WO2016082396A1 - 显示基板和显示面板及其制作方法、显示装置 - Google Patents

显示基板和显示面板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2016082396A1
WO2016082396A1 PCT/CN2015/075197 CN2015075197W WO2016082396A1 WO 2016082396 A1 WO2016082396 A1 WO 2016082396A1 CN 2015075197 W CN2015075197 W CN 2015075197W WO 2016082396 A1 WO2016082396 A1 WO 2016082396A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
interposer
display
light
transparent
Prior art date
Application number
PCT/CN2015/075197
Other languages
English (en)
French (fr)
Inventor
武延兵
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP15766038.2A priority Critical patent/EP3226071B1/en
Priority to US14/780,399 priority patent/US10488563B2/en
Publication of WO2016082396A1 publication Critical patent/WO2016082396A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a display substrate and a display panel, a method for fabricating the same, and a display device.
  • Raster fabrication is an important technique in 3D display and dual field of view display.
  • the grating is composed of a set of light-shielding stripes and light-transmitting stripes spaced therebetween.
  • the grating can be fabricated by photolithography of a black photoresist, and the specific process is as follows:
  • the black photoresist is baked at a high temperature to make it hard
  • the substrate is placed in a developing solution together with the exposed photoresist for development, and the exposed photoresist is retained, and the unexposed photoresist is washed away to form a light-shielding stripe and a space therebetween. Light transmissive stripes.
  • the liquid crystal display panel in order to meet the demand for thinness and thinness, a grating is formed on the outer surface of the liquid crystal display panel.
  • the liquid crystal display panel comprises a color film substrate and an array substrate of the pair of boxes, and the grating may be formed on the color film substrate or on the array substrate.
  • a grating on a color film substrate Taking a grating on a color film substrate as an example, if a grating is first formed on a substrate substrate and then the substrate substrate is flipped, and subsequent color film fabrication and a box forming process are performed, on the one hand, since the grating contains black pigment, It is likely to contaminate the chamber of the subsequent process; on the other hand, in order to obtain a sufficiently low transmittance in the light-shielding region of the grating, the thickness of the black stripe tends to be 1 micrometer to 3 micrometers, which may cause suction during subsequent vacuum adsorption. The case of a substrate.
  • the grating is fabricated on the outer surface of the color filter substrate, and there is a possibility that the liquid crystal cell needs to be baked at a high temperature and immersed in a developing solution, and the liquid crystal may be irradiated under ultraviolet light. Possible problems such as denaturation.
  • An object of the present disclosure is to provide a display substrate and a display panel and a manufacturing method thereof, which solve the problem that the display substrate and the display panel and the manufacturing process thereof are affected when the grating is formed on the outer surface of the display panel.
  • Embodiments of the present disclosure provide a display device, and a display panel including the display device for improving the yield of the display device.
  • a method for fabricating a display substrate including the step of forming a grating, wherein the step of forming a grating includes:
  • an interposer on an outer surface of the transparent substrate, the interposer having a stripe pattern of spaced distribution
  • the opaque material is adsorbed onto the surface of the interposer or the interposer of the interposer on the transparent substrate, thereby forming spaced-apart light-shielding stripes and light-transmissive stripes.
  • the interposer or the transparent substrate substrate is charged to be processed such that the interposer or the transparent substrate has the property of adsorbing the opaque material.
  • the interposer is a transparent organic material or a conductive material.
  • the transparent substrate is provided with an adsorption site by performing a triboelectric treatment on the outer surface of the transparent substrate substrate on which the interposer is formed.
  • the characteristics of the opaque material are not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to,
  • the interposer when the interposer is a conductive material, the interposer has a property of adsorbing the opaque material by applying a voltage to the interposer.
  • the step of forming an interposer on the outer surface of the transparent substrate may further include:
  • the conductive film layer or the organic film layer is subjected to a photolithography process to form the stripe pattern having a spacing distribution.
  • the opaque material is carbon powder.
  • the step of adsorbing the opaque material onto the surface of the interposer or the interposer of the interposer on the transparent substrate may be:
  • the light-transmitting stripes between the light-shielding stripes are formed.
  • the method further includes:
  • a protective layer is formed on the light-shielding stripe and the light-transmitting stripe.
  • a display substrate, including a grating, is provided in the embodiment of the present disclosure, and the grating includes:
  • An interposer disposed on an outer surface of the transparent substrate, wherein the interposer has a spaced apart stripe pattern
  • a light-shielding strip formed by an opaque material overlying the surface of the interposer, and a light-transmitting strip between the shading strips, or
  • a light-shielding strip is formed by an opaque material between the stripe patterns of the interposer and overlying the transparent substrate, and a light-transmitting strip between the shading strips.
  • the grating further includes:
  • the interposer is a conductive material or a transparent organic material.
  • the opaque material is carbon powder.
  • the embodiment of the present invention further provides a method for manufacturing a display panel, the display panel comprising a first display substrate and a second display substrate of the pair of boxes, wherein the method comprises:
  • the first display substrate is formed by the method of manufacturing a display substrate as described above.
  • the method further includes: pairing the first display substrate and the second display substrate to form the display panel.
  • step of adsorbing the opaque material onto the surface of the interposer or the interposer on the transparent substrate further comprising: displaying the first display on the box a substrate and the second display substrate.
  • a display panel including the display substrate as described above is also provided in the embodiment of the present invention.
  • the display panel is a liquid crystal display panel, and includes a color film substrate and an array substrate disposed on the box;
  • the display substrate is the color film substrate or the array substrate, and the grating is located on an outer surface of the color film substrate or an outer surface of the array substrate.
  • the display panel is an organic light emitting diode display panel.
  • a display device including the display panel as described above is also provided in the embodiment of the present disclosure.
  • a stripe pattern having a space distribution is formed on the outer surface of the transparent substrate by a property-stabilized interposer.
  • each of the desired display film layers is formed on the inner surface of the transparent substrate substrate on which the interposer is formed.
  • adsorbing the opaque material onto the surface of the interposer or In the interval of the interposer on the substrate the light-shielding stripes and the light-transmitting stripes of the gratings which are spaced apart are formed. Since the interposer does not need to have a sufficiently low light transmittance, the thickness is thin, so that the base substrate can be strongly adsorbed when the display film layer is formed. Moreover, the stable nature of the interposer does not contaminate the process chamber. Therefore, the process of fabricating a grating on a display substrate does not affect the display substrate and its fabrication process.
  • 1 to 4 are schematic views showing a liquid crystal display panel produced in an embodiment of the present disclosure
  • FIG. 5 is a schematic view showing the structure of the color filter substrate and the array substrate in the embodiment of the present disclosure
  • FIG. 6 is a schematic structural view of a liquid crystal display panel in an embodiment of the present disclosure.
  • FIGS. 7-10 are schematic views showing a process of fabricating a liquid crystal display panel in another embodiment of the present disclosure.
