WO2016080344A1 - 絞り缶用鋼板及びその製造方法 - Google Patents

絞り缶用鋼板及びその製造方法 Download PDF

Info

Publication number
WO2016080344A1
WO2016080344A1 PCT/JP2015/082114 JP2015082114W WO2016080344A1 WO 2016080344 A1 WO2016080344 A1 WO 2016080344A1 JP 2015082114 W JP2015082114 W JP 2015082114W WO 2016080344 A1 WO2016080344 A1 WO 2016080344A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
rolled steel
cold
less
steel plate
Prior art date
Application number
PCT/JP2015/082114
Other languages
English (en)
French (fr)
Inventor
濃野 通博
山田 輝昭
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016515155A priority Critical patent/JP6037084B2/ja
Priority to CN201580061957.XA priority patent/CN107109558B/zh
Publication of WO2016080344A1 publication Critical patent/WO2016080344A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a steel plate for drawn cans and a method for producing the same, and more particularly to a high-strength cold-rolled steel plate for drawn cans and a method for producing the same.
  • Battery cans such as single 1 to single 5 batteries (batteries of international standard size 20 to 1), button batteries, large hybrid batteries, and various containers are cold-rolled steel sheets and plated steel sheets that have been plated as required , Called cold-rolled steel sheet).
  • cold-rolled steel sheets used for drawing have been required to have further improved strength in order to realize a thinner drawn can.
  • the dimensions of the external shape of the battery are already determined according to the standard. Therefore, in order to increase the filling amount of the active material of the battery, it is necessary to increase the internal volume of the battery (the internal volume of the throttle can).
  • the thickness (gauge down) of the cold-rolled steel sheet for the drawn can In order to increase the inner volume of the drawn can, it is necessary to reduce the thickness (gauge down) of the cold-rolled steel sheet for the drawn can.
  • the strength of the drawn can may be insufficient.
  • the can bottom of the drawn can cannot be expected to be hardened because the amount of processing strain during drawing is small. Therefore, it is necessary to increase the strength of the cold-rolled steel sheet in order to increase the strength of the drawn can, particularly the internal / external pressure resistance at the bottom of the can.
  • cold-rolled steel sheets for drawn cans are required to have excellent press formability and high strength.
  • increasing the press formability and increasing the strength are technical problems that are mutually contradictory.
  • this cold-rolled steel sheet is expected to have a decrease in total elongation EL, that is, a decrease in press formability.
  • the strength of the cold-rolled steel sheet is increased, when multi-stage processing is performed as drawing, the amount of processing strain becomes large at the upper part of the can of the drawn can. There is sex.
  • it is not easy to achieve both high strength and excellent press formability.
  • stretcher strain occurs due to the yield point elongation when the steel sheet is deformed (steady deformation that proceeds with a deformation resistance smaller than the yield point immediately after yielding).
  • This stretcher strain can be suppressed by performing temper rolling (skin pass rolling) in which the steel sheet is rolled at a light reduction rate.
  • temper rolling skin pass rolling
  • the effect of suppressing the stretcher strain is reduced with the passage of time in a steel sheet that undergoes strain age hardening.
  • Nb Nb-added ultra-low carbon steel
  • B boron
  • Nb-SULC Nb-added ultra-low carbon steel
  • Nb-SULC Nb-added ultra-low carbon steel
  • Nb-SULC Nb-added ultra-low carbon steel
  • the steel components are limited, so it is difficult to increase the strength of the steel.
  • B-added low carbon steel B is combined with nitrogen (N) in the steel, so that age hardening due to N is suppressed.
  • This BAF-OA requires a processing time of about one week in order to perform the above-mentioned soaking and slow cooling. Therefore, when BAF-OA is performed, the productivity of cold-rolled steel sheets for drawn cans is significantly reduced. Therefore, if a cold-rolled steel sheet for a drawing can having high strength, excellent press formability, and excellent non-St-St properties can be produced without performing BAF-OA, it is very useful in the industry.
  • the cold-rolled steel sheet for drawn cans is also excellent in shape freezeability.
  • a drawn can having the desired shape cannot be obtained, the dimensional accuracy is lowered, and distortion or excess of the drawn can occurs.
  • the internal / external pressure strength is reduced, or the contact electrical resistance between the battery can and the electrode terminal plate is increased. Therefore, the cold-rolled steel sheet for drawn cans has high strength, excellent press formability, excellent non-St-St properties, and excellent shape freezing properties to increase dimensional accuracy after press forming. It has been demanded.
  • Patent Document 1 discloses a steel plate for a drawing can.
  • This steel plate for drawn cans has C: ⁇ 0.0030 wt%, Si: ⁇ 0.05 wt%, Mn: ⁇ 0.5 wt%, P: ⁇ 0.03 wt%, S: ⁇ 0.020 wt%, solAl: 0 0.01 to 0.100 wt%, N: ⁇ 0.0070 wt%, Ti: 0.01 to 0.050 wt%, Nb: 0.008 to 0.030 wt%, B: 0.0002 to 0.0007 wt%, balance Is a composition composed of Fe and inevitable elements. Is 10.0 or more, and HR30T is 47 to 57.
  • Patent Document 1 describes that the steel plate for a drawn can can can suppress surface defects.
  • Patent Document 2 discloses a steel plate for a drawing can.
  • the crystal orientation of the steel sheet is randomized by setting the heating rate during recrystallization annealing to 5 ° C / sec or more in the range of thickness t 0.15 to 0.60 mm, ⁇ r value +0.15 to -0.08. It was made to be characterized.
  • Patent Document 2 describes that the steel plate for a drawn can is particularly excellent in earring properties.
  • Patent Documents 1 and 2 disclose steel plates for drawn cans, but the steel plates for drawn cans disclosed in Patent Documents 1 and 2 are soft cold-rolled steel plates having a low C content. Therefore, when this steel plate is gauged down, the internal and external pressure strength of the drawn can may decrease. Moreover, in patent document 1, since ultra-low carbon steel is used, it is not necessary to consider the age hardening resulting from the solid solution C and the generation of stretcher strain. In Patent Document 2, it is difficult to suppress stretcher strain when BAF-OA is omitted.
  • Patent Documents 1 and 2 disclose that the strength of a cold-rolled steel sheet is increased in order to achieve gauge down, press formability and non-St-St properties are improved in addition to the increase in strength, and There is no disclosure or suggestion of improving shape freezeability in order to increase the dimensional accuracy after press molding. That is, in the prior art, it is possible to suppress stretcher strain after aging treatment in a steel sheet for a drawn can without securing box strength by having a high C content of more than 0.15%, and without box annealing. There wasn't. In addition, the tin content specified in JIS G3303 has a C content of 0.13% or less.
  • the present invention has been made in view of the above circumstances, and it is an object to provide a cold-rolled steel sheet for a drawn can that has high strength, excellent press formability, excellent non-St-St properties, and excellent shape freezing properties.
  • a steel plate for a drawing can according to one embodiment of the present invention has, as a chemical component, C: more than 0.150 to 0.250%, Sol. Al: 0.005 to 0.100%, B: 0.0005 to 0.02%, Si: 0.50% or less, Mn: 0.70% or less, P: 0.070% or less, S: 0.00.
  • N 0.0080% or less
  • Nb 0.003% or less
  • Ti 0.003% or less
  • the balance being Fe and impurities
  • the boron content and nitrogen in the chemical components Content is mass% and satisfies 0.4 ⁇ B / N ⁇ 2.5
  • the steel sheet contains ferrite and pearlite as a microstructure
  • the steel sheet is aged at 100 ° C. for 1 hour.
  • Yield strength obtained from a tensile test in which the tensile direction performed after the treatment is parallel to the rolling direction is YP in unit MPa, total elongation is EL in unit%, yield point elongation is YP-EL in unit%, The yield ratio is YR in unit%, and the work hardening amount is W in unit MPa.
  • the YP is 310 to 370 MPa
  • the EL is 24 to 30%
  • the YP-EL is 0%
  • the YR is 68 to 73%
  • the WH is 45 to 70 MPa. is there.
  • a value obtained by adding the YP and the WH may be more than 355 to 440 MPa.
  • a steelmaking step for obtaining a slab having the chemical component, and heating the slab to 1000 ° C. or more, Finish rolling at 950 ° C., cooling after finish rolling, winding at 500 to 750 ° C.
  • a cold-rolled steel sheet for a drawn can having high strength, excellent press formability, excellent non-St-St property, and excellent shape freezing property.
  • This cold-rolled steel sheet is excellent in press formability and shape freezing property, suppresses the generation of stretcher strain, and can be gauged down.
  • FIG. 5 is a tensile test result after accelerated aging treatment of a conventional cold rolled steel sheet for drawn cans, and is a stress-strain curve showing an enlarged vicinity of the yield point.
  • FIG. 5 is a tensile test result after accelerated aging treatment of a cold-rolled steel sheet for drawn cans according to an embodiment of the present invention, and is a stress-strain curve showing an enlarged vicinity of the yield point.
  • the present inventors investigated and examined the characteristics of steel plates for drawn cans (hereinafter referred to as cold rolled steel plates), and obtained the following findings (i) to (v). First, findings (i) and (ii) will be described.
  • the steel is solid-solution strengthened by the solid solution C in the steel, and the yield strength YP of the cold-rolled steel sheet is increased.
  • the yield strength YP in the rolling direction (L direction) after natural aging is 310 MPa or higher, which is higher than the yield strength of the conventional cold rolled steel sheet for drawn cans. Therefore, if this cold-rolled steel sheet is used, a drawn can excellent in internal and external pressure strength can be obtained even if the gauge is down.
  • the average temperature increase rate of CAL continuous annealing
  • the heat temperature is set to the two-phase temperature range of ferrite and austenite (for example, 750 to 820 ° C.) and the subsequent average cooling rate between 500 to 400 ° C. is 5 to 80 ° C./second, Even if C is present, a cold-rolled steel sheet having excellent non-St-St properties can be obtained.
  • Fig. 1 shows a stress-strain diagram near the yield point of a conventional cold-rolled steel sheet for drawn cans.
  • FIG. 2 shows a stress-strain diagram in the vicinity of the yield point (0.2% proof stress) of the cold-rolled steel sheet for drawn cans according to this embodiment.
  • the C content of the cold rolled steel sheet subjected to the tensile test of FIG. 1 is 0.056% by mass, and the C content of the cold rolled steel sheet subjected to the tensile test of FIG. 2 is 0.190% by mass. is there.
  • the cold-rolled steel sheet shown in FIGS. 1 and 2 was manufactured under conditions that satisfy the method for manufacturing a cold-rolled steel sheet according to this embodiment, which will be described later.
  • the cold-rolled steel sheets of FIGS. 1 and 2 were manufactured without performing BAF-OA.
  • a JIS No. 5 tensile test piece having a parallel part parallel to the L direction (rolling direction) was produced.
  • An accelerated aging treatment was performed on the produced tensile test piece.
  • an aging treatment for 1 hour at 100 ° C. was performed on each tensile test piece.
  • This accelerated aging treatment corresponds to an aging at which natural aging is almost saturated.
  • a tensile test was carried out at room temperature (25 ° C.) and in the atmosphere, and the stress-strain diagrams of FIGS. 1 and 2 were obtained.
  • the yield point elongation YP-EL occurs because the dislocation fixation and release due to the Cottrell effect are repeated even after yielding.
  • FIG. 3 is a microstructure image of the L cross section of the cold rolled steel sheet subjected to the tensile test of FIG. 1
  • FIG. 4 is a microstructure image of the L cross section of the cold rolled steel sheet subjected to the tensile test of FIG. is there.
  • the white structure is the ferrite 10 and the black structure is the pearlite 20.
  • the microstructure of the cold-rolled steel sheet of FIGS. 3 and 4 was a structure mainly containing ferrite and pearlite.
  • the cold rolled steel sheet of FIG. 4 having a high C content produced more pearlite than the cold rolled steel sheet of FIG.
  • the cold-rolled steel sheet according to the present embodiment mainly contains ferrite and pearlite as a microstructure, but has more pearlite than a cold-rolled steel sheet having a low C content.
  • the cold-rolled steel sheet according to the present embodiment mainly contains ferrite and pearlite as a microstructure, but has more pearlite than a cold-rolled steel sheet having a low C content.
  • Pearlite is a harder structure than ferrite. Therefore, at the time of deformation, the ferrite is preferentially deformed.
  • the conventional steel sheet is characterized by a low C content.
  • a steel sheet with a high C content such that the C content exceeds 0.150%
  • BAF-OA or the like it is difficult to sufficiently reduce the solute C in the steel.
  • YP-EL is controlled to 0% by controlling the manufacturing conditions to form a structure mainly containing the ferrite and pearlite. It becomes possible to do.
  • the inventors also investigated the relationship between the C content and the work hardening amount WH. And knowledge (iii) was obtained.
  • a value obtained by subtracting the yield strength YP (0.2% yield strength) from the stress at the time of 2% deformation is defined as a work hardening amount WH in unit MPa.
  • the plastically deformed region (work hardened region) has a higher strength (the deformation resistance increases) than the region not plastically deformed (region not work hardened). ). Therefore, during press molding, the progress of deformation is suppressed in the plastically deformed region, and the progress of deformation is promoted in the region of relatively low strength that is not plastically deformed. In this case, during press forming, the region that deforms in the steel sheet sequentially transitions from the work-hardened region to the non-work-hardened region, so that the steel plate is easily deformed along the shape of the press mold. As a result, the shape freezing property after press molding is improved.
  • FIG. 5 shows the relationship between the C content (mass%) of the cold-rolled steel sheet and the work hardening amount WH (%). Note that FIG. 5 was obtained by investigating a cold-rolled steel sheet controlled to have a microstructure mainly containing ferrite and pearlite.
  • the work hardening amount WH increases rapidly as the C content increases. Specifically, when the C content exceeds 0.150%, the work hardening amount WH becomes 45 MPa or more, which shows sufficient shape freezing property. Further, as described above, the C content exceeds 0.150%, and the yield strength YP in the L direction after the accelerated aging treatment is 310 MPa or more. That is, if the C content exceeds 0.150% in addition to the control of the microstructure, among the properties required for cold-rolled steel sheets for drawn cans, strength, non-St-St properties, and shape freezing properties Satisfied.
  • FIG. 6 shows the relationship between the C content (mass%) and the total elongation EL (%) of the cold-rolled steel sheet. This FIG. 6 was obtained by investigating a cold-rolled steel sheet controlled to have a microstructure mainly containing ferrite and pearlite.
  • the total elongation EL decreases as the C content increases.
  • press molding if the total elongation EL is 24% or more, sufficient press moldability can be obtained. Therefore, as shown in FIG. 6, in the cold-rolled steel sheet according to this embodiment, when the C content is 0.250% or less, the total elongation EL is 24% or more, and excellent press formability is obtained.
  • the lower limit of the C content is set to more than 0.150%. That is, in the cold-rolled steel sheet for drawn cans according to this embodiment, the C content is set to more than 0.150 to 0.250%.
  • ⁇ CAL continuous annealing
  • the average heating rate is 10 to 40 ° C./second
  • the annealing temperature is the two-phase region temperature of ferrite and austenite (for example, 750 to 820 ° C.)
  • the average cooling rate is 5 to 80 ° C./second.
  • B combines with N to form a nitride. Therefore, age hardening due to the solid solution N is suppressed, and as a result, the generation of stretcher strain due to the N is also suppressed.
  • the cold-rolled steel sheet for drawn cans according to the present embodiment has C, Sol. Al and B are included, and the balance consists of Fe and impurities.
  • impurities refer to materials mixed from ore, scrap, or production environment as raw materials when industrially manufacturing steel.
  • impurities Si, Mn, P, S, and N are preferably limited as follows in order to sufficiently exhibit the effects of the present embodiment.
  • limit a lower limit and the lower limit of an impurity may be 0%.
  • Carbon (C) is dissolved to increase the strength of the steel. If the strength of the steel increases, the cold rolled steel sheet can be gauged down. If the C content exceeds 0.150%, the yield strength YP in the L direction after accelerated aging treatment is 310 MPa or more, and the work hardening amount WH is 45 MPa, provided that other chemical compositions and manufacturing conditions described later are satisfied. That's it. If the C content is 0.150% or less, the above effect cannot be obtained. On the other hand, if the C content exceeds 0.250%, the hardness of the cold-rolled steel sheet becomes too high, and as shown in FIG. 6, the total elongation EL after natural aging is saturated (after accelerated aging treatment) decreases.
  • the C content is more than 0.150 to 0.250%.
  • C is an austenite forming element.
  • the lower limit of the C content is preferably 0.153%, 0.155%, or 0.160%.
  • the upper limit with preferable C content is less than 0.250%, More preferably, it is 0.225%.
  • Si 0.50% or less Silicon (Si) is an unavoidable impurity. Si reduces the plating adhesion of the cold-rolled steel sheet and the coating adhesion of the cold-rolled steel sheet after canning. Therefore, the Si content is limited to 0.50% or less.
  • the upper limit with preferable Si content is less than 0.50%.
  • the Si content is preferably as low as possible. However, since it is difficult to make the Si content 0% stably industrially, the lower limit of the Si content may be 0.0001%.
  • Mn 0.70% or less
  • Manganese (Mn) is an unavoidable impurity. Mn hardens the cold-rolled steel sheet and lowers the total elongation EL of the cold-rolled steel sheet. Therefore, press formability (drawing workability) is lowered. Further, Mn is an austenite forming element and is not added to the steel in order to control the microstructure in the cold rolled steel sheet according to the present embodiment. When the Mn content is more than 0.70%, it is difficult to obtain the mechanical characteristics peculiar to the steel sheet according to the present embodiment. Therefore, the Mn content is limited to 0.70% or less. The upper limit with preferable Mn content is less than 0.70%. The Mn content is preferably as low as possible. However, since it is difficult to make the Mn content 0% stably industrially, the lower limit of the Mn content may be 0.0001%.
  • Phosphorus (P) is an unavoidable impurity.
  • P generally increases the strength of the cold-rolled steel sheet.
  • the press formability decreases.
  • the secondary work brittleness resistance after forming into a drawn can decreases.
  • brittle fracture may occur due to impact at the time of dropping at a low temperature such as ⁇ 10 ° C., and end portions of the can side wall may brittle fracture due to bending strain. Such a break is referred to as a secondary work brittle crack.
  • the P content is limited to 0.070% or less.
  • the lower limit of the P content may be 0.0001%.
  • S 0.05% or less Sulfur (S) is an unavoidable impurity. S causes brittle cracks in the surface layer of the steel sheet during hot rolling, and causes rough edges in the hot-rolled steel strip. Therefore, the S content is limited to 0.05% or less. The S content is preferably as low as possible. However, since it is difficult to make the S content 0% stably industrially, the lower limit of the S content may be 0.0001%.
  • Al 0.005 to 0.100%
  • Aluminum (Al) deoxidizes steel. Al further enhances the surface quality of the slab during continuous casting. If the Al content is too low, these effects cannot be obtained. On the other hand, if the Al content is too high, the above effect is saturated and the production cost is increased. Therefore, the Al content is 0.005 to 0.100%.
  • the Al content in the cold-rolled steel sheet for drawn cans according to this embodiment is Sol. It means the content of Al (acid-soluble aluminum).
  • N 0.0080% or less Nitrogen (N) is an unavoidable impurity. N combines with Al to form a nitride, change the texture by refining the crystal grains, etc. As a result, the earring property (the height of the can in the circumferential direction of the can that occurs after forming the drawn can) The degree of non-uniformity). N is an element that age-hardens the steel, and therefore reduces the press formability of the cold-rolled steel sheet and generates stretcher strain.
  • the below-described B is contained in the steel, and N is combined with B to form a nitride, thereby suppressing a decrease in earring property due to N, and aging due to solute N Inhibits curing.
  • the N content is limited to 0.0080% or less.
  • the N content is preferably as low as possible.
  • the lower limit of the N content may be 0.0005%.
  • B 0.0005 to 0.02% Boron (B) combines with N to form BN (boron nitride), and reduces solid solution N. Thereby, age hardening by the solid solution N is suppressed. B further randomizes the texture of the cold-rolled steel sheet to bring the r value (Rankford value), which is the plastic strain ratio, closer to 1. Thereby, earring property improves.
  • B is a ferrite-forming element, and is added to control the microstructure in the cold-rolled steel sheet according to the present embodiment. If the B content is less than 0.0005%, these effects cannot be obtained. On the other hand, if the B content exceeds 0.02%, the solid solution B increases and the cold-rolled steel sheet is hardened or the earring properties are lowered. Therefore, the B content is 0.0005 to 0.02%.
  • the lower limit of the B content is preferably 0.0010% or 0.0015%.
  • the contents of B and N are specified in relation to each other.
  • the solute N is excessive in the steel, the steel is age hardened. Therefore, B is contained in steel to form BN.
  • the solid solution B is excessive in the steel, the cold-rolled steel sheet is hardened or the earring properties are lowered. Therefore, it is necessary to define the contents of B and N in relation to each other. Specifically, the B content and the N content in the chemical component must satisfy 0.4 ⁇ B / N ⁇ 2.5 in mass%.
  • the lower limit of the value of B / N is preferably 0.8.
  • niobium (Nb), titanium (Ti), copper (Cu), nickel (Ni), chromium (Cr), and tin (Sn) are also limited. It is preferable. Specifically, in order to sufficiently exhibit the effects of the present embodiment, Nb: 0.003% or less, Ti: 0.003% or less, Cu: 0.5% or less, Ni: 0.5% or less, It is preferable to limit to Cr: 0.3% or less and Sn: 0.05% or less. In particular, Ti forms TiN and affects the formation of the microstructure, so it is preferable to limit as described above.
  • the content of these impurities is preferably as low as possible. However, since it is difficult to make the content of these impurities 0% stably industrially, the lower limit of the content of these impurities may be 0.0001%.
  • the above chemical components may be measured by a general analysis method for steel.
  • the chemical components described above may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Specifically, it can be specified by collecting a granular test piece from the center position of the steel plate and performing chemical analysis under conditions based on a calibration curve prepared in advance.
  • C and S may be measured using a combustion-infrared absorption method, and N may be measured using an inert gas melting-thermal conductivity method.
  • the cold-rolled steel sheet according to the present embodiment mainly includes ferrite and pearlite as a microstructure. Moreover, since BN mentioned above is a fine precipitate and cannot be observed in the case of a low magnification, this BN may be included as a microstructure.
  • BN a fine precipitate and cannot be observed in the case of a low magnification
  • this BN may be included as a microstructure.
  • high strength, excellent press formability, excellent non-St-St property It becomes possible to obtain a cold-rolled steel sheet having excellent shape freezing properties.
  • the above-mentioned ferrite, pearlite, and BN are preferably 95 to 100 area% in total in the microstructure. That is, granular cementite, martensite, retained austenite and the like, which are structures other than ferrite, pearlite, and BN, are preferably limited to less than 5 area% in total.
  • the total area fraction of the structure other than ferrite, pearlite, and BN is preferably as low as possible. Therefore, it is more preferable that the cold-rolled steel sheet according to the present embodiment includes only ferrite, pearlite, and BN as a microstructure.
  • each constituent phase included in the microstructure is defined as follows.
  • Ferrite and ferrite grains are defined as a region having a body-centered cubic structure (bcc) due to diffusion transformation and having a crystal orientation angle difference of 0 to less than 15 °.
  • Martensite and martensite grains have a body-centered cubic structure (bcc) or body-centered tetragonal structure (bct) resulting from a non-diffusion transformation, and are defined as regions where the crystal orientation angle difference is 0 or more and less than 15 °.
  • Cementite is defined as a compound of Fe and C having an orthorhombic structure (Fe 3 C).
  • the pearlite and the pearlite block have a layered structure composed of ferrite and cementite, and are defined as a region in which the crystal orientation angle difference of ferrite in the pearlite is 0 or more and less than 9 °.
  • Granular cementite is defined as cementite not contained in the pearlite block.
  • BN is defined as a compound of B and N having a hexagonal structure or a cubic structure.
  • the above microstructure may be obtained by observing the L cross section (cross section parallel to the rolling direction) of the cold-rolled steel sheet with an optical microscope.
  • the area fraction of each constituent phase may be obtained by image analysis of a microstructural photograph.
  • the yield strength obtained from a tensile test performed after the cold-rolled steel sheet is subjected to an aging treatment (accelerated aging treatment) at 100 ° C. for 1 hour is set to YP in unit MPa, and the total elongation is in units. %, The yield point elongation is YP-EL in unit%, the yield ratio is YR in unit%, and the work hardening amount is in MPa.
  • YP is 310 to 370 MPa
  • EL is 24-30%
  • the WH is 45 to 70 MPa.
  • a tensile test is implemented according to JISZ2241 (2011) in room temperature (25 degreeC) air
  • the yield strength YP 310 to 370 MPa
  • the upper limit of the yield strength YP is not particularly limited. However, if the yield strength YP is too high, press molding becomes difficult, so the yield strength YP may be 370 MPa or less.
  • the yield strength YP is preferably less than 360 MPa.
  • the yield strength YP means 0.2% proof stress.
  • the total elongation EL 24-30% If the total elongation EL is 24% or more, press formability (drawing workability) as a cold-rolled steel sheet for drawn cans can be satisfied.
  • the upper limit of the total elongation EL is not particularly limited because a larger value is preferable. However, since it is difficult to make the total elongation EL more than 30% industrially stable, the upper limit of the total elongation EL may be set to 30%.
  • the total elongation EL means the sum of elastic elongation and permanent elongation.
  • the yield point elongation YP-EL is 0%, steady deformation that proceeds with a deformation resistance smaller than the yield point immediately after yielding can be suppressed, so that the occurrence of stretcher strain can be suppressed.
  • the yield point elongation YP-EL is 0%.
  • the deformation (stress) is smaller than the yield point (0.2% proof stress) immediately after yielding (deformation (stress)). This means that (strain) does not progress.
  • the yield point elongation YP-EL is 0% when stress-strain is observed immediately after yielding (after reaching 0.2% proof stress) without lowering the yield point. It means that the curve indicates work hardening.
  • the yield ratio YR is 68 to 73%, it means that the yield strength YP is preferably controlled with respect to the tensile strength TS. That is, it is possible to allow work hardening from the yield strength YP to the tensile strength TS during press molding while securing a preferable yield strength YP for gauge down. Therefore, it is possible to obtain a cold-rolled steel sheet having high strength, excellent press formability, and excellent shape freezeability.
  • the yield ratio YR means the percentage of the value obtained by dividing the yield strength YP in unit MPa by the tensile strength TS in unit MPa.
  • WH 45-70 MPa If the work hardening amount WH is 45 to 70 MPa, the progress of deformation is suppressed in the plastically deformed region (work hardened region) during press molding, and the region having no relatively plastic deformation (work hardening) with relatively low strength. Since the progress of the deformation is promoted in the non-working region), the region of deformation in the steel sheet sequentially changes from the work-hardened region to the work-hardened region. For this reason, during press molding, the steel sheet is easily deformed along the shape of the press mold, so that the shape freezing property after press molding is improved.
  • a value obtained by adding the yield strength YP and the work hardening amount WH is more than 355 to 440 MPa.
  • the yield strength YP and the work hardening amount WH are preferably controlled, and it is possible to obtain a cold-rolled steel sheet having high strength, excellent press formability, and excellent shape freezing properties. .
  • the cold-rolled steel sheet according to this embodiment includes a Ni plating layer, a Ni diffusion plating layer, a Sn plating layer, and a tin-free steel (TFS) plating layer (with a metal Cr layer) on the surface (on the plate surface) of the cold-rolled steel sheet. At least one of two plating layers including a Cr hydrated oxide layer may be disposed.
  • the manufacturing method of the cold-rolled steel sheet for drawn cans according to the present embodiment includes a step of obtaining a slab (steel making step), a step of obtaining a hot-rolled steel plate (hot-rolling step), and a step of obtaining a primary cold-rolled steel plate (primary cooling). Extending step), a step of obtaining an annealed steel plate (annealing step), and a step of obtaining a temper rolled steel plate (temper rolling).
  • Step making process In the steelmaking process, C: more than 0.150 to 0.250%, Sol. Al: 0.005 to 0.100%, B: 0.0005 to 0.02%, Si: 0.50% or less, Mn: 0.70% or less, P: 0.070% or less, S: 0.00. Contains 0.5% or less, N: 0.0080% or less, Nb: 0.003% or less, Ti: 0.003% or less, with the balance consisting of Fe and impurities, boron content and nitrogen content in chemical components The amount of the molten steel satisfying 0.4 ⁇ B / N ⁇ 2.5 in mass% is manufactured. A slab is manufactured from the manufactured molten steel.
  • the slab may be cast by a casting method such as a normal continuous casting method, an ingot method, or a thin slab casting method.
  • a casting method such as a normal continuous casting method, an ingot method, or a thin slab casting method.
  • the steel may be once cooled to a low temperature (for example, room temperature) and reheated, and then the steel may be hot-rolled, or the steel immediately after casting (cast slab) You may hot-roll continuously.
  • the slab after the steel making process is heated to 1000 ° C or higher (for example, 1000 to 1280 ° C), finish-rolled at 840 to 950 ° C, cooled after finish rolling, and wound at 500 to 750 ° C.
  • 1000 ° C or higher for example, 1000 to 1280 ° C
  • finish-rolled at 840 to 950 ° C cooled after finish rolling
