WO2016080198A1 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
WO2016080198A1
WO2016080198A1 PCT/JP2015/081160 JP2015081160W WO2016080198A1 WO 2016080198 A1 WO2016080198 A1 WO 2016080198A1 JP 2015081160 W JP2015081160 W JP 2015081160W WO 2016080198 A1 WO2016080198 A1 WO 2016080198A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
angular velocity
motor angular
vehicle speed
cut
Prior art date
Application number
PCT/JP2015/081160
Other languages
English (en)
French (fr)
Inventor
吉田 圭太
洋介 今村
前田 将宏
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to JP2016547628A priority Critical patent/JP6041076B2/ja
Priority to CN201580062787.7A priority patent/CN107000785B/zh
Priority to BR112017010560-8A priority patent/BR112017010560B1/pt
Priority to US15/127,232 priority patent/US10099721B2/en
Priority to EP15861563.3A priority patent/EP3222496B1/en
Publication of WO2016080198A1 publication Critical patent/WO2016080198A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0472Controlling the motor for damping vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • B62D6/10Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque characterised by means for sensing or determining torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear

Definitions

  • the present invention relates to an electric power steering apparatus in which a steering assist force by a motor is applied to a steering system of a vehicle, and particularly to smooth steering with reduced noise at low speed steering and no phase delay at high speed steering. Therefore, the present invention relates to a high-performance electric power steering apparatus that can reduce the minute vibration and improve the steering feeling by making the cut-off frequency of the filter section variable by the motor angular speed or the motor angular speed and the vehicle speed.
  • An electric power steering device that applies a steering assist force (assist force) to a steering system of a vehicle by a rotational force of a motor is provided with a steering shaft by a transmission mechanism such as a gear or a belt via a speed reducer.
  • a steering assist force is applied to the rack shaft.
  • Such a conventional electric power steering apparatus performs feedback control of the motor current in order to accurately generate the torque of the steering assist force.
  • the motor applied voltage is adjusted so that the difference between the steering assist command value (current command value) and the motor current detection value becomes small. -It is done by adjusting the tee.
  • the general configuration of the electric power steering apparatus will be described with reference to FIG. 6b is further connected to the steering wheels 8L and 8R via hub units 7a and 7b.
  • the column shaft 2 is provided with a torque sensor 10 that detects the steering torque of the handle 1, and a motor 20 that assists the steering force of the handle 1 is connected to the column shaft 2 via the reduction gear 3. .
  • the control unit (ECU) 30 that controls the electric power steering apparatus is supplied with electric power from the battery 13 and also receives an ignition key signal via the ignition key 11.
  • the control unit 30 calculates the current command value of the assist command based on the steering torque Th detected by the torque sensor 10 and the vehicle speed Vel detected by the vehicle speed sensor 12, and compensates for the calculated current command value.
  • the current supplied to the motor 20 is controlled by the voltage control value Vref subjected to.
  • the steering angle sensor 14 is not essential and may not be provided, and can be obtained from a rotation sensor such as a resolver connected to the motor 20.
  • the control unit 30 is connected to a CAN (Controller Area Network) 40 that transmits and receives various types of vehicle information, and the vehicle speed Vel can also be received from the CAN 40.
  • the control unit 30 can be connected to a non-CAN 41 that exchanges communications, analog / digital signals, radio waves, and the like other than the CAN 40.
  • control unit 30 is mainly composed of a CPU (including an MPU and MCU). General functions executed by a program inside the CPU are shown in FIG. The structure is
  • the steering torque Th from the torque sensor 10 and the vehicle speed Vel from the vehicle speed sensor 12 are calculated by calculating a current command value using an assist map or the like and compensated.
  • the current command value Iref1 input to the torque control unit 31 and calculated by the torque control unit 31 is limited to the maximum value by the current limiting unit 33, and the current command value Irefm limited to the maximum value is input to the subtracting unit 32B. Input and subtracted from the detected motor current value Im.
  • the duty is calculated in synchronization with the carrier signal CF, and the motor 20 is PWM driven via the inverter 37 with the PWM signal.
  • the motor current value Im of the motor 20 is detected by the motor current detector 38, and is input to the subtraction unit 32B and fed back.
  • a rotation sensor 21 such as a resolver is connected to the motor 20, and a motor angle ⁇ is output from the rotation sensor 21.
  • Patent Document 1 Japanese Patent No. 4715212 (Patent Document 1) has proposed an electric power steering device that can provide comfortable steering performance.
  • a SAT feedback unit inputs a motor rotation angular velocity, a motor rotation angular acceleration, a steering assist force, and a steering signal and estimates a self-aligning torque (SAT).
  • the value is added to the steering assist command value through the transfer function unit and the gain unit including the high-pass filter, and the characteristics of the high-pass filter and the gain unit are changed in response to the vehicle speed signal.
  • the cutoff frequency is changed depending on the vehicle speed, and the type of the filter is a high-pass filter (HPF).
  • HPF high-pass filter
  • the purpose of the high-pass filter is mainly to suppress judder and shimmy, and to increase the response on the high frequency side. Therefore, it is assumed that there is no effect with respect to minute vibrations during steering and low-speed steering caused by high-frequency noise of angular acceleration. Also, if a filter is applied to the motor angular acceleration signal and noise is removed all at once, a delay (large deviation due to phase delay) will occur during high-speed steering, and the performance of the compensator will be reduced. It is inferred that the feeling will deteriorate.
  • the present invention has been made under the circumstances as described above, and an object of the present invention is to reduce a sense of incongruity due to noise at the time of steering and low speed steering, and smooth steering without phase delay at high speed steering is possible.
  • An object is to provide an electric power steering apparatus.
  • the present invention includes a torque control unit that calculates a current command value based on at least a steering torque, and drives a motor by a current control system based on the current command value to assist control the steering system.
  • the object of the present invention is to provide a motor angular speed calculation unit that calculates a motor angular speed ⁇ from a motor rotation angle, a motor angular acceleration calculation unit that calculates a motor angular acceleration ⁇ from the motor angular speed ⁇ , and the motor
  • a stability compensation unit that calculates a compensation steering torque and a compensation current command value based on the angular velocity ⁇ and the motor angular acceleration ⁇ , and compensates the steering torque with the compensation steering torque, and the compensation current. This is achieved by compensating the current command value with the command value.
  • the object of the present invention is to provide a first cutoff frequency variable unit in which the stability compensation unit sets a cutoff frequency fc1 based on the motor angular velocity ⁇ , and the motor according to the cutoff frequency fc1.
  • a first filter unit that filters the angular acceleration ⁇
  • a second cutoff frequency variable unit that sets a cutoff frequency fc2 based on the motor angular velocity ⁇
  • the first cut-off frequency variable unit makes the cut-off frequency fc1 constant at a motor angular velocity ⁇ 1 or less, and the motor angular velocity ⁇ 1 is set to be constant.
  • a cutoff frequency characteristic that increases linearly or non-linearly in a region exceeding the second cutoff frequency has a cutoff frequency characteristic that makes the cutoff frequency fc2 constant at a motor angular velocity ⁇ 2 (> ⁇ 1) or less and increases linearly or nonlinearly in a region exceeding the motor angular velocity ⁇ 2, or 1 is a cutoff frequency characteristic in which the cutoff frequency fc1 increases linearly at a motor angular velocity ⁇ 10 or less and increases linearly or nonlinearly in a region exceeding the motor angular velocity ⁇ 10;
  • the cut-off frequency variable section has a cut-off frequency characteristic in which the cut-off frequency fc2 increases linearly when the motor angular velocity ⁇ 11 (> ⁇ 10) or less, and increases linearly or nonlinearly in a region exceeding the motor angular velocity ⁇ 11.
  • Vel is used, and the motor angular velocity ⁇ and the vehicle speed Vel are used to set the cutoff frequencies fc1 and fc2, respectively, or the first cutoff frequency variable unit
  • a frequency obtained by arithmetically averaging the frequency fc11 obtained by the angular velocity correspondence map showing the relationship with the frequency and the frequency fcv11 obtained by the vehicle speed correspondence map showing the relationship between the vehicle speed Vel and the frequency is the cut-off frequency.
  • fc1 and the second cut-off frequency variable unit determines the frequency fc21 obtained by the angular velocity correspondence map indicating the relationship between the motor angular velocity ⁇ and the frequency, and the relationship between the vehicle speed Vel and the frequency.
  • a frequency obtained by arithmetically averaging the frequency fcv21 obtained by the vehicle speed correspondence map showing Is set to the cut-off frequency fc2, or the angular velocity correspondence map of the first cut-off frequency variable unit is a region in which the frequency fc11 is constant below the motor angular velocity ⁇ 21 and exceeds the motor angular velocity ⁇ 21.
  • the angular velocity correspondence map of the second cutoff frequency variable unit is a region where the frequency fc21 is constant at a motor angular velocity ⁇ 22 (> ⁇ 21) or less and exceeds the motor angular velocity ⁇ 22.
  • the angular velocity correspondence map of the first cut-off frequency variable unit is less than or equal to the motor angular velocity ⁇ 21, the frequency fc11 increases linearly, and the motor angular velocity ⁇ 21. Is a frequency characteristic that increases linearly or nonlinearly in a region exceeding
  • the angular velocity correspondence map of the second cutoff frequency variable unit has a frequency characteristic in which the frequency fc21 increases linearly below a motor angular velocity ⁇ 22 (> ⁇ 21) and increases linearly or nonlinearly in a region exceeding the motor angular velocity ⁇ 22.
  • the vehicle speed correspondence map of the first cut-off frequency variable unit maintains a constant value fcv11 below the vehicle speed Vel11 of the vehicle speed Vel, exceeds the low vehicle speed Vel11, and exceeds the low vehicle speed Vel11.
  • the frequency characteristic is linear or non-linear below Vel12 and decreases to frequency fcv12 ( ⁇ fcv11) and maintains frequency fcv12 in a region exceeding the high-speed vehicle speed Vel12, and the vehicle speed correspondence map of the second cutoff frequency variable unit is The constant value fcv21 is kept below the vehicle speed Vel21 which is lower than the vehicle speed Vel.
  • the first cut-off frequency variable unit has a frequency fc31 obtained by an angular velocity correspondence map showing the relationship between the motor angular velocity ⁇ and the frequency, and a vehicle speed correspondence map showing the relationship between the vehicle speed Vel and the frequency.
