WO2016080961A1 - Cmos circuits using n-channel and p-channel gallium nitride transistors - Google Patents
Cmos circuits using n-channel and p-channel gallium nitride transistors Download PDFInfo
- Publication number
- WO2016080961A1 WO2016080961A1 PCT/US2014/066115 US2014066115W WO2016080961A1 WO 2016080961 A1 WO2016080961 A1 WO 2016080961A1 US 2014066115 W US2014066115 W US 2014066115W WO 2016080961 A1 WO2016080961 A1 WO 2016080961A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gallium nitride
- layer
- nitride layer
- channel transistor
- channel
- Prior art date
Links
- 229910002601 GaN Inorganic materials 0.000 title claims abstract description 232
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 221
- 230000010287 polarization Effects 0.000 claims abstract description 92
- 239000004047 hole gas Substances 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 24
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 claims description 18
- 238000000151 deposition Methods 0.000 claims description 16
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical group [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 claims description 11
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 10
- 229910052738 indium Inorganic materials 0.000 claims description 9
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 9
- 238000004377 microelectronic Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 239000010410 layer Substances 0.000 description 163
- 238000004891 communication Methods 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 230000037230 mobility Effects 0.000 description 9
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 239000007772 electrode material Substances 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- 239000011229 interlayer Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 239000003989 dielectric material Substances 0.000 description 5
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 4
- 238000001465 metallisation Methods 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 229910026551 ZrC Inorganic materials 0.000 description 2
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 description 2
- XWCMFHPRATWWFO-UHFFFAOYSA-N [O-2].[Ta+5].[Sc+3].[O-2].[O-2].[O-2] Chemical compound [O-2].[Ta+5].[Sc+3].[O-2].[O-2].[O-2] XWCMFHPRATWWFO-UHFFFAOYSA-N 0.000 description 2
- ILCYGSITMBHYNK-UHFFFAOYSA-N [Si]=O.[Hf] Chemical compound [Si]=O.[Hf] ILCYGSITMBHYNK-UHFFFAOYSA-N 0.000 description 2
- VQANKOFXSBIWDC-UHFFFAOYSA-N [Si]=O.[Ta] Chemical compound [Si]=O.[Ta] VQANKOFXSBIWDC-UHFFFAOYSA-N 0.000 description 2
- CAVCGVPGBKGDTG-UHFFFAOYSA-N alumanylidynemethyl(alumanylidynemethylalumanylidenemethylidene)alumane Chemical compound [Al]#C[Al]=C=[Al]C#[Al] CAVCGVPGBKGDTG-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 2
- VKJLWXGJGDEGSO-UHFFFAOYSA-N barium(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[Ti+4].[Ba+2] VKJLWXGJGDEGSO-UHFFFAOYSA-N 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 229910000449 hafnium oxide Inorganic materials 0.000 description 2
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 2
- WHJFNYXPKGDKBB-UHFFFAOYSA-N hafnium;methane Chemical compound C.[Hf] WHJFNYXPKGDKBB-UHFFFAOYSA-N 0.000 description 2
- JQJCSZOEVBFDKO-UHFFFAOYSA-N lead zinc Chemical compound [Zn].[Pb] JQJCSZOEVBFDKO-UHFFFAOYSA-N 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- KJXBRHIPHIVJCS-UHFFFAOYSA-N oxo(oxoalumanyloxy)lanthanum Chemical compound O=[Al]O[La]=O KJXBRHIPHIVJCS-UHFFFAOYSA-N 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 2
- CZXRMHUWVGPWRM-UHFFFAOYSA-N strontium;barium(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[Ti+4].[Sr+2].[Ba+2] CZXRMHUWVGPWRM-UHFFFAOYSA-N 0.000 description 2
- 229910003468 tantalcarbide Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 2
- 108091064702 1 family Proteins 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8236—Combination of enhancement and depletion transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/8252—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0605—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7786—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
Definitions
- CMOS Complementary Metal Oxide Semiconductor
- SoC System-on-Chip
- PMIC power management integrated circuits
- RFIC radio frequency integrated circuits
- FIG. 1 is a schematic of a gallium nitride circuit, as known in the art.
- FIG. 2 is a schematic of a gallium nitride circuit, according to an embodiment of the present description.
- FIGs. 3-9 are side cross-section views of the fabrication of a gallium nitride circuit structure, according to one embodiment of the present description.
- FIG. 10 is a side cross-section view of a gallium nitride circuit structure, according to another embodiment of the present description.
- FIGs. 11 and 12 are side cross-section views of a gallium nitride circuit structure, according to still another embodiment of the present description.
- FIG. 13 is a side cross-section view of a gallium nitride circuit structure, according to a further embodiment of the present description.
- FIG. 14 is a side cross-section view of a gallium nitride circuit structure, according to another embodiment of the present description.
- FIG. 15 is a flow chart of a process of fabricating a gallium nitride circuit structure, according to an embodiment of the present description.
- FIG. 16 illustrates a computing device in accordance with one implementation of the present description.
- over, “to”, “between” and “on” as used herein may refer to a relative position of one layer with respect to other layers.
- One layer “over” or “on” another layer or bonded “to” another layer may be directly in contact with the other layer or may have one or more intervening layers.
- One layer “between” layers may be directly in contact with the layers or may have one or more intervening layers.
- Embodiments of the present description related to CMOS circuits formed using p- channel gallium nitride transistors and n-channel gallium nitride transistors, wherein both the p- channel gallium nitride transistors and the n-channel gallium nitride transistors are formed on a single layered structure comprising a polarization layer deposited on a first gallium nitride layer and a second gallium nitride layer deposited on the polarization layer.
- Having both n-channel gallium nitride transistors and p-channel gallium nitride transistors on the same layer structure may enable "all gallium nitride transistor" implementations of circuits including logic, digital, and analog circuitries spanning low supply voltages to high supply voltages.
- Gallium nitride has a relatively wide bandgap (e.g. about 3.4 eV), when compared to the bandgap of silicon (about 1.1 eV). Therefore, gallium nitride transistors may withstand large electric fields, such as applied voltages, drain voltage, and the like, before suffering breakdown, when compared to a silicon based transistor of similar dimensions. This also enables the gallium nitride transistors to be scaled to even smaller physical dimensions when operating at the same supply voltage to a comparable silicon based transistor.
- Gallium nitride has a high electronic mobility (e.g. about 1000cm 2 /Vs) which makes it a very good material for the formation of an n-channel gallium nitride transistor, as an n- channel gallium nitride transistor employs a 2D electron gas as its transportation channel.
- Gallium nitride has a hole mobility (zero strain) which is an order of magnitude weaker (e.g. about 100cm 2 /Vs) than its electronic mobility. However, it still is a good material for the formation of a p-channel gallium nitride transistor, as a p-channel gallium nitride transistor employs a 2D hole gas as its transportation channel, since is hole mobility is still comparable to unstrained silicon hole mobility.
- a gallium nitride circuit 100 such as a logic or control circuit, is commonly implemented using a depletion mode n-channel gallium nitride transistor in conjunction with an enhancement mode n-channel gallium nitride transistor.
- steady- state leakage may be high in such circuits due to the depletion mode n-channel nitride transistor acting as a resistor, as will be understood to those skilled in the art.
- a CMOS gallium nitride circuit 200 of embodiments of the present description may comprise the depletion mode n- channel gallium nitride transistor of FIG. 1 being replaced with a p-channel gallium nitride transistor, as shown in FIG. 2.
- FIGs. 3-9 illustrate a method of fabricating a gallium nitride circuit structure, according to one embodiment of the present description.
- a layered structure 210 may be formed with a polarization layer 204 deposited on a first gallium nitride layer 202 and a second gallium nitride layer 206 deposited on the polarization layer 204 with the polarization layer 204 comprising aluminum gallium nitride, aluminum indium nitride, aluminum indium gallium nitride, aluminum nitride, and like materials.
- the polarization layer 204 may have ternary crystal structure which forms a 2D electron gas 212 (designated generically with negative "-" symbols) in the first gallium nitride layer 202 due to the formation of an abrupt hetero-junction interface 214 between the first gallium nitride layer 202 and the polarization layer 204 through spontaneous and piezoelectric polarization, as will be understood to those skilled in the art.
- the deposition of the second gallium nitride layer 206 on the polarization layer 204 forms a 2D hole gas 216 (designated generically with positive "+” symbols) within the second gallium nitride layer 206 proximate an interface 218 between the second gallium nitride layer 206 and the polarization layer 204.
- the 2D hole gas 216 forms due to the formation of the 2D electron gas 212 which shifts the polarization layer 204 positive (labeled as " ⁇ +”) near the first gallium nitride layer 202, thereby shifting the polarization layer 204 negative (labeled as " ⁇ -”) near the second gallium nitride layer 206.
- the polarization layer 204 may also act as electrical insulation between the 2D electron gas 212 and the 2D hole gas 216, which is achieved by both conduction and valence bonds offsets, as well as, by the built-in polarization field, as will be understood to those skilled in the art.
- the layered structure 210 formed with a polarization layer 204 deposited on a first gallium nitride layer 202 and a second gallium nitride layer 206 deposited on the polarization layer 204 is illustrated with the polarization layer 204 being indium gallium nitride and like materials.
- the 2D electron gas 212 forms in the polarization layer 204, as will be understood to those skilled in the art.
- the deposition of the second gallium nitride layer 206 on the polarization layer 204 forms the 2D hole gas 216 within the polarization layer 204.
- the polarization layer 204 may also act as electrical insulation between the 2D electron gas 212 and the 2D hole gas 216, which, in the embodiment of the polarization layer 204 being indium gallium nitride and like materials, is achieved by the built-in polarization field alone.
- the 2D electron gas 212 and the 2D hole gas 216 are formed in different locations in this embodiment from that shown in FIG. 3, the same results and mechanisms are achieved.
- FIGs. 5-9 will illustrate the 2D electron gas 212 and the 2D hole gas 216 locations of FIG. 3.
- a portion 220 of the layered structure 210 designated for the subsequent formation of a p-channel gallium nitride transistor may be patterned with a hardmask 222, such as silicon nitride. As shown in FIG. 5, a portion 220 of the layered structure 210 designated for the subsequent formation of a p-channel gallium nitride transistor may be patterned with a hardmask 222, such as silicon nitride. As shown in FIG.
- the second gallium nitride layer 206 in the unmasked portion 224 designated for the subsequent formation of an n-channel gallium nitride circuit structure may be remove, such as by etching, and a portion of the polarization layer 204 may be removed, such as by etching, to form a polarization layer intermediate surface 226, such that the polarization layer intermediate surface 226, from a planar standpoint, is between the interface 214 between the first gallium nitride layer 202 and the polarization layer 204 and the remaining interface 218 between the second gallium nitride layer 206 and the polarization layer 204.
- a thickness T between the intermediate surface 226 and the interface 214 between the first gallium nitride layer 202 and the polarization layer 204 may be less than about 20nm.
- an n-channel gallium nitride transistor 230 may be formed in the portion 224 after a second hardmask 228 is patterned on the portion 220 designated for the subsequent formation of a p-channel gallium nitride circuit structure.
- the n-channel gallium nitride transistor 230 may comprise opposing source/drain structures 232 (one being a source structure and the other being a drain structure) with a gate region 234 defined therebetween.
- a gate dielectric 236 may be formed in the gate region 234 and a gate electrode 238 may be formed on the gate dielectric 236, such that the gate dielectric 236 electrically isolates the gate electrode 238.
- the n-channel gallium nitride transistor 230 is an
- enhancement mode transistor a portion of the polarization layer 204 may be removed to disrupt the 2D electron gas 212, such that it does not extend through the gate length L g of the n-channel gallium nitride transistor 230 to achieve enhancement mode operation.
- the source/drain structures 232 may be formed by forming by patterning a hardmask (not shown), such as silicon nitride, silicon oxide, and the like, on the polarization layer intermediate surface and recesses (not shown) may be formed to extend through the polarization layer 204 and into the first gallium nitride layer 202, by any known technique, such as etching.
- the recesses (not shown) may be formed with a plasma etch in a chlorine based chemistry.
- the source/drain structures 232 may be formed in the recesses (not shown) by epitaxial regrowth from the first gallium nitride layer 202.
- the regrowth process may comprise epitaxial crystal growth techniques, such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE).
- MOCVD metal organic chemical vapor deposition
- MBE molecular beam epitaxy
- the gate dielectric 236 may be formed from any well-known gate dielectric material, including but not limited to silicon dioxide (S1O 2 ), silicon oxynitride (SiO x N y ), silicon nitride
- the gate dielectric 236 can be formed by well-known techniques, such as chemical vapor deposition ("CVD”), physical vapor deposition (“PVD”), and atomic layer deposition (“ALD”).
- the gate electrode 238 can be formed of any suitable gate electrode material.
- the gate electrode 238 may be formed from materials that include, but are not limited to, polysilicon, tungsten, ruthenium, palladium, platinum, cobalt, nickel, hafnium, zirconium, titanium, tantalum, aluminum, titanium carbide, zirconium carbide, tantalum carbide, hafnium carbide, aluminum carbide, other metal carbides, metal nitrides, and metal oxides.
- the gate electrode 238 can be formed by well-known techniques, such as by blanket depositing a gate electrode material and then patterning the gate electrode material with well-known photolithography and etching techniques, as will be understood to those skilled in the art.
- an p-channel gallium nitride transistor 250 may be formed in the portion 226 after a second hardmask 228 (see FIG. 5) has removed and a third hardmask 244 is patterned over the n-channel gallium nitride transistor 230.
- the p-channel gallium nitride transistor 250 may comprise opposing source/drain structures 252 (one being a source structure and the other being a drain structure) with a gate region 254 defined therebetween and a p-doped gallium nitride layer 262 may be optionally formed over the gate region 254 to improve access resistance, as will be understood to those skilled in the art.
- a gate dielectric 256 may be formed in the gate region 254 and a gate electrode 258 may be formed on the gate dielectric 256 such that the gate dielectric 256 electrically isolates the gate electrode 258.
- the p- channel gallium nitride transistor 250 is an enhancement mode transistor. Thus, as shown, a portion of the p-doped gallium nitride layer 262 may be removed (if present) and a recess 266 may be formed in the second gallium nitride layer 206, such that the gate dielectric 256 may be at least partially embedded in the second gallium nitride layer 206.
- the formation of the recess 266 and embedding the gate dielectric 256 may disrupt a portion of the 2D hole gas 216, such that it does not extend through the gate length L g of the p-channel gallium nitride transistor 250 to achieve enhancement mode operation.
- At least partially embedding the gate dielectric 256 may place the gate
- the source/drain structures 252 may be formed by forming by patterning a hardmask (not shown), such as silicon nitride, silicon oxide, and the like, on the polarization layer intermediate surface and recesses (not shown) may be formed to extend into the second gallium nitride layer 206, by any known technique, such as etching.
- the recesses (not shown) may be formed with a plasma etch in a chlorine based chemistry.
- the source/drain structures 252 may be formed in the recesses (not shown) by epitaxial regrowth from the second gallium nitride layer 206.
- the regrowth process may comprise epitaxial crystal growth techniques, such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE).
- MOCVD metal organic chemical vapor deposition
- MBE molecular beam epitaxy
- the regrowth of the source/drain structures 252 for the p-channel gallium nitride transistor 250 may induce a uniaxial compressive strain which may improve hole mobility and improve contact resistance.
- metallizations 264 may be formed on the source/drain structures 252.
- the gate dielectric 256 may be formed from any well-known gate dielectric material, including but not limited to silicon dioxide (S1O 2 ), silicon oxynitride (SiO x N y ), silicon nitride (S1 3 N 4 ), and high-k dielectric materials such as hafnium oxide, hafnium silicon oxide, lanthanum oxide, lanthanum aluminum oxide, zirconium oxide, zirconium silicon oxide, tantalum oxide, tantalum silicon oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, yttrium oxide, aluminum oxide, lead scandium tantalum oxide, and lead zinc niobate.
- the gate dielectric 256 can be formed by well-known techniques, such as chemical vapor deposition ("CVD”), physical vapor deposition (“PVD”), and atomic layer deposition (“ALD”).
- the gate electrode 258 can be formed of any suitable gate electrode material.
- the gate electrode 258 may be formed from materials that include, but are not limited to, polysilicon, tungsten, ruthenium, palladium, platinum, cobalt, nickel, hafnium, zirconium, titanium, tantalum, aluminum, titanium carbide, zirconium carbide, tantalum carbide, hafnium carbide, aluminum carbide, other metal carbides, metal nitrides, and metal oxides.
- the gate electrode 258 can be formed by well-known techniques, such as by blanket depositing a gate electrode material and then patterning the gate electrode material with well-known photolithography and etching techniques, as will be understood to those skilled in the art.
- the third hardmask 244 may be removed and at least one interlayer dielectric layer 272 may be deposited over the n-channel gallium nitride transistor 230 and the p-channel gallium nitride transistor 250.
- N-channel source/drain contacts 274 may be formed through the interlayer dielectric layer 272 to contact the
- metalizations 242 of the n-channel gallium nitride transistor source/drain structures 232 and p- channel source/drain contacts 276 may be formed through the interlayer dielectric layer 272 to contact the metalizations 264 of the p-channel gallium nitride transistor source/drain
- An n-channel transistor gate contact 282 may be formed through the interlayer dielectric layer 272 to contact the gate electrode 236 and a p-channel transistor gate contact 284 may be formed through the interlayer dielectric layer 272 to contact the gate electrode 256.
- conductive traces 286 may be formed to appropriately connect components of the n-channel gallium nitride transistor 230 and the p-channel gallium nitride transistor 250, as will be understood to those skilled in the art, thereby forming the CMOS gallium nitride circuit structure 200.
- interlayer dielectric layer 272 The materials and processes used for forming the interlayer dielectric layer 272, the n-channel source/drain contacts 274, the p-channel source/drain contacts 276, the n-channel transistor gate contact 282, the p-channel transistor gate contact 284, and the conductive traces 286 are well known to those skilled in the art, and for the sake of brevity and conciseness will not be described or illustrated herein.
- the n-channel gallium nitride transistor 230 and the p-channel gallium nitride transistor 250 should be in close proximity to one another.
- the n-channel gallium nitride transistor 230 and the p-channel gallium nitride transistor 250 should be in close proximity to one another.
- transistor 230 and the p-channel gallium nitride transistor 250 may be separated by a single gate pitch; for example, less than about lOOnm.
- the components of the n-channel gallium nitride transistor 230 and the p-channel gallium nitride transistor 250 need not be fabricated separately, rather the steps of masking, unmasking, and re- masking may be undertaken to simultaneously form components for both the n-channel gallium nitride transistor 230 and the p-channel gallium nitride transistor 250, including, but not limited to, the gate dielectrics 236/256, the gate
- electrodes 238/258 and the like, depending on process demands, such as temperature.
- the first gallium nitride layer 202 may be formed on a strain material layer 290 having a lattice structure smaller than that of the first gallium nitride layer 202, which may induce a biaxial compressive strain to improve the mobility of the 2D hole gas 216 mobility.
- the strain material layer 290 may include, but is not limited to, aluminum nitride, aluminum indium nitride, aluminum gallium nitride, and the like.
- the p-channel gallium nitride transistor 250 may be stacked on top of the n-channel gallium nitride
- the common gate 302 may comprise a gate dielectric 304 surrounding at least one stack 310 comprising the first gallium nitride layer 202, the second gallium nitride layer 206, and the polarization layer 204 therebetween, and a gate electrode 306 surrounding the gate
- the efficiency of the depletion the 2D electron gas 212 (see FIG. 1 1) and the 2D hole gas 216 (see FIG. 11) may be improved by reducing the width W of the stack 310 to less than about 20nm.
- more than one stack 310 may be fabricated for each CMOS gallium nitride circuit structure 300 to achieve efficient operation thereof.
- the materials and processes used for forming the CMOS gallium nitride circuit structure 300 illustrated in FIG. 1 1 and 12 are well known to those skilled in the art, and for the sake of brevity and conciseness will not be described or illustrated herein.
- the layered structure 210 of FIG. 3 may be flipped and fabrication of the n-channel gallium nitride transistor components and the p-channel gallium nitride transistor components reversed to form the CMOS gallium nitride circuit structure 320 of FIG. 13 or the CMOS gallium nitride circuit structure 330 of FIG. 14.
- embodiments of the present description may not only be relevant to all system-on-chip products, such as those that will require direct battery high voltage switching transistors such as for DC-to-DC conversion, but may also be applicable in the fabrication of control and drive circuitries, as well as logic peripheries, e.g. microprocessors, static random access memory, and communication processors.
- FIG. 15 is a flow chart of a process 400 of fabricating a CMOS circuit structure according to an embodiment of the present description.
- a layer structure may be formed by depositing a polarization layer on a first gallium nitride layer and depositing a second gallium nitride layer on the polarization layer. A portion of one of the first gallium nitride layer and the second gallium nitride layer and a portion of the polarization layer may be removed to form a polarization layer intermediate surface, as set forth in block 404.
- one of a p-channel transistor and an n-channel transistor may be formed on the polarization intermediate surface.
- FIG. 16 illustrates a computing device 500 in accordance with one implementation of the present description.
- the computing device 500 houses a board 502.
- the board 502 may include a number of components, including but not limited to a processor 504 and at least one communication chip 506A, 506B.
- the processor 504 is physically and electrically coupled to the board 502.
- the at least one communication chip 506A, 506B is also physically and electrically coupled to the board 502.
- the communication chip 506A, 506B is part of the processor 504.
- the computing device 500 may include other components that may or may not be physically and electrically coupled to the board 502. These other components include, but are not limited to, volatile memory (e.g., DRAM), non-volatile memory (e.g., ROM), flash memory, a graphics processor, a digital signal processor, a crypto processor, a chipset, an antenna, a display, a touchscreen display, a touchscreen controller, a battery, an audio codec, a video codec, a power amplifier, a global positioning system (GPS) device, a compass, an accelerometer, a gyroscope, a speaker, a camera, and a mass storage device (such as hard disk drive, compact disk (CD), digital versatile disk (DVD), and so forth).
- volatile memory e.g., DRAM
- non-volatile memory e.g., ROM
- flash memory e.g., a graphics processor, a digital signal processor, a crypto processor, a chipset, an antenna,
- the communication chip 506A, 506B enables wireless communications for the transfer of data to and from the computing device 500.
- wireless and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not.
- the communication chip 206 may implement any of a number of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.1 1 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond.
- the computing device 500 may include a plurality of
- a first communication chip 506A may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication chip 506B may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
- the processor 504 of the computing device 500 may include CMOS circuits formed -channel gallium nitride transistors and n-channel gallium nitride transistors, as described above.
- the term "processor” may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory.
- the communication chip 506A, 506B may include CMOS circuits formed from p-channel gallium nitride transistors and n-channel gallium nitride transistors.
- the computing device 500 may be a laptop, a netbook, a notebook, an ultrabook, a smartphone, a tablet, a personal digital assistant (PDA), an ultra mobile PC, a mobile phone, a desktop computer, a server, a printer, a scanner, a monitor, a set- top box, an entertainment control unit, a digital camera, a portable music player, or a digital video recorder.
- the computing device 300 may be any other electronic device that processes data.
- Example 1 is a CMOS circuit structure comprising a layered structure including a first gallium nitride layer and a second gallium nitride layer separated by a polarization layer, wherein the layered structure includes an polarization layer intermediate surface; one of a p-channel transistor and an n- channel transistor formed proximate the polarization layer intermediate surface; and the other of the p-channel transistor and an n-channel transistor formed on one of the first gallium nitride layer and the second gallium nitride layer.
- Example 2 the subject matter of Example 1 can optionally include the p-channel transistor being an enhancement mode transistor.
- Example 3 the subject matter of any of Examples 1 and 2 can optionally include the n-channel transistor being an enhancement mode transistor.
- Example 4 the subject matter of any of Examples 1 to 3 can optionally include the polarization layer being selected from the group consisting of aluminum gallium nitride, aluminum indium nitride, indium gallium nitride, aluminum nitride, and aluminum gallium nitride.
- Example 5 the subject matter of any of Examples 1 to 4 can optionally include a strain material layer, wherein the first gallium nitride layer abuts the strain material layer.
- Example 6 the subject matter of Example 5 can optionally include the strain material layer being selected from the group consisting of aluminum nitride, aluminum indium nitride, aluminum gallium nitride, and aluminum indium gallium nitride.
- Example 7 the subject matter of any of Example 1 to 6 can optionally include the layered structure including a 2D electron gas within the first gallium nitride layer proximate the polarization layer and a 2D hole gas within the second gallium nitride layer; and wherein the n- channel transistor is formed proximate the polarization layer intermediate surface and the p- channel transistor is formed proximate the second gallium nitride layer.
- Example 8 the subject matter of Example 7 can optionally include a recess in the second gallium nitride layer disrupting a portion of the 2D hole gas.
- Example 9 the subject matter of any of Examples 1 to 6 can optionally include the layered structure including a 2D electron gas within the first gallium nitride layer proximate the polarization layer and a 2D hole gas within the second gallium nitride layer; and wherein the p- channel transistor is formed proximate the polarization layer intermediate surface and the n- channel transistor is formed proximate the first gallium nitride layer.
- Example 10 the subject matter of Example 9 can optionally include a recess in the first gallium nitride layer disrupting a portion of the 2D electron gas.
- Example 1 1 is a method of fabricating a CMOS circuit structure comprising forming a layered structure comprising depositing a polarization layer on a first gallium nitride layer and depositing a second gallium nitride layer on the polarization layer; removing a portion of one of the first gallium nitride layer and the second gallium nitride layer and a portion of the polarization layer to form a polarization layer intermediate surface; forming one of a p-channel transistor and an n-channel transistor on the polarization layer intermediate surface; and forming the other of the p-channel transistor and the n-channel transistor on a remaining portion of one of the first gallium nitride layer and the second gallium nitride layer.
- Example 12 the subject matter of Example 1 1 can optionally include forming the p-channel transistor comprising forming a p-channel enhancement mode transistor.
- Example 13 the subject matter of any of Examples 1 1 to 12 can optionally include forming the n-channel transistor comprising forming an n-channel enhancement mode transistor.
- Example 14 the subject matter of any of Examples 1 1 to 13 can optionally include depositing the polarization layer comprising depositing a material selected from the group consisting of aluminum gallium nitride, aluminum indium nitride, indium gallium nitride, aluminum nitride, and aluminum indium gallium nitride.
- Example 15 the subject matter of any of Examples 1 1 to 14 can optionally include depositing the first gallium nitride layer on a strain material layer.
- Example 16 the subject matter of Example 15 can optionally include the strain material layer being selected from the group consisting of aluminum nitride, aluminum indium nitride, aluminum gallium nitride, and aluminum indium gallium nitride.
- Example 17 the subject matter of any of Example 1 1 to 16 can optionally include forming the layered structure comprising forming a 2D electron gas within the first gallium nitride layer proximate the polarization layer and forming a 2D hole gas within the second gallium nitride layer; and wherein the n-channel transistor is formed proximate the polarization layer intermediate surface and the p-channel transistor is formed proximate the second gallium nitride layer.
- Example 18 the subject matter of Example 17 can optionally include forming a recess in the second gallium nitride layer to disrupt a portion of the 2D hole gas.
- Example 19 the subject matter of Example 1 1 to 16 can optionally include forming the layered structure includes forming a 2D electron gas within the first gallium nitride layer proximate the polarization layer and forming a 2D hole gas within the second gallium nitride layer; and wherein the p-channel transistor is formed proximate the polarization layer intermediate surface and the n-channel transistor is formed proximate the first gallium nitride layer.
- Example 20 the subject matter of Example 19 can optionally include forming a recess in the first gallium nitride layer to disrupt a portion of the 2D electron gas.
- Example 21 is an electronic system, comprising a board and a microelectronic device attached to the board, wherein the microelectronic device includes at least one CMOS circuit structure comprising a layered structure including a first gallium nitride layer and a second gallium nitride layer separated by a polarization layer, wherein the layered structure includes an polarization layer intermediate surface; one of a p-channel transistor and an n-channel transistor formed proximate the polarization layer intermediate surface; and the other of the p-channel transistor and an n- channel transistor formed on one of the first gallium nitride layer and the second gallium nitride layer.
- CMOS circuit structure comprising a layered structure including a first gallium nitride layer and a second gallium nitride layer separated by a polarization layer, wherein the layered structure includes an polarization layer intermediate surface; one of a p-channel transistor and an n-channel transistor formed proximate
- Example 22 the subject matter of Example 21 can optionally include the layered structure including a 2D electron gas within the first gallium nitride layer proximate the polarization layer and a 2D hole gas within the second gallium nitride layer; and wherein the n- channel transistor is formed proximate the polarization layer intermediate surface and the p- channel transistor is formed proximate the second gallium nitride layer.
- Example 23 the subject matter of Example 22 can optionally include a recess in the second gallium nitride layer disrupting a portion of the 2D hole gas.
- Example 24 the subject matter of Example 21 can optionally the layered structure including a 2D electron gas within the first gallium nitride layer proximate the polarization layer and a 2D hole gas within the second gallium nitride layer; and wherein the p-channel transistor is formed proximate the polarization layer intermediate surface and the n-channel transistor is formed proximate the first gallium nitride layer.
- Example 25 the subject matter of Example 24 can optionally include a recess in the first gallium nitride layer disrupting a portion of the 2D electron gas.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177011446A KR102333752B1 (en) | 2014-11-18 | 2014-11-18 | Cmos circuits using n-channel and p-channel gallium nitride transistors |
EP14906448.7A EP3221886A4 (en) | 2014-11-18 | 2014-11-18 | Cmos circuits using n-channel and p-channel gallium nitride transistors |
PCT/US2014/066115 WO2016080961A1 (en) | 2014-11-18 | 2014-11-18 | Cmos circuits using n-channel and p-channel gallium nitride transistors |
US15/519,277 US10573647B2 (en) | 2014-11-18 | 2014-11-18 | CMOS circuits using n-channel and p-channel gallium nitride transistors |
CN201480082938.0A CN107078098B (en) | 2014-11-18 | 2014-11-18 | CMOS circuit using N-channel and P-channel gallium nitride transistors |
TW104133384A TWI673829B (en) | 2014-11-18 | 2015-10-12 | Cmos circuits using n-channel and p-channel gallium nitride transistors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2014/066115 WO2016080961A1 (en) | 2014-11-18 | 2014-11-18 | Cmos circuits using n-channel and p-channel gallium nitride transistors |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016080961A1 true WO2016080961A1 (en) | 2016-05-26 |
Family
ID=56014321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/066115 WO2016080961A1 (en) | 2014-11-18 | 2014-11-18 | Cmos circuits using n-channel and p-channel gallium nitride transistors |
Country Status (6)
Country | Link |
---|---|
US (1) | US10573647B2 (en) |
EP (1) | EP3221886A4 (en) |
KR (1) | KR102333752B1 (en) |
CN (1) | CN107078098B (en) |
TW (1) | TWI673829B (en) |
WO (1) | WO2016080961A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9559012B1 (en) * | 2013-09-30 | 2017-01-31 | Hrl Laboratories, Llc | Gallium nitride complementary transistors |
CN109309090A (en) * | 2017-07-28 | 2019-02-05 | 新唐科技股份有限公司 | Semiconductor device and method for manufacturing the same |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150041820A1 (en) * | 2013-08-12 | 2015-02-12 | Philippe Renaud | Complementary gallium nitride integrated circuits and methods of their fabrication |
US11437504B2 (en) * | 2017-09-29 | 2022-09-06 | Intel Corporation | Complementary group III-nitride transistors with complementary polarization junctions |
US11183613B2 (en) | 2017-09-29 | 2021-11-23 | Intel Corporation | Group III-nitride light emitting devices including a polarization junction |
WO2019066908A1 (en) | 2017-09-29 | 2019-04-04 | Intel Corporation | Group iii-nitride polarization junction diodes |
WO2019066914A1 (en) | 2017-09-29 | 2019-04-04 | Intel Corporation | Tunnel polarization junction iii-n transistors |
US10192819B1 (en) | 2017-11-16 | 2019-01-29 | Globalfoundries Inc. | Integrated circuit structure incorporating stacked field effect transistors |
US10090193B1 (en) * | 2017-11-16 | 2018-10-02 | Globalfoundries Inc. | Integrated circuit structure incorporating a stacked pair of field effect transistors and a buried interconnect and method |
US10304832B1 (en) | 2017-11-16 | 2019-05-28 | Globalfoundries Inc. | Integrated circuit structure incorporating stacked field effect transistors and method |
US11791221B2 (en) * | 2019-02-22 | 2023-10-17 | Intel Corporation | Integration of III-N transistors and semiconductor layer transfer |
JP6679036B1 (en) * | 2019-11-29 | 2020-04-15 | 株式会社パウデック | Diode, method of manufacturing diode, and electric device |
CN113571516B (en) * | 2020-04-29 | 2024-02-06 | 广东致能科技有限公司 | III-nitride semiconductor integrated circuit structure, manufacturing method and application thereof |
US12113061B2 (en) * | 2020-05-04 | 2024-10-08 | Massachusetts Institute Of Technology | Semiconductor device with linear capacitance |
US11522077B2 (en) * | 2020-05-27 | 2022-12-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integration of p-channel and n-channel E-FET III-V devices with optimization of device performance |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6240778A (en) * | 1985-08-16 | 1987-02-21 | Fujitsu Ltd | Complementary semiconductor device |
US5847419A (en) * | 1996-09-17 | 1998-12-08 | Kabushiki Kaisha Toshiba | Si-SiGe semiconductor device and method of fabricating the same |
US20130043485A1 (en) * | 2011-08-16 | 2013-02-21 | Advanced Power Device Research Association | GaN-BASED SEMICONDUCTOR DEVICE |
US20140091310A1 (en) * | 2012-09-28 | 2014-04-03 | Samsung Electronics Co., Ltd. | Semiconductor device using 2-dimensional electron gas and 2-dimensional hole gas and method of manufacturing the semiconductor device |
US20140264380A1 (en) * | 2013-03-15 | 2014-09-18 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Complementary Field Effect Transistors Using Gallium Polar and Nitrogen Polar III-Nitride Material |
Family Cites Families (112)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2689683B1 (en) * | 1992-04-07 | 1994-05-20 | Thomson Composants Microondes | SEMICONDUCTOR DEVICE WITH COMPLEMENTARY TRANSISTORS. |
JPH06240778A (en) * | 1993-02-15 | 1994-08-30 | Sekisui House Ltd | Attic party wall panel |
US5818078A (en) | 1994-08-29 | 1998-10-06 | Fujitsu Limited | Semiconductor device having a regrowth crystal region |
JP2907128B2 (en) | 1996-07-01 | 1999-06-21 | 日本電気株式会社 | Field effect transistor and method for manufacturing the same |
JP3813740B2 (en) | 1997-07-11 | 2006-08-23 | Tdk株式会社 | Substrates for electronic devices |
FR2769924B1 (en) | 1997-10-20 | 2000-03-10 | Centre Nat Rech Scient | PROCESS FOR MAKING AN EPITAXIAL LAYER OF GALLIUM NITRIDE, EPITAXIAL LAYER OF GALLIUM NITRIDE AND OPTOELECTRONIC COMPONENT PROVIDED WITH SUCH A LAYER |
US6608327B1 (en) | 1998-02-27 | 2003-08-19 | North Carolina State University | Gallium nitride semiconductor structure including laterally offset patterned layers |
JP4540146B2 (en) | 1998-12-24 | 2010-09-08 | ルネサスエレクトロニクス株式会社 | Manufacturing method of semiconductor device |
JP3555500B2 (en) | 1999-05-21 | 2004-08-18 | 豊田合成株式会社 | Group III nitride semiconductor and method of manufacturing the same |
JP4667556B2 (en) | 2000-02-18 | 2011-04-13 | 古河電気工業株式会社 | Vertical GaN-based field effect transistor, bipolar transistor and vertical GaN-based field effect transistor manufacturing method |
US6261929B1 (en) | 2000-02-24 | 2001-07-17 | North Carolina State University | Methods of forming a plurality of semiconductor layers using spaced trench arrays |
JP2002249400A (en) | 2001-02-22 | 2002-09-06 | Mitsubishi Chemicals Corp | Method for manufacturing compound semiconductor single crystal and utilization thereof |
US20040029365A1 (en) | 2001-05-07 | 2004-02-12 | Linthicum Kevin J. | Methods of fabricating gallium nitride microelectronic layers on silicon layers and gallium nitride microelectronic structures formed thereby |
EP1403912A4 (en) | 2001-06-04 | 2009-08-26 | Toyoda Gosei Kk | Method of producing iii nitride compound semiconductor |
JP2003069010A (en) | 2001-08-24 | 2003-03-07 | Sharp Corp | Semiconductor device and method of manufacturing the same |
JP2003077847A (en) | 2001-09-06 | 2003-03-14 | Sumitomo Chem Co Ltd | Manufacturing method of 3-5 compound semiconductor |
JP5194334B2 (en) | 2004-05-18 | 2013-05-08 | 住友電気工業株式会社 | Method for manufacturing group III nitride semiconductor device |
JP4571476B2 (en) | 2004-10-18 | 2010-10-27 | ローム株式会社 | Manufacturing method of semiconductor device |
US7834380B2 (en) | 2004-12-09 | 2010-11-16 | Panasonic Corporation | Field effect transistor and method for fabricating the same |
JP4697397B2 (en) | 2005-02-16 | 2011-06-08 | サンケン電気株式会社 | Composite semiconductor device |
US20060197129A1 (en) | 2005-03-03 | 2006-09-07 | Triquint Semiconductor, Inc. | Buried and bulk channel finFET and method of making the same |
US8324660B2 (en) | 2005-05-17 | 2012-12-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication |
US9153645B2 (en) | 2005-05-17 | 2015-10-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication |
JP4751150B2 (en) | 2005-08-31 | 2011-08-17 | 株式会社東芝 | Nitride semiconductor devices |
JP2007165431A (en) | 2005-12-12 | 2007-06-28 | Nippon Telegr & Teleph Corp <Ntt> | Field effect transistor, and method of fabrication same |
SG170094A1 (en) | 2006-03-10 | 2011-04-29 | Stc Unm | Pulsed growth of gan nanowires and applications in group iii nitride semiconductor substrate materials and devices |
US7777250B2 (en) | 2006-03-24 | 2010-08-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures and related methods for device fabrication |
JP5179023B2 (en) | 2006-05-31 | 2013-04-10 | パナソニック株式会社 | Field effect transistor |
JP2008004720A (en) | 2006-06-22 | 2008-01-10 | Nippon Telegr & Teleph Corp <Ntt> | Hetero-structure field effect transistor using nitride semiconductor |
US7803690B2 (en) | 2006-06-23 | 2010-09-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Epitaxy silicon on insulator (ESOI) |
US8188573B2 (en) | 2006-08-31 | 2012-05-29 | Industrial Technology Research Institute | Nitride semiconductor structure |
US8173551B2 (en) | 2006-09-07 | 2012-05-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Defect reduction using aspect ratio trapping |
US20080070355A1 (en) | 2006-09-18 | 2008-03-20 | Amberwave Systems Corporation | Aspect ratio trapping for mixed signal applications |
US8502263B2 (en) | 2006-10-19 | 2013-08-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Light-emitter-based devices with lattice-mismatched semiconductor structures |
US7692198B2 (en) | 2007-02-19 | 2010-04-06 | Alcatel-Lucent Usa Inc. | Wide-bandgap semiconductor devices |
JP2008305816A (en) | 2007-06-05 | 2008-12-18 | Mitsubishi Electric Corp | Semiconductor device and manufacturing method therefor |
US20090278233A1 (en) | 2007-07-26 | 2009-11-12 | Pinnington Thomas Henry | Bonded intermediate substrate and method of making same |
JP5348364B2 (en) | 2007-08-27 | 2013-11-20 | サンケン電気株式会社 | Heterojunction field effect semiconductor device |
US8680580B2 (en) | 2007-11-19 | 2014-03-25 | Renesas Electronics Corporation | Field effect transistor and process for manufacturing same |
JP4784609B2 (en) | 2008-01-21 | 2011-10-05 | Tdk株式会社 | Substrates for electronic devices |
US8519438B2 (en) | 2008-04-23 | 2013-08-27 | Transphorm Inc. | Enhancement mode III-N HEMTs |
US7952150B1 (en) | 2008-06-05 | 2011-05-31 | Rf Micro Devices, Inc. | Enhancement mode MOSFET and depletion mode FET on a common group III-V substrate |
US8309987B2 (en) | 2008-07-15 | 2012-11-13 | Imec | Enhancement mode semiconductor device |
US8981427B2 (en) | 2008-07-15 | 2015-03-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Polishing of small composite semiconductor materials |
CN101853808B (en) | 2008-08-11 | 2014-01-29 | 台湾积体电路制造股份有限公司 | Method of forming a circuit structure |
US8367520B2 (en) | 2008-09-22 | 2013-02-05 | Soitec | Methods and structures for altering strain in III-nitride materials |
US20100140735A1 (en) | 2008-12-10 | 2010-06-10 | Epir Technologies, Inc. | Nanostructures for dislocation blocking in group ii-vi semiconductor devices |
WO2010074275A1 (en) | 2008-12-26 | 2010-07-01 | 日本電気株式会社 | High electron mobility transistor, method for producing high electron mobility transistor, and electronic device |
JP5469098B2 (en) * | 2009-01-22 | 2014-04-09 | パナソニック株式会社 | Field effect transistor and manufacturing method thereof |
US20100219452A1 (en) | 2009-02-27 | 2010-09-02 | Brierley Steven K | GaN HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) STRUCTURES |
US8507304B2 (en) | 2009-07-17 | 2013-08-13 | Applied Materials, Inc. | Method of forming a group III-nitride crystalline film on a patterned substrate by hydride vapor phase epitaxy (HVPE) |
JP5529595B2 (en) | 2009-07-30 | 2014-06-25 | 住友電気工業株式会社 | Semiconductor device and manufacturing method thereof |
JP5609055B2 (en) | 2009-10-02 | 2014-10-22 | 富士通株式会社 | Compound semiconductor device and manufacturing method thereof |
KR20120098666A (en) | 2009-11-26 | 2012-09-05 | 스미또모 가가꾸 가부시키가이샤 | Semiconductor substrate and method for manufacturing semiconductor substrate |
JP5590874B2 (en) | 2009-12-18 | 2014-09-17 | パナソニック株式会社 | Nitride semiconductor device |
JP5505698B2 (en) | 2010-02-01 | 2014-05-28 | 日本電信電話株式会社 | Semiconductor device |
US20110210377A1 (en) * | 2010-02-26 | 2011-09-01 | Infineon Technologies Austria Ag | Nitride semiconductor device |
US9479225B2 (en) | 2010-05-13 | 2016-10-25 | Qualcomm Incorporated | Resonance detection and control within a wireless power system |
GB2482308A (en) * | 2010-07-28 | 2012-02-01 | Univ Sheffield | Super junction silicon devices |
KR102065115B1 (en) | 2010-11-05 | 2020-01-13 | 삼성전자주식회사 | High Electron Mobility Transistor having E-mode and method of manufacturing the same |
US8709921B2 (en) | 2010-11-15 | 2014-04-29 | Applied Materials, Inc. | Method for forming a semiconductor device using selective epitaxy of group III-nitride |
US8383471B1 (en) | 2011-04-11 | 2013-02-26 | Hrl Laboratories, Llc | Self aligned sidewall gate GaN HEMT |
TWI587512B (en) | 2011-05-16 | 2017-06-11 | Renesas Electronics Corp | Field effect transistor and semiconductor device |
US8835988B2 (en) | 2011-06-06 | 2014-09-16 | Eta Semiconductor Inc. | Hybrid monolithic integration |
TW201306235A (en) | 2011-06-10 | 2013-02-01 | Sumitomo Chemical Co | Semiconductor device, semiconductor substrate, method for making a semiconductor substrate, and method for making a semiconductor device |
WO2013005372A1 (en) | 2011-07-01 | 2013-01-10 | パナソニック株式会社 | Semiconductor device |
US9087741B2 (en) | 2011-07-11 | 2015-07-21 | International Business Machines Corporation | CMOS with dual raised source and drain for NMOS and PMOS |
US8507920B2 (en) * | 2011-07-11 | 2013-08-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor structure and method of forming the same |
JP2014527302A (en) | 2011-08-17 | 2014-10-09 | ラムゴス インコーポレイテッド | Vertical field effect transistor on oxide semiconductor substrate and method for manufacturing the same |
JP5757195B2 (en) | 2011-08-23 | 2015-07-29 | セイコーエプソン株式会社 | Semiconductor device, electro-optical device, power conversion device, and electronic apparatus |
US20130105817A1 (en) | 2011-10-26 | 2013-05-02 | Triquint Semiconductor, Inc. | High electron mobility transistor structure and method |
KR101890749B1 (en) | 2011-10-27 | 2018-08-23 | 삼성전자주식회사 | Electrode structure, gallium nitride based semiconductor device including the same and methods of manufacturing the same |
US8841703B2 (en) | 2011-10-31 | 2014-09-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | High electron mobility transistor and method of forming the same |
JP5953706B2 (en) | 2011-11-02 | 2016-07-20 | 富士通株式会社 | Compound semiconductor device and manufacturing method thereof |
US8530978B1 (en) | 2011-12-06 | 2013-09-10 | Hrl Laboratories, Llc | High current high voltage GaN field effect transistors and method of fabricating same |
WO2013095343A1 (en) | 2011-12-19 | 2013-06-27 | Intel Corporation | Group iii-n nanowire transistors |
KR101608494B1 (en) | 2011-12-19 | 2016-04-01 | 인텔 코포레이션 | Group iii-n transistors for system on chip(soc) architecture integrating power management and radio frequency circuits |
KR101779031B1 (en) | 2011-12-19 | 2017-09-18 | 인텔 코포레이션 | A vertical transistor and a method of fabricating the same, and a high voltage transistor |
US9153583B2 (en) | 2011-12-20 | 2015-10-06 | Intel Corporation | III-V layers for N-type and P-type MOS source-drain contacts |
US9000464B2 (en) | 2012-03-01 | 2015-04-07 | Design Express Limited | Semiconductor structure for substrate separation and method for manufacturing the same |
US8836016B2 (en) | 2012-03-08 | 2014-09-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor structures and methods with high mobility and high energy bandgap materials |
US9111905B2 (en) | 2012-03-29 | 2015-08-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | High electron mobility transistor and method of forming the same |
US9142649B2 (en) | 2012-04-23 | 2015-09-22 | United Microelectronics Corp. | Semiconductor structure with metal gate and method of fabricating the same |
US20130313561A1 (en) * | 2012-05-25 | 2013-11-28 | Triquint Semiconductor, Inc. | Group iii-nitride transistor with charge-inducing layer |
JP5972065B2 (en) | 2012-06-20 | 2016-08-17 | 富士フイルム株式会社 | Thin film transistor manufacturing method |
US8772786B2 (en) | 2012-07-13 | 2014-07-08 | Raytheon Company | Gallium nitride devices having low ohmic contact resistance |
US8912570B2 (en) | 2012-08-09 | 2014-12-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | High electron mobility transistor and method of forming the same |
US9583574B2 (en) | 2012-09-28 | 2017-02-28 | Intel Corporation | Epitaxial buffer layers for group III-N transistors on silicon substrates |
US9099490B2 (en) | 2012-09-28 | 2015-08-04 | Intel Corporation | Self-aligned structures and methods for asymmetric GaN transistors and enhancement mode operation |
US9064709B2 (en) | 2012-09-28 | 2015-06-23 | Intel Corporation | High breakdown voltage III-N depletion mode MOS capacitors |
JP2014078653A (en) | 2012-10-12 | 2014-05-01 | Waseda Univ | Group iii nitride semiconductor layer manufacturing method |
EP2743965B1 (en) | 2012-12-13 | 2015-07-08 | Imec | Method for manufacturing semiconductor devices |
US9196709B2 (en) | 2013-02-01 | 2015-11-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods for forming semiconductor regions in trenches |
US9331244B2 (en) | 2013-02-25 | 2016-05-03 | Sensor Electronic Technology, Inc. | Semiconductor structure with inhomogeneous regions |
KR102036349B1 (en) * | 2013-03-08 | 2019-10-24 | 삼성전자 주식회사 | High electron mobility transistors |
US9012261B2 (en) | 2013-03-13 | 2015-04-21 | Intermolecular, Inc. | High productivity combinatorial screening for stable metal oxide TFTs |
US9129889B2 (en) | 2013-03-15 | 2015-09-08 | Semiconductor Components Industries, Llc | High electron mobility semiconductor device and method therefor |
JP5954831B2 (en) | 2013-03-26 | 2016-07-20 | トヨタ自動車株式会社 | Manufacturing method of semiconductor device |
JP6179266B2 (en) | 2013-08-12 | 2017-08-16 | 富士通株式会社 | Semiconductor device and manufacturing method of semiconductor device |
US20150041820A1 (en) * | 2013-08-12 | 2015-02-12 | Philippe Renaud | Complementary gallium nitride integrated circuits and methods of their fabrication |
GB2517697A (en) | 2013-08-27 | 2015-03-04 | Ibm | Compound semiconductor structure |
TWI521664B (en) | 2013-09-03 | 2016-02-11 | 瑞昱半導體股份有限公司 | Metal trench de-coupling capacitor structure and method for forming metal trench de-coupling capacitor structure |
WO2015047355A1 (en) | 2013-09-27 | 2015-04-02 | Intel Corporation | Integration of iii-v devices on si wafers |
US9324802B2 (en) * | 2013-10-31 | 2016-04-26 | Infineon Technologies Austria | Spacer supported lateral channel FET |
US9455342B2 (en) | 2013-11-22 | 2016-09-27 | Cambridge Electronics, Inc. | Electric field management for a group III-nitride semiconductor device |
US9640422B2 (en) | 2014-01-23 | 2017-05-02 | Intel Corporation | III-N devices in Si trenches |
WO2015125471A1 (en) | 2014-02-21 | 2015-08-27 | パナソニック株式会社 | Field-effect transistor |
JP6302303B2 (en) | 2014-03-17 | 2018-03-28 | 株式会社東芝 | Semiconductor light emitting device |
US9331076B2 (en) | 2014-05-02 | 2016-05-03 | International Business Machines Corporation | Group III nitride integration with CMOS technology |
US9496379B2 (en) | 2014-10-20 | 2016-11-15 | International Business Machines Corporation | Method and structure for III-V FinFET |
US10243069B2 (en) * | 2014-10-30 | 2019-03-26 | Intel Corporation | Gallium nitride transistor having a source/drain structure including a single-crystal portion abutting a 2D electron gas |
WO2016209263A1 (en) | 2015-06-26 | 2016-12-29 | Intel Corporation | GALLIUM NITRIDE (GaN) TRANSISTOR STRUCTURES ON A SUBSTRATE |
-
2014
- 2014-11-18 WO PCT/US2014/066115 patent/WO2016080961A1/en active Application Filing
- 2014-11-18 CN CN201480082938.0A patent/CN107078098B/en active Active
- 2014-11-18 KR KR1020177011446A patent/KR102333752B1/en active IP Right Grant
- 2014-11-18 EP EP14906448.7A patent/EP3221886A4/en not_active Withdrawn
- 2014-11-18 US US15/519,277 patent/US10573647B2/en active Active
-
2015
- 2015-10-12 TW TW104133384A patent/TWI673829B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6240778A (en) * | 1985-08-16 | 1987-02-21 | Fujitsu Ltd | Complementary semiconductor device |
US5847419A (en) * | 1996-09-17 | 1998-12-08 | Kabushiki Kaisha Toshiba | Si-SiGe semiconductor device and method of fabricating the same |
US20130043485A1 (en) * | 2011-08-16 | 2013-02-21 | Advanced Power Device Research Association | GaN-BASED SEMICONDUCTOR DEVICE |
US20140091310A1 (en) * | 2012-09-28 | 2014-04-03 | Samsung Electronics Co., Ltd. | Semiconductor device using 2-dimensional electron gas and 2-dimensional hole gas and method of manufacturing the semiconductor device |
US20140264380A1 (en) * | 2013-03-15 | 2014-09-18 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Complementary Field Effect Transistors Using Gallium Polar and Nitrogen Polar III-Nitride Material |
Non-Patent Citations (1)
Title |
---|
See also references of EP3221886A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9559012B1 (en) * | 2013-09-30 | 2017-01-31 | Hrl Laboratories, Llc | Gallium nitride complementary transistors |
CN109309090A (en) * | 2017-07-28 | 2019-02-05 | 新唐科技股份有限公司 | Semiconductor device and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
KR102333752B1 (en) | 2021-12-01 |
TW201630123A (en) | 2016-08-16 |
US20170243866A1 (en) | 2017-08-24 |
CN107078098B (en) | 2021-04-06 |
TWI673829B (en) | 2019-10-01 |
US10573647B2 (en) | 2020-02-25 |
EP3221886A1 (en) | 2017-09-27 |
EP3221886A4 (en) | 2018-07-11 |
KR20170084044A (en) | 2017-07-19 |
CN107078098A (en) | 2017-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10573647B2 (en) | CMOS circuits using n-channel and p-channel gallium nitride transistors | |
US11929435B2 (en) | Ferroelectric gate stack for band-to-band tunneling reduction | |
US10998445B2 (en) | Interlayer dielectric for non-planar transistors | |
KR102238547B1 (en) | Source/drain regrowth for low contact resistance to 2d electron gas in gallium nitride transistors | |
CN105723514B (en) | dual strained cladding layers for semiconductor devices | |
TWI603476B (en) | Strained channel region transistors employing source and drain stressors and systems including the same | |
US10056456B2 (en) | N-channel gallium nitride transistors | |
US20190058041A1 (en) | Gallium nitride voltage regulator | |
WO2018063399A1 (en) | Layered spacer formation for ultrashort channel lengths and staggered field plates | |
EP3437122B1 (en) | Nanowire for transistor integration | |
US20170162693A1 (en) | Apparatus and methods to create microelectronic device isolation by catalytic oxide formation | |
US12033896B2 (en) | Isolation wall stressor structures to improve channel stress and their methods of fabrication | |
US20200287036A1 (en) | Source to channel junction for iii-v metal-oxide-semiconductor field effect transistors (mosfets) | |
WO2017111831A1 (en) | Stackable switching device | |
WO2018182664A1 (en) | Gate for a transistor | |
WO2017111829A1 (en) | Thin film switching device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14906448 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15519277 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014906448 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014906448 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20177011446 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |