WO2016080961A1 - Cmos circuits using n-channel and p-channel gallium nitride transistors - Google Patents

Cmos circuits using n-channel and p-channel gallium nitride transistors Download PDF

Info

Publication number
WO2016080961A1
WO2016080961A1 PCT/US2014/066115 US2014066115W WO2016080961A1 WO 2016080961 A1 WO2016080961 A1 WO 2016080961A1 US 2014066115 W US2014066115 W US 2014066115W WO 2016080961 A1 WO2016080961 A1 WO 2016080961A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium nitride
layer
nitride layer
channel transistor
channel
Prior art date
Application number
PCT/US2014/066115
Other languages
French (fr)
Inventor
Han Wui Then
Sansaptak DASGUPTA
Marko Radosavljevic
Robert Chau
Original Assignee
Intel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corporation filed Critical Intel Corporation
Priority to KR1020177011446A priority Critical patent/KR102333752B1/en
Priority to EP14906448.7A priority patent/EP3221886A4/en
Priority to PCT/US2014/066115 priority patent/WO2016080961A1/en
Priority to US15/519,277 priority patent/US10573647B2/en
Priority to CN201480082938.0A priority patent/CN107078098B/en
Priority to TW104133384A priority patent/TWI673829B/en
Publication of WO2016080961A1 publication Critical patent/WO2016080961A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8236Combination of enhancement and depletion transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT

Definitions

  • CMOS Complementary Metal Oxide Semiconductor
  • SoC System-on-Chip
  • PMIC power management integrated circuits
  • RFIC radio frequency integrated circuits
  • FIG. 1 is a schematic of a gallium nitride circuit, as known in the art.
  • FIG. 2 is a schematic of a gallium nitride circuit, according to an embodiment of the present description.
  • FIGs. 3-9 are side cross-section views of the fabrication of a gallium nitride circuit structure, according to one embodiment of the present description.
  • FIG. 10 is a side cross-section view of a gallium nitride circuit structure, according to another embodiment of the present description.
  • FIGs. 11 and 12 are side cross-section views of a gallium nitride circuit structure, according to still another embodiment of the present description.
  • FIG. 13 is a side cross-section view of a gallium nitride circuit structure, according to a further embodiment of the present description.
  • FIG. 14 is a side cross-section view of a gallium nitride circuit structure, according to another embodiment of the present description.
  • FIG. 15 is a flow chart of a process of fabricating a gallium nitride circuit structure, according to an embodiment of the present description.
  • FIG. 16 illustrates a computing device in accordance with one implementation of the present description.
  • over, “to”, “between” and “on” as used herein may refer to a relative position of one layer with respect to other layers.
  • One layer “over” or “on” another layer or bonded “to” another layer may be directly in contact with the other layer or may have one or more intervening layers.
  • One layer “between” layers may be directly in contact with the layers or may have one or more intervening layers.
  • Embodiments of the present description related to CMOS circuits formed using p- channel gallium nitride transistors and n-channel gallium nitride transistors, wherein both the p- channel gallium nitride transistors and the n-channel gallium nitride transistors are formed on a single layered structure comprising a polarization layer deposited on a first gallium nitride layer and a second gallium nitride layer deposited on the polarization layer.
  • Having both n-channel gallium nitride transistors and p-channel gallium nitride transistors on the same layer structure may enable "all gallium nitride transistor" implementations of circuits including logic, digital, and analog circuitries spanning low supply voltages to high supply voltages.
  • Gallium nitride has a relatively wide bandgap (e.g. about 3.4 eV), when compared to the bandgap of silicon (about 1.1 eV). Therefore, gallium nitride transistors may withstand large electric fields, such as applied voltages, drain voltage, and the like, before suffering breakdown, when compared to a silicon based transistor of similar dimensions. This also enables the gallium nitride transistors to be scaled to even smaller physical dimensions when operating at the same supply voltage to a comparable silicon based transistor.
  • Gallium nitride has a high electronic mobility (e.g. about 1000cm 2 /Vs) which makes it a very good material for the formation of an n-channel gallium nitride transistor, as an n- channel gallium nitride transistor employs a 2D electron gas as its transportation channel.
  • Gallium nitride has a hole mobility (zero strain) which is an order of magnitude weaker (e.g. about 100cm 2 /Vs) than its electronic mobility. However, it still is a good material for the formation of a p-channel gallium nitride transistor, as a p-channel gallium nitride transistor employs a 2D hole gas as its transportation channel, since is hole mobility is still comparable to unstrained silicon hole mobility.
  • a gallium nitride circuit 100 such as a logic or control circuit, is commonly implemented using a depletion mode n-channel gallium nitride transistor in conjunction with an enhancement mode n-channel gallium nitride transistor.
  • steady- state leakage may be high in such circuits due to the depletion mode n-channel nitride transistor acting as a resistor, as will be understood to those skilled in the art.
  • a CMOS gallium nitride circuit 200 of embodiments of the present description may comprise the depletion mode n- channel gallium nitride transistor of FIG. 1 being replaced with a p-channel gallium nitride transistor, as shown in FIG. 2.
  • FIGs. 3-9 illustrate a method of fabricating a gallium nitride circuit structure, according to one embodiment of the present description.
  • a layered structure 210 may be formed with a polarization layer 204 deposited on a first gallium nitride layer 202 and a second gallium nitride layer 206 deposited on the polarization layer 204 with the polarization layer 204 comprising aluminum gallium nitride, aluminum indium nitride, aluminum indium gallium nitride, aluminum nitride, and like materials.
  • the polarization layer 204 may have ternary crystal structure which forms a 2D electron gas 212 (designated generically with negative "-" symbols) in the first gallium nitride layer 202 due to the formation of an abrupt hetero-junction interface 214 between the first gallium nitride layer 202 and the polarization layer 204 through spontaneous and piezoelectric polarization, as will be understood to those skilled in the art.
  • the deposition of the second gallium nitride layer 206 on the polarization layer 204 forms a 2D hole gas 216 (designated generically with positive "+” symbols) within the second gallium nitride layer 206 proximate an interface 218 between the second gallium nitride layer 206 and the polarization layer 204.
  • the 2D hole gas 216 forms due to the formation of the 2D electron gas 212 which shifts the polarization layer 204 positive (labeled as " ⁇ +”) near the first gallium nitride layer 202, thereby shifting the polarization layer 204 negative (labeled as " ⁇ -”) near the second gallium nitride layer 206.
  • the polarization layer 204 may also act as electrical insulation between the 2D electron gas 212 and the 2D hole gas 216, which is achieved by both conduction and valence bonds offsets, as well as, by the built-in polarization field, as will be understood to those skilled in the art.
  • the layered structure 210 formed with a polarization layer 204 deposited on a first gallium nitride layer 202 and a second gallium nitride layer 206 deposited on the polarization layer 204 is illustrated with the polarization layer 204 being indium gallium nitride and like materials.
  • the 2D electron gas 212 forms in the polarization layer 204, as will be understood to those skilled in the art.
  • the deposition of the second gallium nitride layer 206 on the polarization layer 204 forms the 2D hole gas 216 within the polarization layer 204.
  • the polarization layer 204 may also act as electrical insulation between the 2D electron gas 212 and the 2D hole gas 216, which, in the embodiment of the polarization layer 204 being indium gallium nitride and like materials, is achieved by the built-in polarization field alone.
  • the 2D electron gas 212 and the 2D hole gas 216 are formed in different locations in this embodiment from that shown in FIG. 3, the same results and mechanisms are achieved.
  • FIGs. 5-9 will illustrate the 2D electron gas 212 and the 2D hole gas 216 locations of FIG. 3.
  • a portion 220 of the layered structure 210 designated for the subsequent formation of a p-channel gallium nitride transistor may be patterned with a hardmask 222, such as silicon nitride. As shown in FIG. 5, a portion 220 of the layered structure 210 designated for the subsequent formation of a p-channel gallium nitride transistor may be patterned with a hardmask 222, such as silicon nitride. As shown in FIG.
  • the second gallium nitride layer 206 in the unmasked portion 224 designated for the subsequent formation of an n-channel gallium nitride circuit structure may be remove, such as by etching, and a portion of the polarization layer 204 may be removed, such as by etching, to form a polarization layer intermediate surface 226, such that the polarization layer intermediate surface 226, from a planar standpoint, is between the interface 214 between the first gallium nitride layer 202 and the polarization layer 204 and the remaining interface 218 between the second gallium nitride layer 206 and the polarization layer 204.
  • a thickness T between the intermediate surface 226 and the interface 214 between the first gallium nitride layer 202 and the polarization layer 204 may be less than about 20nm.
  • an n-channel gallium nitride transistor 230 may be formed in the portion 224 after a second hardmask 228 is patterned on the portion 220 designated for the subsequent formation of a p-channel gallium nitride circuit structure.
  • the n-channel gallium nitride transistor 230 may comprise opposing source/drain structures 232 (one being a source structure and the other being a drain structure) with a gate region 234 defined therebetween.
  • a gate dielectric 236 may be formed in the gate region 234 and a gate electrode 238 may be formed on the gate dielectric 236, such that the gate dielectric 236 electrically isolates the gate electrode 238.
  • the n-channel gallium nitride transistor 230 is an
  • enhancement mode transistor a portion of the polarization layer 204 may be removed to disrupt the 2D electron gas 212, such that it does not extend through the gate length L g of the n-channel gallium nitride transistor 230 to achieve enhancement mode operation.
  • the source/drain structures 232 may be formed by forming by patterning a hardmask (not shown), such as silicon nitride, silicon oxide, and the like, on the polarization layer intermediate surface and recesses (not shown) may be formed to extend through the polarization layer 204 and into the first gallium nitride layer 202, by any known technique, such as etching.
  • the recesses (not shown) may be formed with a plasma etch in a chlorine based chemistry.
  • the source/drain structures 232 may be formed in the recesses (not shown) by epitaxial regrowth from the first gallium nitride layer 202.
  • the regrowth process may comprise epitaxial crystal growth techniques, such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE).
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • the gate dielectric 236 may be formed from any well-known gate dielectric material, including but not limited to silicon dioxide (S1O 2 ), silicon oxynitride (SiO x N y ), silicon nitride
  • the gate dielectric 236 can be formed by well-known techniques, such as chemical vapor deposition ("CVD”), physical vapor deposition (“PVD”), and atomic layer deposition (“ALD”).
  • the gate electrode 238 can be formed of any suitable gate electrode material.
  • the gate electrode 238 may be formed from materials that include, but are not limited to, polysilicon, tungsten, ruthenium, palladium, platinum, cobalt, nickel, hafnium, zirconium, titanium, tantalum, aluminum, titanium carbide, zirconium carbide, tantalum carbide, hafnium carbide, aluminum carbide, other metal carbides, metal nitrides, and metal oxides.
  • the gate electrode 238 can be formed by well-known techniques, such as by blanket depositing a gate electrode material and then patterning the gate electrode material with well-known photolithography and etching techniques, as will be understood to those skilled in the art.
  • an p-channel gallium nitride transistor 250 may be formed in the portion 226 after a second hardmask 228 (see FIG. 5) has removed and a third hardmask 244 is patterned over the n-channel gallium nitride transistor 230.
  • the p-channel gallium nitride transistor 250 may comprise opposing source/drain structures 252 (one being a source structure and the other being a drain structure) with a gate region 254 defined therebetween and a p-doped gallium nitride layer 262 may be optionally formed over the gate region 254 to improve access resistance, as will be understood to those skilled in the art.
  • a gate dielectric 256 may be formed in the gate region 254 and a gate electrode 258 may be formed on the gate dielectric 256 such that the gate dielectric 256 electrically isolates the gate electrode 258.
  • the p- channel gallium nitride transistor 250 is an enhancement mode transistor. Thus, as shown, a portion of the p-doped gallium nitride layer 262 may be removed (if present) and a recess 266 may be formed in the second gallium nitride layer 206, such that the gate dielectric 256 may be at least partially embedded in the second gallium nitride layer 206.
  • the formation of the recess 266 and embedding the gate dielectric 256 may disrupt a portion of the 2D hole gas 216, such that it does not extend through the gate length L g of the p-channel gallium nitride transistor 250 to achieve enhancement mode operation.
  • At least partially embedding the gate dielectric 256 may place the gate
  • the source/drain structures 252 may be formed by forming by patterning a hardmask (not shown), such as silicon nitride, silicon oxide, and the like, on the polarization layer intermediate surface and recesses (not shown) may be formed to extend into the second gallium nitride layer 206, by any known technique, such as etching.
  • the recesses (not shown) may be formed with a plasma etch in a chlorine based chemistry.
  • the source/drain structures 252 may be formed in the recesses (not shown) by epitaxial regrowth from the second gallium nitride layer 206.
  • the regrowth process may comprise epitaxial crystal growth techniques, such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE).
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • the regrowth of the source/drain structures 252 for the p-channel gallium nitride transistor 250 may induce a uniaxial compressive strain which may improve hole mobility and improve contact resistance.
  • metallizations 264 may be formed on the source/drain structures 252.
  • the gate dielectric 256 may be formed from any well-known gate dielectric material, including but not limited to silicon dioxide (S1O 2 ), silicon oxynitride (SiO x N y ), silicon nitride (S1 3 N 4 ), and high-k dielectric materials such as hafnium oxide, hafnium silicon oxide, lanthanum oxide, lanthanum aluminum oxide, zirconium oxide, zirconium silicon oxide, tantalum oxide, tantalum silicon oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, yttrium oxide, aluminum oxide, lead scandium tantalum oxide, and lead zinc niobate.
  • the gate dielectric 256 can be formed by well-known techniques, such as chemical vapor deposition ("CVD”), physical vapor deposition (“PVD”), and atomic layer deposition (“ALD”).
  • the gate electrode 258 can be formed of any suitable gate electrode material.
  • the gate electrode 258 may be formed from materials that include, but are not limited to, polysilicon, tungsten, ruthenium, palladium, platinum, cobalt, nickel, hafnium, zirconium, titanium, tantalum, aluminum, titanium carbide, zirconium carbide, tantalum carbide, hafnium carbide, aluminum carbide, other metal carbides, metal nitrides, and metal oxides.
  • the gate electrode 258 can be formed by well-known techniques, such as by blanket depositing a gate electrode material and then patterning the gate electrode material with well-known photolithography and etching techniques, as will be understood to those skilled in the art.
  • the third hardmask 244 may be removed and at least one interlayer dielectric layer 272 may be deposited over the n-channel gallium nitride transistor 230 and the p-channel gallium nitride transistor 250.
  • N-channel source/drain contacts 274 may be formed through the interlayer dielectric layer 272 to contact the
  • metalizations 242 of the n-channel gallium nitride transistor source/drain structures 232 and p- channel source/drain contacts 276 may be formed through the interlayer dielectric layer 272 to contact the metalizations 264 of the p-channel gallium nitride transistor source/drain
  • An n-channel transistor gate contact 282 may be formed through the interlayer dielectric layer 272 to contact the gate electrode 236 and a p-channel transistor gate contact 284 may be formed through the interlayer dielectric layer 272 to contact the gate electrode 256.
  • conductive traces 286 may be formed to appropriately connect components of the n-channel gallium nitride transistor 230 and the p-channel gallium nitride transistor 250, as will be understood to those skilled in the art, thereby forming the CMOS gallium nitride circuit structure 200.
  • interlayer dielectric layer 272 The materials and processes used for forming the interlayer dielectric layer 272, the n-channel source/drain contacts 274, the p-channel source/drain contacts 276, the n-channel transistor gate contact 282, the p-channel transistor gate contact 284, and the conductive traces 286 are well known to those skilled in the art, and for the sake of brevity and conciseness will not be described or illustrated herein.
  • the n-channel gallium nitride transistor 230 and the p-channel gallium nitride transistor 250 should be in close proximity to one another.
  • the n-channel gallium nitride transistor 230 and the p-channel gallium nitride transistor 250 should be in close proximity to one another.
  • transistor 230 and the p-channel gallium nitride transistor 250 may be separated by a single gate pitch; for example, less than about lOOnm.
  • the components of the n-channel gallium nitride transistor 230 and the p-channel gallium nitride transistor 250 need not be fabricated separately, rather the steps of masking, unmasking, and re- masking may be undertaken to simultaneously form components for both the n-channel gallium nitride transistor 230 and the p-channel gallium nitride transistor 250, including, but not limited to, the gate dielectrics 236/256, the gate
  • electrodes 238/258 and the like, depending on process demands, such as temperature.
  • the first gallium nitride layer 202 may be formed on a strain material layer 290 having a lattice structure smaller than that of the first gallium nitride layer 202, which may induce a biaxial compressive strain to improve the mobility of the 2D hole gas 216 mobility.
  • the strain material layer 290 may include, but is not limited to, aluminum nitride, aluminum indium nitride, aluminum gallium nitride, and the like.
  • the p-channel gallium nitride transistor 250 may be stacked on top of the n-channel gallium nitride
  • the common gate 302 may comprise a gate dielectric 304 surrounding at least one stack 310 comprising the first gallium nitride layer 202, the second gallium nitride layer 206, and the polarization layer 204 therebetween, and a gate electrode 306 surrounding the gate
  • the efficiency of the depletion the 2D electron gas 212 (see FIG. 1 1) and the 2D hole gas 216 (see FIG. 11) may be improved by reducing the width W of the stack 310 to less than about 20nm.
  • more than one stack 310 may be fabricated for each CMOS gallium nitride circuit structure 300 to achieve efficient operation thereof.
  • the materials and processes used for forming the CMOS gallium nitride circuit structure 300 illustrated in FIG. 1 1 and 12 are well known to those skilled in the art, and for the sake of brevity and conciseness will not be described or illustrated herein.
  • the layered structure 210 of FIG. 3 may be flipped and fabrication of the n-channel gallium nitride transistor components and the p-channel gallium nitride transistor components reversed to form the CMOS gallium nitride circuit structure 320 of FIG. 13 or the CMOS gallium nitride circuit structure 330 of FIG. 14.
  • embodiments of the present description may not only be relevant to all system-on-chip products, such as those that will require direct battery high voltage switching transistors such as for DC-to-DC conversion, but may also be applicable in the fabrication of control and drive circuitries, as well as logic peripheries, e.g. microprocessors, static random access memory, and communication processors.
  • FIG. 15 is a flow chart of a process 400 of fabricating a CMOS circuit structure according to an embodiment of the present description.
  • a layer structure may be formed by depositing a polarization layer on a first gallium nitride layer and depositing a second gallium nitride layer on the polarization layer. A portion of one of the first gallium nitride layer and the second gallium nitride layer and a portion of the polarization layer may be removed to form a polarization layer intermediate surface, as set forth in block 404.
  • one of a p-channel transistor and an n-channel transistor may be formed on the polarization intermediate surface.
  • FIG. 16 illustrates a computing device 500 in accordance with one implementation of the present description.
  • the computing device 500 houses a board 502.
  • the board 502 may include a number of components, including but not limited to a processor 504 and at least one communication chip 506A, 506B.
  • the processor 504 is physically and electrically coupled to the board 502.
  • the at least one communication chip 506A, 506B is also physically and electrically coupled to the board 502.
  • the communication chip 506A, 506B is part of the processor 504.
  • the computing device 500 may include other components that may or may not be physically and electrically coupled to the board 502. These other components include, but are not limited to, volatile memory (e.g., DRAM), non-volatile memory (e.g., ROM), flash memory, a graphics processor, a digital signal processor, a crypto processor, a chipset, an antenna, a display, a touchscreen display, a touchscreen controller, a battery, an audio codec, a video codec, a power amplifier, a global positioning system (GPS) device, a compass, an accelerometer, a gyroscope, a speaker, a camera, and a mass storage device (such as hard disk drive, compact disk (CD), digital versatile disk (DVD), and so forth).
  • volatile memory e.g., DRAM
  • non-volatile memory e.g., ROM
  • flash memory e.g., a graphics processor, a digital signal processor, a crypto processor, a chipset, an antenna,
  • the communication chip 506A, 506B enables wireless communications for the transfer of data to and from the computing device 500.
  • wireless and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not.
  • the communication chip 206 may implement any of a number of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.1 1 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond.
  • the computing device 500 may include a plurality of
  • a first communication chip 506A may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication chip 506B may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
  • the processor 504 of the computing device 500 may include CMOS circuits formed -channel gallium nitride transistors and n-channel gallium nitride transistors, as described above.
  • the term "processor” may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory.
  • the communication chip 506A, 506B may include CMOS circuits formed from p-channel gallium nitride transistors and n-channel gallium nitride transistors.
  • the computing device 500 may be a laptop, a netbook, a notebook, an ultrabook, a smartphone, a tablet, a personal digital assistant (PDA), an ultra mobile PC, a mobile phone, a desktop computer, a server, a printer, a scanner, a monitor, a set- top box, an entertainment control unit, a digital camera, a portable music player, or a digital video recorder.
  • the computing device 300 may be any other electronic device that processes data.
  • Example 1 is a CMOS circuit structure comprising a layered structure including a first gallium nitride layer and a second gallium nitride layer separated by a polarization layer, wherein the layered structure includes an polarization layer intermediate surface; one of a p-channel transistor and an n- channel transistor formed proximate the polarization layer intermediate surface; and the other of the p-channel transistor and an n-channel transistor formed on one of the first gallium nitride layer and the second gallium nitride layer.
  • Example 2 the subject matter of Example 1 can optionally include the p-channel transistor being an enhancement mode transistor.
  • Example 3 the subject matter of any of Examples 1 and 2 can optionally include the n-channel transistor being an enhancement mode transistor.
  • Example 4 the subject matter of any of Examples 1 to 3 can optionally include the polarization layer being selected from the group consisting of aluminum gallium nitride, aluminum indium nitride, indium gallium nitride, aluminum nitride, and aluminum gallium nitride.
  • Example 5 the subject matter of any of Examples 1 to 4 can optionally include a strain material layer, wherein the first gallium nitride layer abuts the strain material layer.
  • Example 6 the subject matter of Example 5 can optionally include the strain material layer being selected from the group consisting of aluminum nitride, aluminum indium nitride, aluminum gallium nitride, and aluminum indium gallium nitride.
  • Example 7 the subject matter of any of Example 1 to 6 can optionally include the layered structure including a 2D electron gas within the first gallium nitride layer proximate the polarization layer and a 2D hole gas within the second gallium nitride layer; and wherein the n- channel transistor is formed proximate the polarization layer intermediate surface and the p- channel transistor is formed proximate the second gallium nitride layer.
  • Example 8 the subject matter of Example 7 can optionally include a recess in the second gallium nitride layer disrupting a portion of the 2D hole gas.
  • Example 9 the subject matter of any of Examples 1 to 6 can optionally include the layered structure including a 2D electron gas within the first gallium nitride layer proximate the polarization layer and a 2D hole gas within the second gallium nitride layer; and wherein the p- channel transistor is formed proximate the polarization layer intermediate surface and the n- channel transistor is formed proximate the first gallium nitride layer.
  • Example 10 the subject matter of Example 9 can optionally include a recess in the first gallium nitride layer disrupting a portion of the 2D electron gas.
  • Example 1 1 is a method of fabricating a CMOS circuit structure comprising forming a layered structure comprising depositing a polarization layer on a first gallium nitride layer and depositing a second gallium nitride layer on the polarization layer; removing a portion of one of the first gallium nitride layer and the second gallium nitride layer and a portion of the polarization layer to form a polarization layer intermediate surface; forming one of a p-channel transistor and an n-channel transistor on the polarization layer intermediate surface; and forming the other of the p-channel transistor and the n-channel transistor on a remaining portion of one of the first gallium nitride layer and the second gallium nitride layer.
  • Example 12 the subject matter of Example 1 1 can optionally include forming the p-channel transistor comprising forming a p-channel enhancement mode transistor.
  • Example 13 the subject matter of any of Examples 1 1 to 12 can optionally include forming the n-channel transistor comprising forming an n-channel enhancement mode transistor.
  • Example 14 the subject matter of any of Examples 1 1 to 13 can optionally include depositing the polarization layer comprising depositing a material selected from the group consisting of aluminum gallium nitride, aluminum indium nitride, indium gallium nitride, aluminum nitride, and aluminum indium gallium nitride.
  • Example 15 the subject matter of any of Examples 1 1 to 14 can optionally include depositing the first gallium nitride layer on a strain material layer.
  • Example 16 the subject matter of Example 15 can optionally include the strain material layer being selected from the group consisting of aluminum nitride, aluminum indium nitride, aluminum gallium nitride, and aluminum indium gallium nitride.
  • Example 17 the subject matter of any of Example 1 1 to 16 can optionally include forming the layered structure comprising forming a 2D electron gas within the first gallium nitride layer proximate the polarization layer and forming a 2D hole gas within the second gallium nitride layer; and wherein the n-channel transistor is formed proximate the polarization layer intermediate surface and the p-channel transistor is formed proximate the second gallium nitride layer.
  • Example 18 the subject matter of Example 17 can optionally include forming a recess in the second gallium nitride layer to disrupt a portion of the 2D hole gas.
  • Example 19 the subject matter of Example 1 1 to 16 can optionally include forming the layered structure includes forming a 2D electron gas within the first gallium nitride layer proximate the polarization layer and forming a 2D hole gas within the second gallium nitride layer; and wherein the p-channel transistor is formed proximate the polarization layer intermediate surface and the n-channel transistor is formed proximate the first gallium nitride layer.
  • Example 20 the subject matter of Example 19 can optionally include forming a recess in the first gallium nitride layer to disrupt a portion of the 2D electron gas.
  • Example 21 is an electronic system, comprising a board and a microelectronic device attached to the board, wherein the microelectronic device includes at least one CMOS circuit structure comprising a layered structure including a first gallium nitride layer and a second gallium nitride layer separated by a polarization layer, wherein the layered structure includes an polarization layer intermediate surface; one of a p-channel transistor and an n-channel transistor formed proximate the polarization layer intermediate surface; and the other of the p-channel transistor and an n- channel transistor formed on one of the first gallium nitride layer and the second gallium nitride layer.
  • CMOS circuit structure comprising a layered structure including a first gallium nitride layer and a second gallium nitride layer separated by a polarization layer, wherein the layered structure includes an polarization layer intermediate surface; one of a p-channel transistor and an n-channel transistor formed proximate
  • Example 22 the subject matter of Example 21 can optionally include the layered structure including a 2D electron gas within the first gallium nitride layer proximate the polarization layer and a 2D hole gas within the second gallium nitride layer; and wherein the n- channel transistor is formed proximate the polarization layer intermediate surface and the p- channel transistor is formed proximate the second gallium nitride layer.
  • Example 23 the subject matter of Example 22 can optionally include a recess in the second gallium nitride layer disrupting a portion of the 2D hole gas.
  • Example 24 the subject matter of Example 21 can optionally the layered structure including a 2D electron gas within the first gallium nitride layer proximate the polarization layer and a 2D hole gas within the second gallium nitride layer; and wherein the p-channel transistor is formed proximate the polarization layer intermediate surface and the n-channel transistor is formed proximate the first gallium nitride layer.
  • Example 25 the subject matter of Example 24 can optionally include a recess in the first gallium nitride layer disrupting a portion of the 2D electron gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

CMOS circuits may formed using p-channel gallium nitride transistors and n-channel gallium nitride transistors, wherein both the p-channel gallium nitride transistors and the n-channel gallium nitride transistors are formed on a single layered structure comprising a polarization layer deposited on a first gallium nitride layer and a second gallium nitride layer deposited on the polarization layer. Having both n-channel gallium nitride transistors and p-channel gallium nitride transistors s on the same layer structure may enable "all gallium nitride transistor" implementations of circuits including logic, digital, and analog circuitries spanning low supply voltages to high supply voltages.

Description

CMOS CIRCUITS USING N-CHANNEL AND
P-CHANNEL GALLIUM NITRIDE TRANSISTORS
TECHNICAL FIELD
Embodiments of the present description generally relate to the field of
microelectronic devices, and, more particularly, to forming CMOS (Complementary Metal Oxide Semiconductor) circuits and structures using both n-channel and p-channel gallium nitride transistors.
BACKGROUND
The microelectronics industry is continually striving to produce ever faster and smaller microelectronic packages for use in various electronic products, including, but not limited to, computer server products and portable products, such as laptop/netbook computers, electronic tablets, smart phones, digital cameras, and the like. One route to achieve these goals is the fabrication of System-on-Chip (SoC) devices, wherein all of the components of an electronic system are fabricated on a single chip. In such SoC devices, power management integrated circuits (PMIC) and radio frequency integrated circuits (RFIC) are critical functional blocks, and are as important as logic and memory integrated circuits in determining the power efficiency and the form factor of such SoC devices. Therefore, there is an ongoing effort to scaled down and/or improve the efficiency of PMICs and RFICs, as well as logic and memory integrated circuits, for SoC devices.
BRIEF DESCRIPTION OF THE DRAWINGS
The subject matter of the present disclosure is particularly pointed out and distinctly claimed in the concluding portion of the specification. The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. It is understood that the accompanying drawings depict only several embodiments in accordance with the present disclosure and are, therefore, not to be considered limiting of its scope. The disclosure will be described with additional specificity and detail through use of the accompanying drawings, such that the advantages of the present disclosure can be more readily ascertained, in which: FIG. 1 is a schematic of a gallium nitride circuit, as known in the art.
FIG. 2 is a schematic of a gallium nitride circuit, according to an embodiment of the present description.
FIGs. 3-9 are side cross-section views of the fabrication of a gallium nitride circuit structure, according to one embodiment of the present description.
FIG. 10 is a side cross-section view of a gallium nitride circuit structure, according to another embodiment of the present description.
FIGs. 11 and 12 are side cross-section views of a gallium nitride circuit structure, according to still another embodiment of the present description.
FIG. 13 is a side cross-section view of a gallium nitride circuit structure, according to a further embodiment of the present description.
FIG. 14 is a side cross-section view of a gallium nitride circuit structure, according to another embodiment of the present description. FIG. 15 is a flow chart of a process of fabricating a gallium nitride circuit structure, according to an embodiment of the present description.
FIG. 16 illustrates a computing device in accordance with one implementation of the present description.
DESCRIPTION OF EMBODIMENTS In the following detailed description, reference is made to the accompanying drawings that show, by way of illustration, specific embodiments in which the claimed subject matter may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the subject matter. It is to be understood that the various embodiments, although different, are not necessarily mutually exclusive. For example, a particular feature, structure, or characteristic described herein, in connection with one embodiment, may be implemented within other embodiments without departing from the spirit and scope of the claimed subject matter. References within this specification to "one embodiment" or "an embodiment" mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one implementation encompassed within the present description. Therefore, the use of the phrase "one embodiment" or "in an embodiment" does not necessarily refer to the same embodiment. In addition, it is to be understood that the location or arrangement of individual elements within each disclosed embodiment may be modified without departing from the spirit and scope of the claimed subject matter. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the subject matter is defined only by the appended claims, appropriately interpreted, along with the full range of equivalents to which the appended claims are entitled. In the drawings, like numerals refer to the same or similar elements or functionality throughout the several views, and that elements depicted therein are not necessarily to scale with one another, rather individual elements may be enlarged or reduced in order to more easily comprehend the elements in the context of the present description.
The terms "over", "to", "between" and "on" as used herein may refer to a relative position of one layer with respect to other layers. One layer "over" or "on" another layer or bonded "to" another layer may be directly in contact with the other layer or may have one or more intervening layers. One layer "between" layers may be directly in contact with the layers or may have one or more intervening layers.
Embodiments of the present description related to CMOS circuits formed using p- channel gallium nitride transistors and n-channel gallium nitride transistors, wherein both the p- channel gallium nitride transistors and the n-channel gallium nitride transistors are formed on a single layered structure comprising a polarization layer deposited on a first gallium nitride layer and a second gallium nitride layer deposited on the polarization layer. Having both n-channel gallium nitride transistors and p-channel gallium nitride transistors on the same layer structure may enable "all gallium nitride transistor" implementations of circuits including logic, digital, and analog circuitries spanning low supply voltages to high supply voltages.
Gallium nitride has a relatively wide bandgap (e.g. about 3.4 eV), when compared to the bandgap of silicon (about 1.1 eV). Therefore, gallium nitride transistors may withstand large electric fields, such as applied voltages, drain voltage, and the like, before suffering breakdown, when compared to a silicon based transistor of similar dimensions. This also enables the gallium nitride transistors to be scaled to even smaller physical dimensions when operating at the same supply voltage to a comparable silicon based transistor. Gallium nitride has a high electronic mobility (e.g. about 1000cm2 /Vs) which makes it a very good material for the formation of an n-channel gallium nitride transistor, as an n- channel gallium nitride transistor employs a 2D electron gas as its transportation channel.
Gallium nitride has a hole mobility (zero strain) which is an order of magnitude weaker (e.g. about 100cm2 /Vs) than its electronic mobility. However, it still is a good material for the formation of a p-channel gallium nitride transistor, as a p-channel gallium nitride transistor employs a 2D hole gas as its transportation channel, since is hole mobility is still comparable to unstrained silicon hole mobility.
As shown in FIG. 1, a gallium nitride circuit 100, such as a logic or control circuit, is commonly implemented using a depletion mode n-channel gallium nitride transistor in conjunction with an enhancement mode n-channel gallium nitride transistor. However, steady- state leakage may be high in such circuits due to the depletion mode n-channel nitride transistor acting as a resistor, as will be understood to those skilled in the art. A CMOS gallium nitride circuit 200 of embodiments of the present description may comprise the depletion mode n- channel gallium nitride transistor of FIG. 1 being replaced with a p-channel gallium nitride transistor, as shown in FIG. 2.
FIGs. 3-9 illustrate a method of fabricating a gallium nitride circuit structure, according to one embodiment of the present description. As shown in FIG. 3, a layered structure 210 may be formed with a polarization layer 204 deposited on a first gallium nitride layer 202 and a second gallium nitride layer 206 deposited on the polarization layer 204 with the polarization layer 204 comprising aluminum gallium nitride, aluminum indium nitride, aluminum indium gallium nitride, aluminum nitride, and like materials. The polarization layer 204 may have ternary crystal structure which forms a 2D electron gas 212 (designated generically with negative "-" symbols) in the first gallium nitride layer 202 due to the formation of an abrupt hetero-junction interface 214 between the first gallium nitride layer 202 and the polarization layer 204 through spontaneous and piezoelectric polarization, as will be understood to those skilled in the art. In a like manner, the deposition of the second gallium nitride layer 206 on the polarization layer 204 forms a 2D hole gas 216 (designated generically with positive "+" symbols) within the second gallium nitride layer 206 proximate an interface 218 between the second gallium nitride layer 206 and the polarization layer 204. The 2D hole gas 216 forms due to the formation of the 2D electron gas 212 which shifts the polarization layer 204 positive (labeled as "σ+") near the first gallium nitride layer 202, thereby shifting the polarization layer 204 negative (labeled as "σ-") near the second gallium nitride layer 206. Very high charge densities up to about 2E13 per cm2 can be formed by such mechanisms, without the use of impurity dopants, which allows for high mobilities to be preserved, as will be understood to those skilled in the art. The polarization layer 204 may also act as electrical insulation between the 2D electron gas 212 and the 2D hole gas 216, which is achieved by both conduction and valence bonds offsets, as well as, by the built-in polarization field, as will be understood to those skilled in the art.
As shown in FIG. 4, the layered structure 210 formed with a polarization layer 204 deposited on a first gallium nitride layer 202 and a second gallium nitride layer 206 deposited on the polarization layer 204 is illustrated with the polarization layer 204 being indium gallium nitride and like materials. When the polarization layer 204 is indium gallium nitride and like materials, the 2D electron gas 212 forms in the polarization layer 204, as will be understood to those skilled in the art. In a like manner, the deposition of the second gallium nitride layer 206 on the polarization layer 204 forms the 2D hole gas 216 within the polarization layer 204. Again, the polarization layer 204 may also act as electrical insulation between the 2D electron gas 212 and the 2D hole gas 216, which, in the embodiment of the polarization layer 204 being indium gallium nitride and like materials, is achieved by the built-in polarization field alone. Additionally, although the 2D electron gas 212 and the 2D hole gas 216 are formed in different locations in this embodiment from that shown in FIG. 3, the same results and mechanisms are achieved. Thus, for the sake of conciseness and brevity, FIGs. 5-9 will illustrate the 2D electron gas 212 and the 2D hole gas 216 locations of FIG. 3.
As shown in FIG. 5, a portion 220 of the layered structure 210 designated for the subsequent formation of a p-channel gallium nitride transistor may be patterned with a hardmask 222, such as silicon nitride. As shown in FIG. 6, the second gallium nitride layer 206 in the unmasked portion 224 designated for the subsequent formation of an n-channel gallium nitride circuit structure may be remove, such as by etching, and a portion of the polarization layer 204 may be removed, such as by etching, to form a polarization layer intermediate surface 226, such that the polarization layer intermediate surface 226, from a planar standpoint, is between the interface 214 between the first gallium nitride layer 202 and the polarization layer 204 and the remaining interface 218 between the second gallium nitride layer 206 and the polarization layer 204. In one embodiment, a thickness T between the intermediate surface 226 and the interface 214 between the first gallium nitride layer 202 and the polarization layer 204 may be less than about 20nm. As illustrated in FIG. 7, an n-channel gallium nitride transistor 230 may be formed in the portion 224 after a second hardmask 228 is patterned on the portion 220 designated for the subsequent formation of a p-channel gallium nitride circuit structure. The n-channel gallium nitride transistor 230 may comprise opposing source/drain structures 232 (one being a source structure and the other being a drain structure) with a gate region 234 defined therebetween. A gate dielectric 236 may be formed in the gate region 234 and a gate electrode 238 may be formed on the gate dielectric 236, such that the gate dielectric 236 electrically isolates the gate electrode 238. In one embodiment, the n-channel gallium nitride transistor 230 is an
enhancement mode transistor. Thus, as shown, a portion of the polarization layer 204 may be removed to disrupt the 2D electron gas 212, such that it does not extend through the gate length Lg of the n-channel gallium nitride transistor 230 to achieve enhancement mode operation.
In one embodiment, the source/drain structures 232 may be formed by forming by patterning a hardmask (not shown), such as silicon nitride, silicon oxide, and the like, on the polarization layer intermediate surface and recesses (not shown) may be formed to extend through the polarization layer 204 and into the first gallium nitride layer 202, by any known technique, such as etching. In one embodiment, the recesses (not shown) may be formed with a plasma etch in a chlorine based chemistry. The source/drain structures 232, such as comprising N+ indium gallium nitride, N+ gallium nitride, N+ indium nitride, and any graded combination thereof, may be formed in the recesses (not shown) by epitaxial regrowth from the first gallium nitride layer 202. In one embodiment, the regrowth process may comprise epitaxial crystal growth techniques, such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE). After the formation of the source/drain structures 232, metallizations 242 may be formed on the source/drain structures 232.
The gate dielectric 236 may be formed from any well-known gate dielectric material, including but not limited to silicon dioxide (S1O2), silicon oxynitride (SiOxNy), silicon nitride
(S13N4), and high-k dielectric materials such as hafnium oxide, hafnium silicon oxide, lanthanum oxide, lanthanum aluminum oxide, zirconium oxide, zirconium silicon oxide, tantalum oxide, tantalum silicon oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, yttrium oxide, aluminum oxide, lead scandium tantalum oxide, and lead zinc niobate. The gate dielectric 236 can be formed by well-known techniques, such as chemical vapor deposition ("CVD"), physical vapor deposition ("PVD"), and atomic layer deposition ("ALD"). The gate electrode 238 can be formed of any suitable gate electrode material. In an embodiment of the present disclosure, the gate electrode 238 may be formed from materials that include, but are not limited to, polysilicon, tungsten, ruthenium, palladium, platinum, cobalt, nickel, hafnium, zirconium, titanium, tantalum, aluminum, titanium carbide, zirconium carbide, tantalum carbide, hafnium carbide, aluminum carbide, other metal carbides, metal nitrides, and metal oxides. The gate electrode 238 can be formed by well-known techniques, such as by blanket depositing a gate electrode material and then patterning the gate electrode material with well-known photolithography and etching techniques, as will be understood to those skilled in the art.
As illustrated in FIG. 8, an p-channel gallium nitride transistor 250 may be formed in the portion 226 after a second hardmask 228 (see FIG. 5) has removed and a third hardmask 244 is patterned over the n-channel gallium nitride transistor 230. The p-channel gallium nitride transistor 250 may comprise opposing source/drain structures 252 (one being a source structure and the other being a drain structure) with a gate region 254 defined therebetween and a p-doped gallium nitride layer 262 may be optionally formed over the gate region 254 to improve access resistance, as will be understood to those skilled in the art. A gate dielectric 256 may be formed in the gate region 254 and a gate electrode 258 may be formed on the gate dielectric 256 such that the gate dielectric 256 electrically isolates the gate electrode 258. In one embodiment, the p- channel gallium nitride transistor 250 is an enhancement mode transistor. Thus, as shown, a portion of the p-doped gallium nitride layer 262 may be removed (if present) and a recess 266 may be formed in the second gallium nitride layer 206, such that the gate dielectric 256 may be at least partially embedded in the second gallium nitride layer 206. As will be understood to those skilled in the art, the formation of the recess 266 and embedding the gate dielectric 256 may disrupt a portion of the 2D hole gas 216, such that it does not extend through the gate length Lg of the p-channel gallium nitride transistor 250 to achieve enhancement mode operation.
Furthermore, at least partially embedding the gate dielectric 256 may place the gate
dielectric 256 and gate electronic 258 closer to the 2D hole gas 216 to enable a thin equivalent gate dielectric thickness for greater drive and electrostatics control, as will be understood to those skilled in the art.
In one embodiment, the source/drain structures 252 may be formed by forming by patterning a hardmask (not shown), such as silicon nitride, silicon oxide, and the like, on the polarization layer intermediate surface and recesses (not shown) may be formed to extend into the second gallium nitride layer 206, by any known technique, such as etching. In one embodiment, the recesses (not shown) may be formed with a plasma etch in a chlorine based chemistry. The source/drain structures 252, such as comprising P+ indium gallium nitride, P+ gallium nitride, P+ indium nitride, and any graded combination thereof, may be formed in the recesses (not shown) by epitaxial regrowth from the second gallium nitride layer 206. In one embodiment, the regrowth process may comprise epitaxial crystal growth techniques, such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE). The regrowth of the source/drain structures 252 for the p-channel gallium nitride transistor 250 may induce a uniaxial compressive strain which may improve hole mobility and improve contact resistance. After the formation of the source/drain structures 252, metallizations 264 may be formed on the source/drain structures 252.
The gate dielectric 256 may be formed from any well-known gate dielectric material, including but not limited to silicon dioxide (S1O2), silicon oxynitride (SiOxNy), silicon nitride (S13N4), and high-k dielectric materials such as hafnium oxide, hafnium silicon oxide, lanthanum oxide, lanthanum aluminum oxide, zirconium oxide, zirconium silicon oxide, tantalum oxide, tantalum silicon oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, yttrium oxide, aluminum oxide, lead scandium tantalum oxide, and lead zinc niobate. The gate dielectric 256 can be formed by well-known techniques, such as chemical vapor deposition ("CVD"), physical vapor deposition ("PVD"), and atomic layer deposition ("ALD"). The gate electrode 258 can be formed of any suitable gate electrode material. In an embodiment of the present disclosure, the gate electrode 258 may be formed from materials that include, but are not limited to, polysilicon, tungsten, ruthenium, palladium, platinum, cobalt, nickel, hafnium, zirconium, titanium, tantalum, aluminum, titanium carbide, zirconium carbide, tantalum carbide, hafnium carbide, aluminum carbide, other metal carbides, metal nitrides, and metal oxides. The gate electrode 258 can be formed by well-known techniques, such as by blanket depositing a gate electrode material and then patterning the gate electrode material with well-known photolithography and etching techniques, as will be understood to those skilled in the art.
As shown in FIG. 9, the third hardmask 244 (see FIG. 8) may be removed and at least one interlayer dielectric layer 272 may be deposited over the n-channel gallium nitride transistor 230 and the p-channel gallium nitride transistor 250. N-channel source/drain contacts 274 may be formed through the interlayer dielectric layer 272 to contact the
metalizations 242 of the n-channel gallium nitride transistor source/drain structures 232 and p- channel source/drain contacts 276 may be formed through the interlayer dielectric layer 272 to contact the metalizations 264 of the p-channel gallium nitride transistor source/drain
structures 252. An n-channel transistor gate contact 282 may be formed through the interlayer dielectric layer 272 to contact the gate electrode 236 and a p-channel transistor gate contact 284 may be formed through the interlayer dielectric layer 272 to contact the gate electrode 256. As further shown in FIG. 9, conductive traces 286 may be formed to appropriately connect components of the n-channel gallium nitride transistor 230 and the p-channel gallium nitride transistor 250, as will be understood to those skilled in the art, thereby forming the CMOS gallium nitride circuit structure 200. The materials and processes used for forming the interlayer dielectric layer 272, the n-channel source/drain contacts 274, the p-channel source/drain contacts 276, the n-channel transistor gate contact 282, the p-channel transistor gate contact 284, and the conductive traces 286 are well known to those skilled in the art, and for the sake of brevity and conciseness will not be described or illustrated herein.
As will be understood to those skilled in the art, in order to minimize interconnect losses, and achieve smaller footprint, as well as other scaling advantages known in the art, the n- channel gallium nitride transistor 230 and the p-channel gallium nitride transistor 250 should be in close proximity to one another. In one embodiment, the n-channel gallium nitride
transistor 230 and the p-channel gallium nitride transistor 250 may be separated by a single gate pitch; for example, less than about lOOnm.
It is understood that the components of the n-channel gallium nitride transistor 230 and the p-channel gallium nitride transistor 250 need not be fabricated separately, rather the steps of masking, unmasking, and re- masking may be undertaken to simultaneously form components for both the n-channel gallium nitride transistor 230 and the p-channel gallium nitride transistor 250, including, but not limited to, the gate dielectrics 236/256, the gate
electrodes 238/258, and the like, depending on process demands, such as temperature.
As shown in FIG. 10, in another embodiment of the present description, the first gallium nitride layer 202 may be formed on a strain material layer 290 having a lattice structure smaller than that of the first gallium nitride layer 202, which may induce a biaxial compressive strain to improve the mobility of the 2D hole gas 216 mobility. The strain material layer 290 may include, but is not limited to, aluminum nitride, aluminum indium nitride, aluminum gallium nitride, and the like.
In another embodiment of the present description, as shown in FIG. 1 1, the p-channel gallium nitride transistor 250 may be stacked on top of the n-channel gallium nitride
transistor 230, so that a common gate 302 could be shared to form a stacked CMOS gallium nitride circuit structure 300. The stacked CMOS gallium nitride circuit structure 300 may have tighter scale integration than the CMOS gallium nitride circuit structure 200 embodiments shown in FIGs. 3-10. As shown in FIG. 12, which is a cross-sectional view along line 12-12 of FIG. 11, the common gate 302 may comprise a gate dielectric 304 surrounding at least one stack 310 comprising the first gallium nitride layer 202, the second gallium nitride layer 206, and the polarization layer 204 therebetween, and a gate electrode 306 surrounding the gate
dielectric 304. An under-fill dielectric 312 may be disposed below the common gate 302 for electrical isolation thereof. In one embodiment, the efficiency of the depletion the 2D electron gas 212 (see FIG. 1 1) and the 2D hole gas 216 (see FIG. 11) may be improved by reducing the width W of the stack 310 to less than about 20nm. Thus, as shown, more than one stack 310 may be fabricated for each CMOS gallium nitride circuit structure 300 to achieve efficient operation thereof. The materials and processes used for forming the CMOS gallium nitride circuit structure 300 illustrated in FIG. 1 1 and 12 are well known to those skilled in the art, and for the sake of brevity and conciseness will not be described or illustrated herein.
In another embodiment, the layered structure 210 of FIG. 3 may be flipped and fabrication of the n-channel gallium nitride transistor components and the p-channel gallium nitride transistor components reversed to form the CMOS gallium nitride circuit structure 320 of FIG. 13 or the CMOS gallium nitride circuit structure 330 of FIG. 14.
As will be understood to those skilled in the art, embodiments of the present description may not only be relevant to all system-on-chip products, such as those that will require direct battery high voltage switching transistors such as for DC-to-DC conversion, but may also be applicable in the fabrication of control and drive circuitries, as well as logic peripheries, e.g. microprocessors, static random access memory, and communication processors.
FIG. 15 is a flow chart of a process 400 of fabricating a CMOS circuit structure according to an embodiment of the present description. As set forth in block 402, a layer structure may be formed by depositing a polarization layer on a first gallium nitride layer and depositing a second gallium nitride layer on the polarization layer. A portion of one of the first gallium nitride layer and the second gallium nitride layer and a portion of the polarization layer may be removed to form a polarization layer intermediate surface, as set forth in block 404. As set forth in block 406, one of a p-channel transistor and an n-channel transistor may be formed on the polarization intermediate surface. The other of the p-channel transistor and the n-channel transistor may be formed on the remaining portion of one of the the first gallium nitride layer and the second gallium nitride layer, as set forth in block 408. FIG. 16 illustrates a computing device 500 in accordance with one implementation of the present description. The computing device 500 houses a board 502. The board 502 may include a number of components, including but not limited to a processor 504 and at least one communication chip 506A, 506B. The processor 504 is physically and electrically coupled to the board 502. In some implementations the at least one communication chip 506A, 506B is also physically and electrically coupled to the board 502. In further implementations, the communication chip 506A, 506B is part of the processor 504.
Depending on its applications, the computing device 500 may include other components that may or may not be physically and electrically coupled to the board 502. These other components include, but are not limited to, volatile memory (e.g., DRAM), non-volatile memory (e.g., ROM), flash memory, a graphics processor, a digital signal processor, a crypto processor, a chipset, an antenna, a display, a touchscreen display, a touchscreen controller, a battery, an audio codec, a video codec, a power amplifier, a global positioning system (GPS) device, a compass, an accelerometer, a gyroscope, a speaker, a camera, and a mass storage device (such as hard disk drive, compact disk (CD), digital versatile disk (DVD), and so forth).
The communication chip 506A, 506B enables wireless communications for the transfer of data to and from the computing device 500. The term "wireless" and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not. The communication chip 206 may implement any of a number of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.1 1 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. The computing device 500 may include a plurality of
communication chips 306A, 306B. For instance, a first communication chip 506A may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication chip 506B may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
The processor 504 of the computing device 500 may include CMOS circuits formed -channel gallium nitride transistors and n-channel gallium nitride transistors, as described above. The term "processor" may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory. Furthermore, the communication chip 506A, 506B may include CMOS circuits formed from p-channel gallium nitride transistors and n-channel gallium nitride transistors.
In various implementations, the computing device 500 may be a laptop, a netbook, a notebook, an ultrabook, a smartphone, a tablet, a personal digital assistant (PDA), an ultra mobile PC, a mobile phone, a desktop computer, a server, a printer, a scanner, a monitor, a set- top box, an entertainment control unit, a digital camera, a portable music player, or a digital video recorder. In further implementations, the computing device 300 may be any other electronic device that processes data.
It is understood that the subject matter of the present description is not necessarily limited to specific applications illustrated in FIGs. 1-16. The subject matter may be applied to other microelectronic device and assembly applications, as well as any other appropriate transistor applications, as will be understood to those skilled in the art.
The following examples pertain to further embodiments, wherein Example 1 is a CMOS circuit structure comprising a layered structure including a first gallium nitride layer and a second gallium nitride layer separated by a polarization layer, wherein the layered structure includes an polarization layer intermediate surface; one of a p-channel transistor and an n- channel transistor formed proximate the polarization layer intermediate surface; and the other of the p-channel transistor and an n-channel transistor formed on one of the first gallium nitride layer and the second gallium nitride layer.
In Example 2, the subject matter of Example 1 can optionally include the p-channel transistor being an enhancement mode transistor. In Example 3, the subject matter of any of Examples 1 and 2 can optionally include the n-channel transistor being an enhancement mode transistor.
In Example 4, the subject matter of any of Examples 1 to 3 can optionally include the polarization layer being selected from the group consisting of aluminum gallium nitride, aluminum indium nitride, indium gallium nitride, aluminum nitride, and aluminum gallium nitride. In Example 5, the subject matter of any of Examples 1 to 4 can optionally include a strain material layer, wherein the first gallium nitride layer abuts the strain material layer.
In Example 6, the subject matter of Example 5 can optionally include the strain material layer being selected from the group consisting of aluminum nitride, aluminum indium nitride, aluminum gallium nitride, and aluminum indium gallium nitride.
In Example 7, the subject matter of any of Example 1 to 6 can optionally include the layered structure including a 2D electron gas within the first gallium nitride layer proximate the polarization layer and a 2D hole gas within the second gallium nitride layer; and wherein the n- channel transistor is formed proximate the polarization layer intermediate surface and the p- channel transistor is formed proximate the second gallium nitride layer.
In Example 8, the subject matter of Example 7 can optionally include a recess in the second gallium nitride layer disrupting a portion of the 2D hole gas.
In Example 9, the subject matter of any of Examples 1 to 6 can optionally include the layered structure including a 2D electron gas within the first gallium nitride layer proximate the polarization layer and a 2D hole gas within the second gallium nitride layer; and wherein the p- channel transistor is formed proximate the polarization layer intermediate surface and the n- channel transistor is formed proximate the first gallium nitride layer.
In Example 10, the subject matter of Example 9 can optionally include a recess in the first gallium nitride layer disrupting a portion of the 2D electron gas. The following examples pertain to further embodiments, wherein Example 1 1 is a method of fabricating a CMOS circuit structure comprising forming a layered structure comprising depositing a polarization layer on a first gallium nitride layer and depositing a second gallium nitride layer on the polarization layer; removing a portion of one of the first gallium nitride layer and the second gallium nitride layer and a portion of the polarization layer to form a polarization layer intermediate surface; forming one of a p-channel transistor and an n-channel transistor on the polarization layer intermediate surface; and forming the other of the p-channel transistor and the n-channel transistor on a remaining portion of one of the first gallium nitride layer and the second gallium nitride layer.
In Example 12, the subject matter of Example 1 1 can optionally include forming the p-channel transistor comprising forming a p-channel enhancement mode transistor. In Example 13, the subject matter of any of Examples 1 1 to 12 can optionally include forming the n-channel transistor comprising forming an n-channel enhancement mode transistor.
In Example 14, the subject matter of any of Examples 1 1 to 13 can optionally include depositing the polarization layer comprising depositing a material selected from the group consisting of aluminum gallium nitride, aluminum indium nitride, indium gallium nitride, aluminum nitride, and aluminum indium gallium nitride.
In Example 15, the subject matter of any of Examples 1 1 to 14 can optionally include depositing the first gallium nitride layer on a strain material layer.
In Example 16, the subject matter of Example 15 can optionally include the strain material layer being selected from the group consisting of aluminum nitride, aluminum indium nitride, aluminum gallium nitride, and aluminum indium gallium nitride.
In Example 17, the subject matter of any of Example 1 1 to 16 can optionally include forming the layered structure comprising forming a 2D electron gas within the first gallium nitride layer proximate the polarization layer and forming a 2D hole gas within the second gallium nitride layer; and wherein the n-channel transistor is formed proximate the polarization layer intermediate surface and the p-channel transistor is formed proximate the second gallium nitride layer.
In Example 18, the subject matter of Example 17 can optionally include forming a recess in the second gallium nitride layer to disrupt a portion of the 2D hole gas.
In Example 19, the subject matter of Example 1 1 to 16 can optionally include forming the layered structure includes forming a 2D electron gas within the first gallium nitride layer proximate the polarization layer and forming a 2D hole gas within the second gallium nitride layer; and wherein the p-channel transistor is formed proximate the polarization layer intermediate surface and the n-channel transistor is formed proximate the first gallium nitride layer.
In Example 20, the subject matter of Example 19 can optionally include forming a recess in the first gallium nitride layer to disrupt a portion of the 2D electron gas.
The following examples pertain to further embodiments, wherein Example 21 is an electronic system, comprising a board and a microelectronic device attached to the board, wherein the microelectronic device includes at least one CMOS circuit structure comprising a layered structure including a first gallium nitride layer and a second gallium nitride layer separated by a polarization layer, wherein the layered structure includes an polarization layer intermediate surface; one of a p-channel transistor and an n-channel transistor formed proximate the polarization layer intermediate surface; and the other of the p-channel transistor and an n- channel transistor formed on one of the first gallium nitride layer and the second gallium nitride layer.
In Example 22, the subject matter of Example 21 can optionally include the layered structure including a 2D electron gas within the first gallium nitride layer proximate the polarization layer and a 2D hole gas within the second gallium nitride layer; and wherein the n- channel transistor is formed proximate the polarization layer intermediate surface and the p- channel transistor is formed proximate the second gallium nitride layer.
In Example 23, the subject matter of Example 22 can optionally include a recess in the second gallium nitride layer disrupting a portion of the 2D hole gas. In Example 24, the subject matter of Example 21 can optionally the layered structure including a 2D electron gas within the first gallium nitride layer proximate the polarization layer and a 2D hole gas within the second gallium nitride layer; and wherein the p-channel transistor is formed proximate the polarization layer intermediate surface and the n-channel transistor is formed proximate the first gallium nitride layer. In Example 25, the subject matter of Example 24 can optionally include a recess in the first gallium nitride layer disrupting a portion of the 2D electron gas.
Having thus described in detail embodiments of the present description, it is understood that the present description defined by the appended claims is not to be limited by particular details set forth in the above description, as many apparent variations thereof are possible without departing from the spirit or scope thereof.

Claims

CLAIMS What is claimed is:
1. A CMOS circuit structure comprising:
a layered structure including a first gallium nitride layer and a second gallium nitride layer separated by a polarization layer, wherein the layered structure includes an polarization layer intermediate surface;
one of a p-channel transistor and an n-channel transistor formed proximate the polarization layer intermediate surface; and
the other of the p-channel transistor and an n-channel transistor formed on one of the first gallium nitride layer and the second gallium nitride layer.
2. The CMOS circuit structure of claim 1, wherein the p-channel transistor is an enhancement mode transistor.
3. The CMOS circuit structure of either claim 1 or 2, wherein the n-channel transistor is an enhancement mode transistor.
4. The CMOS circuit structure of claim 1, wherein the polarization layer is selected from the group consisting of aluminum gallium nitride, aluminum indium nitride, indium gallium nitride, aluminum nitride, and aluminum indium gallium nitride.
5. The CMOS circuit structure of claim 1, further including a strain material layer, wherein the first gallium nitride layer abuts the strain material layer.
6. The CMOS circuit structure of claim 5, wherein the strain material layer is selected from the group consisting of aluminum nitride, aluminum indium nitride, aluminum gallium nitride, and aluminum indium gallium nitride.
7. The CMOS circuit structure of claim 1, wherein the layered structure includes a 2D electron gas within the first gallium nitride layer proximate the polarization layer and a 2D hole gas within the second gallium nitride layer; and wherein the n-channel transistor is formed proximate the polarization layer intermediate surface and the p-channel transistor is formed proximate the second gallium nitride layer.
8. The CMOS circuit structure of claim 7, further including a recess in the second gallium nitride layer disrupting a portion of the 2D hole gas.
9. The CMOS circuit structure of claim 1, wherein the layered structure includes a 2D electron gas within the first gallium nitride layer proximate the polarization layer and a 2D hole gas within the second gallium nitride layer; and wherein the p-channel transistor is formed proximate the polarization layer intermediate surface and the n-channel transistor is formed proximate the first gallium nitride layer.
10. The CMOS circuit structure of claim 9, further including a recess in the first gallium nitride layer disrupting a portion of the 2D electron gas.
1 1. A method of fabricating a CMOS circuit structure comprising:
forming a layered structure comprising depositing a polarization layer on a first gallium nitride layer and depositing a second gallium nitride layer on the polarization layer;
removing a portion of one of the first gallium nitride layer and the second gallium nitride layer and a portion of the polarization layer to form a polarization layer intermediate surface; forming one of a p-channel transistor and an n-channel transistor on the polarization layer intermediate surface; and
forming the other of the p-channel transistor and the n-channel transistor on a remaining portion of one of the first gallium nitride layer and the second gallium nitride layer.
12. The method of claim 11, wherein forming the p-channel transistor comprises forming a p-channel enhancement mode transistor.
13. The method of either claim 1 1 or 12, wherein forming the n-channel transistor comprises forming an n-channel enhancement mode transistor.
14. The method of claim 1 1, wherein depositing the polarization layer comprises depositing a material selected from the group consisting of aluminum gallium nitride, aluminum indium nitride, indium gallium nitride, aluminum nitride, and aluminum indium gallium nitride.
15. The method of claim 1 1, further comprising depositing the first gallium nitride layer on a strain material layer.
16. The method of claim 15, wherein the strain material layer is selected from the group consisting of aluminum nitride, aluminum indium nitride, aluminum gallium nitride, and aluminum indium gallium nitride.
17. The method of claim 11, wherein forming the layered structure includes forming a 2D electron gas within the first gallium nitride layer proximate the polarization layer and forming a 2D hole gas within the second gallium nitride layer; and wherein the n-channel transistor is formed proximate the polarization layer intermediate surface and the p-channel transistor is formed proximate the second gallium nitride layer.
18. The method of claim 17, further including forming a recess in the second gallium nitride layer to disrupt a portion of the 2D hole gas.
19. The method of claim 11, wherein forming the layered structure includes forming a 2D electron gas within the first gallium nitride layer proximate the polarization layer and forming a 2D hole gas within the second gallium nitride layer; and wherein the p-channel transistor is formed proximate the polarization layer intermediate surface and the n-channel transistor is formed proximate the first gallium nitride layer.
20. The method of claim 19, further including forming a recess in the first gallium nitride layer to disrupt a portion of the 2D electron gas.
21. An electronic system, comprising:
a board; and
a microelectronic device attached to the board, wherein the microelectronic device includes at least one CMOS circuit structure comprising:
a layered structure including a first gallium nitride layer and a second gallium nitride layer separated by a polarization layer, wherein the layered structure includes an polarization layer intermediate surface;
one of a p-channel transistor and an n-channel transistor formed proximate the polarization layer intermediate surface; and the other of the p-channel transistor and an n-channel transistor formed on one of the first gallium nitride layer and the second gallium nitride layer.
22. The electronic system of claim 21, wherein the layered structure includes a 2D electron gas within the first gallium nitride layer proximate the polarization layer and a 2D hole gas within the second gallium nitride layer; and wherein the n-channel transistor is formed proximate the polarization layer intermediate surface and the p-channel transistor is formed proximate the second gallium nitride layer.
23. The electronic system of claim 22, further including a recess in the second gallium nitride layer disrupting a portion of the 2D hole gas.
24. The electronic system of claim 21 , wherein the layered structure includes a 2D electron gas within the first gallium nitride layer proximate the polarization layer and a 2D hole gas within the second gallium nitride layer; and wherein the p-channel transistor is formed proximate the polarization layer intermediate surface and the n-channel transistor is formed proximate the first gallium nitride layer.
25. The electronic system of claim 24, further including a recess in the first gallium nitride layer disrupting a portion of the 2D electron gas.
PCT/US2014/066115 2014-11-18 2014-11-18 Cmos circuits using n-channel and p-channel gallium nitride transistors WO2016080961A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020177011446A KR102333752B1 (en) 2014-11-18 2014-11-18 Cmos circuits using n-channel and p-channel gallium nitride transistors
EP14906448.7A EP3221886A4 (en) 2014-11-18 2014-11-18 Cmos circuits using n-channel and p-channel gallium nitride transistors
PCT/US2014/066115 WO2016080961A1 (en) 2014-11-18 2014-11-18 Cmos circuits using n-channel and p-channel gallium nitride transistors
US15/519,277 US10573647B2 (en) 2014-11-18 2014-11-18 CMOS circuits using n-channel and p-channel gallium nitride transistors
CN201480082938.0A CN107078098B (en) 2014-11-18 2014-11-18 CMOS circuit using N-channel and P-channel gallium nitride transistors
TW104133384A TWI673829B (en) 2014-11-18 2015-10-12 Cmos circuits using n-channel and p-channel gallium nitride transistors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2014/066115 WO2016080961A1 (en) 2014-11-18 2014-11-18 Cmos circuits using n-channel and p-channel gallium nitride transistors

Publications (1)

Publication Number Publication Date
WO2016080961A1 true WO2016080961A1 (en) 2016-05-26

Family

ID=56014321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/066115 WO2016080961A1 (en) 2014-11-18 2014-11-18 Cmos circuits using n-channel and p-channel gallium nitride transistors

Country Status (6)

Country Link
US (1) US10573647B2 (en)
EP (1) EP3221886A4 (en)
KR (1) KR102333752B1 (en)
CN (1) CN107078098B (en)
TW (1) TWI673829B (en)
WO (1) WO2016080961A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9559012B1 (en) * 2013-09-30 2017-01-31 Hrl Laboratories, Llc Gallium nitride complementary transistors
CN109309090A (en) * 2017-07-28 2019-02-05 新唐科技股份有限公司 Semiconductor device and method for manufacturing the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150041820A1 (en) * 2013-08-12 2015-02-12 Philippe Renaud Complementary gallium nitride integrated circuits and methods of their fabrication
US11437504B2 (en) * 2017-09-29 2022-09-06 Intel Corporation Complementary group III-nitride transistors with complementary polarization junctions
US11183613B2 (en) 2017-09-29 2021-11-23 Intel Corporation Group III-nitride light emitting devices including a polarization junction
WO2019066908A1 (en) 2017-09-29 2019-04-04 Intel Corporation Group iii-nitride polarization junction diodes
WO2019066914A1 (en) 2017-09-29 2019-04-04 Intel Corporation Tunnel polarization junction iii-n transistors
US10192819B1 (en) 2017-11-16 2019-01-29 Globalfoundries Inc. Integrated circuit structure incorporating stacked field effect transistors
US10090193B1 (en) * 2017-11-16 2018-10-02 Globalfoundries Inc. Integrated circuit structure incorporating a stacked pair of field effect transistors and a buried interconnect and method
US10304832B1 (en) 2017-11-16 2019-05-28 Globalfoundries Inc. Integrated circuit structure incorporating stacked field effect transistors and method
US11791221B2 (en) * 2019-02-22 2023-10-17 Intel Corporation Integration of III-N transistors and semiconductor layer transfer
JP6679036B1 (en) * 2019-11-29 2020-04-15 株式会社パウデック Diode, method of manufacturing diode, and electric device
CN113571516B (en) * 2020-04-29 2024-02-06 广东致能科技有限公司 III-nitride semiconductor integrated circuit structure, manufacturing method and application thereof
US12113061B2 (en) * 2020-05-04 2024-10-08 Massachusetts Institute Of Technology Semiconductor device with linear capacitance
US11522077B2 (en) * 2020-05-27 2022-12-06 Taiwan Semiconductor Manufacturing Company, Ltd. Integration of p-channel and n-channel E-FET III-V devices with optimization of device performance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240778A (en) * 1985-08-16 1987-02-21 Fujitsu Ltd Complementary semiconductor device
US5847419A (en) * 1996-09-17 1998-12-08 Kabushiki Kaisha Toshiba Si-SiGe semiconductor device and method of fabricating the same
US20130043485A1 (en) * 2011-08-16 2013-02-21 Advanced Power Device Research Association GaN-BASED SEMICONDUCTOR DEVICE
US20140091310A1 (en) * 2012-09-28 2014-04-03 Samsung Electronics Co., Ltd. Semiconductor device using 2-dimensional electron gas and 2-dimensional hole gas and method of manufacturing the semiconductor device
US20140264380A1 (en) * 2013-03-15 2014-09-18 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Complementary Field Effect Transistors Using Gallium Polar and Nitrogen Polar III-Nitride Material

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2689683B1 (en) * 1992-04-07 1994-05-20 Thomson Composants Microondes SEMICONDUCTOR DEVICE WITH COMPLEMENTARY TRANSISTORS.
JPH06240778A (en) * 1993-02-15 1994-08-30 Sekisui House Ltd Attic party wall panel
US5818078A (en) 1994-08-29 1998-10-06 Fujitsu Limited Semiconductor device having a regrowth crystal region
JP2907128B2 (en) 1996-07-01 1999-06-21 日本電気株式会社 Field effect transistor and method for manufacturing the same
JP3813740B2 (en) 1997-07-11 2006-08-23 Tdk株式会社 Substrates for electronic devices
FR2769924B1 (en) 1997-10-20 2000-03-10 Centre Nat Rech Scient PROCESS FOR MAKING AN EPITAXIAL LAYER OF GALLIUM NITRIDE, EPITAXIAL LAYER OF GALLIUM NITRIDE AND OPTOELECTRONIC COMPONENT PROVIDED WITH SUCH A LAYER
US6608327B1 (en) 1998-02-27 2003-08-19 North Carolina State University Gallium nitride semiconductor structure including laterally offset patterned layers
JP4540146B2 (en) 1998-12-24 2010-09-08 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
JP3555500B2 (en) 1999-05-21 2004-08-18 豊田合成株式会社 Group III nitride semiconductor and method of manufacturing the same
JP4667556B2 (en) 2000-02-18 2011-04-13 古河電気工業株式会社 Vertical GaN-based field effect transistor, bipolar transistor and vertical GaN-based field effect transistor manufacturing method
US6261929B1 (en) 2000-02-24 2001-07-17 North Carolina State University Methods of forming a plurality of semiconductor layers using spaced trench arrays
JP2002249400A (en) 2001-02-22 2002-09-06 Mitsubishi Chemicals Corp Method for manufacturing compound semiconductor single crystal and utilization thereof
US20040029365A1 (en) 2001-05-07 2004-02-12 Linthicum Kevin J. Methods of fabricating gallium nitride microelectronic layers on silicon layers and gallium nitride microelectronic structures formed thereby
EP1403912A4 (en) 2001-06-04 2009-08-26 Toyoda Gosei Kk Method of producing iii nitride compound semiconductor
JP2003069010A (en) 2001-08-24 2003-03-07 Sharp Corp Semiconductor device and method of manufacturing the same
JP2003077847A (en) 2001-09-06 2003-03-14 Sumitomo Chem Co Ltd Manufacturing method of 3-5 compound semiconductor
JP5194334B2 (en) 2004-05-18 2013-05-08 住友電気工業株式会社 Method for manufacturing group III nitride semiconductor device
JP4571476B2 (en) 2004-10-18 2010-10-27 ローム株式会社 Manufacturing method of semiconductor device
US7834380B2 (en) 2004-12-09 2010-11-16 Panasonic Corporation Field effect transistor and method for fabricating the same
JP4697397B2 (en) 2005-02-16 2011-06-08 サンケン電気株式会社 Composite semiconductor device
US20060197129A1 (en) 2005-03-03 2006-09-07 Triquint Semiconductor, Inc. Buried and bulk channel finFET and method of making the same
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9153645B2 (en) 2005-05-17 2015-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
JP4751150B2 (en) 2005-08-31 2011-08-17 株式会社東芝 Nitride semiconductor devices
JP2007165431A (en) 2005-12-12 2007-06-28 Nippon Telegr & Teleph Corp <Ntt> Field effect transistor, and method of fabrication same
SG170094A1 (en) 2006-03-10 2011-04-29 Stc Unm Pulsed growth of gan nanowires and applications in group iii nitride semiconductor substrate materials and devices
US7777250B2 (en) 2006-03-24 2010-08-17 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
JP5179023B2 (en) 2006-05-31 2013-04-10 パナソニック株式会社 Field effect transistor
JP2008004720A (en) 2006-06-22 2008-01-10 Nippon Telegr & Teleph Corp <Ntt> Hetero-structure field effect transistor using nitride semiconductor
US7803690B2 (en) 2006-06-23 2010-09-28 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxy silicon on insulator (ESOI)
US8188573B2 (en) 2006-08-31 2012-05-29 Industrial Technology Research Institute Nitride semiconductor structure
US8173551B2 (en) 2006-09-07 2012-05-08 Taiwan Semiconductor Manufacturing Co., Ltd. Defect reduction using aspect ratio trapping
US20080070355A1 (en) 2006-09-18 2008-03-20 Amberwave Systems Corporation Aspect ratio trapping for mixed signal applications
US8502263B2 (en) 2006-10-19 2013-08-06 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
US7692198B2 (en) 2007-02-19 2010-04-06 Alcatel-Lucent Usa Inc. Wide-bandgap semiconductor devices
JP2008305816A (en) 2007-06-05 2008-12-18 Mitsubishi Electric Corp Semiconductor device and manufacturing method therefor
US20090278233A1 (en) 2007-07-26 2009-11-12 Pinnington Thomas Henry Bonded intermediate substrate and method of making same
JP5348364B2 (en) 2007-08-27 2013-11-20 サンケン電気株式会社 Heterojunction field effect semiconductor device
US8680580B2 (en) 2007-11-19 2014-03-25 Renesas Electronics Corporation Field effect transistor and process for manufacturing same
JP4784609B2 (en) 2008-01-21 2011-10-05 Tdk株式会社 Substrates for electronic devices
US8519438B2 (en) 2008-04-23 2013-08-27 Transphorm Inc. Enhancement mode III-N HEMTs
US7952150B1 (en) 2008-06-05 2011-05-31 Rf Micro Devices, Inc. Enhancement mode MOSFET and depletion mode FET on a common group III-V substrate
US8309987B2 (en) 2008-07-15 2012-11-13 Imec Enhancement mode semiconductor device
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
CN101853808B (en) 2008-08-11 2014-01-29 台湾积体电路制造股份有限公司 Method of forming a circuit structure
US8367520B2 (en) 2008-09-22 2013-02-05 Soitec Methods and structures for altering strain in III-nitride materials
US20100140735A1 (en) 2008-12-10 2010-06-10 Epir Technologies, Inc. Nanostructures for dislocation blocking in group ii-vi semiconductor devices
WO2010074275A1 (en) 2008-12-26 2010-07-01 日本電気株式会社 High electron mobility transistor, method for producing high electron mobility transistor, and electronic device
JP5469098B2 (en) * 2009-01-22 2014-04-09 パナソニック株式会社 Field effect transistor and manufacturing method thereof
US20100219452A1 (en) 2009-02-27 2010-09-02 Brierley Steven K GaN HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) STRUCTURES
US8507304B2 (en) 2009-07-17 2013-08-13 Applied Materials, Inc. Method of forming a group III-nitride crystalline film on a patterned substrate by hydride vapor phase epitaxy (HVPE)
JP5529595B2 (en) 2009-07-30 2014-06-25 住友電気工業株式会社 Semiconductor device and manufacturing method thereof
JP5609055B2 (en) 2009-10-02 2014-10-22 富士通株式会社 Compound semiconductor device and manufacturing method thereof
KR20120098666A (en) 2009-11-26 2012-09-05 스미또모 가가꾸 가부시키가이샤 Semiconductor substrate and method for manufacturing semiconductor substrate
JP5590874B2 (en) 2009-12-18 2014-09-17 パナソニック株式会社 Nitride semiconductor device
JP5505698B2 (en) 2010-02-01 2014-05-28 日本電信電話株式会社 Semiconductor device
US20110210377A1 (en) * 2010-02-26 2011-09-01 Infineon Technologies Austria Ag Nitride semiconductor device
US9479225B2 (en) 2010-05-13 2016-10-25 Qualcomm Incorporated Resonance detection and control within a wireless power system
GB2482308A (en) * 2010-07-28 2012-02-01 Univ Sheffield Super junction silicon devices
KR102065115B1 (en) 2010-11-05 2020-01-13 삼성전자주식회사 High Electron Mobility Transistor having E-mode and method of manufacturing the same
US8709921B2 (en) 2010-11-15 2014-04-29 Applied Materials, Inc. Method for forming a semiconductor device using selective epitaxy of group III-nitride
US8383471B1 (en) 2011-04-11 2013-02-26 Hrl Laboratories, Llc Self aligned sidewall gate GaN HEMT
TWI587512B (en) 2011-05-16 2017-06-11 Renesas Electronics Corp Field effect transistor and semiconductor device
US8835988B2 (en) 2011-06-06 2014-09-16 Eta Semiconductor Inc. Hybrid monolithic integration
TW201306235A (en) 2011-06-10 2013-02-01 Sumitomo Chemical Co Semiconductor device, semiconductor substrate, method for making a semiconductor substrate, and method for making a semiconductor device
WO2013005372A1 (en) 2011-07-01 2013-01-10 パナソニック株式会社 Semiconductor device
US9087741B2 (en) 2011-07-11 2015-07-21 International Business Machines Corporation CMOS with dual raised source and drain for NMOS and PMOS
US8507920B2 (en) * 2011-07-11 2013-08-13 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structure and method of forming the same
JP2014527302A (en) 2011-08-17 2014-10-09 ラムゴス インコーポレイテッド Vertical field effect transistor on oxide semiconductor substrate and method for manufacturing the same
JP5757195B2 (en) 2011-08-23 2015-07-29 セイコーエプソン株式会社 Semiconductor device, electro-optical device, power conversion device, and electronic apparatus
US20130105817A1 (en) 2011-10-26 2013-05-02 Triquint Semiconductor, Inc. High electron mobility transistor structure and method
KR101890749B1 (en) 2011-10-27 2018-08-23 삼성전자주식회사 Electrode structure, gallium nitride based semiconductor device including the same and methods of manufacturing the same
US8841703B2 (en) 2011-10-31 2014-09-23 Taiwan Semiconductor Manufacturing Company, Ltd. High electron mobility transistor and method of forming the same
JP5953706B2 (en) 2011-11-02 2016-07-20 富士通株式会社 Compound semiconductor device and manufacturing method thereof
US8530978B1 (en) 2011-12-06 2013-09-10 Hrl Laboratories, Llc High current high voltage GaN field effect transistors and method of fabricating same
WO2013095343A1 (en) 2011-12-19 2013-06-27 Intel Corporation Group iii-n nanowire transistors
KR101608494B1 (en) 2011-12-19 2016-04-01 인텔 코포레이션 Group iii-n transistors for system on chip(soc) architecture integrating power management and radio frequency circuits
KR101779031B1 (en) 2011-12-19 2017-09-18 인텔 코포레이션 A vertical transistor and a method of fabricating the same, and a high voltage transistor
US9153583B2 (en) 2011-12-20 2015-10-06 Intel Corporation III-V layers for N-type and P-type MOS source-drain contacts
US9000464B2 (en) 2012-03-01 2015-04-07 Design Express Limited Semiconductor structure for substrate separation and method for manufacturing the same
US8836016B2 (en) 2012-03-08 2014-09-16 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structures and methods with high mobility and high energy bandgap materials
US9111905B2 (en) 2012-03-29 2015-08-18 Taiwan Semiconductor Manufacturing Company, Ltd. High electron mobility transistor and method of forming the same
US9142649B2 (en) 2012-04-23 2015-09-22 United Microelectronics Corp. Semiconductor structure with metal gate and method of fabricating the same
US20130313561A1 (en) * 2012-05-25 2013-11-28 Triquint Semiconductor, Inc. Group iii-nitride transistor with charge-inducing layer
JP5972065B2 (en) 2012-06-20 2016-08-17 富士フイルム株式会社 Thin film transistor manufacturing method
US8772786B2 (en) 2012-07-13 2014-07-08 Raytheon Company Gallium nitride devices having low ohmic contact resistance
US8912570B2 (en) 2012-08-09 2014-12-16 Taiwan Semiconductor Manufacturing Company, Ltd. High electron mobility transistor and method of forming the same
US9583574B2 (en) 2012-09-28 2017-02-28 Intel Corporation Epitaxial buffer layers for group III-N transistors on silicon substrates
US9099490B2 (en) 2012-09-28 2015-08-04 Intel Corporation Self-aligned structures and methods for asymmetric GaN transistors and enhancement mode operation
US9064709B2 (en) 2012-09-28 2015-06-23 Intel Corporation High breakdown voltage III-N depletion mode MOS capacitors
JP2014078653A (en) 2012-10-12 2014-05-01 Waseda Univ Group iii nitride semiconductor layer manufacturing method
EP2743965B1 (en) 2012-12-13 2015-07-08 Imec Method for manufacturing semiconductor devices
US9196709B2 (en) 2013-02-01 2015-11-24 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for forming semiconductor regions in trenches
US9331244B2 (en) 2013-02-25 2016-05-03 Sensor Electronic Technology, Inc. Semiconductor structure with inhomogeneous regions
KR102036349B1 (en) * 2013-03-08 2019-10-24 삼성전자 주식회사 High electron mobility transistors
US9012261B2 (en) 2013-03-13 2015-04-21 Intermolecular, Inc. High productivity combinatorial screening for stable metal oxide TFTs
US9129889B2 (en) 2013-03-15 2015-09-08 Semiconductor Components Industries, Llc High electron mobility semiconductor device and method therefor
JP5954831B2 (en) 2013-03-26 2016-07-20 トヨタ自動車株式会社 Manufacturing method of semiconductor device
JP6179266B2 (en) 2013-08-12 2017-08-16 富士通株式会社 Semiconductor device and manufacturing method of semiconductor device
US20150041820A1 (en) * 2013-08-12 2015-02-12 Philippe Renaud Complementary gallium nitride integrated circuits and methods of their fabrication
GB2517697A (en) 2013-08-27 2015-03-04 Ibm Compound semiconductor structure
TWI521664B (en) 2013-09-03 2016-02-11 瑞昱半導體股份有限公司 Metal trench de-coupling capacitor structure and method for forming metal trench de-coupling capacitor structure
WO2015047355A1 (en) 2013-09-27 2015-04-02 Intel Corporation Integration of iii-v devices on si wafers
US9324802B2 (en) * 2013-10-31 2016-04-26 Infineon Technologies Austria Spacer supported lateral channel FET
US9455342B2 (en) 2013-11-22 2016-09-27 Cambridge Electronics, Inc. Electric field management for a group III-nitride semiconductor device
US9640422B2 (en) 2014-01-23 2017-05-02 Intel Corporation III-N devices in Si trenches
WO2015125471A1 (en) 2014-02-21 2015-08-27 パナソニック株式会社 Field-effect transistor
JP6302303B2 (en) 2014-03-17 2018-03-28 株式会社東芝 Semiconductor light emitting device
US9331076B2 (en) 2014-05-02 2016-05-03 International Business Machines Corporation Group III nitride integration with CMOS technology
US9496379B2 (en) 2014-10-20 2016-11-15 International Business Machines Corporation Method and structure for III-V FinFET
US10243069B2 (en) * 2014-10-30 2019-03-26 Intel Corporation Gallium nitride transistor having a source/drain structure including a single-crystal portion abutting a 2D electron gas
WO2016209263A1 (en) 2015-06-26 2016-12-29 Intel Corporation GALLIUM NITRIDE (GaN) TRANSISTOR STRUCTURES ON A SUBSTRATE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240778A (en) * 1985-08-16 1987-02-21 Fujitsu Ltd Complementary semiconductor device
US5847419A (en) * 1996-09-17 1998-12-08 Kabushiki Kaisha Toshiba Si-SiGe semiconductor device and method of fabricating the same
US20130043485A1 (en) * 2011-08-16 2013-02-21 Advanced Power Device Research Association GaN-BASED SEMICONDUCTOR DEVICE
US20140091310A1 (en) * 2012-09-28 2014-04-03 Samsung Electronics Co., Ltd. Semiconductor device using 2-dimensional electron gas and 2-dimensional hole gas and method of manufacturing the semiconductor device
US20140264380A1 (en) * 2013-03-15 2014-09-18 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Complementary Field Effect Transistors Using Gallium Polar and Nitrogen Polar III-Nitride Material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3221886A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9559012B1 (en) * 2013-09-30 2017-01-31 Hrl Laboratories, Llc Gallium nitride complementary transistors
CN109309090A (en) * 2017-07-28 2019-02-05 新唐科技股份有限公司 Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
KR102333752B1 (en) 2021-12-01
TW201630123A (en) 2016-08-16
US20170243866A1 (en) 2017-08-24
CN107078098B (en) 2021-04-06
TWI673829B (en) 2019-10-01
US10573647B2 (en) 2020-02-25
EP3221886A1 (en) 2017-09-27
EP3221886A4 (en) 2018-07-11
KR20170084044A (en) 2017-07-19
CN107078098A (en) 2017-08-18

Similar Documents

Publication Publication Date Title
US10573647B2 (en) CMOS circuits using n-channel and p-channel gallium nitride transistors
US11929435B2 (en) Ferroelectric gate stack for band-to-band tunneling reduction
US10998445B2 (en) Interlayer dielectric for non-planar transistors
KR102238547B1 (en) Source/drain regrowth for low contact resistance to 2d electron gas in gallium nitride transistors
CN105723514B (en) dual strained cladding layers for semiconductor devices
TWI603476B (en) Strained channel region transistors employing source and drain stressors and systems including the same
US10056456B2 (en) N-channel gallium nitride transistors
US20190058041A1 (en) Gallium nitride voltage regulator
WO2018063399A1 (en) Layered spacer formation for ultrashort channel lengths and staggered field plates
EP3437122B1 (en) Nanowire for transistor integration
US20170162693A1 (en) Apparatus and methods to create microelectronic device isolation by catalytic oxide formation
US12033896B2 (en) Isolation wall stressor structures to improve channel stress and their methods of fabrication
US20200287036A1 (en) Source to channel junction for iii-v metal-oxide-semiconductor field effect transistors (mosfets)
WO2017111831A1 (en) Stackable switching device
WO2018182664A1 (en) Gate for a transistor
WO2017111829A1 (en) Thin film switching device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906448

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15519277

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014906448

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014906448

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177011446

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE