよい。例えば、あらかじめ製品として設定された数が貼り付けられた状態又はあらかじめ製品として定められた領域に貼り付けられ状態を含む。物理的に貼り付け可能な領域が残存していてもよい。 The chips S of the instruction ranks A and B remain on the support device 100 (YES in step S111), and the wafer sheet Db of the first collection device 600 or the wafer sheet Dc of the second collection device 700 is full. If not (NO in step S112), the processing after the pickup of the chip S is continued (steps S103 to S111). In order to be full, it is sufficient that at least a sufficient number of chips S as a product are attached. For example, it includes a state in which the number set in advance as a product is pasted or a state in which the number is pasted in a region previously determined as a product. An area that can be physically attached may remain.
 支持装置100に、指示ランクのA、BのチップSが残存せず(ステップS111のNO)、収容部110に未処理ウェハリングRaが残存している場合には(ステップS113のYES)、一旦搬送装置300を停止した後、オートローダ5Aが、次のウェハリングRaに交換する(ステップS114)。そして、チップSの一括スキャン以降の処理を行う(ステップS102~S111)。 When the chips S of the instruction ranks A and B do not remain in the support device 100 (NO in step S111) and the unprocessed wafer ring Ra remains in the storage unit 110 (YES in step S113), once. After stopping the transfer device 300, the autoloader 5A replaces the next wafer ring Ra (step S114). Then, processing after the batch scan of the chip S is performed (steps S102 to S111).
 第1の収集装置600のウェハシートDb又は第2の収集装置700のウェハシートDcが満杯となった場合(ステップS112のYES)、一旦搬送装置300を停止した後、オートローダ5B又は5Cが、満杯となった方のウェハリングRb又はウェハリングRcを交換する(ステップS115)。そして、搬送装置300を作動させて、チップSのピックアップ以降の処理を継続する(ステップS103~S111)。 When the wafer sheet Db of the first collection device 600 or the wafer sheet Dc of the second collection device 700 is full (YES in step S112), after the transfer device 300 is temporarily stopped, the autoloader 5B or 5C is full. The wafer ring Rb or the wafer ring Rc that is the new one is replaced (step S115). Then, the transfer device 300 is operated to continue the processing after the pickup of the chip S (steps S103 to S111).
 未処理ウェハリングRaが、収容部110に残存しなくなった場合には(ステップS113のNO)、処理を終了する。 When the unprocessed wafer ring Ra does not remain in the storage unit 110 (NO in step S113), the process is terminated.
[2.各部の処理]
 次に、分類装置1の各部の処理を、図1~図7に加えて、図9の説明図を参照して説明する。以下の説明の(1)~(11)は、図9の(1)~(11)に対応する。まず、前提として、オートローダ5Aに収納された複数のウェハリングRaには、ウェハWが貼付されたウェハシートDaが張り付けられている。これらのウェハWは、ダイシングされることによりチップSに分割されている。各チップSについては、あらかじめプローブ検査が行われ、記憶部19に、検査の結果としてのマップデータが保存されている。このマップデータにおいては、検査結果の品質のレベルに応じて、各チップSがランクA~Dにレベル分けされている。また、マップデータには、上記のように、リファレンスチップ(Rで示す)のデータも含まれている。一方、オートローダ5B、5Cに収納された複数のウェハリングRb、Rcには、ウェハシートDb、Dcが張り付けられている。
[2. Processing of each part]
Next, the processing of each part of the classification device 1 will be described with reference to the explanatory diagram of FIG. 9 in addition to FIG. 1 to FIG. In the following description, (1) to (11) correspond to (1) to (11) in FIG. First, as a premise, a wafer sheet Da to which a wafer W is stuck is attached to a plurality of wafer rings Ra housed in the autoloader 5A. These wafers W are divided into chips S by dicing. For each chip S, a probe test is performed in advance, and map data as a result of the test is stored in the storage unit 19. In this map data, each chip S is classified into ranks A to D according to the quality level of the inspection result. The map data also includes reference chip data (indicated by R) as described above. On the other hand, wafer sheets Db and Dc are attached to the plurality of wafer rings Rb and Rc stored in the autoloaders 5B and 5C.
(1)チップ付ウェハシートのセット
 支持装置100、つまりピックアップ側のオートローダ5Aは、チップSを貼付したウェハシートDaが張り付けられたウェハリングRaを、複数枚収納している。オートローダ5Aは、ウェハリングRaを1枚取り出し、リング移動機構2Aにセットする。エキスパンド機構3Aは、ウェハシートDaを伸張することにより、チップSの隙間を開ける。
(1) Setting of Wafer Sheet with Chip The support device 100, that is, the autoloader 5A on the pickup side, stores a plurality of wafer rings Ra to which the wafer sheet Da to which the chip S is attached is attached. The autoloader 5A takes out one wafer ring Ra and sets it on the ring moving mechanism 2A. The expanding mechanism 3A opens the gap between the chips S by extending the wafer sheet Da.
(2)空ウェハシートのセット
 一方、第1の収集装置600及び第2の収集装置700、つまり貼付側のオートローダ5B、5Cは、チップSが貼り付けられていないウェハシートDb、Dcが張り付けられたウェハリングRb、Rcを、複数枚収納している。オートローダ5B、5Cは、ウェハリングを1枚ずつ取り出し、リング移動機構2B、2Cにセットする。エキスパンド機構3B、3Cは、ウェハシートDb、Dcを伸張する。
(2) Setting of Empty Wafer Sheet On the other hand, the first collection device 600 and the second collection device 700, that is, the autoloaders 5B and 5C on the pasting side, are attached with the wafer sheets Db and Dc to which the chip S is not pasted. A plurality of wafer rings Rb and Rc are accommodated. The autoloaders 5B and 5C take out the wafer rings one by one and set them on the ring moving mechanisms 2B and 2C. The expanding mechanisms 3B and 3C extend the wafer sheets Db and Dc.
(3)一括スキャン
 後述するリファレンス検出、スキャン、リファレンス検査を繰り返すことにより、撮像部60aによる各チップSを撮像、スキャン部13による各チップSの座標データの取得を行う。スキャン部13は、各チップSの座標データを、マップデータに関連付けて、記憶部19に記憶する。
(3) Batch Scan By repeating reference detection, scanning, and reference inspection, which will be described later, each chip S is imaged by the imaging unit 60a, and coordinate data of each chip S is acquired by the scanning unit 13. The scanning unit 13 stores the coordinate data of each chip S in the storage unit 19 in association with the map data.
(4)ピックアップ
 スキャン処理で取得した各チップSの座標データに基づいて、リング移動機構2Aが、保持装置200に対してチップSを順次位置決めするように走査しながら、保持装置200がチップSをピックアップしていく。このピックアップは、マップデータに基づく特定のランクのチップSに対してのみ行われる。本実施形態では、上記のようなピックアップ基準に従って、2種のランクのチップSをピックアップする。また、後述するようなチップSの貼り付けが行われる順序で、保持装置200がチップSをピックアップする。
(4) Pickup The holding device 200 moves the chip S while the ring moving mechanism 2A scans the holding device 200 so as to sequentially position the chips S based on the coordinate data of each chip S acquired by the scanning process. Pick up. This pickup is performed only for chips S of a specific rank based on the map data. In the present embodiment, two types of chips S are picked up in accordance with the above pickup criteria. Further, the holding device 200 picks up the chips S in the order in which the chips S are attached as will be described later.
 図9の例は、ランクA、BのチップSをピックアップする場合である。まず、スキャン時の座標データに基づいて、開始端のランクA又はランクBのチップSが、保持装置200に対して位置決めされる。これを保持装置200がピックアップした後、次のランクA又はランクBのチップSを目標に移動する。このとき、対象ランク以外のチップS、リファレンスチップについては、その座標に移動しても、ピックアップしない。 The example of FIG. 9 is the case where the chips S of ranks A and B are picked up. First, the start end rank A or rank B chip S is positioned with respect to the holding device 200 based on the coordinate data at the time of scanning. After this is picked up by the holding device 200, the next rank A or rank B chip S is moved to the target. At this time, chips S and reference chips other than the target rank are not picked up even if moved to the coordinates.
 なお、制御装置800において、マップデータには、ピックアップされたチップSについては、ピックアップ済の情報を記録する。また、ピックアップする時を含めて、チップSが存在する箇所に位置決めされた場合に、撮像部60aが撮像した画像データに基づくチップSの位置にずれがある場合には、そのずれを計測した結果をフィードバックして、次のチップSの座標データを補正する。なお、座標データに基づいて、ピックアップ対象のチップSのみに位置決めして高速化を図ることも、各チップSに位置決めして補正することにより正確さを確保することも可能である。 In the control device 800, the picked-up information for the picked-up chip S is recorded in the map data. In addition, when the chip S is positioned at a position where the chip S exists, including when picking up, if the position of the chip S based on the image data captured by the imaging unit 60a is shifted, the result of measuring the shift Is fed back to correct the coordinate data of the next chip S. It is possible to increase the speed by positioning only on the chip S to be picked up based on the coordinate data, or to ensure the accuracy by positioning and correcting each chip S.
(5)チップの搬送
 保持装置200にピックアップされたチップSは、搬送装置300の回転体310の間欠回転に従って、円軌道の搬送経路Tに沿って搬送される。保持装置200は、移動と停止ポジションでの停止を繰り返しながら、チップSを移動させて行く。
(5) Chip Transfer The chip S picked up by the holding device 200 is transferred along the transfer path T of the circular orbit according to the intermittent rotation of the rotating body 310 of the transfer device 300. The holding device 200 moves the chip S while repeating the movement and the stop at the stop position.
(6)姿勢ズレの計測
 搬送中のチップSは、前計測部40Aに対向する位置で停止した時に、保持装置200に保持された状態で、前計測部40Aによる撮影及び姿勢ズレの計測がなされる。
(6) Measurement of posture deviation When the chip S being conveyed is stopped at a position facing the front measurement unit 40A, the front measurement unit 40A performs photographing and measurement of the posture deviation while being held by the holding device 200. The
(7)姿勢ズレの補正
 姿勢ズレが計測されたチップSは、補正装置500に対向する位置で停止した時に、保持装置200から補正装置500に受け渡されて、姿勢ズレが補正された後、保持装置200に戻される。つまり、当該姿勢ズレに基づいて、補正指示部16が演算したXY軸方向の移動の量、θ軸方向の回動の量により、補正装置500がチップSを移動、回動させる。
(7) Correction of Attitude Deviation After the chip S on which the attitude deviation is measured is stopped at a position facing the correction apparatus 500, the chip S is transferred from the holding device 200 to the correction apparatus 500, and the attitude deviation is corrected. Returned to the holding device 200. That is, the correction device 500 moves and rotates the chip S based on the amount of movement in the XY axis direction and the amount of rotation in the θ axis direction calculated by the correction instruction unit 16 based on the attitude deviation.
(8)補正後の姿勢確認
 さらに、後計測部40Bに対向する位置で停止した補正後のチップSに対して、後計測部40Bによる撮影及び姿勢ズレの計測がなされる。このチップSは、補正装置500により補正された後であるため、残存する姿勢ズレは無いか、ごく僅かである。
(8) Posture Correction Posture Correction Further, the post-measurement unit 40B performs photographing and posture shift measurement for the corrected chip S stopped at a position facing the post-measurement unit 40B. Since this chip S is after being corrected by the correction device 500, there is no or very little posture deviation remaining.
(9)チップの貼り付け
 第1の収集装置600まで搬送されて、ウェハシートDbに対向する位置に停止した特定ランクのチップSは、保持装置200が進退することにより、ウェハシートDbに貼り付けられる。このとき、伸張されたウェハシートDbの貼付領域の開始端から順次貼り付いていくように、リング移動機構2Bが動作する。例えば、貼付領域の開始端からその反対端までに設定された複数の平行な走査線上を走査させて、往復時ともに貼り付けを行う。これにより、1枚のウェハシートDbに、特定ランクのチップSが集められる。本実施形態では、BのランクのチップSが集められる。なお、後計測部40Bにより検出された姿勢ズレは、例えば、あらかじめ記憶部19に設定されたしきい値を超える場合に、当該姿勢ズレが補正されるように、補正指示部16が演算した移動量、回動量により、リング移動機構2Bの移動量、回動量が補正される。
(9) Chip Affixing The specific rank of chips S that have been transported to the first collection device 600 and stopped at a position facing the wafer sheet Db are affixed to the wafer sheet Db as the holding device 200 advances and retreats. It is done. At this time, the ring moving mechanism 2 </ b> B operates so that the wafer sheet Db that has been stretched is sequentially attached from the start end of the attaching region. For example, scanning is performed on a plurality of parallel scanning lines set from the start end of the pasting region to the opposite end thereof, and pasting is performed at the time of reciprocation. Thereby, chips S of a specific rank are collected on one wafer sheet Db. In the present embodiment, B-ranked chips S are collected. Note that the movement calculated by the correction instruction unit 16 is corrected so that, for example, when the posture deviation detected by the post-measurement unit 40B exceeds a threshold value set in the storage unit 19 in advance, the posture deviation is corrected. The amount of movement and the amount of rotation of the ring moving mechanism 2B are corrected by the amount and the amount of rotation.
 また、撮像部60bによって、貼り付けられたチップSが撮像され、チップS毎の座標データが記憶部19に記憶される。座標データは、リング移動機構2Bのエンコーダ情報の座標値(x,y,θ)として取得できる。この座標データは、次のチップSを貼り付ける際に参照され、前回貼り付けられたチップSの隣りに正確に貼り付けられるように、リング移動機構2Bが移動量、回動量を調整する。 Further, the pasted chip S is imaged by the imaging unit 60b, and the coordinate data for each chip S is stored in the storage unit 19. The coordinate data can be acquired as coordinate values (x, y, θ) of the encoder information of the ring moving mechanism 2B. This coordinate data is referred to when the next chip S is pasted, and the ring moving mechanism 2B adjusts the amount of movement and the amount of rotation so that it can be pasted accurately next to the chip S pasted last time.
 第2の収集装置700まで搬送されて、ウェハシートDcに対向する位置に停止した特定ランクのチップSは、保持装置200が進退することにより、ウェハシートDcに貼り付けられる。本実施形態では、AのランクのチップSが集められる。この貼り付け動作、姿勢ズレの補正動作、座標データの記憶等については、上記の第1の収集装置600と同様である。 The chips S of a specific rank that have been transported to the second collection device 700 and stopped at a position facing the wafer sheet Dc are attached to the wafer sheet Dc as the holding device 200 advances and retreats. In the present embodiment, chips A of rank A are collected. The pasting operation, posture deviation correcting operation, coordinate data storage, and the like are the same as those of the first collection device 600 described above.
(10)ピックアップ側のウェハシートの収納
 オートローダ5Aは、チップSを選択的にピックアップした後のウェハシートDaを張り付けたウェハリングRaを、リング移動機構2Aから取り外して、再度、収容部110に収納する。このウェハシートDaは、特定ランクのチップSが抜けて、他のランクのチップSが残存している状態(歯抜け状態)となっている。例えば、A、BのランクのチップSのみが抜けたウェハシートDaのウェハリングRaは、収容部110に収容され、次のウェハリングRaに交換される。
(10) Storage of Pickup-side Wafer Sheet The autoloader 5A removes the wafer ring Ra attached with the wafer sheet Da after selectively picking up the chips S from the ring moving mechanism 2A and stores the wafer ring Ra in the storage unit 110 again. To do. The wafer sheet Da is in a state (chip missing state) in which chips S of a specific rank are missing and chips S of other ranks remain. For example, the wafer ring Ra of the wafer sheet Da from which only the chips S of ranks A and B have been removed is accommodated in the accommodating portion 110 and replaced with the next wafer ring Ra.
(11)貼り付け側のウェハシートの収納
 オートローダ5Bのリング搬送機構120は、特定の1ランクのチップSが集められたウェハシートDbが張り付けられたウェハリングRbを、リング移動機構2Bから取り外して、収容部110に再度収納する。次に貼付すべきウェハリングRbが存在する場合には、リング搬送機構120は、次のウェハリングRbを取り出して、リング移動機構2Bへ受け渡す。同様に、オートローダ5Cは、特定の1ランクのチップSが集められたウェハシートDcが張り付けられたウェハリングRcを、リング移動機構2Cから取り外して、収容部110に再度収納する。また、次に貼付すべきウェハリングRcをリング移動機構2Cへ受け渡す。
(11) Storing the wafer sheet on the affixing side The ring transport mechanism 120 of the autoloader 5B removes the wafer ring Rb on which the wafer sheet Db on which specific one-rank chips S are collected from the ring moving mechanism 2B. Then, it is stored again in the storage unit 110. If there is a wafer ring Rb to be attached next, the ring transport mechanism 120 takes out the next wafer ring Rb and transfers it to the ring moving mechanism 2B. Similarly, the autoloader 5C removes the wafer ring Rc to which the wafer sheet Dc on which the specific one-ranked chips S are collected is attached from the ring moving mechanism 2C and stores the wafer ring Rc in the storage unit 110 again. Further, the wafer ring Rc to be attached next is transferred to the ring moving mechanism 2C.
[3.一括スキャン]
 次に、本実施形態によるピックアップ前の一括スキャンについて、図10のフローチャート、図11、図12の説明図を参照して説明する。
(リファレンス検出処理)
 リング移動機構2AにセットされたウェハシートDa上のチップSに対して、リファレンス検出部12は、リファレンス検出処理を開始する(ステップS01)。まず、リング移動機構2Aは、例えば、マップデータに基づいて、リファレンスチップが存在する位置と推測される位置まで走査する。ウェハWの端部のチップSから、網羅的に走査してもよい。
[3. Batch scan]
Next, batch scanning before pickup according to the present embodiment will be described with reference to a flowchart of FIG. 10 and explanatory diagrams of FIGS.
(Reference detection processing)
For the chip S on the wafer sheet Da set in the ring moving mechanism 2A, the reference detection unit 12 starts a reference detection process (step S01). First, the ring moving mechanism 2A scans to a position estimated to be a position where the reference chip exists based on, for example, map data. You may scan exhaustively from the chip | tip S of the edge part of the wafer W. FIG.
 そして、リファレンス検出部12は、走査中に撮像部60aにより撮像される画像データと、あらかじめ登録されたリファレンスマークとの照合により、リファレンスチップが存在するか(ステップS02のYES)、否か(ステップS02のNO)を判定していく。 Then, the reference detection unit 12 checks whether or not a reference chip exists by collating image data captured by the imaging unit 60a during scanning with a reference mark registered in advance (YES in Step S02) (Step S02). SNO is determined.
 リファレンス検出部12は、照合によりリファレンスチップを発見した場合(ステップS02のYES)、リング移動機構2Aのエンコーダ情報に基づいて、発見されたリファレンスチップの座標データを取得し、マップデータにおけるリファレンスチップの位置情報に関連付けて、記憶部19に記憶する(ステップS03)。 When the reference detection unit 12 finds a reference chip by collation (YES in step S02), the reference detection unit 12 acquires coordinate data of the found reference chip based on the encoder information of the ring moving mechanism 2A, and the reference chip in the map data The information is stored in the storage unit 19 in association with the position information (step S03).
(スキャン処理)
 次に、スキャン部13は、スキャン処理を開始する(ステップS04)。まず、発見したリファレンスチップの座標データと、マップデータにおける保証領域内のリファレンスチップに対する各チップSの位置情報に基づいて、当該保証領域内の全てのチップSが網羅できるように、リング移動機構2Aが所定のピッチで移動するように動作することにより、順次、目標とするチップSを撮像して行く(ステップS05)。所定のピッチは、例えば、あらかじめリング移動機構2Aに一列分として設定された横のピッチ、一行分として設定された縦のピッチである。
(Scan process)
Next, the scanning unit 13 starts a scanning process (step S04). First, based on the coordinate data of the found reference chip and the positional information of each chip S with respect to the reference chip in the guaranteed area in the map data, the ring moving mechanism 2A can be covered so that all the chips S in the guaranteed area can be covered. The target chip S is sequentially imaged by operating so as to move at a predetermined pitch (step S05). The predetermined pitch is, for example, a horizontal pitch set in advance for the ring moving mechanism 2A as one row and a vertical pitch set as one row.
 ここで、目標とするチップSが存在する場合(ステップS06のYES)、その座標データを特定する処理を、図11を参照して説明する。この場合の走査と撮像は、目標とするチップSが所定の撮像領域に収まるように位置決めしながら行う。つまり、最初に目標とするチップSを撮像した場合に、図11(A)に示すように、目標とするチップSの周囲の8個のチップSのいずれかに、あらかじめ設定された矩形の撮像領域Fに収まっていない部分があるとする。すると、図11(B)に示すように、リング移動機構2Aは、8個のチップSの外縁側の辺が、矩形の撮像領域に一致するように、アライメント動作を行う。このアライメントのピッチは、例えば、一列分、一行分として設定されたピッチよりも細かいピッチとする。また、θ方向のずれがある場合にも、そのアライメントを行う。 Here, when the target chip S exists (YES in step S06), the process of specifying the coordinate data will be described with reference to FIG. In this case, scanning and imaging are performed while positioning the target chip S so as to be within a predetermined imaging region. That is, when the target chip S is imaged for the first time, as shown in FIG. 11A, a rectangular image that is set in advance on any of the eight chips S around the target chip S is captured. It is assumed that there is a part that does not fit in the region F. Then, as shown in FIG. 11B, the ring moving mechanism 2A performs an alignment operation so that the outer edge side of the eight chips S coincides with the rectangular imaging region. The alignment pitch is, for example, a finer pitch than the pitch set for one column and one row. The alignment is also performed when there is a deviation in the θ direction.
 アライメント動作後、スキャン部13は、矩形の撮像領域に含まれる9個のチップSについて、それぞれコーナー若しくは四辺を検出することにより中心を求める。そして、スキャン部13は、リング移動機構2Aのエンコーダ値に基づいて、9個のチップSの中心の座標データを求め、マップデータの該当する各チップSの位置情報に関連付けて、記憶部19に記憶する(ステップS07、図11(C))。そして、各チップSについて、スキャン済みのフラグを立てる(ステップS08)。なお、このような座標データの特定手法は、リファレンスチップ及びその周囲のチップSの座標データを特定する際にも適用できる。 After the alignment operation, the scanning unit 13 obtains the center of each of the nine chips S included in the rectangular imaging area by detecting corners or four sides. Then, the scanning unit 13 obtains the coordinate data of the centers of the nine chips S based on the encoder value of the ring moving mechanism 2A, and associates it with the position information of each corresponding chip S of the map data in the storage unit 19. Store (step S07, FIG. 11C). Then, a scanned flag is set for each chip S (step S08). Such a coordinate data specifying method can also be applied when specifying the coordinate data of the reference chip and the surrounding chip S.
 なお、ウェハシートDaからの脱落等により、マップデータ上は存在するはずのチップSが存在しない場合(ステップS06のNO)、座標データの取得はできない。但し、スキャン済みのフラグは立てる(ステップS08)。 If there is no chip S that should exist on the map data due to dropping from the wafer sheet Da (NO in step S06), the coordinate data cannot be acquired. However, the scanned flag is set (step S08).
 このようなスキャン処理を、リファレンスチップの保証領域の一部(以下、部分領域という)を網羅するまで継続する(ステップS09のNO、ステップS05~08)。つまり、図11(D)に示すように、3つ先のチップSを、目標とするチップSとして移動して、上記の図11(A)~(D)の処理を繰り返す。 This scanning process is continued until a part of the guaranteed area of the reference chip (hereinafter referred to as a partial area) is covered (NO in step S09, steps S05 to 08). That is, as shown in FIG. 11D, the third chip S is moved as the target chip S, and the processes of FIGS. 11A to 11D are repeated.
 例えば、図12(A)に示すように、保証領域E1内のリファレンスチップRS1の左上の部分領域Ex1が、左下の部分領域Ex2、右上の部分領域Ex3、右下の部分領域Ex4に分かれているものとする。部分領域は、リファレンスチップの座標データ、マップデータの保証領域(走査の限界を画する)を示すデータと、走査経路の基準設定に基づいて画定できる。 For example, as shown in FIG. 12A, the upper left partial area Ex1 of the reference chip RS1 in the guarantee area E1 is divided into a lower left partial area Ex2, an upper right partial area Ex3, and a lower right partial area Ex4. Shall. The partial area can be defined based on the coordinate data of the reference chip, the data indicating the guaranteed area of the map data (which defines the limit of scanning), and the reference setting of the scanning path.
 このような部分領域内のチップSを網羅するための走査経路の基準として、例えば、以下の(a)~(d)のような基準を選択的に組み合わせることが考えられる。図12(B)に、部分領域Ex1における(a)~(d)の経路の一例を示す。但し、網羅する手法は、これには限定されない。 For example, the following criteria (a) to (d) may be selectively combined as the scanning path criteria for covering the chips S in such a partial region. FIG. 12B shows an example of routes (a) to (d) in the partial region Ex1. However, the method to cover is not limited to this.
(a)リファレンスチップから見てX軸方向又はY軸方向に製品チップSが存在する場合、その存在する方向に移動する。
(b)移動方向に製品チップSがない場合、移動方向と直交する軸方向に製品チップSが存在するところまで移動する。
(c)リファレンスチップと同じX座標又はY座標まで移動する。
(d)リファレンスチップよりX軸方向且つY軸方向の部分領域内に撮像していないチップSがなくなった場合、リファレンスチップまで戻る。
(A) When the product chip S exists in the X-axis direction or the Y-axis direction as viewed from the reference chip, the product chip S moves in the existing direction.
(B) When there is no product chip S in the moving direction, the product chip S moves to a position where the product chip S exists in the axial direction orthogonal to the moving direction.
(C) Move to the same X coordinate or Y coordinate as the reference chip.
(D) When there is no chip S that has not been imaged in the partial area in the X-axis direction and the Y-axis direction from the reference chip, the process returns to the reference chip.
 さらに、(c)(d)の基準を、以下の(e)(f)のようにすることもできる。この一例を、図12(C)に示す。
(e)リファレンスチップの手前のX座標又はY座標まで移動する。
(f)リファレンスチップよりX軸方向又はY軸方向の部分領域内に撮像していないチップSがなくなった場合、リファレンスチップに戻りながら、残りのチップSを撮像する。この手法をとった場合、既にスキャン済みの経路を通過する(d)のような経路の重複がなくなり、効率のよいスキャンが可能となる。
Furthermore, the criteria of (c) and (d) can be set as shown in (e) and (f) below. An example of this is shown in FIG.
(E) Move to the X or Y coordinate before the reference chip.
(F) When there are no chips S in the partial area in the X-axis direction or the Y-axis direction from the reference chip, the remaining chips S are imaged while returning to the reference chip. When this method is adopted, there is no duplication of the route (d) passing through the already scanned route, and efficient scanning becomes possible.
 部分領域についてスキャンが終了して、リファレンスチップに戻った場合(ステップS09のYES)、リファレンス検査部14が、リファレンス検査を行う(ステップS10)。つまり、リング移動機構2Aは、撮像部60aによる撮像位置を、リファレンスチップまで戻す。そして、記憶部19が記憶したリファレンスチップの座標データと、リファレンスチップまで戻った時のリング移動機構2Aのエンコーダ情報に基づく座標データとに、ずれがないか判定する。 When the scanning of the partial area is completed and the reference chip is returned (YES in step S09), the reference inspection unit 14 performs the reference inspection (step S10). That is, the ring moving mechanism 2A returns the imaging position by the imaging unit 60a to the reference chip. Then, it is determined whether there is any deviation between the coordinate data of the reference chip stored in the storage unit 19 and the coordinate data based on the encoder information of the ring moving mechanism 2A when returning to the reference chip.
 座標データが相違する場合、エラーが発生したとして(ステップS11のYES)、リファレンスチップまで戻った時のリング移動機構2Aのエンコーダ情報に基づく座標データによって、当該リファレンスチップの座標データを更新する。そして、あらたな座標データを基準として、当該部分領域のスキャン結果をクリアして、再度、同じ部分領域のスキャンを行う(ステップS04~09)。このエラーが発生した場合、出力部82に、アラーム音を出力させる、エラーの発生を知らせる画面を表示させる等により、オペレータに報知する。エラーの発生したリファレンスチップ、部分領域若しくは保証領域を画面表示させてもよい。 If the coordinate data are different, an error has occurred (YES in step S11), and the coordinate data of the reference chip is updated with the coordinate data based on the encoder information of the ring moving mechanism 2A when returning to the reference chip. Then, based on the new coordinate data, the scan result of the partial area is cleared, and the same partial area is scanned again (steps S04 to 09). When this error occurs, the operator is notified by causing the output unit 82 to output an alarm sound, displaying a screen notifying the occurrence of the error, or the like. The reference chip, the partial area, or the guaranteed area where the error has occurred may be displayed on the screen.
 座標データが一致する場合、それまでのスキャン結果は正しいものとして確定する(ステップS11のNO)。そして、当該保証領域内のスキャンが終了していない場合(ステップS12のNO)、同じリファレンスチップの座標データを基準として、当該保証領域内の他の部分領域のスキャンを行う(ステップS05~11)。例えば、図12の部分領域Ex2、Ex3、Ex4のスキャンを順次行う。 If the coordinate data match, the scan results so far are determined to be correct (NO in step S11). If the scan in the guarantee area is not completed (NO in step S12), the scan of other partial areas in the guarantee area is performed based on the coordinate data of the same reference chip (steps S05 to S11). . For example, the partial areas Ex2, Ex3, and Ex4 in FIG. 12 are sequentially scanned.
 当該保証領域内のチップSについてスキャン済みのフラグが立ってスキャンが終了した場合(ステップS12のYES)、全ての領域のスキャンが終了していなければ(ステップS13のNO)、次のリファレンスチップに基づいて、当該リファレンスチップの保証領域についてスキャンを行う(ステップS01~12)。 If the scanned flag is set for the chip S in the guaranteed area and the scanning is completed (YES in step S12), if the scanning of all areas is not completed (NO in step S13), the next reference chip is set. Based on this, the guaranteed area of the reference chip is scanned (steps S01 to S12).
 つまり、リング移動機構2Aは、スキャン済みのリファレンスチップの座標データと、マップデータのリファレンスチップの位置情報に基づいて、移動距離が最短となるように、撮像部60aの撮像領域を移動させて、次のリファレンスチップの発見、座標データの取得、スキャン処理を行う。 That is, the ring moving mechanism 2A moves the imaging area of the imaging unit 60a based on the coordinate data of the scanned reference chip and the position information of the reference chip of the map data so that the moving distance becomes the shortest, Discovery of the next reference chip, acquisition of coordinate data, and scanning processing are performed.
 例えば、図12のリファレンスチップRS2の保証領域E2、リファレンスチップRS3の保証領域E4、リファレンスチップRS4の保証領域E3について、上記のような手法により、スキャン処理を行う。 For example, the scan process is performed on the guarantee area E2 of the reference chip RS2, the guarantee area E4 of the reference chip RS3, and the guarantee area E3 of the reference chip RS4 of FIG.
 全ての領域のスキャンが終了した場合(ステップS13のYES)、チップSの座標データを特定する処理を終了する。なお、2ランクのチップSをピックアップ済みのウェハシートDaであっても、残存するチップSについて、上記と同様に2ランクのチップSをピックアップして、2枚のウェハシートDb、Dcに分類して貼り付けることができる。 When the scanning of all the areas has been completed (YES in step S13), the processing for specifying the coordinate data of the chip S is terminated. Even if the wafer sheet Da has already been picked up with the two ranks of chips S, the remaining chips S are picked up with the two ranks of chips S and classified into two wafer sheets Db and Dc. Can be pasted.
[E.ピックアップ及び貼り付け例]
 以上のような分類装置1において、ピックアップ基準に従って、複数の保持装置200がピックアップされ、貼り付けられるチップSのランクの例を、図13~17を参照して以下に説明する。なお、図14~17は、搬送装置300の間欠回転によりチップSを保持した保持装置200が、ウェハシートDb、Dcに貼り付ける態様を簡略化して示したものである。図中、黒いチップSがランクA、白いチップSがランクBである。但し、保持装置200は、貼り付け側の半数のみを図示し、ピックアップ側の半数は図示を省略している。また、便宜的に、各保持装置200には、識別情報として番号を付している。
[E. Pickup and pasting example]
In the classification device 1 as described above, an example of the rank of the chip S on which the plurality of holding devices 200 are picked up and pasted according to the pickup standard will be described below with reference to FIGS. 14 to 17 show a simplified form in which the holding device 200 holding the chips S by intermittent rotation of the transfer device 300 is attached to the wafer sheets Db and Dc. In the figure, the black chip S is rank A, and the white chip S is rank B. However, in the holding device 200, only half of the attachment side is shown, and the half of the pickup side is not shown. For convenience, each holding device 200 is numbered as identification information.
 本実施形態においては、上記のように、ランクA、Bという中央値に最も近いチップSをピックアップする。LED等の輝度測定試験後のランク別の個数分布は、中央値に近いものが品質の上位の2ランクであることが多い。例えば、図13に示すように、品質が良い順にランクA~D等となっている場合には、ランクA、ランクBの個数が、他のランクの個数よりも多くなっている。 In the present embodiment, as described above, the chip S closest to the median of ranks A and B is picked up. As for the number distribution by rank after the luminance measurement test for LEDs and the like, the one close to the median is often the top two ranks of quality. For example, as shown in FIG. 13, when ranks A to D are in order of good quality, the number of rank A and rank B is larger than the number of other ranks.
 本実施形態においては、まず、ウェハシートDaに貼付されたランクA及びランクBのチップSを、各行又は各列に並んだ順に、往復でピックアップすることができる。この場合、どの保持装置200がランクAのチップSをピックアップするか、ランクBのチップSをピックアップするかは特に決まっていない。この場合であっても、ランクA、ランクBの個数が近似していれば、ウェハシートDb、Dcが満杯になる速度を近似させることができる。しかし、ウェハシートDb、Dcに貼り付けられるチップSが存在せずに、空送りする場合が多くなると、ウェハシートDb、Dcが満杯になるまでの貼り付け速度に遅れが生じる。 In this embodiment, first, the rank A and rank B chips S affixed to the wafer sheet Da can be picked up in a reciprocating manner in the order in which they are arranged in rows or columns. In this case, it is not particularly determined which holding device 200 picks up the rank A chip S or the rank B chip S. Even in this case, if the number of ranks A and B is approximate, the speed at which the wafer sheets Db and Dc are full can be approximated. However, if the chip S to be attached to the wafer sheets Db and Dc does not exist and the number of cases where the wafer sheets Db and Dc are full is increased, there is a delay in the attaching speed until the wafer sheets Db and Dc become full.
 例えば、図14(A)では、5番の保持装置200が、ウェハシートDbへのランクAのチップSの貼り付けを行わない場合でも、1番の保持装置200がランクAのチップSをウェハシートDcに貼り付けている。また、図14(B)では、2番の保持装置200がウェハシートDcへのチップSの貼り付けを行わない場合でも、6番の保持装置200がランクBのチップSをウェハシートDbに貼り付けている。しかし、図14(C)では、3番の保持装置200、7番の保持装置200の双方が、貼り付けを行うことができない。このため、このタイミングでは、貼り付けをせずに空送りすることになる。 For example, in FIG. 14A, even when the number 5 holding device 200 does not attach the rank A chip S to the wafer sheet Db, the number 1 holding device 200 removes the rank A chip S from the wafer. Affixed to the sheet Dc. In FIG. 14B, even when the second holding device 200 does not attach the chip S to the wafer sheet Dc, the sixth holding device 200 attaches the rank B chip S to the wafer sheet Db. Attached. However, in FIG. 14C, both the third holding device 200 and the seventh holding device 200 cannot perform the pasting. For this reason, at this timing, the sheet is fed without being pasted.
 これに対処するために、例えば、図15(A)に示すように、ピックアップ基準として、第1の収集装置600のウェハシートDbに対向する位置に来る保持装置200と、これと同時に第2の収集装置700のウェハシートDcに対向する位置に来る保持装置200とが、常に異なるランクのチップSをピックアップすることが考えられる。このようにすると、半分の保持装置200は、ウェハシートDb、Dcに同時に貼り付けることができる。しかし、その後の半分の保持装置200は、空送りとなる。つまり、図15(A)に示すように、1番~9番の保持装置200が同時貼り付けを行った後は、図15(B)に示すように、5番~13番の保持装置200は空送りとなった後、図15(C)に示すように、1番、9~16番の保持装置200は同時貼り付けを行う。この場合、搬送装置300が一周する間に、2ランクのチップSを同数貼り付けることができるため、ウェハシートDb、Dcが満杯になる速度をより近似させることができる。但し、空送りが連続する時間が長いため、ウェハシートDb、Dcへの貼り付け精度に影響を与える場合がある。 In order to cope with this, as shown in FIG. 15A, for example, as a pickup reference, the holding device 200 that is located at a position facing the wafer sheet Db of the first collection device 600, and at the same time the second device It is conceivable that the holding device 200 at a position facing the wafer sheet Dc of the collecting device 700 always picks up chips S of different ranks. In this way, the half holding device 200 can be attached to the wafer sheets Db and Dc at the same time. However, the subsequent half of the holding devices 200 are idle fed. That is, as shown in FIG. 15 (A), after the first to ninth holding devices 200 are attached together, as shown in FIG. 15 (B), the fifth to 13th holding devices 200. After the idle feed, as shown in FIG. 15C, the first and ninth to sixteenth holding devices 200 perform the pasting simultaneously. In this case, since the same number of the two ranks of chips S can be pasted while the transfer device 300 makes one round, the speed at which the wafer sheets Db and Dc become full can be more approximated. However, since the time during which the idle feeding continues is long, it may affect the accuracy of attaching to the wafer sheets Db and Dc.
 そこで、2ランクのチップSが同数の状態では、間欠動作における停止タイミングで、第1の収集装置600のウェハシートDa及び第2の収集装置700のウェハシートDbのいずれか一方にチップSを貼り付けることが望ましい。つまり、搬送装置300の1ピッチの間欠回転毎に、第1の収集装置600のウェハシートDbへのランクBのチップSの貼り付け及び第2の収集装置700のウェハシートDcへのランクAのチップSの貼り付けの一方が必ず行われるように、ピックアップする。 Therefore, when the two ranks of chips S are in the same number, the chips S are attached to either the wafer sheet Da of the first collection device 600 or the wafer sheet Db of the second collection device 700 at the stop timing in the intermittent operation. It is desirable to attach. That is, for each intermittent rotation of the transfer device 300 by one pitch, the rank B chip S is attached to the wafer sheet Db of the first collection device 600 and the rank A of the wafer A is collected to the wafer sheet Dc of the second collection device 700. Pickup is performed so that one of the attachments of the chip S is always performed.
 例えば、図16(A)に示すように、ピックアップ基準として、第1の収集装置600のウェハシートDb、第2の収集装置700のウェハシートDcに対向する保持装置200が、常に同じランクのチップSとなるように、ピックアップする。つまり、第1の収集装置600から第2の収集装置700までの保持装置200の数から1を引いた数毎に、同じランクのチップSをピックアップする。これは、円軌道の搬送経路Tの直交する接線方向に第1の収集装置600のウェハシートDb、第2の収集装置700のウェハシートDcを配置した場合、90°進む毎に同じランクのチップSをピックアップすることになる。 For example, as shown in FIG. 16A, as a pick-up reference, the holding device 200 facing the wafer sheet Db of the first collection device 600 and the wafer sheet Dc of the second collection device 700 always has the same rank chip. Pick up to be S. That is, chips S of the same rank are picked up for each number obtained by subtracting 1 from the number of holding devices 200 from the first collecting device 600 to the second collecting device 700. This is because, when the wafer sheet Db of the first collection device 600 and the wafer sheet Dc of the second collection device 700 are arranged in the tangential direction perpendicular to the conveyance path T of the circular orbit, the chips of the same rank every time 90 ° is advanced. S will be picked up.
 図16(A)では、1番の保持装置200が、ウェハシートDcへのチップSの貼り付けを行わない場合でも、5番の保持装置200がランクBのチップSをウェハシートDbに貼り付けている。また、図16(B)では、6番の保持装置200がウェハシートDbへのランクAのチップSの貼り付けを行わない場合でも、2番の保持装置200がランクAのチップSをウェハシートDcに貼り付けている。さらに、図16(C)では、3番の保持装置200が、ウェハシートDcへのチップSの貼り付けを行わない場合でも、7番の保持装置200がランクBのチップSをウェハシートDbに貼り付けている。このため、第1の収集装置600、第2の収集装置700の双方に貼り付けをせずに空送りするタイミングがなくなる。よって、ウェハシートDb、Dcが満杯になるまでの貼り付け速度の低下を防止できる。また、貼り付けタイミング及びその間隔が短く一定となるので、ウェハシートDb、Dcの貼り付け精度を維持し易い。 In FIG. 16A, even when the first holding device 200 does not attach the chip S to the wafer sheet Dc, the fifth holding device 200 attaches the rank B chip S to the wafer sheet Db. ing. In FIG. 16B, even if the sixth holding device 200 does not attach the rank A chip S to the wafer sheet Db, the second holding device 200 applies the rank A chip S to the wafer sheet. Affixed to Dc. Further, in FIG. 16C, even if the third holding device 200 does not attach the chip S to the wafer sheet Dc, the seventh holding device 200 applies the rank B chip S to the wafer sheet Db. Paste. For this reason, there is no timing for feeding the first collection device 600 and the second collection device 700 without pasting them. Therefore, it is possible to prevent a reduction in the bonding speed until the wafer sheets Db and Dc are full. Further, since the attaching timing and the interval between them are short and constant, it is easy to maintain the attaching accuracy of the wafer sheets Db and Dc.
 なお、図16の例では、各保持装置200が、ランクAのチップS、ランクBのチップSを交互に保持していた。但し、図17(A)(B)(C)に示すように、90°進む毎に同じランクのチップSがピックアップされていれば、複数のランクのチップSが連続する状態を含んでいてもよい。 In the example of FIG. 16, each holding device 200 alternately holds the chip S of rank A and the chip S of rank B. However, as shown in FIGS. 17A, 17B, and 17C, if chips S of the same rank are picked up every 90 °, even if the chips S of a plurality of ranks are included. Good.
 なお、上記の態様のいずれであっても、支持装置100のウェハシートDaに、ピックアップすべき2ランクのチップSのうち、一方のランクのチップSのみがピックアップ済となり、他方のランクのチップSが残存する状態となった場合には、他方のランクのチップSのみを連続してピックアップすることにより、ウェハシートDb、Dcが満杯となる時間差をできるだけ短縮することが望ましい。 In any of the above embodiments, only one rank S of the chips S of the two ranks S to be picked up is already picked up on the wafer sheet Da of the support device 100, and the other rank of the chips S. In the state in which the wafer sheets remain, it is desirable to reduce the time difference at which the wafer sheets Db and Dc are full as much as possible by continuously picking up only the chips S of the other rank.
[F.効果]
 以上のような本実施形態は、以下のような効果が得られる。
(1)分類装置1は、品質の程度を示すランクが異なるチップSが混在したウェハWが貼付され、ダイシングによりチップSが個片に分かれたウェハシートDaを支持する支持装置100と、支持装置100に支持されたウェハシートDaが伸張されることにより分離されたチップSを、ランクに基づいて選択的にピックアップする保持装置200と、保持装置200によりピックアップされたチップSを、円軌道の搬送経路Tにおいて搬送する搬送装置300を有する。
[F. effect]
This embodiment as described above can obtain the following effects.
(1) The classification device 1 includes a support device 100 that supports a wafer sheet Da on which a wafer W in which chips S having different ranks indicating quality levels are mixed is attached and the chips S are separated into individual pieces by dicing, and a support device. The holding device 200 that selectively picks up the chips S separated by the expansion of the wafer sheet Da supported by 100 based on the rank, and the chips S picked up by the holding device 200 are conveyed in a circular orbit. A transport apparatus 300 that transports the path T is included.
 そして、分類装置1は、搬送装置300により搬送されるチップSの姿勢ズレを計測する計測装置400と、搬送経路Tの近傍に配設され、計測装置400により計測された姿勢ズレに基づいて、チップSの姿勢を補正する補正装置500を有する。また、本実施形態は、搬送経路Tの近傍における補正装置500の後流に配設され、補正装置500により姿勢を補正されたチップSのうち、1種のランクのチップSが貼り付けられるウェハシートDbを支持する第1の収集装置600と、搬送経路Tの近傍における第1の収集装置600の後流に配設され、補正装置500により姿勢を補正されたチップSのうち、他の1種のランクのチップSが貼り付けられるウェハシートDcを支持する第2の収集装置700と、搬送装置300により搬送されたチップSを、第1の収集装置600のウェハシートDb及び第2の収集装置700のウェハシートDcに、それぞれに対応するランクに分けて貼り付ける保持装置200を有する。 Then, the classification device 1 is disposed in the vicinity of the conveyance path T and the measurement device 400 that measures the posture deviation of the chip S conveyed by the conveyance device 300, and based on the posture deviation measured by the measurement device 400. A correction device 500 that corrects the posture of the chip S is provided. Further, in the present embodiment, a wafer that is disposed downstream of the correction device 500 in the vicinity of the transport path T and to which one type of chip S is attached among the chips S whose posture is corrected by the correction device 500. The first collection device 600 that supports the sheet Db and the other one of the chips S that are disposed downstream of the first collection device 600 in the vicinity of the conveyance path T and whose posture is corrected by the correction device 500. The second collection device 700 that supports the wafer sheet Dc to which the chips S of different ranks are attached, and the chips S conveyed by the conveyance device 300 are used as the wafer sheet Db and the second collection of the first collection device 600. The holding device 200 is attached to the wafer sheet Dc of the apparatus 700 in a corresponding rank.
 さらに、分類装置1は、支持装置100のウェハシートDaから、2種のランクのチップSが全てピックアップされた後に、ピックアップ済みのウェハシートDaを、2種のランクのチップSをピックアップしていないウェハシートに順次交換する交換装置を有する。 Further, the classification device 1 does not pick up the picked-up wafer sheet Da after the two types of chips S are picked up from the wafer sheet Da of the support device 100. An exchange device for sequentially exchanging wafer sheets is provided.
 このため、ピックアップ後、貼り付け前に、チップSの姿勢が補正装置500により補正され、2ランクのチップSが第1の収集装置600のウェハシートDb、第2の収集装置700のウェハシートDcに貼り付けられて行くので、貼り付け側のウェハシートDb、Dcを交換することなく、2つのウェハシートDb、Dcに並行して異なる2種のランクのチップSを、正確に効率良く貼り付けることができる。 For this reason, the posture of the chip S is corrected by the correction device 500 after the pickup and before the attachment, and the two ranks of chips S are the wafer sheet Db of the first collection device 600 and the wafer sheet Dc of the second collection device 700. Since the wafer sheets Db and Dc on the attachment side are not exchanged, the two different ranks of chips S are attached to the two wafer sheets Db and Dc in an accurate and efficient manner. be able to.
 また、2つのウェハシートDb、Dcのいずれかが満杯になるまで、ピックアップ側のウェハシートDaを交換していくことにより、2つのウェハシートDb、Dcを貼り付け途中で交換する必要がない。 Further, by exchanging the wafer sheet Da on the pickup side until one of the two wafer sheets Db and Dc is full, it is not necessary to exchange the two wafer sheets Db and Dc in the middle of pasting.
 さらに、ピックアップ側が一台の支持装置100で済むため、回転型の搬送装置300の周囲のスペースに、余裕を持って配置できる。このため、本実施形態では、計測装置、補正装置を追加して配置することができる。 Furthermore, since only one support device 100 is required on the pickup side, it can be arranged with a margin in the space around the rotary type conveyance device 300. For this reason, in this embodiment, a measuring device and a correction device can be added and arranged.
(2)2種のランクは、同一ウェハW内にあるチップSのランク別の個数分布において、個数が最も多い2種のランクである。
 このため、ウェハシートDaの交換回数を少なくして、貼り付け済みのウェハシートDb、Dcの生産効率を上げることができる。また、2種のランクのチップSの数が近似していれば、ウェハシートDb、Dcの両者をチップSで満杯とする時間を近似させることができる。この場合、一方が満杯となった後、他方が満杯となるまで待つ時間が少なくなり、ウェハシートDb、Dcを同時に交換しても、時間のロスが少ない。例えば、同一ウェハW内のランク別の個数分布において、中央値に最も近い2種のランクは、他のランクよりも個数が多く、両者の個数が近似している場合がある。このため、この2種のランクのチップSをウェハシートDb、Dcに分類して貼り付けることにより、ウェハシートDb、Dcの両者をチップSで満杯とする時間を近似させることができる。
(2) The two types of ranks are the two types of ranks having the largest number in the number distribution of the chips S in the same wafer W by rank.
For this reason, the number of exchanges of the wafer sheet Da can be reduced, and the production efficiency of the bonded wafer sheets Db and Dc can be increased. If the numbers of the two types of chips S are approximate, the time for filling both the wafer sheets Db and Dc with the chips S can be approximated. In this case, after one side becomes full, the time to wait until the other becomes full is reduced, and even if the wafer sheets Db and Dc are replaced at the same time, there is little time loss. For example, in the number distribution by rank in the same wafer W, the two types of ranks closest to the median may have a larger number than the other ranks, and the number of both may be approximated. Therefore, by classifying and attaching the two types of ranks of chips S to the wafer sheets Db and Dc, it is possible to approximate the time for filling both the wafer sheets Db and Dc with the chips S.
(3)搬送装置300は、所定のピッチの間欠動作でチップSを搬送し、貼付装置は、特定の1種のランクと他の1種のランクが同数の状態では、間欠動作における停止タイミングで、第1の収集装置600のウェハシートDb及び第2の収集装置700のウェハシートDcのいずれか一方にチップSを貼り付ける。 (3) The transport device 300 transports the chip S in an intermittent operation with a predetermined pitch, and the sticking device has a stop timing in the intermittent operation in the same number of specific one type of rank and the other one type of rank. Then, the chip S is attached to one of the wafer sheet Db of the first collection device 600 and the wafer sheet Dc of the second collection device 700.
 このため、チップSの貼付けが、停止タイミングの都度、ウェハシートDb,Dcのいずれか一方へ必ずなされるので、貼り付けがなされずに空送りされるタイミングを極力減らして、貼り合わせの速度の遅れを防止できる。 For this reason, since the chip S is always attached to either one of the wafer sheets Db and Dc at each stop timing, the timing of feeding the sheet S without being attached is reduced as much as possible, and the bonding speed is increased. Delay can be prevented.
(4)ピックアップ装置及び貼付装置が、先端にチップSを保持する保持装置200であり、搬送装置300は、所定のピッチで間欠回転する回転体310を有し、複数の保持装置200は、回転体310に設けられ、複数の保持装置200は、先端が搬送経路T上に所定のピッチに対応する等間隔で並ぶ位置に配設されている。 (4) The pickup device and the sticking device are the holding device 200 that holds the chip S at the tip, the transport device 300 includes a rotating body 310 that rotates intermittently at a predetermined pitch, and the plurality of holding devices 200 rotate. The plurality of holding devices 200 provided on the body 310 are arranged at positions where the tips are arranged on the transport path T at equal intervals corresponding to a predetermined pitch.
 このため、回転体310の回転とともに間欠移動する保持装置200によって、ピックアップ及び貼り付けを行うことができるので、装置構成を簡略化できる。 For this reason, since the pick-up and pasting can be performed by the holding device 200 that intermittently moves with the rotation of the rotating body 310, the device configuration can be simplified.
(5)第1の収集装置600に対応する位置に来る保持装置200と、これと同時に第2の収集装置700に対応する位置に来る保持装置200とが、ピックアップにおいて、同じランクのチップSを保持する。 (5) The holding device 200 that comes to the position corresponding to the first collecting device 600 and the holding device 200 that comes to the position corresponding to the second collecting device 700 at the same time pick up the chips S of the same rank in the pickup. Hold.
 このため、チップSの貼付けが、停止タイミングの都度、ウェハシートDb,Dcのいずれか一方へ必ずなされるので、貼り付けがなされずに空送りされるタイミングを極力減らして、貼り合わせの速度の遅れを防止できる。 For this reason, since the chip S is always attached to either one of the wafer sheets Db and Dc at each stop timing, the timing of feeding the sheet S without being attached is reduced as much as possible, and the bonding speed is increased. Delay can be prevented.
(6)第1の収集装置600のウェハシートDb及び第2の収集装置700のウェハシートDcに貼り付けられたチップSの位置座標を検出する座標検出部18を有し、第1の収集装置600及び第2の収集装置700は、座標検出部18により検出された貼り付け済みのチップSの座標に基づいて、チップSの貼り付け位置を補正する。 (6) It has the coordinate detection part 18 which detects the position coordinate of the chip | tip S affixed on the wafer sheet Db of the 1st collection apparatus 600, and the wafer sheet Dc of the 2nd collection apparatus 700, and the 1st collection apparatus 600 and the second collection device 700 correct the pasting position of the chip S based on the coordinates of the pasted chip S detected by the coordinate detection unit 18.
 このため、チップSを順次貼り付けていく途中で生じる位置ズレを補正して、正確な貼り付けを実行できる。 For this reason, it is possible to correct the positional deviation that occurs during the sequential pasting of the chips S and to perform accurate pasting.
(7)計測装置400は、補正装置500の上流においてチップSの姿勢ズレを計測する前計測部40Aと、補正装置500の下流においてチップSの姿勢ズレを計測する後計測部40Bと、を有し、補正装置500は、前計測部40Aにより計測された姿勢ズレに基づいて、チップSの姿勢を補正し、第1の収集装置600及び第2の収集装置700は、後計測部40Bにより計測された姿勢ズレに基づいて、チップSの姿勢を補正する。 (7) The measuring device 400 includes a pre-measurement unit 40A that measures the posture deviation of the chip S upstream of the correction device 500, and a post-measurement unit 40B that measures the posture deviation of the chip S downstream of the correction device 500. Then, the correction device 500 corrects the posture of the chip S based on the posture deviation measured by the front measurement unit 40A, and the first collection device 600 and the second collection device 700 are measured by the rear measurement unit 40B. The posture of the chip S is corrected based on the posture deviation.
 このため、補正装置500によって、ピックアップ時における姿勢ズレを補正した後の僅かな姿勢ズレも、貼り付け時に補正することができるので、より正確な貼り付けを実行できる。 For this reason, a slight misalignment after correcting the misalignment at the time of pickup can be corrected by the correcting device 500 at the time of pasting, so that more accurate pasting can be executed.
(8)支持装置100に支持されたウェハシートDaが伸張されることにより、個片に分かれたチップSを、座標データに基づいて、ウェハシートDaに対して相対移動しながら撮像する撮像部60aと、撮像部60aが撮像した画像データに基づいて、ウェハW内のチップSのうち特定のマークが付されたリファレンスチップを発見し、撮像部60aが相対移動するための座標データに基づいて、リファレンスチップの座標データを特定するリファレンス検出処理を行うリファレンス検出部12と、リファレンスチップの座標データ及びウェハW内における各チップSの相対位置情報を基準として、撮像部60aがウェハシートDaに対して相対移動しながら各チップSを撮像した画像データと、撮像部60aが相対移動するための座標データとに基づいて、各チップSの座標データを特定するスキャン処理を行うスキャン部13と、を有し、保持装置200は、スキャン部13により特定された各チップSの座標データと、各チップSのランク情報とに基づいて、ウェハシートDaに対して相対移動しながら、チップSを選択的にピックアップする。 (8) When the wafer sheet Da supported by the support device 100 is expanded, the imaging unit 60a that captures images of the chips S divided into pieces while moving relative to the wafer sheet Da based on the coordinate data. Based on the image data captured by the imaging unit 60a, a reference chip with a specific mark is found among the chips S in the wafer W, and based on the coordinate data for the relative movement of the imaging unit 60a, The reference detection unit 12 that performs reference detection processing for specifying the coordinate data of the reference chip, and the imaging unit 60a with respect to the wafer sheet Da on the basis of the reference chip coordinate data and the relative position information of each chip S in the wafer W. Image data obtained by imaging each chip S with relative movement and coordinate data for the relative movement of the imaging unit 60a. And a scanning unit 13 that performs a scanning process for specifying the coordinate data of each chip S based on the data, and the holding device 200 includes the coordinate data of each chip S specified by the scan unit 13 and each chip. Based on the rank information of S, the chip S is selectively picked up while moving relative to the wafer sheet Da.
 このため、ピックアップ前に、エキスパンド後のウェハ内のチップSに対して、リファレンスチップを基準とする一括スキャンを行うことにより、個々のチップSの座標データを正確に得ることができる。このため、エキスパンドによるチップSの移動、チップSの抜け落ち等があっても、取得した座標データに基づいて、個々のチップSを正確にピックアップすることができる。従って、第1の収集装置600、第2の収集装置700に2ランクのチップSを分類して貼り付けている途中で、ピックアップ側のウェハシートDaについて交換が行われ、エキスパンドがなされても、所望のチップSを正確にピックアップすることができる。 For this reason, the coordinate data of each chip S can be obtained accurately by performing a collective scan based on the reference chip with respect to the chip S in the expanded wafer before picking up. For this reason, even if there is a movement of the chip S due to expansion, a dropout of the chip S, etc., the individual chips S can be accurately picked up based on the acquired coordinate data. Accordingly, even if the pickup-side wafer sheet Da is replaced and expanded while the two-ranked chips S are classified and pasted to the first collecting device 600 and the second collecting device 700, A desired chip S can be accurately picked up.
 特に、特定の2ランクのチップSを正確に集めて貼り替えることができる。これにより、ウェハシートDb、Dc毎にランクが定まり、製品管理が容易となる。特に、従来は、一方のランクのチップSをピックアップすることにより、歯抜け状態となったウェハシートの場合、単にリファレンスチップから設定されたピッチの送り動作で移動するだけでは、正確なピックアップができなかった。しかし、本実施形態では、各チップSの正確な座標データに基づいて、他方のランクのチップSを正確にピックアップすることができる。チップSをピックアップ済となった歯抜けの箇所は、ピックアップをせずに移動することにより、効率の良い高速な処理を行うことができる。 Especially, it is possible to accurately collect and replace specific two rank chips S. Thereby, the rank is determined for each of the wafer sheets Db and Dc, and product management becomes easy. In particular, in the past, in the case of a wafer sheet in which the tooth S has been removed by picking up one rank of chips S, an accurate pick-up can be achieved simply by moving it with a feed operation set at a pitch from the reference chip. There wasn't. However, in the present embodiment, the chips S of the other rank can be accurately picked up based on the accurate coordinate data of each chip S. The portion of the tooth missing where the chip S has been picked up can be moved without picking up, whereby efficient and high-speed processing can be performed.
(9)撮像部60aが撮像した画像データと、撮像部60aが相対移動するための座標データとに基づいて、リファレンス検出処理によるリファレンスチップの座標データが、正しいか否かを検査するリファレンス検査処理を行うリファレンス検査部14を有する。 (9) Reference inspection processing for inspecting whether the reference chip coordinate data by the reference detection processing is correct based on the image data captured by the imaging unit 60a and the coordinate data for the relative movement of the imaging unit 60a A reference inspection unit 14 is provided.
 このため、一括スキャン中に、リファレンスチップの座標データが正しいかどうかリファレンス検査を行い、エラーの場合には、チップSのスキャン処理をやり直す。従って、微小なチップSが大量に存在するウェハWであっても、全体のスキャンによる座標データを正確に得ることができる。 Therefore, during the collective scan, a reference check is performed to check whether the coordinate data of the reference chip is correct. If there is an error, the chip S scan process is performed again. Therefore, even if the wafer W has a large amount of minute chips S, coordinate data obtained by the entire scan can be obtained accurately.
(10)ウェハWを区切る複数の保証領域毎にリファレンスチップが設定され、スキャン部13は、リファレンスチップを基準とするスキャン処理を、そのリファレンスチップの保証領域毎に行う。 (10) A reference chip is set for each of a plurality of guaranteed areas that divide the wafer W, and the scan unit 13 performs a scanning process based on the reference chip for each guaranteed area of the reference chip.
 このため、リファレンスチップが複数設定され、各リファレンスチップの保証領域に分けてスキャン処理を行うため、基準となるリファレンスチップからのチップSの距離が短くなり、ズレも小さく抑えることができる。 For this reason, since a plurality of reference chips are set and the scan process is performed separately for each reference chip guaranteed area, the distance of the chip S from the reference chip serving as a reference is shortened, and the deviation can be suppressed.
(11)スキャン部13は、チップSの有無にかかわらず、各チップSについてスキャン処理済みを示すフラグを立て、スキャン処理済みのチップSがなくなるまで、スキャン処理を行う。 (11) Regardless of the presence or absence of the chip S, the scanning unit 13 sets a flag indicating that the scanning process has been completed for each chip S, and performs the scanning process until there is no more scanned chip S.
 このため、マップデータでは存在するはずのチップSが、ウェハシートから脱落していて、座標データが得られない箇所も、スキャン済のフラグを立てることによりスキャン処理を継続し、当該箇所は、チップSがない箇所であると判定できる。従って、当該箇所は、ピックアップをせずに移動することにより、効率の良い高速な処理を行うことができる。 For this reason, the chip S that should be present in the map data is dropped from the wafer sheet, and the scanning process is continued by setting a scanned flag even at a position where the coordinate data cannot be obtained. It can be determined that there is no S. Therefore, efficient movement and high-speed processing can be performed by moving the portion without picking up.
(12)撮像部60aは、複数のチップS単位で相対移動し、スキャン部13は、撮像部60aにより撮像された画像データに含まれる複数のチップSについて、それぞれ座標データを特定する。 (12) The imaging unit 60a relatively moves in units of a plurality of chips S, and the scanning unit 13 specifies coordinate data for each of the plurality of chips S included in the image data captured by the imaging unit 60a.
 このため、複数のチップSについてまとめて座標データを取得できるので、高速なスキャン処理を実現できる。 For this reason, since coordinate data can be acquired for a plurality of chips S together, high-speed scanning processing can be realized.
(13)撮像部60aの相対移動の経路は、重複が最小となるように設定されている。
 このため、スキャンの経路に、重複が生じないようにすれば、余分な移動時間を省き、高速なスキャン処理を実現できる。
(13) The relative movement path of the imaging unit 60a is set to minimize the overlap.
For this reason, if no overlap occurs in the scan path, it is possible to save the extra movement time and realize a high-speed scan process.
(14)撮像部60aのリファレンスチップの撮像位置から他のリファレンスチップの撮像位置までの相対移動の距離が、最短となるように設定されている。
 このため、リファレンスチップ間での移動距離を極力短くすることによって、高速な処理を実現できる。
(14) The distance of relative movement from the imaging position of the reference chip of the imaging unit 60a to the imaging position of another reference chip is set to be the shortest.
For this reason, high-speed processing can be realized by shortening the moving distance between the reference chips as much as possible.
(15)ウェハWを区切る複数の保証領域毎にリファレンスチップが設定され、スキャン部13は、リファレンスチップを基準とするスキャン処理を、そのリファレンスチップの保証領域毎に行い、リファレンス検査部14は、保証領域毎に、リファレンス検査を行う。 (15) A reference chip is set for each of a plurality of guaranteed areas that divide the wafer W, the scan unit 13 performs a scan process based on the reference chip for each guaranteed area of the reference chip, and the reference inspection unit 14 A reference inspection is performed for each guarantee area.
(16)スキャン部13は、リファレンスチップを基準とするスキャン処理を、保証領域を複数の領域に区切った部分領域毎に行い、リファレンス検査部14は、部分領域毎に、リファレンス検査を行う。
 このため、保証領域毎に、リファレンス検査を行うことにより、チップSの位置の正確さを担保することができる。
(16) The scan unit 13 performs a scan process based on the reference chip for each partial region obtained by dividing the guaranteed region into a plurality of regions, and the reference inspection unit 14 performs a reference inspection for each partial region.
For this reason, the accuracy of the position of the chip S can be ensured by performing the reference inspection for each guarantee area.
 リファレンス検査処理の結果が正しくない場合には、これを外部に報知する出力部82を有する。 When the result of the reference inspection process is not correct, an output unit 82 for notifying the outside is provided.
(17)ピックアップするウェハシートを換える毎に、ウェハシートの伸張が行われている。 (17) Each time the wafer sheet to be picked up is changed, the wafer sheet is stretched.
 リファレンス検査の結果、エラーがあった場合に、出力部82によりこれを報知するため、オペレータは異常の発生を知ることができ、素早い対応が可能となる。例えば、報知の頻度が多い場合には、早期に装置を停止することが好ましい。また、エラー箇所が特定できれば、装置の調整に役立てることができる。 If there is an error as a result of the reference inspection, the output unit 82 notifies this, so the operator can know the occurrence of an abnormality and can respond quickly. For example, when the frequency of notification is high, it is preferable to stop the device early. Moreover, if an error location can be identified, it can be used for adjustment of the apparatus.
2.他の実施形態
 なお、本発明は上記実施の形態に限定されるものではない。
(1)上記の実施形態においては、ピックアップ装置と貼付装置とが、共通の保持装置200として構成されていた。しかし、ピックアップ装置と貼付装置とをそれぞれ独立に構成してもよい。このような例を図18、図19を参照して説明する。なお、図18、図19は、第1の収集装置600、第2の収集装置700を別々に表示していないが、実際には、図1に示すように配置されていることを前提としている。
2. Other Embodiments The present invention is not limited to the above embodiments.
(1) In the above embodiment, the pickup device and the sticking device are configured as the common holding device 200. However, the pickup device and the sticking device may be configured independently. Such an example will be described with reference to FIGS. 18 and 19 do not display the first collection device 600 and the second collection device 700 separately, but it is actually assumed that they are arranged as shown in FIG. .
 まず、図18に示すように、ピックアップ装置32は、支持装置100に支持されたウェハシートDaが伸長されることにより、個片に分かれたチップSを、ランクに基づいて選択的にピックアップする装置である。このピックアップ装置32は、スキャン部13により特定された各チップSの座標データに基づいて、ウェハシートDaに対して相対移動しながら行う。 First, as shown in FIG. 18, the pickup device 32 is a device that selectively picks up the chips S divided into individual pieces based on the rank when the wafer sheet Da supported by the support device 100 is extended. It is. The pickup device 32 is performed while moving relative to the wafer sheet Da based on the coordinate data of each chip S specified by the scanning unit 13.
 ピックアップ装置32は、保持部32aを有する。保持部32aは、ウェハシートDaと搬送装置300との間で変位することにより、ウェハシートDaからチップSを受け取り、搬送装置300に渡す装置である。保持部32aは、複数であっても、単数であってもよい。図18は、4つの保持部32aを十字に構成した4連十字アームを用いた例である。保持部32aの構成は、基本的には、上記の保持装置200と同様である。つまり、保持部32aは、回転の中心から半径方向に進退可能に設けられた吸着ノズルによって構成されている。吸着ノズルは、図示しない真空発生装置による負圧の発生によって、先端の吸着孔にチップSを吸着し、真空破壊又は正圧の発生によって、先端の吸着孔からチップSを離脱させる。 The pickup device 32 has a holding portion 32a. The holding unit 32 a is a device that receives the chip S from the wafer sheet Da by passing between the wafer sheet Da and the transfer device 300 and passes it to the transfer device 300. The holding part 32a may be plural or singular. FIG. 18 shows an example using a four-way cross arm in which the four holding portions 32a are formed in a cross shape. The configuration of the holding unit 32a is basically the same as that of the holding device 200 described above. That is, the holding part 32a is configured by a suction nozzle provided so as to be able to advance and retract in the radial direction from the center of rotation. The suction nozzle sucks the chip S into the suction hole at the tip by generation of negative pressure by a vacuum generator (not shown), and detaches the chip S from the suction hole at the tip by vacuum break or generation of positive pressure.
 ピックアップ装置32は、図示しない駆動源によって、保持部32aが形成する十字の中心を軸に、90°ずつ間欠回転する。これにより、各保持部32aの先端は、ウェハシートDaのチップSのピックアップ位置と、後述する搬送装置300へのチップSの受け渡し位置に位置決めされる。4連十字アームの場合、1つの保持部32aが、順次、ウェハシートDaのチップSのピックアップ位置に来る。これと同時に、他の1つの保持部32aが、後述する搬送装置300の保持部32aへのチップSの受け渡し位置に来る。 The pickup device 32 is intermittently rotated by 90 ° about the center of the cross formed by the holding portion 32a by a driving source (not shown). Thereby, the tip of each holding part 32a is positioned at the pick-up position of the chip S of the wafer sheet Da and the delivery position of the chip S to the transfer device 300 described later. In the case of the quadruple cross arm, one holding portion 32a sequentially comes to the pickup position of the chip S of the wafer sheet Da. At the same time, another one holding portion 32a comes to a position where the chip S is delivered to the holding portion 32a of the transfer device 300 described later.
 なお、単一の保持部32aがウェハシートDaのピックアップ位置と、搬送装置300へのチップSの受け渡し位置との間を往復動する構成としてもよい。例えば、図19に示すように、1つの保持部32aが、90°往復回動する構成としてもよい。複数の保持部32aとする場合の数は自由である。例えば、8連のアームとして構成してもよい。 The single holding unit 32a may be configured to reciprocate between the pickup position of the wafer sheet Da and the transfer position of the chip S to the transfer device 300. For example, as shown in FIG. 19, one holding portion 32a may be configured to reciprocate by 90 °. The number of the plurality of holding portions 32a is arbitrary. For example, you may comprise as an 8 series arm.
 搬送装置300は、ピックアップ装置32によりピックアップされたチップSを、円軌道の搬送経路Tにおいて搬送する装置である。この搬送装置300は、上記の実施形態と同様に、回転体310を有する。但し、本実施形態の回転体310には、複数の保持部22が設けられている。保持部22は、上記の保持装置200と同様の構成である。但し、保持部22は、回転体310の下面に、回転体310と同心の円周に沿って、等間隔に離間して取り付けられている。保持部22は、上記の受け渡し位置において、ピックアップ装置32の保持部32aからチップSを受け取って保持する。そして、回転体310を回転させることで、円周方向にチップSを搬送する。保持部22の配置間隔は、回転体310の1ピッチの回転角度と等しい。 The transfer device 300 is a device that transfers the chip S picked up by the pickup device 32 on a transfer path T of a circular orbit. The transport apparatus 300 includes a rotating body 310 as in the above embodiment. However, the rotating body 310 of the present embodiment is provided with a plurality of holding portions 22. The holding unit 22 has the same configuration as that of the holding device 200 described above. However, the holding part 22 is attached to the lower surface of the rotating body 310 at regular intervals along a circumference concentric with the rotating body 310. The holding unit 22 receives and holds the chip S from the holding unit 32a of the pickup device 32 at the delivery position. And the chip | tip S is conveyed in the circumferential direction by rotating the rotary body 310. FIG. The arrangement interval of the holding portions 22 is equal to the rotation angle of one pitch of the rotator 310.
 保持部22は、回転体310の下面に垂直方向に進退可能に設けられた吸着ノズルによって構成されている。吸着ノズルは、図示しない真空発生装置による負圧の発生によって、先端の吸着孔にチップSを吸着し、真空破壊又は正圧の発生によって、先端の吸着孔からチップSを離脱させる。 The holding unit 22 is configured by a suction nozzle provided on the lower surface of the rotating body 310 so as to be movable back and forth in the vertical direction. The suction nozzle sucks the chip S into the suction hole at the tip by generation of negative pressure by a vacuum generator (not shown), and detaches the chip S from the suction hole at the tip by vacuum break or generation of positive pressure.
 貼付装置33は、搬送装置300により搬送されたチップSを、第1の収集装置600のウェハシートDb及び第2の収集装置700のウェハシートDcに、それぞれに対応するランクに分けて貼り付ける装置である。この貼付装置33は、第1の収集装置600、第2の収集装置700のそれぞれに対応して設けられている。貼付装置33は、ピックアップ装置32の保持部32aと同様の保持部33aを有する。 The sticking device 33 is a device for sticking the chips S transported by the transport device 300 to the wafer sheet Db of the first collecting device 600 and the wafer sheet Dc of the second collecting device 700 in a corresponding rank. It is. The sticking device 33 is provided corresponding to each of the first collecting device 600 and the second collecting device 700. The sticking device 33 has a holding portion 33 a similar to the holding portion 32 a of the pickup device 32.
 例えば、図18に示すように、間欠回転する複数の保持部33aとすることや、図19に示すように、往復動する保持部33aとすることができる。このような動作に従って、保持部33aの先端は、搬送装置300の保持部22に対向する受け取り位置で、保持部22からチップSを受け取り、ウェハシートDb、ウェハシートDcに対向する貼り付け位置で、ウェハシートDb、ウェハシートDcへチップSを貼り付ける。 For example, as shown in FIG. 18, a plurality of holding portions 33a that rotate intermittently can be used, or as shown in FIG. 19, a holding portion 33a that can reciprocate can be used. According to such an operation, the tip of the holding unit 33a is received at the receiving position facing the holding unit 22 of the transfer device 300, and receives the chip S from the holding unit 22, and is attached at the bonding position facing the wafer sheet Db and the wafer sheet Dc. The chip S is attached to the wafer sheet Db and the wafer sheet Dc.
(2)上記の実施形態では、ピックアップ方法として、独自の一括スキャンを利用していた。これにより、伸縮によるチップSの位置の変動があるウェハシートDaであっても正確なピックアップをおこなうことができるので、ウェハシートDaの交換の頻度が高くなっても、ピックアップ及び貼り付けの精度を維持できるという利点がある。但し、ピックアップ手法はこれには限定されず、現在又は将来において利用可能なあらゆる技術を適用可能である。 (2) In the above embodiment, a unique batch scan is used as the pickup method. Accordingly, even if the wafer sheet Da has a variation in the position of the chip S due to expansion and contraction, accurate pickup can be performed. Therefore, even if the exchange frequency of the wafer sheet Da increases, the accuracy of pickup and pasting can be increased. There is an advantage that it can be maintained. However, the pickup method is not limited to this, and any technology that can be used at present or in the future can be applied.
(3)上記の実施形態では、搬送経路Tは、水平方向の円軌道であったが、垂直方向の円軌道であってもよい。例えば、搬送装置300を、垂直に立ち上げた構成として、この周囲に、支持装置100、搬送装置300、計測装置400、補正装置500、第1の収集装置600、第2の収集装置700を配置してもよい。搬送装置300の間欠回転のピッチ、停止位置の数、保持装置、保持部の数等も、上記の実施形態で例示したものには限定されない。計測装置400は、後計測部40Bを省略してもよい。 (3) In the above embodiment, the transport path T is a horizontal circular orbit, but may be a vertical circular orbit. For example, as the configuration in which the transport device 300 is vertically raised, the support device 100, the transport device 300, the measurement device 400, the correction device 500, the first collection device 600, and the second collection device 700 are arranged around the support device 100. May be. The pitch of intermittent rotation, the number of stop positions, the number of holding devices, the number of holding units, and the like of the transfer device 300 are not limited to those exemplified in the above embodiment. The measuring apparatus 400 may omit the post-measurement unit 40B.
(4)エラーの発生したリファレンスチップ、部分領域若しくは保証領域、エラーの頻度等を、記憶部19が記録しておき、これを出力部82が出力することにより、エラーが発生しやすい箇所の分析に役立ててもよい。 (4) A reference chip, a partial area or a guarantee area where an error has occurred, an error frequency, and the like are recorded by the storage unit 19 and output by the output unit 82 to analyze an area where an error is likely to occur. May be useful.
(5)リファレンスチップの数や位置、これに対応する保証領域の数や範囲、部分領域の数や範囲は、スキャン処理を網羅的に行うことができれば、自由に設定可能である。これらの数が多ければ、エラーの発生によるスキャン処理のやり直しの範囲が小さくなるという利点があり、これらの数が少なければ、リファレンス検査の回数が少なくなり、エラーが少なければ高速化が可能となるという利点が得られるため、両者のバランスから妥当な設定をすればよい。なお、部分領域を設定することにより、リファレンス検査の回数が増え、エラーの発生によるスキャンのやり直しの範囲が小さくなるが、部分領域を設定せず、保証領域のみとすることにより、エラーが少なければ、処理の高速化を図ることができる。 (5) The number and position of reference chips, the number and range of guaranteed areas corresponding thereto, and the number and range of partial areas can be freely set as long as the scanning process can be performed comprehensively. If these numbers are large, there is an advantage that the range of scan processing re-executed due to the occurrence of an error is reduced. If these numbers are small, the number of reference inspections is small, and if there are few errors, the speed can be increased. Therefore, it is sufficient to make an appropriate setting based on the balance between the two. By setting a partial area, the number of reference inspections increases, and the range of scan re-execution due to the occurrence of an error decreases, but by setting only a guaranteed area without setting a partial area, there should be fewer errors Therefore, the processing speed can be increased.
(6)ウェハシートと撮像部及びピックアップ装置とは、相対移動する関係であればよい。このため、ウェハシートを張り付けたウェハリングが、リング支持機構により固定されていて、撮像部及びピックアップ装置の移動機構(走査機構)により、相対移動を実現してもよい。この場合の座標データは、移動機構のエンコーダ情報の座標値(x,y,θ)として取得できる。 (6) The wafer sheet, the imaging unit, and the pickup device may be in a relative moving relationship. For this reason, the wafer ring to which the wafer sheet is stuck may be fixed by the ring support mechanism, and the relative movement may be realized by the moving mechanism (scanning mechanism) of the imaging unit and the pickup device. The coordinate data in this case can be acquired as coordinate values (x, y, θ) of the encoder information of the moving mechanism.
(7)ウェハリングを収容する収容部、リング移動機構にウェハリングをセットするリング搬送機構についても、上記の実施形態で例示したものには限定されず、公知のあらゆる技術を適用可能である。さらに、リング移動機構からリングを排出する排出装置を設けてもよい。保持装置、保持部としては、チップを保持可能なあらゆる技術を適用可能である。例えば、吸着ノズル以外に、静電チャック、ベルヌーイチャック、メカチャック等を適用してもよい。 (7) The storage unit for storing the wafer ring and the ring transport mechanism for setting the wafer ring in the ring moving mechanism are not limited to those exemplified in the above embodiment, and any known technique can be applied. Further, a discharge device for discharging the ring from the ring moving mechanism may be provided. As the holding device and the holding unit, any technique capable of holding a chip can be applied. For example, an electrostatic chuck, a Bernoulli chuck, a mechanical chuck, or the like may be applied in addition to the suction nozzle.
(8)上記の実施形態は例示であり、本発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、請求の範囲に記載された発明とその均等の範囲に含まれる。 (8) The above embodiment is an exemplification, and various omissions, replacements, and changes can be made without departing from the scope of the present invention. These embodiments and modifications thereof are included in the invention described in the scope of claims and the equivalents thereof.
1 分類装置
2A、2B、2C リング移動機構
3A、3B、3C エキスパンド機構
4A 分離機構
5A、5B、5C オートローダ
6 カム機構
6a カムフォロア
6b 円筒カム
7 ボイルコイルモータ
8、55b 圧縮バネ
11 機構制御部
12 リファレンス検出部
13 スキャン部
14 リファレンス検査部
16 補正指示部
17 貼付指示部
18 座標検出部
19 記憶部
21 リングホルダ
22、32a、33a 保持部
31 引張部
32 ピックアップ装置
33 貼付装置
40A 前計測部
40B 後計測部
41a ピン
51 コレット
52 架台
53 X軸移動機構
54 Y軸移動機構
55 Z軸移動機構
55a 支持フレーム
56 θ軸回転機構
60a、60b、60c 撮像部
61a、61b、61c カメラ
62a、62b、62c 光学系部材
71 コイルボビン
81 入力部
82 出力部
100 支持装置
110 収容部
111 供給マガジン
120 リング搬送機構
121 クランプ
122 フォーク
200 保持装置
210 吸着ノズル
300 搬送装置
310 回転体
400 計測装置
600 第1の収集装置
700 第2の収集装置
800 制御装置
Da、Db、Dc ウェハシート
Ra、Rb、Rc ウェハリング
B 基台
S チップ
T 搬送経路
W ウェハ
1 Classification device 2A, 2B, 2C Ring moving mechanism 3A, 3B, 3C Expanding mechanism 4A Separating mechanism 5A, 5B, 5C Autoloader 6 Cam mechanism 6a Cam follower 6b Cylindrical cam 7 Boil coil motor 8, 55b Compression spring 11 Mechanism controller 12 Reference Detection unit 13 Scan unit 14 Reference inspection unit 16 Correction instruction unit 17 Pasting instruction unit 18 Coordinate detection unit 19 Storage unit 21 Ring holder 22, 32a, 33a Holding unit 31 Pull unit 32 Pickup device 33 Pasting device 40A Pre-measurement unit 40B Post measurement Portion 41a Pin 51 Collet 52 Base 53 X-axis moving mechanism 54 Y-axis moving mechanism 55 Z-axis moving mechanism 55a Support frame 56 θ- axis rotating mechanisms 60a, 60b, 60c Imaging units 61a, 61b, 61c Cameras 62a, 62b, 62c Optical system Member 71 Coil bobbin 8 Input unit 82 Output unit 100 Support device 110 Storage unit 111 Supply magazine 120 Ring transport mechanism 121 Clamp 122 Fork 200 Holding device 210 Suction nozzle 300 Transport device 310 Rotating body 400 Measuring device 600 First collection device 700 Second collection device 800 Control device Da, Db, Dc Wafer sheet Ra, Rb, Rc Wafer ring B Base S Chip T Transport path W Wafer

Claims (8)

  1.  品質の程度を示すランクが異なるチップが混在したウェハが貼付され、ダイシングにより前記チップが個片に分かれたウェハシートを支持する支持装置と、
     前記支持装置に支持されたウェハシートが伸張されることにより分離されたチップを、ランクに基づいて選択的にピックアップするピックアップ装置と、
     前記ピックアップ装置によりピックアップされたチップを、円軌道の搬送経路において搬送する搬送装置と、
     前記搬送装置により搬送されるチップの姿勢ズレを計測する計測装置と、
     前記搬送経路の近傍に配設され、前記計測装置により計測された姿勢ズレに基づいて、チップの姿勢を補正する補正装置と、
     前記搬送経路の近傍における前記補正装置の後流に配設され、前記補正装置により姿勢を補正されたチップのうち、1種のランクのチップが貼り付けられるウェハシートを支持する第1の収集装置と、
     前記搬送経路の近傍における前記第1の収集装置の後流に配設され、前記補正装置により姿勢を補正されたチップのうち、他の1種のランクのチップが貼り付けられるウェハシートを支持する第2の収集装置と、
     前記搬送装置により搬送されたチップを、前記第1の収集装置のウェハシート及び前記第2の収集装置のウェハシートに、それぞれに対応するランクに分けて貼り付ける貼付装置と、
     前記支持装置のウェハシートから、前記2種のランクのチップが全てピックアップされた後に、ピックアップ済みのウェハシートを、2種のランクのチップをピックアップしていないウェハシートに順次交換する交換装置と、
     を有することを特徴とする分類装置。
    A support device that supports a wafer sheet in which chips having different ranks indicating the degree of quality are mixed, and the chips are separated into pieces by dicing;
    A pick-up device that selectively picks up the chips separated by stretching the wafer sheet supported by the support device based on the rank;
    A transfer device for transferring the chips picked up by the pickup device in a transfer path of a circular orbit,
    A measuring device for measuring the positional deviation of the chips conveyed by the conveying device;
    A correction device that is disposed in the vicinity of the conveyance path and corrects the posture of the chip based on the posture deviation measured by the measurement device;
    A first collecting device that is disposed downstream of the correction device in the vicinity of the transport path and supports a wafer sheet to which a chip of one type is attached among the chips whose postures are corrected by the correction device. When,
    A wafer sheet, which is disposed downstream of the first collection device in the vicinity of the conveyance path and has a posture corrected by the correction device, supports a wafer sheet to which another type of rank chip is attached. A second collection device;
    A sticking device for attaching the chips transported by the transporting device to the wafer sheet of the first collecting device and the wafer sheet of the second collecting device in a corresponding rank;
    An exchange device for sequentially exchanging the picked-up wafer sheet to a wafer sheet from which the two kinds of rank chips are not picked up after all the two kinds of rank chips are picked up from the wafer sheet of the support device;
    A classification apparatus comprising:
  2.  前記2種のランクは、同一ウェハ内にあるチップのランク別の個数分布において、個数が最も多い2種のランクであることを特徴とする請求項1記載の分類装置。 2. The classification apparatus according to claim 1, wherein the two kinds of ranks are two kinds of ranks having the largest number in the number distribution of chips in the same wafer.
  3.  前記搬送装置は、所定のピッチの間欠動作で前記チップを搬送し、
     前記貼付装置は、前記特定の1種のランクと他の1種のランクが同数の状態では、前記間欠動作における停止タイミングで、前記第1の収集装置のウェハシート及び前記第2の収集装置のウェハシートのいずれか一方にチップを貼り付けることを特徴とする請求項1又は請求項2記載の分類装置。
    The transport device transports the chip in an intermittent operation at a predetermined pitch,
    In the state where the number of the specific one type of rank and the other type of the same number of ranks is the same, the sticking device is configured to stop the wafer sheet of the first collection device and the second collection device at the stop timing in the intermittent operation. 3. The classification apparatus according to claim 1, wherein a chip is attached to any one of the wafer sheets.
  4.  前記ピックアップ装置及び前記貼付装置は、先端にチップを保持する保持装置であり、
     前記搬送装置は、所定のピッチで間欠回転する回転体を有し、
     複数の前記保持装置は、前記回転体に設けられ、
     複数の前記保持装置は、先端が前記搬送経路上に前記所定のピッチに対応する等間隔で並ぶ位置に配設されていることを特徴とする請求項1~3のいずれか1項に記載の分類装置。
    The pickup device and the sticking device are holding devices that hold a chip at the tip,
    The transport device has a rotating body that rotates intermittently at a predetermined pitch,
    The plurality of holding devices are provided on the rotating body,
    The plurality of holding devices are arranged at positions where their tips are arranged at equal intervals corresponding to the predetermined pitch on the transport path. Classification device.
  5.  前記第1の収集装置に対応する位置に来る保持装置と、これと同時に前記第2の収集装置に対応する位置に来る保持装置とが、ピックアップにおいて、同じランクのチップを保持することを特徴とする請求項4記載の分類装置。 A holding device that comes to a position corresponding to the first collecting device and a holding device that comes to a position corresponding to the second collecting device at the same time hold chips of the same rank in the pickup. The classification device according to claim 4.
  6.  前記第1の収集装置のウェハシート及び前記第2の収集装置のウェハシートに貼り付けられたチップの位置座標を検出する座標検出部を有し、
     前記第1の収集装置及び前記第2の収集装置は、前記座標検出部により検出された貼り付け済みのチップの座標に基づいて、チップの貼り付け位置を調整することを特徴とする請求項1~5のいずれか1項に記載の分類装置。
    A coordinate detection unit that detects position coordinates of chips attached to the wafer sheet of the first collection device and the wafer sheet of the second collection device;
    The first collection device and the second collection device adjust a chip attachment position based on the coordinates of a pasted chip detected by the coordinate detection unit. The classification device according to any one of 1 to 5.
  7.  前記計測装置は、
     前記搬送経路における前記補正装置の上流においてチップの姿勢ズレを計測する前計測部と、
     前記搬送経路における前記補正装置の下流においてチップの姿勢ズレを計測する後計測部と、
     を有し、
     前記補正装置は、前記前計測部により計測された姿勢ズレに基づいて、チップの姿勢を補正し、
     前記第1の収集装置及び前記第2の収集装置は、前記後計測部により計測された姿勢ズレに基づいて、チップの姿勢を補正することを特徴とする請求項1~6のいずれか1項に記載の分類装置。
    The measuring device is
    A pre-measuring unit that measures a positional deviation of the chip upstream of the correction device in the transport path;
    A post-measuring unit that measures the positional deviation of the chip downstream of the correction device in the transport path;
    Have
    The correction device corrects the posture of the chip based on the posture deviation measured by the previous measurement unit,
    7. The chip collecting apparatus according to claim 1, wherein the first collecting device and the second collecting device correct the posture of the chip based on the posture deviation measured by the post-measurement unit. Classification device according to.
  8.  前記支持装置に支持されたウェハシートが伸張されることにより、個片に分かれたチップを、座標データに基づいて、ウェハシートに対して相対移動しながら撮像する撮像部と、
     前記撮像部が撮像した画像データに基づいて、ウェハ内のチップのうち特定のマークが付されたリファレンスチップを発見し、前記撮像部が相対移動するための座標データに基づいて、リファレンスチップの座標データを特定するリファレンス検出処理を行うリファレンス検出部と、
     リファレンスチップの座標データ及びウェハ内における各チップの相対位置情報を基準として、前記撮像部がウェハシートに対して相対移動しながら各チップを撮像した画像データと、前記撮像部が相対移動するための座標データとに基づいて、各チップの座標データを特定するスキャン処理を行うスキャン部と、
     を有し、
     前記ピックアップ装置は、前記スキャン部により特定された各チップの座標データと、各チップのランク情報とに基づいて、ウェハシートに対して相対移動しながら、チップを選択的にピックアップすることを特徴とする請求項1~7のいずれか1項に記載の分類装置。
    An image pickup unit that picks up an image of a chip divided into individual pieces while moving relative to the wafer sheet based on coordinate data by extending the wafer sheet supported by the support device;
    Based on the image data captured by the imaging unit, a reference chip with a specific mark is found among the chips in the wafer, and the coordinates of the reference chip are based on the coordinate data for the relative movement of the imaging unit. A reference detection unit for performing a reference detection process for identifying data;
    With reference to the coordinate data of the reference chip and the relative position information of each chip in the wafer, the image pickup unit picks up each chip while moving relative to the wafer sheet, and the image pickup unit moves relative to the wafer sheet. Based on the coordinate data, a scanning unit that performs a scanning process that identifies the coordinate data of each chip,
    Have
    The pickup device selectively picks up a chip while moving relative to a wafer sheet based on the coordinate data of each chip specified by the scan unit and rank information of each chip. The classification device according to any one of claims 1 to 7.
PCT/JP2015/064561 2014-11-28 2015-05-21 Sorting device WO2016084407A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014241503A JP5892669B1 (en) 2014-11-28 2014-11-28 Classification device
JP2014-241503 2014-11-28

Publications (1)

Publication Number Publication Date
WO2016084407A1 true WO2016084407A1 (en) 2016-06-02

Family

ID=55541208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064561 WO2016084407A1 (en) 2014-11-28 2015-05-21 Sorting device

Country Status (2)

Country Link
JP (1) JP5892669B1 (en)
WO (1) WO2016084407A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163389A1 (en) * 2017-03-09 2018-09-13 株式会社Fuji Wafer feed device
WO2018163388A1 (en) * 2017-03-09 2018-09-13 株式会社Fuji Component mounting machine
WO2022054728A1 (en) * 2020-09-09 2022-03-17 上野精機株式会社 Electronic component processing device
CN114700285A (en) * 2022-03-31 2022-07-05 深圳市联得自动化装备股份有限公司 Chip sorting device, equipment and method
CN117038548A (en) * 2023-10-08 2023-11-10 内蒙古晶环电子材料有限公司 Wafer slicing device and wafer detection method
TWI840753B (en) * 2022-02-16 2024-05-01 大量科技股份有限公司 Rotary distribution device and rotary connection mechanism thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6730891B2 (en) * 2016-09-15 2020-07-29 株式会社ディスコ Wafer processing method
CN112005356B (en) 2018-05-03 2024-06-14 应用材料公司 Substrate tilt control in high speed rotational classifier
CN114467172A (en) 2019-11-08 2022-05-10 联达科技设备私人有限公司 Component handler
CN115072046A (en) * 2022-05-11 2022-09-20 深圳市三一联光智能设备股份有限公司 Screening apparatus
JP7251721B1 (en) * 2022-12-26 2023-04-04 上野精機株式会社 Parts processing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144741A (en) * 1996-11-07 1998-05-29 Rohm Co Ltd Method and device for classifying ability of ic chip
JP2004186367A (en) * 2002-12-03 2004-07-02 Ueno Seiki Kk Manufacturing equipment for semiconductor device
JP2008066472A (en) * 2006-09-06 2008-03-21 Canon Machinery Inc Composite processor for workpiece
JP5614825B1 (en) * 2013-11-29 2014-10-29 上野精機株式会社 Classification device, classification method, and classification program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3906029B2 (en) * 2001-01-16 2007-04-18 キヤノンマシナリー株式会社 Leadless semiconductor element pickup device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144741A (en) * 1996-11-07 1998-05-29 Rohm Co Ltd Method and device for classifying ability of ic chip
JP2004186367A (en) * 2002-12-03 2004-07-02 Ueno Seiki Kk Manufacturing equipment for semiconductor device
JP2008066472A (en) * 2006-09-06 2008-03-21 Canon Machinery Inc Composite processor for workpiece
JP5614825B1 (en) * 2013-11-29 2014-10-29 上野精機株式会社 Classification device, classification method, and classification program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163389A1 (en) * 2017-03-09 2018-09-13 株式会社Fuji Wafer feed device
WO2018163388A1 (en) * 2017-03-09 2018-09-13 株式会社Fuji Component mounting machine
WO2022054728A1 (en) * 2020-09-09 2022-03-17 上野精機株式会社 Electronic component processing device
US20230274971A1 (en) * 2020-09-09 2023-08-31 Ueno Seiki Co., Ltd. Processing apparatus for electronic component
US11996314B2 (en) 2020-09-09 2024-05-28 Ueno Seiki Co., Ltd. Processing apparatus for electronic component
TWI840753B (en) * 2022-02-16 2024-05-01 大量科技股份有限公司 Rotary distribution device and rotary connection mechanism thereof
CN114700285A (en) * 2022-03-31 2022-07-05 深圳市联得自动化装备股份有限公司 Chip sorting device, equipment and method
CN117038548A (en) * 2023-10-08 2023-11-10 内蒙古晶环电子材料有限公司 Wafer slicing device and wafer detection method
CN117038548B (en) * 2023-10-08 2024-02-13 内蒙古晶环电子材料有限公司 Wafer slicing device and wafer detection method

Also Published As

Publication number Publication date
JP2016103574A (en) 2016-06-02
JP5892669B1 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
JP5892669B1 (en) Classification device
JP5614825B1 (en) Classification device, classification method, and classification program
TWI615253B (en) Transfer device
US9153470B2 (en) Wafer handler comprising a vision system
US7764366B2 (en) Robotic die sorter with optical inspection system
CN110729210B (en) Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
JP2014060249A (en) Die bonder and die position recognition method
JP5881244B2 (en) Component mounting apparatus, board detection method, and board manufacturing method
CN108364880B (en) Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
CN111656504A (en) Die picking method and device
KR101338181B1 (en) Device Inspection Apparatus
US10888041B2 (en) Substrate working system and component mounter
CN108666238B (en) Chip mounting device and method for manufacturing semiconductor device
JP2017122608A (en) Defect inspection device
US10638650B2 (en) Apparatus and method of loading components
JP2012116528A (en) Taping unit and electronic component inspection device
JP5765864B2 (en) Electronic component transfer device and taping unit
TWI536011B (en) Electronic parts inspection device
WO2023038572A1 (en) System and process for sorting die from wafer using angled wafer table and angled turret
JP5954969B2 (en) Component supply apparatus and component position recognition method
KR20140051508A (en) Device remover
JP4509537B2 (en) Component recognition device, surface mounter and component testing device
WO2022185875A1 (en) Collet detection device, collet position correction device, bonding device, collet detection method, and collet position correction method
JP2009004640A (en) Wafer chip chuck device, and method of determining chuck failure in wafer chip chuck device
JP2023002052A (en) Pickup method and pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863550

Country of ref document: EP

Kind code of ref document: A1