WO2016080336A1 - 多孔性粒子の製造方法 - Google Patents

多孔性粒子の製造方法 Download PDF

Info

Publication number
WO2016080336A1
WO2016080336A1 PCT/JP2015/082087 JP2015082087W WO2016080336A1 WO 2016080336 A1 WO2016080336 A1 WO 2016080336A1 JP 2015082087 W JP2015082087 W JP 2015082087W WO 2016080336 A1 WO2016080336 A1 WO 2016080336A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous particles
solution
drug
production method
phospholipid
Prior art date
Application number
PCT/JP2015/082087
Other languages
English (en)
French (fr)
Inventor
紹玲 張
亘作 川上
克彦 有賀
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to US15/527,204 priority Critical patent/US9987228B2/en
Priority to JP2016560204A priority patent/JP6557935B2/ja
Priority to EP15862011.2A priority patent/EP3222273B1/en
Publication of WO2016080336A1 publication Critical patent/WO2016080336A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1274Non-vesicle bilayer structures, e.g. liquid crystals, tubules, cubic phases, cochleates; Sponge phases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing

Definitions

  • the present invention relates to a method for producing porous particles, and more particularly to a method comprising phase separation and lyophilization of a solution containing an amphiphile.
  • Patent Documents 1, 2, and 3 Various porous particles have been developed, and the possibility of a drug delivery system (DDS) as a drug-carrying carrier has been studied (Patent Documents 1, 2, and 3).
  • DDS drug delivery system
  • Patent Document 1 a porous material excellent in the release property of a non-steroidal anti-inflammatory compound is provided.
  • Patent Document 2 discloses a porous material that functions as a carrier for a drug and drug-containing nanoparticles, and an increase in the oral absorbability of the drug is achieved by an increase in solubility. When a porous material is used as a carrier for these low molecular weight drugs, dissolution aid is the purpose.
  • Patent Document 3 porous particles are used as a drug carrier for gene therapy. Stabilization of gene drugs and effective intracellular delivery have been achieved.
  • Porous particles mainly composed of an inorganic material and / or a carbon material are hard and do not rapidly decompose in the living body, and if they exist for a long period of time, the living body may be adversely affected. Porous particles using a polymer material have also been developed (Patent Documents 4 and 5). However, the porous particles also take time to decompose, and impurities such as monomers remain, so that biological safety is ensured. May cause sexual problems.
  • Patent Document 4 relates to a water-insoluble porous particle of a biocompatible substance and a method for producing the same.
  • Patent Document 5 relates to porous polymer particles on which charged molecules are immobilized and a method for producing the same.
  • Non-Patent Document 1 is a review on medical applications of porous silica particles. The use of silica-related materials as porous materials is explained.
  • Non-Patent Document 2 is a review on the creation of porous materials using polymer compounds. Specializes in the use of polymer compounds.
  • Non-Patent Document 3 is a document in which indomethacin is encapsulated in porous silica to confirm an increase in drug solubility and an improvement in oral absorption in animals. Porous particles are used as a material for improving solubility.
  • Non-Patent Document 4 is a review on shape control of organic material particles using spray drying.
  • a porous material made of an organic compound is disclosed.
  • a technique is disclosed in which spray-dried particles containing a template are removed by heating or dissolution to form porous particles.
  • the pore diameter is mainly submicron, and a very large one is disclosed.
  • Non-Patent Document 5 is a review on microparticle preparation methods for pharmaceutical pulmonary administration.
  • a porous particle production method using an organic material is disclosed. It is disclosed that porous particles can be obtained by adding a material that vaporizes during spray drying.
  • the pore diameter is mainly submicron, and a very large one is disclosed.
  • Non-Patent Document 6 discloses that a porous material intended for use in regenerative medicine can be produced by freeze-drying.
  • the present invention is as follows. [1] (1) a step of dissolving an amphiphilic substance in a lyophilized mixed solvent to prepare a solution of the amphiphilic substance; (2) cooling the solution obtained in step (1) to a temperature not higher than the phase separation temperature of the solution, and then maintaining the temperature to produce a precipitate containing the amphiphile; (3) A step of producing porous particles by freeze-drying the solution containing the precipitate obtained in step (2), A method for producing porous particles, comprising:
  • the phospholipid is at least one selected from the group consisting of phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, sphingomyelin, and ceramide.
  • the phospholipid is a naturally derived phospholipid.
  • the naturally derived phospholipid is hydrogenated soybean lecithin or hydrogenated egg yolk lecithin.
  • amphiphilic substance is at least one selected from the group consisting of dicetyl phosphate, dihexadecyl phosphate, dioctadecyldimethylammonium salt and stearylamine.
  • the mixed solvent is a mixed solvent of two or more solvents selected from the group consisting of water, t-butanol, cyclohexane, dioxane, dimethyl sulfoxide, diethylamine, acetic acid, and t-amyl alcohol. To the above method.
  • the mixed solvent is methanol, ethanol, propanol, isopropanol, butanol, hexane, heptane, octane, isooctane, nonane, decane, dodecane, ethers, acetonitrile, acetone, chloroform, dichloromethane, dimethylformamide, dimethylacetamide,
  • step (1) The method described above, wherein in step (1), a biocompatible substance is further dissolved.
  • the biocompatible substance is a drug.
  • the drug is at least one selected from the group consisting of a low molecular drug, a peptide drug, an antibody drug, and a nucleic acid drug.
  • the biocompatible substance is at least one selected from the group consisting of a stabilizer, a humectant, a thickener and an excipient.
  • porous particles having a substantially uniform particle size of 100 nm to 50 ⁇ m can be obtained.
  • Each process of the production method is easy to industrialize and does not require any special substances.
  • the pore diameter of the resulting porous particles is distributed from nano-order to sub-micron, and various guest molecules can be taken into the main body and pores, and the release rate can be changed. And so on.
  • FIG.1 (c) is a scanning electron microscope (SEM) photograph of the cross section of an example of a porous particle. It is the B section enlarged view (a) of FIG.1 (b), and the C section enlarged view (b) of (a). 2 is an enlarged view of a phospholipid that is an example of an amphiphilic molecule 41.
  • FIG. It is a schematic diagram which shows an example of the guest molecule inclusion porous particle which is embodiment of this invention. It is a schematic diagram which shows an example of the guest molecule inclusion porous particle which is embodiment of this invention.
  • FIG. 1 It is a schematic diagram which shows an example of the guest molecule inclusion porous particle which is embodiment of this invention.
  • 2 is a SEM photograph of porous particles of Example 1-1.
  • 2 is a SEM photograph of porous particles of Example 1-2.
  • 4 is a SEM photograph of porous particles of Example 1-3.
  • 4 is a SEM photograph of porous particles of Example 1-4.
  • 4 is a SEM photograph of porous particles of Example 1-4.
  • 3 is a SEM photograph of porous particles of Example 1-5.
  • 4 is a SEM photograph of porous particles of Example 1-6.
  • 4 is a SEM photograph of porous particles of Example 1-7.
  • 4 is a SEM photograph of porous particles of Example 1-8.
  • 2 is a SEM photograph of porous particles of Example 1-9.
  • Example 1-1 The analysis results of the pore distribution for 3.0 wt% (Example 1-1), 9.6 wt% (Example 1-3), 6.0 wt% (Example 1-4), and rp (porous It is a graph which shows the volume distribution of the pore diameter of a property particle (Vp: pore volume of the whole particle).
  • Vp pore volume of the whole particle.
  • 3 is a SEM photograph of porous particles of Example 2-2.
  • 3 is a SEM photograph of porous particles of Example 2-3.
  • 4 is a SEM photograph of porous particles of Example 2-4.
  • 4 is a SEM photograph of porous particles of Example 2-5.
  • Example 3 is a graph showing the relationship between the percentage release of FITC dextran from the FITC dextran-containing porous particles of Example 3 and the time elapsed, which are Examples 3-1 (b) and 3-2 (a). It is a SEM photograph of porous particles, which are Example 4-1 (a), Example 4-2 (b), Example 4-3 (c), and Example 4-4 (d). 4 is a graph showing the relationship between the percentage release of theophylline from theophylline-containing porous particles of Examples 4-1 to 4-4 and the time elapsed.
  • 2 is a SEM photograph of a bulk body of Comparative Example 1.
  • 4 is a SEM photograph of a plate-like structure of Comparative Example 2.
  • FIG. 1 is a schematic diagram showing an example of the porous particles, which are an overall view (a) and an enlarged view (a) of part A in FIG.
  • the porous particles 11 shown in FIG. 1 (a) are substantially spherical.
  • the present invention is not limited to this, and various forms such as an elliptical sphere can be employed.
  • the volume average particle diameter is preferably 50 ⁇ m or less in order to ensure the surface area.
  • the volume average particle diameter is desirably 20 ⁇ m or less.
  • the lower limit of the particle size is not particularly limited, but is desirably 100 nm or more in order to facilitate handling. Further, according to the method of the present invention, a narrow particle size distribution can be realized.
  • the porous particle 11 has a portion 21 made of an amphiphile, for example, a phospholipid, and a hole 21c.
  • the hole 21c extends from the surface to the inside as shown in a cross-sectional photograph (FIG. 1C).
  • FIG. 2A is an enlarged view of a portion B in FIG. 1B
  • FIG. 2B is an enlarged view of a portion C in FIG. 2A.
  • lipid bilayer membranes 23A, 23B, and 23C are laminated between two holes 21c and 21c ′ to form a lamellar structure.
  • the actual number of layers is arbitrary, and is not limited to three layers.
  • the lipid bilayer membrane 23A is configured in a state in which the lipid layer 25A and another lipid layer 25B and hydrophobic groups 31A are aggregated. A plurality of lipid bilayers are gathered to form a lamellar structure.
  • FIG. 3 is an enlarged view of a phospholipid, which has a hydrophilic group 38 and two hydrophobic groups 39A and 39B bonded to the hydrophilic group 38.
  • the hydrophobic groups 39A and 39B are preferably C12 or more and C18 or less saturated hydrocarbon chains, and unsaturated hydrocarbon chains are not preferred. This is because phospholipids having an unsaturated hydrocarbon chain have a low freeze phase glass transition temperature, and it is difficult to set lyophilization conditions that can maintain the particle structure.
  • the two hydrophobic groups 39A and 39B may be the same or different. Examples of the fatty acid having a saturated alkyl group of C12 or more and C18 or less include myristic acid, palmitic acid, stearyl acid and the like.
  • the hydrophilic group 38 has a linking group 33 bonded to the hydrophobic groups 39A and 39B by an ether bond.
  • the linking group 33 is a glycerin residue. For example, when a fatty acid is ester-bonded to the C1 and C2 positions of glycerin and phosphoric acid is ester-bonded to the C3 position, phosphatidic acid is obtained.
  • the method for producing porous particles according to the embodiment of the present invention includes (1) a step of preparing an amphiphilic substance solution, (2) a precipitate generation step, and (3) a lyophilization step.
  • the amphiphilic substance is a substance having a hydrophobic group and a hydrophilic group in the molecule, and is preferably biocompatible.
  • amphiphilic substances include natural amphipathic substances such as the above-mentioned phospholipids and ceramide lipids, synthetic amphiphilic substances such as dicetyl phosphate, dihexadecyl phosphate, dioctadecyl dimethyl ammonium salt, and stearyl amine. And those obtained by modifying the hydrophilic group of these with a molecule for improving the interaction with a guest drug and the ability to deliver a drug to a target site in the body, such as polyethylene glycol and a membrane-permeable peptide.
  • the hydrophobic chain portion has only a saturated hydrocarbon chain.
  • phospholipids include phosphatidylcholine (Phosphatidylcholine), phosphatidylethanoline (Phosphatidylethanoline), Can do.
  • a naturally derived mixture may be used as the phospholipid, and examples thereof include hydrogenated soybean lecithin and hydrogenated egg yolk lecithin.
  • Hydrogenated soybean lecithin is mainly composed of, for example, 87 wt% of distearyl phosphatidylcholine and 13 wt% of dipalmitoyl phosphatidylcholine.
  • the phosphatidyl derivative and a lipid having an unsaturated hydrocarbon chain may be mixed with the phospholipid as long as the porous structure does not collapse. Cholesterol may be added within a range where the porous structure does not collapse.
  • ceramide lipids examples include animal ceramides, plant ceramides, bioceramides, and synthetic ceramides.
  • the ceramide lipid may be mixed with the phosphatidyl derivative and a lipid having an unsaturated hydrocarbon chain as long as the porous structure does not collapse. Cholesterol may be added within a range where the porous structure does not collapse.
  • the lyophilized mixed solvent examples include a mixture of two or more solvents selected from water, t-butanol, t-amyl alcohol, cyclohexane, dioxane, dimethyl sulfoxide, diethylamine, and acetic acid. Of these, a solvent obtained by mixing two or more solvents selected from the group consisting of water, t-butanol, cyclohexane, and dioxane is preferable. These mixed solvents are used in such a combination and quantity ratio that phase separation occurs upon cooling in the presence of the amphiphile used.
  • the mixed solvent examples include methanol, ethanol, propanol, isopropanol, n-butanol, isobutane, isopentane, hexane, heptane, octane, isooctane, nonane, decane, dodecane, ethers, acetonitrile, acetone, chloroform, dichloromethane, dimethyl sulfoxide, At least one solvent selected from the group of dimethylformamide, dimethylacetamide, ethylamine, propylamine, and N-methylpyrrolidone may be further mixed.
  • the method of dissolution is not particularly limited. First, a mixed solvent is prepared, an amphiphilic substance is added thereto, and a stirrer or the like is used according to a conventional method. Alternatively, the amphiphilic substance may be dissolved in one solvent, and another solvent may be added to the obtained solution and mixed. You may heat when melt
  • Step (2) Precipitate generation step
  • the solution obtained in step (1) is cooled below the phase separation temperature of the solution and then held at the temperature to generate a precipitate containing the amphiphile.
  • the temperature at which phase separation occurs depends on at least a ternary system of at least two solvents and an amphiphile.
  • the cooling means is not particularly limited, and may be performed in a freeze dryer. Although the cooling rate is not particularly limited, it is preferable to cool relatively rapidly, and the cooling rate is 0.1 ° C./min or more. When cooling, you may stir. Although it is possible to produce a precipitate even if it is kept at the phase separation temperature, it is preferably cooled to 1 ° C. or less, more preferably 5 ° C. or less from the phase separation temperature.
  • the temperature is then maintained to produce a precipitate containing amphiphile.
  • a precipitate containing amphiphile For example, when a phospholipid is used, a spherical precipitate containing the phospholipid is generated.
  • Spherical precipitates containing lamellar lecithin can be generated at temperatures lower than this and not freezing, for example 4 ° C.
  • the retention time is preferably adjusted depending on the amphiphile and the solvent system.
  • cyclohexane 1: 2
  • it is preferably 5 hours or more and 4 days or less. In about several hours, a precipitate may not be formed uniformly. On the other hand, if it exceeds 4 days, aggregates are formed.
  • the freezing temperature is, for example, ⁇ 20 ° C. or lower, preferably ⁇ 40 ° C. or lower. Cooling may be performed with liquid nitrogen or in a vacuum freeze dryer. Prior to freezing, the supernatant may be removed by decantation or the like.
  • the lyophilization time is not particularly limited, but is preferably half a day or more.
  • the lyophilization temperature is, for example, between ⁇ 40 ° C. and 40 ° C., preferably between ⁇ 20 ° C. and 25 ° C.
  • the residual solvent may be distilled off by heating.
  • the temperature is desirably 50 ° C. or less and the time is desirably 5 hours or less, but is not limited thereto. Note that a spray freeze-drying method may be used as the freeze-drying method. Thus, porous particles are obtained.
  • the porous particles can support an arbitrary substance (hereinafter referred to as “guest molecule”) as a carrier.
  • guest molecule an arbitrary substance
  • 4 to 6 are schematic views showing an example of the guest molecule-containing porous particles.
  • the guest molecule-containing porous particle has a porous particle 11 (FIG. 1) and a guest molecule 50 and is roughly configured.
  • the guest molecule 50 may be supported on any part of the surface of the porous particle 11, the pores, or the lamellar structure.
  • guest molecules 50 are taken into the pores 21 c of the porous particles 11.
  • guest molecules 50 are incorporated in the hydrophobic layers 31 ⁇ / b> A and 31 ⁇ / b> A ′ of the porous particles 11. That is, it is taken into the lipid bilayer membrane 23A.
  • the guest molecule 50 is taken in between the hydrophilic layers 31B and 31B ′ of the porous particle 11. That is, it is taken in between the lipid bilayer membranes 23A and 23B.
  • a preferred guest molecule 50 is a drug or other biocompatible substance.
  • the drug that can be incorporated into the lipid bilayer as shown in FIG. 5 include hydrophobic low-molecular-weight drugs containing steroids or fat-soluble vitamins.
  • examples of drugs incorporated between lipid bilayers include hydrophilic drugs such as water-soluble low-molecular drugs represented by antibiotics, peptide drugs, antibody drugs, and nucleic acid drugs.
  • An example of the water-soluble low molecular weight drug is an antibiotic.
  • two or more kinds of drugs may be contained alone or a hydrophilic drug and a hydrophobic drug may be taken in at the same time.
  • biocompatible substances examples include conventional pharmaceuticals / cosmetics / food additives such as stabilizers, humectants, thickeners and excipients.
  • Antioxidants such as vitamin C or preservatives such as parabens as the stabilizer, polyhydric alcohols such as glycerin, propylene glycol, butylene glycol and sorbit as the humectant, hyaluronic acid, chondroitin sulfate, collagen, gelatin
  • Water-soluble polymers such as elastin and keratin and hydrolysates thereof, or low molecular weight compounds such as amino acids and urea, polysaccharides containing cellulose as the thickener, synthetic polymers for polyvinyl derivatives or thickeners
  • the molecule and the excipient include saccharides and water-soluble polymers.
  • the drug and the other biocompatible substance are dissolved in a mixed solvent together with the amphiphilic substance or mechanically mixed with the porous particles obtained in the step (3) (You may carry out by 4).
  • the content of the guest molecule 50 is preferably adjusted according to the type of the guest molecule, but is preferably 50 wt% or less, more preferably 30 wt% or less with respect to the weight of the porous particles. .
  • the guest molecules When the guest molecule-containing porous particles come into contact with a medium having a low guest molecule concentration, for example, gastrointestinal fluid, the guest molecules can be gradually released from the guest molecule-containing porous particles by a concentration gradient.
  • a concentration gradient By incorporating guest molecules both within the pores and between the lamellar structures, the release rate can be controlled.
  • the release can be released at different times.
  • the phospholipid solution was cooled to 0 ° C. by ice cooling and phase-separated, and then kept at 0 ° C. for 24 hours to form a precipitate.
  • the precipitate was frozen with liquid nitrogen to produce a frozen product.
  • the frozen product was held in a freeze dryer, held at ⁇ 20 ° C. for half a day under reduced pressure, and then the temperature was raised to room temperature. Particles were produced.
  • FIG. 7 is an SEM photograph of the porous particles of Example 1-1.
  • the specific surface area of the particles measured using a nitrogen adsorption method (BEL-sorp mini, manufactured by Nippon Bell) was 23.9 m 2 / g, and the volume-based average particle diameter was 15.8 ⁇ m.
  • the obtained particles showed a narrow particle size distribution with almost uniform particle sizes, and the standard deviation of the distribution was 2.7 ⁇ m.
  • Example 1-2 The porous particles of Example 1-2 were cooled in the same manner as in Example 1-1 except that the phospholipid solution was cooled to ⁇ 20 ° C. and held at that temperature for 24 hours to produce a precipitate. Manufactured.
  • FIG. 8 is an SEM photograph of the porous particles of Example 1-2.
  • the specific surface area was 6.73 m 2 / g, and the average particle size was 8.2 ⁇ m (standard deviation 1.2 ⁇ m).
  • Example 1-3 Porous particles of Example 1-3 were produced in the same manner as Example 1-1, except that a phospholipid solution was prepared using a 3.0 wt% hydrogenated soybean lecithin solution.
  • FIG. 9 is an SEM photograph of the porous particles of Example 1-3.
  • the specific surface area was 19.8 m 2 / g, and the average particle size was 11.5 ⁇ m (standard deviation 1.6 ⁇ m).
  • Example 1-4 Porous particles of Example 1-4 were produced in the same manner as in Example 1-1 except that a phospholipid solution was prepared using a 6.0 wt% hydrogenated soybean lecithin solution.
  • Example 10 and 11 are SEM photographs of the porous particles of Example 1-4.
  • the specific surface area was 43.1 m 2 / g, and the average particle size was 12.4 ⁇ m (standard deviation 1.8 ⁇ m).
  • FIG. 12 is an SEM photograph of the porous particles of Example 1-5.
  • the specific surface area was 49.3 m 2 / g, and the average particle size was 13.0 ⁇ m (standard deviation 1.8 ⁇ m).
  • the porous particles of Example 1-6 were produced.
  • FIG. 13 is an SEM photograph of the porous particles of Example 1-6.
  • the specific surface area was 50.4 m 2 / g, and the average particle size was 15.6 ⁇ m (standard deviation 1.7 ⁇ m).
  • the porous particles of Example 1-7 were produced.
  • FIG. 14 is an SEM photograph of the porous particles of Example 1-7.
  • the specific surface area was 41.7 m 2 / g, and the average particle size was 9.9 ⁇ m (standard deviation 2.4 ⁇ m).
  • Example 1-8 The porous particles of Example 1-8 were produced in the same manner as in Example 1-1 except that the phospholipid solution was cooled to 4 ° C. and kept at that temperature to produce a precipitate.
  • FIG. 15 is a SEM photograph of the porous particles of Example 1-8.
  • FIG. 16 is a SEM photograph of the porous particles of Example 1-9.
  • FIG. 17 shows the nitrogen adsorption method (manufactured by Nippon Bell) for lecithin concentrations of 9.6 wt% (Example 1-1), 3.0 wt% (Example 1-3), and 6.0 wt% (Example 1-4).
  • FIG. 7 is a graph showing an analysis result of pore distribution obtained by BEL-sorp mini and showing a relationship of Vp (pore volume of the entire porous particle) to rp (pore diameter of the porous particle). The vertical axis is dVp / drp. That is, this figure represents the distribution of pore diameters.
  • Example 1-3 At 3.0 wt% (Example 1-3), no clear peak was observed, and it was considered that there were few pores of 100 nm or less. At 9.6 wt% (Example 1-1), a peak was observed in the vicinity of 10 nm. In 6.0 wt% (Example 1-4), a peak was observed in the vicinity of 20 nm. Table 1 shows the production conditions of the porous particles and the specific surface area and average particle diameter of the obtained porous particles.
  • the distance between the lamella-like layers hereinafter referred to as “lamellar distance” determined by small-angle X-ray scattering was 6.17 nm.
  • FIG. 18 is an SEM photograph of the porous particles of Example 2-2. The lamella spacing determined from small angle X-ray scattering was 6.35 nm.
  • Example 2-3 Porous particles of Example 2-3 were obtained in the same manner as Example 2-2, except that the concentration of the aqueous glucose solution was 40 wt%.
  • FIG. 19 is an SEM photograph of the porous particles of Example 2-3. The lamellar spacing determined from small angle X-ray scattering was 6.59 nm.
  • Example 2-4 Porous particles of Example 2-4 were obtained in the same manner as Example 2-2 except that the concentration of the glucose aqueous solution was 60 wt%.
  • FIG. 20 is an SEM photograph of the porous particles of Example 2-4. The lamellar spacing determined from small angle X-ray scattering was 6.74 nm.
  • Example 2-5 Porous particles of Example 2-5 were obtained in the same manner as Example 2-2 except that the concentration of the aqueous glucose solution was 80 wt%.
  • FIG. 21 is an SEM photograph of the porous particles of Example 2-5.
  • the lamellar spacing determined from small angle X-ray scattering was 6.84 nm. Table 2 summarizes the results of manufacturing conditions and lamellar spacing.
  • the lamella spacing increased. This is because (1) glucose exists mainly between lipid bilayer membranes, and (2) the amount of glucose existing between lipid bilayer membranes increases with increasing glucose concentration, and the distance between lipid bilayer membranes. This is probably due to the spread of
  • Example 3 (Production of dextran-containing porous particles)
  • FITC dextran dextran modified with fluorescein isocyanate
  • this hydrogenated soybean lecithin solution was kept at 4 ° C. for one day to produce a precipitate.
  • this precipitate was frozen with liquid nitrogen and then lyophilized to produce FITC dextran-containing porous particles of Example 3.
  • FIG. 22 is a graph showing the relationship between the release percentage of FITC dextran from the FITC dextran-containing porous particles of Example 3 and the time elapsed, and in Examples 3-1 (b) and 3-2 (a). is there. In both cases, release behavior having biphasic properties was observed. This is thought to be because FITC dextran captured between lamellae is less likely to be released than FITC dextran captured in the pores. From the above, it was shown that the porous particles obtained by the method of the present invention act as a carrier capable of controlling the release rate. Table 3 summarizes the results of manufacturing conditions and release characteristics.
  • FIG. 23A is a SEM photograph of the porous particles of Example 4-1.
  • Example 4-2 The theophylline-containing porous particles of Example 4-2 were obtained in the same manner as in Example 4-1, except that the concentration of the added 4.6 wt% theophylline aqueous solution was doubled.
  • FIG. 23B is a SEM photograph of the porous particles of Example 4-2.
  • Example 4-3 The theophylline-containing porous particles of Example 4-3 were obtained in the same manner as in Example 4-1, except that the concentration of the added 4.6 wt% theophylline aqueous solution was tripled.
  • FIG. 23C is an SEM photograph of the porous particles of Example 4-3.
  • Example 4-4 The theophylline-containing porous particles of Example 4-4 were obtained in the same manner as in Example 4-1, except that the concentration of the added 4.6 wt% theophylline aqueous solution was quadrupled.
  • FIG. 23 (d) is a SEM photograph of the porous particles of Example 4-4.
  • Theophylline release experiment First, theophylline-containing porous particles of Examples 4-1 to 4-4 were dispersed in a phosphate buffer solution having a pH of 7 at 200 mg / 100 mL. Next, the solution was collected over time, filtered through a filter, and then analyzed by high performance liquid chromatography to measure the theophylline concentration in the solution.
  • FIG. 24 is a graph showing the relationship between the percentage release of theophylline from the theophylline-containing porous particles of Examples 4-1 to 4-4 and the elapsed time.
  • Theophylline was gradually released from the theophylline-containing porous particles of Examples 4-1 to 4-4 with time. Compared to the instant dissolution of the entire amount of theophylline alone, it was confirmed that the theophylline-containing porous particles of Examples 4-1 to 4-4 contained theophylline, and the included theophylline was released little by little. confirmed.
  • Table 4 summarizes the results of manufacturing conditions and release characteristics.
  • FIG. 26 is an SEM photograph of the plate-like structure of Comparative Example 2. The experimental conditions and results are summarized in Table 5.
  • FIG. 27 is an electron micrograph of the porous particles. The content of prednisolone in the porous particles was 80%.
  • FIG. 28 (a) shows the SEM photograph. The obtained particles were orally administered to rats at a drug amount conversion of 7.5 mg / kg, and the blood concentration of fenofibrate metabolites was measured.
  • Porous particles and guest molecule-containing porous particles obtained by the method of the present invention have a porous structure, and are used as carriers for guest molecules, particularly drug molecules, oral preparations and inhalants utilizing sustained release and low density properties. It is very useful as a drug carrier for injections, external preparations (including cosmetics), eye drops and the like.
  • SYMBOLS 11 Porous particle, 21 ... Portion which consists only of amphipathic molecule, 21c, 21c '... Pore, 23A, 23B, 23C ... Lipid bilayer, 25A, 25B ... Lipid layer, 31A, 31A' ... Hydrophobic layer 31B, 31B '... hydrophilic layer, 33 ... linking part, 38 ... hydrophilic group, 39A, 39B ... hydrophobic group, 41 ... amphiphilic molecule (phospholipid), 50 ... guest molecule.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

(1)両親媒性物質を、凍結乾燥可能な混合溶媒に溶解させて、両親媒性物質の溶液を調製する工程と、(2)工程(1)で得られた溶液を該溶液の相分離温度以下の温度に冷却してから、該温度で保持して、該両親媒性物質を含む沈殿物を生成する工程と、(3)工程(2)で得られた沈殿物を含む溶液を凍結乾燥して、多孔性粒子を製造する工程、とを有することを特徴とする多孔性粒子の製造方法。

Description

多孔性粒子の製造方法
 本発明は、多孔性粒子の製造方法に関し、詳細には両親媒性物質を含む溶液を相分離させること及び凍結乾燥することを含む方法に関する。
 本願は、2014年11月18日に、日本に出願された特願2014-233671号に基づき優先権を主張し、その内容をここに援用する。
 様々な多孔性粒子が開発され、ドラッグデリバリーシステム(DDS)の薬物担持キャリアとしての可能性が検討されている(特許文献1、2、3)。特許文献1においては、非ステロイド系抗炎症化合物の放出性に優れる多孔性材料が提供されている。特許文献2においては、薬物および薬物含有ナノ粒子の担体として機能する多孔性材料が示されており、溶解性の上昇によって薬物の経口吸収性の向上が達成されている。これらの、低分子薬物の担体として多孔性材料を用いる場合には、溶解補助がその目的となる。特許文献3では、遺伝子治療の際の薬物担体として、多孔性粒子が利用されている。遺伝子薬物の安定化と、効果的な細胞内デリバリーが達成されている。
 無機材料及び/又は炭素材料を主体とする多孔性粒子は、硬いものであり、生体中で速やかに分解せず、長期間存在すると生体に悪影響を与えるおそれがあった。高分子材料を用いた多孔性粒子も開発されたが(特許文献4、5)、該多孔性粒子も分解には時間を要し、また単量体等の不純物が残存することによって、生体安全性の問題を生じる恐れがある。特許文献4は、生体適合性物質の水不溶化多孔性粒子及びその製造法に関する。特許文献5は、荷電分子が固定化した多孔性高分子粒子およびその製造方法に関する。
 非特許文献1は、多孔性シリカ粒子の医療応用に関する総説である。シリカ関連素材の多孔性材料としての利用について解説されている。
 非特許文献2は、高分子化合物を用いた多孔性材料の作成に関する総説である。高分子化合物の利用に特化している。
 非特許文献3は、インドメタシンを多孔性シリカに内封し、薬物の溶解性の上昇と、動物における経口吸収性の向上を確認した文献である。多孔性粒子は溶解性向上のための材料として使用されている。
 非特許文献4は、噴霧乾燥を用いた有機材料粒子の形状制御に関する総説である。有機化合物による多孔性材料について開示されている。テンプレートを含んだ噴霧乾燥粒子を、加温や溶解によって取り除くことによって多孔性粒子化する手法が開示されている。孔径はサブミクロンが主体であり、非常に大きいものが開示されている。
 非特許文献5は、医薬品経肺投与のための微粒子作成法に関する総説である。有機材料による多孔性粒子作製法について開示されている。噴霧乾燥中に気化する材料を添加することで多孔性粒子が得られることが開示されている。孔径はサブミクロンが主体であり、非常に大きいものが開示されている。
 非特許文献6は、凍結乾燥によって、再生医療への利用を指向した多孔性材料が作製できることが開示されている。
特表2005-533751号公報 特表2008-510000号公報 特表2011-520813号公報 特開2005-103319号公報 特表2010-535885号公報
Chem.Soc.Rev.41,2590-2605(2012) Chem.Rev.112,3959-4015(2012) Eur.J.Pharm.Biopharm.69,223-230(2008) Adv.Powder Technol.22,1-19(2011) Pharm.Res.24,411-437(2007) Macromol.Biosci.2,67-77(2002)
 本発明は、生体安全性が高く、ゲスト分子、特に薬物分子を包含可能な多孔性粒子の製造方法、及び該方法で得られる多孔性粒子及びゲスト分子包含多孔性粒子を提供することを課題とする。
 上記目的を達成するために種々検討したところ、驚くことに、両親媒性物質を含む混合溶媒系を冷却して凍結乾燥すると、粒径がほぼ揃った固形粒子が得られること、該粒子はナノオーダー以上の大きさの孔を有し、該粒子には種々の物質を担持できることを見出し、本発明を完成した。
 即ち、本発明は以下のものである。
[1] (1)両親媒性物質を、凍結乾燥可能な混合溶媒に溶解させて、両親媒性物質の溶液を調製する工程と、
 (2)工程(1)で得られた溶液を該溶液の相分離温度以下の温度に冷却してから、該温度で保持して、該両親媒性物質を含む沈殿物を生成する工程と、
 (3)工程(2)で得られた沈殿物を含む溶液を凍結乾燥して、多孔性粒子を製造する工程、
 を有することを特徴とする多孔性粒子の製造方法。
[2]該多孔性粒子がラメラ様の構造を有することを特徴とする上記方法。
[3]該両親媒性物質がリン脂質であることを特徴とする上記方法。
[4]前記リン脂質がホスファチジルコリン、ホスファチジルグリセロール、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジルイノシトール、ホスファチジン酸、スフィンゴミエリン、セラミドの群から選択される少なくとも一種であることを特徴とする上記方法。
[5]前記リン脂質が天然由来のリン脂質であることを特徴とする上記方法。
[6]前記天然由来リン脂質が、水添大豆レシチン又は水添卵黄レシチンであることを特徴とする上記方法。
[7]前記両親媒性物質がジセチルホスフェート、ジヘキサデシルホスフェート、ジオクタデシルジメチルアンモニウム塩、ステアリルアミンの群から選択される少なくとも一種であることを特徴とする上記方法。
[8]前記混合溶媒が、水、t-ブタノール、シクロヘキサン、ジオキサン、ジメチルスルホキシド、ジエチルアミン、酢酸、及びt-アミルアルコールからなる群より選択される2以上の溶媒の混合溶媒であることを特徴とする上記方法。
[9]前記混合溶媒が、メタノール、エタノール、プロパノール、イソプロバノール、ブタノール、ヘキサン、ヘプタン、オクタン、イソオクタン、ノナン、デカン、ドデカン、エーテル類、アセトニトリル、アセトン、クロロホルム、ジクロロメタン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、イソペンタン、メチルアミン、エチルアミン、イソブタン、エチレンオキシドの群から選択される少なくとも一種の溶媒を更に含むことを特徴とする上記方法。
[10]工程(1)において、さらに生体適合性物質を溶解させることを特徴とする上記方法。
[11](4)多孔性粒子を生体適合性物質と混合する工程をさらに含むことを特徴とする上記方法。
[12]前記生体適合性物質が、薬剤であることを特徴とする上記方法。
[13]前記薬剤が、低分子医薬、ペプチド医薬、抗体医薬、及び核酸医薬からなる群より選択される少なくとも一種であることを特徴とする上記方法。
[14]前記生体適合性物質が、安定化剤、保湿剤、増粘剤、賦形剤の群から選択される少なくとも一種であることを特徴とする上記方法。
[15]多孔性粒子の体積平均粒子径が100nm以上50μm以下であることを特徴とする、上記方法。
 上記本発明の製造方法によれば、例えばリン脂質を用いた場合、100nm以上50μm以下のほぼ揃った粒径を有した、多孔性粒子を得ることができる。該製造方法の各工程は工業化が容易であり、特殊な物質も必要としない。得られる多孔性粒子の孔径は、ナノオーダーからサブミクロンまで分布しており、本体内および細孔内に種々のゲスト分子を取り込むことができると共に、放出速度を変えることができ、徐放性担体等として大変に有用である。
本発明の実施形態である多孔性粒子の一例を示す模式図であって、全体図(a)及び(a)のA部拡大図(b)である。図1(c)は、多孔性粒子の一例の、断面の走査型電子顕微鏡(SEM)写真である。 図1(b)のB部拡大図(a)、(a)のC部拡大図(b)である。 両親媒性分子41の一例であるリン脂質の拡大図である。 本発明の実施形態であるゲスト分子包含多孔性粒子の一例を示す模式図である。 本発明の実施形態であるゲスト分子包含多孔性粒子の一例を示す模式図である。 本発明の実施形態であるゲスト分子包含多孔性粒子の一例を示す模式図である。 実施例1-1の多孔性粒子のSEM写真である。 実施例1-2の多孔性粒子のSEM写真である。 実施例1-3の多孔性粒子のSEM写真である。 実施例1-4の多孔性粒子のSEM写真である。 実施例1-4の多孔性粒子のSEM写真である。 実施例1-5の多孔性粒子のSEM写真である。 実施例1-6の多孔性粒子のSEM写真である。 実施例1-7の多孔性粒子のSEM写真である。 実施例1-8の多孔性粒子のSEM写真である。 実施例1-9の多孔性粒子のSEM写真である。 3.0wt%(実施例1-1)、9.6wt%(実施例1-3)、6.0wt%(実施例1-4)についての細孔分布の解析結果であって、rp(多孔性粒子の孔径)の体積分布を示すグラフである(Vp:粒子全体の細孔体積)。 実施例2-2の多孔性粒子のSEM写真である。 実施例2-3の多孔性粒子のSEM写真である。 実施例2-4の多孔性粒子のSEM写真である。 実施例2-5の多孔性粒子のSEM写真である。 実施例3のFITCデキストラン包含多孔性粒子からのFITCデキストランの放出パーセンテージと経時時間との関係を示すグラフであって、実施例3-1(b)、3-2(a)である。 多孔性粒子のSEM写真であって、実施例4-1(a)、実施例4-2(b)、実施例4-3(c)、実施例4-4(d)である。 実施例4-1~4-4のテオフィリン包含多孔性粒子からのテオフィリンの放出パーセンテージと経時時間との関係を示すグラフである。 比較例1のバルク体のSEM写真である。 比較例2の板状構造体のSEM写真である。 多孔性粒子(実施例5)のSEM写真である。 (a)は、フェノフィブラートを含む多孔性粒子(実施例6)のSEM写真である。(b)は、フェノフィート代謝物の血中濃度を示すグラフである。
[多孔性粒子]
 まず、本発明の方法により得られる多孔性粒子について説明する。
 図1は、該多孔性粒子の一例を示す模式図であって、全体図(a)及び(a)のA部拡大図(b)、断面SEM写真(c)である。
 図1(a)に示す多孔性粒子11は、略球形状である。しかし、これに限られるものではなく、楕円球等、種々の形態になり得る。
 経口製剤への利用を想定した場合、表面積確保のために、体積平均粒子径は50μm以下であることが好ましい。また経肺投与を想定した場合には、空気力学径を数μmとすることによって効果的な吸入治療が期待されるため、体積平均粒子径は20μm以下であることが望ましい。粒径の下限は特に限定されないが、ハンドリングを容易にするためには100nm以上であることが望ましい。また、本発明の方法によれば、狭い粒径分布を実現できる。
 図1(b)に示すように、多孔性粒子11は、両親媒性物質、例えばリン脂質からなる部分21と、孔21cを有する。孔21cは、断面写真(図1(c))に示すように表面から内部へ延びている。
 図2(a)は、図1(b)のB部拡大図であり、図2(b)は図2(a)のC部拡大図である。
 図2(a)に示すように、2つの孔21c、21c’の間で、脂質二分子膜23A、23B、23Cが積層されてラメラ様の構造が構成されている。もっとも実際の層の数は任意であり、3層に限定されるわけではない。
図2(b)に示すように、脂質二分子膜23Aは、脂質層25Aが別の脂質層25Bと、疎水性基31A同士が集合した状態で構成されている。該脂質二分子膜が複数集まってラメラ構造を形成している。
 図3は、リン脂質の拡大図であり、親水性基38と、前記親水性基38に結合された2つの疎水性基39A、39Bを有する。
 疎水性基39A、39Bは、C12以上C18以下の飽和炭化水素鎖であることが好ましく、不飽和炭化水素鎖は好ましくない。不飽和炭化水素鎖を有するリン脂質は凍結相ガラス転移温度が低いため、粒子構造を維持できる凍結乾燥条件の設定が困難なためである。
 2つの疎水性基39A、39Bは、同一であっても、異なっていてもよい。
 前記C12以上C18以下の飽和アルキル基を有する脂肪酸としては、ミリスチン酸、パルミチン酸、ステアリル酸等を挙げることができる。
 親水性基38は、疎水性基39A、39Bにエーテル結合で結合する連結基33を有する。
 連結基33は、グリセリン残基である。例えば、グリセリンのC1、C2位に脂肪酸がエステル結合され、C3位にリン酸がエステル結合されると、ホスファチジン酸となる。
[多孔性粒子の製造方法]
 次に、本発明の多孔性粒子の製造方法について説明する。
 本発明の実施形態である多孔性粒子の製造方法は、(1)両親媒性物質の溶液を調製する工程と、(2)沈殿物生成工程と、(3)凍結乾燥工程と、を有する。
(1)両親媒性物質溶液調製工程     
 この工程では、両親媒性物質を、凍結乾燥可能な混合溶媒に溶解させる。本発明において、両親媒性物質は分子中に疎水性基と親水基を備える物質であり、好ましくは生体適合性である。斯かる両親媒性物質としては、例えば上述のリン脂質、セラミド脂質等の天然両親媒性物質、ジセチルホスフェート、ジヘキサデシルホスフェート、ジオクタデシルジメチルアンモニウム塩、ステアリルアミン等の合成両親媒性物質、及びこれらのものの親水基を、ポリエチレングリコールや膜透過性ペプチドなど、ゲスト薬物との相互作用や体内標的部位への薬物送達能を向上させるための分子で修飾したものが例示される。
 リン脂質としては、その疎水鎖部分が飽和炭化水素鎖のみを有することが望ましい。該リン脂質の例としては、ホスファチジルコリン(レシチン)(Phosphatidylcholine)、ホスファチジルグリセロール(Phosphatidylglycerol)、ホスファチジルエタノールアミン(Phosphatidylethanolamine)、ホスファチジルセリン(Phosphatidylserine)、ホスファチジルイノシトール(Phosphatidylinositol)、スフィンゴミエリン(Sphingomyelin)等を挙げることができる。
 リン脂質として天然由来の混合物を用いてもよく、例えば水添大豆レシチン、及び水添卵黄レシチンを挙げることができる。水添大豆レシチンは、例えばジステアリルホスファチジルコリン87wt%と、ジパルミトイルホスファチジルコリン13wt%とから主に構成される。リン脂質に、多孔性構造が崩壊しない範囲で、前記ホスファチジル誘導体、不飽和炭化水素鎖を有する脂質を混合してもよい。また、多孔性構造が崩壊しない範囲で、コレステロールを添加してもよい。
 セラミド脂質としては、動物性セラミド、植物性セラミド、バイオセラミド、及び合成セラミドが挙げられる。セラミド脂質に、多孔性構造が崩壊しない範囲で、前記ホスファチジル誘導体、不飽和炭化水素鎖を有する脂質を混合してもよい。また、多孔性構造が崩壊しない範囲で、コレステロールを添加してもよい。
 凍結乾燥可能な混合溶媒としては、水、t-ブタノール、t-アミルアルコール、シクロヘキサン、ジオキサン、ジメチルスルホキシド、ジエチルアミン、及び酢酸から選択される2以上の溶媒を混合した溶媒が例示される。これらのうち、水、t-ブタノール、シクロヘキサン、ジオキサンの群から選択される2以上の溶媒を混合した溶媒であることが好ましい。この混合溶媒は、使用する両親媒性物質の存在下において、冷却により相分離を起こすような組合わせ、及び量比で使用される。
 前記混合溶媒に、メタノール、エタノール、プロパノール、イソプロバノール、n-ブタノール、イソブタン、イソペンタン、ヘキサン、ヘプタン、オクタン、イソオクタン、ノナン、デカン、ドデカン、エーテル類、アセトニトリル、アセトン、クロロホルム、ジクロロメタン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、エチルアミン、プロピルアミン、N-メチルピロリドンの群から選択される少なくとも一種の溶媒を更に混合してもよい。
 溶解の方法は、特に限定されず、最初に混合溶媒を調製し、そこへ両親媒性物質を加えて、定法に従い攪拌機等を用いて行う。或いは、一の溶媒に両親媒性物質を溶解し、得られた溶液に他の溶媒を加えて混合してもよい。溶解する際に、加熱してもよい。リン脂質をt-ブタノール:シクロヘキサン=1:2の混合溶媒に溶解する場合、50℃程度に加熱するのが好ましい。これにより、加熱による分解を起こすことなく、1wt%以上の高濃度のリン脂質を溶解させることができる。
(2)沈殿物生成工程
 工程(1)で得られた溶液を、該溶液の相分離温度以下に冷却してから、該温度で保持して、該両親媒性物質を含む沈殿物を生成する。相分離が起こる温度は、少なくとも2種の溶媒と両親媒性物質との、少なくとも3成分系に依存して決まる。冷却手段は特に限定されず、凍結乾燥機の中で行ってもよい。冷却速度は特に限定されないが、比較的急速に冷却することが好ましく、0.1℃/分以上で行う。冷却の際、撹拌してもよい。相分離温度で保持しても沈殿物を生成することは可能であるが、好ましくは相分離温度より1℃以下、より好ましくは5℃以下まで冷却する。次いで、該温度で保持して、両親媒性物質を含む沈殿物を生成させる。例えば、リン脂質を用いた場合、該リン脂質を含む球状の沈殿が生成する。
 例えば、6wt%の水添大豆レシチンを含有する場合、t-ブタノール:シクロヘキサン=1:2溶液の相分離温度は約18℃である。これより低く、かつ、凍結しない温度、例えば4℃で、ラメラ構造のレシチンを含む、球形の沈殿を発生させることができる。
 保持時間は、両親媒性物質及び溶媒系に依存して、調整することが好ましい。例えば、リン脂質と、t-ブタノール:シクロヘキサン=1:2の系の場合、5時間以上4日以下とすることが好ましい。数時間程度では、沈殿物が均一に形成できない場合がある。逆に4日超とすると、凝集体ができてしまう。
(3)凍結乾燥工程
 次いで、工程(2)で得られた沈殿物を含む溶液を凍結乾燥する。凍結温度は、例えば-20℃以下、好ましくは-40℃以下である。冷却は液体窒素で行ってもよく、真空凍結乾燥器内で行っても良い。
 凍結する前に、上澄み液をデカンテーション等により除去してもよい。
 凍結乾燥時間は、特に限定されないが、半日以上とすることが好ましい。凍結乾燥温度は、例えば―40℃から40℃の間で、好ましくは―20℃から25℃の間で行う。なお凍結乾燥の最終工程で、加温して残留溶媒を留去してもよい。温度は50℃以下、時間は5時間以下が望ましいが、これに限定されない。
 なお、凍結乾燥法として、噴霧凍結乾燥法を用いてもよい。以上により、多孔性粒子が得られる。
[ゲスト分子包含多孔性粒子]
 該多孔性粒子は、担体として任意の物質(以下「ゲスト分子」という)を担持することができる。
 図4~6は、該ゲスト分子包含多孔性粒子の一例を示す模式図である。該ゲスト分子包含多孔性粒子は、多孔性粒子11(図1)と、ゲスト分子50と、を有して概略構成されている。
 ゲスト分子50は、多孔性粒子11の表面、孔内、ラメラ様構造内のいずれの部位に担持されてもよい。
 図4では、ゲスト分子50が、多孔性粒子11の孔21c内に取り込まれている。
 図5では、ゲスト分子50が、多孔性粒子11の疎水性層31A、31A’内に取り込まれている。つまり、脂質二分子膜23A内に取り込まれている。
 図6では、ゲスト分子50が、多孔性粒子11の親水性層31B、31B’間に取り込まれている。つまり、脂質二分子膜23A、23B間に取り込まれている。
 好ましいゲスト分子50は、薬物、もしくはその他の生体適合性物質である。前記薬物として、図5のように脂質二分子膜内に取り込まれる薬物としては、ステロイド類又は脂溶性ビタミン類を含有する疎水性低分子薬物を挙げることができる。図6のように脂質二分子膜間に取り込まれる薬物としては、抗生物質などに代表される水溶性低分子医薬、ペプチド医薬、抗体医薬、核酸医薬などの親水性薬物を挙げることができる。前記水溶性低分子医薬としては、抗生剤を挙げることができる。いずれの場合も、単独でも二種類以上の薬物が含有されていても良く、親水性薬物と疎水性薬物を同時に取り込ませても良い。
 前記その他の生体適合性物質としては、慣用の医薬品・化粧品・食品添加剤、例えば安定化剤、保湿剤、増粘剤、賦形剤を挙げることができる。
 前記安定化剤としてはビタミンCなどの抗酸化剤又はパラベンなどの防腐剤、前記保湿剤としてはグリセリン、プロピレングリコール、ブチレングリコール、ソルビットなどの多価アルコール類、ヒアルロン酸、コンドロイチン硫酸、コラーゲン、ゼラチン、エラスチン、ケラチンなどの水溶性高分子類やその加水分解物、又はアミノ酸類や尿素などの低分子化合物、前記増粘剤としてはセルロース類を含む多糖類、ポリビニル誘導体又は増粘剤用合成高分子、前記賦形剤としては糖類もしくは水溶性高分子を挙げることができる。
 薬物およびその他の生体適合性物質は、工程(1)において、両親媒性物質と共に、混合溶媒中に溶解するか、工程(3)で得られた多孔性粒子と、機械的に混合する工程(4)で行ってもよい。
 ゲスト分子50の含有量は、該ゲスト分子の種類に応じて調整されることが好ましいが、多孔性粒子の重量に対して50wt%以下とすることが好ましく、30wt%以下とすることがより好ましい。
 ゲスト分子包含多孔性粒子が、ゲスト分子濃度が薄い媒体、例えば消化管液、に接触すると、濃度勾配により、ゲスト分子包含多孔性粒子からゲスト分子を徐放出させることができる。
 ゲスト分子を孔内及びラメラ様構造間の両方に包含させることにより、放出速度を制御することができる。また、疎水性層内に疎水性ゲスト分子を包含し、親水性層間に親水性ゲスト分子を包含することにより、それぞれ放出開始時間を変えて放出させることができる。
 以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
(多孔性粒子の製造)
(実施例1-1)
 リン脂質(日油(株)製、水添大豆レシチン)を混合溶媒(t-ブタノール:シクロヘキサン=1:2混合溶媒)に溶解させて、リン脂質溶液(9.6wt%の水添大豆レシチン溶液)を調製した。
 次に、前記リン脂質溶液を氷冷によって0℃に冷却して相分離させた後、0℃で24時間保持して、沈殿物を生成させた。
 次に、前記沈殿物を液体窒素で凍結して、凍結物を生成した。     
 次に、前記凍結物を、凍結乾燥機内に保持して、減圧下で、-20℃で半日保持してから温度を室温に上げ、1日凍結乾燥することによって、実施例1-1の多孔性粒子を製造した。
 図7は、実施例1-1の多孔性粒子のSEM写真である。窒素吸着法(日本ベル製BEL-sorp mini)を用いて測定した該粒子の比表面積は23.9m/gであり、その体積基準平均粒子径は15.8μmであった。同図から分かるように、得られた粒子は粒径がほぼ揃った狭い粒径分布を示しており、分布の標準偏差は2.7μmであった。
(実施例1-2)
 前記リン脂質溶液を-20℃に冷却してから、その温度で24時間保持して、沈殿物を生成した他は実施例1-1と同様にして、実施例1-2の多孔性粒子を製造した。
 図8は、実施例1-2の多孔性粒子のSEM写真である。比表面積は6.73m/gであり、平均粒子径は8.2μm(標準偏差1.2μm)であった。
(実施例1-3)
 3.0wt%の水添大豆レシチン溶液を用いて、リン脂質溶液を調製した他は実施例1-1と同様にして、実施例1-3の多孔性粒子を製造した。
 図9は、実施例1-3の多孔性粒子のSEM写真である。比表面積は19.8m/gであり、平均粒子径は11.5μm(標準偏差1.6μm)であった。
(実施例1-4)
 6.0wt%の水添大豆レシチン溶液を用いて、リン脂質溶液を調製した他は実施例1-1と同様にして、実施例1-4の多孔性粒子を製造した。
 図10、11は、実施例1-4の多孔性粒子のSEM写真である。比表面積は43.1m/gであり、平均粒子径は12.4μm(標準偏差1.8μm)であった。
(実施例1-5)
 6.0wt%の水添大豆レシチン溶液を用いて、リン脂質溶液を調製し、混合溶媒として、t-ブタノール:シクロヘキサン=2:1混合溶媒を用いた他は実施例1-1と同様にして、実施例1-5の多孔性粒子を製造した。
 図12は、実施例1-5の多孔性粒子のSEM写真である。比表面積は49.3m/gであり、平均粒子径は13.0μm(標準偏差1.8μm)であった。
(実施例1-6)
 6.0wt%の水添大豆レシチン溶液を用いて、リン脂質溶液を調製し、混合溶媒として、t-ブタノール:シクロヘキサン=1:1混合溶媒を用いた他は実施例1-1と同様にして、実施例1-6の多孔性粒子を製造した。
 図13は、実施例1-6の多孔性粒子のSEM写真である。比表面積は50.4m/gであり、平均粒子径は15.6μm(標準偏差1.7μm)であった。
(実施例1-7)
 6.0wt%の水添大豆レシチン溶液を用いて、リン脂質溶液を調製し、混合溶媒として、t-ブタノール:シクロヘキサン=1:4混合溶媒を用いた他は実施例1-1と同様にして、実施例1-7の多孔性粒子を製造した。
 図14は、実施例1-7の多孔性粒子のSEM写真である。比表面積は41.7m/gであり、平均粒子径は9.9μm(標準偏差2.4μm)であった。
(実施例1-8)
 前記リン脂質溶液を4℃に冷却してから、その温度で保持して、沈殿物を生成した他は実施例1-1と同様にして、実施例1-8の多孔性粒子を製造した。
 図15は、実施例1-8の多孔性粒子のSEM写真である。
(実施例1-9)
 ジステアロイルホスファチジルコリンとジパルミトイルホスファチジルコリンをモル比1:1で混合し、合計濃度3.9wt%としてt-ブタノール:シクロヘキサン=1:2混合溶媒に均一に溶解させ、4℃に冷却してから、その温度で保持して、沈殿物を生成した他は実施例1-1と同様にして、実施例1-9の多孔性粒子を製造した。
 図16は、実施例1-9の多孔性粒子のSEM写真である。
<細孔分布の解析結果>
 図17は、レシチン濃度9.6wt%(実施例1-1)、3.0wt%(実施例1-3)、6.0wt%(実施例1-4)について、窒素吸着法(日本ベル製BEL-sorp mini)にて求めた細孔分布の解析結果であって、rp(多孔性粒子の孔径)に対するVp(多孔性粒子全体のポアボリューム)の関係を示すグラフである。縦軸は、dVp/drpとしている。本図はつまり、細孔径の分布を表している。
 3.0wt%(実施例1-3)では、鮮明なピークは観察されず、100nm以下の細孔は少ないと考えられた。
 9.6wt%(実施例1-1)では、10nm近傍にピークが見られた。
 6.0wt%(実施例1-4)では、20nm近傍にピークが見られた。
 表1は、多孔性粒子の製造条件及び得られた多孔性粒子の比表面積及び平均粒子径を示す。
Figure JPOXMLDOC01-appb-T000001
 
(実施例2-1)
 溶媒にt-ブタノール:シクロヘキサン=1:2混合溶液を用いて、9.2wt%の水添大豆レシチンを含有する溶液を調製した。
 次に、この溶液を4℃で一日保持し、沈殿物を得た。
 次に、その沈殿物を液体窒素で凍結させたのち、凍結乾燥を行った。
 以上により、実施例2-1の多孔性粒子を得た。
 小角X線散乱より求めたラメラ様の層の間隔(以下「ラメラ間隔」とする)は6.17nmであった。
(実施例2-2)
 溶媒にt-ブタノール:シクロヘキサン=1:2混合溶液を用い、9.2wt%の水添大豆レシチン溶液を調製した。別に20wt%のグルコース水溶液を調製し、これをレシチン溶液に対して4.6wt%となるように添加して、グルコースを含むレシチン溶液を調製した。沈澱操作以降は実施例2-1と同様にして、実施例2-2の多孔性粒子を得た。
 図18は、実施例2-2の多孔性粒子のSEM写真である。
 小角X線散乱より求めたラメラ間隔は6.35nmであった。
(実施例2-3)
 グルコース水溶液濃度が40wt%である以外は実施例2-2と同様にして、実施例2-3の多孔性粒子を得た。
 図19は、実施例2-3の多孔性粒子のSEM写真である。
 小角X線散乱より求めたラメラ間隔は6.59nmであった。
(実施例2-4)
 グルコース水溶液濃度が60wt%である以外は実施例2-2と同様にして、実施例2-4の多孔性粒子を得た。
 図20は、実施例2-4の多孔性粒子のSEM写真である。
 小角X線散乱より求めたラメラ間隔は6.74nmであった。
(実施例2-5)
 グルコース水溶液濃度が80wt%である以外は実施例2-2と同様にして、実施例2-5の多孔性粒子を得た。
 図21は、実施例2-5の多孔性粒子のSEM写真である。
 小角X線散乱より求めたラメラ間隔は6.84nmであった。
 表2は、製造条件及びラメラ間隔の結果をまとめたものである。
Figure JPOXMLDOC01-appb-T000002
 
 添加したグルコース水溶液濃度の上昇に伴いラメラ間隔が広がった。これは、(1)グルコースが主に脂質二分子膜間に存在しており、(2)グルコース濃度の上昇に伴い、脂質二分子膜間に存在するグルコース量が増え、脂質二分子膜間距離が広がったことによるものと思われる。
(実施例3)
(デキストラン包含多孔性粒子の製造)
 t-ブタノール:シクロヘキサン=1:2混合溶液を用いて9.6wt%の水添大豆レシチン溶液を調製した。続いて0.1wt%の、フルオレセインイソシアネートで修飾されたデキストラン(以下「FITCデキストラン」とする)を、デキストラン/レシチン=0.5μg/200mg又は0.5μg/100mgになるように添加した。
 次に、この水添大豆レシチン溶液を4℃で一日保持して、沈殿物を生成した。
 次に、この沈殿物を液体窒素で凍結させたのち、凍結乾燥を行って、実施例3のFITCデキストラン包含多孔性粒子を製造した。
(FITCデキストラン放出実験)
(実施例3-1)
 実施例3のFITCデキストラン包含多孔性粒子(デキストラン/レシチン=0.5μg/200mg)を200mg/100mLでpH7のリン酸緩衝液に分散させた。
 次に、溶液を経時的に採取、フィルタによる濾過、ろ液の蛍光分析を行い、FITCデキストラン濃度を測定した。
(実施例3-2)
 実施例3のFITCデキストラン包含多孔性粒子(デキストラン/レシチン=0.5μg/100mg)を100mg/100mLで分散させた他は実施例3-1と同様にして、溶液中のFITCデキストラン濃度を測定した。
 図22は、実施例3のFITCデキストラン包含多孔性粒子からのFITCデキストランの放出パーセンテージと経時時間との関係を示すグラフであって、実施例3-1(b)、3-2(a)である。
 いずれも、二相性を有する放出挙動が観察された。これは、ラメラ間に捕獲されたFITCデキストランが、孔内に捕獲されたFITCデキストランより放出されにくいことによると考えられる。
 以上により、本発明の方法で得られる多孔性粒子は、放出速度を制御可能な担体として作用することが示された。
 表3は、製造条件及び放出特性の結果をまとめたものである。
Figure JPOXMLDOC01-appb-T000003
 
(テオフィリン包含多孔性粒子の製造)
(実施例4-1)
 t-ブタノール:シクロヘキサン=1:2混合溶液を用いて、9.2wt%の水添大豆レシチン溶液を調製した。続いて0.25wt%のテオフィリン水溶液を調製し、上記レシチン溶液に対して4.6wt%のテオフィリン水溶液を添加した。
 次に、この水添大豆レシチン溶液を4℃で一日保持し、沈殿物を生成した。
 次に、その沈殿物を液体窒素で凍結させたのち、凍結乾燥を行って、実施例4-1のテオフィリン包含多孔性粒子を得た。
 図23の(a)は、実施例4-1の多孔性粒子のSEM写真である。
(実施例4-2)
 加えた4.6wt%のテオフィリン水溶液の濃度を2倍とした他は実施例4-1と同様にして、実施例4-2のテオフィリン包含多孔性粒子を得た。
 図23の(b)は、実施例4-2の多孔性粒子のSEM写真である。
(実施例4-3)
 加えた4.6wt%のテオフィリン水溶液の濃度を3倍とした他は実施例4-1と同様にして、実施例4-3のテオフィリン包含多孔性粒子を得た。
 図23の(c)は、実施例4-3の多孔性粒子のSEM写真である。
(実施例4-4)
 加えた4.6wt%のテオフィリン水溶液の濃度を4倍とした他は実施例4-1と同様にして、実施例4-4のテオフィリン包含多孔性粒子を得た。
 図23の(d)は、実施例4-4の多孔性粒子のSEM写真である。
(テオフィリン放出実験)
 まず、実施例4-1~4-4のテオフィリン包含多孔性粒子を200mg/100mLでpH7のリン酸緩衝液に分散させた。
 次に、溶液を経時的に採取し、フィルタで濾過した後、高速液体クロマトグラフィー分析して、溶液中のテオフィリン濃度を測定した。
 図24は、実施例4-1~4-4のテオフィリン包含多孔性粒子からのテオフィリンの放出パーセンテージと経時時間との関係を示すグラフである。
 実施例4-1~4-4のテオフィリン包含多孔性粒子からテオフィリンが時間とともに少しずつ放出された。
 テオフィリン単独では一瞬で全量が溶解したことと比較すると、実施例4-1~4-4のテオフィリン包含多孔性粒子にテオフィリンが包含されていること、包含されたテオフィリンが少しずつ放出されることを確認した。
 表4は、製造条件及び放出特性の結果をまとめたものである。
Figure JPOXMLDOC01-appb-T000004
 
(参考例1)
 水添大豆レシチンをt-ブタノールに9.6wt%で溶解した後、凍結乾燥した。
 図25のSEM写真に示すようなバルク体が得られ、球形粒子は得られなかった。
(参考例2)
 t-ブタノール:シクロヘキサン=1:2混合溶液を用い、9.6wt%の水添大豆レシチン溶液を調製した。
 次に、この水添大豆レシチン溶液を25℃で一日保持し、沈殿物を生成した。
 次に、その沈殿物を液体窒素で凍結させたのち、凍結乾燥を行った。
 板状構造体が得られた。球形粒子は得られなかった。
 図26は、比較例2の板状構造体のSEM写真である。
 実験条件及び結果を表5にまとめた。
Figure JPOXMLDOC01-appb-T000005
 
(実施例5)
 3.9wt%の水添大豆レシチンと0.2wt%のプレドニゾロンを含むt-ブタノール:シクロヘキサン=1:2溶液を4℃で一日保持した後、その沈殿物を液体窒素で凍結させ、凍結乾燥を行うことによって、多孔性粒子を得た。
 図27は、該多孔性粒子の電子顕微鏡写真である。
 プレドニゾロンの多孔性粒子への含有率は80%であった。
 (実施例6)
 t-ブタノール:シクロヘキサン=1:2の混合溶液を用いて、9wt%の水添大豆レシチンと1wt%のフェノフィブラートを含有する溶液を調製した。この溶液を4℃で1日保持したのち、液体窒素で凍結させ、さらに凍結乾燥を行って、フェノフィブラートを含む多孔性粒子を得た。図28(a)にそのSEM写真を示す。得られた粒子を薬物量換算7.5mg/kgでラットに経口投与して、フェノフィブラート代謝物の血中濃度を測定した。比較として、多孔性粒子の原料に用いた水添大豆レシチンとフェノフィブラートを9対1の割合で物理的に混合し、同じ量を投与した。図28(b)に示すように、多孔性粒子を投与した場合、原料の水添大豆レシチンとフェノフィブラートとの物理混合物の投与と比べて顕著に経口吸収性が向上した。これは、多孔性粒子と腸管粘膜が親和性を有し、経粘膜吸収性が促進されたためと考えられる。
 本発明の方法により得られる多孔性粒子及びゲスト分子包含多孔性粒子は、多孔性構造を備え、ゲスト分子、特に薬物分子の担体として、徐放性や低密度性を活かした経口剤、吸入剤、注射剤、外用剤(化粧品を含む)、点眼剤など、薬物担体として大変有用である。
11…多孔性粒子、21…両親媒性分子のみからなる部分、21c、21c’…孔、23A、23B、23C…脂質二分子膜、25A、25B…脂質層、31A、31A’…疎水性層、31B、31B’…親水性層、33…連結部、38…親水性基、39A、39B…疎水性基、41…両親媒性分子(リン脂質)、50…ゲスト分子。

Claims (15)

  1.  (1)両親媒性物質を、凍結乾燥可能な混合溶媒に溶解させて、両親媒性物質の溶液を調製する工程と、
     (2)工程(1)で得られた溶液を該溶液の相分離温度以下の温度に冷却してから、該温度で保持して、該両親媒性物質を含む沈殿物を生成する工程と、
     (3)工程(2)で得られた沈殿物を含む溶液を凍結乾燥して多孔性粒子を製造する工程、
     を有することを特徴とする多孔性粒子の製造方法。
  2.  該多孔性粒子が、ラメラ様の構造を有することを特徴とする、請求項1記載の製造方法。
  3.  該両親媒性物質がリン脂質であることを特徴とする、請求項1又は2記載の製造方法。
  4.  前記リン脂質がホスファチジルコリン、ホスファチジルグリセロール、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジルイノシトール、ホスファチジン酸、スフィンゴミエリン、セラミドの群から選択される少なくとも一種であることを特徴とする、請求項3に記載の製造方法。
  5.  前記リン脂質が天然由来のリン脂質であることを特徴とする、請求項3に記載の製造方法。
  6.  前記天然由来リン脂質が、水添大豆レシチン又は水添卵黄レシチンであることを特徴とする、請求項5に記載の製造方法。
  7.  前記両親媒性物質がジセチルホスフェート、ジヘキサデシルホスフェート、ジオクタデシルジメチルアンモニウム塩、ステアリルアミンの群から選択される少なくとも一種であることを特徴とする、請求項1又は2記載の製造方法。
  8.  前記混合溶媒が、水、t-ブタノール、シクロヘキサン、ジオキサン、ジメチルスルホキシド、ジエチルアミン、酢酸、及びt-アミルアルコールからなる群より選択される2以上の溶媒の混合溶媒であることを特徴とする、請求項1~7のいずれか1項に記載の製造方法。
  9.  前記混合溶媒が、メタノール、エタノール、プロパノール、イソプロバノール、ブタノール、ヘキサン、ヘプタン、オクタン、イソオクタン、ノナン、デカン、ドデカン、エーテル類、アセトニトリル、アセトン、クロロホルム、ジクロロメタン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、イソペンタン、メチルアミン、エチルアミン、イソブタン、エチレンオキシドの群から選択される少なくとも一の溶媒を更に含むことを特徴とする請求項8に記載の製造方法。
  10.  工程(1)において、さらに生体適合性物質を溶解させることを特徴とする、請求項1~9のいずれか1項に記載の製造方法。
  11.  (4)多孔性粒子を生体適合性物質と混合する工程をさらに含むことを特徴とする、請求項1~9のいずれか1項に記載の製造方法。
  12.  前記生体適合性物質が、薬剤であることを特徴とする、請求項10又は11に記載の製造方法。
  13.  前記薬剤が、低分子医薬、ペプチド医薬、抗体医薬、及び核酸医薬からなる群より選択される少なくとも一種であることを特徴とする、請求項12に記載の製造方法。
  14.  前記生体適合性物質が、安定化剤、保湿剤、増粘剤、賦形剤の群から選択される少なくとも一種であることを特徴とする、請求項10又は11に記載の製造方法。
  15.  前記多孔性粒子の体積平均粒子径が100nm以上50μm以下であることを特徴とする、請求項1~14のいずれか1項に記載の製造方法。
PCT/JP2015/082087 2014-11-18 2015-11-16 多孔性粒子の製造方法 WO2016080336A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/527,204 US9987228B2 (en) 2014-11-18 2015-11-16 Method for producing porous particle
JP2016560204A JP6557935B2 (ja) 2014-11-18 2015-11-16 多孔性粒子の製造方法
EP15862011.2A EP3222273B1 (en) 2014-11-18 2015-11-16 Method for producing porous particle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-233671 2014-11-18
JP2014233671 2014-11-18

Publications (1)

Publication Number Publication Date
WO2016080336A1 true WO2016080336A1 (ja) 2016-05-26

Family

ID=56013873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082087 WO2016080336A1 (ja) 2014-11-18 2015-11-16 多孔性粒子の製造方法

Country Status (4)

Country Link
US (1) US9987228B2 (ja)
EP (1) EP3222273B1 (ja)
JP (1) JP6557935B2 (ja)
WO (1) WO2016080336A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115181295A (zh) * 2022-08-10 2022-10-14 浙江工业大学 可控制备具有多种复杂形貌的聚合物复合微颗粒的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135804A (ja) * 1981-11-09 1983-08-12 マギス・フア−マセウテシ・ソチエタ・レスポンサビリタ・リミテ 新規医薬用組成物
JPH03500650A (ja) * 1987-10-16 1991-02-14 ボード・オブ・リージェンツ,ザ・ユニバーシティ・オブ・テキサス・システム ポリエン系マクロライドのプレリポソーム粉末
JPH06509547A (ja) * 1991-01-14 1994-10-27 ボード、オブ、リージェンツ、ザ、ユニバーシティー、オブ、テキサス、システム リポソーム−ポリエンプレリポソーム粉末とその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607933A (ja) * 1983-06-29 1985-01-16 Dai Ichi Seiyaku Co Ltd リポソ−ムの製造法
US5534502A (en) * 1990-11-06 1996-07-09 Nippon Shinyaku Co. Ltd. Process for producing fat emulsion
WO1995026185A1 (fr) * 1994-03-28 1995-10-05 Daiichi Pharmaceutical Co., Ltd. Liposome a capacite de retention accrue
JP2005103319A (ja) 1996-07-19 2005-04-21 Yamanouchi Pharmaceut Co Ltd 生体適合性物質の水不溶化多孔性粒子及びその製造法
SE0200895D0 (sv) 2002-03-22 2002-03-22 Astrazeneca Ab New pharmaceutical composition
JP2007500239A (ja) * 2003-05-30 2007-01-11 アルザ・コーポレーシヨン 薬剤の肺投与の方法
WO2006023286A2 (en) 2004-08-19 2006-03-02 Alza Corporation Controlled release nanoparticle active agent formulation dosage forms and methods
KR100845009B1 (ko) 2007-08-07 2008-07-08 한국생명공학연구원 전하를 띠는 물질이 고착된 다공성 고분자 입자 및 그제조방법
WO2009137689A2 (en) 2008-05-07 2009-11-12 Surmodics, Inc. Delivery of nucleic acid complexes from particles
WO2009156706A1 (en) * 2008-06-27 2009-12-30 University Of Strathclyde Pulmonary drug delivery with vesicles comprising non-ionic surfactants
PE20142302A1 (es) * 2012-03-28 2015-01-21 Discovery Lab Inc Liofilizacion de tensoactivo sintetico liposomal pulmonar

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135804A (ja) * 1981-11-09 1983-08-12 マギス・フア−マセウテシ・ソチエタ・レスポンサビリタ・リミテ 新規医薬用組成物
JPH03500650A (ja) * 1987-10-16 1991-02-14 ボード・オブ・リージェンツ,ザ・ユニバーシティ・オブ・テキサス・システム ポリエン系マクロライドのプレリポソーム粉末
JPH06509547A (ja) * 1991-01-14 1994-10-27 ボード、オブ、リージェンツ、ザ、ユニバーシティー、オブ、テキサス、システム リポソーム−ポリエンプレリポソーム粉末とその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HANDBOOK OF PHARMACEUTICAL EXCIPIENTS, 2007, Tokyo, pages 1063 - 1066, XP009503172 *
QIAN, LEI ET AL.: "Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials", J. CHEM. TECHNOL. BIOTECHNOL., vol. 86, 2011, pages 172 - 184, XP055044956, DOI: doi:10.1002/jctb.2495 *
See also references of EP3222273A4 *
SETSUKO HARA ET AL.: "Novel fractionation method for soy phospholipid classes", THE JOURNAL OF THE FACULTY OF SCIENCE AND TECHNOLOGY, vol. 44, no. 2, 2007, pages 65 - 73, XP055238409 *
TEAGARDEN, DIRK ET AL.: "Practical aspects of lyophilization using non-aqueous co-solvent systems", EUR. J. PHARM. SCI., vol. 15, 2002, pages 115 - 133, XP055169184, DOI: doi:10.1016/S0928-0987(01)00221-4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115181295A (zh) * 2022-08-10 2022-10-14 浙江工业大学 可控制备具有多种复杂形貌的聚合物复合微颗粒的方法

Also Published As

Publication number Publication date
EP3222273A1 (en) 2017-09-27
US9987228B2 (en) 2018-06-05
JP6557935B2 (ja) 2019-08-14
US20170319483A1 (en) 2017-11-09
EP3222273B1 (en) 2019-09-25
JPWO2016080336A1 (ja) 2017-06-08
EP3222273A4 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
Maja et al. Sustainable technologies for liposome preparation
JP3806937B2 (ja) 滅菌条件下において濾過可能な、安定化されたナノ粒子
JP4091658B2 (ja) 無菌条件下にろ過可能な安定化されたナノ粒子
JP2006508126A (ja) 薬学的製剤のタンパク質安定化されたリポソーム製剤
US11684575B2 (en) Liposome composition and method for producing same
US10772834B2 (en) Liposome composition and method for producing same
JP6263609B2 (ja) リポソーム組成物及びその製造方法
AU2015206628A1 (en) Liposome compositions encapsulating modified cyclodextrin complexes and uses thereof
Shinde et al. Recent advances in vesicular drug delivery system
KR20060021278A (ko) 고체 나노미터 의약 및 이의 제조방법
JP2006273812A (ja) リポソーム製剤の製造方法
JP6557935B2 (ja) 多孔性粒子の製造方法
Patel et al. Advances in novel parentral drug delivery systems
Benedini et al. Nanodevices for facing new challenges of medical treatments: stimuli-responsive drug delivery systems
Alhajj et al. Nano-in-Microparticles for Pulmonary Drug Delivery
Binaymotlagh et al. Liposome–Hydrogel Composites for Controlled Drug Delivery Applications
JP7343643B2 (ja) 脂質粒子組成物および医薬組成物
WO2023061393A1 (zh) 包含抗肿瘤药物的组合物及其制备方法和用途
BOGGULA et al. An overview of lipid based vesicular systems: stability and regulatory considerations
Sreelaya et al. A Synoptic Update on Smart Lipid Nanocarrier: Cubosomes, and their Design Development, and Recent Challenges
Kesharwani et al. Journal of Pharma Research Review Article
Jaiswal et al. A Review On Liposomes As Drug Delivery System
Laya et al. Cubosomes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016560204

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15527204

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015862011

Country of ref document: EP