  • wound at 500 to 750 ° C A hot-rolled steel sheet.
  • the coiling temperature CT exceeds 750 ° C., it becomes difficult to control the hot-rolled steel sheet to a microstructure (band structure) suitable for use in a subsequent process, and the finally obtained cold-rolled steel sheet is used in this embodiment. It becomes difficult to control to a specific microstructure. If coiling temperature CT is less than 500 degreeC, the cementite in a hot-rolled steel plate will become a hard structure
  • the primary cold rolled steel sheet having a thickness of 0.15 to 0.50 mm is obtained by subjecting the hot rolled steel sheet after the hot rolling process to primary cold rolling with a cumulative reduction ratio exceeding 80%. Manufacturing.
  • the optimum cold rolling rate of the cold-rolled steel sheet for drawn cans is examined by changing the cold rolling rate, and the in-plane anisotropy ⁇ r of the steel sheet is substantially 0 (specifically, ⁇ r is The cold rolling rate is set so that the range is +0.15 to -0.08. Further, the cold rolling rate is set so that the primary cold-rolled steel sheet has a microstructure (working structure) suitable for use in the subsequent process.
  • the cumulative rolling reduction is set to more than 80%.
  • the lower limit of the cumulative rolling reduction is preferably 84%.
  • the upper limit of the cumulative rolling reduction is not particularly limited.
  • the cumulative rolling reduction is a rolling reduction calculated from the difference between the inlet plate thickness immediately before the first pass and the outlet plate thickness immediately after the final pass in primary cold rolling.
  • the plate thickness of the primary cold-rolled steel plate is preferably 0.151 to 0.526 mm. If the plate thickness exceeds 0.526 mm, it is difficult to obtain excellent earring properties. If the plate thickness is less than 0.151 mm, the plate thickness of the hot-rolled steel plate must be reduced, and in this case, the finishing temperature during the above hot rolling cannot be ensured. Therefore, the thickness of the cold rolled steel sheet is preferably 0.151 to 0.526 mm.
  • the primary cold-rolled steel sheet after the primary cold-rolling process is heated at an average rate of temperature increase of 10 to 40 ° C./second, and is averaged at a two-phase temperature range of ferrite and austenite (for example, 750 to 820 ° C.). Heat annealing is then performed, and continuous annealing is performed under conditions where the average cooling rate between 500 and 400 ° C. is 5 to 80 ° C./second, and an annealed steel sheet is manufactured.
  • the microstructure is preferably controlled.
  • HR average heating rate
  • the work structure of the primary cold-rolled steel sheet is recovered, and recrystallization nuclei are generated in the work structure.
  • the recrystallization process of the processed structure is preferably controlled, so that a microstructure specific to this embodiment can be preferably obtained.
  • this temperature raising process it is more preferable that the temperature of the primary cold-rolled steel sheet is raised at an average temperature rising rate of 500 to 700 ° C. at 15 to 30 ° C./second.
  • the annealing temperature (soaking temperature) ST is the two-phase temperature of ferrite and austenite.
  • a temperature range of 750 to 820 ° C. corresponds to a two-phase temperature of ferrite and austenite.
  • the annealing temperature ST is less than 750 ° C., annealing is performed at a temperature close to the ferrite single-phase region temperature, so that the formation of pearlite is insufficient and the crystal grain size of the ferrite grains is also reduced. For this reason, the microstructure of the present embodiment described above cannot be obtained. In this case, it becomes difficult to obtain desired mechanical characteristics.
  • annealing temperature ST exceeds 820 degreeC, the austenite fraction of the steel plate in annealing becomes excess, and there exists a possibility that EL of the cold-rolled steel plate finally obtained may fall.
  • the annealing temperature ST is 750 ° C. or higher and 820 ° C. or lower, the microstructure is preferably controlled.
  • the holding time at the annealing temperature ST may be 5 to 50 seconds. Considering productivity and material stability, the holding time is preferably 10 to 30 seconds.
  • the steel plate is cooled.
  • the average cooling rate CR between 500 and 400 ° C. is set to 5 to 80 ° C./second. If the average cooling rate CR exceeds 80 ° C./second, the amount of solute C becomes too high. In this case, the yield point elongation YP-EL after the accelerated aging treatment becomes larger than 0%. On the other hand, if the average cooling rate CR is less than 5 ° C./second, the amount of solid solution C becomes too low. In this case, the yield strength YP is less than 310 MPa. If the average cooling rate CR between 500 and 400 ° C.
  • the yield strength YP after the accelerated aging treatment is 310 MPa or more
  • the work hardening amount WH is 45 MPa or more
  • the yield ratio YR is 73% or less. If the average cooling rate CR between 500 and 400 ° C. is 5 to 80 ° C./second, the microstructure is preferably controlled.
  • the lower limit of the average cooling rate CR is preferably 10 ° C./second.
  • the steel sheet is gas-cooled.
  • the upper limit of the gas cooling capacity is about 30 ° C./second. Therefore, the upper limit of the average cooling rate CR is preferably 30 ° C./second.
  • BAF-OA process [Overaging process by box annealing (BAF-OA process)]
  • BAF-OA is not performed. Even if BAF-OA is not performed, the cold-rolled steel sheet of this embodiment has high strength, excellent press formability, excellent non-St-St properties, and excellent shape freezing properties.
  • BAF-OA is performed by the method for manufacturing a cold-rolled steel sheet according to this embodiment, the solid solution C in the steel is reduced and the yield strength YP is less than 310 MPa. Therefore, BAF-OA is not performed in the method for manufacturing a cold-rolled steel sheet according to the present embodiment. In this embodiment, since BAF-OA is not performed, the productivity of cold-rolled steel sheets for drawn cans is significantly increased.
  • temper rolling process In the temper rolling process, an temper rolled steel sheet is manufactured by temper rolling (skin pass rolling) an annealed steel sheet that has not been over-aged after the annealing process at a cumulative reduction of 0.5 to 5.0%. . If the rolling reduction is less than 0.5%, the yield point elongation YP-EL may exceed 0% in the steel sheet after the accelerated aging treatment. If the rolling reduction exceeds 5.0%, the total elongation EL becomes less than 24%, and the press formability decreases. When the rolling reduction is 0.5 to 5.0%, excellent non-St-St properties and press formability can be obtained.
  • the temper rolled steel sheet after the temper rolling process has a thickness of 0.15 to 0.50 mm.
  • Ni plating treatment Ni diffusion plating treatment, Sn plating treatment, and TFS plating treatment are performed on the surface of the temper rolled steel plate (on the plate surface). At least one of the above may be implemented.
  • a Ni plating layer, a Ni diffusion plating layer, a Sn plating layer, and a TFS plating layer are provided on the surface of the temper rolled steel sheet. At least one of which is formed.
  • the Ni diffusion plating layer is formed by performing a diffusion heat treatment on a steel plate subjected to Ni plating.
  • the preferable thickness of the Ni plating layer formed on the surface of the temper rolled steel sheet is 0.5 to 5.0 ⁇ m (the amount of Ni deposited is 4.45 to 44.5 g / m 2). ).
  • microstructure specific to the cold-rolled steel sheet by controlling each manufacturing condition in each step described above precisely and in combination. Specifically, the microstructure of the hot rolled steel sheet after the hot rolling process, the microstructure of the primary cold rolled steel sheet after the primary cold rolling process, the microstructure of the annealed steel sheet after the annealing process, and the tempering after the temper rolling process Only by controlling the microstructure of the rolled steel sheet for each process, a microstructure unique to this embodiment can be obtained. As a result, it is possible to obtain a cold-rolled steel sheet for a drawn can having high strength, excellent press formability, excellent non-St-St property, and excellent shape freezing property.
  • the conditions in the examples are one example of conditions adopted to confirm the feasibility and effects of the present invention.
  • the present invention is not limited to this one condition example.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • these slabs were heated to 1200 ° C. and hot rolled to produce a hot rolled steel sheet having a thickness of 2.0 mm.
  • the hot rolling finishing temperature was 880-920 ° C.
  • the coiling temperature CT (° C.) of the hot rolled steel sheet was as shown in Table 1.
  • the hot rolled steel sheet was pickled and then subjected to primary cold rolling to produce a primary cold rolled steel sheet having a thickness of 0.25 mm.
  • the cumulative reduction rate of the primary cold rolling was as shown in Table 1.
  • CAL continuous annealing
  • Table 1 shows the average heating rate HR, the annealing temperature ST, and the average cooling rate CR between 500 and 400 ° C.
  • HR the average heating rate
  • ST the steel sheet was soaked for 25 seconds.
  • gas cooling with nitrogen gas was performed.
  • the steel plate was cooled without performing two-stage cooling from the annealing temperature ST to 50 ° C. (without holding the steel plate at an intermediate temperature).
  • the average cooling rate CR from 500 ° C. to 400 ° C. is as shown in Table 1, and the average cooling rate from 400 ° C. to 50 ° C. was 25 ° C./second.
  • test numbers 2 and 5 were further subjected to BAF-OA (overaging treatment by box annealing) after CAL.
  • BAF-OA average treatment by box annealing
  • the steel sheet was soaked at 450 ° C. for 5 hours and then gradually cooled over 72 hours. Note that BAF-OA was not performed on the steel plates other than test numbers 2 and 5.
  • temper rolling was performed on the steel sheet after the annealing process.
  • the reduction ratio in temper rolling was 1.8% in all cases.
  • Sn plating treatment was performed on the steel plate of test number 10 shown in Table 1. Specifically, after the temper rolling step, Sn plating layers were formed on the front and back surfaces of the steel sheet by an electric Sn plating method. The film thicknesses of the Sn plating layers on the front surface and the back surface were both 2.8 g / m 2 .
  • the steel plate with test number 10 was a cold-rolled steel plate having a Sn plating layer.
  • Ni plating treatment was performed on the steel plate of test number 19 shown in Table 1. Specifically, after the temper rolling step, Ni plating layers were formed on the front and back surfaces of the steel sheet by electroplating. The film thicknesses of the front and back Ni plating layers were both 2 ⁇ m.
  • the steel plate having the test number 19 was a cold-rolled steel plate having a double-sided Ni plating layer.
  • the microstructure was observed with an optical microscope at the L cross section of the manufactured cold-rolled steel sheet.
  • tissue observation was extract
  • the microstructure photograph was taken of a portion between 1/4 thickness in the thickness direction of the L cross section of a sample that had been polished and subjected to nital etching.
  • F + P indicates that the microstructure mainly contains ferrite and pearlite.
  • F + C indicates that the microstructure mainly includes ferrite and cementite.
  • JIS No. 5 tensile test pieces were prepared from the cold-rolled steel sheets having the respective test numbers.
  • the parallel part of the tensile test piece was parallel to the L direction (rolling direction) of the cold rolled steel sheet.
  • An accelerated aging treatment was performed on the prepared tensile test piece. Specifically, an aging treatment for 1 hour at 100 ° C. was performed on each tensile test piece.
  • the tensile test piece after the accelerated aging treatment is subjected to a tensile test at room temperature (25 ° C.) in accordance with JIS Z2241 (2011), yield strength YP, tensile strength TS, total elongation EL
  • yield strength YP yield strength
  • tensile strength TS tensile strength
  • total elongation EL The yield point elongation YP-EL, the yield ratio YR, and the work hardening amount WH were determined.
  • the cold rolled steel sheets of test numbers 6, 7, 9, 10, 12, 13, 15, and 19 that are examples of the present invention satisfy the scope of the present invention in terms of production conditions, chemical composition, microstructure, and mechanical properties.
  • these cold-rolled steel sheets have high strength, excellent press formability, excellent non-St-St properties, and excellent shape freezing properties.
  • the cold rolled steel sheets 1-5, 8, 11, 14, and 16-18 which are comparative examples, did not satisfy the scope of the present invention in terms of manufacturing conditions, chemical composition, microstructure, and mechanical properties. .
  • these cold-rolled steel sheets could not simultaneously achieve strength, press formability, non-St-St property, and shape freezing property.
  • Test No. 1 is a conventional example having a chemical composition corresponding to Steel A in Table 1 of Patent Document 1, but the above-described inventive examples (test Nos. 6, 7, 9, 10, 12, 13, 15, and The yield strength YP of 19) was about 1.5 times or more that of test number 1, and the work hardening amount WH was about 1.5 or more.
  • test number 1 The C content of test number 1 was too low. Moreover, B, Nb, and Ti content were not satisfied. Furthermore, B / N was too low. Therefore, the microstructure was not a two-phase structure of ferrite and pearlite, the yield strength YP was less than 310 MPa, and the work hardening amount WH was less than 45 MPa.
  • Test No. 2 is a conventional example in which BAF-OA was performed after CAL, but the C content was too low. Therefore, the microstructure was not a two-phase structure of ferrite and pearlite, the yield strength YP was less than 310 MPa, and the work hardening amount WH was less than 45 MPa.
  • test numbers 3 and 17 the C content was too low. Therefore, although the microstructure was a two-phase structure composed of ferrite and pearlite, the amount of pearlite produced was too small. As a result, in any of test numbers 3, 4, and 17, the yield point elongation YP-EL was higher than 0%. Further, the work hardening amount WH was less than 45 MPa.
  • test number 5 Although the chemical composition was appropriate, the annealing temperature ST in CAL was too low. Furthermore, BAF-OA was performed after CAL. Therefore, the microstructure did not become a two-phase structure of ferrite and pearlite, the yield strength YP was less than 310 MPa, and the work hardening amount WH was less than 45 MPa.
  • test number 8 and test number 11 although the chemical composition was appropriate, the annealing temperature ST in CAL was too low. Therefore, the microstructure did not become a two-phase structure of ferrite and pearlite. Therefore, the work hardening amount WH was less than 45 MPa, the yield ratio YR exceeded 73%, and the shape freezing property was low.
  • test number 14 although the chemical composition was appropriate, the annealing temperature ST was too high. Therefore, the pearlite increased, the total elongation EL was less than 24%, and the press formability was low.
  • test numbers 16 and 18 the C content was too high. Therefore, the total elongation EL was too low as less than 24%, and the press formability was low.
  • the average cooling rate CR is 4 ° C./second.
  • ferrite and pearlite were contained in the microstructure, but this microstructure was coarser than the microstructure of the example of the present invention. Therefore, the yield point elongation YP-EL did not become zero.
  • the average cooling rate CR at 500 to 400 ° C.
  • a cold-rolled steel sheet for a drawn can having high strength, excellent press formability, excellent non-St-St property, and excellent shape freezing property.
  • This cold-rolled steel sheet is excellent in press formability and shape freezing property, suppresses the generation of stretcher strain, and can be gauged down. Therefore, industrial applicability is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

 この絞り缶用の鋼板は、化学成分として、C、Sol.Al、Bを含み、ミクロ組織として、フェライトとパーライトとを含む。この鋼板に100℃で1時間の時効処理を実施した後に引張試験を行った時、降伏強度が310~370MPa、全伸びが24~30%、降伏点伸びが0%、降伏比が68~73%、加工硬化量が45~70MPaである。

Description

絞り缶用鋼板及びその製造方法
 本発明は、絞り缶用鋼板及びその製造方法に関し、さらに詳しくは、絞り缶用の高強度冷延鋼板及びその製造方法に関する。
 本願は、2014年11月17日に、日本に出願された特願2014-232931号に基づき優先権を主張し、その内容をここに援用する。
 単1~単5電池(国際規格サイズ20~1の電池)、ボタン電池、大型ハイブリッド電池等の電池缶や、各種容器は、冷延鋼板や必要に応じてめっき処理を施しためっき鋼板(以降、冷延鋼板と呼ぶ)を絞り加工(プレス成形)して製造される。
 この絞り加工では、寸法精度が高く、プレス金型の摩耗が抑制され、かつ、生産性が高いことが要求される。したがって、絞り加工に供される冷延鋼板としては、絞り加工性及び深絞り性といったプレス成形性に優れた、軟質の冷延鋼板が利用されてきた。
 一方、近年、絞り加工に供される冷延鋼板は、絞り缶の薄肉化を実現するために、強度のさらなる向上も求められている。例えば、近年、電子機器の発展に伴って、電池の容量をさらに増大させることが要求されている。しかし、電池の外形は、規格上、寸法が既に定められている。そのため、電池の活物質の充填量を増やすためには、電池内部の容積(絞り缶の内容積)を増やす必要がある。そして、絞り缶の内容積を増やすためには、絞り缶用の冷延鋼板を薄肉化(ゲージダウン)する必要がある。ただ、冷延鋼板がゲージダウンされた場合、絞り缶の強度が不足することがある。特に、絞り缶の缶底は、絞り加工時の加工ひずみ量が少ないので、加工硬化が期待できない。したがって、絞り缶の強度、特に缶底の耐内外圧強度を高めるためには、冷延鋼板の強度を高める必要がある。
 絞り缶用の冷延鋼板は、上述のように、プレス成形性に優れるとともに、高強度であることが要求される。しかし、プレス成形性を高めることと、強度を高めることとは、互いに相反する技術課題であると言える。冷延鋼板の強度を高めて冷延鋼板を薄肉化できたとしても、この冷延鋼板では、全伸びELの低下、すなわち、プレス成形性の低下が予想される。例えば、冷延鋼板の強度を高めたとしても、絞り加工として多段の加工を行う場合、絞り缶の胴上部では加工ひずみ量が多大となるため、この冷延鋼板ではプレス加工を好ましく行えない可能性がある。このように、絞り缶用冷延鋼板に関して、高強度と、優れたプレス成形性とを両立させることは容易でない。
 上記に加えて、絞り缶用冷延鋼板では、絞り加工時にストレッチャーストレイン(縞模様の表面欠陥)が発生するのを抑制しなければならない。ストレッチャーストレインが発生すれば、缶周面及び缶底には、板厚の厚い部分(ストレッチャーストレインが発生していない部分)と薄い部分(ストレッチャーストレインが発生した部分)とが形成される。つまり、缶周面及び缶底に凹凸が形成される。電池缶(絞り缶)がこのような凹凸形状を有すれば、電池缶と電池活物質との接触電気抵抗が大きくなるので好ましくない。また、絞り缶がこのような凹凸形状を有すれば、絞り缶の張り剛性が低下し、絞り缶の耐内外圧強度も低下する恐れがある。そのため、絞り缶用冷延鋼板では、高強度でかつプレス成形性に優れることに加えて、絞り加工後にストレッチャーストレインが発生しないことも要求される。なお、以降の説明で、絞り加工後にストレッチャーストレインが発生しないことを、「非St-St性に優れる」と称する。
 なお、ストレッチャーストレインは、鋼板が変形する際の降伏点伸び(降伏直後に降伏点よりも小さい変形抵抗で進行する定常変形)に起因して発生する。このストレッチャーストレインは、鋼板を軽圧下率で圧延する調質圧延(スキンパス圧延)を行うことによって抑制できる。しかし、鋼板に調質圧延を施したとしても、ひずみ時効硬化が生じる鋼板では、時間の経過と共にストレッチャーストレインの抑制効果が低減する。
 従来、ストレッチャーストレインを抑制するために、絞り缶用冷延鋼板として、ニオブ(Nb)添加極低炭素鋼や、ホウ素(B)添加低炭素鋼が用いられてきた。例えば、Nb添加極低炭素鋼(Nb-SULC)等に代表されるIF(Interstitial Free)鋼では、時効硬化が生じ難いので、ストレッチャーストレインの発生を防止できる。しかし、Nb添加極低炭素鋼では、その鋼成分が制限されるので、鋼の強度を高めることが困難である。一方、B添加低炭素鋼では、鋼中でBが窒素(N)と結合するので、Nに起因する時効硬化が抑制される。ただ、このB添加低炭素鋼では、鋼中の固溶炭素(C)に起因する時効硬化も抑制する必要がある。そのため、B添加低炭素鋼では、鋼板を連続焼鈍した後、箱焼鈍による過時効処理を実施し、鋼中の固溶Cを低減することによって、ストレッチャーストレインの発生を防止する。例えば、上記の箱焼鈍による過時効処理では、鋼板を400℃程度の低温で均熱した後、鋼板を徐冷する必要がある。なお、以降の説明で、連続焼鈍ラインによる焼鈍を「CAL(Continuous Annealing Line)」と称する。また、箱焼鈍による過時効処理を「BAF-OA(Box Annealing Furnace-Over Aging)」と称する。
 このBAF-OAでは、上記の均熱及び徐冷を行うために、1週間程度の処理時間が必要となる。そのため、BAF-OAを行うと、絞り缶用冷延鋼板の生産性が著しく低下する。したがって、BAF-OAを実施することなしに、高強度で、プレス成形性に優れ、非St-St性にも優れる絞り缶用冷延鋼板が製造できれば、産業上で非常に有益である。
 上記に加えて、絞り缶用冷延鋼板は、形状凍結性にも優れることが好ましい。例えば、絞り缶用冷延鋼板をプレス成形した後にスプリングバックが発生した場合、目的とした形状の絞り缶が得られず、寸法精度が低下し、絞り缶にひずみ又は肉余りが生じる。また、電池缶(絞り缶)にスプリングバックが発生した場合、耐内外圧強度が低下したり、電池缶と電極端子板との接触電気抵抗が増加したりする。したがって、絞り缶用冷延鋼板は、高強度で、プレス成形性に優れ、非St-St性に優れることに加えて、プレス成形後の寸法精度を高めるために形状凍結性にも優れることが求められている。
 例えば、特許文献1は、絞り缶用鋼板を開示している。この絞り缶用鋼板は、C:≦0.0030wt%、Si:≦0.05wt%、Mn:≦0.5wt%、P:≦0.03wt%、S:≦0.020wt%、solAl:0.01~0.100wt%、N:≦0.0070wt%、Ti:0.01~0.050wt%、Nb:0.008~0.030wt%、B:0.0002~0.0007wt%、残部がFeおよび不可避元素からなる組成で、結晶粒度No.が10.0以上、HR30Tが47~57であることを特徴とする。上記絞り缶用鋼板は、表面欠陥を抑制できる、と特許文献1には記載されている。
 例えば、特許文献2は、絞り缶用鋼板を開示している。この絞り缶用鋼板は、質量%で、C:0.045~0.100%、Si:≦0.35%、Mn:≦1.0%、P:≦0.070%、S:≦0.025%、solAl:0.005~0.100%、N:≦0.0060%、B:B/N=0.5~2.5、残部がFeおよび不可避的不純物からなる組成で、板厚tが0.15~0.60mm、Δr値が+0.15~-0.08の範囲で、再結晶焼鈍時の加熱速度を5℃/sec以上とすることで鋼板の結晶方位をランダム化させたことを特徴とする。上記絞り缶用鋼板は特に、イヤリング性に優れる、と特許文献2には記載されている。
日本国特許第3516813号公報 日本国特許第4374126号公報
 特許文献1及び2は絞り缶用鋼板を開示しているが、特許文献1及び2に開示された絞り缶用鋼板は、C含有量が低く、軟質な冷延鋼板である。そのため、この鋼板をゲージダウンした場合、絞り缶の耐内外圧強度が低下する可能性がある。また、特許文献1では、極低炭素鋼を用いるため、固溶Cに起因する時効硬化とストレッチャーストレインの発生とを考慮する必要がない。そして、特許文献2では、BAF-OAを省略した場合、ストレッチャーストレインを抑制することが困難になる。このように、特許文献1及び2は、ゲージダウンを達成するために冷延鋼板を高強度化すること、この高強度化に加えてプレス成形性及び非St-St性を向上させること、並びに、プレス成形後の寸法精度を高めるために形状凍結性を向上させること、について開示も示唆もしていない。即ち、従来技術では、0.15%超の高いC含有量を有する事で強度を確保しつつ、箱焼鈍をせずに、絞り缶用鋼板において時効処理後にストレッチャーストレインを抑制することは出来なかった。尚、JIS G3303で規定されたブリキ成分は、C含有量が0.13%以下である。
 本発明は上記事情に鑑みてなされたものであり、高強度で、プレス成形性に優れ、非St-St性に優れ、形状凍結性にも優れる絞り缶用冷延鋼板を提供することを課題とする。
 本発明の要旨は以下の通りである。
(1)本発明の一態様にかかる絞り缶用の鋼板は、化学成分として、質量%で、C:0.150超~0.250%、Sol.Al:0.005~0.100%、B:0.0005~0.02%、Si:0.50%以下、Mn:0.70%以下、P:0.070%以下、S:0.05%以下、N:0.0080%以下、Nb:0.003%以下、Ti:0.003%以下、を含有し、残部はFe及び不純物からなり、前記化学成分中のホウ素含有量と窒素含有量とが、質量%で、0.4≦B/N≦2.5を満足し、前記鋼板が、ミクロ組織として、フェライトと、パーライトとを含み、前記鋼板を100℃で1時間の時効処理を実施した後に行う引張方向が圧延方向と平行となる引張試験から得られる降伏強度を単位MPaでYPとし、全伸びを単位%でELとし、降伏点伸びを単位%でYP-ELとし、降伏比を単位%でYRとし、及び加工硬化量を単位MPaでWHとしたとき、前記YPが310~370MPaであり、前記ELが24~30%であり、前記YP-ELが0%であり、前記YRが68~73%であり、前記WHが45~70MPaである。
(2)上記(1)に記載の絞り缶用鋼板では、前記YPと前記WHとを足した値が355超~440MPaであってもよい。
(3)上記(1)または(2)に記載の絞り缶用鋼板では、前記鋼板の表面上に、Niめっき層、Ni拡散めっき層、Snめっき層、及びTFSめっき層のうちの少なくとも1つが配されてもよい。
(4)上記(1)または(2)に記載の絞り缶用鋼板の製造方法では、前記化学成分を有する鋳片を得る製鋼工程と、前記鋳片を、1000℃以上に加熱し、840~950℃で仕上げ圧延し、仕上げ圧延後冷却し、500~750℃で巻取って、熱延鋼板を得る熱延工程と、前記熱延鋼板に対して累積圧下率が80%超の一次冷間圧延を実施して、一次冷延鋼板を得る一次冷延工程と、前記一次冷延鋼板を、平均昇温速度10~40℃/秒で昇温し、750℃~820℃の温度範囲内で均熱し、その後、500~400℃の間を平均冷却速度5~80℃/秒で冷却する連続焼鈍を実施して、焼鈍鋼板を得る焼鈍工程と、前記焼鈍工程後に、過時効処理を施していない前記焼鈍鋼板を0.5~5.0%の累積圧下率で調質圧延して、調質圧延鋼板を得る調質圧延工程と、を備える。
(5)上記(4)に記載の絞り缶用鋼板の製造方法では、前記調質圧延工程後に、前記調質圧延鋼板に対して、Niめっき処理、Ni拡散めっき処理、Snめっき処理、及びTFSめっき処理のうちの少なくとも1つを実施するめっき工程をさらに備えてもよい。
 本発明の上記態様によれば、高強度で、プレス成形性に優れ、非St-St性に優れ、形状凍結性にも優れる絞り缶用冷延鋼板を提供できる。この冷延鋼板は、プレス成形性及び形状凍結性に優れ、ストレッチャーストレインの発生を抑制し、ゲージダウンが可能である。
従来の絞り缶用冷延鋼板の促進時効処理後の引張試験結果であり、降伏点近傍を拡大して示す応力-ひずみ曲線である。 本発明の一実施形態に係る絞り缶用冷延鋼板の促進時効処理後の引張試験結果であり、降伏点近傍を拡大して示す応力-ひずみ曲線である。 従来の絞り缶用冷延鋼板のミクロ組織を示す光学顕微鏡写真である。 本実施形態に係る絞り缶用冷延鋼板のミクロ組織を示す光学顕微鏡写真である。 冷延鋼板のC含有量(%)と加工硬化量WH(%)との関係を示すグラフである。 冷延鋼板のC含有量(%)と全伸びEL(%)との関係を示すグラフである。
 以下、本発明の好適な実施形態について詳しく説明する。ただ、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。また、下記する数値限定範囲には、下限値及び上限値がその範囲に含まれる。「超」または「未満」と示す数値は、その値が数値範囲に含まれない。各元素の含有量に関する「%」は、「質量%」を意味する。
 本発明者らは、絞り缶用の鋼板(以降、冷延鋼板と呼ぶ)の特性について調査及び検討を行い、次の知見(i)~(v)を得た。まず、知見(i)及び(ii)について説明する。
 (i)本実施形態に係る冷延鋼板では、C含有量を0.150%超とすれば、鋼中の固溶Cによって鋼が固溶強化し、冷延鋼板の降伏強度YPが高まる。自然時効後の圧延方向(L方向)の降伏強度YPは、従来の絞り缶用冷延鋼板の降伏強度よりも高い310MPa以上になる。したがって、この冷延鋼板を用いれば、ゲージダウンしても耐内外圧強度に優れた絞り缶が得られる。
 (ii)本実施形態に係る冷延鋼板では、C含有量を0.150%超に高めても、CAL(連続焼鈍)の平均昇温速度を10~40℃/秒とし、焼鈍温度(均熱温度)をフェライトおよびオーステナイトの二相域温度(例えば、750~820℃)とし、その後の500~400℃の間の平均冷却速度を5~80℃/秒とすれば、鋼中に固溶Cが存在しても、非St-St性に優れた冷延鋼板が得られる。
 図1に、従来の絞り缶用冷延鋼板の降伏点近傍の応力-ひずみ線図を示す。図2に、本実施形態に係る絞り缶用冷延鋼板の降伏点(0.2%耐力)近傍の応力-ひずみ線図を示す。図1の引張試験に供された冷延鋼板のC含有量は、0.056質量%であり、図2の引張試験に供された冷延鋼板のC含有量は、0.190質量%である。図1及び図2の冷延鋼板は、後述する本実施形態に係る冷延鋼板の製造方法を満足する条件で製造された。具体的には、上記条件でCALを実施後、BAF-OAを実施せずに、図1及び図2の冷延鋼板を製造した。製造された冷延鋼板から、L方向(圧延方向)に平行な平行部を有するJIS5号引張試験片を作製した。作製された引張試験片に対して、促進時効処理を実施した。具体的には、促進時効処理として、各引張試験片に対して、100℃で1時間の時効処理を実施した。この促進時効処理は、自然時効がほぼ飽和する時効に相当する。促進時効処理後の引張試験片を用いて、室温(25℃)かつ大気中で引張試験を実施して、図1及び図2の応力-ひずみ線図を得た。
 C含有量が低い従来の冷延鋼板(図1)では、降伏点降下が起き、降伏点伸びYP-ELが発生した。これは、外部から応力が付加されても、固溶Cによるコットレル効果により、降伏点までは転位が移動せず(固着され)、降伏点で転位が一気に固溶Cから解放されて移動することに起因する。そして、従来の冷延鋼板(図1)では、降伏後もコットレル効果による転位の固着と解放とが繰り返されるため、降伏点伸びYP-ELが発生する。
 これに対して、C含有量が高い本実施形態に係る冷延鋼板(図2)では、降伏点降下が確認されず、降伏点伸びYP-ELが生じなかった。本実施形態に係る冷延鋼板(図2)では、外部から応力が付加されると、降伏点前でも局所的に塑性変形が開始し、図1に示されるような降伏点伸びYP-ELが観察されないという特異な現象が生じた。
 そこで、図1及び図2の冷延鋼板について、L断面(圧延方向に平行な断面)でのミクロ組織を光学顕微鏡により観察した。図3は、図1の引張試験に供された冷延鋼板のL断面のミクロ組織画像であり、図4は、図2の引張試験に供された冷延鋼板のL断面のミクロ組織画像である。
 図3及び図4中、白色の組織はフェライト10であり、黒色の組織はパーライト20である。図3及び図4から観察されるように、図3及び図4の冷延鋼板のミクロ組織は、フェライト及びパーライトを主に含む組織であった。しかしながら、C含有量が高い図4の冷延鋼板では、図3の冷延鋼板と比較して、パーライトがより多く生成した。
 以上の引張試験及び組織観察の結果を考慮すると、本実施形態に係る冷延鋼板(C含有量が高い冷延鋼板)が示す降伏点近傍での特異な現象は、次のように推察される。本実施形態に係る冷延鋼板(C含有量が高い冷延鋼板)は、ミクロ組織として、フェライト及びパーライトを主に含むが、C含有量が低い冷延鋼板と比較して、パーライトがより多く生成される。パーライトはフェライトよりも硬い組織である。そのため、変形時には、フェライトが優先的に変形する。加えて、パーライトブロックとフェライト粒との境界近傍には、変態時に生じた応力場(ひずみ)が存在する。そのため、この応力場の影響を大きく受けている結晶粒では、転位が生成しやすく移動しやすい。すなわち、本実施形態に特有のミクロ組織を有する冷延鋼板が変形する場合、フェライト及びパーライトのうち、応力場の影響を大きく受けているフェライト粒から先行して降伏点前に変形が開始し、この応力場の影響を大きく受けているフェライト粒に遅れて、応力場の影響を大きく受けていないフェライト粒の変形が開始し、その後、パーライトブロックの変形が開始する。このように、本実施形態に係る冷延鋼板では、外部から応力を受けたときに、転位が生成および移動しやすいフェライト粒から順次変形が開始するため、鋼中に固溶Cが存在したとしても、降伏点伸びYP-ELが応力-ひずみ線図に現れないと考えられる。その結果、ストレッチャーストレインの発生が抑制されると考えられる。
 なお、上述したように、ストレッチャーストレインの発生を防止するために、従来の鋼板では、BAF-OA等を実施していた。しかし、従来の鋼板では、C含有量が低いことを技術特徴としている。C含有量が0.150%超であるような高C含有量の鋼板の場合、たとえBAF-OA等を実施したとしても、鋼中の固溶Cを十分に低減することが困難であるので、YP-ELを0%に制御することが実質的に困難であった。本実施形態に係る鋼板では、C含有量を0.150%超としても、製造条件を制御して上記のフェライト及びパーライトを主に含む組織を形成することによって、YP-ELを0%に制御することが可能となる。
 本発明者らは、C含有量と加工硬化量WHとの関係についても調査した。そして、知見(iii)を得た。なお、本実施形態に係る冷延鋼板では、2%変形時の応力から降伏強度YP(0.2%耐力)を引いた値を単位MPaで加工硬化量WHとする。
 (iii)本実施形態に係る冷延鋼板では、C含有量を0.150%超とし、かつ組織制御すれば、加工硬化量WHが45MPa以上となるので、プレス成形後の形状凍結性に優れた冷延鋼板が得られる。
 加工硬化量WHが十分に大きければ、塑性変形した領域(加工硬化した領域)では、塑性変形していない領域(加工硬化していない領域)と比較して高強度となる(変形抵抗が大きくなる)。そのため、プレス成形中、塑性変形した領域では変形の進行が抑制され、相対的に低強度である塑性変形していない領域では変形の進行が促進される。この場合、プレス成形中、鋼板内で変形する領域が、加工硬化した領域から加工硬化していない領域に順次推移していくので、プレスの金型の形状に沿って鋼板が変形しやすくなる。その結果、プレス成形後の形状凍結性が向上する。
 図5に、冷延鋼板のC含有量(質量%)と加工硬化量WH(%)との関係を示す。なお、この図5は、フェライト及びパーライトを主に含むミクロ組織に制御された冷延鋼板を調査して得た。
 図5に示すとおり、C含有量の増加に伴い、加工硬化量WHは急速に大きくなる。具体的には、C含有量が0.150%超になれば、加工硬化量WHは十分な形状凍結性を示す45MPa以上になる。また、上述のように、C含有量が0.150%超で、促進時効処理後のL方向の降伏強度YPが310MPa以上となる。すなわち、ミクロ組織等の制御に加えてC含有量を0.150%超とすれば、絞り缶用冷延鋼板として要求される特性のうち、強度と非St-St性と形状凍結性とが満足される。
 一方で、C含有量が高すぎれば、冷延鋼板が過剰に硬化して、全伸びEL(%)が低下し、その結果、プレス成形性が低下する。本発明者らは、C含有量と全伸びELとの関係について調査した。そして、知見(iv)を得た。
 (iv)本実施形態に係る冷延鋼板では、C含有量を0.250%以下とし、かつ組織制御すれば、自然時効後のL方向(圧延方向)の全伸びELが、従来の絞り缶用冷延鋼板の全伸びと同程度以上である24%以上となる。したがって、プレス成形性に優れた冷延鋼板が得られる。
 図6に、冷延鋼板のC含有量(質量%)と全伸びEL(%)との関係を示す。なお、この図6は、フェライト及びパーライトを主に含むミクロ組織に制御された冷延鋼板を調査して得た。
 図6に示すとおり、C含有量の増加に伴い、全伸びELが低下する。プレス成形では、全伸びELが24%以上であれば、十分なプレス成形性が得られる。従って、図6に示すとおり、本実施形態に係る冷延鋼板では、C含有量が0.250%以下であれば、全伸びELが24%以上となり、優れたプレス成形性が得られる。また、上述のとおり、強度と非St-St性と形状凍結性とを満足させるためには、C含有量の下限を0.150%超とする。すなわち、本実施形態に係る絞り缶用冷延鋼板では、C含有量を0.150超~0.250%とする。
 さらに、本発明者らは、上記したCに起因するストレッチャーストレインの抑制に加えて、Nに起因するストレッチャーストレインの抑制についても調査した。そして、知見(v)を得た。
 (v)C含有量を0.150超~0.250%とした上で、B含有量とN含有量とを0.4≦B/N≦2.5に制御すれば、Cに起因するストレッチャーストレインの発生と、Nに起因するストレッチャーストレインの発生との両方を抑制できる。
 C含有量が0.150超~0.250%であり、B/Nが0.4~2.5を満たすアルミキルド鋼の冷延鋼板に対して、CAL(連続焼鈍)を実施する。このとき、上述のとおり、平均昇温速度を10~40℃/秒とし、焼鈍温度をフェライトおよびオーステナイトの二相域温度(例えば、750~820℃)とし、その後の500~400℃の間の平均冷却速度を5~80℃/秒にする。この場合、冷延鋼板の強度と、プレス成形性と、形状凍結性と、Cに起因する非St-St性とが向上することに加えて、BがNと結合して窒化物を形成するので、固溶Nに起因する時効硬化が抑制され、その結果、Nに起因するストレッチャーストレインの発生も抑制される。
 以下、本実施形態に係る絞り缶用冷延鋼板について詳述する。
 [化学組成]
 本実施形態に係る絞り缶用冷延鋼板は、化学成分として、基本元素であるC、Sol.Al、及びBを含み、残部がFe及び不純物からなる。
 なお、「不純物」とは、鋼を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境等から混入するものを指す。これら不純物のうち、Si、Mn、P、S、及びNは、本実施形態の効果を十分に発揮させるために、以下のように制限することが好ましい。また、不純物の含有量は少ないことが好ましいので、下限値を制限する必要がなく、不純物の下限値が0%でもよい。
 C:0.150超~0.250%
 炭素(C)は固溶して鋼の強度を高める。鋼の強度が高まれば、冷延鋼板をゲージダウンすることができる。C含有量が0.150%超であれば、後述の他の化学組成及び製造条件を満たすことを条件に、促進時効処理後のL方向の降伏強度YPが310MPa以上、加工硬化量WHが45MPa以上になる。C含有量が0.150%以下であれば、上記効果が得られない。一方、C含有量が0.250%超であれば、冷延鋼板の硬度が高くなりすぎ、図6に示すとおり、自然時効が飽和した後(促進時効処理後)の全伸びELが低下する。この場合、冷延鋼板のプレス成形性が低くなる。したがって、C含有量は0.150超~0.250%である。なお、Cは、オーステナイト形成元素である。本実施形態に係る冷延鋼板ではミクロ組織を制御するために、C含有量の下限が、0.153%、0.155%、または0.160%であることが好ましい。C含有量の好ましい上限は0.250%未満であり、さらに好ましくは0.225%である。
 Si:0.50%以下
 シリコン(Si)は、不可避的に含有される不純物である。Siは、冷延鋼板のめっき密着性、及び、製缶後の冷延鋼板の塗装密着性を低下させる。したがって、Si含有量は0.50%以下に制限する。Si含有量の好ましい上限は0.50%未満である。Si含有量はなるべく低い値が好ましい。ただ、工業的に安定してSi含有量を0%にすることは難しいので、Si含有量の下限を0.0001%としてもよい。
 Mn:0.70%以下
 マンガン(Mn)は、不可避的に含有される不純物である。Mnは、冷延鋼板を硬質化し、冷延鋼板の全伸びELを低下させる。そのため、プレス成形性(絞り加工性)が低下する。また、Mnは、オーステナイト形成元素であり、本実施形態に係る冷延鋼板ではミクロ組織を制御するために鋼に添加しない。Mn含有量が0.70%超の場合、本実施形態に係る鋼板に特有の機械特性を得にくくなる。したがって、Mn含有量は0.70%以下に制限する。Mn含有量の好ましい上限は0.70%未満である。Mn含有量はなるべく低い値が好ましい。ただ、工業的に安定してMn含有量を0%にすることは難しいので、Mn含有量の下限を0.0001%としてもよい。
 P:0.070%以下
 燐(P)は、不可避的に含有される不純物である。Pは、一般的に、冷延鋼板の強度を高める。しかしながら、P含有量が高すぎれば、プレス成形性が低下する。具体的には、絞り缶に成形した後の耐二次加工脆性が低下する。深絞り加工された絞り缶では、たとえば、-10℃のような低温で、落下時の衝撃により脆性破断する場合があり、また曲げ加工歪みにより缶側壁端部が脆性破断する場合がある。このような破断を二次加工脆性割れと称する。P含有量が過剰な場合、二次加工脆性割れが生じやすくなる。したがって、P含有量は0.070%以下に制限する。ただ、工業的に安定してP含有量を0%にすることは難しいので、P含有量の下限を0.0001%としてもよい。
 S:0.05%以下
 硫黄(S)は、不可避的に含有される不純物である。Sは、熱間圧延時の鋼板表層で脆性割れを発生させ、熱延鋼帯に耳荒れを生じさせる。したがって、S含有量は0.05%以下に制限する。S含有量はなるべく低い値が好ましい。ただ、工業的に安定してS含有量を0%にすることは難しいので、S含有量の下限を0.0001%としてもよい。
 Sol.Al:0.005~0.100%
 アルミニウム(Al)は、鋼を脱酸する。Alはさらに、連続鋳造時に鋳片の表面品質を高める。Al含有量が低すぎれば、これらの効果が得られない。一方、Al含有量が高すぎれば、上記効果が飽和して製造コストが高くなる。したがって、Al含有量は0.005~0.100%である。本実施形態に係る絞り缶用冷延鋼板でのAl含有量は、Sol.Al(酸可溶性アルミニウム)の含有量を意味する。
 N:0.0080%以下
 窒素(N)は、不可避的に含有される不純物である。Nは、Alと結合して窒化物を形成し、結晶粒を微細化等して集合組織を変化させ、その結果、イヤリング性(絞り缶の成形後に発生する缶円周方向の缶高さの不均一の程度)に影響を与える。Nはさらに、鋼を時効硬化させる元素であり、そのため、冷延鋼板のプレス成形性を低下させ、ストレッチャーストレインを発生させる。本実施形態に係る冷延鋼板では、鋼中に後述のBを含有させ、NをBと結合させて窒化物を形成させることにより、Nによるイヤリング性の低下を抑制し、固溶Nによる時効硬化を抑制する。しかしながら、N含有量が高すぎれば、イヤリング性が低下したり、時効硬化が生じやすくなる。したがって、N含有量は0.0080%以下に制限する。N含有量はなるべく低い値が好ましい。ただ、工業的に安定してN含有量を0%にすることは難しいので、N含有量の下限を0.0005%としてもよい。
 B:0.0005~0.02%
 ボロン(B)は、Nと結合してBN(窒化ホウ素)を形成し、固溶Nを低減する。これにより、固溶Nによる時効硬化が抑制される。Bはさらに、冷延鋼板の集合組織をランダム化して、塑性ひずみ比であるr値(ランクフォード値)を1に近づける。これにより、イヤリング性が向上する。また、Bは、フェライト形成元素であり、本実施形態に係る冷延鋼板ではミクロ組織を制御するために添加する。B含有量が0.0005%未満であれば、これらの効果が得られない。一方、B含有量が0.02%超であれば、固溶Bが増加して冷延鋼板が硬質化したり、イヤリング性が低下したりする。したがって、B含有量は0.0005~0.02%である。B含有量の下限は、0.0010%、または0.0015%であることが好ましい。
 さらに、本実施形態に係る冷延鋼板では、B及びNの含有量を、互いに関連させて規定する。上述のように、鋼中で固溶Nが過剰であると、鋼が時効硬化する。そのため、鋼中にBを含有させてBNを形成させる。一方、鋼中で固溶Bが過剰であると、冷延鋼板が硬質化したり、イヤリング性が低下したりする。そのため、B及びNの含有量を互いに関連させて規定する必要がある。具体的には、化学成分中のB含有量とN含有量とが、質量%で、0.4≦B/N≦2.5を満足する必要がある。B及びNの含有量が上記条件を満足するとき、固溶Bに起因する上記特性の低下を抑制すると同時に、固溶Nに起因するストレッチャーストレインの発生を好ましく抑制することができる。B/Nの値の下限は、0.8であることが好ましい。
 本実施形態に係る冷延鋼板では、上記した不純物に加えて、ニオブ(Nb)、チタニウム(Ti)、銅(Cu)、ニッケル(Ni)、クロム(Cr)、及びスズ(Sn)も制限することが好ましい。具体的には、本実施形態の効果を十分に発揮させるために、Nb:0.003%以下、Ti:0.003%以下、Cu:0.5%以下、Ni:0.5%以下、Cr:0.3%以下、及びSn:0.05%以下に制限することが好ましい。特に、Tiは、TiNを形成してミクロ組織の形成に影響を与えるので、上記のように制限することが好ましい。これら不純物の含有量はなるべく低い値が好ましい。ただ、工業的に安定してこれら不純物の含有量を0%にすることは難しいので、これら不純物の含有量の下限をそれぞれ0.0001%としてもよい。
 上記した化学成分は、鋼の一般的な分析方法によって測定すればよい。例えば、上記した化学成分は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。具体的には、鋼板の中央の位置から粒状の試験片を採取し、予め作成した検量線に基づいた条件で化学分析することにより特定できる。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。
 [ミクロ組織]
 本実施形態に係る冷延鋼板は、ミクロ組織として、フェライトとパーライトとを主に含む。また、上述したBNは微細析出物であるので低倍率の場合には観察できないが、ミクロ組織として、このBNを含んでもよい。本実施形態に係る冷延鋼板では、上記した化学成分に制御することに加えて、上記のミクロ組織に制御することによって、高強度で、プレス成形性に優れ、非St-St性に優れ、形状凍結性にも優れる冷延鋼板を得ることが可能となる。
 上記したフェライト、パーライト、及びBNは、ミクロ組織中、合計で、95~100面積%であることが好ましい。すなわち、フェライト、パーライト、及びBN以外の組織である粒状セメンタイト、マルテンサイト、残留オーステナイトなどは、合計で、5面積%未満に制限されることが好ましい。フェライト、パーライト、及びBN以外の組織の合計の面積分率は、なるべく低い値が好ましい。したがって、本実施形態に係る冷延鋼板は、ミクロ組織として、フェライト、パーライト、及びBNのみからなることがさらに好ましい。
 なお、本実施形態に係る冷延鋼板では、ミクロ組織に含まれる各構成相を次のように定義する。フェライト及びフェライト粒は、拡散変態に起因する体心立方構造(bcc)を有し、結晶方位角度差が0以上15°未満となる領域と定義する。マルテンサイト及びマルテンサイト粒は、無拡散変態に起因する体心立方構造(bcc)または体心正方構造(bct)を有し、結晶方位角度差が0以上15°未満となる領域と定義する。セメンタイトは、斜方晶構造を有するFeとCとの化合物(FeC)と定義する。パーライト及びパーライトブロックは、フェライトとセメンタイトとからなる層状組織を有し、このパーライト中のフェライトの結晶方位角度差が0以上9°未満となる領域と定義する。粒状セメンタイトは、パーライトブロック中に含まれないセメンタイトと定義する。BNは、六方晶構造または立方晶構造を有するBとNとの化合物と定義する。
 上記のミクロ組織は、冷延鋼板のL断面(圧延方向に平行な断面)を光学顕微鏡にて観察すればよい。また、各構成相の面積分率などは、ミクロ組織写真を画像解析することで求めればよい。
 [機械特性]
 本実施形態に係る冷延鋼板は、冷延鋼板を100℃で1時間の時効処理(促進時効処理)を実施した後に行う引張試験から得られる降伏強度を単位MPaでYPとし、全伸びを単位%でELとし、降伏点伸びを単位%でYP-ELとし、降伏比を単位%でYRとし、及び、加工硬化量を単位MPaでとしたとき、
  YPが310~370MPaであり、
  ELが24~30%であり、
  YP-ELが0%であり、
  YRが68~73%であり、
  WHが45~70MPaである。
 ここで、引張試験は、平行部がL方向(圧延方向)に平行な引張試験片を用いて室温(25℃)大気中でJIS Z2241(2011)に準拠して実施する。
 YP:310~370MPa
 降伏強度YPが310MPa以上であれば、冷延鋼板を薄肉化(ゲージダウン)しても、耐内外圧強度に優れた絞り缶が得られる。一方、降伏強度YPの上限は、特に制限されない。ただ、降伏強度YPが高すぎると、プレス成形が困難となるので、降伏強度YPを370MPa以下としてもよい。降伏強度YPは、360MPa未満であることが好ましい。なお、本実施形態に係る冷延鋼板では、上述のように明確な降伏点を示さないことを技術特徴とするので、降伏強度YPは0.2%耐力のことを意味する。
 EL:24~30%
 全伸びELが24%以上であれば、絞り缶用冷延鋼板としてのプレス成形性(絞り加工性)を満足できる。一方、全伸びELの上限は、値が大きいほど好ましいので、特に制限されない。ただ、工業的に安定して全伸びELを30%超とすることは難しいので、全伸びELの上限を30%としてもよい。なお、全伸びELとは、弾性伸びと永久伸びとの和のことを意味する。
 YP-EL:0%
 降伏点伸びYP-ELが0%であれば、降伏直後に降伏点よりも小さい変形抵抗で進行する定常変形を抑制できるので、ストレッチャーストレインの発生を抑制できる。なお、本実施形態に係る冷延鋼板にて、降伏点伸びYP-ELが0%であるとは、降伏直後に降伏点(0.2%耐力)よりも小さい変形抵抗(応力)で変形(ひずみ)が進行しないことを意味する。すなわち、本実施形態に係る冷延鋼板にて、降伏点伸びYP-ELが0%であるとは、降伏点降下することなく、降伏直後から(0.2%耐力到達直後から)応力-ひずみ曲線が加工硬化を示すことを意味する。
 YR:68~73%
 降伏比YRが68~73%であれば、引張強度TSに対して降伏強度YPが好ましく制御された範囲であることを意味する。すなわち、ゲージダウンするために好ましい降伏強度YPを確保しつつ、プレス成型時には降伏強度YPから引張強度TSに至るまでの加工硬化を許容しうる。そのため、高強度で、プレス成形性に優れ、形状凍結性にも優れる冷延鋼板を得ることが可能となる。なお、降伏比YRは、単位MPaでの降伏強度YPを、単位MPaでの引張強度TSで割った値の百分率を意味する。
 WH:45~70MPa
 加工硬化量WHが45~70MPaであれば、プレス成形中、塑性変形した領域(加工硬化した領域)では変形の進行が抑制され、相対的に低強度である塑性変形していない領域(加工硬化していない領域)では変形の進行が促進されるので、鋼板内で変形する領域が、加工硬化した領域から加工硬化していない領域に順次推移していく。そのため、プレス成形中、プレスの金型の形状に沿って鋼板が変形しやすくなるので、プレス成形後の形状凍結性が向上する。
 また、本実施形態に係る冷延鋼板では、降伏強度YPと加工硬化量WHとを足した値が355超~440MPaであることが好ましい。YP+WHの値がこの条件を満足するとき、降伏強度YPおよび加工硬化量WHが好ましく制御され、高強度で、プレス成形性に優れ、形状凍結性にも優れる冷延鋼板を得ることが可能となる。
 [めっき層]
 本実施形態に係る冷延鋼板は、冷延鋼板の表面上(板面上)に、Niめっき層、Ni拡散めっき層、Snめっき層、及びティンフリースチール(TFS)めっき層(金属Cr層とCr水和酸化物層との2層からなるめっき層)のうちの少なくとも1つが配されてもよい。冷延鋼板の板面上に、上記のめっき層が配されることにより、表面外観が向上し、耐食性、耐薬品性、耐応力割れ性などが向上する。
 以下、本実施形態に係る絞り缶用冷延鋼板の製造方法について詳述する。
 本実施形態に係る絞り缶用冷延鋼板の製造方法の一例を説明する。本実施形態に係る絞り缶用冷延鋼板の製造方法は、鋳片を得る工程(製鋼工程)と、熱延鋼板を得る工程(熱延工程)と、一次冷延鋼板を得る工程(一次冷延工程)と、焼鈍鋼板を得る工程(焼鈍工程)と、調質圧延鋼板を得る工程(調質圧延工程)とを備える。
 [製鋼工程]
 製鋼工程では、C:0.150超~0.250%、Sol.Al:0.005~0.100%、B:0.0005~0.02%、Si:0.50%以下、Mn:0.70%以下、P:0.070%以下、S:0.05%以下、N:0.0080%以下、Nb:0.003%以下、Ti:0.003%以下、を含有し、残部がFe及び不純物からなり、化学成分中のホウ素含有量と窒素含有量とが、質量%で、0.4≦B/N≦2.5を満足する溶鋼を製造する。製造された溶鋼から鋳片(スラブ)を製造する。例えば、通常の連続鋳造法、インゴット法、薄スラブ鋳造法などの鋳造方法でスラブを鋳造すればよい。なお、連続鋳造の場合には、鋼を一度低温(例えば、室温)まで冷却し、再加熱した後、この鋼を熱間圧延してもよいし、鋳造された直後の鋼(鋳造スラブ)を連続的に熱間圧延してもよい。
 [熱延工程]
 熱延工程では、製鋼工程後の鋳片を、1000℃以上(例えば、1000~1280℃)に加熱し、840~950℃で仕上げ圧延し、仕上げ圧延後冷却し、500~750℃で巻取って、熱延鋼板を製造する。
 巻取り温度CTが750℃を超えると、熱延鋼板を後工程に供することが適したミクロ組織(バンド組織)に制御することが困難となり、最終的に得られる冷延鋼板を本実施形態に特有のミクロ組織に制御することが困難となる。巻取り温度CTが500℃未満であれば、熱延鋼板中のセメンタイトが硬質な組織になる。そのため、冷延鋼板の全伸びELが低下し得る。従って、好ましい巻取り温度CTは500~750℃である。なお、ミクロ組織を好ましく制御するために、巻取り温度CTの下限が600℃であることがさらに好ましい。
 [一次冷延工程]
 一次冷延工程では、熱延工程後の熱延鋼板に対して累積圧下率が80%超の一次冷間圧延を実施して、0.15~0.50mmの板厚を有する一次冷延鋼板を製造する。
 一次冷間圧延では、冷間圧延率を変化させて絞り缶用冷延鋼板の最適な冷間圧延率を検討し、鋼板の面内異方性Δrが略0(具体的には、Δrが+0.15~-0.08の範囲)となるように、冷間圧延率を設定する。また、一次冷延鋼板が後工程に供することが適したミクロ組織(加工組織)となるように、冷間圧延率を設定する。一次冷間圧延では、累積圧下率を80%超とする。累積圧下率の下限は84%であることが好ましい。一方、累積圧下率の上限は、特に制限されない。ただ、工業的に安定して累積圧下率を90%超とすることは難しいので、累積圧下率の上限を90%としてもよい。なお、累積圧下率とは、一次冷間圧延における第1パス直前の入口板厚と最終パス直後の出口板厚との差から計算される圧下率である。
 一次冷延鋼板の板厚は0.151~0.526mmであることが好ましい。板厚が0.526mmを超えれば、優れたイヤリング性が得られにくくなる。板厚が0.151mm未満であれば、熱延鋼板の板厚を薄くしなければならず、この場合、上述の熱間圧延時の仕上げ温度を確保できない。したがって、冷延鋼板の板厚は0.151~0.526mmであることが好ましい。
 [焼鈍工程(CAL工程)]
 焼鈍工程では、一次冷延工程後の一次冷延鋼板を、平均昇温速度:10~40℃/秒で昇温し、フェライトおよびオーステナイトの二相域温度(例えば、750~820℃)で均熱し、その後、500~400℃の間の平均冷却速度が5~80℃/秒となる条件で冷却する連続焼鈍を実施して、焼鈍鋼板を製造する。
 焼鈍工程の昇温過程で、一次冷延鋼板を、平均昇温速度HR:10~40℃/秒で昇温すれば、ミクロ組織が好ましく制御される。焼鈍工程の昇温過程では、一次冷延鋼板の加工組織が回復し、加工組織中に再結晶核が生成される。一次冷延鋼板を上記条件で昇温することにより、加工組織の再結晶過程が好ましく制御されるので、本実施形態に特有のミクロ組織を好ましく得ることが可能となる。なお、この昇温過程では、一次冷延鋼板を、500~700℃の間の平均昇温速度を15~30℃/秒で昇温することがさらに好ましい。
 焼鈍温度(均熱温度)STは、フェライトおよびオーステナイトの二相域温度とする。本実施形態に係る絞り缶用鋼板の上記した化学成分の場合、750~820℃の温度範囲が、フェライトおよびオーステナイトの二相域温度に相当する。この温度範囲内で均熱することにより、ミクロ組織が好ましく制御される。
 焼鈍温度STが750℃未満であれば、フェライト単相域温度に近づいた温度での焼鈍となるため、パーライトの生成が不十分となり、フェライト粒の結晶粒径も小さくなる。そのため、上述した本実施形態のミクロ組織が得られない。この場合、目的の機械特性を得ることが困難となる。焼鈍温度STが820℃を超えると、焼鈍中の鋼板のオーステナイト分率が過剰となり、最終的に得られる冷延鋼板のELが低下する恐れがある。焼鈍温度STが750℃以上820℃以下であれば、ミクロ組織が好ましく制御される。また、焼鈍温度STでの保持時間は、5~50秒とすればよい。生産性および材質安定性を考慮すると、保持時間は10~30秒であることが好ましい。
 上記焼鈍温度STで均熱後、鋼板を冷却する。このとき、500~400℃の間の平均冷却速度CRを5~80℃/秒にする。平均冷却速度CRが80℃/秒を超えれば、固溶C量が高くなりすぎる。この場合、促進時効処理後の降伏点伸びYP-ELが0%よりも大きくなる。一方、平均冷却速度CRが5℃/秒未満であれば、固溶C量が低くなりすぎる。この場合、降伏強度YPが310MPa未満になる。500~400℃の間の平均冷却速度CRが5~80℃/秒であれば、適切な固溶C量が確保できる。そのため、促進時効処理後の降伏強度YPが310MPa以上になり、加工硬化量WHが45MPa以上になり、及び、降伏比YRが73%以下になる。また、500~400℃の間の平均冷却速度CRが5~80℃/秒であれば、ミクロ組織が好ましく制御される。
 なお、鋼板の生産性を高めるためには、平均冷却速度CRの下限が10℃/秒であることが好ましい。また、通常の連続焼鈍ライン(CAL)では、鋼板をガス冷却する。ガス冷却能力の上限は、30℃/秒程度である。したがって、平均冷却速度CRの上限は30℃/秒であることが好ましい。
 [箱焼鈍による過時効処理工程(BAF-OA工程)]
 本実施形態に係る冷延鋼板の製造方法では、BAF-OAを実施しない。BAF-OAを実施しなくても、本実施形態の冷延鋼板は、高強度で、プレス成形性に優れ、非St-St性に優れ、形状凍結性にも優れる。本実施形態に係る冷延鋼板の製造方法でBAF-OAを実施すれば、鋼中の固溶Cが低減して、降伏強度YPが310MPa未満になる。したがって、本実施形態に係る冷延鋼板の製造方法では、BAF-OAを実施しない。本実施形態ではBAF-OAを実施しないため、絞り缶用冷延鋼板の生産性が著しく高まる。
 [調質圧延工程]
 調質圧延工程では、焼鈍工程後に過時効処理を施していない焼鈍鋼板を、0.5~5.0%の累積圧下率で調質圧延(スキンパス圧延)して、調質圧延鋼板を製造する。圧下率が0.5%未満であれば、促進時効処理後の鋼板において、降伏点伸びYP-ELが0%超となる場合がある。圧下率が5.0%を超えれば、全伸びELが24%未満となり、プレス成形性が低下する。圧下率が0.5~5.0%であれば、優れた非St-St性及びプレス成形性が得られる。調質圧延工程後の調質圧延鋼板は、板厚が0.15~0.50mmとなる。
 [めっき工程]
 本実施形態に係る冷延鋼板の製造方法では、調質圧延工程後に、調質圧延鋼板の表面上(板面上)に、Niめっき処理、Ni拡散めっき処理、Snめっき処理、及びTFSめっき処理のうちの少なくとも1つを実施してもよい。この場合、調質圧延鋼板の板面上に、Niめっき層、Ni拡散めっき層、Snめっき層、及びTFSめっき層(金属Cr層とCr水和酸化物層との2層からなるめっき層)のうちの少なくとも1つが形成される。なお、Ni拡散めっき層は、Niめっき処理を施した鋼板に拡散熱処理を施すことによって形成される。
 Niめっき処理を実施する場合、調質圧延鋼板の表面に形成されるNiめっき層の好ましい厚さは、0.5~5.0μm(Ni付着量として、4.45~44.5g/m)である。
 上記した各工程での各製造条件を緻密にかつ複合的に制御することによって、本実施形態に係る冷延鋼板に特有のミクロ組織を得ることが可能となる。具体的には、熱延工程後の熱延鋼板のミクロ組織、一次冷延工程後の一次冷延鋼板のミクロ組織、焼鈍工程後の焼鈍鋼板のミクロ組織、および調質圧延工程後の調質圧延鋼板のミクロ組織を工程毎に制御することによってのみ、本実施形態に特有のミクロ組織を得ることができる。その結果、高強度で、プレス成形性に優れ、非St-St性に優れ、形状凍結性にも優れる絞り缶用冷延鋼板を得ることが可能となる。
 次に、実施例により本発明の一態様の効果を更に具体的に詳細に説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限り、種々の条件を採用し得る。
 製鋼工程として、鋼種A~Mのスラブを製造した。
 熱延工程として、これらのスラブを1200℃に加熱して、熱間圧延を実施し、2.0mmの板厚の熱延鋼板を製造した。熱延の仕上げ温度は880~920℃であった。熱延鋼板の巻取り温度CT(℃)は、表1に示すとおりであった。
 一次冷延工程として、熱延鋼板を酸洗した後、一次冷間圧延を実施して、板厚0.25mmの一次冷延鋼板を製造した。一次冷間圧延の累積圧下率は、表1に示すとおりであった。
 焼鈍工程として、一次冷延工程後の鋼板に対して、CAL(連続焼鈍)を実施した。平均昇温速度HR、焼鈍温度ST、500~400℃の間の平均冷却速度CRは、表1に示すとおりであった。焼鈍温度STでは鋼板を25秒間均熱した。均熱後、窒素ガスによるガス冷却を実施した。この際、焼鈍温度STから50℃に至るまで2段階冷却を行うことなく(中間温度で鋼板を保持することなく)鋼板を冷却した。ガス冷却において、500℃から400℃に至るまでの平均冷却速度CRは表1に示すとおりであり、400℃から50℃に至るまでの平均冷却速度は25℃/秒であった。
 試験番号2及び5の鋼板ではさらに、CAL後、BAF-OA(箱焼鈍による過時効処理)を実施した。BAF-OAでは、鋼板を450℃で5時間均熱した後、72時間かけて徐冷した。なお、試験番号2及び5以外の鋼板では、BAF-OAを実施しなかった。
 調質圧延工程として、焼鈍工程後の鋼板に対して、調質圧延を実施した。調質圧延での圧下率は、いずれも、1.8%であった。
 めっき工程として、表1に示す試験番号10の鋼板に対して、Snめっき処理を実施した。具体的には、調質圧延工程後に、鋼板の表裏面に電気Snメッキ法によりSnめっき層を形成した。表面及び裏面のSnめっき層の膜厚は、いずれも2.8g/mであった。この試験番号10の鋼板はSnめっき層を有する冷延鋼板となった。
 また、めっき工程として、表1に示す試験番号19の鋼板に対して、Niめっき処理を実施した。具体的には、調質圧延工程後に、鋼板の表裏面に電気めっき法によりNiめっき層を形成した。表面及び裏面のNiめっき層の膜厚は、いずれも2μmであった。この試験番号19の鋼板は、両面Niめっき層を有する冷延鋼板となった。
 上記のように製造した冷延鋼板に関して、化学成分の測定結果を表2に示し、ミクロ組織の観察結果および機械特性の測定結果を表3に示す。
 ミクロ組織は、製造した冷延鋼板のL断面にて、光学顕微鏡で観察を行った。組織観察用の試料は、製造した冷延鋼板の幅方向の中央部から採取した。ミクロ組織写真は、研磨してナイタールエッチングを行った試料のL断面の厚み方向の1/4厚み間の部位を撮影した。
 表3中で、「F+P」は、ミクロ組織が主にフェライト及びパーライトを含むことを示す。「F+C」は、ミクロ組織が主にフェライト及びセメンタイトを含むことを示す。
 機械特性は、製造した冷延鋼板を用いて引張試験を行って測定した。各試験番号の冷延鋼板から、JIS5号引張試験片を作製した。引張試験片の平行部は、冷延鋼板のL方向(圧延方向)と平行であった。作成された引張試験片に対して、促進時効処理を実施した。具体的には、各引張試験片に対して、100℃で1時間の時効処理を実施した。
 促進時効処理後の引張試験片に対して、JIS Z2241(2011)に準拠して、室温(25℃)大気中にて、引張試験を実施して、降伏強度YP、引張強度TS、全伸びEL、降伏点伸びYP-EL、降伏比YR、加工硬化量WHを求めた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明例である試験番号6、7、9、10、12、13、15、及び19の冷延鋼板は、製造条件、化学成分、ミクロ組織、機械特性の何れもが本発明の範囲を満足していた。その結果、これらの冷延鋼板は、高強度で、プレス成形性に優れ、非St-St性に優れ、形状凍結性にも優れる。
 一方、比較例である1~5、8、11、14、及び16~18の冷延鋼板は、製造条件、化学成分、ミクロ組織、機械特性の何れかが本発明の範囲を満足しなかった。その結果、これらの冷延鋼板は、強度、プレス成形性、非St-St性、及び形状凍結性を同時に達成できなかった。
 試験番号1は特許文献1の表1中の鋼Aに相当する化学組成を有する従来例であるが、上述の本発明例(試験番号6、7、9、10、12、13、15、及び19)の降伏強度YPは試験番号1の約1.5倍以上であり、加工硬化量WHは約1.5以上であった。
 試験番号1のC含有量は低すぎた。また、B、Nb、Ti含有量を満足しなかった。さらに、B/Nが低すぎた。そのため、ミクロ組織はフェライト及びパーライトの二相組織にならず、降伏強度YPが310MPa未満であり、加工硬化量WHが45MPa未満であった。
 試験番号2はCAL後にBAF-OAを実施した従来例であるが、C含有量が低すぎた。そのため、ミクロ組織はフェライト及びパーライトの二相組織にならず、降伏強度YPが310MPa未満であり、加工硬化量WHが45MPa未満であった。
 試験番号3、4、及び17では、C含有量が低すぎた。そのため、ミクロ組織はフェライト及びパーライトからなる二相組織となったものの、パーライトの生成量が少なすぎた。その結果、試験番号3、4、及び17のいずれにおいても、降伏点伸びYP-ELが0%よりも高かった。また、加工硬化量WHが45MPa未満であった。
 試験番号5では、化学組成が適切であったものの、CALでの焼鈍温度STが低すぎた。さらに、CAL後にBAF-OAを実施した。そのため、ミクロ組織がフェライト及びパーライトの二相組織にならず、降伏強度YPが310MPa未満であり、加工硬化量WHが45MPa未満であった。
 試験番号8及び試験番号11では、化学組成は適切であったものの、CALでの焼鈍温度STが低すぎた。そのため、ミクロ組織がフェライト及びパーライトの二相組織にならなかった。そのため、加工硬化量WHが45MPa未満であり、降伏比YRが73%を超え、形状凍結性が低かった。
 試験番号14では、化学組成が適切であったものの、焼鈍温度STが高すぎた。そのため、パーライトが増加し、全伸びELが24%未満となり、プレス成形性が低かった。
 試験番号16及び18では、C含有量が高すぎた。そのため、全伸びELが24%未満と低すぎ、プレス成形性が低かった。
 尚、表には示さないが、化学成分が本発明の範囲を満たすが、一次冷間圧延率が80%に満たない冷延鋼板では、例えば累積圧下率が78%の冷延鋼板では、ミクロ組織にフェライト及びパーライトが含まれたが、このミクロ組織は本発明例のミクロ組織よりも粗大であった。そのため、降伏点伸びYP-ELがゼロにならなかった。
 また、化学成分が本発明の範囲を満たすが、焼鈍後の500~400℃での平均冷却速度CRが5℃/秒に満たない冷延鋼板では、例えば平均冷却速度CRが4℃/秒の冷延鋼板では、ミクロ組織にフェライト及びパーライトが含まれたが、このミクロ組織は本発明例のミクロ組織よりも粗大であった。そのため、降伏点伸びYP-ELがゼロにならなかった。
 更に、化学成分が本発明の範囲を満たすが、焼鈍後の500~400℃での平均冷却速度CRが80℃/秒を超える冷延鋼板では、例えば平均冷却速度CRが85℃/秒の冷延鋼板では、ミクロ組織にフェライト及びパーライトが含まれたが、このミクロ組織は本発明例のミクロ組織よりも微細であった。そのため、降伏点伸びYP-ELがゼロにならなかった。
 本発明の上記態様によれば、高強度で、プレス成形性に優れ、非St-St性に優れ、形状凍結性にも優れる絞り缶用冷延鋼板を提供できる。この冷延鋼板は、プレス成形性及び形状凍結性に優れ、ストレッチャーストレインの発生を抑制し、ゲージダウンが可能である。そのため、産業上の利用可能性が高い。
 10: フェライト
 20: パーライト

Claims (5)

  1.  絞り缶用の鋼板であって、
     前記鋼板が、化学成分として、質量%で、
      C:0.150超~0.250%、
      Sol.Al:0.005~0.100%、
      B:0.0005~0.02%、
      Si:0.50%以下、
      Mn:0.70%以下、
      P:0.070%以下、
      S:0.05%以下、
      N:0.0080%以下、
      Nb:0.003%以下、
      Ti:0.003%以下、
     を含有し、残部はFe及び不純物からなり、
     前記化学成分中のホウ素含有量と窒素含有量とが、質量%で、0.4≦B/N≦2.5を満足し、
     前記鋼板が、ミクロ組織として、
      フェライトと、
      パーライトと
     を含み、
     前記鋼板を100℃で1時間の時効処理を実施した後に行う引張方向が圧延方向と平行となる引張試験から得られる降伏強度を単位MPaでYPとし、全伸びを単位%でELとし、降伏点伸びを単位%でYP-ELとし、降伏比を単位%でYRとし、及び加工硬化量を単位MPaでWHとしたとき、
      前記YPが310~370MPaであり、
      前記ELが24~30%であり、
      前記YP-ELが0%であり、
      前記YRが68~73%であり、
      前記WHが45~70MPaである
    ことを特徴とする絞り缶用鋼板。
  2.  前記YPと前記WHとを足した値が355超~440MPaである
    ことを特徴とする請求項1に記載の絞り缶用鋼板。
  3.  前記鋼板の表面上に、Niめっき層、Ni拡散めっき層、Snめっき層、及びTFSめっき層のうちの少なくとも1つが配される
    ことを特徴とする請求項1または2に記載の絞り缶用鋼板。
  4.  請求項1または2に記載の絞り缶用鋼板の製造方法であって、
     前記化学成分を有する鋳片を得る製鋼工程と、
     前記鋳片を、1000℃以上に加熱し、840~950℃で仕上げ圧延し、仕上げ圧延後冷却し、500~750℃で巻取って、熱延鋼板を得る熱延工程と、
     前記熱延鋼板に対して累積圧下率が80%超の一次冷間圧延を実施して、一次冷延鋼板を得る一次冷延工程と、
     前記一次冷延鋼板を、平均昇温速度10~40℃/秒で昇温し、750℃~820℃の温度範囲内で均熱し、その後、500~400℃の間を平均冷却速度5~80℃/秒で冷却する連続焼鈍を実施して、焼鈍鋼板を得る焼鈍工程と、
     前記焼鈍工程後に、過時効処理を施していない前記焼鈍鋼板を0.5~5.0%の累積圧下率で調質圧延して、調質圧延鋼板を得る調質圧延工程と、を備える
    ことを特徴とする絞り缶用鋼板の製造方法。
  5.  前記調質圧延工程後に、前記調質圧延鋼板に対して、Niめっき処理、Ni拡散めっき処理、Snめっき処理、及びTFSめっき処理のうちの少なくとも1つを実施するめっき工程をさらに備える
    ことを特徴とする請求項4に記載の絞り缶用鋼板の製造方法。
PCT/JP2015/082114 2014-11-17 2015-11-16 絞り缶用鋼板及びその製造方法 WO2016080344A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016515155A JP6037084B2 (ja) 2014-11-17 2015-11-16 絞り缶用鋼板及びその製造方法
CN201580061957.XA CN107109558B (zh) 2014-11-17 2015-11-16 拉深罐用钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-232931 2014-11-17
JP2014232931 2014-11-17

Publications (1)

Publication Number Publication Date
WO2016080344A1 true WO2016080344A1 (ja) 2016-05-26

Family

ID=56013881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082114 WO2016080344A1 (ja) 2014-11-17 2015-11-16 絞り缶用鋼板及びその製造方法

Country Status (4)

Country Link
JP (1) JP6037084B2 (ja)
CN (1) CN107109558B (ja)
TW (1) TWI573881B (ja)
WO (1) WO2016080344A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045627A1 (ja) * 2018-08-31 2020-03-05 東洋鋼鈑株式会社 電池容器用金属板およびこの電池容器用金属板の製造方法
WO2020203470A1 (ja) * 2019-03-29 2020-10-08 Jfeスチール株式会社 缶用鋼板およびその製造方法
CN114540604A (zh) * 2022-02-23 2022-05-27 江苏东方九天新能源材料有限公司 一种电池容器用镀镍钢带及其制备方法
JP7401840B2 (ja) 2021-04-09 2023-12-20 日本製鉄株式会社 表面処理鋼板

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY194622A (en) * 2017-03-27 2022-12-07 Jfe Steel Corp Steel sheet for two-piece can and manufacturing method thefefor
CN108411209A (zh) * 2018-06-01 2018-08-17 舞阳钢铁有限责任公司 一种耐腐蚀高强度混凝土搅拌罐用钢板及其生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060900A (ja) * 2000-08-15 2002-02-28 Nippon Steel Corp イヤリング性の極めて優れた絞り缶用鋼板および製造方法
JP2004225132A (ja) * 2003-01-24 2004-08-12 Nippon Steel Corp 深絞り性に優れた高強度冷延鋼板及びめっき鋼板、加工性に優れた鋼管、並びに、それらの製造方法
CN102732778A (zh) * 2012-06-19 2012-10-17 马钢(集团)控股有限公司 一种340MPa级深冲用高强度冷轧钢板及其生产方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050199322A1 (en) * 2004-03-10 2005-09-15 Jfe Steel Corporation High carbon hot-rolled steel sheet and method for manufacturing the same
CN101415852B (zh) * 2006-03-30 2011-09-07 杰富意钢铁株式会社 原油罐用耐腐蚀钢材及原油罐

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060900A (ja) * 2000-08-15 2002-02-28 Nippon Steel Corp イヤリング性の極めて優れた絞り缶用鋼板および製造方法
JP2004225132A (ja) * 2003-01-24 2004-08-12 Nippon Steel Corp 深絞り性に優れた高強度冷延鋼板及びめっき鋼板、加工性に優れた鋼管、並びに、それらの製造方法
CN102732778A (zh) * 2012-06-19 2012-10-17 马钢(集团)控股有限公司 一种340MPa级深冲用高强度冷轧钢板及其生产方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045627A1 (ja) * 2018-08-31 2020-03-05 東洋鋼鈑株式会社 電池容器用金属板およびこの電池容器用金属板の製造方法
JPWO2020045627A1 (ja) * 2018-08-31 2021-09-09 東洋鋼鈑株式会社 電池容器用金属板およびこの電池容器用金属板の製造方法
JP7413264B2 (ja) 2018-08-31 2024-01-15 東洋鋼鈑株式会社 電池容器用金属板およびこの電池容器用金属板の製造方法
WO2020203470A1 (ja) * 2019-03-29 2020-10-08 Jfeスチール株式会社 缶用鋼板およびその製造方法
JP6819838B1 (ja) * 2019-03-29 2021-01-27 Jfeスチール株式会社 缶用鋼板およびその製造方法
JP7401840B2 (ja) 2021-04-09 2023-12-20 日本製鉄株式会社 表面処理鋼板
CN114540604A (zh) * 2022-02-23 2022-05-27 江苏东方九天新能源材料有限公司 一种电池容器用镀镍钢带及其制备方法

Also Published As

Publication number Publication date
JPWO2016080344A1 (ja) 2017-04-27
JP6037084B2 (ja) 2016-11-30
TW201629242A (zh) 2016-08-16
TWI573881B (zh) 2017-03-11
CN107109558B (zh) 2019-01-18
CN107109558A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
KR101561007B1 (ko) 재질 불균일이 작고 성형성이 우수한 고강도 냉연강판, 용융아연도금강판, 및 그 제조 방법
JP6037084B2 (ja) 絞り缶用鋼板及びその製造方法
JP5043248B1 (ja) 高強度焼付硬化型冷延鋼板及びその製造方法
JP5217197B2 (ja) イヤリング性に優れた冷延鋼板およびその製造方法
JP5569657B2 (ja) 耐時効性に優れた鋼板およびその製造方法
TW201335386A (zh) 熱浸鍍鋅鋼板及其製造方法
KR20120008033A (ko) 시효성 및 베이킹 경화성이 우수한 냉연 강판 및 그 제조 방법
JP6428986B1 (ja) 絞り缶用冷延鋼板、及びその製造方法
WO2020209276A1 (ja) 鋼板及びその製造方法
JP5878829B2 (ja) 曲げ性に優れた高強度冷延鋼板およびその製造方法
WO2016035235A1 (ja) ステンレス冷延鋼板用素材
JP5145315B2 (ja) 加工性の優れた耐時効冷延鋼板及びその製造方法
JP5930144B1 (ja) 絞り缶用鋼板及びその製造方法
JP6699310B2 (ja) 絞り缶用冷延鋼板及びその製造方法
KR101543834B1 (ko) 가공성 및 내시효성이 우수한 극박 열연강판 및 그 제조방법
KR102485003B1 (ko) 성형성 및 표면품질이 우수한 고강도 도금강판 및 그 제조방법
TWI665312B (zh) 鋼板
KR101263612B1 (ko) 성형성, 형상 동결성, 표면 외관이 우수한 냉연 강판, 및 그 제조 방법
KR20110005414A (ko) 프레스 가공성이 우수한 소부경화형 냉연강판, 용융아연도금강판 및 그 제조방법
JP2007239036A (ja) 平均r値が高く、面内異方性の小さい冷延鋼板およびその製造方法
KR100555581B1 (ko) 균일한 소성변형 특성을 갖는 냉연강판 및 그 제조방법
WO2022070840A1 (ja) 高強度鋼板
JP5239331B2 (ja) 面内異方性が小さく、歪時効特性に優れた冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016515155

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860916

Country of ref document: EP

Kind code of ref document: A1