  • FIG. 11 is a schematic view showing the structure of a color filter substrate and an array substrate after a cartridge in another embodiment of the present disclosure
  • Fig. 12 is a view showing the structure of a liquid crystal display panel in another embodiment of the present disclosure.
  • the thickness is thick, often several micrometers, causing subsequent formation of a display.
  • embodiments of the present disclosure provide a method of fabricating a display substrate, including the steps of forming a grating, wherein the step of forming a grating includes forming an interposer on an outer surface of the transparent substrate, the interposer having a stripe pattern of spaced-apart distribution; forming a display film layer on an inner surface of the transparent substrate substrate on which the interposer is formed; and adsorbing an opaque material onto the surface of the interposer or on the transparent substrate
  • the spacing of the interposer is such that spaced apart light-shielding stripes and light-transmissive stripes are formed.
  • the interposer does not need to have a sufficiently low light transmittance, the thickness is thin, only a few hundred nanometers, so that the substrate substrate can be strongly adsorbed when the display film layer is subsequently formed. Moreover, the stable nature of the interposer does not contaminate the process chamber. Therefore, the process of fabricating the grating does not affect the manufacturing process of the display film layer, and the process difficulty is reduced.
  • the property of the interposer is stable: the interposer has corrosion resistance and is not corroded by substances encountered by subsequent processes. Moreover, the interposer is firmly connected to the substrate, and is not easily peeled off in the subsequent manufacturing process, and does not pollute the working chamber.
  • a method of fabricating a display substrate includes the steps of forming a grating, wherein the step of forming a grating comprises:
  • an interposer on an outer surface of the transparent substrate, the interposer having a stripe pattern of spaced distribution
  • the opaque material is adsorbed onto the surface of the interposer or the interposer of the interposer on the transparent substrate, thereby forming spaced-apart light-shielding stripes and light-transmissive stripes.
  • the grating on the base substrate is formed in two steps: first, an interposer is formed on the outer surface of the transparent substrate, the interposer has a stripe pattern of spaced distribution, and then the opaque material is adsorbed to the In the interval of the interposer on the surface of the interposer or on the transparent substrate, to form light-shielding stripes and light-transmissive stripes.
  • a display film layer is formed between the two steps, so that the effect of the process of fabricating the grating on the process of fabricating the film can be overcome.
  • the interposer since the interposer has corrosion resistance, it is not corroded in the fabrication process of the film layer.
  • the interposer is firmly connected to the substrate, does not fall off, and pollutes the process chamber, and its thickness is only a few hundred nanometers, which ensures that the substrate can be firmly adsorbed in the subsequent process.
  • the present disclosure also provides a display substrate, including a grating, the grating comprising:
  • An interposer disposed on an outer surface of the transparent substrate, wherein the interposer has a spaced apart stripe pattern
  • a light-shielding strip formed by an opaque material overlying the surface of the interposer, and a light-transmitting strip between the shading strips, or
  • a light-shielding strip is formed by an opaque material between the stripe patterns of the interposer and overlying the transparent substrate, and a light-transmitting strip between the shading strips.
  • the display substrate may be an array substrate, and the display film layer thereon may include a gate electrode, an active layer, a source electrode, a drain electrode, and the like; the display substrate may also be a color film substrate, and the display thereon
  • the film layer includes a black matrix, a color resist layer, and the like.
  • the display film layer on the display substrate includes a cathode, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an anode, and the like.
  • the transparent substrate of the display substrate may be, for example, a glass substrate, a quartz substrate, or an organic resin substrate, and has a sufficiently high light transmittance.
  • the stripe pattern of the interposer may be a light-shielding stripe pattern of the grating, or may be a light-transmitting stripe pattern of the grating.
  • the stripe pattern of the interposer is a light-shielding stripe pattern of the grating
  • the interposer has the property of adsorbing a certain opaque material
  • the transparent substrate does not have the property of adsorbing the opaque material.
  • the stripe pattern of the interposer is a light transmissive stripe pattern of a grating
  • the transparent substrate substrate has a property of adsorbing a certain opaque material, and the interposer has no characteristics of adsorbing the opaque material.
  • the stripe pattern of the interposer is a light-shielding stripe pattern of the grating.
  • the interposer has the property of adsorbing a certain opaque material, and the transparent substrate does not have the property of adsorbing the opaque material.
  • the interposer or the transparent substrate can be charged to have characteristics of adsorbing the opaque material.
  • the interposer when the interposer is a conductive material, the interposer has a property of adsorbing the opaque material by applying a voltage to the interposer.
  • the interposer is a transparent organic material, the outer surface of the transparent substrate substrate on which the interposer is formed is subjected to triboelectric charging such that the transparent substrate has a property of adsorbing the opaque material.
  • the opaque material may be carbon powder.
  • the carbon powder is adsorbed by the interposer or the transparent substrate, thereby forming a light-shielding stripe; and after removing the unadsorbed carbon powder, The light-transmitting stripes between the light-shielding stripes are formed.
  • the interposer is a transparent conductive material such as indium tin oxide or indium zinc oxide.
  • the step of forming an interposer on the outer surface of the transparent substrate includes:
  • the transparent conductive film layer is subjected to a photolithography process to form a stripe pattern of spaced distribution.
  • the transparent conductive layer formed by the above steps has a light-shielding stripe pattern. Then forming a desired display film layer on the inner surface of the transparent substrate substrate on which the transparent conductive layer is formed, and finally applying a voltage directly to the transparent conductive layer, and then scattering the carbon powder on the transparent layer on which the transparent conductive layer is formed On the outer surface of the base substrate, the charged transparent conductive layer adsorbs the carbon powder to form a cover The light stripe, the uncharged transparent substrate substrate does not adsorb the carbon powder, and after removing the unadsorbed carbon powder, forms a light-transmitting stripe between the light-shielding stripes.
  • the interposer may also be an opaque conductive material such as a metal such as Al or Cu or a metal alloy. Then, the interposer has a light-shielding stripe pattern, and by applying a voltage thereto to adsorb the carbon powder, a light-shielding stripe is formed, so that the light-shielding stripe of the grating has a sufficiently low light transmittance.
  • the technical solution of the present disclosure may also make the interposer or the transparent substrate substrate have characteristics of adsorbing the opaque material by other forms, which are also within the protection scope of the present disclosure.
  • the step of forming a grating in the embodiment of the present disclosure further includes:
  • a protective layer is formed on the light-shielding stripes and the light-transmitting stripes of the grating.
  • the embodiment of the present disclosure further provides a method for manufacturing a display panel, the display panel includes a first display substrate and a second display substrate of the pair of boxes, wherein the first display substrate is formed by the method for fabricating the display substrate described above. That is, the first display substrate includes a grating, and the manufacturing process of the grating does not affect the manufacturing process of the display film layer.
  • the display panel formed by the above manufacturing method is also not affected by the grating fabrication process.
  • the display panel When the display panel is a liquid crystal display panel, it includes a color filter substrate and an array substrate disposed on the cartridge.
  • the first display substrate is a color film substrate or an array substrate, and the grating of the display panel is located on an outer surface of the color filter substrate or an outer surface of the array substrate.
  • 1 to 4 are views showing a manufacturing process of a liquid crystal display panel in an embodiment of the present disclosure.
  • the manufacturing process of the display panel in the embodiment of the present disclosure is specifically described below by taking the grating of the liquid crystal display panel on the outer surface of the color filter substrate as an example:
  • the interposer forming the grating is a conductive material and has a light-shielding stripe pattern.
  • a transparent substrate substrate 100 such as a glass substrate, a quartz substrate, or an organic resin substrate is provided.
  • a conductive layer 3 is formed on the transparent substrate 100, the conductive layer 3 has a light-shielding stripe pattern 11 of the grating, between the adjacent light-shielding stripe pattern 11 is a light-transmissive stripe 10 of the grating;
  • a conductive film having a thickness of several hundred nanometers is deposited on the transparent substrate substrate 100 by magnetron sputtering, thermal evaporation or other film forming methods, such as a transparent conductive film such as ITO or IZO, and opaque conductive such as Al or Cu. film.
  • a photoresist is coated on the conductive film, and the photoresist is exposed by using a mask to form a photoresist retention region and a photoresist non-retention region, wherein the photoresist retention region corresponds to the light-shielding stripe pattern.
  • the area where the photoresist is not reserved corresponds to the area where the light-transmitting strip 10 is located;
  • Step S11 as shown in FIG. 2, forming a desired display film layer on the surface of the transparent substrate substrate 100 opposite to the transparent conductive layer 3;
  • the display film layer includes:
  • the flat layer 101 covering the black matrix 5 and the color resist layer 6 is covered.
  • the materials of the black matrix 5, the color resist layer 6 and the flat layer 101 and the manufacturing process thereof are referred to the related art, and are not described herein again.
  • the material of the conductive layer 3 is corrosion-resistant, it is not corroded in the manufacturing process of the display film layer. Moreover, the thickness of the formed conductive layer 3 is only several hundred nanometers, thereby ensuring that the transparent substrate substrate 100 can be strongly adsorbed. The conductive layer 3 is firmly connected to the transparent substrate substrate 100 with respect to the black photoresist in the related art, and is not easily peeled off, and does not pollute the process chamber.
  • Step S12 applying a voltage to the conductive layer 3, and scattering the carbon powder 4 on the transparent substrate 100 and the conductive layer 3.
  • the conductive layer 3 adsorbs the carbon powder 4 to form the light-shielding strips 11, and after removing the unadsorbed carbon powder, the light is blocked.
  • Light-transmissive stripes 10 are formed on the transparent substrate 100 between the stripes 11 as shown in FIG. 3;
  • Step S13 in combination with FIG. 4, completing the fabrication of the array substrate 1;
  • the array substrate 1 may be a thin film transistor array substrate.
  • the specific fabrication process refer to the related art, and details are not described herein again.
  • Step S14 the liquid crystal substrate 7 is dripped on the cassette array substrate 1 and the color filter substrate 2, and sealed by the sealant 8 as shown in FIG.
  • the grating is located on the outer surface of the color filter substrate 2.
  • the photolithography process is not required after the process of the cartridge and the liquid crystal 7 is dripped, the corrosion of the liquid crystal panel due to high temperature, immersion in the developer, and the like, and the possibility that the liquid crystal may be denatured under ultraviolet light may be overcome.
  • the fabrication of the array substrate 1 may be completed first, and then the production of the color filter substrate 2 may be performed.
  • the sealing of the array substrate 1 and the color filter substrate 2 in step S14 is completed, as shown in FIG. 5, and then step 12 is performed to form the light-shielding stripes of the grating. , complete the production of the grating.
  • the grating in the above manufacturing process can also be formed on the outer surface of the array substrate 1, such as As shown in FIG. 6, the specific forming process is similar to the above, and will not be described in detail herein.
  • FIG. 7 to 10 are schematic views showing the fabrication of a liquid crystal display panel in another embodiment of the present disclosure.
  • the grating of the liquid crystal display panel is located on the outer surface of the color filter substrate, and the interposer is made of a transparent organic material to form a light-transmitting stripe pattern of the grating.
  • the manufacturing process of the liquid crystal display panel is:
  • a transparent substrate 100 such as a glass substrate, a quartz substrate, or an organic resin substrate is provided.
  • a transparent organic layer 3 is formed on the transparent substrate 100, the transparent organic layer 3 has a light-transmissive stripe 10 of the grating, and between the adjacent light-transmitting stripe patterns 10 is a light-shielding stripe pattern 11 of the grating;
  • Step S21 as shown in FIG. 8, forming a desired display film layer on the surface of the transparent substrate substrate 100 opposite to the transparent organic layer 3;
  • Step S22 performing frictional electrification on the surface of the transparent substrate 100 on which the transparent organic layer 3 is formed, and scattering the carbon powder 4 on the transparent substrate substrate 100 and the transparent organic layer 3, and the charged transparent substrate substrate 100 adsorbs the toner. 4, forming the light-shielding strips 11, after removing the unadsorbed carbon powder, the uncharged transparent organic layer 3 forms the light-transmitting strips 10, as shown in FIG. 9;
  • Step S23 as shown in FIG. 10, completing the fabrication of the array substrate 1;
  • step S24 the liquid crystal substrate 7 is dripped on the cassette array substrate 1 and the color filter substrate 2, and sealed by the sealant 8 as shown in FIG.
  • the grating is located on the outer surface of the color filter substrate 2.
  • the fabrication of the array substrate 1 may be completed first, and then the production of the color filter substrate 2 may be performed.
  • the sealing of the array substrate 1 and the color filter substrate 2 in step S24 is completed, as shown in FIG. 11, and then step 22 is performed to form the light-shielding stripes of the grating. , complete the production of the grating.
  • the grating in the above manufacturing process can also be formed on the outer surface of the array substrate 1, as shown in FIG. 12, and the specific forming process is similar to the above, and will not be described in detail herein.
  • the technical solution of the present disclosure is also applicable to an organic light emitting diode display panel, wherein the grating is fabricated in the same process as the grating in the liquid crystal display panel, except that the display film layer includes a cathode, a hole injection layer, a hole transport layer, The electron injection layer, the electron transport layer, the anode, and the like, the specific fabrication process is the same as the related art.
  • a display device including the above display panel is provided in the embodiment of the present disclosure. Yield of high three-dimensional display devices and dual field of view display devices.
  • a spaced-apart stripe pattern is first formed on the outer surface of the transparent substrate by a property-stabilized interposer. Then, each of the desired display film layers is formed on the inner surface of the transparent substrate substrate on which the interposer is formed. Finally, the opaque material is adsorbed onto the surface of the interposer or the interposer of the interposer on the transparent substrate to form light-shielding stripes and light-transmissive stripes of the spaced-apart grating.
  • the interposer does not need to have a sufficiently low transmittance, the thickness is thin, the base substrate can be firmly adsorbed when the display film layer is formed, and the stable characteristics are such that the interposer does not contaminate the process chamber, and therefore, the grating is fabricated. The process does not affect the manufacturing process of the display film layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Filters (AREA)
  • Electroluminescent Light Sources (AREA)
  • Printing Methods (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

一种显示基板和显示面板及其制作方法、显示装置。该制作显示基板的方法包括形成光栅的步骤,其中形成光栅的步骤包括:在透明衬底基板(100)的外表面形成中介层,所述中介层具有间隔分布的条纹图案;在形成有所述中介层的所述透明衬底基板(100)的内表面形成显示膜层;以及将不透光材料吸附至所述中介层表面上或所述透明衬底基板(100)上的所述中介层的间隔中,从而形成间隔分布的遮光条纹(11)和透光条纹(10)。

Description

显示基板和显示面板及其制作方法、显示装置
相关申请的交叉引用
本申请主张在2014年11月26日在中国提交的中国专利申请号No.201410696890.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,特别涉及一种显示基板和显示面板及其制作方法、显示装置。
背景技术
光栅制作是三维显示和双视场显示中的重要技术。其中,光栅由一组遮光条纹和间隔其中的透光条纹组成。
相关技术中,光栅可以使用对黑色光刻胶进行光刻的方法制作,具体过程为:
在透明基板上涂敷黑色光刻胶;
对黑色光刻胶进行高温烘烤,使其变硬;
利用掩膜板对光刻胶进行曝光;以及
将基板连同曝光后的光刻胶一起放置在显影液中进行显影,被曝光的光刻胶就会被保留,未被曝光的光刻胶就会被清洗掉,从而形成遮光条纹和间隔其中的透光条纹。
在液晶显示器件中,为了满足轻薄化的需求,将光栅制作在液晶显示面板的外表面。其中,液晶显示面板包括对盒的彩膜基板和阵列基板,光栅可以制作在彩膜基板上,也可以制作在阵列基板上。以光栅制作在彩膜基板上为例,如果先在衬底基板上形成光栅,然后再将该衬底基板翻转,进行后续的彩膜制作和成盒工艺,那么一方面因为光栅包含黑色颜料,很可能会污染后续工艺的腔室;另一方面为了在光栅的遮光区获得足够低的透过率,则黑色条纹的厚度往往为1微米至3微米,这样会在后续真空吸附时出现吸不住衬底基板的情况。而如果先完成彩膜制作和对盒工艺,然后在彩膜基板的外表面进行光栅制作,又存在液晶盒需要经过高温烘烤和在显影液中浸泡可能造成的腐蚀、液晶在紫外光照射下可能变性等问题。
发明内容
本公开的目的在于提供一种显示基板和显示面板及其制作方法,用以解决在显示面板的外表面制作光栅时,会对显示基板和显示面板及其制作工艺产生影响的问题。
本公开的实施例提供了一种显示装置,和包括该显示装置的显示面板,用以提高显示装置的良率。
为解决上述技术问题,在本公开实施例中提供了一种制作显示基板的方法,包括形成光栅的步骤,其中形成光栅的步骤包括:
在透明衬底基板的外表面形成中介层,所述中介层具有间隔分布的条纹图案;
在形成有所述中介层的所述透明衬底基板的内表面形成显示膜层;以及
将不透光材料吸附至所述中介层表面上或所述透明衬底基板上的所述中介层的间隔中,从而形成间隔分布的遮光条纹和透光条纹。
可选的,通过对所述中介层或所述透明衬底基板进行处理使其带电,以使所述中介层或所述透明衬底基板具有吸附所述不透光材料的特性。
可选的,所述中介层为透明有机材料或导电材料。
可选的,当所述中介层为透明有机材料时,通过对形成有所述中介层的所述透明衬底基板的外表面进行摩擦起电的处理,使得所述透明衬底基板具有吸附所述不透光材料的特性。
可选的,当所述中介层为导电材料时,通过对所述中介层施加电压,使得所述中介层具有吸附所述不透光材料的特性。
可选的,所述在透明衬底基板的外表面形成中介层的步骤可以进一步包括:
在所述透明衬底基板上形成导电膜层或有机膜层;以及
对所述导电膜层或所述有机膜层进行光刻工艺,以形成所述具有间隔分布的条纹图案。
可选的,所述不透光材料为碳粉。
可选的,所述将不透光材料吸附至所述中介层表面上或所述透明衬底基板上的所述中介层的间隔中的步骤可以为:
将碳粉撒在所述透明衬底基板和所述中介层上,所述碳粉被所述中介层或所述透明衬底基板吸附,从而形成所述遮光条纹;以及
去除未吸附的碳粉后,形成位于所述遮光条纹之间的所述透光条纹。
可选的,在所述形成光栅的步骤之后还包括:
在所述遮光条纹和所述透光条纹上形成保护层。
本公开实施例中还提供一种显示基板,包括光栅,所述光栅包括:
设置在透明衬底基板外表面的中介层,其中所述中介层具有间隔分布的条纹图案;以及
由覆盖在所述中介层表面上的不透光材料所形成的遮光条纹,和位于所述遮光条纹之间的透光条纹,或
由位于所述中介层的条纹图案之间并覆盖在所述透明衬底基板上的不透光材料所形成遮光条纹,和位于所述遮光条纹之间的透光条纹。
可选的,所述光栅还包括:
覆盖在所述遮光条纹和所述透光条纹上的保护层。
可选的,所述中介层为导电材料或透明有机材料。
可选的,所述不透光材料为碳粉。
本发明实施例中还提供了一种制作显示面板的方法,所述显示面板包括对盒的第一显示基板和第二显示基板,其中所述方法包括:
采用如上所述的制作显示基板的方法形成所述第一显示基板。
可选的,在形成所述保护层后,进一步包括:对盒所述第一显示基板和所述第二显示基板,以形成所述显示面板。
可选的,在所述将不透光材料吸附至所述中介层表面上或所述透明衬底基板上的所述中介层的间隔中的步骤之前,进一步包括:对盒所述第一显示基板和所述第二显示基板。
本发明实施例中还提供了一种显示面板,包括如上所述的显示基板。
可选的,所述显示面板为液晶显示面板,包括对盒设置的彩膜基板和阵列基板;
所述显示基板为所述彩膜基板或所述阵列基板,所述光栅位于所述彩膜基板的外表面或所述阵列基板的外表面。
可选的,所述显示面板为有机发光二极管显示面板。
本公开实施例中还提供一种显示装置,包括如上所述的显示面板。
本公开的上述技术方案的有益效果如下:
上述技术方案中,首先通过性质稳定的中介层在透明衬底基板的外表面形成间隔分布的条纹图案。然后在形成有中介层的透明衬底基板的内表面形成所需的各显示膜层。最后将不透光材料吸附至所述中介层表面上或所述透 明衬底基板上的所述中介层的间隔中,以形成间隔分布的光栅的遮光条纹和透光条纹。由于所述中介层不需要具有足够低的透光率,厚度较薄,使得形成显示膜层时可以牢固吸附衬底基板。而且稳定的特性使得中介层不会污染工艺腔室。因此,在显示基板上制作光栅的工艺不会对显示基板及其制作工艺产生影响。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1-图4表示本公开一个实施例中制作液晶显示面板的示意图;
图5表示本公开一个实施例中对盒彩膜基板和阵列基板后的结构示意图;
图6表示本公开一个实施例中液晶显示面板的结构示意图;
图7-图10表示本公开另一个实施例中制作液晶显示面板的过程示意图;
图11表示本公开另一个实施例中对盒彩膜基板和阵列基板后的结构示意图;以及
图12表示本公开另一个实施例中液晶显示面板的结构示意图。
具体实施方式
相关技术中,当显示基板与光栅为一体结构时,由于光栅的遮光条纹由黑色光刻胶制成,为了满足足够低的透光率,其厚度较厚,往往为几微米,造成后续形成显示膜层时衬底基板吸附不牢固的问题。而如果先形成显示膜层,则光栅的制作工艺会对显示膜层产生影响。
针对上述技术问题,本公开的实施例提供了一种制作显示基板的方法,包括形成光栅的步骤,其中形成光栅的步骤包括:在透明衬底基板的外表面形成中介层,所述中介层具有间隔分布的条纹图案;在形成有所述中介层的所述透明衬底基板的内表面形成显示膜层;以及将不透光材料吸附至所述中介层表面上或所述透明衬底基板上的所述中介层的间隔中,从而形成间隔分布的遮光条纹和透光条纹。由于所述中介层不需要具有足够低的透光率,厚度较薄,只有几百纳米,使得后续形成显示膜层时可以牢固吸附衬底基板。 而且稳定的特性使得中介层不会污染工艺腔室。因此,制作光栅的工艺不会对显示膜层的制作工艺产生影响,降低了工艺难度。
其中,所述中介层的性质稳定是指:所述中介层具有抗腐蚀性,不会被后续工艺碰到的物质腐蚀。而且所述中介层与衬底基板连接牢固,在后续制作工艺中不易脱落,不会污染工作腔室。
下面将结合附图和实施例,对本公开的具体实施方式作进一步详细描述。以下实施例用于说明本公开,但不用来限制本公开的范围。
本公开实施例中提供一种制作显示基板的方法,包括形成光栅的步骤,其中所述形成光栅的步骤包括:
在透明衬底基板的外表面形成中介层,所述中介层具有间隔分布的条纹图案;
在形成有所述中介层的所述透明衬底基板的内表面形成显示膜层;以及
将不透光材料吸附至所述中介层表面上或所述透明衬底基板上的所述中介层的间隔中,从而形成间隔分布的遮光条纹和透光条纹。
上述步骤中,衬底基板上的光栅分两个步骤形成:首先在透明衬底基板的外表面形成中介层,所述中介层具有间隔分布的条纹图案,然后将不透光材料吸附至所述中介层表面上或所述透明衬底基板上的所述中介层的间隔中,以形成遮光条纹和透光条纹。并在两个步骤之间形成显示膜层,从而可以克服制作光栅的工艺对制作膜层工艺产生的影响。同时,由于所述中介层具有抗腐蚀性,在膜层的制作工艺中不会被腐蚀。而且中介层与衬底基板连接牢固,不会脱落,污染工艺腔室,其厚度也只有几百纳米,保证后续工艺中衬底基板可以被牢固吸附。
相应地,本公开还提供一种显示基板,包括光栅,所述光栅包括:
设置在透明衬底基板外表面的中介层,其中所述中介层具有间隔分布的条纹图案;以及
由覆盖在所述中介层表面上的不透光材料所形成的遮光条纹,和位于所述遮光条纹之间的透光条纹,或
由位于所述中介层的条纹图案之间并覆盖在所述透明衬底基板上的不透光材料所形成遮光条纹,和位于所述遮光条纹之间的透光条纹。
对于液晶显示装置,所述显示基板可以为阵列基板,其上的显示膜层包括栅电极、有源层、源电极和漏电极等;所述显示基板也可以为彩膜基板,其上的显示膜层包括黑矩阵、色阻层等。对于有机发光二极管显示装置,所 述显示基板上的显示膜层包括阴极、空穴注入层、空穴传输层、电子注入层、电子传输层、阳极等。
其中,显示基板的透明衬底基板可以为,例如如:玻璃基板、石英基板、有机树脂基板,具有足够高的透光率。
当所述中介层为透明材料时,所述中介层的条纹图案可以为光栅的遮光条纹图案,也可以为光栅的透光条纹图案。当所述中介层的条纹图案为光栅的遮光条纹图案时,所述中介层具有吸附某种不透光材料的特性,所述透明衬底基板不具有吸附所述不透光材料的特性。当所述中介层的条纹图案为光栅的透光条纹图案时,所述透明衬底基板具有吸附某种不透光材料的特性,所述中介层不具有吸附所述不透光材料的特性。
当所述中介层为不透明材料时,所述中介层的条纹图案为光栅的遮光条纹图案。所述中介层具有吸附某种不透光材料的特性,所述透明衬底基板不具有吸附所述不透光材料的特性。
具体的,可以通过对中介层或透明衬底基板进行处理使其带电,来使其具有吸附所述不透光材料的特性。例如:当所述中介层为导电材料时,通过对所述中介层施加电压,使所述中介层具有吸附所述不透光材料的特性。当所述中介层为透明有机材料时,对形成有中介层的所述透明衬底基板的外表面进行摩擦起电,使得所述透明衬底基板具有吸附所述不透光材料的特性。
进一步地,所述不透光材料可以为碳粉。则所述将不透光材料吸附至所述中介层表面上或所述透明衬底基板上的所述中介层的间隔中的步骤具体为:
将碳粉撒在所述透明衬底基板和所述中介层上,所述碳粉被所述中介层或所述透明衬底基板吸附,从而形成遮光条纹;以及去除未吸附的碳粉后,形成位于所述遮光条纹之间的所述透光条纹。
典型地,所述中介层为透明导电材料,如:氧化铟锡、氧化铟锌。所述在透明衬底基板的外表面形成中介层的步骤包括:
在所述透明衬底基板上形成透明导电膜层;
对所述透明导电膜层进行光刻工艺,形成间隔分布的条纹图案。
在一个具体的实施例中,通过上述步骤形成的透明导电层具有遮光条纹图案。然后在形成有透明导电层的所述透明衬底基板的内表面形成所需的各显示膜层,最后对透明导电层直接施加电压,继而将碳粉撒在形成有透明导电层的所述透明衬底基板的外表面上,带电的透明导电层吸附碳粉,形成遮 光条纹,而不带电的透明衬底基板不吸附碳粉,去除未吸附的碳粉后,形成位于所述遮光条纹之间的透光条纹。
当然,所述中介层也可以为不透明的导电材料,如:Al、Cu等金属或金属合金。则所述中介层具有遮光条纹图案,通过对其施加电压来吸附碳粉,形成遮光条纹,以使得光栅的遮光条纹具有足够低的透光率。
本公开的技术方案还可以通过其他形式来使得中介层或透明衬底基板具有吸附所述不透光材料的特性,其也属于本公开的保护范围。
为了保护光栅,使其结构稳定,本公开实施例中形成光栅的步骤还包括:
在光栅的遮光条纹和透光条纹上形成保护层。
本公开实施例中还提供一种制作显示面板的方法,所述显示面板包括对盒的第一显示基板和第二显示基板,其中所述第一显示基板采用上述的制作显示基板的方法形成,即所述第一显示基板包括光栅,而且光栅的制作工艺不会对显示膜层的制作工艺产生影响。
相应地,通过上述制作方法形成的显示面板,也不会受到光栅制作工艺的影响。
当所述显示面板为液晶显示面板时,其包括对盒设置的彩膜基板和阵列基板。所述第一显示基板为彩膜基板或阵列基板,所述显示面板的光栅位于彩膜基板的外表面或所述阵列基板的外表面。
图1-图4表示为本公开实施例中液晶显示面板的一个制作过程示意图。
结合图1-图4所示,下面以液晶显示面板的光栅位于彩膜基板的外表面为例来具体说明本公开实施例中显示面板的制作过程:
其中,形成光栅的中介层为导电材料,具有遮光条纹图案。
步骤S10、结合图1所示,提供透明衬底基板100,如:玻璃基板、石英基板、有机树脂基板。在透明衬底基板100上形成导电层3,导电层3具有光栅的遮光条纹图案11,相邻的遮光条纹图案11之间为光栅的透光条纹10;
具体的,首先在透明衬底基板100上采用磁控溅射、热蒸发或其它成膜方法沉积厚度为几百纳米的导电薄膜,如:ITO或IZO等透明导电薄膜,Al或Cu等不透明导电薄膜。
之后,在所述导电薄膜上涂覆光刻胶,采用掩膜板对光刻胶进行曝光,形成光刻胶保留区域和光刻胶不保留区域,其中,光刻胶保留区域对应遮光条纹图案11所在的区域,光刻胶不保留区域对应透光条纹10所在的区域;
然后,刻蚀掉对应光刻胶不保留区域的导电薄膜;
最后,剥离剩余的光刻胶,形成导电层3。
步骤S11、如图2所示,在透明衬底基板100与透明导电层3相对的表面形成所需的各显示膜层;
所述显示膜层包括:
黑矩阵5,用于限定子像素区;
透射特定颜色的色阻层6,位于子像素区;
覆盖黑矩阵5和色阻层6的平坦层101。
其中,黑矩阵5、色阻层6和平坦层101的材料及其制作工艺参见相关技术,在此不再赘述。
同时,由于导电层3的材料具有抗腐蚀性,在显示膜层的制作工艺中不会被腐蚀。而且所形成的导电层3的厚度只有几百纳米,由此保证了透明衬底基板100可以被牢固吸附。导电层3相对于相关技术中的黑色光刻胶,与透明衬底基板100牢固连接,不易脱落,不会对工艺腔室造成污染。
步骤S12、对导电层3施加电压,将碳粉4撒在透明衬底基板100和导电层3上,导电层3吸附碳粉4,形成遮光条纹11,去除未吸附的碳粉后,在遮光条纹11之间的透明衬底基板100上形成透光条纹10,如图3所示;
至此完成彩膜基板2的制作;
步骤S13、结合图4所示,完成阵列基板1的制作;
阵列基板1可以为薄膜晶体管阵列基板,具体的制作工艺参见相关技术,在此不再赘述。
步骤S14、对盒阵列基板1和彩膜基板2,滴注液晶7,并通过封框胶8进行密封,如图4所示。
其中,光栅位于彩膜基板2的外表面。
由于在对盒工艺和滴注液晶7后不需要再进行光刻工艺,克服了液晶面板由于高温、在显影液中浸泡等原因可能造成的腐蚀,以及液晶在紫外光下照射可能变性等问题。
至此完成液晶显示面板的制作。
上述制作过程中,也可以先完成阵列基板1的制作,再进行彩膜基板2的制作。也可以在步骤S11形成彩膜基板2的显示膜层之后,先完成步骤S14中阵列基板1和彩膜基板2的对盒密封,如图5所示,然后再进行步骤12形成光栅的遮光条纹,完成光栅的制作。
当然,上述制作过程中的光栅也可以形成在阵列基板1的外表面上,如 图6所示,其具体形成过程与上述类似,在此不再详述。
图7-图10表示为本公开另一实施例中制作液晶显示面板的示意图。
结合图7-图10所示,液晶显示面板的光栅位于彩膜基板的外表面,中介层为透明有机材料制成,形成光栅的透光条纹图案。所述液晶显示面板的制作过程为:
步骤S20、结合图7所示,提供透明衬底基板100,如:玻璃基板、石英基板、有机树脂基板。在透明衬底基板100上形成透明有机层3,透明有机层3具有光栅的透光条纹10,相邻的透光条纹图案10之间为光栅的遮光条纹图案11;
步骤S21、如图8所示,在透明衬底基板100与透明有机层3相对的表面上形成所需的各显示膜层;
步骤S22、对透明衬底基板100形成有透明有机层3的表面进行摩擦起电,将碳粉4撒在透明衬底基板100和透明有机层3上,带电的透明衬底基板100吸附碳粉4,形成遮光条纹11,去除未吸附的碳粉后,不带电的透明有机层3形成透光条纹10,如图9所示;
至此完成彩膜基板2的制作;
步骤S23、结合图10所示,完成阵列基板1的制作;
步骤S24、对盒阵列基板1和彩膜基板2,滴注液晶7,并通过封框胶8进行密封,如图10所示。
至此完成液晶显示面板的制作。
其中,光栅位于彩膜基板2的外表面。
上述制作过程中,也可以先完成阵列基板1的制作,再进行彩膜基板2的制作。也可以在步骤S21形成彩膜基板2的显示膜层之后,先完成步骤S24中阵列基板1和彩膜基板2的对盒密封,如图11所示,然后再进行步骤22形成光栅的遮光条纹,完成光栅的制作。
当然,上述制作过程中的光栅也可以形成在阵列基板1的外表面上,如图12所示,其具体形成过程与上述类似,在此不再详述。
本公开的技术方案也适用于有机发光二极管显示面板,其中光栅的制作过程与液晶显示面板中光栅的制作过程相同,不同的仅是显示膜层包括阴极、空穴注入层、空穴传输层、电子注入层、电子传输层、阳极等,具体的制作工艺与相关技术相同。
本公开实施例中还提供一种显示装置,其包括上述的显示面板,用以提 高三维显示装置和双视场显示装置的良率。
本公开的技术方案,首先通过性质稳定的中介层在透明衬底基板的外表面上形成间隔分布的条纹图案。然后在形成有中介层的透明衬底基板的内表面形成所需的各显示膜层。最后将不透光材料吸附至所述中介层表面上或所述透明衬底基板上的所述中介层的间隔中,以形成间隔分布的光栅的遮光条纹和透光条纹。由于所述中介层不需要具有足够低的透光率,厚度较薄,形成显示膜层时可以牢固吸附衬底基板,而且稳定的特性使得中介层不会污染工艺腔室,因此,制作光栅的工艺不会对显示膜层的制作工艺产生影响。
以上所述仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本公开的保护范围。

Claims (20)

  1. 一种制作显示基板的方法,包括形成光栅的步骤,其中所述形成光栅的步骤包括:
    在透明衬底基板的外表面形成中介层,所述中介层具有间隔分布的条纹图案;
    在形成有所述中介层的所述透明衬底基板的内表面形成显示膜层;以及
    将不透光材料吸附至所述中介层表面上或所述透明衬底基板上的所述中介层的间隔中,从而形成间隔分布的遮光条纹和透光条纹。
  2. 根据权利要求1所述的方法,其中通过对所述中介层或所述透明衬底基板进行处理使其带电,以使所述中介层或所述透明衬底基板具有吸附所述不透光材料的特性。
  3. 根据权利要求1或2所述的方法,其中所述中介层为透明有机材料或导电材料。
  4. 根据权利要求3所述的方法,其中当所述中介层为透明有机材料时,通过对形成有所述中介层的所述透明衬底基板的外表面进行摩擦起电的处理,使得所述透明衬底基板具有吸附所述不透光材料的特性。
  5. 根据权利要求3所述的方法,其中当所述中介层为导电材料时,通过对所述中介层施加电压,使得所述中介层具有吸附所述不透光材料的特性。
  6. 根据权利要求1所述的方法,其中所述在透明衬底基板的外表面形成中介层的步骤进一步包括:
    在所述透明衬底基板上形成导电膜层或有机膜层;以及
    对所述导电膜层或所述有机膜层进行光刻工艺,以形成所述具有间隔分布的条纹图案。
  7. 根据权利要求1-6任一项所述的方法,其中所述不透光材料为碳粉。
  8. 根据权利要求1-3任一项所述的方法,其中所述将不透光材料吸附至所述中介层表面上或所述透明衬底基板上的所述中介层的间隔中的步骤为:
    将碳粉撒在所述透明衬底基板和所述中介层上,所述碳粉被所述中介层或所述透明衬底基板吸附,从而形成所述遮光条纹;以及
    去除未吸附的碳粉后,形成位于所述遮光条纹之间的所述透光条纹。
  9. 根据权利要求1-8任一项所述的方法,其中在所述形成光栅的步骤之后还包括:
    在所述遮光条纹和所述透光条纹上形成保护层。
  10. 一种显示基板,包括光栅,所述光栅包括:
    设置在透明衬底基板外表面的中介层,其中所述中介层具有间隔分布的条纹图案;以及
    由覆盖在所述中介层表面上的不透光材料所形成的遮光条纹,和位于所述遮光条纹之间的透光条纹,或
    由位于所述中介层的条纹图案之间并覆盖在所述透明衬底基板上的不透光材料所形成遮光条纹,和位于所述遮光条纹之间的透光条纹。
  11. 根据权利要求10所述的显示基板,其中所述光栅还包括:
    覆盖在所述遮光条纹和所述透光条纹上的保护层。
  12. 根据权利要求10或11所述的显示基板,其中所述中介层为导电材料或透明有机材料。
  13. 根据权利要求10-12任一项所述的显示基板,其中所述不透光材料为碳粉。
  14. 一种制作显示面板的方法,所述显示面板包括对盒的第一显示基板和第二显示基板,其中所述方法包括:
    采用权利要求1-9任一项所述的方法形成所述第一显示基板。
  15. 根据权利要求14所述的方法,其中在形成所述保护层后,进一步包括:对盒所述第一显示基板和所述第二显示基板,以形成所述显示面板。
  16. 根据权利要求14所述的方法,其中在所述将不透光材料吸附至所述中介层表面上或所述透明衬底基板上的所述中介层的间隔中的步骤之前,进一步包括:对盒所述第一显示基板和所述第二显示基板。
  17. 一种显示面板,包括权利要求10-13任一项所述的显示基板。
  18. 根据权利要求17所述的显示面板,其中所述显示面板为液晶显示面板,包括对盒设置的彩膜基板和阵列基板;
    所述显示基板为所述彩膜基板或所述阵列基板,所述光栅位于所述彩膜基板的外表面或所述阵列基板的外表面。
  19. 根据权利要求17所述的显示面板,其中所述显示面板为有机发光二极管显示面板。
  20. 一种显示装置,包括权利要求17-19任一项所述的显示面板。
PCT/CN2015/075197 2014-11-26 2015-03-27 显示基板和显示面板及其制作方法、显示装置 WO2016082396A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15766038.2A EP3226071B1 (en) 2014-11-26 2015-03-27 Display substrate, display panel, method for making same, and display device
US14/780,399 US10488563B2 (en) 2014-11-26 2015-03-27 Display substrate and display panel, method for manufacturing the same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410696890.4 2014-11-26
CN201410696890.4A CN104460100B (zh) 2014-11-26 2014-11-26 显示基板和显示面板及其制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2016082396A1 true WO2016082396A1 (zh) 2016-06-02

Family

ID=52906398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075197 WO2016082396A1 (zh) 2014-11-26 2015-03-27 显示基板和显示面板及其制作方法、显示装置

Country Status (4)

Country Link
US (1) US10488563B2 (zh)
EP (1) EP3226071B1 (zh)
CN (1) CN104460100B (zh)
WO (1) WO2016082396A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104460100B (zh) 2014-11-26 2018-03-27 京东方科技集团股份有限公司 显示基板和显示面板及其制作方法、显示装置
CN104977724A (zh) * 2015-07-13 2015-10-14 深圳市华星光电技术有限公司 3d显示装置及其制作方法
US11119370B2 (en) * 2018-01-29 2021-09-14 Himax Display, Inc. Display panel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101561571A (zh) * 2009-05-14 2009-10-21 深圳华映显示科技有限公司 一种液晶显示面板及液晶显示装置
CN102123866A (zh) * 2008-06-16 2011-07-13 人眼科技有限公司 用于处理光栅印刷基板的方法和设备
US20120207888A1 (en) * 2011-02-09 2012-08-16 Spice Application Systems Limited Comestible Coating Delivery Method and Apparatus
CN102981196A (zh) * 2012-12-11 2013-03-20 南京中电熊猫液晶显示科技有限公司 柱透镜光栅、光栅视差屏障式立体显示装置及视差屏障
CN202895860U (zh) * 2012-11-08 2013-04-24 江阴通利光电科技有限公司 一种新型3d光学立体膜片
CN202904128U (zh) * 2012-11-08 2013-04-24 江阴通利光电科技有限公司 一种新型3d的光学立体膜片
CN103454807A (zh) * 2013-09-02 2013-12-18 京东方科技集团股份有限公司 阵列基板及其制作方法、3d显示装置
CN104460100A (zh) * 2014-11-26 2015-03-25 京东方科技集团股份有限公司 显示基板和显示面板及其制作方法、显示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080158500A1 (en) * 2006-12-27 2008-07-03 Yasushi Kawata Display Device and Method for Manufacturing the Same
DE102008060279B4 (de) * 2007-12-05 2023-09-14 Lg Display Co., Ltd. Multiansicht-Anzeigevorrichtung
US20090152533A1 (en) * 2007-12-17 2009-06-18 Winston Kong Chan Increasing the external efficiency of light emitting diodes
JP5567855B2 (ja) * 2010-02-16 2014-08-06 株式会社ジャパンディスプレイ 表示装置および電子機器
KR20130118729A (ko) * 2010-04-27 2013-10-30 더 리젠츠 오브 더 유니버시티 오브 미시건 플라스몬 컬러 필터 및 태양광 기능을 가지는 디스플레이 장치
CN102236201B (zh) * 2010-04-30 2014-06-04 京东方科技集团股份有限公司 双视显示器、双视彩膜结构及其制造方法
TW201215916A (en) * 2010-10-01 2012-04-16 J Touch Corp Display device structure improvement featuring 2D/3D image switching
CN102681176B (zh) * 2011-03-18 2014-01-08 介面光电股份有限公司 3d显示器及其光栅装置的制造方法
CN202008551U (zh) * 2011-04-14 2011-10-12 京东方科技集团股份有限公司 一种双视显示面板
JP5962229B2 (ja) * 2012-06-05 2016-08-03 三菱電機株式会社 表示装置
CN102768424B (zh) * 2012-07-02 2014-07-09 京东方科技集团股份有限公司 双视角显示面板及其制造方法
CN203773156U (zh) * 2014-04-11 2014-08-13 京东方科技集团股份有限公司 一种光栅结构及显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123866A (zh) * 2008-06-16 2011-07-13 人眼科技有限公司 用于处理光栅印刷基板的方法和设备
CN101561571A (zh) * 2009-05-14 2009-10-21 深圳华映显示科技有限公司 一种液晶显示面板及液晶显示装置
US20120207888A1 (en) * 2011-02-09 2012-08-16 Spice Application Systems Limited Comestible Coating Delivery Method and Apparatus
CN202895860U (zh) * 2012-11-08 2013-04-24 江阴通利光电科技有限公司 一种新型3d光学立体膜片
CN202904128U (zh) * 2012-11-08 2013-04-24 江阴通利光电科技有限公司 一种新型3d的光学立体膜片
CN102981196A (zh) * 2012-12-11 2013-03-20 南京中电熊猫液晶显示科技有限公司 柱透镜光栅、光栅视差屏障式立体显示装置及视差屏障
CN103454807A (zh) * 2013-09-02 2013-12-18 京东方科技集团股份有限公司 阵列基板及其制作方法、3d显示装置
CN104460100A (zh) * 2014-11-26 2015-03-25 京东方科技集团股份有限公司 显示基板和显示面板及其制作方法、显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3226071A4 *

Also Published As

Publication number Publication date
EP3226071B1 (en) 2019-09-11
CN104460100A (zh) 2015-03-25
EP3226071A1 (en) 2017-10-04
US20160327693A1 (en) 2016-11-10
CN104460100B (zh) 2018-03-27
EP3226071A4 (en) 2018-07-25
US10488563B2 (en) 2019-11-26

Similar Documents

Publication Publication Date Title
US10606129B2 (en) Method of manufacturing a display panel with concavo-convex structure substrate coupling
CN105448825B (zh) 显示基板的制备方法及显示基板、显示装置
US10175579B2 (en) Mask, glass substrate and manufacturing method thereof
US9329445B2 (en) Mask plate and processes for manufacturing ultraviolet mask plate and array substrate
TWI528072B (zh) 液晶顯示裝置及其製造方法
WO2017049878A1 (zh) 一种光刻胶图案的制作方法、彩色滤光片及显示装置
WO2016155234A1 (zh) 触摸屏、其制作方法及显示装置
US20140098320A1 (en) Liquid crystal display device and a manufacturing method thereof
KR101243395B1 (ko) 유기 박막 트랜지스터 어레이 기판 및 그 제조 방법
US9626017B2 (en) Touch panel and manufacturing method thereof, display device
CN102104050B (zh) 薄膜晶体管基板及其制造方法
JP2012248865A (ja) アクティブマトリクス基板及びそれを備えた表示パネル
KR102003269B1 (ko) 광학 필터의 제조 방법 및 광학 필터를 구비하는 유기 발광 표시 장치의 제조 방법
CN104298040A (zh) 一种coa基板及其制作方法和显示装置
US20170090232A1 (en) Display substrate, manufacturing method thereof and display device
US9606393B2 (en) Fabrication method of substrate
US9483148B2 (en) Method for manufacturing touch substrate
US20160342082A1 (en) Ultraviolet mask and method of manufacturing the same
WO2014194634A1 (zh) 显示屏的制作方法
JP2012018322A (ja) 液晶表示パネル
WO2016082396A1 (zh) 显示基板和显示面板及其制作方法、显示装置
US20180095362A1 (en) Method of manufacturing display device using bottom surface exposure
KR101340727B1 (ko) 박막 패턴의 제조방법 및 이를 이용한 액정표시패널 및 그제조방법
US9281326B2 (en) Array substrate and manufacturing method thereof and display panel
US20160187790A1 (en) Exposure method, exposure device for performing the method and manufacturing method of display substrate using the method

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015766038

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14780399

Country of ref document: US

Ref document number: 2015766038

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15766038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE