WO2016080311A1 - X線ct装置、投影データのアップサンプリング方法、及び画像再構成方法 - Google Patents

X線ct装置、投影データのアップサンプリング方法、及び画像再構成方法 Download PDF

Info

Publication number
WO2016080311A1
WO2016080311A1 PCT/JP2015/081995 JP2015081995W WO2016080311A1 WO 2016080311 A1 WO2016080311 A1 WO 2016080311A1 JP 2015081995 W JP2015081995 W JP 2015081995W WO 2016080311 A1 WO2016080311 A1 WO 2016080311A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection data
ray
data
image
upsampling
Prior art date
Application number
PCT/JP2015/081995
Other languages
English (en)
French (fr)
Inventor
藤井 英明
後藤 大雅
中澤 哲夫
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201580057868.8A priority Critical patent/CN107106108B/zh
Priority to JP2016560190A priority patent/JPWO2016080311A1/ja
Priority to US15/518,933 priority patent/US10342500B2/en
Publication of WO2016080311A1 publication Critical patent/WO2016080311A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0487Motor-assisted positioning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4452Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being able to move relative to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/467Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B6/469Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient characterised by special input means for selecting a region of interest [ROI]

Definitions

  • the present invention relates to an X-ray CT apparatus, a projection data upsampling method, and an image reconstruction method, and more specifically, the number of views, the number of channels, or the sequence of object projection data measured by helical imaging or continuous reciprocal imaging
  • the present invention relates to generation of up-sampling projection data in which the number is increased by calculation and an image reconstruction method using the up-sampling projection data.
  • the X-ray CT device circulates around the subject with the X-ray tube device (X-ray source) and X-ray detector facing each other, and irradiates X-rays from multiple rotation angle directions (views).
  • the apparatus detects X-rays transmitted through the subject for each view and generates a tomographic image of the subject based on the detected projection data.
  • helical imaging that performs scanning on a spiral is performed by relatively moving the bed and the scan gantry along the circumference of the X-ray tube apparatus and the X-ray detector. ing.
  • an X-ray CT apparatus has been proposed in which an image is taken with an increased number of views per rotation.
  • sampling rate of the data collection device is limited by hardware limitations.
  • Patent Document 1 describes a method for increasing the number of views of acquired projection data by calculation.
  • projection data is interpolated within a selected view range to create an interpolated view.
  • interpolation is to obtain the value of a target point using the values of a plurality of points around the target point.
  • the present invention has been made in view of the above-described problems, and an object thereof is an X-ray CT capable of obtaining up-sampling projection data closer to an actual measurement value when performing helical imaging or the like. It is to provide a device or the like.
  • the present invention provides an X-ray tube apparatus that irradiates X-rays, and an X-ray that is disposed opposite to the X-ray tube apparatus and detects transmitted X-rays that are X-rays transmitted through a subject.
  • a detector, the X-ray tube device and the X-ray detector are mounted, a rotating disk that rotates around the object, a scan gantry that mounts the rotating disk, and a bed on which the object is placed
  • An imaging control unit that collects transmission X-ray data detected by the X-ray detector by relatively moving the bed and the scan gantry in the body axis direction while rotating the rotating disk, and the collected transmission
  • a projection data conversion unit that performs predetermined data processing on X-ray data to generate projection data necessary for reconstruction of a tomographic image at a target slice position, and opposing data in which the X-ray transmission paths in the projection data substantially match
  • Generate virtual facing data consisting of Upsampling projection data generating unit for upsampling the projection data according to the above, a reconstruction calculating unit for reconstructing an image using the upsampled projection data that is the upsampled projection data, and reconstruction by the reconstruction calculating unit
  • An X-ray CT apparatus comprising: a display unit configured to display the
  • the present invention also provides an X-ray tube device that irradiates X-rays from a plurality of focal positions, and an X-ray detector that is disposed opposite to the X-ray tube device and detects transmitted X-rays that are X-rays transmitted through a subject. And the X-ray tube device and the X-ray detector mounted thereon, a rotating disk that rotates around the subject, a scan gantry that mounts the rotating disk, a bed on which the object is mounted, The transmitted X-ray data of each X-ray irradiated by shifting the focal position to an arbitrary position is collected by relatively moving the bed and the scan gantry in the body axis direction while rotating the rotating disk.
  • a focus shift imaging control unit, and projection data conversion that generates predetermined projection data necessary for reconstruction of a tomographic image at a target slice position by performing predetermined data processing on the collected transmission X-ray data from each focus position And X-rays in the projection data
  • a virtual view is generated in the view direction by generating virtual facing data consisting of facing data with substantially matching overpaths, and upsampled projection data is combined by combining projection data at each focal position where the virtual view is inserted.
  • An upsampling projection data generation unit to generate, a reconstruction calculation unit that reconstructs an image using the upsampling projection data, and a display unit that displays an image reconstructed by the reconstruction calculation unit Is an X-ray CT apparatus characterized by
  • the present invention also collects X-ray transmission data of the subject measured by imaging performed by the image calculation device, which rotates the bed of the X-ray CT apparatus and relatively moves the bed and the scan gantry in the body axis direction. Performing a predetermined data process on the collected subject transmission X-ray data to generate projection data necessary for reconstruction of a tomographic image at a target slice position; and X-ray transmission in the projection data And a step of up-sampling the projection data by generating virtual facing data consisting of facing data whose paths substantially coincide with each other.
  • the present invention also provides transmission X-ray data of each X-ray irradiated by shifting the X-ray focal point position in the X-ray tube device to a plurality of positions, while rotating the rotating disk to move the bed and the scan gantry in the body axis direction.
  • Generating focus shift projection data; using the focus shift projection data in a central region closer to the image center than a predetermined boundary in the image plane; and using the upsampled projection data in a peripheral region outside the boundary A step of reconstructing the image.
  • an X-ray CT apparatus or the like that can obtain upsampling projection data closer to an actual measurement value when performing helical imaging or the like.
  • FIG. 31 is a diagram illustrating an example in which an image is synthesized by weighting so that a region is smooth in the vicinity of the boundary in the example of FIG.
  • the X-ray CT apparatus 1 includes a scan gantry unit 100 and a console 120.
  • the scan gantry unit 100 is an apparatus that irradiates a subject with X-rays and detects X-rays that have passed through the subject, and includes an X-ray tube device (X-ray source) 101, a turntable 102, a collimator 103, A line detector 106, a data collection device 107, a gantry control device 108, a bed control device 109, and an X-ray control device 110 are provided.
  • X-ray tube device X-ray source
  • the rotary disk 102 is provided with an opening 104, and the X-ray tube device 101 and the X-ray detector 106 are arranged to face each other through the opening 104.
  • the subject placed on the bed 105 is inserted into the opening 104.
  • the turntable 102 rotates around the subject by a driving force transmitted from a turntable drive device controlled by the gantry control device 108 through a drive transmission system.
  • the console 120 is a device that controls each part of the scan gantry unit 100 and acquires projection data measured by the scan gantry unit 100 to generate and display an image.
  • the console 120 includes an input device 121, an image arithmetic device 122, a storage device 123, a system control device 124, and a display device 125.
  • the X-ray tube device 101 is an X-ray source, and is controlled by the X-ray control device 110 to irradiate X-rays having a predetermined intensity continuously or intermittently.
  • the X-ray control device 110 applies the X-ray tube voltage and the X-ray tube current to be applied to or supplied to the X-ray tube device 101 according to the X-ray tube voltage and the X-ray tube current determined by the system control device 124 of the console 120. Control.
  • a collimator 103 is provided at the X-ray irradiation port of the X-ray tube apparatus 101.
  • the collimator 103 limits the irradiation range of the X-rays emitted from the X-ray tube device 101. For example, it is formed into a cone beam (conical or pyramidal beam).
  • the opening width of the collimator 103 is controlled by the system controller 124.
  • the X-ray detector 106 includes, for example, about 1000 X-ray detection element groups configured by a combination of a scintillator and a photodiode in the channel direction (circumferential direction), for example, about 1 to 320 in the column direction (body axis direction). It is an arrangement.
  • the X-ray detector 106 is disposed so as to face the X-ray tube apparatus 101 through the subject.
  • the X-ray detector 106 detects the X-ray dose irradiated from the X-ray tube device 101 and transmitted through the subject, and outputs it to the data collection device 107.
  • the data collection device 107 collects the X-ray dose detected by each X-ray detection element of the X-ray detector 106 for each view, converts it into digital data, and transmits it as transmitted X-ray data to the image calculation device 122 of the console 120. Are output sequentially.
  • the image calculation device 122 acquires the transmission X-ray data input from the data collection device 107 and performs preprocessing such as logarithmic conversion and sensitivity correction to create projection data necessary for reconstruction.
  • the image calculation device 122 includes a projection data conversion unit 126, an upsampling projection data generation unit 127, and an image reconstruction calculation unit 128.
  • the projection data conversion unit 126 acquires projection data obtained by imaging in which the bed 105 and the scan gantry unit 100 are relatively moved in the body axis direction while rotating the rotating disk 102 such as helical imaging or continuous reciprocal imaging. Normal projection (also called axial shooting) at the slice position is converted into projection data for one rotation (2 ⁇ ). In the following description, the projection data for one rotation of normal imaging after conversion is referred to as “normal projection data”.
  • the up-sampling projection data generation unit 127 inserts (up-samples) a virtual view on the normal projection data using virtual facing data composed of facing data whose X-ray transmission paths in the normal projection data substantially match.
  • the virtual facing data in which the X-ray transmission paths substantially coincide with each other is projection data obtained by Ray incident from the opposite direction with the transmission path closest in the measured Ray (X-ray).
  • a virtual view is a view that is inserted between real views that actually have measurements. When upsampling the number of views twice, one virtual view is inserted between real views.
  • FIG. 2 is a diagram showing scan diagrams 21 and 22 in helical imaging.
  • reference numerals 106A and 106B denote two rows of X-ray detection elements in the X-ray detector 106.
  • the horizontal axis of the scan diagrams 21 and 22 represents the Z axis (body axis), and the vertical axis represents the view.
  • the projection value at the target slice position Zi is obtained by 360 ° interpolation method or 180 ° interpolation method in the case of helical imaging.
  • multi-row X-ray detector 106 channel interpolation in the column direction, counter data interpolation, and slice direction filter (z filter) are used in combination, and there are defects in helical imaging compared to normal imaging (axial imaging).
  • slice direction filter z filter
  • Fig. 2 (a) shows the case where z-direction channel interpolation is not used
  • Fig. 2 (b) shows the case where z-direction channel interpolation is used.
  • the projection data conversion unit 126 calculates the projection value of each view at the target slice position Zi using a method such as the above-described z-direction channel interpolation, and converts it into projection data equivalent to normal imaging. By this projection data conversion processing, normal projection data shown in FIG. 3 (a) is obtained.
  • Ray31 and Ray32 are opposite data in which the X-ray transmission paths substantially coincide. That is, the opposing data of point A1 and point A2 in Ray31 are point B1 and point B2 in Ray32, respectively.
  • Point B1 and point B2 are data of adjacent channels on the same view View (2 ⁇ m + ⁇ ) as shown in FIG.
  • the relationship between the points A1 and B1 on the projection data can be expressed by the following equation (1) using a function R ( ⁇ , ⁇ ) using parameters where the channel direction is ⁇ and the view direction is ⁇ . .
  • the point A1A2 in the virtual view 41 between the points A1 and A2 corresponds to the point B1B2 which is a virtual channel inserted between the points B1 and B2 on the view View (2 ⁇ m + ⁇ ).
  • the value of the corresponding point (virtual opposing data point) A1A2 on the opposing data (Ray31) for the virtual channel (point B1B2) in Ray32 (view View (2 ⁇ m + ⁇ )) can be calculated by the following equations (4) and (5) .
  • the virtual facing data point C1C2 adjacent to one pixel in the virtual view 41 is calculated.
  • a virtual facing data space composed of virtual facing data points is created.
  • the value of the point V41b at the channel position of the virtual view 41 is obtained by interpolation between the virtual facing data point A1A2 and the point C1C2 in the virtual facing data space.
  • the value of each channel of the virtual view 41 is calculated (points indicated by double circles in FIG. 3 (c)).
  • Each channel data can be calculated using virtual facing data in which the X-ray transmission paths substantially match.
  • the projection data upsampled by the upsampling projection data generation unit 127 is referred to as upsampling projection data.
  • projection data upsampled in the view direction is referred to as view direction upsampled projection data.
  • the upsampling projection data generation unit 127 outputs the upsampling projection data to the image reconstruction calculation unit 128.
  • the image reconstruction calculation unit 128 reconstructs an image such as a tomographic image of the subject using the upsampling projection data.
  • any method such as an analytical method such as a filtered back projection method or a successive approximation method may be used.
  • Image data reconstructed by the image computation device 122 (image reconstruction computation unit 128) is input to the system control device 124, stored in the storage device 123, and displayed on the display device 125.
  • the system control device 124 is a computer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the storage device 123 is a data recording device such as a hard disk, and stores programs, data, and the like for realizing the functions of the X-ray CT apparatus 1 in advance.
  • the system control device 124 performs photographing processing according to the processing procedure shown in FIG. In the imaging process, the system control device 124 sends a control signal corresponding to the imaging conditions set by the operator to the X-ray control device 110, the bed control device 109, and the gantry control device 108 of the scan gantry unit 100, and Control each part. Details of each process will be described later.
  • the display device 125 includes a display device such as a liquid crystal panel and a CRT monitor, and a logic circuit for executing display processing in cooperation with the display device, and is connected to the system control device 124.
  • the display device 125 displays the reconstructed image output from the image calculation device 122 and various information handled by the system control device 124.
  • the input device 121 includes, for example, a keyboard, a pointing device such as a mouse, a numeric keypad, and various switch buttons, and outputs various instructions and information input by the operator to the system control device 124.
  • the operator operates the X-ray CT apparatus 1 interactively using the display device 125 and the input device 121.
  • the input device 121 may be a touch panel type input device configured integrally with the display screen of the display device 125.
  • FIG. 5 is a flowchart for explaining the flow of the entire imaging process executed by the X-ray CT apparatus 1 according to the present invention.
  • the system control device 124 receives input of shooting conditions and reconstruction conditions.
  • the imaging conditions include X-ray conditions such as X-ray tube voltage and X-ray tube current, imaging range, gantry rotation speed, bed speed, and the like.
  • the reconstruction condition includes a reconstruction FOV, a reconstruction slice thickness, and the like.
  • the system control device 124 collects projection data based on the imaging conditions (step S102). That is, the system control device 124 sends control signals to the X-ray control device 110, the gantry control device 108, and the bed control device 109 based on the imaging conditions.
  • the X-ray control device 110 controls power input to the X-ray tube device 101 based on a control signal input from the system control device 124.
  • the gantry control device 108 controls the drive system of the turntable 102 according to the photographing conditions such as the rotation speed, and rotates the turntable 102.
  • the bed control device 109 aligns the bed 105 with a predetermined shooting start position based on the shooting range. In addition, it is possible to take a picture with the bed movement by the bed control device 109 and the gantry self-running by the gantry control device.
  • X-ray irradiation from the X-ray tube apparatus 101 and measurement of transmitted X-ray data by the X-ray detector 106 are repeated with the rotation of the turntable 102 and the relative movement between the bed 105 and the scan gantry unit 100.
  • the data acquisition device 107 acquires transmission X-ray data measured by the X-ray detector 106 at various angles (views) around the subject and sends the acquired data to the image calculation device 122.
  • the image calculation device 122 acquires the transmitted X-ray data input from the data collection device 107, and performs preprocessing such as logarithmic conversion and sensitivity correction to create projection data.
  • the image calculation device 122 acquires the helical projection data created in the process of step S102 and performs interpolation processing as shown in FIG. 2 to convert it to normal projection data at the target slice position. To do. Thereafter, the image calculation device 122 (upsampling projection data generation unit 127) performs upsampling projection data generation processing of the converted projection data (step S103; see FIG. 6).
  • the upsampling projection data generation unit 127 inserts (upsampling) a virtual view into the converted projection data so that the preset number of views is obtained, and the view direction upsampling projection data Create
  • the number of views may be a value set in advance according to the specifications of the device, or may be a value set by the operator. Further, it may be a value determined by an image quality index (particularly spatial resolution) set by the operator or other parameters.
  • the upsampling process will be described later (see FIGS. 6 to 8).
  • the image reconstruction calculation unit 128 of the image calculation device 122 next generates an image based on the reconstruction condition input in step S101.
  • Reconfiguration processing is performed (step S104). Any kind of image reconstruction algorithm may be used in the image reconstruction process. For example, back projection processing such as the Feldkamp method may be performed, or a successive approximation method or the like may be used.
  • step S104 When the image is reconstructed in step S104, the system control device 124 displays the reconstructed image on the display device 125 (step S105), and ends the series of photographing processing.
  • step S103 the upsampling projection data generation process in step S103 will be described with reference to FIG.
  • FIG. 6 is a flowchart for explaining the flow of the upsampling projection data generation process.
  • the image calculation device 122 acquires projection data.
  • the projection data includes normal projection data measured by helical imaging or the like and converted to become data for one rotation (2 ⁇ ) at the target slice position (step S201).
  • the projection data acquired in step S201 may be collected by the data collection device 107 during shooting, or may be measured in advance and stored in the storage device 123 or the like.
  • the image arithmetic unit 122 up-samples the acquired normal projection data view in the channel direction (step S202). That is, the upsampled projection data generation unit 127 inserts a virtual channel by interpolation or the like between each channel in the actual view that is the actually measured view. In the multi-row detector, since the channels are arranged in the two-dimensional direction (rotation direction and body axis direction), interpolation calculation is performed in the two-dimensional direction.
  • the image arithmetic device 122 assigns the value of the virtual channel generated in step S202 to the corresponding point (virtual opposing data point) at the virtual view position of the opposing data whose X-ray transmission paths substantially match, and performs 180 degree interpolation.
  • a projection value in an arbitrary slice is acquired (step S203).
  • the image calculation device 122 creates a virtual facing data space (step S204).
  • the image calculation device 122 obtains a ray (for example, data having the relationship between Ray31 and Ray32 in FIG. 3A) facing the view from the projection data.
  • the opposite data of View (2 ⁇ m + ⁇ ) shown in FIG. 3 (a) is data across multiple views and channels as shown in Ray31.
  • the image calculation device 122 obtains a point (corresponding point A1A2) corresponding to the virtual channel data (point B1B2) on the opposing data Ray32.
  • Corresponding points (virtual opposing data points) are points located between the view and the channel.
  • the image arithmetic device 122 assigns the value of the point B1B2 to the virtual channel data (the value of the point A1A2).
  • the corresponding point A1A2 is called virtual facing data.
  • a virtual facing data space (Fig. 3 (c)
  • a virtual view 41 is inserted between the real views 31a and 32a.
  • the virtual view 41 is a set of the corresponding points described above.
  • the image calculation device 122 obtains each channel data in the virtual view by interpolation calculation or the like using the value of each corresponding point (virtual facing data point) in the virtual facing data space (step S205).
  • the value of the point V41b at the channel position of the virtual view 41 is obtained by interpolation using the values of the virtual facing data point A1A2 and the corresponding point C1C2 shown in FIG.
  • the interpolation calculation in step S202 or step S204 may be two-point interpolation that simply interpolates between adjacent views, for example, as shown in FIG. 4 (a), or is adjacent as shown in FIG. 4 (b).
  • Four-point interpolation may be performed by using view and channel data, or a TV method (Total ⁇ Variation) or the like may be used as shown in FIG.
  • a TV method Total ⁇ Variation
  • linear interpolation or non-linear interpolation may be used.
  • Projection data up-sampled by the image arithmetic unit 122 is referred to as up-sampling projection data.
  • the upsampling projection data generation unit 127 outputs the upsampling projection data to the image reconstruction calculation unit 128 (step S206).
  • the image reconstruction calculation unit 128 reconstructs the subject image using the upsampling projection data.
  • the X-ray CT apparatus 1 of the present embodiment has the upsampling projection data generation unit 127 that upsamples the projection data.
  • the up-sampling projection data generation unit 127 acquires normal projection data obtained by converting projection data obtained by helical imaging into projection data at a target slice position, and virtual facing in which the X-ray transmission paths in the acquired normal projection data substantially match Insert a virtual view using data space data (upsample in view direction).
  • each channel data of the virtual view is obtained using the facing data whose X-ray transmission paths substantially match, each channel data of the virtual view can be obtained from the projection data having the closest object information. Thereby, the upsampling projection data becomes closer to the actual measurement value, and a reliable image can be created. Further, as compared with the case of up-sampling (simple view interpolation) using the values of adjacent points on the projection data, an effect that the boundary portion is not easily obscured can be obtained.
  • Points Va and Vb indicated by black circles in FIG. 7 indicate adjacent views.
  • the view position of the view Va is ⁇ n
  • the view position of the view Vb is ⁇ n + 1 .
  • a virtual view Vc indicated by a dotted circle is created between these views Va and Vb, and the upsampling by simple view interpolation and the upsampling according to the present invention are compared by taking as an example a case where the number of views is doubled.
  • the view position of the virtual view Vc is ⁇ n +1/2.
  • Fig. 8 (a) shows simple view interpolation.
  • data of virtual view Vc is interpolated using data of adjacent views Va and Vb.
  • this corresponds to interpolation using data of adjacent points on the projection data.
  • FIG. 8 (b) shows the case of upsampling by the method of the present invention.
  • the value of the virtual channel (point B1B2) inserted by interpolation or the like between the adjacent real channels (point B1, point B2) is converted into a virtual view on the virtual opposite data space where the X-ray transmission paths substantially coincide.
  • the value of the corresponding point A1A2 close to the virtual view Vc is obtained by giving it to the corresponding point (virtual facing data point) at the position.
  • the value of another corresponding point C1C2 close to the virtual view Vc is obtained from another real data, and the channel data of the virtual view is obtained using the values of the points A1A2 and C1C2.
  • the distance between the X-ray tube device 101 and the X-ray detection element is 1000 mm
  • the distance between the X-ray detection elements in the channel direction of the X-ray detector 106 is 1 mm
  • Each channel data in the virtual view can be obtained from data separated by 1 ((1/2) / 1000) degrees.
  • the view direction upsampling according to the present invention has an effect of improving the spatial resolution when the inter-view distance ⁇ is larger than the inter-channel distance ⁇ ch (when ⁇ > ⁇ ch). Therefore, the up-sampling projection data generation unit 127 uses simple view interpolation based on the relationship between the inter-view distance ⁇ and the inter-channel distance ⁇ ch, or performs the method according to the present invention (up-sampling method based on opposite data). It is desirable to determine. Note that in most of the X-ray CT apparatuses that are in widespread use at present, the view rate is limited, and the relationship ⁇ > ⁇ ch is established.
  • the up-sampling projection data generation unit 127 inserts virtual view data between real channels using the acquired projection data, and the X-ray transmission path substantially matches the value of the virtual view data. To the value of the corresponding point at the virtual channel position. Each view data in the virtual channel is calculated using the value of the corresponding point to generate channel direction upsampled projection data.
  • FIG. 9 is a partial cutout of projection data as in FIGS. 4 (a) to 4 (c).
  • Points C1 and C2 are actual projection data, and points V1 and V2 are obtained by interpolation processing or the like. It is the calculated virtual projection data. Using the values of the points C1, C2, V1, and V2, the value of the point C1C2 is obtained.
  • an interpolation calculation of Expression (6) may be performed using a weighting coefficient obtained from the inter-view distance ⁇ and the inter-channel distance ⁇ ch.
  • W C1 , W C2 , W V1 , and W V2 are weighting coefficients that satisfy Equation (7).
  • weighting factors W C1 , W C2 , W V1 , and W V2 are obtained by Expressions (8) and (9) according to the relationship between the inter-view distance ⁇ and the inter-channel distance ⁇ ch.
  • the interpolation calculation using the equations (6) to (9) may be performed for the upsampling in the view direction or the slice direction.
  • the upsampling method according to the present invention described above can be applied to projection data obtained by any photographing method.
  • the present invention may be applied to FFS (Flying Focus Spot) projection data and quarter offset projection data.
  • the FFS projection data is projection data obtained by photographing while moving the focal position of the X-ray tube to a plurality of locations.
  • Quarter offset projection data refers to data acquired in the opposite view by arranging the X-ray detector 106 by a quarter of the element in the rotation direction (channel direction) of the turntable 102 from the X-ray irradiation center.
  • the projection data is obtained by combining the channel intervals to be 1/2 (the number of channels is doubled).
  • FFSX ray tube devices have been developed that have the function of irradiating X-rays by shifting the X-ray focal point to a plurality of positions.
  • the X-ray focal point position can be shifted to a plurality of locations by electromagnetically moving the position of the electron beam incident on the anode (target).
  • a plurality of projection data with different X-ray irradiation paths can be obtained from the same rotation angle direction (view), so that the spatial resolution of the X-ray CT apparatus can be improved (FFS method).
  • the image reconstructed using the conventional FFS method improves the spatial resolution near the center in the entire effective visual field, but has a problem that the spatial resolution is lowered in the peripheral portion other than the central portion.
  • Patent Document 1 by setting the optimum focal distance based on the number of views photographed in one rotation (angle difference between adjacent views) and the distance between the X-ray tube device and the rotation center, A BFFS (Balanced Flying Focus Spot) method is proposed to make the spatial resolution of the periphery uniform and improve.
  • the sampling rate and gantry rotation speed of the data collection device are limited due to hardware limitations. Therefore, to increase the number of views taken in one rotation, it is necessary to reduce the rotation speed of the gantry.
  • the number of views is increased by reducing the rotation speed, motion artifacts increase in organs such as the heart that move quickly. Such motion artifact is more inconvenient for a radiologist who performs image diagnosis because an organ such as the heart that moves faster has a larger influence on the image. For this reason, there is a desire to improve the spatial resolution over the entire effective field of view without reducing the rotation speed in imaging for a part with motion.
  • the rotational speed is reduced even during helical imaging or continuous reciprocal imaging.
  • FIG. 10 is a diagram showing a configuration of the X-ray CT apparatus 1A according to the second embodiment.
  • the X-ray CT apparatus 1A includes a scan gantry unit 100 and a console 120.
  • the same components as those of the X-ray CT apparatus 1 according to the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the scan gantry unit 100 includes an X-ray tube device (X-ray source) 101A, a turntable 102, a collimator 103, an X-ray detector 106, a data collection device 107, a gantry control device 108, a bed control device 109, and an X-ray control device. With 110A.
  • the X-ray tube apparatus 101A is a flying focal X-ray tube apparatus that can move the focal position of the rotating anode (target). Assuming that the rotation axis direction of the X-ray CT apparatus 1A is the Z direction, the flying focal point X-ray tube apparatus deflects the electron beam applied to the rotating anode (target) in the X direction or the Y direction orthogonal to the Z direction. As a result, the X-ray focal position is shifted, and X-rays of slightly different paths are irradiated from the same view position.
  • the moving direction of the focus by the X-ray tube apparatus 101A is the rotation direction (channel direction) of the X-ray CT apparatus 1A.
  • the focal position is a position shifted from the reference focal position by “+ ⁇ a” and “ ⁇ b” in the rotation direction (channel direction). That is, the X-ray tube apparatus 101 emits X-rays from the first focus “+ ⁇ a” moved in the positive direction of the channel direction and the second focus position “ ⁇ b” moved in the negative direction.
  • projection data obtained using the FFS method is referred to as FFS projection data.
  • the projection data obtained from the X-rays emitted from the first focal position are FFS (+) projection data
  • the projection data obtained from the X-rays emitted from the second focal position are FFS ( ⁇ Called projection data.
  • projection data obtained by X-rays irradiated from a reference focal position that does not use the FFS technique is referred to as FFS (no) projection data.
  • the X-ray tube device 101A is controlled by the X-ray control device 110A to irradiate X-rays having a predetermined intensity continuously or intermittently.
  • the X-ray controller 110A applies the X-ray tube voltage and the X-ray tube current to be applied to or supplied to the X-ray tube device 101A according to the X-ray tube voltage and the X-ray tube current determined by the system controller 124 of the console 120. Control.
  • the X-ray control device 110A performs control so as to alternately move to the above-described first and second focus positions for each view as the turntable 102 rotates.
  • the image calculation device 122A acquires the transmission X-ray data input from the data collection device 107, and performs preprocessing such as logarithmic conversion and sensitivity correction to create projection data necessary for reconstruction.
  • preprocessing such as logarithmic conversion and sensitivity correction to create projection data necessary for reconstruction.
  • the X-ray tube device 101A emits X-rays with different focal points alternately for each view, for example, so the image calculation device 122A is obtained by X-rays irradiated from the first focal position.
  • the FFS (+) projection data that is the projection data and the FFS ( ⁇ ) projection data that is the projection data obtained from the X-rays irradiated from the second focal position are created.
  • the image calculation device 122A includes a projection data conversion unit 126, an upsampling projection data generation unit 127A, and an image reconstruction calculation unit 128A.
  • the upsampling projection data generation unit 127A includes a virtual facing data space generation unit 127a and an upsampling unit 127b.
  • Upsampling projection data generator 127A generates and inserts a virtual view for focus shift projection data (FFS (+) projection data and FFS (-) projection data) captured using the FFS method. Create sampling projection data.
  • a virtual view is a view that is inserted by calculation at a view position that is not actually photographed.
  • the projection data of the virtual view can be obtained by interpolation or estimation based on actually captured projection data (hereinafter referred to as actual data).
  • the virtual facing data space generation unit 127a creates a virtual facing data space of projection data (normal FFS (+) projection data and normal FFS ( ⁇ ) projection data) to be processed by the same method as in the first embodiment. Generate.
  • the upsampling unit 127b increases the number of views by combining the FFS (+) projection data and the FFS ( ⁇ ) projection data. Alternatively, the number of views is further increased by combining FFS projection data at each focal position where the number of views is increased.
  • upsampling projection data generation by the virtual facing data space generation unit 127a and the upsampling unit 127b Details of the upsampling projection data generation by the virtual facing data space generation unit 127a and the upsampling unit 127b will be described later.
  • the projection data generated (upsampled) by the upsampling projection data generation unit 127A is referred to as upsampling projection data.
  • the projection data conversion unit 126 collects projection data (helical projection data) acquired by moving the bed 105 and the scan gantry unit 100 relative to each other in the body axis direction while rotating the rotating table 102, such as helical imaging or continuous reciprocal imaging. Then, it is converted into normal projection data which is projection data for one rotation (2 ⁇ ) at the target slice position. Normal projection data at a target slice position is obtained by applying 360 ° interpolation, 180 ° interpolation, z filter processing, or the like to the projection data obtained by the above-described helical imaging or the like as shown in FIG.
  • helical FFS (+) projection data converted to normal projection data at the target slice position is called normal FFS (+) projection data
  • helical FFS (-) projection data is normal at the target slice position
  • the data converted into projection data is called normal FFS (-) projection data.
  • the image reconstruction calculation unit 128A is generated by the projection data (normal FFS (+) projection data and normal FFS (-) projection data) before the upsampling process (virtual view insertion) and the upsampling projection data generation unit 127A.
  • An image such as a tomographic image of the subject is reconstructed using the up-sampled projection data.
  • projection data (normal FFS (+) projection data and normal FFS ( ⁇ ) projection data) before the upsampling process (virtual view insertion) is referred to as “real data”.
  • the image reconstruction calculation unit 128A reconstructs an image using actual data (FFS (+) projection data, FFS (-) projection data) and upsampled projection data in consideration of the spatial resolution of the image.
  • the spatial resolution of the central region is improved by reconstructing an image using real data in the central region in the image plane.
  • the spatial resolution is improved by reconstructing the image using the upsampled projection data in the peripheral region of the image.
  • real data of FFS projection data is used in the entire area of the image, the spatial resolution is reduced in the peripheral area.
  • improve resolution Since the upsampled projection data inserts a virtual view by calculation, the number of views can be improved without reducing the rotation speed. Therefore, it is particularly suitable for creating an image of a moving part.
  • any method such as an analytical method such as a filtered back projection method or a successive approximation method may be used.
  • Image data reconstructed by the image computation device 122A (image reconstruction computation unit 128A) is input to the system control device 124, stored in the storage device 123, and displayed on the display device 125.
  • the system control device 124 performs photographing processing according to the processing procedure shown in FIG. In the imaging process, the system control device 124 sends a control signal corresponding to the imaging conditions set by the operator to the X-ray control device 110A, the bed control device 109, and the gantry control device 108 of the scan gantry unit 100, and Control each part. Details of each process will be described later.
  • FIG. 11 is a flowchart illustrating the flow of the entire imaging process executed by the X-ray CT apparatus 1A according to the second embodiment of the present invention.
  • the system control device 124 receives input of shooting conditions and reconstruction conditions.
  • the imaging conditions include X-ray conditions such as X-ray tube voltage and X-ray tube current, imaging range, gantry rotation speed, bed speed, and the like.
  • the reconstruction condition includes a reconstruction FOV, a reconstruction slice thickness, and the like.
  • the system control device 124 sends to the X-ray control device 110A, the gantry control device 108, and the bed control device 109 based on the imaging conditions. Send a control signal.
  • the X-ray control device 110A controls electric power input to the X-ray tube device 101A based on a control signal input from the system control device 124.
  • the X-ray control device 110A moves the X-ray focal point position alternately by moving the electron beam irradiating the rotating anode of the X-ray tube device 101A by a predetermined direction and distance at a predetermined timing. Perform FFS control.
  • the gantry control device 108 controls the drive system of the turntable 102 according to the photographing conditions such as the rotation speed, and rotates the turntable 102.
  • the bed control device 109 aligns the bed with a predetermined shooting start position based on the shooting range. Thereafter, the system control device 124 starts shooting.
  • the imaging includes imaging involving movement of the bed controlled by the bed control device 109, self-propelled gantry control of the gantry control device 108, or both. That is, the system control device 124 performs helical imaging or continuous reciprocal imaging.
  • X-ray irradiation from the X-ray tube apparatus 101A and measurement of transmitted X-ray data by the X-ray detector 106 are repeated with the rotation of the turntable 102 and the relative movement between the bed 105 and the scan gantry unit 100.
  • the data collection device 107 acquires transmission X-ray data measured by the X-ray detector 106 at various angles (views) around the subject, and sends it to the image calculation device 122A.
  • the image arithmetic device 122A acquires transmission X-ray data input from the data collection device 107, and performs preprocessing such as logarithmic conversion and sensitivity correction to create projection data.
  • imaging is performed by moving the X-ray focal position to two points using the FFS method, so the image calculation device 122A is obtained by X-rays irradiated from the first focal position.
  • the FFS (+) projection data that is the projection data and the FFS ( ⁇ ) projection data that is the projection data obtained by the X-rays irradiated from the second focal position are created (step S302).
  • the image processing device 122A converts the FFS (+) projection data and the FFS ( ⁇ ) projection data into normal FFS (+) projection data and normal FFS ( ⁇ ) projection data at the target slice position. .
  • the image arithmetic device 122A uses the FFS (+) projection data and the FFS ( ⁇ ) projection data (collectively referred to as FFS projection data) created in the process of step S302. Then, an upsampling projection data generation process is performed (step S303).
  • the upsampling projection data generation unit 127A inserts (upsampling) virtual views into the actual data so as to have a preset number of views, and creates upsampling projection data.
  • the number of views may be a value set in advance according to the specifications of the device, or may be a value set by the operator. Further, it may be a value determined by an image quality index (particularly spatial resolution) set by the operator or other parameters. A specific method of the upsampling projection data generation process will be described later (see FIGS. 12 to 19).
  • the image reconstruction calculation unit 128A of the image calculation device 122A next performs image processing based on the reconstruction condition input in step S301.
  • Reconfiguration processing is performed (step S304). Any kind of image reconstruction algorithm may be used in the image reconstruction process. For example, back projection processing such as the Feldkamp method may be performed, or a successive approximation method or the like may be used.
  • the spatial resolution of an image reconstructed using FFS projection data is higher in the center area of the image than when FFS projection data is not used, and projection data without FFS is used as it goes to the periphery. It may be lower than the case (see FIG. 21). Therefore, in the present invention, in the reconstruction calculation processing in step S304, projection data upsampled by a virtual view is used for a low spatial resolution area (Low area; peripheral area) where the FFS effect cannot be obtained. In the region where the FFS effect can be obtained (Hi region; central region), the image is reconstructed using the actual data of the FFS projection data. Details of the reconstruction process will be described later.
  • step S304 the system control device 124 displays the reconstructed image on the display device 125 (step S305), and ends a series of photographing processing.
  • FFS (+) projection data 501 and FFS ( ⁇ ) projection data 502 in the following description are FFS (+) projection data 501 and FFS ( ⁇ ) projection data 502 obtained by helical imaging or the like. It is assumed that data converted into projection data (normal FFS (+) projection data 501 and normal FFS ( ⁇ ) projection data 502) at the slice position is used.
  • the image calculation device 122A Upon obtaining the FFS (+) projection data 501 and the FFS ( ⁇ ) projection data 502 obtained by moving the focal point of the X-ray tube apparatus 101A (Step S401), the image calculation device 122A obtains the FFS (+) projection data.
  • FFS projection data 503 is obtained by alternately combining 501 and FFS ( ⁇ ) projection data 502 in the view direction (step S402).
  • a virtual view generation process 504 is executed on the FFS projection data 503 (step S403) to obtain upsampled projection data 505.
  • the virtual view generation process 504 executed by the image arithmetic device 122A obtains the upsampled projection data 505 by performing the virtual facing data generation process and the upsampling process.
  • the upsampling projection data generation unit 127A outputs the upsampling projection data 505 to the image reconstruction calculation unit 128A (step S404).
  • the FFS (+) projection data 501 and the FFS ( ⁇ ) projection data 502 described above are the bed 105 and the scan gantry unit 110 while rotating the rotating disk, such as helical imaging, continuous reciprocal imaging, or continuous multiple imaging. And projection data measured by relative movement in the body axis direction. Moreover, it is good also as what contains the projection data obtained by the synchronous imaging
  • An imaging synchronization device is a device that measures a biological signal using a respiratory meter, an electrocardiograph, a pulse wave system, etc., and controls imaging in synchronization with the movement of the subject obtained based on the biological signal. is there.
  • the upsampling projection data generation process (B) will be described with reference to FIGS.
  • the image calculation device 122A Upon obtaining the FFS (+) projection data 501 and the FFS ( ⁇ ) projection data 502 obtained by moving the focal point of the X-ray tube apparatus 101A (Step S501), the image calculation device 122A obtains the FFS (+) projection data.
  • the virtual view generation processing 504 described above is executed on each of the 501 and the FFS ( ⁇ ) projection data 502 (step S502).
  • the FFS projection data 513 is obtained by alternately combining the upsampled FFS (+) projection data 511 and FFS ( ⁇ ) projection data 512 in the view direction (step S503).
  • the upsampling projection data generation unit 127A outputs the upsampling projection data 513 to the image reconstruction calculation unit 128A (step S504).
  • the upsampling projection data generation process (C) will be described with reference to FIG. 16 and FIG.
  • the image calculation device 122A Upon obtaining the FFS (+) projection data 501 and the FFS ( ⁇ ) projection data 502 obtained by moving the focal point of the X-ray tube apparatus 101A (Step S601), the image calculation device 122A obtains the FFS (+) projection data.
  • the virtual view generation process 504 described above is executed on the 501 and the FFS ( ⁇ ) projection data 502 (step S602).
  • the upsampled FFS projection data 513 is obtained by alternately combining the upsampled FFS (+) projection data 511 and the FFS ( ⁇ ) projection data 512 in the view direction (step S603).
  • the upsampling projection data generation unit 127A further performs missing data processing 514 on the upsampled FFS projection data 513 (step S604).
  • Missing data processing is the projection data adjacent to the view direction and the channel direction from the missing data generated in the FFS projection data 513 obtained by alternately combining FFS (+) projection data and FFS (-) projection data in the view direction. Alternatively, it is a process of filling by interpolation or estimation using projection data in the vicinity thereof.
  • the FFS (+) projection data and the FFS ( ⁇ ) projection data obtained by moving the focal position in the channel direction have different X-ray paths. Therefore, data twice as many as the number of channels is obtained.
  • step S604 processing 514 for filling such missing data is performed.
  • the upsampled projection data generation unit 127A Upon obtaining the upsampled projection data 515 subjected to the missing data processing 514 in step S604, the upsampled projection data generation unit 127A outputs the upsampled projection data 515 to the image reconstruction calculation unit 128A (step S605).
  • the upsampling projection data generation process (D) will be described with reference to FIG. 18 and FIG.
  • the image arithmetic device 122A Upon obtaining the FFS (+) projection data 501 and the FFS ( ⁇ ) projection data 502 obtained by moving the focal point of the X-ray tube apparatus 101A (Step S701), the image arithmetic device 122A obtains the FFS (+) projection data.
  • the virtual view generation processing 504 described above is executed on each of the 501 and the FFS ( ⁇ ) projection data 502 (step S702).
  • the upsampled FFS projection data 513 is obtained by alternately combining the upsampled FFS (+) projection data 511 and the FFS ( ⁇ ) projection data 512 in the view direction (step S703).
  • the upsampled projection data generation unit 127A further executes the above-described virtual view generation processing 504 on the upsampled FFS projection data 513 (step S704).
  • Upsampling projection data 516 is obtained by the processing in step S704.
  • the upsampling projection data generation unit 127A outputs the upsampling projection data 516 to the image reconstruction calculation unit 128A (step S705).
  • step S403 in FIG. 12 step S502 in FIG. 14, step S602 in FIG. 16, step S702 in FIG. 18, and step S704
  • the virtual view is generated as in the first embodiment (FIGS. 3 and 4).
  • a virtual view calculation method upsampling method using the facing data space can be applied.
  • the upsampling projection data generation unit 127A image arithmetic device 122A
  • the upsampling projection data generation unit 127A for the view to be inserted (virtual view), projection data close to the view direction or the channel direction, or the data of the opposite ray (opposite data), or opposite
  • the projection data of the virtual view is calculated by interpolation or estimation using projection data close to the data view direction or the channel direction.
  • Virtual view calculation method using virtual facing data space; virtual facing data generation processing With projection data obtained by one rotation (2 ⁇ ) imaging, a virtual view can be generated using data on opposite rays (hereinafter referred to as opposite data).
  • opposite data With reference to FIG. 3, an example will be described in which a virtual view is generated using opposing data for projection data obtained by one rotation of imaging and the number of views is doubled.
  • the image processing unit 122A acquires helical projection data (helical FFS (+) projection data, helical FFS (-) projection data) obtained by helical imaging or continuous reciprocal imaging, and performs 180 ° interpolation. Then, it is converted into normal projection data (normal FFS (+) projection data, normal FFS (-) projection data) at the target slice position using 360 ° interpolation, z filter processing, or the like (see FIG. 2).
  • the axial projection data (axial FFS (+) projection data, axial FFS ( ⁇ ) projection data) is data as shown in FIG.
  • the image arithmetic unit 122A (upsampling projection data generation unit 127A) performs a process of inserting a virtual view into the converted projection data (normal FFS (+) projection data, normal FFS ( ⁇ ) projection data).
  • the virtual facing data generation process described in the first embodiment can also be applied to FFS (+) projection data and FFS (-) projection data.
  • Ray31 and Ray32 face each other. That is, the same X-ray irradiation route.
  • Opposite data at point A1 and point A2 in Ray31 are point B1 and point B2 in Ray32, respectively.
  • Point B1 and point B2 are data of adjacent channels on the same view View (2 ⁇ m + ⁇ ) as shown in FIG.
  • the relationship between the points A1 and B1 on the projection data can be expressed by the above equation (1) using a function R ( ⁇ , ⁇ ) using a parameter where the channel direction is ⁇ and the view direction is ⁇ . .
  • the point A1A2 in the virtual view 41 between the point A1 and the point A2 corresponds to the point B1B2 which is a virtual channel inserted between the point B1 and the point B2 on the view View (2 ⁇ m + ⁇ ).
  • the value of the virtual facing data point A1A2 on the facing data (Ray31) with respect to the virtual channel (point B1B2) in Ray32 (view View (2 ⁇ m + ⁇ )) can be calculated by the above formulas (4) and (5).
  • the virtual facing data point C1C2 adjacent to one pixel in the virtual view 41 is calculated.
  • a virtual opposite data space is created while repeating the same procedure.
  • the value of the point V41b at the channel position of the virtual view 41 is obtained by interpolation between the virtual facing data point A1A2 and the point C1C2 in the virtual facing data space.
  • the value of each channel of the virtual view 41 is calculated (points indicated by double circles in FIG. 3 (c)).
  • the channel data of each point can be calculated using the virtual facing data in the same manner.
  • the virtual view generation method (upsampling method) using the virtual facing data space, it has biological information (measurement data transmitted through the subject) that is closest to the channel data to be estimated (points indicated by double circles). Each channel data of the virtual view is calculated based on the virtual facing data (actual data).
  • the virtual facing data having the closest biological information is a ray that has the closest transmission path among the measured rays and is incident from the opposite direction.
  • the feature is that a ray is selectively acquired, a virtual ray estimated from the selected ray is calculated, and a virtual view is generated.
  • the channel data of the virtual view was obtained using the average value of the two points of the opposite data, but in the case of N times sampling, it may be obtained by linear interpolation or nonlinear interpolation between the two points. Good. Also, by this method, upsampling in the channel direction can be performed simultaneously.
  • the virtual view generation method is not limited to the upsampling method using the facing data as described above. As shown in Fig.4 (a), it is good also as two-point interpolation that interpolates between adjacent views, or four-point interpolation that interpolates using data of adjacent views and channels as shown in Fig.4 (b) Alternatively, as shown in FIG. 4 (c), interpolation by the TV method (Total ⁇ Variation) may be used.
  • the number of views of upsampled projection data may be an arbitrary number of views including a decimal value such as 1.5 times the actual data. For example, when the number of views is partially increased in the view direction, the number of views is a fractional multiple. As shown in FIG. 20 (a), the cross section of the subject 2 has a shape approximating an ellipse. Therefore, as shown in Fig. 20 (b), in the view corresponding to the major axis of the ellipse, the number of views can be increased, for example, the number of views can be increased to generate fractional upsampling projection data 518. Is also possible.
  • the spatial resolution of an image reconstructed using FFS projection data is higher in the central area of the image than in the case where FFS projection data is not used, and projection without FFS as it goes to the periphery. It may be lower than when data is used (see FIG. 21).
  • FIG. 21 (b) is a graph 606 showing the relationship between the distance from the center O and the spatial resolution in the tomographic image 601 shown in FIG. 21 (a).
  • the spatial resolution (index value representing) is FFS (no) projection data. Higher than when used.
  • the spatial resolution (indicating index value) is when FFS (no) projection data is used. It becomes low compared with.
  • image reconstruction is performed using FFS projection data (actual data) that is not up-sampled, and in the peripheral area 603, the virtual view is generated.
  • FFS projection data actual data
  • the spatial resolution of the peripheral region 603 is improved.
  • the spatial resolution can be improved in the central region 604 while preventing adverse effects due to the creation of data, and the peripheral region 603 can be generated without reducing the rotation speed by generating a virtual view.
  • the number of views can be increased, thereby improving the spatial resolution.
  • the image reconstruction calculation unit 128A acquires a boundary point P 0 of spatial resolution (step S801).
  • the boundary point P 0 is the distance from the imaging center at a position where the spatial resolution obtained from the FFS projection data and the spatial resolution obtained from the FFS-free projection data are reversed.
  • This boundary point P 0 is obtained in advance from experimental data and is stored in the storage device 123 or the like.
  • MTF Modulation Transfer Function
  • the boundary point P 0 described above may be obtained for each different spatial resolution index value such as MTF 50%, 10%, 2%, etc., and may be selected by the operator. Since what kind of image quality is required depending on the purpose of examination or diagnosis, it is desirable that the necessary spatial resolution can be selected according to the balance with other image quality (noise, etc.).
  • the boundary point serving as the center of gravity may be obtained from the boundary point P 0 obtained by a plurality of spatial resolutions such as MTF 50%, 10%, and 2%.
  • Image reconstruction operation unit 128A uses the real data of the FFS projection data at the center area 604 of the center side than the boundary point P 0, upsampled projections upsampling the FFS projection data outside the peripheral region 603 than the boundary point P 0 A reconstruction operation is performed using the data (step S802).
  • Up-sampling projection data used for the peripheral region 603 may be up-sampling projection data created by any of the above-described up-sampling projection data generation processes (A) to (D). That is, as shown in FIG. 23 (a), the up-sampling projection data 505 generated in the up-sampling projection data generation process (A) shown in FIGS. 12 and 13 may be used, or as shown in FIG. 23 (b).
  • the upsampling projection data 513 generated in the upsampling projection data generation process (B) shown in FIGS. 14 and 15 may be used for the upsampling shown in FIGS. 16 and 17 as shown in FIG.
  • the upsampling projection data 515 generated in the projection data generation process (C) may be used, or the upsampling projection data generation process (D) shown in FIGS. 18 and 19 as shown in FIG. Upsampled projection data 516 may be used.
  • the virtual view generation method may employ the upsampling method using the virtual facing data space as described above, or is adjacent in the view direction. Interpolation by two points may be performed, interpolation by four points adjacent to the view direction and the channel direction may be performed, or interpolation using a TV method or the like may be performed.
  • FFS projection data data before upsampling
  • normal projection data and upsampled projection data are combined on the projection data, and then image reconstruction such as backprojection processing is performed.
  • image reconstruction such as backprojection processing
  • the image reconstruction calculation unit 128A outputs the image created by the process of step S802 (step S803).
  • the output destination is, for example, the storage device 123 or the display device 125.
  • the X-ray CT apparatus 1A of the second embodiment shifts the X-ray focal position in the X-ray tube apparatus 101A, and shifts the focal shift projection data (helical FFS projection data) obtained by helical imaging. Convert to normal projection data and upsample in view direction. Then, in the image reconstruction calculation process, in the center region 604 closer to the shooting center than the predetermined boundary point P 0 , the actual data of FFS projection data (normal FFS projection data) is used, and the periphery far from the shooting center from the boundary point P 0 In region 603, the image is reconstructed using the upsampled projection data.
  • the focal shift projection data helical FFS projection data
  • the spatial resolution of the peripheral portion can be improved regardless of the rotational speed limit due to hardware limitations, and the spatial resolution of the entire effective visual field can be improved. It is suitable for imaging a moving part.
  • the X-ray CT apparatus 1A of the third embodiment performs the combining process so that the spatial resolution at the boundary point P 0 is smoothly continuous in the reconstruction calculation process of the second embodiment.
  • an image reconstructed with FFS actual projection data and an upsampled projection data in a predetermined range region (hereinafter referred to as a boundary region Q) including the boundary point P 0 is reconstructed. Both images are combined at a predetermined ratio.
  • a predetermined range region hereinafter referred to as a boundary region Q
  • 100% of the image reconstructed from the actual data of the FFS projection data is used as in the second embodiment.
  • the peripheral region 603a outside the boundary region Q 100% of the image reconstructed with the upsampled projection data is used as in the second embodiment.
  • the image reconstructed from the FFS projection data and the image reconstructed from the upsampled projection data according to the distance from the center are synthesized while changing the weights.
  • FIG. 25 is a graph showing the weighting coefficient applied to the reconstructed image based on the upsampled projection data.
  • the weighting factor W (P) changes according to the distance P from the center O.
  • the curve is “0” in the central area 604a, the curve smoothly rising in the boundary area Q, and “1” in the peripheral area 603a.
  • the weighting coefficient applied to the reconstructed image by the FFS actual projection data also changes depending on the distance from the center O, but contrary to the weighting coefficient W (P) shown in FIG. “1” in the central region 604a, a curve that smoothly falls in the boundary region Q, and “0” in the peripheral region 603a.
  • the range of the boundary region Q is arbitrary, and may be changed according to the desired spatial resolution of the desired region.
  • the weighting factor is expressed by a smooth curve depending on the distance P from the center of the image, but is not limited to this, and may be expressed by a straight line or a broken line.
  • the upsampling projection data used for the peripheral region 603a and the boundary region Q is generated as described above. Upsampling projection data created by any of the processes (A) to (D) may be used.
  • the up-sampling projection data 505 generated in the up-sampling projection data generation process (A) shown in FIGS. 12 and 13 may be used, or as shown in FIG. 24 (b).
  • the upsampling projection data 513 generated by the upsampling projection data generation process (B) shown in FIGS. 14 and 15 may be used, or the upsampling shown in FIGS. 16 and 17 as shown in FIG.
  • the upsampling projection data 515 generated in the projection data generation process (C) may be used, or the upsampling projection data generation process (D) shown in FIGS. 18 and 19 as shown in FIG. 24 (d).
  • Upsampled projection data 516 may be used.
  • the virtual view calculation method is the interpolation by two points adjacent to the view direction as described above (FIG. 4 (a)), or the view direction and the channel direction. It may be obtained by interpolation using four points adjacent to (Fig. 4 (b)), interpolation or estimation using the TV method or the like (Fig. 4 (c)), or may be calculated using a virtual facing data space. Good ( Figure 3).
  • the number of views of the upsampled projection data is not limited to twice the actual data, and may be more than twice the number of views.
  • the number of views may be partially increased in the view direction, and an arbitrary number of views including a decimal value such as 1.5 times may be used.
  • the image reconstruction calculation unit 128A acquires a boundary point P 0 of spatial resolution (step S901).
  • the acquisition of the boundary point P 0 is the same as in the second embodiment (step S801 in FIG. 22).
  • the image reconstruction calculation unit 128A is an image reconstructed using actual data of FFS projection data (normal FFS projection data) and an image reconstructed using upsampled projection data obtained by upsampling the FFS projection data. Are created (step S902).
  • the image reconstruction calculation unit 128A uses an image reconstructed from the actual data of the FFS projection data in the center region 604a on the center side of the boundary region Q including the boundary point P 0 , and uses a peripheral region outside the boundary region Q.
  • a composite image using an image reconstructed from the upsampling projection data in the region 603a is created.
  • each image reconstructed in step S902 is weighted and added so as to have continuous spatial resolution (step S903).
  • the weighting method is obtained by multiplying the image created by upsampling projection data by the weighting factor of the shape shown in FIG. 25, and the weighting factor of the shape opposite to the graph shown in FIG. Multiply the images created by projection data) and add these images.
  • the image reconstruction calculation unit 128A outputs the image created by the process of step S903 (step S904).
  • the output destination is, for example, the storage device 123 or the display device 125.
  • the X-ray CT apparatus 1A of the third embodiment uses the actual data of FFS projection data (normal FFS projection data) in the center region 604a near the center of the image in the image reconstruction calculation process. , to synthesize the image reconstructed using the upsampling projection data in the peripheral side of the peripheral area 603a from the boundary point P 0. Furthermore, each of the above-mentioned images is weighted and added so that the spatial resolution smoothly continues in a predetermined boundary region Q.
  • FFS projection data normal FFS projection data
  • an image using actual data of FFS projection data (normal projection data) and an image using upsampled projection data are synthesized by changing the weight over the entire image. You may make it do.
  • FIG. 27 is a graph showing the weighting factor W ′ (P) to be applied to the reconstructed image based on the upsampled projection data in the fourth embodiment.
  • W ′ (P) the weighting factor
  • it rises smoothly from “0” in the region near the center, and becomes “1” at the edge of the peripheral region. That is, even in regions other than the boundary region Q, the weighting coefficient changes according to the distance from the center O.
  • the graph shape of the weighting factor may be arbitrary, and the weighting factor is changed so that a desired spatial resolution can be obtained in a desired region even in a region other than the boundary region Q.
  • weighting coefficient to be applied to the reconstructed image by FFS actual projection data is smoothly lowered from ⁇ 1 '' in the area close to the center, and ⁇ 0 ”.
  • the weighting factor W ′ (P) is expressed by a smooth curve depending on the distance P from the center of the image, but is not limited to this, and may be expressed by a straight line. Good.
  • the image reconstruction calculation unit 128A acquires a boundary point P 0 of spatial resolution (step S1001).
  • the acquisition of the boundary point P 0 is the same as in the second embodiment (step S801 in FIG. 22).
  • the image reconstruction calculation unit 128A reconstructs the image reconstructed using the actual data of FFS projection data (normal FFS projection data) and the upsampled projection data obtained by upsampling the normal FFS projection data.
  • An image is created (step S1002).
  • the up-sampling projection data may be generated using any of the up-sampling projection data generation processes (A) to (D).
  • the image reconstruction calculation unit 128A multiplies each image by a weighting factor of a desired shape and adds it (step S1003).
  • the image reconstructed using the actual data of FFS projection data normal FFS projection data
  • the image reconstructed using upsampled projection data obtained by upsampling normal FFS projection data It is for combining at an appropriate ratio so as to obtain a desired spatial resolution in a desired region.
  • the image reconstruction calculation unit 128A outputs the image created by the process of step S1003 (step S804).
  • the output destination is, for example, the storage device 123 or the display device 125.
  • the X-ray CT apparatus 1A uses the weighting coefficient that changes in accordance with the distance from the imaging center in the image reconstruction calculation process, and the actual data of the FFS projection data ( The image reconstructed with the normal projection data) and the image reconstructed with the upsampling projection data are synthesized.
  • actual data 503 of FFS projection data is applied to a region of interest (ROI; Region Of Interest) 7 and a center region 604 set by an operator.
  • upsampling projection data 505 is applied to the peripheral region 603.
  • the actual data 503 of the FFS projection data is used for the range within the ROI 7.
  • the system controller 124 and the region of interest (ROI) 7 are set (step S1101).
  • the ROI 7 is set by the operator via the input device 121.
  • the image reconstruction calculation unit 128A acquires a boundary point P 0 of spatial resolution (step S1102).
  • the acquisition of the boundary point P 0 is the same as in the second embodiment (step S801 in FIG. 22).
  • the image reconstruction calculation unit 128A uses the ROS 7 set in step S1101 and the actual data of FFS projection data (normal FFS projection data) in the central area 604, and performs upsampling by virtual view in the peripheral area 603 excluding ROI 7. An image is reconstructed using the projection data (step S1103).
  • the up-sampling projection data may be generated using any of the up-sampling projection data generation processes (A) to (D).
  • the image reconstruction calculation unit 128A outputs the image created by the process of step S1103 (step S1104).
  • the output destination is, for example, the storage device 123 or the display device 125.
  • the X-ray CT apparatus 1A of the fifth embodiment uses the actual data of the FFS projection data in the ROI 7 and the center region 604 (in the case of helical imaging, after conversion to projection data at the target slice position). Image reliability is improved by reconstructing an image using normal FFS projection data. Further, in the peripheral region 603 excluding ROI 7, the spatial resolution is improved by using up-sampling projection data. As a result, it is possible to obtain an image with high reliability at the ROI to be diagnosed and the central portion of the image and with improved spatial resolution in the peripheral portion.
  • the image reconstruction calculation unit 128A includes an area 1002 from the center O to the distance P1 and an area from the distance P1 to the distance P2 in the image plane of the reconstructed image 1001. 1003, an image reconstructed using FFS projection data with different numbers of views (upsampling numbers) is synthesized for an area 1004 from distance P2 to distance P3.
  • the region 1002 uses the actual view number V1 of the FFS projection data
  • the region 1003 uses the FFS projection data upsampled to the view number V2
  • the region 1004 uses the FFS projection data upsampled to the view number V3. .
  • each image 1002, 1003, 1004 before synthesis is ⁇ (V1), ⁇ (V2), ⁇ (V3)
  • the synthesized image ⁇ (V) can be expressed by the following equation (10). it can.
  • the upsampling projection data may be created by any of the upsampling projection data generation processes (A) to (D) described in the second embodiment.
  • the combination processing may be performed so as to obtain a continuous spatial resolution at the boundary between the region 1002 and the region 1003 or at the boundary between the region 1003 and the region 1004.
  • the combining process is the same as in the second embodiment.
  • the reconstruction was performed with projection data of each view number using weighting factors W (V1), W (V2), and W (V3) that continuously and smoothly change the spatial resolution.
  • W (V1), W (V2), and W (V3) that continuously and smoothly change the spatial resolution.
  • the images ⁇ (V1), ⁇ (V2), and ⁇ (V3) are synthesized.
  • the synthesized image ⁇ (V) can be expressed by the following equation (11).
  • the number of regions is three.
  • the number of regions is not limited to three, and can be expanded to n regions as in an image 1001b shown in FIG. is there.
  • the synthesized image ⁇ (V) can be expressed by the following equation (12).
  • the sixth embodiment it is possible to synthesize images using upsampled projection data with different view numbers V1 to Vn according to the distance P from the image center O. Therefore, for example, in the peripheral region from the boundary point P 0 , the spatial resolution can be improved by a desired amount by gradually and appropriately increasing the number of upsamplings as the distance from the image center O increases. Thereby, the spatial resolution can be made uniform over the entire image. It is also possible to create images with various image quality according to the purpose of diagnosis, such as preferentially improving the spatial resolution of a desired region.

Abstract

 X線CT装置においてヘリカル撮影等を行う場合において、より実測値に近いアップサンプリング投影データを得る。X線焦点位置を複数の位置に移動して投影データを得るFFS法において、回転速度を落とすことなく有効視野全体の空間分解能を向上し、X線CT装置は、ヘリカル撮影により得た投影データをノーマル撮影1回転分の投影データに変換し、変換した投影データにおけるX線透過経路が略一致する仮想対向データ空間を生成して、ビュー方向にアップサンプリングすし、またX線焦点位置をシフトさせながらヘリカル撮影を行うことにより得た焦点シフト投影データについても同様にFFS投影データをビュー方向にアップサンプリングする(仮想対向データ空間生成)。

Description

X線CT装置、投影データのアップサンプリング方法、及び画像再構成方法
 本発明は、X線CT装置、投影データのアップサンプリング方法、及び画像再構成方法に関し、詳細には、ヘリカル撮影または連続往復撮影等により計測した被検体投影データのビュー数、チャンネル数、または列数を演算により増加させるアップサンプリング投影データの生成、及びアップサンプリング投影データを用いた画像再構成方法に関する。
 X線CT装置は、X線管装置(X線源)とX線検出器とを対向配置させた状態で被検体の周囲を周回させ、複数の回転角度方向(ビュー)からX線を照射してビュー毎に被検体を透過したX線を検出し、検出した投影データに基づいて被検体の断層像を生成する装置である。このようなX線CT装置では、X線管装置及びX線検出器の周回とともに寝台とスキャンガントリとを体軸方向に相対的に移動させることにより、螺旋上にスキャンを行うヘリカル撮影が行われている。また、X線CT装置では、画像の空間分解能を向上させるために、例えば1回転あたりのビュー数を増加させて撮影する方法が提案されている。
 しかし、データ収集装置のサンプリングレート等はハードウェアの限界等により制限されてしまう。
 一方、特許文献1には、取得した投影データのビュー数を演算により増加させる方法が記載されている。特許文献1の手法では、選択したビュー範囲内で投影データを補間し、補間ビューを作成する。一般に、補間とは、対象とする点の周囲の複数の点の値を用いて対象とする点の値を求めることである。
特開2001-286462号公報
 しかしながら、X線CT装置ではビューが異なれば異なるX線透過経路を通過するデータとなる。したがって、隣接するビューの間隔が大きい場合は、隣り合う2つのビューの値のみを用いて補間ビューの値を求めると、実際の被検体の情報とは異なる情報が含まれることとなる。したがって、特許文献1の手法でアップサンプリングされた投影データを利用して画像を再構成すると、その画像には作りこまれた情報が含まれることとなり、臨床上問題である。
 本発明は、前述した問題点に鑑みてなされたものであり、その目的とするところは、ヘリカル撮影等を行う場合において、より実測値に近いアップサンプリング投影データを得ることが可能なX線CT装置等を提供することである。
 前述した目的を達成するために本発明は、X線を照射するX線管装置と、前記X線管装置に対向配置され、被検体を透過したX線である透過X線を検出するX線検出器と、前記X線管装置及び前記X線検出器を搭載し、前記被検体の周囲を回転する回転盤と、前記回転盤を搭載するスキャンガントリと、前記被検体が載置される寝台と、前記回転盤を回転させながら前記寝台と前記スキャンガントリとを体軸方向へ相対移動させて前記X線検出器で検出された透過X線のデータを収集する撮影制御部と、収集した透過X線のデータに所定のデータ処理を施して目的のスライス位置における断層像の再構成に必要な投影データを生成する投影データ変換部と、前記投影データにおけるX線透過経路が略一致する対向データからなる仮想対向データを生成することにより前記投影データをアップサンプリングするアップサンプリング投影データ生成部と、アップサンプリングされた投影データであるアップサンプリング投影データを用いて画像を再構成する再構成演算部と、前記再構成演算部により再構成された画像を表示する表示部と、を備えることを特徴とするX線CT装置である。
 また本発明は、複数の焦点位置からX線を照射するX線管装置と、前記X線管装置に対向配置され、被検体を透過したX線である透過X線を検出するX線検出器と、前記X線管装置及び前記X線検出器を搭載し、前記被検体の周囲を回転する回転盤と、前記回転盤を搭載するスキャンガントリと、前記被検体が載置される寝台と、前記焦点位置を任意の位置にシフトさせて照射された各X線による前記透過X線のデータを、前記回転盤を回転させながら前記寝台と前記スキャンガントリとを体軸方向へ相対移動させて収集する焦点シフト撮影制御部と、収集した各焦点位置からの前記透過X線のデータに所定のデータ処理を施して目的のスライス位置における断層像の再構成に必要な投影データを生成する投影データ変換部と、前記投影データにおけるX線透過経路が略一致する対向データからなる仮想対向データを生成することによりビュー方向に仮想ビューを生成するとともに、前記仮想ビューが挿入された各焦点位置の投影データを組み合わせることによりアップサンプリング投影データを生成するアップサンプリング投影データ生成部と、前記アップサンプリング投影データを用いて画像を再構成する再構成演算部と、前記再構成演算部により再構成された画像を表示する表示部と、を備えることを特徴とするX線CT装置である。
 また本発明は、画像演算装置が実行する、X線CT装置の回転盤を回転させながら寝台とスキャンガントリとを体軸方向へ相対移動させる撮影により計測された被検体透過X線のデータを収集するステップと、収集した被検体透過X線のデータに所定のデータ処理を施すことにより目的のスライス位置における断層像の再構成に必要な投影データを生成するステップと、前記投影データにおけるX線透過経路が略一致する対向データからなる仮想対向データを生成することにより前記投影データをアップサンプリングするステップと、を含むことを特徴とする投影データのアップサンプリング方法である。
 また本発明は、X線管装置におけるX線焦点位置を複数箇所にシフトさせて照射した各X線による透過X線のデータを、回転盤を回転させながら寝台とスキャンガントリとを体軸方向へ相対移動させて収集するステップと、収集した各焦点位置からの前記透過X線のデータに所定のデータ処理を施して目的のスライス位置における断層像の再構成に必要な投影データを生成するステップと、前記投影データにおけるX線透過経路が略一致する対向データからなる仮想対向データを生成することによりビュー方向に仮想ビューを生成するとともに、前記仮想ビューが挿入された各焦点位置の投影データを組み合わせることによりアップサンプリング投影データを生成するステップと、前記仮想ビューを挿入せずに各焦点位置の投影データを組み合わせた焦点シフト投影データを生成するステップと、画像面内における所定の境界より画像中心に近い中心領域で前記焦点シフト投影データを用い、前記境界より外側の周辺領域で前記アップサンプリング投影データを用いて画像を再構成するステップと、を含むことを特徴とする画像再構成方法である。
 本発明により、ヘリカル撮影等を行う場合において、より実測値に近いアップサンプリング投影データを得ることが可能なX線CT装置等を提供できる。
X線CT装置1の全体構成図 ヘリカル撮影において、目的のスライス位置で投影データを取得する方法について示す図 仮想対向データ空間を用いたアップサンプリング方法について説明する図 (a)2点による補間、(b)4点による補間、(c)TV法による補間を示す図 X線CT装置1が実行する処理全体の流れを説明するフローチャート 画像演算装置122のアップサンプリング投影データ生成部127が実行するアップサンプリング処理の手順を示すフローチャート 隣接するビューVa,Vbと仮想ビューVcの計測時の位置関係を示す図 (a)単純ビュー補間におけるアップサンプリングと、(b)本発明によるアップサンプリングとの違いを説明する図 チャンネル方向へのアップサンプリングについて説明する図 第2の実施の形態のX線CT装置1Aの全体構成図 X線CT装置1Aが実行する処理全体の流れを説明するフローチャート アップサンプリング投影データ生成処理(A)の流れを説明するフローチャート アップサンプリング投影データ生成処理(A)の手順を示す概念図 アップサンプリング投影データ生成処理(B)の流れを説明するフローチャート アップサンプリング投影データ生成処理(B)の手順を示す概念図 アップサンプリング投影データ生成処理(C)の流れを説明するフローチャート アップサンプリング投影データ生成処理(C)の手順を示す概念図 アップサンプリング投影データ生成処理(D)の流れを説明するフローチャート アップサンプリング投影データ生成処理(D)の手順を示す概念図 部分的にビュー数が異なるアップサンプリング投影データ518について説明する図 画像の中心領域604と周辺領域603とにおける空間分解能の変化について説明する図 再構成演算処理の流れを説明するフローチャート 図22の再構成演算処理に使用する投影データの態様を示す図 第3の実施の形態の再構成演算処理について説明する図 第3の実施の形態の再構成演算処理において適用する重み係数の例 第4の実施の形態の再構成演算処理の流れを説明するフローチャート 第4の実施の形態の再構成演算処理において適用する重み係数の例 第4の実施の形態の再構成演算処理の流れを説明するフローチャート 第5の実施の形態の再構成演算処理において設定されるROIと、各領域に使用する投影データについて説明する概念図 第5の実施の形態の再構成演算処理の流れを説明するフローチャート 第6の実施の形態の再構成演算処理において、画像中心からの距離に応じて異なるビュー数でアップサンプリングした投影データを用いて再構成した画像を合成する例を示す図 図31の例において、境界付近で領域が滑らかになるように重み付けして画像を合成する例を示す図 図32の例における領域数をn個の領域に拡張した例を示す図
 以下、添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。
 [第1の実施の形態]
 まず、図1を参照して、X線CT装置1の全体構成について説明する。
 図1に示すように、X線CT装置1は、スキャンガントリ部100と操作卓120とを備える。
 スキャンガントリ部100は、被検体に対してX線を照射するとともに被検体を透過したX線を検出する装置であり、X線管装置(X線源)101、回転盤102、コリメータ103、X線検出器106、データ収集装置107、ガントリ制御装置108、寝台制御装置109、及びX線制御装置110を備える。
 回転盤102には開口部104が設けられ、開口部104を介してX線管装置101とX線検出器106とが対向配置される。開口部104に寝台105に載置された被検体が挿入される。回転盤102は、ガントリ制御装置108によって制御される回転盤駆動装置から駆動伝達系を通じて伝達される駆動力によって被検体の周囲を回転する。
 操作卓120は、スキャンガントリ部100の各部を制御するとともにスキャンガントリ部100で計測した投影データを取得して画像の生成及び表示を行う装置である。操作卓120は、入力装置121、画像演算装置122、記憶装置123、システム制御装置124、及び表示装置125を備える。
 X線管装置101はX線源であり、X線制御装置110に制御されて所定の強度のX線を連続的または断続的に照射する。X線制御装置110は、操作卓120のシステム制御装置124により決定されたX線管電圧及びX線管電流に従って、X線管装置101に印加または供給するX線管電圧及びX線管電流を制御する。
 X線管装置101のX線照射口にはコリメータ103が設けられる。コリメータ103は、X線管装置101から放射されたX線の照射範囲を制限する。例えばコーンビーム(円錐形または角錐形ビーム)等に成形する。コリメータ103の開口幅はシステム制御装置124により制御される。
 X線管装置101から照射され、コリメータ103を通過し、被検体を透過した透過X線はX線検出器106に入射する。
 X線検出器106は、例えばシンチレータとフォトダイオードの組み合わせによって構成されるX線検出素子群をチャンネル方向(周回方向)に例えば1000個程度、列方向(体軸方向)に例えば1~320個程度配列したものである。X線検出器106は、被検体を介してX線管装置101に対向するように配置される。X線検出器106は、X線管装置101から照射されて被検体を透過したX線量を検出し、データ収集装置107に出力する。
 データ収集装置107は、X線検出器106の個々のX線検出素子により検出されるX線量をビュー毎に収集し、ディジタルデータに変換し、透過X線データとして操作卓120の画像演算装置122に順次出力する。
 画像演算装置122は、データ収集装置107から入力された透過X線データを取得し、対数変換、感度補正等の前処理を行って再構成に必要な投影データを作成する。
 また画像演算装置122は、投影データ変換部126とアップサンプリング投影データ生成部127と画像再構成演算部128とを備える。
 投影データ変換部126は、ヘリカル撮影や連続往復撮影等の回転盤102を回転させながら寝台105とスキャンガントリ部100とを体軸方向へ相対移動させる撮影により得た投影データを取得し、目的のスライス位置におけるノーマル撮影(アキシャル撮影ともいう)1回転分(2π)の投影データに変換する。以下の説明では、変換後のノーマル撮影1回転分の投影データを「ノーマル投影データ」と呼ぶこととする。
 アップサンプリング投影データ生成部127は、ノーマル投影データにおけるX線透過経路が略一致する対向データからなる仮想対向データを用いてノーマル投影データ上に仮想ビューを挿入する(アップサンプリングする)。X線透過経路が略一致する仮想対向データとは、計測されたRay(X線)の中で透過経路が最も近く、かつ逆方向から入射するRayにより得られた投影データである。仮想ビューとは、実際に計測値を有する実ビューの間に挿入されるビューである。ビュー数を2倍にアップサンプリングする場合は、実ビューの間に1つの仮想ビューが挿入される。
 図2を参照して、ヘリカル撮影等において得た投影データを投影データ変換部126により目的のスライス位置におけるノーマル撮影1回転分(2π)の投影データ(ノーマル投影データ)に変換する処理について説明する。
 図2は、ヘリカル撮影におけるスキャンダイアグラム21、22を示す図である。図2において、106A、106BはX線検出器106における2列分のX線検出素子を示している。スキャンダイアグラム21、22の横軸はZ軸(体軸)、縦軸はビューを表している。
 図2に示すスキャンダイアグラム21、22において、目的のスライス位置Ziでの投影値は、ヘリカル撮影の場合では360°補間法や180°補間法により得られる。また、X線検出器106の多列化により、列方向のチャンネル補間や対向データ補間やスライス方向フィルタ(zフィルタ)を併用し、ノーマル撮影時(アキシャル撮影時)と比較してヘリカル撮影において欠損するビューを補間してノーマル撮影と同等のビュー数の投影データを作成する方法が知られている。
 図2(a)はz方向チャンネル補間を用いない場合、図2(b)はz方向チャンネル補間を用いた場合を示している。投影データ変換部126は、上述のz方向チャンネル補間等の手法を用いて目的とするスライス位置Ziにおける各ビューの投影値を算出し、ノーマル撮影と同等の投影データに変換する。この投影データ変換処理により、図3(a)に示すノーマル投影データが得られる。
 次に、図3、図4を参照して、アップサンプリング投影データ生成部127がノーマル投影データのビュー数を2倍にする処理(ビュー方向アップサンプリング)について説明する。
 図3(a)に示す1回転分のノーマル投影データにおいて、Ray31とRay32とはX線透過経路が略一致する対向データである。つまり、Ray31における点A1及び点A2の対向データは、それぞれRay32の点B1及び点B2である。点B1及び点B2は図3(a)に示すように同一のビューView(2γm+π)上の隣接するチャンネルのデータである。
 投影データ上の点A1と点B1の関係は、チャンネル方向をγ、ビュー方向をθとしたパラメータを用いた関数R(γ,θ)を用いて、以下の式(1)で表すことができる。
Figure JPOXMLDOC01-appb-I000001
 また、点A1及び点B1におけるチャンネルとビューの関係は以下の式(2)、式(3)で表すことができる。
Figure JPOXMLDOC01-appb-I000002
 これにより、点A1及び点A2の間の仮想ビュー41における点A1A2は、ビューView(2γm+π)上の点B1及び点B2の間に挿入された仮想チャンネルである点B1B2と対応することがわかる。Ray32(ビューView(2γm+π))における仮想チャンネル(点B1B2)に対する対向データ(Ray31)上の対応点(仮想対向データ点)A1A2の値は、以下の式(4)、式(5)により算出できる。
Figure JPOXMLDOC01-appb-I000003
 同様の手順で、図3(b)に示すように、仮想ビュー41における1画素分隣の仮想対向データ点C1C2を算出する。同様の手順を繰り返しながら仮想対向データ点からなる仮想対向データ空間を作成する。そして、図3(c)に示すように、仮想対向データ空間上の仮想対向データ点A1A2と点C1C2との補間により、仮想ビュー41のチャンネル位置にある点V41bの値を求める。この操作を繰り返し実行して、仮想ビュー41の各チャンネルの値を算出する(図3(c)の2重丸で示す点)。他の仮想ビュー42,43,…についても同様にX線透過経路が略一致する仮想対向データを用いて各チャンネルデータを算出できる。
 この操作を繰り返すと実ビューの間に仮想ビュー41,42,43,…が挿入される。
アップサンプリング投影データ生成部127によってアップサンプリングされた投影データをアップサンプリング投影データと呼ぶ。特に、ビュー方向にアップサンプリングされた投影データをビュー方向アップサンプリング投影データと呼ぶ。
 アップサンプリング投影データ生成部127は、アップサンプリング投影データを画像再構成演算部128に出力する。
 画像再構成演算部128は、アップサンプリング投影データを用いて被検体の断層像等の画像を再構成する。画像の再構成処理は、例えばフィルタ補正逆投影法等の解析的方法や逐次近似法等のいずれの方法を用いてもよい。
 画像演算装置122(画像再構成演算部128)により再構成された画像データは、システム制御装置124に入力され、記憶装置123に保存されるとともに表示装置125に表示される。
 システム制御装置124は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を備えたコンピュータである。記憶装置123はハードディスク等のデータ記録装置であり、X線CT装置1の機能を実現するためのプログラムやデータ等が予め記憶される。
 システム制御装置124は、図5に示す処理手順に従って撮影処理を行う。撮影処理においてシステム制御装置124は、操作者により設定された撮影条件に応じた制御信号をスキャンガントリ部100のX線制御装置110、寝台制御装置109、及びガントリ制御装置108に送出し、上述の各部を制御する。各処理の詳細については後述する。
 表示装置125は、液晶パネル、CRTモニタ等のディスプレイ装置と、ディスプレイ装置と連携して表示処理を実行するための論理回路で構成され、システム制御装置124に接続される。表示装置125は画像演算装置122から出力される再構成画像、並びにシステム制御装置124が取り扱う種々の情報を表示する。
 入力装置121は、例えば、キーボード、マウス等のポインティングデバイス、テンキー、及び各種スイッチボタン等により構成され、操作者によって入力される各種の指示や情報をシステム制御装置124に出力する。操作者は、表示装置125及び入力装置121を使用して対話的にX線CT装置1を操作する。入力装置121は表示装置125の表示画面と一体的に構成されるタッチパネル式の入力装置としてもよい。
 次に、図5~図8を参照して、X線CT装置1の動作を説明する。
 図5は、本発明に係るX線CT装置1が実行する撮影処理全体の流れを説明するフローチャートである。
 撮影処理において、まずシステム制御装置124は、撮影条件及び再構成条件の入力を受け付ける。撮影条件は、X線管電圧、X線管電流等のX線条件、撮影範囲、ガントリ回転速度、寝台速度等を含む。再構成条件は、再構成FOV、再構成スライス厚等を含む。
 入力装置121等を介して撮影条件及び再構成条件が入力されると(ステップS101)、システム制御装置124は撮影条件に基づいて投影データを収集する(ステップS102)。すなわち、システム制御装置124は撮影条件に基づいてX線制御装置110、ガントリ制御装置108、及び寝台制御装置109に制御信号を送る。X線制御装置110は、システム制御装置124から入力される制御信号に基づいてX線管装置101に入力する電力を制御する。ガントリ制御装置108は回転速度等の撮影条件に従って回転盤102の駆動系を制御し、回転盤102を回転させる。寝台制御装置109は、撮影範囲に基づいて寝台105を所定の撮影開始位置へ位置合わせする。また、寝台制御装置109による寝台移動、並びにガントリ制御装置108によるガントリ自走を伴う撮影も可能である。
 X線管装置101からのX線照射とX線検出器106による透過X線データの計測が、回転盤102の回転及び寝台105とスキャンガントリ部100との相対移動とともに繰り返される。データ収集装置107は、被検体の周囲の様々な角度(ビュー)においてX線検出器106により計測された透過X線データを取得し、画像演算装置122に送る。
 画像演算装置122は、データ収集装置107から入力された透過X線データを取得し、対数変換、感度補正等の前処理を行って投影データを作成する。
 画像演算装置122(投影データ変換部126)は、ステップS102の処理で作成されたヘリカル投影データを取得し、図2に示すような補間処理を行って目的のスライス位置でのノーマル投影データに変換する。その後、画像演算装置122(アップサンプリング投影データ生成部127)は、変換後の投影データのアップサンプリング投影データ生成処理を行う(ステップS103;図6参照)。
 アップサンプリング投影データ生成処理において、アップサンプリング投影データ生成部127は、予め設定されたビュー数となるように、変換後の投影データに仮想ビューを挿入(アップサンプリング)し、ビュー方向アップサンプリング投影データを作成する。
 ビュー数は、装置の仕様に従って予め設定された値としてもよいし、操作者により設定された値としてもよい。また、操作者が設定した画質指標(特に空間分解能)やその他のパラメータによって決定される値としてもよい。アップサンプリング処理については後述する(図6~図8参照)。
 ステップS103の処理によりアップサンプリングされたビュー方向アップサンプリング投影データが作成されると、次に画像演算装置122の画像再構成演算部128は、ステップS101で入力された再構成条件に基づいて画像の再構成処理を行う(ステップS104)。画像の再構成処理において使用する画像再構成アルゴリズムはどのような種類のものを用いてもよい。例えば、Feldkamp法等の逆投影処理を行ってもよいし、逐次近似法等を用いてもよい。
 ステップS104において画像が再構成されると、システム制御装置124は、再構成された画像を表示装置125に表示し(ステップS105)、一連の撮影処理を終了する。
 次に、ステップS103のアップサンプリング投影データ生成処理について、図6を参照して説明する。
 図6はアップサンプリング投影データ生成処理の流れを説明するフローチャートである。
 画像演算装置122は、投影データを取得する。投影データは、ヘリカル撮影等により計測され、目的とするスライス位置での1回転分(2π)のデータとなるように変換されたノーマル投影データを含む(ステップS201)。ステップS201で取得する投影データは、撮影中にデータ収集装置107により収集されたものでもよいし、予め計測され記憶装置123等に記憶されているものでもよい。
 次に、画像演算装置122は、取得したノーマル投影データのビューをチャンネル方向にアップサンプリングする(ステップS202)。つまり、アップサンプリング投影データ生成部127は実際に計測されたビューである実ビューにおける各チャンネルの間に、補間演算等により仮想チャンネルを挿入する。また、多列検出器においては、チャンネルは2次元方向(回転方向と体軸方向)に配置されるため、2次元方向に補間演算する。
 次に、画像演算装置122は、ステップS202で生成した仮想チャンネルの値をX線透過経路が略一致する対向データの仮想ビュー位置にある対応点(仮想対向データ点)に付与し、180度補間または360度補間やzフィルタを実施後、任意のスライスにおける投影値を取得する(ステップS203)。
 次に、画像演算装置122は、仮想対向データ空間を作成する(ステップS204)。ステップS204の処理において、画像演算装置122はビューと対向するレイ(例えば、図3(a)のRay31とRay32の関係にあるデータ)を投影データから求める。図3(a)に示すView(2γm+π)の対向データは、Ray31に示すように複数のビュー及びチャンネルをまたぐデータとなる。画像演算装置122は、対向データRay32上にある上述の仮想チャンネルデータ(点B1B2)に対応する点(対応点A1A2)を求める。対応点(仮想対向データ点)は、ビューとチャンネルの間に位置する点である。画像演算装置122は、点B1B2の値を上述の仮想チャンネルデータ(点A1A2の値)に付与する。対応点A1A2を仮想対向データと呼ぶ。
 この操作を繰り返すと仮想対向データ空間が作成される(図3(c))。例えば、図3(c)に示すように、実ビュー31a,32aの間に仮想ビュー41が挿入される。仮想ビュー41は上述の対応点の集合となる。画像演算装置122は、仮想対向データ空間の各対応点(仮想対向データ点)の値を用いて仮想ビューにおける各チャンネルデータを補間演算等により求める(ステップS205)。例えば、図3(c)に示す仮想対向データ点A1A2と対応点C1C2の値を用いて仮想ビュー41のチャンネル位置にある点V41bの値を補間により求める。
 ステップS202やステップS204における補間演算は、例えば図4(a)に示すように、単純に隣接するビュー同士で補間する2点補間としてもよいし、図4(b)に示すように、隣接するビュー及びチャンネルのデータを用いて補間する4点補間としてもよいし、図4(c)に示すようにTV法(Total Variation)等を用いてもよい。また、2点補間或いは4点補間では、線形補間としてもよいし、非線形補間としてもよい。
 画像演算装置122(アップサンプリング投影データ生成部127)によってアップサンプリングされた投影データをアップサンプリング投影データと呼ぶ。アップサンプリング投影データ生成部127は、アップサンプリング投影データを画像再構成演算部128に出力する(ステップS206)。画像再構成演算部128では、アップサンプリング投影データを用いて被検体画像を再構成する。
 以上説明したように、本実施の形態のX線CT装置1は、投影データをアップサンプリングするアップサンプリング投影データ生成部127を有する。アップサンプリング投影データ生成部127は、ヘリカル撮影によって得た投影データを目的のスライス位置の投影データに変換したノーマル投影データを取得し、取得したノーマル投影データにおけるX線透過経路が略一致する仮想対向データ空間のデータを用いて仮想ビューを挿入する(ビュー方向にアップサンプリングする)。
 X線透過経路が略一致する対向データを用いて仮想ビューの各チャンネルデータを求めるため、最も近い被検体情報を有する投影データから仮想ビューの各チャンネルデータを求めることができる。これにより、アップサンプリング投影データは実測値により近いものとなり、信頼できる画像を作成できる。また、投影データ上で隣接する点の値を用いてアップサンプリング(単純ビュー補間)する場合と比較して、境界部が不明瞭になりにくいという効果も得る。
 上述の実施形態で説明したアップサンプリング方法を用いた場合の効果について、最も単純な場合である図3(a)の投影データを用いて、図7及び図8を参照しながら説明する。
 図7の黒丸で示す点Va,Vbは、隣り合うビューを示す。ビューVaのビュー位置をθn、ビューVbのビュー位置をθn+1とする。これらのビューVa,Vbの間に点線丸で示す仮想ビューVcを作成し、ビュー数を2倍にする場合を例として、単純ビュー補間によるアップサンプリングと本発明によるアップサンプリングとを比較する。仮想ビューVcのビュー位置はθn+1/2である。
 図8(a)は単純ビュー補間について示している。単純ビュー補間では、隣り合うビューVa,Vbのデータを用いて仮想ビューVcのデータを補間する。図8(a)の右図に示すように、投影データ上では、上下に隣接する点のデータを用いて補間することに相当する。例えば、ビュー数が1500の場合は、0.24(=360/1500)度離れたデータから補間データを算出することとなる。
 図8(b)は本発明の手法でアップサンプリングした場合について示している。本発明では、隣り合う実チャンネル(点B1,点B2)の間に補間等により挿入された仮想チャンネル(点B1B2)の値を、X線透過経路が略一致する仮想対向データ空間上の仮想ビュー位置にある対応点(仮想対向データ点)に付与することで、仮想ビューVcに近い対応点A1A2の値を求める。同様に、別の実データから仮想ビューVcに近い別の対応点C1C2の値を求め、点A1A2及び点C1C2の値を用いて仮想ビューのチャンネルデータを求める。
 したがって、図8(a)に示す単純ビュー補間の場合と比較して、より狭い角度にある補間データ(図8(b)の「×」で示すデータ)を用いて仮想ビューの各チャンネルの値を算出できる。つまり、単純ビュー補間の場合に比べ、ビーム幅が狭い(チャンネル間距離が近い)データで補間することが可能となり、高い空間分解能を有する画像を得ることができる。例えば、X線管装置101とX線検出素子間との距離が1000mm、X線検出器106のチャンネル方向のX線検出素子間距離が1mmの場合、チャンネル間距離が0.057(=2・tan-1((1/2)/1000))度離れたデータから仮想ビューにおける各チャンネルデータを求めることができる。
 また、本発明によるビュー方向アップサンプリングは、ビュー間距離Δθがチャンネル間距離Δchと比較して大きい場合(Δθ>Δchの場合)に、空間分解能向上の効果がある。したがって、アップサンプリング投影データ生成部127は、ビュー間距離Δθとチャンネル間距離Δchの関係に基づいて、単純ビュー補間を利用するか、本発明による手法(対向データに基づくアップサンプリング方法)を行うかを決定することが望ましい。なお、現状、一般に普及しているほとんどのX線CT装置では、ビューレートに制限があるため、Δθ>Δchの関係が成立する。
 或いは、ΔθとΔchとの関係に応じて、単純ビュー補間によるアップサンプリング投影データと、本発明の対向データを用いたアップサンプリング投影データとに適切な重みをかけて双方を用いた投影データを作成してもよい。
 更に、上述の実施形態ではビュー数を2倍にアップサンプリングする例について述べたが、N倍のアップサンプリングに拡張することも可能である。
 また、上述の実施形態では、仮想対向データ空間を用いてビュー方向へのアップサンプリングを行う例について説明したが、同様の手法で、チャンネル方向や列方向(スライス方向)へのアップサンプリングを行うことも可能である。
 チャンネル方向へのアップサンプリングを行う場合、アップサンプリング投影データ生成部127は、取得した投影データを用いて実チャンネル間に仮想ビューデータを挿入し、仮想ビューデータの値をX線透過経路が略一致する仮想対向データ空間上の点であって、仮想チャンネル位置にある対応点の値に付与する。対応点の値を用いて仮想チャンネルにおける各ビューデータを算出してチャンネル方向アップサンプリング投影データを生成する。
 図9を用いて、チャンネル方向へのアップサンプリングの一例について説明する。図9は、図4(a)~(c)と同様に投影データを部分的に切り出したものであり、点C1、点C2は実投影データであり、点V1、点V2は補間処理等によって求められた仮想投影データである。これらの点C1、点C2、点V1、点V2の値を用いて、点C1C2の値を求める。
 点C1C2の値を求めるには、ビュー間距離Δθとチャンネル間距離Δchによって求められる重み係数を用いて、例えば式(6)の補間演算を行ってもよい。
Figure JPOXMLDOC01-appb-I000004
 ここで、WC1、WC2、WV1、WV2は、式(7)を満たす重み係数である。
Figure JPOXMLDOC01-appb-I000005
 なお、重み係数WC1,WC2,WV1,WV2は、ビュー間距離Δθとチャンネル間距離Δchの関係に応じて、式(8)、式(9)により求められる。
Figure JPOXMLDOC01-appb-I000006
 また、ここではチャンネル方向へのアップサンプリングについて説明したが、ビュー方向またはスライス方向へのアップサンプリングについても式(6)~(9)を用いた補間演算を行ってもよい。
 上述した本発明に係るアップサンプリング方法はどのような撮影方法で得られた投影データに対しても適用可能である。例えば、FFS(Flying Focus Spot)投影データやクォータオフセット投影データに対して適用してもよい。FFS投影データとは、X線管における焦点位置を複数箇所に移動しながら撮影することにより得られる投影データである。クォータオフセット投影データとは、X線検出器106をX線の照射中心から回転盤102の回転方向(チャンネル方向)に1/4素子分ずらして配置することにより、対向するビューにおいて取得したデータと組み合わせてチャンネル間隔を1/2(チャンネル数を2倍)とした投影データである。
 [第2の実施の携帯]
 次に、本発明の第2の実施の形態について説明する。
 第2の実施の形態では、第1の実施の形態で説明した仮想対向データ空間を用いたアップサンプリング方法をFFS投影データに対して適用する例を説明する。
 近年では、複数の位置にX線焦点をシフトさせてX線を照射する機能を有するFFSX線管装置が開発されている。FFSX線管装置では、陽極(ターゲット)へ入射する電子ビームの位置を電磁的に移動させることにより、X線焦点位置を複数箇所にシフさせることができる。これにより、同一の回転角度方向(ビュー)からX線照射経路が異なる複数の投影データを得ることができるため、X線CT装置の空間分解能を向上させることができる(FFS法)。
 ところで、従来のFFS法を用いて再構成された画像は、有効視野全体における中心付近の空間分解能が向上するが、中心部以外の周辺部では空間分解能が落ちるという問題がある。これに対して特許文献1では、1回転で撮影されるビュー数(隣り合うビューの角度差)とX線管装置-回転中心間距離とに基づいて最適な焦点移動距離を設定することで、周辺部の空間分解能を均一とし、かつ向上させるBFFS(Balanced Flying Focus Spot)法を提案している。
 しかしながら、ハードウェアの限界によりデータ収集装置のサンプリングレートやガントリ回転速度は制限される。したがって1回転で撮影されるビュー数を増加させるには、ガントリの回転速度を落とす必要がある。回転速度を落としてビュー数を増加させた場合、心臓等の動きが速い臓器ではモーションアーチファクトが増加してしまう。こうしたモーションアーチファクトは心臓等の動きが速い臓器ほど画像への影響が大きく、画像診断を行う放射線医にとって不都合である。このため、運動を伴う部位を対象とした撮影においては、回転速度を落とさずに有効視野全体にわたる空間分解能を向上したいという要望がある。
 そこで第2の実施の形態では、X線焦点位置を複数の位置に移動して投影データを得ることにより空間分解能を向上するFFS法において、ヘリカル撮影または連続往復撮影時においても回転速度を落とすことなく有効視野全体の空間分解能を向上することが可能なX線CT装置及び画像再構成方法について説明する。
 図10は第2の実施の形態のX線CT装置1Aの構成を示す図である。図10に示すように、X線CT装置1Aは、スキャンガントリ部100と操作卓120とを備える。なお、以下の説明では、第1の実施の形態のX線CT装置1の各部と同一の構成については同一の符号を付し、重複する説明を省略する。
 スキャンガントリ部100は、X線管装置(X線源)101A、回転盤102、コリメータ103、X線検出器106、データ収集装置107、ガントリ制御装置108、寝台制御装置109、及びX線制御装置110Aを備える。
 X線管装置101Aは、回転陽極(ターゲット)における焦点位置を移動可能なフライング焦点X線管装置である。X線CT装置1Aの回転軸方向をZ方向とすると、フライング焦点X線管装置は、回転陽極(ターゲット)に照射する電子ビームをZ方向に直交するX方向またはY方向に偏向させる。これによりX線焦点位置をシフトさせ、同じビュー位置から微小に異なる経路のX線を照射する。
 本実施の形態において、X線管装置101Aによる焦点の移動方向はX線CT装置1Aの回転方向(チャンネル方向)とする。また、焦点の位置は基準焦点位置から回転方向(チャンネル方向)に「+σa」及び「-σb」にシフトした位置とする。つまりX線管装置101は、チャンネル方向の正方向に移動した第1の焦点「+σa」と負方向に移動した第2の焦点位置「-σb」からそれぞれX線を照射する。
 以下の説明では、FFS法を利用して得た投影データをFFS投影データと呼ぶ。特に、上述の第1の焦点位置から照射されたX線によって得た投影データをFFS(+)投影データ、上述の第2の焦点位置から照射されたX線によって得た投影データをFFS(-)投影データと呼ぶ。また、FFS技術を利用しない基準焦点位置から照射されたX線によって得た投影データをFFS(無)投影データと呼ぶ。
 X線管装置101Aは、X線制御装置110Aに制御されて所定の強度のX線を連続的または断続的に照射する。X線制御装置110Aは、操作卓120のシステム制御装置124により決定されたX線管電圧及びX線管電流に従って、X線管装置101Aに印加または供給するX線管電圧及びX線管電流を制御する。X線制御装置110Aは、例えば回転盤102の回転に伴ってビュー毎に上述の第1及び第2の焦点位置に交互に移動させるよう制御する。
 画像演算装置122Aは、データ収集装置107から入力された透過X線データを取得し、対数変換、感度補正等の前処理を行って再構成に必要な投影データを作成する。FFS法を用いる場合、X線管装置101Aからは例えばビュー毎に交互に焦点が異なるX線が照射されるため、画像演算装置122Aは、第1の焦点位置から照射されたX線により得られた投影データであるFFS(+)投影データと、第2の焦点位置から照射されたX線により得られた投影データであるFFS(-)投影データとを作成する。
 画像演算装置122Aは、投影データ変換部126、アップサンプリング投影データ生成部127A、及び画像再構成演算部128Aを備える。アップサンプリング投影データ生成部127Aは、仮想対向データ空間生成部127aとアップサンプリング部127bとを備える。
 アップサンプリング投影データ生成部127Aは、FFS法を用いて撮影された焦点シフト投影データ(FFS(+)投影データ及びFFS(-)投影データ)に対して仮想ビューを生成し、挿入することでアップサンプリング投影データを作成する。仮想ビューとは、実際に撮影されないビュー位置に演算により挿入されるビューである。仮想ビューの投影データは、実際に撮影された投影データ(以下、実データという)に基づいて補間或いは推定することにより求めることができる。
 仮想対向データ空間生成部127aは、第1の実施の形態と同様の手法で、処理対象とする投影データ(ノーマルFFS(+)投影データ及びノーマルFFS(-)投影データ)の仮想対向データ空間を生成する。
 アップサンプリング部127bは、FFS(+)投影データ及びFFS(-)投影データを組み合わせることでビュー数を増加する。或いは、ビュー数増加した各焦点位置のFFS投影データを組み合わせることで更にビュー数を増加する。
 仮想対向データ空間生成部127a及びアップサンプリング部127bによるアップサンプリング投影データ生成の詳細については後述する。アップサンプリング投影データ生成部127Aによって生成された(アップサンプリングされた)投影データをアップサンプリング投影データと呼ぶ。
 投影データ変換部126は、ヘリカル撮影または連続往復撮影等の、回転盤102を回転させながら寝台105とスキャンガントリ部100とを体軸方向へ相対移動させて収集した投影データ(ヘリカル投影データ)を、目的のスライス位置における1回転(2π)分の投影データであるノーマル投影データに変換する。上述のヘリカル撮影等により得た投影データに対して360°補間や180°補間やzフィルタ処理等を図2に示すように適用することで、目的のスライス位置のノーマル投影データを得る。以下の説明では、ヘリカルFFS(+)投影データを目的のスライス位置におけるノーマル投影データに変換したものをノーマルFFS(+)投影データと呼び、ヘリカルFFS(-)投影データを目的のスライス位置におけるノーマル投影データに変換したものをノーマルFFS(-)投影データと呼ぶ。
 画像再構成演算部128Aは、アップサンプリング処理(仮想ビュー挿入)を行う前の投影データ(ノーマルFFS(+)投影データ及びノーマルFFS(-)投影データ)と、アップサンプリング投影データ生成部127Aにより生成されたアップサンプリング投影データとを用いて被検体の断層像等の画像を再構成する。以下の説明では、アップサンプリング処理(仮想ビュー挿入)を行う前の投影データ(ノーマルFFS(+)投影データ及びノーマルFFS(-)投影データ)を「実データ」と呼ぶ。
 本実施の形態において、画像再構成演算部128Aは画像の空間分解能に配慮して実データ(FFS(+)投影データ、FFS(-)投影データ)とアップサンプリング投影データとを用いた画像を再構成する。具体的には、画像面内における中心領域で実データを用いて画像を再構成することにより中心領域の空間分解能を向上する。また画像の周辺領域でアップサンプリング投影データを用いて画像を再構成することにより、空間分解能を向上させる。つまり、画像の全領域でFFS投影データの実データを用いた場合は周辺領域で空間分解能が落ちてしまうが、本実施の形態では、周辺領域にアップサンプリング投影データを用いることで周辺領域の空間分解能の向上を図る。アップサンプリング投影データは、演算によって仮想ビューを挿入するため回転速度を下げなくてもビュー数を向上できる。したがって、動きのある部位の画像を作成する場合に特に好適である。
 画像の再構成処理は、例えばフィルタ補正逆投影法等の解析的方法や逐次近似法等のいずれの方法を用いてもよい。
 画像演算装置122A(画像再構成演算部128A)により再構成された画像データは、システム制御装置124に入力され、記憶装置123に保存されるとともに表示装置125に表示される。
 システム制御装置124は、図11に示す処理手順に従って撮影処理を行う。撮影処理においてシステム制御装置124は、操作者により設定された撮影条件に応じた制御信号をスキャンガントリ部100のX線制御装置110A、寝台制御装置109、及びガントリ制御装置108に送出し、上述の各部を制御する。各処理の詳細については後述する。
 次に、X線CT装置1Aの動作を説明する。
 図11は、本発明の第2の実施の形態のX線CT装置1Aが実行する撮影処理全体の流れを説明するフローチャートである。
 撮影処理において、まずシステム制御装置124は、撮影条件及び再構成条件の入力を受け付ける。撮影条件は、X線管電圧、X線管電流等のX線条件、撮影範囲、ガントリ回転速度、寝台速度等を含む。再構成条件は、再構成FOV、再構成スライス厚等を含む。
 入力装置121等を介して撮影条件及び再構成条件が入力されると(ステップS301)、システム制御装置124は撮影条件に基づいてX線制御装置110A、ガントリ制御装置108、及び寝台制御装置109に制御信号を送る。X線制御装置110Aは、システム制御装置124から入力される制御信号に基づいてX線管装置101Aに入力する電力を制御する。またX線制御装置110Aは、X線管装置101Aの回転陽極に照射する電子ビームを所定のタイミングで所定の方向及び距離だけ移動させることにより、X線焦点位置を交互に移動させてX線を照射するFFS制御を行う。ガントリ制御装置108は回転速度等の撮影条件に従って回転盤102の駆動系を制御し、回転盤102を回転させる。
 寝台制御装置109は、撮影範囲に基づいて寝台を所定の撮影開始位置へ位置合わせする。その後、システム制御装置124は、撮影を開始する。撮影は寝台制御装置109の制御による寝台移動またはガントリ制御装置108の制御によるガントリ自走、またはその両方の移動を伴う撮影を含む。つまり、システム制御装置124はヘリカル撮影または連続往復撮影等を行う。
 X線管装置101AからのX線照射とX線検出器106による透過X線データの計測が、回転盤102の回転及び寝台105とスキャンガントリ部100との相対移動とともに繰り返される。データ収集装置107は、被検体の周囲の様々な角度(ビュー)においてX線検出器106により計測された透過X線データを取得し、画像演算装置122Aに送る。画像演算装置122Aは、データ収集装置107から入力された透過X線データを取得し、対数変換、感度補正等の前処理を行って投影データを作成する。第2の実施の形態ではFFS法を用いてX線焦点位置を2点に移動させて撮影を行っているため、画像演算装置122Aは、第1の焦点位置から照射されたX線により得られた投影データであるFFS(+)投影データと、第2の焦点位置から照射されたX線により得られた投影データであるFFS(-)投影データとを作成する(ステップS302)。
 画像演算装置122A(投影データ変換部126)は、FFS(+)投影データとFFS(-)投影データを目的のスライス位置におけるノーマルFFS(+)投影データとノーマルFFS(-)投影データに変換する。
 画像演算装置122A(アップサンプリング投影データ生成部127A)は、ステップS302の処理で作成されたFFS(+)投影データとFFS(-)投影データ(これらを総称してFFS投影データという)を用いて、アップサンプリング投影データ生成処理を行う(ステップS303)。
 アップサンプリング投影データ生成処理において、アップサンプリング投影データ生成部127Aは、予め設定されたビュー数となるように、実データに仮想ビューを挿入(アップサンプリング)し、アップサンプリング投影データを作成する。ビュー数は、装置の仕様に従って予め設定された値としてもよいし、操作者により設定された値としてもよい。また、操作者が設定した画質指標(特に空間分解能)やその他のパラメータによって決定される値としてもよい。アップサンプリング投影データ生成処理の具体的な方法については、後述する(図12~図19参照)。
 ステップS303の処理により仮想ビューが挿入されたアップサンプリング投影データが作成されると、次に画像演算装置122Aの画像再構成演算部128Aは、ステップS301で入力された再構成条件に基づいて画像の再構成処理を行う(ステップS304)。画像の再構成処理において使用する画像再構成アルゴリズムはどのような種類のものを用いてもよい。例えば、Feldkamp法等の逆投影処理を行ってもよいし、逐次近似法等を用いてもよい。
 従来、FFS投影データを使用して再構成される画像の空間分解能は、FFS投影データを使用しない場合と比較すると、画像の中心領域で高く、周辺に行くに伴いFFS無の投影データを使用した場合よりも低くなることがある(図21参照)。そこで、本発明ではステップS304の再構成演算処理において、FFSの効果が得られない空間分解能が低い領域(Low領域;周辺領域)に対して仮想ビューによるアップサンプリングされた投影データを用いる。FFSの効果が得られる領域(Hi領域;中心領域)においてはFFS投影データの実データを用いて画像を再構成する。再構成処理の詳細については後述する。
 ステップS304において画像が再構成されると、システム制御装置124は、再構成された画像を表示装置125に表示し(ステップS305)、一連の撮影処理を終了する。
 次に、ステップS303のアップサンプリング投影データ生成処理について、図12~図20を参照してアップサンプリング投影データ生成処理(A)~(D)の各態様について説明する。
 まずアップサンプリング投影データ生成処理(A)について、図12及び図13を参照して説明する。なお、以下の説明におけるFFS(+)投影データ501、FFS(-)投影データ502は、ヘリカル撮影等により得られたFFS(+)投影データ501とFFS(-)投影データ502であって、目的のスライス位置における投影データ(ノーマルFFS(+)投影データ501とノーマルFFS(-)投影データ502)に変換されたデータを用いるものとして説明する。
 画像演算装置122Aは、X線管装置101Aの焦点を移動して得られたFFS(+)投影データ501とFFS(-)投影データ502とを取得すると(ステップS401)、FFS(+)投影データ501とFFS(-)投影データ502とをビュー方向に交互に組み合わせることにより、FFS投影データ503を得る(ステップS402)。更に、FFS投影データ503に対して仮想ビュー生成処理504を実行し(ステップS403)、アップサンプリング投影データ505を得る。ステップS403において、画像演算装置122Aが実行する仮想ビュー生成処理504は、仮想対向データ生成処理とアップサンプリング処理を行うことによりアップサンプリング投影データ505を得る。アップサンプリング投影データ生成部127Aはアップサンプリング投影データ505を画像再構成演算部128Aに出力する(ステップS404)。
 ここで、上述のFFS(+)投影データ501とFFS(-)投影データ502はヘリカル撮影または連続往復撮影または連続複数回撮影等のように、回転盤を回転させながら寝台105とスキャンガントリ部110とを体軸方向へ相対移動させて計測した投影データを含むものとする。また、撮影同期装置を用いて生体信号を取得しながら撮影を行う同期撮影で得た投影データを含むものとしてもよい。撮影同期装置とは、例えば、呼吸器計や心電計や脈波系等を用いて生体信号を計測し、生体信号に基づいて得られる被検体の動きと同期して撮影を制御する装置である。
 アップサンプリング投影データ生成処理(B)について、図14及び図15を参照して説明する。
 画像演算装置122Aは、X線管装置101Aの焦点を移動して得られたFFS(+)投影データ501とFFS(-)投影データ502とを取得すると(ステップS501)、FFS(+)投影データ501とFFS(-)投影データ502とに対してそれぞれ上述の仮想ビュー生成処理504を実行する(ステップS502)。そして、アップサンプリングされたFFS(+)投影データ511、FFS(-)投影データ512をビュー方向に交互に組み合わせることにより、FFS投影データ513を得る(ステップS503)。アップサンプリング投影データ生成部127Aはアップサンプリング投影データ513を画像再構成演算部128Aに出力する(ステップS504)。
 アップサンプリング投影データ生成処理(C)について、図16及び図17を参照して説明する。
 画像演算装置122Aは、X線管装置101Aの焦点を移動して得られたFFS(+)投影データ501とFFS(-)投影データ502とを取得すると(ステップS601)、FFS(+)投影データ501とFFS(-)投影データ502とに対してそれぞれ上述の仮想ビュー生成処理504を実行する(ステップS602)。そして、アップサンプリングされたFFS(+)投影データ511、FFS(-)投影データ512をビュー方向に交互に組み合わせることにより、アップサンプリングされたFFS投影データ513を得る(ステップS603)。
 アップサンプリング投影データ生成部127AはアップサンプリングされたFFS投影データ513に対して、更に欠損データ処理514を行う(ステップS604)。
 欠損データ処理とは、FFS(+)投影データ、FFS(-)投影データをビュー方向に交互に組み合わせて得たFFS投影データ513に生じた欠損データを、ビュー方向及びチャンネル方向に隣接する投影データまたはその近傍の投影データを用いて補間や推定することにより埋める処理である。チャンネル方向に焦点位置を移動して得たFFS(+)投影データとFFS(-)投影データは、それぞれX線経路が異なる。そのためチャンネル数の2倍のデータを得ることとなる。撮影時に1ビュー毎に焦点位置を交互に移動させて投影データを計測する場合は、例えば奇数ビューでFFS(+)投影データを取得し、偶数ビューでFFS(-)投影データを取得するため、これらを交互に組み合わせたFFS投影データ513には、1ビュー毎に互い違いに欠損データが生じている。
 ステップS604の処理では、このような欠損データを埋める処理514を行う。
 ステップS604の欠損データ処理514が行われたアップサンプリング投影データ515を得ると、アップサンプリング投影データ生成部127Aはアップサンプリング投影データ515を画像再構成演算部128Aに出力する(ステップS605)。
 アップサンプリング投影データ生成処理(D)について、図18及び図19を参照して説明する。
 画像演算装置122Aは、X線管装置101Aの焦点を移動して得られたFFS(+)投影データ501とFFS(-)投影データ502とを取得すると(ステップS701)、FFS(+)投影データ501とFFS(-)投影データ502とに対してそれぞれ上述の仮想ビュー生成処理504を実行する(ステップS702)。そして、アップサンプリングされたFFS(+)投影データ511、FFS(-)投影データ512をビュー方向に交互に組み合わせることにより、アップサンプリングされたFFS投影データ513を得る(ステップS703)。
 アップサンプリング投影データ生成部127AはアップサンプリングされたFFS投影データ513に対して、更に上述の仮想ビュー生成処理504を実行する(ステップS704)。ステップS704の処理により、アップサンプリング投影データ516を得る。
アップサンプリング投影データ生成部127Aはアップサンプリング投影データ516を画像再構成演算部128Aに出力する(ステップS705)。
 図12のステップS403、図14のステップS502、図16のステップS602、図18のステップS702及びステップS704の仮想ビュー生成処理では、第1の実施の形態(図3、図4)と同様に仮想対向データ空間を用いた仮想ビューの算出方法(アップサンプリング方法)を適用できる。
 すなわち、アップサンプリング投影データ生成部127A(画像演算装置122A)は、挿入するビュー(仮想ビュー)について、ビュー方向またはチャンネル方向に近接する投影データ、或いは対向するレイのデータ(対向データ)、もしくは対向データのビュー方向またはチャンネル方向に近接する投影データ等を用いて、仮想ビューの投影データを補間または推定により算出する。
(仮想対向データ空間を用いた仮想ビュー算出方法;仮想対向データ生成処理)
 1回転(2π)の撮影で得られる投影データでは、対向するレイ(Ray)のデータ(以下、対向するレイのデータを対向データという)を用いて仮想ビューを生成することができる。図3を参照して、1回転の撮影で得た投影データについて、対向データを用いて仮想ビューを生成し、ビュー数を2倍にする例について説明する。
 画像演算装置122A(投影データ変換部126)は、ヘリカル撮影や連続往復撮影等により得たヘリカル投影データ(ヘリカルFFS(+)投影データ、ヘリカルFFS(-)投影データ)を取得し、180°補間や360°補間やzフィルタ処理等を用いて目的のスライス位置におけるノーマル投影データ(ノーマルFFS(+)投影データ、ノーマルFFS(-)投影データ)に変換する(図2参照)。アキシャル投影データ(アキシャルFFS(+)投影データ、アキシャルFFS(-)投影データ)は、図3(a)に示すようなデータとなる。
 画像演算装置122A(アップサンプリング投影データ生成部127A)は、変換後の投影データ(ノーマルFFS(+)投影データ、ノーマルFFS(-)投影データ)に対して仮想ビューを挿入する処理を行う。
 FFS(+)投影データ、FFS(-)投影データに対しても、第1の実施の形態で説明した仮想対向データ生成処理を適用できる。
 すなわち、図3(a)に示す1回転分の投影データ(ノーマルFFS(+)投影データ、ノーマルFFS(-)投影データ)において、Ray31とRay32とは対向する。
つまり、同じX線照射経路である。Ray31における点A1及び点A2における対向データはそれぞれ、Ray32の点B1及び点B2となる。点B1及び点B2は図3(a)に示すように同一のビューView(2γm+π)上の隣接するチャンネルのデータである。投影データ上の点A1及び点B1の関係は、チャンネル方向をγ、ビュー方向をθとしたパラメータを用いた関数R(γ,θ)を用いて、上述の式(1)で表すことができる。
 また、点A1及び点B1におけるチャンネルとビューの関係は上述の式(2)、式(3)で表すことができる。
 これにより、点A1及び点A2の間の仮想ビュー41における点A1A2はビューView(2γm+π)上の点B1及び点B2の間に挿入された仮想チャンネルである点B1B2と対応することがわかる。Ray32(ビューView(2γm+π))における仮想チャンネル(点B1B2)に対する対向データ(Ray31)上の仮想対向データ点A1A2の値は、上述の式(4)、式(5)により算出できる。
 同様の手順で、図3(b)に示すように、仮想ビュー41における1画素分隣の仮想対向データ点C1C2を算出する。同様の手順を繰り返しながら仮想対向データ空間を作成する。そして、図3(c)に示すように、仮想対向データ空間上の仮想対向データ点A1A2と点C1C2との補間により、仮想ビュー41のチャンネル位置にある点V41bの値を求める。この操作を繰り返し実行して、仮想ビュー41の各チャンネルの値を算出する(図3(c)の2重丸で示す点)。他の仮想ビュー42、43、…についても同様に仮想対向データを用いて各点のチャンネルデータを算出できる。
 仮想対向データ空間を用いた仮想ビューの生成方法(アップサンプリング方法)では、推定すべきチャンネルデータ(2重丸で示す点)に対して最も近い生体情報(被検体を透過した計測データ)を有する仮想対向データ(実データ)を基に仮想ビューの各チャンネルデータを算出する。最も近い生体情報を有する仮想対向データとは、計測されたRayの中で透過経路が最も近く、かつ逆方向から入射するRayのことである。Rayを選択的に取得し、選択されたRayから推定される仮想Rayを算出し、仮想ビューを生成することが特徴である。この手法を用いることにより、チャンネル数はそのままに、ビュー数のみアップサンプリングすることが可能である。2倍サンプリングの場合は、対向データの2点の平均値等を用いて仮想ビューのチャンネルデータを求めたが、N倍サンプリングとする場合は、2点間の線形補間または非線形補間により求めてもよい。また、この方法により、チャンネル方向のアップサンプリングも同時に行うことも可能である。
 なお、仮想ビューの生成方法は、上述したように対向データを用いたアップサンプリング方法に限定されない。図4(a)に示すように単純に隣接するビュー同士で補間する2点補間としてもよいし、図4(b)に示すように隣接するビュー及びチャンネルのデータを用いて補間する4点補間としてもよいし、図4(c)に示すようにTV法(Total Variation)による補間を用いてもよい。
 また、アップサンプリング投影データのビュー数は実データの1.5倍等のように小数の数値を含む任意のビュー数としてもよい。例えば、ビュー方向に部分的にビュー数を増加させる場合は、小数倍のビュー数となる。図20(a)に示すように被検体2の断面は楕円に近似した形状である。そのため、図20(b)に示すように、楕円の長径に相当するビューではビュー数を密にするなど、部分的なビュー数増加を図り、小数倍のアップサンプリング投影データ518を生成することも可能である。
 次に、図11のステップS304の再構成演算処理について、図21~図23を参照して説明する。
 上述したように、FFS投影データを使用して再構成される画像の空間分解能は、FFS投影データを使用しない場合と比較すると、画像の中心領域で高く、周辺部に行くに伴いFFS無の投影データを使用した場合よりも低くなることがある(図21参照)。
 図21(b)は、図21(a)に示す断層像601における中心Oからの距離と空間分解能の関係を示すグラフ606である。FFS投影データを使用した場合は、画像中心Oから距離P0にある境界605の内側の領域(以下、中心領域604という)では、空間分解能(を表す指標値)はFFS(無)投影データを使用した場合と比較して高い。一方、境界点P0(図21(a)に示す境界605)より外側の領域(以下、周辺領域603という)では、空間分解能(を表す指標値)はFFS(無)投影データを使用した場合と比較して低くなる。
 そこで、すでに十分な空間分解能を有する中心領域604のデータに対しては、アップサンプリングを行わないFFS投影データ(実データ)を用いて画像再構成を行い、周辺領域603では、仮想ビュー生成によりアップサンプリングされた投影データを用いて画像再構成を行うことで、周辺領域603の空間分解能を向上させる。
 このようにすることで、中心領域604では、データの作りこみによる悪影響を防ぎつつ空間分解能を向上することができ、かつ、周辺領域603では、仮想ビューを生成することにより回転速度を落とすことなくビュー数を向上し、これにより空間分解能を向上することができる。
 再構成演算処理の手順について図22のフローチャートを参照して説明する。
 まず、画像再構成演算部128Aは、空間分解能の境界点P0を取得する(ステップS801)。境界点P0は、FFS投影データにより得た空間分解能とFFS無し投影データにより得た空間分解能とが逆転する位置の撮影中心からの距離である。この境界点P0は、実験データにより予め求められ、記憶装置123等に保持される。
 空間分解能の評価指標値としてはMTF(Modulation Transfer Function)がある。例えば、MTF50%、10%、2%等のように、異なる空間分解能指標値毎に上述の境界点P0を求め、操作者により選択させるようにしてもよい。検査や診断目的に応じてどのような画質が求められるかは異なるため、その他の画質(ノイズ等)とのバランスに応じて必要な空間分解能を選択できることが望ましい。
 或いは、MTF50%、10%、2%等の複数の空間分解能により得た境界点P0から重心となる境界点を求めてもよい。
 画像再構成演算部128Aは、境界点P0より中心側の中心領域604でFFS投影データの実データを用い、境界点P0より外側の周辺領域603でFFS投影データをアップサンプリングしたアップサンプリング投影データを用いて、再構成演算を行う(ステップS802)。
 周辺領域603に使用するアップサンプリング投影データは、上述のアップサンプリング投影データ生成処理(A)~(D)のうちどの方法で作成されたアップサンプリング投影データを用いてもよい。すなわち、図23(a)に示すように図12及び図13に示すアップサンプリング投影データ生成処理(A)で生成したアップサンプリング投影データ505を用いてもよいし、図23(b)に示すように図14及び図15に示すアップサンプリング投影データ生成処理(B)で生成したアップサンプリング投影データ513を用いてもよいし、図23(c)に示すように図16及び図17に示すアップサンプリング投影データ生成処理(C)で生成したアップサンプリング投影データ515を用いてもよいし、図23(d)に示すように図18及び図19に示すアップサンプリング投影データ生成処理(D)で生成したアップサンプリング投影データ516を用いてもよい。
 またいずれのアップサンプリング投影データ505,513,515,516も、仮想ビューの生成方法は、上述したように仮想対向データ空間を用いたアップサンプリング方法を採用してもよいし、ビュー方向に隣接する2点による補間としてもよいし、またはビュー方向及びチャンネル方向に隣接する4点による補間としてもよいし、或いはTV法等を用いた補間等でもよい。
 再構成演算では、ノーマル投影データに変換後のFFS投影データ(アップサンプリング前のデータ)とアップサンプリング投影データとを投影データ上で合成した後に、逆投影処理等の画像の再構成を行うものとしてもよいし、FFS投影データの実データ(アップサンプリング前のデータ)を用いて再構成した画像の中心領域604に該当する部分と、アップサンプリング投影データを用いて再構成した画像の周辺領域603に該当する部分とを合成した画像を作成してもよい。
 画像再構成演算部128Aは、ステップS802の処理により作成した画像に出力する(ステップS803)。出力先は、例えば記憶装置123や表示装置125等である。
 以上説明したように、第2の実施の形態のX線CT装置1Aは、X線管装置101AにおけるX線焦点位置をシフトさせてヘリカル撮影により得た焦点シフト投影データ(ヘリカルFFS投影データ)をノーマル投影データに変換し、ビュー方向にアップサンプリングする。そして、画像の再構成演算処理では、所定の境界点P0より撮影中心に近い中心領域604ではFFS投影データの実データ(ノーマルFFS投影データ)を用い、境界点P0より撮影中心から遠い周辺領域603ではアップサンプリング投影データを用いて画像を再構成する。
 仮想ビューによりアップサンプリングされたデータを有効視野周辺部に用いるため、ビュー数を増加させるために回転速度を落として撮影を行う必要がない。したがって、ハードウェアの制限による回転速度の限界等によらず周辺部の空間分解能を向上し、有効視野全体の空間分解能を向上することができる。動きのある部位の撮影に好適である。
 [第3の実施の形態]
 次に、図24~図26を参照して本発明の第3の実施の形態について説明する。
 第3の実施の形態のX線CT装置1Aは、第2の実施の形態の再構成演算処理において、境界点P0における空間分解能が滑らかに連続するように結合処理を行う。
 結合処理では、図24に示すように、境界点P0を含む所定範囲の領域(以下、境界領域Qと呼ぶ)でFFS実投影データにより再構成された画像とアップサンプリング投影データにより再構成された画像との双方を所定の割合で合成する。境界領域Qより中心部に近い中心領域604aでは、第2の実施の形態と同様にFFS投影データの実データにより再構成された画像を100%使用する。境界領域Qより外側の周辺領域603aでは、第2の実施の形態と同様にアップサンプリング投影データにより再構成された画像を100%使用する。
 すなわち、中心からの距離に応じてFFS投影データにより再構成された画像とアップサンプリング投影データにより再構成された画像を互いに重みを変化させながら合成する。
 図25は、アップサンプリング投影データによる再構成画像に掛ける重み係数を示すグラフである。図25に示すように、中心Oからの距離Pに応じて重み係数W(P)が変化する。中心領域604aで「0」、境界領域Qで滑らかに上昇する曲線、周辺領域603aで「1」となっている。なお、FFS実投影データ(ノーマルFFS投影データ)による再構成画像に掛ける重み係数も中心Oからの距離に応じて重み係数が変化するが、図25に示す重み係数W(P)とは逆に、中心領域604aで「1」、境界領域Qで滑らかに下降する曲線、周辺領域603aで「0」となる。
 境界領域Qの範囲は任意であり、所望の領域の所望の空間分解能に応じて変化させるようにしてもよい。
 また、図25の例では重み係数は画像中心からの距離Pに依存する滑らかな曲線で表されるものとしたが、これに限定されず、直線や折れ線で表されるものとしてもよい。
 また、第3の実施の形態においても、図24(a)~図24(d)に示すように、周辺領域603a及び境界領域Qに使用するアップサンプリング投影データは、上述のアップサンプリング投影データ生成処理(A)~(D)のうちどの方法で作成されたアップサンプリング投影データを用いてもよい。
 すなわち、図24(a)に示すように図12及び図13に示すアップサンプリング投影データ生成処理(A)で生成したアップサンプリング投影データ505を用いてもよいし、図24(b)に示すように図14及び図15に示すアップサンプリング投影データ生成処理(B)で生成したアップサンプリング投影データ513を用いてもよいし、図24(c)に示すように図16及び図17に示すアップサンプリング投影データ生成処理(C)で生成したアップサンプリング投影データ515を用いてもよいし、図24(d)に示すように図18及び図19に示すアップサンプリング投影データ生成処理(D)で生成したアップサンプリング投影データ516を用いてもよい。
 またいずれのアップサンプリング投影データ505,513,515,516も、仮想ビューの算出方法は、上述したようにビュー方向に隣接する2点による補間(図4(a))、またはビュー方向及びチャンネル方向に隣接する4点による補間(図4(b))、或いはTV法等を用いた補間や推定(図4(c))により求めてもよいし、仮想対向データ空間を用いて算出してもよい(図3)。
 また、アップサンプリング投影データのビュー数は実データの2倍に限らず、2倍より多いビュー数としてもよい。また、ビュー方向に部分的にビュー数を増加させ、1.5倍等のように小数の数値を含む任意のビュー数としてもよい。
 図26を参照して、第3の実施の形態の再構成演算処理の流れを説明する。
 まず、画像再構成演算部128Aは、空間分解能の境界点P0を取得する(ステップS901)。境界点P0の取得は、第2の実施の形態(図22のステップS801)と同様である。
 次に、画像再構成演算部128Aは、FFS投影データの実データ(ノーマルFFS投影データ)を用いて再構成した画像と、FFS投影データをアップサンプリングしたアップサンプリング投影データを用いて再構成した画像とを作成する(ステップS902)。
 次に、画像再構成演算部128Aは、境界点P0を含む境界領域Qより中心側の中心領域604aでFFS投影データの実データにより再構成された画像を用い、境界領域Qより外側の周辺領域603aでアップサンプリング投影データにより再構成された画像を用いた合成画像を作成する。境界領域Qでは連続的な空間分解能となるようにステップS902で再構成した各画像を重み付け加算する(ステップS903)。重み付けの方法は上述したように、例えば図25に示す形状の重み係数をアップサンプリング投影データにより作成した画像に乗じ、図25に示すグラフとは逆の形状の重み係数をFFS実投影データ(ノーマル投影データ)により作成した画像に乗じ、これらの画像を加算する。
 画像再構成演算部128Aは、ステップS903の処理により作成した画像を出力する(ステップS904)。出力先は、例えば記憶装置123や表示装置125等である。
 以上説明したように、第3の実施の形態のX線CT装置1Aは、画像の再構成演算処理において、画像中心に近い中心領域604aではFFS投影データの実データ(ノーマルFFS投影データ)を用い、境界点P0より周辺側の周辺領域603aではアップサンプリング投影データを用いて再構成した各画像を合成する。更に、所定の境界領域Qで、空間分解能が滑らかに連続するように上述の各画像を重み付け加算する。
 これにより、第2の実施の形態の効果に加え、更に、境界領域Qで空間分解能が滑らかに連続した画像を得ることが可能となる。
 なお、上述の再構成演算処理では、再構成された画像を合成する際に重み付け加算するものとしたが、投影データ上でアップサンプリング投影データとFFS投影データの実データ(ノーマルFFS投影データ)とを合成し、その後、合成された投影データを再構成してもよい。この場合は、境界領域Qに該当する部分で、アップサンプリング投影データとFFS投影データの実データ(ノーマルFFS投影データ)とを重み付け加算して作成した投影データを用いるものとする。
 [第4の実施の形態]
 次に、図27及び図28を参照して本発明の第4の実施の形態について説明する。
 第4の実施の形態のX線CT装置1Aでは、画像全体にわたって、重みを変化させてFFS投影データの実データ(ノーマル投影データ)を用いた画像とアップサンプリング投影データを用いた画像とを合成するようにしてもよい。
 図27は、第4の実施の形態において、アップサンプリング投影データによる再構成画像に掛ける重み係数W'(P)を示すグラフである。このグラフでは、中心に近い領域で「0」から滑らかに上昇し、周辺領域の端部で「1」となっている。すなわち、境界領域Q以外の領域でも、中心Oからの距離に応じて重み係数が変化する形状となっている。このように、重み係数のグラフ形状は任意としてよく、境界領域Q以外の領域であっても所望の領域で所望の空間分解能が得られるように重み係数を変化させる。
 なお、FFS実投影データ(ノーマルFFS投影データ)による再構成画像に掛ける重み係数は、図27とは逆に、中心に近い領域で「1」から滑らかに下降し、周辺領域の端部で「0」となる。
 また、図27の例では重み係数W'(P)は画像中心からの距離Pに依存する滑らかな曲線で表されるものとしたが、これに限定されず、直線で表されるものとしてもよい。
 図28を参照して、第4の実施の形態の再構成演算処理の流れを説明する。
 まず、画像再構成演算部128Aは、空間分解能の境界点P0を取得する(ステップS1001)。境界点P0の取得は、第2の実施の形態(図22のステップS801)と同様である。
 次に、画像再構成演算部128Aは、FFS投影データの実データ(ノーマルFFS投影データ)を用いて再構成した画像と、ノーマルFFS投影データをアップサンプリングしたアップサンプリング投影データを用いて再構成した画像とを作成する(ステップS1002)。
 アップサンプリング投影データは、アップサンプリング投影データ生成処理(A)~(D)のいずれを用いて生成されたものを使用してもよい。
 次に、画像再構成演算部128Aは、所望の形状の重み係数を各画像に掛け、加算する(ステップS1003)。重みは、FFS投影データの実データ(ノーマルFFS投影データ)を用いて再構成した画像と、ノーマルFFS投影データをアップサンプリングしたアップサンプリング投影データを用いて再構成した画像とを合成する際に、所望の領域で所望の空間分解能を得るように適切な比率で合成するためのものである。
 そして画像再構成演算部128Aは、ステップS1003の処理により作成した画像を出力する(ステップS804)。出力先は、例えば記憶装置123や表示装置125等である。
 以上説明したように、第4の実施の形態のX線CT装置1Aは、画像の再構成演算処理において、撮影中心からの距離に応じて変化する重み係数を用いてFFS投影データの実データ(ノーマル投影データ)により再構成した画像と、アップサンプリング投影データにより再構成した画像とを合成する。
 これにより、第2の実施の形態の効果に加え、更に、画像の所望の領域で所望の空間分解能となる画像を得ることが可能となる。また、実データの重みを大きくすることにより、所望の領域で信頼性の高い画像を得ることが可能となる。
 [第5の実施の形態]
 次に、図29及び図30を参照して本発明の第5の実施の形態について説明する。
 第5の実施の形態では、図29に示すように、操作者により設定された関心領域(ROI;Region Of Interest)7及び中心領域604に対してFFS投影データの実データ503を適用する。また周辺領域603にはアップサンプリング投影データ505を適用する。ROI7が周辺領域603にある場合には、ROI7内の範囲についてはFFS投影データの実データ503を用いる。
 図30を参照して、第5の実施の形態の再構成演算処理の流れを説明する。
 まず、システム制御装置124、関心領域(ROI)7を設定する(ステップS1101)。ROI7の設定は、入力装置121を介して操作者により行われる。次に、画像再構成演算部128Aは、空間分解能の境界点P0を取得する(ステップS1102)。境界点P0の取得は、第2の実施の形態(図22のステップS801)と同様である。
 次に、画像再構成演算部128Aは、ステップS1101で設定したROI7と中心領域604でFFS投影データの実データ(ノーマルFFS投影データ)を用い、ROI7を除く周辺領域603で、仮想ビューによるアップサンプリング投影データを用いて画像を再構成する(ステップS1103)。
 アップサンプリング投影データは、アップサンプリング投影データ生成処理(A)~(D)のいずれを用いて生成されたものを使用してもよい。
 画像再構成演算部128Aは、ステップS1103の処理により作成した画像を出力する(ステップS1104)。出力先は、例えば記憶装置123や表示装置125等である。
 以上説明したように、第5の実施の形態のX線CT装置1Aは、ROI7及び中心領域604でFFS投影データの実データ(ヘリカル撮影の場合は目的のスライス位置での投影データに変換後のノーマルFFS投影データ)を用いた画像を再構成することにより、画像の信頼性を高める。また、ROI7を除く周辺領域603ではアップサンプリング投影データを用い空間分解能を向上させる。これにより、診断の対象であるROIや画像の中心部で信頼性が高く、かつ周辺部の空間分解能も向上した画像を得ることが可能となる。
 なお、第5の実施の形態においても、境界領域Qで、第3の実施の形態に示すような結合処理を行ったり、第4の実施の形態に示すような所望の形状の重み係数を使用してFFS投影データによる画像とアップサンプリング投影データによる画像とを加重加算してもよい。
[第6の実施の形態]
 次に、図31~図33を参照して本発明の第6の実施の形態について説明する。
 図31に示すように、第6の実施の形態では、画像再構成演算部128Aは、再構成画像1001の画像面内において中心Oから距離P1までの領域1002、距離P1から距離P2までの領域1003、距離P2から距離P3までの領域1004に対して、それぞれ異なるビュー数(アップサンプリング数)のFFS投影データを用いて再構成された画像を合成する。例えば、領域1002ではFFS投影データの実データのビュー数V1とし、領域1003ではビュー数V2にアップサンプリングしたFFS投影データを使用し、領域1004ではビュー数V3にアップサンプリングしたFFS投影データを使用する。
 各領域1002,1003,1004の合成前の各画像をξ(V1)、ξ(V2)、ξ(V3)とすると、合成後の画像ξ(V)は以下の式(10)で表すことができる。
Figure JPOXMLDOC01-appb-I000007
 アップサンプリング投影データは、第2の実施の形態で説明したアップサンプリング投影データ生成処理(A)~(D)のいずれの方法で作成されたものでもよい。
 また、図32に示す画像1001aのように、領域1002と領域1003の境界部や領域1003と領域1004の境界部で連続的な空間分解能を得るように、結合処理を行うようにしてもよい。結合処理については、第2の実施の形態と同様である。すなわち境界部1006,1007で、空間分解能を連続的に滑らかに変化させるような重み係数W(V1)、W(V2)、W(V3)を用いて各ビュー数の投影データにより再構成された画像ξ(V1)、ξ(V2)、ξ(V3)を合成する。
 合成後の画像ξ(V)は以下の式(11)で表すことができる。
Figure JPOXMLDOC01-appb-I000008
 また、図31及び図33に示す例では領域数を3つとしたが、3つに限定されるものではなく、図33に示す画像1001bのように、n個の領域に拡張することも可能である。
 合成後の画像ξ(V)は以下の式(12)で表すことができる。
Figure JPOXMLDOC01-appb-I000009
 第6の実施の形態によれば、画像中心Oからの距離Pに応じて異なるビュー数V1~Vnのアップサンプリング投影データを用いた画像を合成できる。したがって、例えば、境界点P0より周辺領域では、画像中心Oから遠ざかるにしたがってアップサンプリング数を徐々に適切に増加させることにより、空間分解能を所望の量だけ向上させることができる。これにより、画像全体にわたって空間分解能を一様にできる。また、所望の領域の空間分解能を優先的に向上させるなど、診断目的に応じて様々な画質の画像を作成することも可能となる。
 以上、本発明に係るX線CT装置の好適な実施形態について説明したが、本発明は、上述の実施形態に限定されるものではない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 1、1A X線CT装置、100 スキャンガントリ部、101、101A X線管装置、102 回転盤、103 コリメータ、106 X線検出器、110、110A X線制御装置、120 操作卓、121 入力装置、122 画像演算装置、123 記憶装置、124 システム制御装置、125 表示装置、126 投影データ変換部、127、127A アップサンプリング投影データ生成部、128、128A 画像再構成演算部、501 FFS(+)投影データ、502 FFS(-)投影データ、503 FFS投影データ(焦点シフト投影データ)、505、513、515,516,518 アップサンプリング投影データ

Claims (19)

  1.  X線を照射するX線管装置と、
     前記X線管装置に対向配置され、被検体を透過したX線である透過X線を検出するX線検出器と、
     前記X線管装置及び前記X線検出器を搭載し、前記被検体の周囲を回転する回転盤と、
     前記回転盤を搭載するスキャンガントリと、
     前記被検体が載置される寝台と、
     前記回転盤を回転させながら前記寝台と前記スキャンガントリとを体軸方向へ相対移動させて前記X線検出器で検出された透過X線のデータを収集する撮影制御部と、
     収集した透過X線のデータに所定のデータ処理を施して目的のスライス位置における断層像の再構成に必要な投影データを生成する投影データ変換部と、
     前記投影データにおけるX線透過経路が略一致する対向データからなる仮想対向データを生成することにより前記投影データをアップサンプリングするアップサンプリング投影データ生成部と、
     アップサンプリングされた投影データであるアップサンプリング投影データを用いて画像を再構成する再構成演算部と、
     前記再構成演算部により再構成された画像を表示する表示部と、
     を備えることを特徴とするX線CT装置。
  2.  前記アップサンプリング投影データ生成部は、
     前記投影データのビュー内に仮想チャンネルを挿入し、
     前記仮想チャンネルの値を前記対向データ上の仮想ビューにある対応点の値として付与することにより仮想対向データ空間を生成し、
     前記対応点の値を用いて前記仮想ビューにおける各チャンネルの値を算出してビュー方向のアップサンプリング投影データを生成することを特徴とする請求項1に記載のX線CT装置。
  3.  前記アップサンプリング投影データ生成部は、
     取得した投影データのビュー内に仮想チャンネルを挿入し、
     前記仮想チャンネルの値を前記対向データ上の仮想ビューにある対応点の値として付与することにより仮想対向データ空間を生成し、
     前記仮想対向データ空間上の前記対応点の値を用いて前記仮想ビューにおける各チャンネルの値を算出してビュー方向及びチャンネル方向のアップサンプリング投影データを生成することを特徴とする請求項1に記載のX線CT装置。
  4.  前記アップサンプリング投影データ生成部は、
     取得した投影データのビュー内に仮想チャンネルを挿入し、
     前記仮想チャンネルの値を前記対向データ上の仮想ビューにある対応点の値として付与することにより仮想対向データ空間を生成し、
     前記対応点の値を用いて前記仮想ビューにおける各チャンネルの値を算出して、ビュー方向、チャンネル方向、及びスライス方向のアップサンプリング投影データを生成することを特徴とする請求項1に記載のX線CT装置。
  5.  ビュー間距離がチャンネル間距離より大きい場合に、前記アップサンプリング投影データ生成部による投影データのアップサンプリングを行うことを特徴とする請求項2に記載のX線CT装置。
  6.  前記アップサンプリング投影データ生成部は、ビュー間距離とチャンネル間距離を用いて求められる重み係数を用いた補間演算を行うことにより、前記投影データをアップサンプリングすることを特徴とする請求項1に記載のX線CT装置。
  7.  複数の焦点位置からX線を照射するX線管装置と、
     前記X線管装置に対向配置され、被検体を透過したX線である透過X線を検出するX線検出器と、
     前記X線管装置及び前記X線検出器を搭載し、前記被検体の周囲を回転する回転盤と、 前記回転盤を搭載するスキャンガントリと、
     前記被検体が載置される寝台と、
     前記焦点位置を任意の位置にシフトさせて照射された各X線による前記透過X線のデータを、前記回転盤を回転させながら前記寝台と前記スキャンガントリとを体軸方向へ相対移動させて収集する焦点シフト撮影制御部と、
     収集した各焦点位置からの前記透過X線のデータに所定のデータ処理を施して目的のスライス位置における断層像の再構成に必要な投影データを生成する投影データ変換部と、 前記投影データにおけるX線透過経路が略一致する対向データからなる仮想対向データを生成することによりビュー方向に仮想ビューを生成するとともに、前記仮想ビューが挿入された各焦点位置の投影データを組み合わせることによりアップサンプリング投影データを生成するアップサンプリング投影データ生成部と、
     前記アップサンプリング投影データを用いて画像を再構成する再構成演算部と、
     前記再構成演算部により再構成された画像を表示する表示部と、
     を備えることを特徴とするX線CT装置。
  8.  前記仮想ビューを挿入せずに各焦点位置の投影データを組み合わせた焦点シフト投影データを生成する焦点シフト投影データ生成部を更に備え、
     前記再構成演算部は、
     画像面内における所定の境界より画像中心に近い中心領域で前記焦点シフト投影データを用い、前記境界より外側の周辺領域で前記アップサンプリング投影データを用いて画像を再構成することを特徴とする請求項7に記載のX線CT装置。
  9.  前記仮想ビューを挿入せずに各焦点位置の投影データを組み合わせた焦点シフト投影データを生成する焦点シフト投影データ生成部を更に備え、
     前記再構成演算部は、前記焦点シフト投影データと前記アップサンプリング投影データとを所定の割合で加重加算した画像を生成することを特徴とする請求項7に記載のX線CT装置。
  10.  前記再構成演算部は、画像面内における所定の境界を含む境界領域で前記画像の空間分解能が滑らかに連続するように、加重加算に用いられる重み係数を設定することを特徴とする請求項9に記載のX線CT装置。
  11.  前記再構成演算部は、所望の位置で所定の空間分解能が得られるように、加重加算に用いられる重み係数が変化する範囲を設定することを特徴とする請求項9に記載のX線CT装置。
  12.  前記仮想ビューを挿入せずに各焦点位置の投影データを組み合わせた焦点シフト投影データを生成する焦点シフト投影データ生成部と、
     関心領域を設定する関心領域設定部と、を更に備え、
     前記再構成演算部は、更に、前記関心領域設定部により設定された関心領域において前記焦点シフト投影データを用いることを特徴とする請求項7に記載のX線CT装置。
  13.  前記アップサンプリング投影データ生成部は、異なるビュー数のアップサンプリング投影データを生成し、
     前記再構成演算部は、画像面内における画像中心からの距離に応じてビュー数が異なるアップサンプリング投影データを用いた画像を生成することを特徴とする請求項7に記載のX線CT装置。
  14.  前記アップサンプリング投影データ生成部は、
     前記焦点位置を前記X線検出器のチャンネル方向の正方向に移動して得られた第1の焦点シフト投影データと負方向に移動して得られた第2の焦点シフト投影データとをビュー方向に交互に組み合わせた焦点シフト投影データを生成し、当該焦点シフト投影データをビュー方向にアップサンプリングすることによりアップサンプリング投影データを生成することを特徴とする請求項7に記載のX線CT装置。
  15.  前記アップサンプリング投影データ生成部は、
     前記焦点位置を前記X線検出器のチャンネル方向の正方向に移動して得られた第1の焦点シフト投影データと負方向に移動して得られた第2の焦点シフト投影データとをそれぞれビュー方向にアップサンプリングし、アップサンプリングした第1及び第2の焦点シフト投影データをビュー方向に交互に組み合わせることによりアップサンプリング投影データを生成することを特徴とする請求項7に記載のX線CT装置。
  16.  前記アップサンプリング投影データ生成部は、
     アップサンプリングされた第1及び第2の焦点シフト投影データをビュー方向に交互に組み合わせた投影データに、更に欠損データ処理を施したアップサンプリング投影データを生成することを特徴とする請求項14に記載のX線CT装置。
  17.  前記アップサンプリング投影データ生成部は、
     アップサンプリングされた第1及び第2の焦点シフト投影データをビュー方向に交互に組み合わせた投影データを、更にビュー方向にアップサンプリングしたアップサンプリング投影データを生成することを特徴とする請求項14に記載のX線CT装置。
  18.  画像演算装置が実行する、
     X線CT装置の回転盤を回転させながら寝台とスキャンガントリとを体軸方向へ相対移動させる撮影により計測された被検体透過X線のデータを収集するステップと、
     収集した被検体透過X線のデータに所定のデータ処理を施すことにより目的のスライス位置における断層像の再構成に必要な投影データを生成するステップと、
     前記投影データにおけるX線透過経路が略一致する対向データからなる仮想対向データを生成することにより前記投影データをアップサンプリングするステップと、
     を含むことを特徴とする投影データのアップサンプリング方法。
  19.  X線管装置におけるX線焦点位置を複数箇所にシフトさせて照射した各X線による透過X線のデータを、回転盤を回転させながら寝台とスキャンガントリとを体軸方向へ相対移動させて収集するステップと、
     収集した各焦点位置からの前記透過X線のデータに所定のデータ処理を施して目的のスライス位置における断層像の再構成に必要な投影データを生成するステップと、
     前記投影データにおけるX線透過経路が略一致する対向データからなる仮想対向データを生成することによりビュー方向に仮想ビューを生成するとともに、前記仮想ビューが挿入された各焦点位置の投影データを組み合わせることによりアップサンプリング投影データを生成するステップと、
     前記仮想ビューを挿入せずに各焦点位置の投影データを組み合わせた焦点シフト投影データを生成するステップと、
     画像面内における所定の境界より画像中心に近い中心領域で前記焦点シフト投影データを用い、前記境界より外側の周辺領域で前記アップサンプリング投影データを用いて画像を再構成するステップと、
     を含むことを特徴とする画像再構成方法。
PCT/JP2015/081995 2014-11-21 2015-11-13 X線ct装置、投影データのアップサンプリング方法、及び画像再構成方法 WO2016080311A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580057868.8A CN107106108B (zh) 2014-11-21 2015-11-13 X射线ct装置、投影数据的上采样方法以及图像重构方法
JP2016560190A JPWO2016080311A1 (ja) 2014-11-21 2015-11-13 X線ct装置、投影データのアップサンプリング方法、及び画像再構成方法
US15/518,933 US10342500B2 (en) 2014-11-21 2015-11-13 X-ray CT apparatus, upsampling method of projection data, and image reconstruction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-236240 2014-11-21
JP2014236240 2014-11-21

Publications (1)

Publication Number Publication Date
WO2016080311A1 true WO2016080311A1 (ja) 2016-05-26

Family

ID=56013852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081995 WO2016080311A1 (ja) 2014-11-21 2015-11-13 X線ct装置、投影データのアップサンプリング方法、及び画像再構成方法

Country Status (4)

Country Link
US (1) US10342500B2 (ja)
JP (1) JPWO2016080311A1 (ja)
CN (1) CN107106108B (ja)
WO (1) WO2016080311A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018078999A (ja) * 2016-11-15 2018-05-24 キヤノンメディカルシステムズ株式会社 X線コンピュータ断層撮影装置
JP2020096693A (ja) * 2018-12-17 2020-06-25 キヤノンメディカルシステムズ株式会社 X線ctシステム及び処理プログラム
JP2021041269A (ja) * 2020-12-18 2021-03-18 キヤノンメディカルシステムズ株式会社 X線コンピュータ断層撮影装置
US20210118095A1 (en) * 2019-10-17 2021-04-22 Samsung Electronics Co., Ltd. Image processing apparatus and method
US11298051B2 (en) 2019-03-20 2022-04-12 Stryker European Holdings I, Llc Technique for processing patient-specific image data for computer-assisted surgical navigation

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105377140B (zh) * 2013-07-26 2018-04-13 株式会社日立制作所 X射线ct装置以及图像重构方法
CN108283502B (zh) * 2018-02-12 2021-05-25 沈阳晟诺科技有限公司 一种焦点移动式ct机、扫描方法及图像重建方法
JP7091863B2 (ja) * 2018-06-14 2022-06-28 株式会社島津製作所 X線画像撮影装置およびx線画像撮影方法
JP7118798B2 (ja) * 2018-08-06 2022-08-16 キヤノンメディカルシステムズ株式会社 X線コンピュータ断層撮影装置
WO2020183733A1 (ja) * 2019-03-14 2020-09-17 株式会社島津製作所 X線撮影装置
EP3764325A1 (en) * 2019-07-12 2021-01-13 Canon Medical Systems Corporation System and program for avoiding focal spot blurring
CN110766686A (zh) * 2019-10-31 2020-02-07 上海联影医疗科技有限公司 Ct投影数据处理方法、系统、可读存储介质和设备
CN112932514B (zh) * 2021-01-29 2022-04-22 明峰医疗系统股份有限公司 插值计算方法、系统、成像方法和计算机可读存储介质
CN116483025B (zh) * 2023-04-23 2024-03-22 赛诺威盛科技(北京)股份有限公司 飞焦点模式下的数据采集系统、方法、电子设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097754A (ja) * 2005-10-03 2007-04-19 Ge Medical Systems Global Technology Co Llc 放射線撮影装置
JP2010104480A (ja) * 2008-10-29 2010-05-13 Ge Medical Systems Global Technology Co Llc X線ct装置およびプログラム
JP2015033442A (ja) * 2013-08-08 2015-02-19 株式会社日立メディコ X線ct装置及び投影データのアップサンプリング方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6963631B2 (en) * 2002-10-25 2005-11-08 Koninklijke Philips Electronics N.V. Dynamic detector interlacing for computed tomography
US7583777B2 (en) * 2004-07-21 2009-09-01 General Electric Company Method and apparatus for 3D reconstruction of images
EP1875865A4 (en) * 2005-04-04 2009-12-02 Hitachi Medical Corp X-RAY CT DEVICE
CN100410969C (zh) * 2006-07-26 2008-08-13 深圳市蓝韵实业有限公司 一种医疗放射图像的细节增强方法
US8175218B2 (en) * 2007-10-29 2012-05-08 Kabushiki Kaisha Toshiba Interpolation interlacing based data upsampling algorithm for cone-beam x-ray CT flying focal spot projection data
CN103619259B (zh) * 2011-07-08 2015-12-09 株式会社日立医疗器械 图像重构装置及图像重构方法
US8724876B2 (en) * 2011-10-18 2014-05-13 Kabushiki Kaisha Toshiba Method and system for substantially reducing streak artifacts in helical cone beam computer tomography (CT)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097754A (ja) * 2005-10-03 2007-04-19 Ge Medical Systems Global Technology Co Llc 放射線撮影装置
JP2010104480A (ja) * 2008-10-29 2010-05-13 Ge Medical Systems Global Technology Co Llc X線ct装置およびプログラム
JP2015033442A (ja) * 2013-08-08 2015-02-19 株式会社日立メディコ X線ct装置及び投影データのアップサンプリング方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018078999A (ja) * 2016-11-15 2018-05-24 キヤノンメディカルシステムズ株式会社 X線コンピュータ断層撮影装置
US10945683B2 (en) 2016-11-15 2021-03-16 Canon Medical Systems Corporation X-ray computed tomography apparatus
JP2020096693A (ja) * 2018-12-17 2020-06-25 キヤノンメディカルシステムズ株式会社 X線ctシステム及び処理プログラム
US11298051B2 (en) 2019-03-20 2022-04-12 Stryker European Holdings I, Llc Technique for processing patient-specific image data for computer-assisted surgical navigation
US11911149B2 (en) 2019-03-20 2024-02-27 Stryker European Operations Holdings Llc Technique for processing patient-specific image data for computer-assisted surgical navigation
US20210118095A1 (en) * 2019-10-17 2021-04-22 Samsung Electronics Co., Ltd. Image processing apparatus and method
US11854159B2 (en) * 2019-10-17 2023-12-26 Samsung Electronics Co., Ltd. Image processing apparatus and method
JP2021041269A (ja) * 2020-12-18 2021-03-18 キヤノンメディカルシステムズ株式会社 X線コンピュータ断層撮影装置
JP7141441B2 (ja) 2020-12-18 2022-09-22 キヤノンメディカルシステムズ株式会社 X線コンピュータ断層撮影装置

Also Published As

Publication number Publication date
JPWO2016080311A1 (ja) 2017-08-31
US20170231589A1 (en) 2017-08-17
CN107106108A (zh) 2017-08-29
US10342500B2 (en) 2019-07-09
CN107106108B (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
WO2016080311A1 (ja) X線ct装置、投影データのアップサンプリング方法、及び画像再構成方法
Hsieh et al. Computed tomography recent history and future perspectives
KR101728046B1 (ko) 단층 영상 복원 장치 및 그에 따른 단층 영상 복원 방법
KR101252140B1 (ko) 단일 센서의 다기능 치과용 구강외 방사선 영상 시스템 및 방법
JP6513431B2 (ja) X線ct装置及びその制御方法
CN102335004B (zh) 用于进行血管造影检查的方法和计算机断层造影设备
EP2508133B1 (en) X-ray computed tomographic imaging apparatus and method for same
KR20170088681A (ko) 단층 촬영 장치 및 그에 따른 단층 영상 복원 방법
JP2008012319A (ja) トモシンセシス・イメージング・システムでのアーティファクトを低減する方法及びシステム
US20130308744A1 (en) X-ray computed tomography apparatus, medical image processing apparatus, x-ray computed tomography method, and medical image processing method
JP2011244875A (ja) 画像処理装置、画像表示装置およびプログラム並びにx線ct装置
KR20120035909A (ko) 단일 센서의 다기능 치과용 구강외 방사선 영상 시스템 및 방법
KR101775556B1 (ko) 단층 촬영 장치 및 그에 따른 단층 영상 처리 방법
JP2007000408A (ja) X線ct装置
KR101665513B1 (ko) 컴퓨터 단층 촬영 장치 및 그에 따른 ct 영상 복원 방법
JP2013000479A (ja) X線ct装置及び画像再構成方法
KR20200095740A (ko) 의료 영상 장치 및 그 제어방법
KR20170105876A (ko) 단층 촬영 장치 및 그에 따른 단층 영상 재구성 방법
KR20170087320A (ko) 단층 영상 생성 장치 및 그에 따른 단층 영상 복원 방법
JP6377615B2 (ja) X線ct装置及び画像再構成方法
JP6346284B2 (ja) X線ct装置、および、x線ct画像の撮影方法
KR101783964B1 (ko) 단층 촬영 장치 및 그에 따른 단층 영상 복원 방법
CN112120722A (zh) X射线断层合成装置、图像处理装置以及计算机可读记录介质
US10383589B2 (en) Direct monochromatic image generation for spectral computed tomography
JP6220599B2 (ja) X線ct装置及び投影データのアップサンプリング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016560190

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861243

Country of ref document: EP

Kind code of ref document: A1