  • the cut-off frequency fc1 is a frequency obtained by weighting and averaging the frequency fcv11 obtained by the above-described equation, and the second cut-off frequency variable unit shows the angular velocity indicating the relationship between the motor angular velocity ⁇ and the frequency.
  • the frequency fc32 obtained from the correspondence map, the vehicle speed Vel and the frequency
  • the frequency characteristic is constant in the frequency fc31 below the motor angular speed ⁇ 31 and linearly or non-linearly increased in a region exceeding the motor angular speed ⁇ 31.
  • the angular velocity correspondence map of the second cutoff frequency variable unit is the motor angular speed ⁇ 32 ( > ⁇ 31)
  • the frequency fc32 is constant below and the frequency characteristic becomes linearly or non-linearly higher in the region exceeding the motor angular velocity ⁇ 32, or the angular velocity correspondence map of the first cutoff frequency variable unit is
  • the frequency fc31 increases linearly below the motor angular speed ⁇ 31.
  • the frequency characteristic is linearly or nonlinearly high in a region exceeding the motor angular velocity ⁇ 31, and the angular velocity correspondence map of the second cutoff frequency variable unit is equal to or less than the motor angular velocity ⁇ 32 (> ⁇ 31), and the frequency fc32 is linear.
  • the frequency characteristic is increased and has a frequency characteristic that increases linearly or nonlinearly in a region exceeding the motor angular speed ⁇ 32, or the vehicle speed correspondence map of the first cut-off frequency variable unit is a vehicle speed Vel31 that is lower than the vehicle speed Vel.
  • the constant value fcv31 is maintained below, exceeds the low-speed vehicle speed Vel31, increases linearly or non-linearly below the high-speed vehicle speed Vel32 to a frequency fcv32 (> fcv31), and maintains the frequency fcv32 in a region exceeding the high-speed vehicle speed Vel32.
  • Vehicle having the frequency characteristic of the second cutoff frequency variable section The correspondence map maintains a constant value fcv41 below the low vehicle speed Vel41 of the vehicle speed Vel, increases to the frequency fcv42 (> fcv41) exceeding the low vehicle speed Vel41, linearly or nonlinearly below the high vehicle speed Vel42, and This is achieved more effectively by having a frequency characteristic that maintains the frequency fcv42 in a region that exceeds the high-speed vehicle speed Vel42, or by calculating the motor angular velocity ⁇ from a steering angle sensor.
  • the stability compensator sets a low cut-off frequency during steering and low-speed steering, and sets a high cut-off frequency during high-speed steering so that the motor angular velocity is increased. Therefore, it is possible to obtain a steering feeling with less minute vibration caused by motor angular acceleration noise during steering and low-speed steering without impairing the performance of the compensator in a high frequency region.
  • an effective compensation value can be given.
  • an ideal torque command value can be generated by removing torque ripple caused by a steering mechanism system including a reduction gear and a torque sensor included in the steering torque, and extracting only the steering torque of the driver.
  • compensation of the current command value compensation is made to reduce torque ripples caused by electrical factors and floor vibrations, including variations of individual motors and cogging torque, so that minute vibrations are less likely to occur.
  • the motor angular velocity and motor angular acceleration, or the stability compensator based on the motor angular velocity and the motor angular acceleration and the vehicle speed reduces the uncomfortable feeling due to noise during low speed steering, and the phase lag during high speed steering.
  • the cutoff frequency of the filter unit for filtering the motor angular acceleration can be varied according to the motor angular velocity or the motor angular velocity and the vehicle speed. That is, a low cut-off frequency is set during steering and low-speed steering, and a high cut-off frequency is set during high-speed steering, thereby achieving an electric power steering apparatus with little micro-vibration and good steering feeling.
  • FIG. 3 shows an example (first embodiment) of the embodiment of the present invention corresponding to FIG. 2, and the motor angle ⁇ from the rotation sensor 21 connected to the motor 20 is input to the motor angular velocity calculation unit 100.
  • the motor angular velocity ⁇ is calculated (differentiated).
  • the motor angular velocity ⁇ is input to the motor angular acceleration calculation unit 101 and the stability compensation unit 110, and the stability compensation unit 110 variably controls the cutoff frequency to generate the compensation steering torque Tf and the compensation current command value If.
  • a subtracting unit 34A is provided on the input side of the torque control unit 31, and an adding unit 34B is provided between the torque control unit 31 and the current limiting unit 33.
  • the subtraction unit 34A is added with the steering torque Th
  • the subtraction input is the compensation steering torque Tf
  • the addition unit 34B is added with the current command value Iref1 and the compensation current command value If.
  • the stability compensation unit 110 includes cutoff frequency (fc) variable units 111 and 112 that vary the cutoff frequency fc based on the motor angular velocity ⁇ , and a cutoff frequency from the cutoff frequency variable unit 111.
  • Filter unit 113 that filters motor angular acceleration ⁇ based on fc1
  • filter unit 114 that filters motor angular acceleration ⁇ based on cutoff frequency fc2 from cutoff frequency variable unit 112, and filter unit 113
  • a compensation steering torque generation unit 115 that outputs a compensation steering torque Tf based on the output from the filter
  • a compensation current command value generation unit 116 that outputs a compensation current command value If based on the output from the filter unit 114, and It consists of
  • the characteristic of the cutoff frequency variable unit 111 is a characteristic in which the cutoff frequency fc1 is constant up to the motor angular speed ⁇ 1, and the cutoff frequency fc is linearly increased in a region larger than the motor angular speed ⁇ 1.
  • the characteristic of the cut-off frequency variable unit 112 is a constant cut-off frequency fc2 (> fc1) up to the motor angular speed ⁇ 2 (> ⁇ 1), and the cut-off frequency in a region larger than the motor angular speed ⁇ 2. The characteristic is to increase fc linearly.
  • the motor angle ⁇ is detected by the rotation sensor 21 (step S1), and the motor angle ⁇ is input to the motor angular velocity calculation unit 100 to calculate the motor angular velocity ⁇ (step S2).
  • the motor angular velocity ⁇ is input to the motor angular acceleration calculation unit 101 to calculate the motor angular acceleration ⁇ (step S3), and is input to the cutoff frequency variable units 111 and 112 in the stability compensation unit 110.
  • the motor angular acceleration ⁇ is input to the filter units 113 and 114 in the stability compensation unit 110.
  • the cutoff frequency variable unit 111 varies the cutoff frequency fc1 (step S4).
  • the set cutoff frequency fc1 is input to the filter unit 113, and the motor angular acceleration ⁇ is filtered by the filter unit 113 according to the cutoff frequency fc1 (step S5).
  • the signal filtered by the filter unit 113 is input to the compensation steering torque generation unit 115, the compensation steering torque Tf signal-processed by the compensation steering torque generation unit 115 is input to the subtraction unit 34A, and the steering torque Th is obtained. Compensated (step S6).
  • the cutoff frequency variable unit 112 varies the cutoff frequency fc2 (step S10).
  • the set cutoff frequency fc2 is input to the filter unit 114, and the motor angular acceleration ⁇ is filtered by the filter unit 114 according to the cutoff frequency fc2 (step S11).
  • the signal filtered by the filter unit 114 is input to the compensation current command value generation unit 116, and the compensation current command value If signal processed by the compensation current command value generation unit 116 is input to the addition unit 34B.
  • the command value Iref is compensated (step S12).
  • the cutoff frequencies fc1 and fc2 of the filter units 113 and 114 can be varied by the motor angular speed ⁇ , a low cutoff frequency is set during steering and low speed steering, and the cutoff frequency is high during high speed steering.
  • the vibration (maintenance fine vibration) that becomes a problem on the low frequency side can be suppressed without deteriorating the characteristics on the high frequency side.
  • the performance of the compensator is improved by effectively removing noise riding on the motor angular acceleration. As a result, an electric power steering apparatus with good steering feeling can be obtained.
  • FIG. 7 shows a second embodiment of the present invention corresponding to FIG. 3, and in the second embodiment, the vehicle speed Vel is further input to the stability compensator 110A.
  • the stability compensator 110A has a cut-off frequency (fc) variable unit 111A and 112A that varies the cut-off frequency fc based on the motor angular speed ⁇ and the vehicle speed Vel, and a cut-off frequency variable unit 111A.
  • fc cut-off frequency
  • Filter unit 113 that filters motor angular acceleration ⁇ based on the cut-off frequency fc1 from, and filter unit 114 that filters motor angular acceleration ⁇ based on the cut-off frequency fc2 from the cut-off frequency variable unit 112A
  • a compensation steering torque generation unit 115 that outputs a compensation steering torque Tf based on the output from the filter unit 113, and a compensation current command that outputs a compensation current command value If based on the output from the filter unit 114
  • a value generation unit 116 that generates a compensation steering torque Tf based on the output from the filter unit 113.
  • the characteristic of the cutoff frequency variable unit 111A is a characteristic in which the cutoff frequency fc11 is constant up to the motor angular speed ⁇ 21 and the cutoff frequency fc is increased linearly in a region larger than the motor angular speed ⁇ 21.
  • the characteristic of the cut-off frequency variable unit 112A is, for example, as shown in FIG. 9, a constant cut-off frequency fc21 (> fc11) up to the motor angular speed ⁇ 22 (> ⁇ 21), and a cut-off in a region larger than the motor angular speed ⁇ 22.
  • the frequency fc is increased linearly.
  • the characteristic of the cut-off frequency variable unit 111A maintains a constant value fcv11 at a low vehicle speed Vel11 or less, and exceeds a low vehicle speed Vel11 and is linear at a high vehicle speed Vel12 or less. It is non-linearly decreasing to the frequency fcv12 ( ⁇ fcv11) and has a characteristic of holding the frequency fcv12 in a region exceeding the high-speed vehicle speed Vel12. Similarly, as shown in FIG.
  • the characteristic of the cut-off frequency variable unit 112A maintains a constant value fcv21 (> fcv11) below the vehicle speed Vel21 ( ⁇ Vel11) that is lower than the vehicle speed Vel, and exceeds the low vehicle speed Vel21. It is a characteristic that decreases linearly or nonlinearly to the frequency fcv22 ( ⁇ fcv21) below the high speed vehicle speed Vel22 (> Vel12), and maintains the frequency fcv22 in a region exceeding the high speed vehicle speed Vel22. Cutoff frequencies fcv12 and fcv22 may be zero.
  • the low vehicle speeds Vel11 and Vel21 are extremely low speed traveling less than 5Km / h when creeping or parking or entering the garage, especially when creeping about 0 to 2Km / h where floor vibration and slight vibration of the steering wheel are problematic.
  • the vehicle travels at a low speed of up to about 30 km / h where the vehicle is stopped, and further slows down an urban area or a narrow road.
  • the high-speed vehicle speeds Vel12 and Vel22 are, for example, 50 km / h to 80 km / h on wide roads and main roads. It is assumed that the vehicle travels at a vehicle speed exceeding 80 Km / h on a high-speed road or an automobile-only road.
  • the filter units 113 and 114 for filtering the motor angular acceleration ⁇ according to the motor angular velocity ⁇ and the vehicle speed Vel are configured separately by the compensation steering torque generation unit 115 and the compensation current command value generation unit 116. This is because the purpose of using the motor angular acceleration is different between the torque control unit 31 and the current control unit 35, and the required motor angular acceleration characteristics are individually different. That is, the current control unit 35 compensates the current command value to reduce torque ripple and floor vibration, but the torque control unit 31 extracts vibration components such as torque ripple in order to extract only the driver's steering information. Is removed from the torque sensor value.
  • the vibration component included has a lower frequency band than the motor angular acceleration, and the phase is delayed with respect to the actual behavior. For this reason, if a value with the same characteristic as the motor angular acceleration used for compensation to the current command value is used, the included frequency band and phase do not match, so that not only vibration components are removed, but vibration There is a possibility of adding a component that causes generation. Therefore, an effective filtering process can be performed by setting the cutoff frequency individually.
  • the cut-off frequency of the motor angular acceleration used for the torque control unit is preferably set to the same value or lower than the cut-off frequency of the motor angular acceleration used for current control.
  • the characteristics of the cut-off frequency variable sections 111A and 112A may be obtained by an arithmetic average of the frequency obtained according to the motor angular velocity ⁇ and the frequency obtained according to the vehicle speed Vel.
  • the motor angular acceleration having the optimum characteristics can be effectively obtained regardless of the steering state. Can be calculated.
  • the motor angle ⁇ is detected by the rotation sensor 21 (step S20), and the motor angle ⁇ is input to the motor angular velocity calculation unit 100 to calculate the motor angular velocity ⁇ (step S21).
  • the motor angular velocity ⁇ is input to the motor angular acceleration calculation unit 101 to calculate the motor angular acceleration ⁇ (step S22), and the vehicle speed Vel is input (step S23).
  • the motor angular velocity ⁇ and the vehicle speed Vel are input to the cutoff frequency variable units 111A and 112A in the stability compensation unit 110A, and the motor angular acceleration ⁇ is input to the filter units 113 and 114 in the stability compensation unit 110. Note that the input order of the vehicle speed Vel can be changed as appropriate.
  • the cut-off frequency varying unit 111A varies the cut-off frequency fc1 by the arithmetic mean of the frequency obtained according to the motor angular velocity ⁇ according to the characteristics shown in FIGS. 9 and 10 and the frequency obtained according to the vehicle speed Vel.
  • the set cutoff frequency fc1 is input to the filter unit 113, and the motor angular acceleration ⁇ is filtered by the filter unit 113 according to the cutoff frequency fc1 (step S25).
  • the signal filtered by the filter unit 113 is input to the compensation steering torque generation unit 115, the compensation steering torque Tf signal-processed by the compensation steering torque generation unit 115 is input to the subtraction unit 34A, and the steering torque Th is obtained. Compensated (step S26).
  • the cut-off frequency varying unit 112A varies the cut-off frequency fc2 based on the arithmetic mean of the frequency obtained according to the motor angular speed ⁇ and the frequency obtained according to the vehicle speed Vel according to the characteristics shown in FIGS. (Step S30).
  • the set cutoff frequency fc2 is input to the filter unit 114, and the motor angular acceleration ⁇ is filtered by the filter unit 114 according to the cutoff frequency fc2 (step S31).
  • the signal filtered by the filter unit 114 is input to the compensation current command value generation unit 116, and the compensation current command value If signal processed by the compensation current command value generation unit 116 is input to the addition unit 34B.
  • the command value Iref is compensated (step S32).
  • the cutoff frequencies fc1 and fc2 of the filter units 113 and 114 can be varied by the motor angular speed ⁇ and the vehicle speed Vel, and a low cutoff frequency is set during steering and low-speed steering, and the cutoff frequency during high-speed steering. Is set so as to be high, vibrations that are problematic on the low frequency side (steering fine vibration) can be suppressed without deteriorating the characteristics on the high frequency side. In other words, the performance of the compensator is improved by effectively removing noise riding on the motor angular acceleration. As a result, an electric power steering apparatus with good steering feeling can be obtained.
  • Cut-off frequency (fc) variable sections 111A and 112A may have characteristics as shown in FIGS. 12 and 13 (third embodiment).
  • the configuration of the third embodiment is shown in FIGS. 7 and 8 and is the same as that of the second embodiment. That is, as shown in FIG. 12, the characteristic of the cutoff frequency variable unit 111A is a characteristic in which the cutoff frequency fc31 is constant up to the motor angular speed ⁇ 31, and the cutoff frequency fc is linearly increased in a region larger than the motor angular speed ⁇ 31. Yes.
  • FIG. 12 the characteristic of the cutoff frequency variable unit 111A is a characteristic in which the cutoff frequency fc31 is constant up to the motor angular speed ⁇ 31, and the cutoff frequency fc is linearly increased in a region larger than the motor angular speed ⁇ 31.
  • the characteristic of the cut-off frequency variable unit 112A is a constant cut-off frequency fc32 (> fc31) up to the motor angular speed ⁇ 32 (> ⁇ 31), and the cut-off frequency fc is larger than the motor angular speed ⁇ 32. It becomes the characteristic which raises linearly.
  • the characteristic of the cut-off frequency variable unit 111A maintains a constant value fcv41 at a low vehicle speed Vel41 of the vehicle speed Vel, exceeds a low vehicle speed Vel41, and is linear or nonlinear at a high vehicle speed Vel42.
  • the frequency fcv42 (> fcv41) is increased and the frequency fcv42 is maintained in a region exceeding the high-speed vehicle speed Vel42.
  • the characteristic of the cut-off frequency variable unit 112A maintains a constant value fcv31 (> fcv41) below the vehicle speed Vel31 (> Vel41) that is lower than the vehicle speed Vel, and exceeds the low vehicle speed Vel31.
  • the low vehicle speeds Vel41 and Vel31 are, for example, floor vibration using an electric power steering device as a vibration source and slight vibration of the steering wheel, which is a problem when creeping at about 0 to 2 km / h, during parking, or in a garage
  • the vehicle is traveling at a very low speed that is less than 5 km / h or stopped, and that the vehicle is traveling at a low speed up to about 30 km / h that travels slowly in urban areas or narrow roads.
  • the vehicle travels at a speed of about 50 km / h to 80 km / h on a main road, or travels at a vehicle speed exceeding 80 km / h on an expressway or an automobile exclusive road.
  • the motor angular acceleration ⁇ having optimum characteristics can be effectively calculated regardless of the steering state. can do.
  • the vibration characteristics and steering performance vary depending on the type and condition of the vehicle.
  • weighted average weighting constants W1 and W2 are required in order to cope with variations in characteristics due to variations in completed vehicles, vehicle usage conditions, aging, and the like.
  • the frequency weighting constant W1 obtained according to the motor angular velocity ⁇ is obtained according to the vehicle speed Vel.
  • the sensitivity to the motor angular velocity ⁇ can be increased and the steering performance can be improved.
  • the cutoff frequency can be varied only by the motor angular velocity ⁇ or only by the vehicle speed Vel, so that the filter unit is adapted to the actual vibration characteristics and the required vehicle steering performance. It is also possible to set different cutoff frequency characteristics for 113 and 14.
  • the motor angle ⁇ is detected by the rotation sensor 21 (step S40), and the motor angle ⁇ is input to the motor angular velocity calculation unit 100 to calculate the motor angular velocity ⁇ (step S41).
  • the motor angular velocity ⁇ is input to the motor angular acceleration calculation unit 101 to calculate the motor angular acceleration ⁇ (step S42), and the vehicle speed Vel is input (step S43).
  • the motor angular velocity ⁇ is input to the cutoff frequency variable units 111A and 112A, the vehicle speed Vel is also input to the cutoff frequency variable units 111A and 112A, and the motor angular acceleration ⁇ is input to the filter units 113 and 114.
  • the cut-off frequency varying unit 111A varies the cut-off frequency fc1 by the weighted average of the frequency obtained according to the motor angular velocity ⁇ according to the characteristics shown in FIGS. 12 and 13 and the frequency obtained according to the vehicle speed Vel (Ste S44).
  • the set cutoff frequency fc1 is input to the filter unit 113, and the motor angular acceleration ⁇ is filtered by the filter unit 113 according to the cutoff frequency fc1 (step S45).
  • the signal filtered by the filter unit 113 is input to the compensation steering torque generation unit 115, the compensation steering torque Tf signal-processed by the compensation steering torque generation unit 115 is input to the subtraction unit 34A, and the steering torque Th is obtained. Compensation is performed (step S46).
  • the cut-off frequency varying unit 112A varies the cut-off frequency fc2 based on the frequency obtained according to the motor angular velocity ⁇ according to the characteristics shown in FIGS. 12 and 13 and the weighted average obtained according to the vehicle speed Vel (Ste S50).
  • the set cutoff frequency fc2 is input to the filter unit 114, and the motor angular acceleration ⁇ is filtered by the filter unit 114 according to the cutoff frequency fc2 (step S51).
  • the signal filtered by the filter unit 114 is input to the compensation current command value generation unit 116, and the compensation current command value If signal processed by the compensation current command value generation unit 116 is input to the addition unit 34B.
  • the command value Iref is compensated (step S52).
  • the cutoff frequencies fc1 and fc2 of the filter units 113 and 114 can be varied by the motor angular speed ⁇ and the vehicle speed Vel, and a low cutoff frequency is set during steering and low-speed steering, and the cutoff frequency during high-speed steering. Therefore, the vibration (maintenance fine vibration) which is a problem in the low frequency region of the motor can be suppressed without deteriorating the characteristics of the high frequency region of the motor. That is, the performance of the compensator is improved by effectively removing noise riding on the motor angular acceleration ⁇ . As a result, an electric power steering apparatus with good steering feeling can be obtained.
  • variable characteristics of the cutoff frequency variable sections 111 and 112, 111A and 112A are all linear, but as shown in FIG. 15, the cutoff frequency fc1 or fc2 is increased linearly up to the motor angular velocity ⁇ 10 or ⁇ 11,
  • the cutoff frequency fc may be nonlinearly increased in a region larger than the motor angular velocity ⁇ 10 or ⁇ 11.
  • the motor angular velocity ⁇ 10 or ⁇ 11 may be increased nonlinearly and may be increased linearly in a region larger than the motor angular velocity ⁇ 10 or ⁇ 11.
  • the motor angle is acquired from a rotation sensor such as a resolver connected to the motor, but may be acquired from a rudder angle sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

【課題】舵時や低速操舵時にはノイズによる違和感を低減し、高速操舵時には位相遅れのないようなスムーズな操舵が可能な電動パワーステアリング装置を提供する。 【解決手段】少なくとも操舵トルクに基づいて電流指令値を演算するトルク制御部を有し、電流指令値に基づく電流制御系によりモータを駆動して、操舵系をアシスト制御するようになっている電動パワーステアリング装置において、モータ回転角度からモータ角速度を演算するモータ角速度演算部と、モータ角速度からモータ角加速度を演算するモータ角加速度演算部と、モータ角速度、モータ角加速度(必要に応じて車速を追加)に基づいて補償用操舵トルク及び補償用電流指令値を演算する安定性補償部とを具備し、補償用操舵トルクで操舵トルクを補償し、補償用電流指令値で電流指令値を補償する。

Description

電動パワーステアリング装置
 本発明は、車両の操舵系にモータによる操舵補助力を付与するようにした電動パワーステアリング装置に関し、特に低速操舵時にはノイズによる違和感を低減し、高速操舵時には位相遅れのないようなスムーズな操舵にするために、フィルタ部のカットオフ周波数をモータ角速度、若しくはモータ角速度及び車速で可変できるようにすることにより、微小振動が少なく操舵フィーリングを向上した高性能な電動パワーステアリング装置に関する。
 車両の操舵系をモータの回転力で操舵補助力(アシスト力)を付与する電動パワーステアリング装置(EPS)は、モータの駆動力を減速機を介してギア又はベルト等の伝達機構により、ステアリングシャフト或いはラック軸に操舵補助力を付与するようになっている。かかる従来の電動パワーステアリング装置は、操舵補助力のトルクを正確に発生させるため、モータ電流のフィードバック制御を行っている。フィードバック制御は、操舵補助指令値(電流指令値)とモータ電流検出値との差が小さくなるようにモータ印加電圧を調整するものであり、モータ印加電圧の調整は、一般的にPWM制御のデュ-ティの調整で行っている。
 電動パワーステアリング装置の一般的な構成を図1に示して説明すると、ハンドル1のコラム軸(ステアリングシャフト、ハンドル軸)2は減速ギア3、ユニバーサルジョイント4a及び4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、コラム軸2には、ハンドル1の操舵トルクを検出するトルクセンサ10が設けられており、ハンドル1の操舵力を補助するモータ20が減速ギア3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントロールユニット(ECU)30には、バッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー信号が入力される。コントロールユニット30は、トルクセンサ10で検出された操舵トルクThと車速センサ12で検出された車速Velとに基づいて、アシスト指令の電流指令値の演算を行い、演算された電流指令値に補償等を施した電圧制御値Vrefによってモータ20に供給する電流を制御する。舵角センサ14は必須のものではなく、配設されていなくても良く、モータ20に連結されたレゾルバ等の回転センサから得ることもできる。
 コントロールユニット30には、車両の各種情報を授受するCAN(Controller Area Network)40が接続されており、車速VelはCAN40から受信することも可能である。また、コントロールユニット30には、CAN40以外の通信、アナログ/ディジタル信号、電波等を授受する非CAN41も接続可能である。
 このような電動パワーステアリング装置において、コントロールユニット30は主としてCPU(MPUやMCUを含む)で構成されるが、そのCPU内部においてプログラムで実行される一般的な機能を示すと、例えば図2に示されるような構成となっている。
 図2を参照してコントロールユニット30の機能及び動作を説明すると、トルクセンサ10からの操舵トルクTh及び車速センサ12からの車速Velは、アシストマップ等を用いて電流指令値を演算し補償等を施されるトルク制御部31に入力され、トルク制御部31で演算された電流指令値Iref1は電流制限部33で最大値を制限され、最大値を制限された電流指令値Irefmが減算部32Bに入力され、モータ電流検出値Imと減算される。
 減算部32Bでの減算結果である偏差I(=Irefm-Im)はPI制御等の制御を行う電流制御部35に入力され、電流制御された電圧制御値VrefがPWM制御部36に入力され、キャリア信号CFに同期してデューティを演算され、PWM信号でインバータ37を介してモータ20をPWM駆動する。モータ20のモータ電流値Imはモータ電流検出器38で検出され、減算部32Bに入力されてフィードバックされる。
 モータ20にはレゾルバ等の回転センサ21が連結されており、回転センサ21からモータ角度θが出力される。
 このような電動パワーステアリング装置において、ハンドル保舵時又は低速操舵時に微小振動が発生し、運転者へ違和感を生じさせることがある。この原因の1つとして挙げられるのが、モータ角加速度信号の高周波ノイズである。
 かかる高周波ノイズに対して、モータ角加速度を利用した補償器として、高周波数領域で路面情報及び外乱等の信号処理を行うことにより、チューニングし易くし、ブレーキジャダーやシミーの抑制を図って、安全で快適な操舵性能が得られる電動パワーステアリング装置が特許第第4715212号公報(特許文献1)として提案されている。
 特許文献1の電動パワーステアリング装置では、モータ回転角速度、モータ回転角加速度、操舵補助力及び操舵信号を入力してセルフアライニングトルク(SAT)の推定を行うSATフィードバック部を設け、求められたSAT値を、ハイパスフィルタを含む伝達関数部及びゲイン部を通して操舵補助指令値に加算すると共に、ハイパスフィルタ及びゲイン部の特性を車速信号に感応して変化させている。
特許第4715212号公報
 特許文献1に記載の装置では、車速によりカットオフ周波数を変えており、フィルタのタイプはハイパスフィルタ(HPF)である。ハイパスフィルタの目的はジャダーやシミーの抑制が主であり、高周波側の応答性を上げるものである。そのため、角加速度の高周波ノイズに起因する保舵時や低速操舵時の微小振動に関しては、効果のないことが想定される。また、モータ角加速度信号に対してフィルタを適用し、一括してノイズを除去すると、高速操舵時に遅れ(位相遅れによる偏差大)が生じてしまい、補償器の性能を低下させてしまうため、操舵フィーリングが悪化することが推察される。
 本発明は上述のような事情よりなされたものであり、本発明の目的は、保舵時や低速操舵時にはノイズによる違和感を低減し、高速操舵時には位相遅れのないようなスムーズな操舵が可能な電動パワーステアリング装置を提供することにある。
 本発明は、少なくとも操舵トルクに基づいて電流指令値を演算するトルク制御部を有し、前記電流指令値に基づく電流制御系によりモータを駆動して、操舵系をアシスト制御するようになっている電動パワーステアリング装置に関し、本発明の上記目的は、モータ回転角度からモータ角速度ωを演算するモータ角速度演算部と、前記モータ角速度ωからモータ角加速度αを演算するモータ角加速度演算部と、前記モータ角速度ω及び前記モータ角加速度αに基づいて補償用操舵トルク及び補償用電流指令値を演算する安定性補償部とを具備し、前記補償用操舵トルクで前記操舵トルクを補償し、前記補償用電流指令値で前記電流指令値を補償することにより達成される。
また、本発明の上記目的は、前記安定性補償部が、前記モータ角速度ωに基づいてカットオフ周波数fc1を設定する第1のカットオフ周波数可変部と、前記カットオフ周波数fc1に応じて前記モータ角加速度αをフィルタリング処理する第1のフィルタ部と、前記モータ角速度ωに基づいてカットオフ周波数fc2を設定する第2のカットオフ周波数可変部と、前記カットオフ周波数fc2に応じて前記モータ角加速度αをフィルタリング処理する第2のフィルタ部とで構成されていることにより、或いは前記第1のカットオフ周波数可変部が、モータ角速度ω1以下で前記カットオフ周波数fc1を一定とし、前記モータ角速度ω1を超える領域で線形若しくは非線形に高くなるカットオフ周波数特性であり、前記第2のカットオフ周波数可変部が、モータ角速度ω2(>ω1)以下で前記カットオフ周波数fc2を一定とし、前記モータ角速度ω2を超える領域で線形若しくは非線形に高くなるカットオフ周波数特性となっていることにより、或いは前記第1のカットオフ周波数可変部が、モータ角速度ω10以下で前記カットオフ周波数fc1が線形に増加し、前記モータ角速度ω10を超える領域で線形若しくは非線形に高くなるカットオフ周波数特性であり、前記第2のカットオフ周波数可変部が、モータ角速度ω11(>ω10)以下で前記カットオフ周波数fc2が線形に増加し、前記モータ角速度ω11を超える領域で線形若しくは非線形に高くなるカットオフ周波数特性となっていることにより、或いは前記補償用操舵トルク及び前記補償用電流指令値の演算に更に車速Velが用いられ、かつ前記カットオフ周波数fc1及びfc2の設定にそれぞれ前記モータ角速度ω及び前記車速Velが用いられていることにより、或いは前記第1のカットオフ周波数可変部が、前記モータ角速度ωと周波数との関係を示した角速度対応マップによって求められた周波数fc11と、前記車速Velと周波数との関係を示した車速対応マップによって求められた周波数fcv11とを相加平均した周波数を前記カットオフ周波数fc1とするようになっており、前記第2のカットオフ周波数可変部が、前記モータ角速度ωと周波数との関係を示した角速度対応マップによって求められた周波数fc21と、車速Velと周波数との関係を示した車速対応マップによって求められた周波数fcv21とを相加平均した周波数をカットオフ周波数fc2とするようになっていることにより、或いは前記第1のカットオフ周波数可変部の角速度対応マップが、モータ角速度ω21以下で前記周波数fc11を一定とし、前記モータ角速度ω21を超える領域で線形若しくは非線形に高くなる周波数特性であり、前記第2のカットオフ周波数可変部の角速度対応マップが、モータ角速度ω22(>ω21)以下で前記周波数fc21を一定とし、前記モータ角速度ω22を超える領域で線形若しくは非線形に高くなる周波数特性となっていることにより、或いは前記第1のカットオフ周波数可変部の角速度対応マップが、モータ角速度ω21以下で前記周波数fc11が線形に増加し、前記モータ角速度ω21を超える領域で線形若しくは非線形に高くなる周波数特性であり、前記第2のカットオフ周波数可変部の角速度対応マップが、モータ角速度ω22(>ω21)以下で前記周波数fc21が線形に増加し、前記モータ角速度ω22を超える領域で線形若しくは非線形に高くなる周波数特性となっていることにより、或いは前記第1のカットオフ周波数可変部の車速対応マップが、前記車速Velの低速の車速Vel11以下で一定値fcv11を保持し、前記低速の車速Vel11を超え、高速の車速Vel12以下で線形又は非線形で周波数fcv12(<fcv11)まで減少し、前記高速の車速Vel12を超える領域で周波数fcv12を保持する周波数特性であり、前記第2のカットオフ周波数可変部の車速対応マップが、前記車速Velの低速の車速Vel21以下で一定値fcv21を保持し、前記低速の車速Vel21を超え、高速の車速Vel22以下で線形又は非線形で周波数fcv22(<fcv21)まで減少し、前記高速の車速Vel22を超える領域で周波数fcv22を保持する周波数特性となっていることにより、或いは前記第1のカットオフ周波数可変部が、前記モータ角速度ωと周波数との関係を示した角速度対応マップによって求められた周波数fc31と、前記車速Velと周波数との関係を示した車速対応マップによって求められた周波数fcv11とを加重平均した周波数を前記カットオフ周波数fc1とするようになっており、前記第2のカットオフ周波数可変部が、前記モータ角速度ωと周波数との関係を示した角速度対応マップによって求められた周波数fc32と、前記車速Velと周波数との関係を示した車速対応マップによって求められた周波数fcv21とを加重平均した周波数をカットオフ周波数fc2とするようになっていることにより、或いは前記第1のカットオフ周波数可変部の角速度対応マップが、モータ角速度ω31以下で前記周波数fc31を一定とし、前記モータ角速度ω31を超える領域で線形若しくは非線形に高くなる周波数特性であり、前記第2のカットオフ周波数可変部の角速度対応マップが、モータ角速度ω32(>ω31)以下で前記周波数fc32を一定とし、前記モータ角速度ω32を超える領域で線形若しくは非線形に高くなる周波数特性となっていることにより、或いは前記第1のカットオフ周波数可変部の角速度対応マップが、モータ角速度ω31以下で前記周波数fc31が線形に増加し、前記モータ角速度ω31を超える領域で線形若しくは非線形に高くなる周波数特性であり、前記第2のカットオフ周波数可変部の角速度対応マップが、モータ角速度ω32(>ω31)以下で前記周波数fc32が線形に増加し、前記モータ角速度ω32を超える領域で線形若しくは非線形に高くなる周波数特性となっていることにより、或いは前記第1のカットオフ周波数可変部の車速対応マップが、前記車速Velの低速の車速Vel31以下で一定値fcv31を保持し、前記低速の車速Vel31を超え、高速の車速Vel32以下で線形又は非線形で周波数fcv32(>fcv31)まで増加し、前記高速の車速Vel32を超える領域で周波数fcv32を保持する周波数特性であり、前記第2のカットオフ周波数可変部の車速対応マップが、前記車速Velの低速の車速Vel41以下で一定値fcv41を保持し、前記低速の車速Vel41を超え、高速の車速Vel42以下で線形又は非線形で周波数fcv42(>fcv41)まで増加し、前記高速の車速Vel42を超える領域で周波数fcv42を保持する周波数特性となっていることにより、或いは前記モータ角速度ωを舵角センサより算出するようになっていることにより、より効果的に達成される。
 本発明の電動パワーステアリング装置によれば、安定性補償部において、保舵時及び低速操舵時には低いカットオフ周波数に設定し、高速操舵時にはカットオフ周波数が高くなるように設定することによって、モータ角速度のノイズ成分を抑制することができるので、高周波領域で補償器の性能を損なうことなく、保舵時や低速操舵時におけるモータ角加速度ノイズに起因した微小振動の少ない操舵フィーリングが得られる。
また、安定性補償部のフィルタリング特性を操舵トルクの補償と電流指令値の補償に分けているので、効果的な補償値を与えられることができる。これによって、操舵トルクに含まれる、減速ギアをはじめとするステアリング機構系やトルクセンサに起因するトルクリップルを除去し、運転者の操舵トルクのみを抽出して理想的なトルク指令値を生成できる。一方、電流指令値の補償では、個々のモータのばらつきやコギングトルクを始め、電気的な要因で発生するトルクリップルや、フロア振動を低減する補償を行うので、微小振動が発生し難くなる。
 さらに、車速に応じてカットオフ周波数を可変することによって、振動低減と操舵フィーリングを両立させることができる。
電動パワーステアリング装置の概要を示す構成図である。 電動パワーステアリング装置の制御系の構成例を示すブロック図である。 本発明の構成例(第1実施形態)を示すブロック図である。 安定性補償部の構成例(第1実施形態)を示すブロック図である。 第1実施形態のカットオフ周波数の特性例(モータ角速度)を示す特性図である。 本発明の動作例(第1実施形態)を示すフローチャートである。 本発明の構成例(第2実施形態)を示すブロック図である。 安定性補償部の構成例(第2実施形態)を示すブロック図である。 第2実施形態のカットオフ周波数の特性例(モータ角速度)を示す特性図である。 第2実施形態のカットオフ周波数の特性例(車速)を示す特性図である。 本発明の動作例(第2実施形態)を示すフローチャートである。 第3実施形態のカットオフ周波数の特性例(モータ角速度)を示す特性図である。 第3実施形態のカットオフ周波数の特性例(車速)を示す特性図である。 本発明の動作例(第3実施形態)を示すフローチャートである。 カットオフ周波数の他の特性例(モータ角速度)を示す特性図である。
 本発明の電動パワーステアリング装置では、モータ角速度及びモータ角加速度、或いはモータ角速度及、モータ角加速度及び車速に基づく安定性補償部により、低速操舵時にはノイズによる違和感を低減し、高速操舵時には位相遅れのないようなスムーズな操舵にするために、モータ角加速度をフィルタリング処理するフィルタ部のカットオフ周波数を、モータ角速度或いはモータ角速度及び車速に応じて可変できるようにしている。即ち、保舵時及び低速操舵時には低いカットオフ周波数を設定し、高速操舵時にはカットオフ周波数が高くなるように設定し、微小振動が少なく操舵フィーリングの良い電動パワーステアリング装置を達成している。
 以下に、本発明の実施形態を図面を参照して説明する。
 図3は、本発明実施形態の一例(第1実施形態)を図2に対応させて示しており、モータ20に連結された回転センサ21からのモータ角度θはモータ角速度演算部100に入力され、モータ角速度ωが演算(微分)される。モータ角速度ωはモータ角加速度演算部101及び安定性補償部110に入力され、安定性補償部110はカットオフ周波数を可変制御されて補償用操舵トルクTf及び補償用電流指令値Ifを生成する。また、トルク制御部31の入力側には減算部34Aが設けられており、トルク制御部31及び電流制限部33の間には加算部34Bが設けられている。減算部34Aには操舵トルクThが加算入力され、補償用操舵トルクTfが減算入力され、加算部34Bでは電流指令値Iref1及び補償用電流指令値Ifが加算される。
 安定性補償部110は図4に示すように、モータ角速度ωに基づいてカットオフ周波数fcを可変するカットオフ周波数(fc)可変部111及び112と、カットオフ周波数可変部111からのカットオフ周波数fc1に基づいて、モータ角加速度αをフィルタリング処理するフィルタ部113と、カットオフ周波数可変部112からのカットオフ周波数fc2に基づいて、モータ角加速度αをフィルタリング処理するフィルタ部114と、フィルタ部113からの出力に基づいて補償用操舵トルクTfを出力する補償用操舵トルク生成部115と、フィルタ部114からの出力に基づいて補償用電流指令値Ifを出力する補償用電流指令値生成部116とで構成されている。
 カットオフ周波数可変部111の特性は例えば図5に示すように、モータ角速度ω1まで一定のカットオフ周波数fc1とし、モータ角速度ω1より大きい領域でカットオフ周波数fcを線形に高くする特性となっている。同様に、カットオフ周波数可変部112の特性は例えば図5に示すように、モータ角速度ω2(>ω1)まで一定のカットオフ周波数fc2(>fc1)とし、モータ角速度ω2より大きい領域でカットオフ周波数fcを線形に高くする特性となっている。
 このような構成において、その動作例(第1実施形態)を図6のフローチャートを参照して説明する。
 先ず回転センサ21によりモータ角度θが検出され(ステップS1)、モータ角度θはモータ角速度演算部100に入力されてモータ角速度ωが演算される(ステップS2)。モータ角速度ωはモータ角加速度演算部101に入力されてモータ角加速度αが演算されると共に(ステップS3)、安定性補償部110内のカットオフ周波数可変部111及び112に入力される。モータ角加速度αは、安定性補償部110内のフィルタ部113及び114に入力される。
 先ず、図5に示す特性に従って、カットオフ周波数可変部111はカットオフ周波数fc1を可変する(ステップS4)。設定されたカットオフ周波数fc1はフィルタ部113に入力され、モータ角加速度αはフィルタ部113でカットオフ周波数fc1に従ってフィルタリング処理される(ステップS5)。フィルタ部113でフィルタリング処理された信号が補償用操舵トルク生成部115に入力され、補償用操舵トルク生成部115で信号処理された補償用操舵トルクTfが減算部34Aに入力され、操舵トルクThが補償される(ステップS6)。
 その後、図5に示す特性に従って、カットオフ周波数可変部112はカットオフ周波数fc2を可変する(ステップS10)。設定されたカットオフ周波数fc2はフィルタ部114に入力され、モータ角加速度αはフィルタ部114でカットオフ周波数fc2に従ってフィルタリング処理される(ステップS11)。フィルタ部114でフィルタリング処理された信号が補償用電流指令値生成部116に入力され、補償用電流指令値生成部116で信号処理された補償用電流指令値Ifが加算部34Bに入力され、電流指令値Irefが補償される(ステップS12)。
 上記動作は、終了となるまで繰り返される(ステップS13)。
 このように、フィルタ部113及び114のカットオフ周波数fc1及びfc2をモータ角速度ωで可変できるようにし、保舵時及び低速操舵時には低いカットオフ周波数を設定し、高速操舵時にはカットオフ周波数が高くなるように設定しているので、高周波側の特性を悪化させずに、低周波側で問題となる振動(保舵微振動)を抑制することができる。つまり、モータ角加速度に乗っているノイズを効果的に除去することで、補償器の性能を向上させている。これにより、操舵フィーリングの良い電動パワーステアリング装置が得られる。
 図7は、本発明の第2実施形態を図3に対応させて示しており、第2実施形態では更に車速Velが安定性補償部110Aに入力されている。安定性補償部110Aの構成は図8に示すように、モータ角速度ω及び車速Velに基づいてカットオフ周波数fcを可変するカットオフ周波数(fc)可変部111A及び112Aと、カットオフ周波数可変部111Aからのカットオフ周波数fc1に基づいて、モータ角加速度αをフィルタリング処理するフィルタ部113と、カットオフ周波数可変部112Aからのカットオフ周波数fc2に基づいて、モータ角加速度αをフィルタリング処理するフィルタ部114と、フィルタ部113からの出力に基づいて補償用操舵トルクTfを出力する補償用操舵トルク生成部115と、フィルタ部114からの出力に基づいて補償用電流指令値Ifを出力する補償用電流指令値生成部116とで構成されている。
 カットオフ周波数可変部111Aの特性は、例えば図9に示すように、モータ角速度ω21まで一定のカットオフ周波数fc11とし、モータ角速度ω21より大きい領域でカットオフ周波数fcを線形に高くする特性となっている。同様に、カットオフ周波数可変部112Aの特性は、例えば図9に示すように、モータ角速度ω22(>ω21)まで一定のカットオフ周波数fc21(>fc11)とし、モータ角速度ω22より大きい領域でカットオフ周波数fcを線形に高くする特性となっている。
 また、カットオフ周波数可変部111Aの特性は例えば図10に示すように、車速Velの低速の車速Vel11以下で一定値fcv11を保持し、低速の車速Vel11を超え、高速の車速Vel12以下で線形又は非線形で周波数fcv12(<fcv11)まで減少し、高速の車速Vel12を超える領域で周波数fcv12を保持する特性となっている。同様に、カットオフ周波数可変部112Aの特性は例えば図10に示すように、車速Velの低速の車速Vel21(<Vel11)以下で一定値fcv21(>fcv11)を保持し、低速の車速Vel21を超え、高速の車速Vel22(>Vel12)以下で線形又は非線形で周波数fcv22(<fcv21)まで減少し、高速の車速Vel22を超える領域で周波数fcv22を保持する特性となっている。カットオフ周波数fcv12及びfcv22は0であってもよい。
 車速について、低速の車速Vel11及びVel21は、例えば特にフロア振動やハンドルの微振動が問題となる0~2Km/h程度のクリープ時、駐車時や車庫入れ時の5Km/hに満たない極低速走行又は停止状態、更には市街地や狭い道路などを徐行する30Km/h程度までの低速走行を想定しており、高速の車速Vel12及びVel22は、例えば広い道路や幹線道路における50Km/h~80Km/h程度の走行や、高速道路や自動車専用道路における80Km/hを超える車速での走行状態を想定している。
 モータ角速度ω及び車速Velに応じてモータ角加速度αをフィルタリング処理するフィルタ部113及び114については、補償用操舵トルク生成部115と補償用電流指令値生成部116で別々に構成するが、これはトルク制御部31と電流制御部35でモータ角加速度を使用する目的が異なり、必要となるモータ角加速度の特性が個々に相違することに起因する。即ち、電流制御部35では、トルクリップルやフロア振動を低減するために電流指令値を補償するが、トルク制御部31では、運転者の操舵情報のみを抽出するために、トルクリップル等の振動成分をトルクセンサ値から除去している。トルクセンサ値は、コラムシャフトや減速ギア、トーションバーを経由して検出するため、モータ角加速度に比べ、含まれる振動成分は周波数帯域が低く、実際の挙動に対して位相が遅れている。このため、電流指令値への補償に用いるモータ角加速度と同じ特性の値を用いると、含まれる周波数帯域や位相が一致しないため、振動成分の除去が不十分になってしまうのみならず、振動発生の要因となる成分を加えてしまう可能性がある。従って、カットオフ周波数を個々に設定することで効果的なフィルタリング処理が可能となる。また、トルク制御部に用いるモータ角加速度のカットオフ周波数は、電流制御に用いるモータ角加速度のカットオフ周波数と同じ値若しくはそれ以下に設定することが望ましい。
 さらに、カットオフ周波数可変部111A及び112Aの特性は、モータ角速度ωに応じて求めた周波数と、車速Velに応じて求めた周波数の相加平均で求めてもよい。これにより、低速の車速で問題となるフロア振動やハンドルの微振動については、高速の車速に比べてカットオフ周波数を低く設定することで、振動の抑制効果をより高めることができる。一方、高速の車速においては、フィルタリング処理に伴う僅かな位相の遅れでも操舵フィーリングに影響が出るため、カットオフ周波数はトルク制御部の帯域より高く設定することが望ましい。高速の車速では低速で問題となる振動がロードノイズ等で紛れてしまうため、カットオフ周波数を高く設定しても問題ない。
 一方、低速の車速であっても操舵速度が速い場合、高速の車速の状態と同様に、わずかな位相の遅れが操舵フィーリングに影響を与えるため、操舵速度が速い場合は、カットオフ周波数を高く設定する必要がある。このため、操舵速度、即ちモータ角速度によって設定したカットオフ周波数と、車速によって設定したカットオフ周波数を相加平均することによって、操舵状態によらず、最適な特性を持ったモータ角加速度を効果的に算出することができる。
 このような構成において、その動作例(第2実施形態)を図11のフローチャートを参照して説明する。
 先ず回転センサ21によりモータ角度θが検出され(ステップS20)、モータ角度θはモータ角速度演算部100に入力されてモータ角速度ωが演算される(ステップS21)。モータ角速度ωはモータ角加速度演算部101に入力されてモータ角加速度αが演算され(ステップS22)、車速Velが入力される(ステップS23)。モータ角速度ω及び車速Velは、安定性補償部110A内のカットオフ周波数可変部111A及び112Aに入力され、モータ角加速度αは、安定性補償部110内のフィルタ部113及び114に入力される。なお、車速Velの入力順序は適宜変更可能である。
 次に、図9及び図10に示す特性に従ってモータ角速度ωに応じて求めた周波数と、車速Velに応じて求めた周波数の相加平均により、カットオフ周波数可変部111Aはカットオフ周波数fc1を可変する(ステップS24)。設定されたカットオフ周波数fc1はフィルタ部113に入力され、モータ角加速度αはフィルタ部113でカットオフ周波数fc1に従ってフィルタリング処理される(ステップS25)。フィルタ部113でフィルタリング処理された信号が補償用操舵トルク生成部115に入力され、補償用操舵トルク生成部115で信号処理された補償用操舵トルクTfが減算部34Aに入力され、操舵トルクThが補償される(ステップS26)。
 その後、図9及び図10に示す特性に従ってモータ角速度ωに応じて求めた周波数と、車速Velに応じて求めた周波数の相加平均により、カットオフ周波数可変部112Aはカットオフ周波数fc2を可変する(ステップS30)。設定されたカットオフ周波数fc2はフィルタ部114に入力され、モータ角加速度αはフィルタ部114でカットオフ周波数fc2に従ってフィルタリング処理される(ステップS31)。フィルタ部114でフィルタリング処理された信号が補償用電流指令値生成部116に入力され、補償用電流指令値生成部116で信号処理された補償用電流指令値Ifが加算部34Bに入力され、電流指令値Irefが補償される(ステップS32)。
 上記動作は、終了となるまで繰り返される(ステップS33)。
 このように、フィルタ部113及び114のカットオフ周波数fc1及びfc2をモータ角速度ω及び車速Velで可変できるようにし、保舵時及び低速操舵時には低いカットオフ周波数を設定し、高速操舵時にはカットオフ周波数が高くなるように設定しているので、高周波側の特性を悪化させずに、低周波側で問題となる振動(保舵微振動)を抑制することができる。つまり、モータ角加速度に乗っているノイズを効果的に除去することで、補償器の性能を向上させている。これにより、操舵フィーリングの良い電動パワーステアリング装置が得られる。
 カットオフ周波数(fc)可変部111A及び112Aは、図12及び図13に示すような特性としても良い(第3実施形態)。第3実施形態の構成は図7及び図8であり、第2実施形態と同様である。即ち、カットオフ周波数可変部111Aの特性は図12に示すように、モータ角速度ω31まで一定のカットオフ周波数fc31とし、モータ角速度ω31より大きい領域でカットオフ周波数fcを線形に高くする特性となっている。同様に、カットオフ周波数可変部112Aの特性は図12に示すように、モータ角速度ω32(>ω31)まで一定のカットオフ周波数fc32(>fc31)とし、モータ角速度ω32より大きい領域でカットオフ周波数fcを線形に高くする特性となっている。
 また、カットオフ周波数可変部111Aの特性は図13に示すように、車速Velの低速の車速Vel41以下で一定値fcv41を保持し、低速の車速Vel41を超え、高速の車速Vel42以下で線形又は非線形で周波数fcv42(>fcv41)まで増加し、高速の車速Vel42を超える領域で周波数fcv42を保持する特性となっている。同様に、カットオフ周波数可変部112Aの特性は図13に示すように、車速Velの低速の車速Vel31(>Vel41)以下で一定値fcv31(>fcv41)を保持し、低速の車速Vel31を超え、高速の車速Vel32以下で線形又は非線形で周波数fcv32(>fcv31)まで増加し、高速の車速Vel32を超える領域で周波数fcv32を保持する特性となっている。カットオフ周波数fcv41及びfcv31は0であってもよい。
 車速Velについて、低速の車速Vel41及びVel31は、例えば特に電動パワーステアリング装置を加振源とするフロア振動やハンドルの微振動が問題となる0~2km/h程度のクリープ時、駐車時や車庫入れ時の5km/hに満たない極低速走行又は停止状態、更には市街地や狭い道路などを徐行する30km/h程度までの低速走行を想定しており、高速の車速Vel42及びVel32は、例えば広い道路や幹線道路における50km/h~80km/h程度の走行や、高速道路や自動車専用道路における80km/hを超える車速での走行状態を想定している。
 また低速の車速であっても、操舵速度が速い場合は、高速の車速の状態と同様にわずかな位相の遅れが操舵フィーリングに影響を与えるため、カットオフ周波数を高く設定することが望ましい。車速Velが低い状態でモータ角速度ωが高い場合、即ち低速の車速で走行中に速い操舵速度で操舵した場合には、例えば重み付け定数W1を10、W2を1のようにW1をW2の数倍~数十倍に設定して、カットオフ周波数を車速Velに応じて求めた周波数よりも高めに設定することで、操舵フィーリングを損なうことなくノイズを除去できる。このように、モータ角速度ωによって設定したカットオフ周波数と、車速Velによって設定したカットオフ周波数を加重平均することによって、操舵状態によらず最適な特性を持ったモータ角加速度αを効果的に算出することができる。
 振動特性や操舵性能は、車両の種類や状態により異なるが、特に完成車両のばらつきや、車両の使用状態、経年変化などによる特性の変化に対応するためには、加重平均の重み付け定数W1及びW2を車両の状態に合わせてチューニングすることで、更に効果的にきめ細かな振動特性や操舵性能を実現することが可能となる。例えば、ベース車両の派生車などで、車両構成部材の改善等によりフロア振動の周波数が高くなった場合、モータ角速度ωに応じて求めた周波数の重み付け定数W1を、車速Velに応じて求めた周波数の重み付け定数W2より大きくすることで、モータ角速度ωに対する感度を上げて操舵性能を向上させることができる。さらに何れかの重み付け定数をゼロに設定すれば、カットオフ周波数をモータ角速度ωのみ、又は車速Velのみで可変することができるため、実際の振動特性や求められる車両の操舵性能に合わせてフィルタ部113及び14について、異なるカットオフ周波数の特性を設定することも可能となる。
 このような構成において、その動作例(第3実施形態)を図14のフローチャートを参照して説明する。
 先ず回転センサ21によりモータ角度θが検出され(ステップS40)、モータ角度θはモータ角速度演算部100に入力されてモータ角速度ωが演算される(ステップS41)。モータ角速度ωはモータ角加速度演算部101に入力されてモータ角加速度αが演算され(ステップS42)、車速Velが入力される(ステップS43)。モータ角速度ωはカットオフ周波数可変部111A及び112Aに入力され、車速Velもカットオフ周波数可変部111A及び112Aに入力され、モータ角加速度αはフィルタ部113及び114に入力される。
 そして、図12及び図13に示す特性に従ってモータ角速度ωに応じて求めた周波数と、車速Velに応じて求めた周波数の加重平均により、カットオフ周波数可変部111Aはカットオフ周波数fc1を可変する(ステップS44)。設定されたカットオフ周波数fc1はフィルタ部113に入力され、モータ角加速度αはフィルタ部113でカットオフ周波数fc1に従ってフィルタリング処理される(ステップS45)。フィルタ部113でフィルタリング処理された信号が補償用操舵トルク生成部115に入力され、補償用操舵トルク生成部115で信号処理された補償用操舵トルクTfが減算部34Aに入力され、操舵トルクThが補償される(ステップS46)。
 その後、図12及び図13に示す特性に従ってモータ角速度ωに応じて求めた周波数と、車速Velに応じて求めた周波数の加重平均により、カットオフ周波数可変部112Aはカットオフ周波数fc2を可変する(ステップS50)。設定されたカットオフ周波数fc2はフィルタ部114に入力され、モータ角加速度αはフィルタ部114でカットオフ周波数fc2に従ってフィルタリング処理される(ステップS51)。フィルタ部114でフィルタリング処理された信号が補償用電流指令値生成部116に入力され、補償用電流指令値生成部116で信号処理された補償用電流指令値Ifが加算部34Bに入力され、電流指令値Irefが補償される(ステップS52)。
 上記動作は、終了となるまで繰り返される(ステップS53)。
 このように、フィルタ部113及び114のカットオフ周波数fc1及びfc2をモータ角速度ω及び車速Velで可変できるようにし、保舵時及び低速操舵時には低いカットオフ周波数を設定し、高速操舵時にはカットオフ周波数が高くなるように設定しているので、モータの高周波領域の特性を悪化させずに、モータの低周波領域で問題となる振動(保舵微振動)を抑制することができる。つまり、モータ角加速度αに乗っているノイズを効果的に除去することで、補償器の性能を向上させている。これにより、操舵フィーリングの良い電動パワーステアリング装置が得られる。
 上述ではカットオフ周波数可変部111及び112、111A及び112Aの可変特性を全て線形にしているが、図15に示すように、モータ角速度ω10又はω11までカットオフ周波数fc1又はfc2を線形に高くし、モータ角速度ω10又はω11より大きい領域でカットオフ周波数fcを非線形に高くする特性としても良い。また、モータ角速度ω10又はω11まで非線形で高くし、モータ角速度ω10又はω11より大きい領域で線形に高くするようにしても良い。
 なお、上述ではモータ角度をモータに連結されたレゾルバ等の回転センサより取得しているが、舵角センサより取得しても良い。
1        ハンドル
2        コラム軸(ステアリングシャフト、ハンドル軸)
10       トルクセンサ
12       車速センサ
13       バッテリ
20       モータ
21       回転センサ
30       コントロールユニット(ECU)
31       トルク制御部
35       電流制御部
100      モータ角速度演算部
101      モータ角加速度演算部
110、110A      安定性補償部
111、111A、112、112A  カット周波数(fc)可変部
113、114  フィルタ部
115      補償用操舵トルク生成部
116      補償用電流指令値生成部

Claims (14)

  1. 少なくとも操舵トルクに基づいて電流指令値を演算するトルク制御部を有し、前記電流指令値に基づく電流制御系によりモータを駆動して、操舵系をアシスト制御するようになっている電動パワーステアリング装置において、
    モータ回転角度からモータ角速度ωを演算するモータ角速度演算部と、前記モータ角速度ωからモータ角加速度αを演算するモータ角加速度演算部と、前記モータ角速度ω及び前記モータ角加速度αに基づいて補償用操舵トルク及び補償用電流指令値を演算する安定性補償部と、
    を具備し、前記補償用操舵トルクで前記操舵トルクを補償し、前記補償用電流指令値で前記電流指令値を補償するようになっていることを特徴とする電動パワーステアリング装置。
  2. 前記安定性補償部が、
    前記モータ角速度ωに基づいてカットオフ周波数fc1を設定する第1のカットオフ周波数可変部と、前記カットオフ周波数fc1に応じて前記モータ角加速度αをフィルタリング処理する第1のフィルタ部と、前記モータ角速度ωに基づいてカットオフ周波数fc2を設定する第2のカットオフ周波数可変部と、前記カットオフ周波数fc2に応じて前記モータ角加速度αをフィルタリング処理する第2のフィルタ部と、
    で構成されている請求項1に記載の電動パワーステアリング装置。
  3. 前記第1のカットオフ周波数可変部が、モータ角速度ω1以下で前記カットオフ周波数fc1を一定とし、前記モータ角速度ω1を超える領域で線形若しくは非線形に高くなるカットオフ周波数特性であり、
    前記第2のカットオフ周波数可変部が、モータ角速度ω2(>ω1)以下で前記カットオフ周波数fc2を一定とし、前記モータ角速度ω2を超える領域で線形若しくは非線形に高くなるカットオフ周波数特性となっている請求項2に記載の電動パワーステアリング装置。
  4. 前記第1のカットオフ周波数可変部が、モータ角速度ω10以下で前記カットオフ周波数fc1が線形に増加し、前記モータ角速度ω10を超える領域で線形若しくは非線形に高くなるカットオフ周波数特性であり、
    前記第2のカットオフ周波数可変部が、モータ角速度ω11(>ω10)以下で前記カットオフ周波数fc2が線形に増加し、前記モータ角速度ω11を超える領域で線形若しくは非線形に高くなるカットオフ周波数特性となっている請求項2に記載の電動パワーステアリング装置。
  5. 前記補償用操舵トルク及び前記補償用電流指令値の演算に更に車速Velが用いられ、かつ前記カットオフ周波数fc1及びfc2の設定にそれぞれ前記モータ角速度ω及び前記車速Velが用いられている請求項1に記載の電動パワーステアリング装置。
  6. 前記第1のカットオフ周波数可変部が、前記モータ角速度ωと周波数との関係を示した角速度対応マップによって求められた周波数fc11と、前記車速Velと周波数との関係を示した車速対応マップによって求められた周波数fcv11とを相加平均した周波数を前記カットオフ周波数fc1とするようになっており、
    前記第2のカットオフ周波数可変部が、前記モータ角速度ωと周波数との関係を示した角速度対応マップによって求められた周波数fc21と、車速Velと周波数との関係を示した車速対応マップによって求められた周波数fcv21とを相加平均した周波数をカットオフ周波数fc2とするようになっている請求項5に記載の電動パワーステアリング装置。
  7. 前記第1のカットオフ周波数可変部の角速度対応マップが、モータ角速度ω21以下で前記周波数fc11を一定とし、前記モータ角速度ω21を超える領域で線形若しくは非線形に高くなる周波数特性であり、
    前記第2のカットオフ周波数可変部の角速度対応マップが、モータ角速度ω22(>ω21)以下で前記周波数fc21を一定とし、前記モータ角速度ω22を超える領域で線形若しくは非線形に高くなる周波数特性となっている請求項6に記載の電動パワーステアリング装置。
  8. 前記第1のカットオフ周波数可変部の角速度対応マップが、モータ角速度ω21以下で前記周波数fc11が線形に増加し、前記モータ角速度ω21を超える領域で線形若しくは非線形に高くなる周波数特性であり、
    前記第2のカットオフ周波数可変部の角速度対応マップが、モータ角速度ω22(>ω21)以下で前記周波数fc21が線形に増加し、前記モータ角速度ω22を超える領域で線形若しくは非線形に高くなる周波数特性となっている請求項6に記載の電動パワーステアリング装置。
  9. 前記第1のカットオフ周波数可変部の車速対応マップが、前記車速Velの低速の車速Vel11以下で一定値fcv11を保持し、前記低速の車速Vel11を超え、高速の車速Vel12以下で線形又は非線形で周波数fcv12(<fcv11)まで減少し、
    前記高速の車速Vel12を超える領域で周波数fcv12を保持する周波数特性であり、前記第2のカットオフ周波数可変部の車速対応マップが、前記車速Velの低速の車速Vel21以下で一定値fcv21を保持し、前記低速の車速Vel21を超え、高速の車速Vel22以下で線形又は非線形で周波数fcv22(<fcv21)まで減少し、
    前記高速の車速Vel22を超える領域で周波数fcv22を保持する周波数特性となっている請求項7又は8に記載の電動パワーステアリング装置。
  10. 前記第1のカットオフ周波数可変部が、前記モータ角速度ωと周波数との関係を示した角速度対応マップによって求められた周波数fc31と、前記車速Velと周波数との関係を示した車速対応マップによって求められた周波数fcv11とを加重平均した周波数を前記カットオフ周波数fc1とするようになっており、前記第2のカットオフ周波数可変部が、前記モータ角速度ωと周波数との関係を示した角速度対応マップによって求められた周波数fc32と、前記車速Velと周波数との関係を示した車速対応マップによって求められた周波数fcv21とを加重平均した周波数をカットオフ周波数fc2とするようになっている請求項5に記載の電動パワーステアリング装置。
  11. 前記第1のカットオフ周波数可変部の角速度対応マップが、モータ角速度ω31以下で前記周波数fc31を一定とし、前記モータ角速度ω31を超える領域で線形若しくは非線形に高くなる周波数特性であり、前記第2のカットオフ周波数可変部の角速度対応マップが、モータ角速度ω32(>ω31)以下で前記周波数fc32を一定とし、前記モータ角速度ω32を超える領域で線形若しくは非線形に高くなる周波数特性となっている請求項10に記載の電動パワーステアリング装置。
  12. 前記第1のカットオフ周波数可変部の角速度対応マップが、モータ角速度ω31以下で前記周波数fc31が線形に増加し、前記モータ角速度ω31を超える領域で線形若しくは非線形に高くなる周波数特性であり、前記第2のカットオフ周波数可変部の角速度対応マップが、モータ角速度ω32(>ω31)以下で前記周波数fc32が線形に増加し、前記モータ角速度ω32を超える領域で線形若しくは非線形に高くなる周波数特性となっている請求項10に記載の電動パワーステアリング装置。
  13. 前記第1のカットオフ周波数可変部の車速対応マップが、前記車速Velの低速の車速Vel31以下で一定値fcv31を保持し、前記低速の車速Vel31を超え、高速の車速Vel32以下で線形又は非線形で周波数fcv32(>fcv31)まで増加し、前記高速の車速Vel32を超える領域で周波数fcv32を保持する周波数特性であり、前記第2のカットオフ周波数可変部の車速対応マップが、前記車速Velの低速の車速Vel41以下で一定値fcv41を保持し、前記低速の車速Vel41を超え、高速の車速Vel42以下で線形又は非線形で周波数fcv42(>fcv41)まで増加し、前記高速の車速Vel42を超える領域で周波数fcv42を保持する周波数特性となっている請求項11又は12に記載の電動パワーステアリング装置。
  14. 前記モータ角速度ωを舵角センサより算出するようになっている請求項1乃至13のいずれかに記載の電動パワーステアリング装置の制御装置。
PCT/JP2015/081160 2014-11-19 2015-11-05 電動パワーステアリング装置 WO2016080198A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016547628A JP6041076B2 (ja) 2014-11-19 2015-11-05 電動パワーステアリング装置
CN201580062787.7A CN107000785B (zh) 2014-11-19 2015-11-05 电动助力转向装置
BR112017010560-8A BR112017010560B1 (pt) 2014-11-19 2015-11-05 Aparelho de direção elétrica
US15/127,232 US10099721B2 (en) 2014-11-19 2015-11-05 Electric power steering apparatus
EP15861563.3A EP3222496B1 (en) 2014-11-19 2015-11-05 Electric power steering device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014234638 2014-11-19
JP2014-234638 2014-11-19
JP2015042024 2015-03-04
JP2015-042024 2015-03-04
JP2015079873 2015-04-09
JP2015-079873 2015-04-09

Publications (1)

Publication Number Publication Date
WO2016080198A1 true WO2016080198A1 (ja) 2016-05-26

Family

ID=56013749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081160 WO2016080198A1 (ja) 2014-11-19 2015-11-05 電動パワーステアリング装置

Country Status (6)

Country Link
US (1) US10099721B2 (ja)
EP (1) EP3222496B1 (ja)
JP (1) JP6041076B2 (ja)
CN (1) CN107000785B (ja)
BR (1) BR112017010560B1 (ja)
WO (1) WO2016080198A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170001659A1 (en) * 2015-07-03 2017-01-05 Mazda Motor Corporation Electric power steering control device
JP2018098832A (ja) * 2016-12-08 2018-06-21 株式会社デンソー モータ制御装置、および、これを用いた電動パワーステアリング装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3239020B1 (en) 2014-12-26 2019-11-20 NSK Ltd. Electric power steering device
WO2016163343A1 (ja) * 2015-04-10 2016-10-13 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置
JP6584658B2 (ja) * 2016-05-24 2019-10-02 三菱電機株式会社 電動パワーステアリング装置
CN106956282B (zh) * 2017-05-18 2019-09-13 广州视源电子科技股份有限公司 角加速度确定方法、装置、机器人及存储介质
US20190092380A1 (en) * 2017-09-22 2019-03-28 Ford Global Technologies, Llc Steering torque control
KR102436844B1 (ko) * 2018-02-02 2022-08-26 주식회사 만도 모터의 토크 보상 장치 및 방법
US11117612B2 (en) * 2018-03-09 2021-09-14 Steering Solutions Ip Holding Corporation Dither noise management in electric power steering systems
EP3831694B1 (en) * 2018-07-31 2022-06-08 Mitsubishi Electric Corporation Steering control system
US11511795B2 (en) * 2018-10-11 2022-11-29 Steering Solutions Ip Holding Corporation Dither noise management in electric power steering systems
JP7189060B2 (ja) * 2019-03-27 2022-12-13 トヨタ自動車株式会社 車両走行制御システム
DE102019206980B4 (de) * 2019-05-14 2023-06-22 Volkswagen Aktiengesellschaft Verfahren und Lenkungssteuergerät zum Ermitteln einer Stellgröße für das Einstellen eines Servolenkmoments bei einem Fahrzeuglenksystem
KR102172090B1 (ko) * 2019-08-30 2020-10-30 현대모비스 주식회사 전동식 조향장치의 제어장치 및 그 방법
KR20210085611A (ko) * 2019-12-31 2021-07-08 현대모비스 주식회사 전동식 조향장치의 제어장치 및 그 방법
KR20220008012A (ko) * 2020-07-13 2022-01-20 현대모비스 주식회사 전동식 조향시스템의 제어 장치 및 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199219A (ja) * 2005-01-24 2006-08-03 Nsk Ltd 電動パワーステアリング装置の制御装置
WO2012160850A1 (ja) * 2011-05-25 2012-11-29 三菱電機株式会社 電動パワーステアリングの制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002100704A2 (en) * 2001-06-08 2002-12-19 Delphi Technologies, Inc. Velocity compensation control for electric steering systems
EP2256019B1 (en) * 2005-01-14 2013-06-05 NSK Ltd. Control apparatus for electric power steering apparatus
JP4468415B2 (ja) * 2007-06-29 2010-05-26 三菱電機株式会社 電動パワーステアリング制御装置
JP2009166715A (ja) * 2008-01-17 2009-07-30 Nsk Ltd 電動パワーステアリング装置
JP5228578B2 (ja) * 2008-03-31 2013-07-03 株式会社ジェイテクト モータ制御装置および電動パワーステアリング装置
JP5343599B2 (ja) * 2009-02-10 2013-11-13 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
EP3031701B1 (en) * 2014-07-31 2018-04-04 NSK Ltd. Electric power steering device
KR101684513B1 (ko) * 2015-04-28 2016-12-08 현대자동차 주식회사 Mdps 시스템의 복원 제어장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199219A (ja) * 2005-01-24 2006-08-03 Nsk Ltd 電動パワーステアリング装置の制御装置
WO2012160850A1 (ja) * 2011-05-25 2012-11-29 三菱電機株式会社 電動パワーステアリングの制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3222496A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170001659A1 (en) * 2015-07-03 2017-01-05 Mazda Motor Corporation Electric power steering control device
JP2018098832A (ja) * 2016-12-08 2018-06-21 株式会社デンソー モータ制御装置、および、これを用いた電動パワーステアリング装置

Also Published As

Publication number Publication date
CN107000785B (zh) 2018-07-17
EP3222496A1 (en) 2017-09-27
EP3222496A4 (en) 2018-10-24
JP6041076B2 (ja) 2016-12-07
EP3222496B1 (en) 2019-08-14
BR112017010560A2 (ja) 2018-09-11
BR112017010560B1 (pt) 2022-08-09
US20180170422A1 (en) 2018-06-21
CN107000785A (zh) 2017-08-01
US10099721B2 (en) 2018-10-16
JPWO2016080198A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6041076B2 (ja) 電動パワーステアリング装置
JP6065016B2 (ja) 電動パワーステアリング装置
JP6504322B2 (ja) 電動パワーステアリング装置
US20200189654A1 (en) Electric power steering apparatus
JP6079942B2 (ja) 電動パワーステアリング装置
US9637166B2 (en) Electric power steering apparatus
JP5994959B2 (ja) 電動パワーステアリング装置
JP2008018825A (ja) 電動パワーステアリング装置の制御装置
EP3132996B1 (en) Electric power steering device
US9988077B2 (en) Electric power steering control device
JP2017210009A (ja) 電動パワーステアリング装置
JP2014058295A (ja) 電動パワーステアリング装置
US20170001659A1 (en) Electric power steering control device
JP5959981B2 (ja) 電動パワーステアリング装置
JP4720361B2 (ja) 操舵制御装置
JP5028888B2 (ja) 電動パワーステアリング装置の制御装置
JP3884842B2 (ja) 車両用操舵装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861563

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547628

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15127232

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015861563

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015861563

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017010560

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112017010560

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017010560

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170519