WO2016076544A1 - 연속식 급랭 응고 장치 - Google Patents

연속식 급랭 응고 장치 Download PDF

Info

Publication number
WO2016076544A1
WO2016076544A1 PCT/KR2015/011024 KR2015011024W WO2016076544A1 WO 2016076544 A1 WO2016076544 A1 WO 2016076544A1 KR 2015011024 W KR2015011024 W KR 2015011024W WO 2016076544 A1 WO2016076544 A1 WO 2016076544A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
crucible
chamber
pressure
supplied
Prior art date
Application number
PCT/KR2015/011024
Other languages
English (en)
French (fr)
Inventor
최영필
박철호
김민현
김명한
Original Assignee
일진전기 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진전기 주식회사 filed Critical 일진전기 주식회사
Priority to CN201580061322.XA priority Critical patent/CN107107174A/zh
Priority to US15/522,607 priority patent/US10610926B2/en
Publication of WO2016076544A1 publication Critical patent/WO2016076544A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/064Accessories therefor for supplying molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/068Accessories therefor for cooling the cast product during its passage through the mould surfaces
    • B22D11/0682Accessories therefor for cooling the cast product during its passage through the mould surfaces by cooling the casting wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/113Treating the molten metal by vacuum treating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/28Melting pots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/32Controlling equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • B22D25/04Casting metal electric battery plates or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C13/00Rolls, drums, discs, or the like; Bearings or mountings therefor

Definitions

  • the present invention relates to a continuous quench solidification device, and more particularly to a device capable of continuous rapid solidification of the alloy.
  • Lithium secondary batteries have recently been applied to the transportation applications of the hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV), electric vehicle (EV), and the smart grid. It has been applied to a large portion of power consumption such as an electric power storage device.
  • HEV hybrid electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • EV electric vehicle
  • smart grid smart grid
  • Si-based and Sn-based alloys as a negative electrode active material for improving the energy density of lithium secondary batteries have been conducted.
  • Si series is used as the negative electrode material, 10 times or more theoretical capacity (4010Ah / Kg) can be expected compared to the theoretical capacity of graphite (372Ah / Kg), which is excellent in terms of energy density.
  • Si shows a volume change rate of 3 to 400%, which is 20 times or more. Therefore, when the Si-based alloy is used as a negative electrode active material, the particles gradually fall off due to expansion due to volume change in the process of lithium ion entering and exiting the negative electrode material by repeated charging and discharging, thereby deteriorating cycle characteristics. Disadvantages arise. If the volume change of the active material is large, cracks of the active material particles, poor contact between the active material and the current collector, etc., may cause a problem of shortening the charge / discharge cycle life.
  • the structure of the material used as the negative electrode active material should be formed uniformly.
  • Melt spinning method may be used as a method of preparing a Si-based negative electrode active material, and a conceptual diagram of a manufacturing apparatus by the melt spinning method is illustrated in FIG. 1.
  • the manufacturing apparatus by the melt spinning method is provided with the crucible 501 which melts and accommodates the alloy used as a raw material, and the rotating roller 503 which contacts the molten alloy 502 discharged from this crucible 501.
  • the molten alloy 502 discharged from the crucible 501 is cooled in contact with the rotating roller 503, and the output is formed in a ribbon type.
  • the present invention provides a continuous quench solidification apparatus capable of supplying a continuous molten metal capable of minimizing the opening of a frequent device for replenishing the raw metal to be melted and maintaining the continuity of the work as much as possible.
  • the present invention provides a continuous quench solidification device having a structure that is easy to supply the molten metal sequentially.
  • the present invention provides a continuous quench solidification apparatus for enabling a vacuum process in a cooling chamber in which molten metal is supplied to a cooling roll to be cooled.
  • the present invention provides a continuous quench solidification device having a means for controlling the supply of molten metal to the cooling roll at a constant pressure irrespective of the exhaustion of the molten metal in the crucible.
  • Continuous quench solidification apparatus comprises a cooling roll for cooling the molten metal supplied on the outer peripheral surface; Crucible for supplying molten metal to the cooling roll; And at least two molten metal supply parts for melting raw metal and sequentially supplying the molten metal to the crucible.
  • the molten metal supply unit may be a melting furnace for melting the raw material metal contained therein.
  • the molten metal supply unit the auxiliary crucible chamber having an internal heating means; A gate for opening and closing the additional crucible chamber; And an auxiliary crucible for melting the raw material metal in the additional crucible chamber and being transferred to the crucible side when the gate is opened to supply the molten metal to the crucible.
  • the apparatus may further include a continuous supply control unit for controlling the opening and closing of the gate and the transfer of the auxiliary crucible so that molten metal is sequentially supplied from the plurality of molten metal supply units.
  • the first chamber to form a closed space in which the molten metal supplied from the crucible is cooled by the cooling roll; And a second chamber formed in a space independent of the first chamber and forming an enclosed space in which the molten metal is supplied to the crucible by the molten metal supply unit.
  • the pressure adjusting unit for adjusting the pressure of the second chamber may further include.
  • the pressure regulator may control the pressure by supplying an inert gas into the second chamber.
  • It may also include a control unit for controlling the pressure adjusting unit to increase the pressure of the second chamber in proportion to the exhausted state of the molten metal supplied to the crucible.
  • It may further include a; vacuum degree adjusting unit for controlling the degree of vacuum of the first chamber.
  • It may also include a control unit for controlling the vacuum degree adjusting unit to increase the vacuum degree of the first chamber in proportion to the exhausted state of the molten metal supplied to the crucible.
  • the vacuum degree of the first chamber may be adjusted in the range of 0.1 to 10 torr.
  • a pressure control unit for adjusting the pressure of the second chamber; And a control unit for controlling the vacuum degree adjusting unit and the pressure adjusting unit to increase the vacuum degree of the first chamber and the pressure of the second chamber in proportion to the exhausted state of the molten metal supplied to the crucible.
  • auxiliary crucibles or melting furnaces sequential supply of molten metal can be performed, thereby minimizing the opening of a frequent device for replenishing raw metals to be melted and maintaining continuity of work.
  • 1 is a schematic view schematically showing a manufacturing apparatus by a conventional melt spinning method.
  • FIG. 2 is a schematic plan view of a quench solidification apparatus according to an embodiment of the present invention.
  • FIG 3 is a schematic longitudinal cross-sectional view showing a quench solidification apparatus according to an embodiment.
  • FIG. 4 is a block diagram illustrating the components related to the control of the molten metal supply unit of the quench solidification apparatus according to an embodiment.
  • FIG. 5 is a block diagram illustrating the components related to the vacuum control of the first chamber and the pressure control of the second chamber in the quench solidification apparatus according to an embodiment.
  • Continuous quench solidification apparatus comprises a cooling roll for cooling the molten metal supplied on the outer peripheral surface; Crucible for supplying molten metal to the cooling roll; And at least two molten metal supply parts for melting raw metal and sequentially supplying the molten metal to the crucible.
  • FIGS. 2 and 3 are schematic plan view showing a quench solidification apparatus according to an embodiment of the present invention
  • Figure 3 is a schematic longitudinal cross-sectional view showing a quench solidification apparatus according to an embodiment.
  • the cooling roll 10 cools the molten metal, that is, the molten metal supplied from the crucible 30. Specifically, the cooling roll 10 receives a rotational force from the motor 20 and rotates about a certain rotation axis. The cooling roll 10 cools the molten metal supplied using an outer circumferential surface having a relatively lower temperature than the molten metal and then scatters the molten metal in a predetermined direction D2.
  • a cooled material for example, a ribbon-type alloy, which is cooled by the cooling roll 10 and flying along a predetermined direction D2, is stored and stored.
  • the crucible 30 is located above the cooling roll 10 and supplies molten metal contained therein to the outer circumferential surface of the cooling roll 10. Specifically, the crucible 30 receives the molten metal from the molten metal supply unit 40. The molten metal accommodated in the crucible 30 is heated by the heating part 35 adjacent to or provided with the crucible 30 and adjusted to an appropriate temperature.
  • the molten metal supply unit 40 is provided with two or more.
  • the molten metal supply part 40 melts a raw material metal, respectively, and supplies molten metal to the crucible 30 sequentially.
  • the other molten metal supply unit 40 is heated while maintaining the temperature or to melt the next metal to be supplied.
  • each of the molten metal supply unit 40 adjusts the amount of molten metal continuously supplied to the molten metal supply unit 40 according to the tapping speed of the molten metal contained in the crucible 30.
  • the molten metal supply part 40 is preferably supplemented by the amount of molten metal tapping out from the crucible 30 so that a certain level of metal is maintained in the crucible 30.
  • the crucible 30 itself may include a plurality of bimetals and the like to detect the level of the molten metal by partial temperature measurement, and an image capturing unit (not shown) for photographing the inside of the crucible 30 may be installed in the crucible 30. It is also possible to sense the melt level in the image through image processing.
  • the molten metal supply part 40 includes an auxiliary crucible chamber 43, an auxiliary crucible 41, and a gate 45.
  • the auxiliary crucible 41 accommodates raw metal and / or molten metal for producing a melt to be supplied to the crucible 30.
  • the auxiliary crucible chamber 43 is provided with a heating means to heat the auxiliary crucible 41 to provide a sealed space for manufacturing the melt or maintain the temperature, the gate 45 opens and closes the auxiliary crucible chamber 43 Provide a path through which the auxiliary crucible 41 can enter and exit.
  • the auxiliary crucible 41 may be supplied from the auxiliary crucible chamber 43 to the upper part of the crucible 30 by a separate transfer means (not shown) and then supply the molten metal accommodated therein to the crucible 30.
  • such molten metal supply unit 40 may omit a separate chamber and the like, it is possible to simply supply the molten metal sequentially using two or more melting furnaces (not shown).
  • the quenching and solidifying apparatus includes a first chamber C1 and a molten metal supply unit forming a space in which the molten metal supplied from the crucible 30 is cooled by the cooling roll 10.
  • 40 may include a second chamber C2 forming a space in which the molten metal is supplied to the crucible 30.
  • first chamber C1 and the second chamber C2 are preferably formed as closed independent spaces.
  • first chamber C1 and the second chamber C2 may be partitioned by the chamber partition wall CP. