WO2016082171A1 - F-θ型光刻镜头 - Google Patents

F-θ型光刻镜头 Download PDF

Info

Publication number
WO2016082171A1
WO2016082171A1 PCT/CN2014/092428 CN2014092428W WO2016082171A1 WO 2016082171 A1 WO2016082171 A1 WO 2016082171A1 CN 2014092428 W CN2014092428 W CN 2014092428W WO 2016082171 A1 WO2016082171 A1 WO 2016082171A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
refractive index
type lithography
abbe number
curvature
Prior art date
Application number
PCT/CN2014/092428
Other languages
English (en)
French (fr)
Inventor
孙博
李家英
周朝明
高云峰
Original Assignee
大族激光科技产业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大族激光科技产业集团股份有限公司 filed Critical 大族激光科技产业集团股份有限公司
Priority to US15/518,076 priority Critical patent/US10162151B2/en
Priority to JP2017518217A priority patent/JP6409130B2/ja
Priority to PCT/CN2014/092428 priority patent/WO2016082171A1/zh
Priority to CN201480080209.1A priority patent/CN106471413B/zh
Priority to DE112014007217.6T priority patent/DE112014007217B4/de
Publication of WO2016082171A1 publication Critical patent/WO2016082171A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0005Optical objectives specially designed for the purposes specified below having F-Theta characteristic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/359Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line

Definitions

  • the present invention relates to the field of optics, and in particular to an F- ⁇ type lithography lens.
  • An F- ⁇ type lithography lens comprising a first lens, a second lens, a third lens and a fourth lens disposed coaxially along a transmission direction of incident light rays; wherein the first lens is a meniscus lens, and the second lens is a meniscus lens, the third lens is a plano-convex lens, the fourth lens is a planar lens; the first lens includes a first surface and a second surface, the second lens includes a third surface and a fourth surface, and the third lens includes a fifth surface and In the sixth surface, the fourth lens includes a seventh surface and an eighth surface; the first surface to the eighth surface are sequentially arranged along the transmission direction of the incident light; the first to eighth surfaces have a radius of curvature of: -29 mm, - 88mm, -56mm, -36mm, ⁇ , -116mm, ⁇ , ⁇ ; the center thickness of the first lens to the fourth lens are: 3mm, 6mm, 6mm, 3mm.
  • the ratio of the refractive index to the Abbe number of the first lens is 1.50/62
  • the ratio of the refractive index to the Abbe number of the second lens is 1.80/25
  • the refractive index of the third lens and Abbe The ratio of the number is 1.80/25
  • the ratio of the refractive index of the fourth lens to the Abbe number is 1.50/62.
  • the distance between the second surface and the third surface is 2 mm
  • the distance between the fourth surface and the fifth surface is 0.2 mm
  • the distance between the sixth surface and the seventh surface is 2. Mm.
  • the radius of curvature, the center thickness, and the pitch have a tolerance range of 5%.
  • the F- ⁇ type lithography lens adopts the F- ⁇ structure lens, which not only has high quality of the engraved line, but also ensures that the engraved line is “thin and thin” and “deep”, and the engraving speed is fast, and the efficiency is higher than that of the conventional lithography lens.
  • FIG. 1 is a schematic structural view of an F- ⁇ type lithography lens according to an embodiment
  • Figure 2 shows the pitch of the components of the F- ⁇ type lithography lens shown in Figure 1;
  • FIG. 3 is a beamlet aberration diagram of an F- ⁇ type lithography lens according to an embodiment
  • FIG. 4 is a geometric aberration diagram of an F- ⁇ type lithography lens of an embodiment
  • Fig. 5 is a graph showing a modulation transfer function of an F- ⁇ type lithography lens of an embodiment.
  • Fig. 1 is a schematic view showing the structure of an F- ⁇ type lithography lens according to an embodiment, and for convenience of explanation, only parts related to the present embodiment are shown.
  • an F- ⁇ type lithography lens of an embodiment includes a first lens L1, a second lens L2, a third lens L3, and a fourth lens L4 which are disposed coaxially in the transmission direction of incident light.
  • the negative sign indicates that the light propagates from left to right, with the intersection of the spherical surface and the main optical axis as the standard, and the spherical center of the sphere is left at the point, the radius of curvature is negative, and vice versa.
  • the center of the sphere is right at this point, and the radius of curvature is positive, the same applies hereinafter.
  • the first lens L1 is a meniscus lens including a first surface S1 and a second surface S2.
  • the first surface S1 is convex toward the image side and has a radius of curvature of -29 mm; the second surface S2 is also convex toward the image side, and has a radius of curvature of -88 mm.
  • the center thickness d1 of the first lens L1 i.e., the thickness of the first lens L1 on the optical axis
  • the ratio of the refractive index of the first lens L1 to the Abbe number is 1.50/62.
  • the parameters of the first lens L1 described above are not uniquely selected, and each has a tolerance range of 5%, that is, each parameter is allowed to vary within ⁇ 5%.
  • the second lens L2 is a meniscus lens including a third surface S3 and a fourth surface S4.
  • the third surface S3 is convex toward the image side, and has a radius of curvature of -56 mm
  • the fourth surface S4 is also convex toward the image side, and has a radius of curvature of -36 mm.
  • the center thickness d3 of the second lens L2 is 6 mm.
  • the ratio of the refractive index of the second lens L2 to the Abbe number is 1.80/25.
  • the tolerance of each parameter of the second lens L2 described above is 5%.
  • the third lens L3 is a plano-convex lens including a fifth surface S5 and a sixth surface S6.
  • the fifth surface S5 is a plane having a radius of curvature of ⁇ , that is, infinity; the sixth surface S6 is convex toward the image side, and has a radius of curvature of -116 mm.
  • the center thickness d5 of the third lens L3 is 6 mm.
  • the ratio of the refractive index of the third lens L3 to the Abbe number is 1.80/25.
  • the tolerance of each parameter of the third lens L3 described above is 5%.
  • the fourth lens L4 is a planar lens for protecting the lens.
  • the fourth lens L4 includes a seventh surface S7 and an eighth surface S8.
  • the seventh surface S7 and the eighth surface S8 are both planes, and the radius of curvature is ⁇ .
  • the center thickness d7 of the fourth lens L4 is 3 mm.
  • the ratio of the refractive index of the fourth lens to the Abbe number is 1.50/62.
  • the tolerance of each parameter of the fourth lens L4 described above is 5%.
  • the first surface S1 to the eighth surface S8 are sequentially arranged in the transmission direction of the incident light.
  • the distance d2 between the exit surface (the second surface S2) of the first lens L1 and the incident surface (the third surface S3) of the second lens L2 on the optical axis is 2 mm, and the tolerance of the pitch d2 is 5 %.
  • the distance d4 between the exit surface of the second lens L2 (the fourth surface S4) and the incident surface of the third lens L3 (the fifth surface S5) on the optical axis is 0.2 mm, and the tolerance of the pitch d4 is 5%.
  • the distance d6 between the exit surface of the third lens L3 (the sixth surface S6) and the incident surface of the fourth lens L4 (the seventh surface S7) on the optical axis is 2 mm, and the tolerance of the pitch d6 is 5%.
  • the F- ⁇ type lithography lens has a focal length f of 160 mm, an outer diameter ⁇ of 7 mm, a marking range A of 100*100 mm, and an operating wavelength ⁇ of 1064 nm.
  • 3-5 respectively show a beamlet aberration diagram, a geometric aberration diagram, and a modulation transfer function graph (transfer function MTF diagram) of an F- ⁇ type lithography lens of an embodiment.
  • FIG. 3A and 3B are respectively a field curvature characteristic curve and a distortion characteristic diagram of the F- ⁇ type lithography lens, as shown in FIG. 3A and FIG. 3B, the field curvature and distortion of the F- ⁇ type lithography lens are both shown. The level of theoretical value has been reached.
  • the size of the circle of the entire image plane is within 6 ⁇ m, and the desired value has been reached.
  • the F- ⁇ type lithography lens of the present invention can perform high-quality reticle work, and the scribe line speed is faster and the efficiency is higher than that of the conventional lithography lens.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Lenses (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

一种F-θ型光刻镜头,包括沿入射光线的传输方向共轴设置的第一透镜(L1)、第二透镜(L2)、第三透镜(L3)和第四透镜(L4);其中第一透镜(L1)为弯月透镜,第二透镜(L2)为弯月透镜,第三透镜(L3)为平凸透镜,第四透镜(L4)为平面透镜;第一透镜(L1)包括第一面(S1)和第二面(S2),第二透镜(L2)包括第三面(S3)和第四面(S4),第三透镜(L3)包括第五面(S5)和第六面(S6),第四透镜(L4)包括第七面(S7)和第八面(S8);第一面(S1)至第八面(S8)沿入射光线的传输方向依次排布;第一面(S1)至第八面(S8)的曲率半径依次为:-29mm,-88mm,-56mm,-36mm,∞,-116mm,∞,∞;第一透镜(L1)至第四透镜(L4)的中心厚度(d1、d2、d3、d4)依次为:3mm,6mm,6mm,3mm。

Description

F-θ型光刻镜头
【技术领域】
本发明涉及光学领域,尤其涉及一种F-θ型光刻镜头。
【背景技术】
随着手机、个人电脑和平板电视等电子产品的发展,应用于这些产品上的面板的生产需求也逐渐增大。在面板的生产过程中,需要用激光标刻面板,对面板进行划线并切割,而且为了保证面板符合产品的技术要求,在激光标刻面板时,要保证刻线“又细”,“又深”,因此,对用于激光标刻机的光刻镜头的要求越来越高。
传统的激光标刻机采用单个光刻镜头或者多个(一般最多为三个)光刻镜头。使用单个光刻镜头虽然能提高刻线质量,但刻线速度非常慢,一次只刻一条线。至于使用三个刻线镜头,虽然刻线速度较快,但受限于材料及工艺,很难高质量地刻线。
【发明内容】
基于此,有必要提供一种刻线质量高且刻线速度快的F-θ光刻镜头。
一种F-θ型光刻镜头,包括沿入射光线的传输方向共轴设置的第一透镜、第二透镜、第三透镜和第四透镜;其中第一透镜为弯月透镜,第二透镜为弯月透镜,第三透镜为平凸透镜,第四透镜为平面透镜;第一透镜包括第一面和第二面,第二透镜包括第三面和第四面,第三透镜包括第五面和第六面,第四透镜包括第七面和第八面;第一面至第八面沿入射光线的传输方向依次排布;第一面至第八面的曲率半径依次为:-29mm,-88mm,-56mm,-36mm,∞,-116mm,∞,∞;第一透镜至第四透镜的中心厚度依次为:3mm,6mm,6mm,3mm。
在其中一个实施例中,第一透镜的折射率与阿贝数的比例为1.50/62,第二透镜的折射率与阿贝数的比例为1.80/25,第三透镜的折射率与阿贝数的比例为1.80/25,第四透镜的折射率与阿贝数的比例为1.50/62。
在其中一个实施例中,第二面与第三面的间距为2mm,第四面与第五面的间距为0.2mm,第六面与第七面的间距为2 mm。
在其中一个实施例中,曲率半径、中心厚度以及间距的公差范围均为5%。
上述F-θ型光刻镜头采用F-θ结构的镜头,不仅刻线质量高,保证刻线“又细”,“又深”,且刻线速度快,效率高于传统的光刻镜头。
【附图说明】
通过附图中所示的本发明的优选实施例的更具体说明,本发明的上述及其它目的、特征和优势将会变得更加清晰。在全部附图中相同的附图标记指示相同的部分,且并未刻意按实际尺寸等比例缩放绘制附图,重点在于示出本发明的主旨。
图1为一实施例的F-θ型光刻镜头的结构示意图;
图2显示了图1所示的F-θ型光刻镜头的各部件的间距;
图3为一实施例的F-θ型光刻镜头的细光束象差图;
图4为一实施例的F-θ型光刻镜头的几何像差图;
图5为一实施例的F-θ型光刻镜头的调制传递函数曲线图。
【具体实施方式】
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
图1为一实施例的F-θ型光刻镜头的结构示意图,为了便于说明,仅示出了与本实施例相关的部分。
如图1所示,一实施例的F-θ型光刻镜头包括沿入射光线的传输方向共轴设置的第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4。
在该F-θ型光刻镜头中,负号表示光从左向右传播,以球面和主光轴的交点为准,球面的球心在该点以左,则曲率半径为负,反之,球心在在该点以右,则曲率半径为正,以下同理。
如图1和图2所示,第一透镜L1为弯月透镜,其包括第一面S1和第二面S2。第一面S1向像方凸出,其曲率半径为-29mm;第二面S2也向像方凸出,其曲率半径为-88mm。第一透镜L1的中心厚度d1(即第一透镜L1在光轴上的厚度)为3mm。第一透镜L1的折射率与阿贝数的比例为1.50/62。上述第一透镜L1的各参数并非唯一选择,均存在5%的公差范围,即允许各参数在±5%范围内变化。
第二透镜L2为弯月透镜,其包括第三面S3和第四面S4。第三面S3向像方凸出,其曲率半径为-56mm,第四面S4也向像方凸出,其曲率半径为-36mm。第二透镜L2的中心厚度d3为6mm。第二透镜L2的折射率与阿贝数的比例为1.80/25。上述第二透镜L2的各参数的公差范围为5%。
第三透镜L3为平凸透镜,其包括第五面S5和第六面S6。第五面S5为平面,其曲率半径为∞,即无穷大;第六面S6向像方凸出,其曲率半径为-116mm。第三透镜L3的中心厚度d5为6mm。第三透镜L3的折射率与阿贝数的比例为1.80/25。上述第三透镜L3的各参数的公差范围为5%。
第四透镜L4为平面透镜,用于保护镜头。第四透镜L4包括第七面S7和第八面S8。第七面S7和第八面S8均为平面,曲率半径均为∞。第四透镜L4的中心厚度d7为3mm。第四透镜的折射率与阿贝数的比例为1.50/62。上述第四透镜L4的各参数的公差范围为5%。
第一面S1至第八面S8沿入射光线的传输方向依次排布。
在一个实施例中,第一透镜L1的出射面(第二面S2)与第二透镜L2的入射面(第三面S3)在光轴上的间距d2为2mm,间距d2的公差范围为5%。第二透镜L2的出射面(第四面S4)与第三透镜L3的入射面(第五面S5)在光轴上的间距d4为0.2mm,间距d4的公差范围为5%。第三透镜L3的出射面(第六面S6)与第四透镜L4的入射面(第七面S7)在光轴上的间距d6为2mm,间距d6的公差范围为5%。
上述F-θ型光刻镜头的焦距f为160mm,外圆直径Φ为7mm,标刻范围A为100*100mm,工作波长λ为1064nm。该F-θ型光刻镜头在刻线时,线条的深度可达到0.5mm;若F-θ型光刻镜头的数值孔径角sinα=0.02,则线条的宽度可达到0.03mm。
图3-5分别示出了一实施例的F-θ型光刻镜头的细光束象差图、几何象差图及调制传递函数曲线图(传递函数MTF图)。
图3A和图3B分别为该F-θ型光刻镜头的场曲特性曲线图和畸变特性曲线图,如图3A和图3B所示,该F-θ型光刻镜头的场曲和畸变均达到了理论值的水平。
如图4所示,整个像面的弥散圆的大小都在6μm以内,已达到理想的值。
如图5所示,当分辨率达到20 line/mm时,该F-θ型光刻镜头的MTF仍大于0.3,已达到了理想效果。
由以上数据可知,本发明的F-θ型光刻镜头能够完成高质量的刻线工作,且相较于传统的光刻镜头,刻线速度更快,效率更高。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (4)

  1. 一种F-θ型光刻镜头,其特征在于,包括沿入射光线的传输方向共轴设置的第一透镜、第二透镜、第三透镜和第四透镜;其中所述第一透镜为弯月透镜,所述第二透镜为弯月透镜,所述第三透镜为平凸透镜,所述第四透镜为平面透镜;
    所述第一透镜包括第一面和第二面,所述第二透镜包括第三面和第四面,所述第三透镜包括第五面和第六面,所述第四透镜包括第七面和第八面;所述第一面至第八面沿入射光线的传输方向依次排布;
    所述第一面至所述第八面的曲率半径依次为:-29mm,-88mm,-56mm,-36mm,∞,-116mm,∞,∞;
    所述第一透镜至所述第四透镜的中心厚度依次为:3mm,6mm,6mm,3mm。
  2. 根据权利要求1所述的F-θ型光刻镜头,其特征在于,所述第一透镜的折射率与阿贝数的比例为1.50/62,所述第二透镜的折射率与阿贝数的比例为1.80/25,所述第三透镜的折射率与阿贝数的比例为1.80/25,所述第四透镜的折射率与阿贝数的比例为1.50/62。
  3. 根据权利要求1所述的F-θ型光刻镜头,其特征在于,所述第二面与所述第三面的间距为2mm,所述第四面与所述第五面的间距为0.2mm,所述第六面与所述第七面的间距为2 mm。
  4. 根据权利要求1-3中任意一项所述的F-θ型光刻镜头,其特征在于,所述曲率半径、所述中心厚度、所述折射率与阿贝数的比例以及所述间距的公差范围均为5%。
PCT/CN2014/092428 2014-11-28 2014-11-28 F-θ型光刻镜头 WO2016082171A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/518,076 US10162151B2 (en) 2014-11-28 2014-11-28 F-theta photolithographic lenses
JP2017518217A JP6409130B2 (ja) 2014-11-28 2014-11-28 F−θ型エッチング用レンズ
PCT/CN2014/092428 WO2016082171A1 (zh) 2014-11-28 2014-11-28 F-θ型光刻镜头
CN201480080209.1A CN106471413B (zh) 2014-11-28 2014-11-28 F-θ型光刻镜头
DE112014007217.6T DE112014007217B4 (de) 2014-11-28 2014-11-28 Fotolithografische f-theta-linsen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/092428 WO2016082171A1 (zh) 2014-11-28 2014-11-28 F-θ型光刻镜头

Publications (1)

Publication Number Publication Date
WO2016082171A1 true WO2016082171A1 (zh) 2016-06-02

Family

ID=56073371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092428 WO2016082171A1 (zh) 2014-11-28 2014-11-28 F-θ型光刻镜头

Country Status (5)

Country Link
US (1) US10162151B2 (zh)
JP (1) JP6409130B2 (zh)
CN (1) CN106471413B (zh)
DE (1) DE112014007217B4 (zh)
WO (1) WO2016082171A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169883A (zh) * 2017-12-27 2018-06-15 大族激光科技产业集团股份有限公司 一种用于大范围清洗的激光镜头及激光系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2585256Y (zh) * 2002-12-18 2003-11-05 上海市激光技术研究所 二个孔径光阑置于前端的fθ物镜
CN101369047A (zh) * 2008-04-28 2009-02-18 深圳市大族激光科技股份有限公司 光学镜头
CN101881875A (zh) * 2010-06-22 2010-11-10 深圳市大族激光科技股份有限公司 f-theta光学镜头
CN203025408U (zh) * 2012-03-21 2013-06-26 业纳光学系统有限公司 F-θ物镜IV
CN203275743U (zh) * 2013-03-22 2013-11-06 伊欧激光科技(苏州)有限公司 一种激光打标用F-θ镜片组

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126051A (en) * 1978-03-23 1979-09-29 Ricoh Co Ltd Anamorphic f lens system
JPH08211285A (ja) * 1995-02-02 1996-08-20 Minolta Co Ltd 走査レンズ
US5835280A (en) * 1997-04-22 1998-11-10 Eastman Kodak Company F-θ lens
JP2001147391A (ja) * 1999-11-22 2001-05-29 Asahi Optical Co Ltd 走査光学系
CN100549748C (zh) * 2007-01-30 2009-10-14 深圳市大族激光科技股份有限公司 F-theta光学镜头
US9739984B2 (en) * 2012-10-31 2017-08-22 Han's Laser Technology Industry Group Co., Ltd. F-theta lens and laser processing device for far-infrared laser processing
US10213870B2 (en) * 2014-11-28 2019-02-26 Han's Laser Technology Industry Group Co., Ltd. Optical lenses for laser marking

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2585256Y (zh) * 2002-12-18 2003-11-05 上海市激光技术研究所 二个孔径光阑置于前端的fθ物镜
CN101369047A (zh) * 2008-04-28 2009-02-18 深圳市大族激光科技股份有限公司 光学镜头
CN101881875A (zh) * 2010-06-22 2010-11-10 深圳市大族激光科技股份有限公司 f-theta光学镜头
CN203025408U (zh) * 2012-03-21 2013-06-26 业纳光学系统有限公司 F-θ物镜IV
CN203275743U (zh) * 2013-03-22 2013-11-06 伊欧激光科技(苏州)有限公司 一种激光打标用F-θ镜片组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169883A (zh) * 2017-12-27 2018-06-15 大族激光科技产业集团股份有限公司 一种用于大范围清洗的激光镜头及激光系统

Also Published As

Publication number Publication date
CN106471413B (zh) 2019-07-05
CN106471413A (zh) 2017-03-01
JP6409130B2 (ja) 2018-10-17
DE112014007217B4 (de) 2019-01-31
JP2018501500A (ja) 2018-01-18
US20180267272A1 (en) 2018-09-20
DE112014007217T5 (de) 2017-08-24
US10162151B2 (en) 2018-12-25

Similar Documents

Publication Publication Date Title
CN103376535B (zh) 光学成像系统组
WO2014067085A1 (zh) 一种超紫外激光打标Fθ镜头及激光加工设备
CN217639715U (zh) 光学系统与其中的超透镜及包含其的成像装置、电子设备
JP2007316146A5 (zh)
CN114660780A (zh) 光学系统及包含其的成像装置、电子设备
WO2016033743A1 (zh) 摄影物镜
EP2995984A1 (en) Variable-magnification observation optics
WO2014067097A1 (zh) 一种远红外激光加工用Fθ镜头及激光加工设备
JP6301506B2 (ja) テレセントリックレンズ
WO2016082172A1 (zh) 激光刻线用光学镜头
WO2016082171A1 (zh) F-θ型光刻镜头
JP2015520489A (ja) 照明コンバータ
CN110531589B (zh) 一种光刻机的投影物镜镜头
WO2023207892A1 (zh) 光学系统及包含其的成像装置、电子设备
CN210348192U (zh) 一种光刻机的投影物镜镜头
CN101349798B (zh) 全折射式投影物镜
CN104238090B (zh) 光学摄像透镜组
WO2014012417A1 (zh) 一种绿光激光变倍扩束系统及激光加工设备
WO2015024231A1 (zh) 大视场消色差镜头
WO2016029414A1 (zh) 光学镜头
WO2018218605A1 (zh) 激光清洗镜头
CN106470792A (zh) 3d打印机、打印方法及镜头模组
WO2016033730A1 (zh) 光学镜头
CN107797225B (zh) 光学镜头及其激光加工设备
WO2016029396A1 (zh) 光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017518217

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15518076

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014007217

Country of ref document: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205A DATED 17/10/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14906699

Country of ref document: EP

Kind code of ref document: A1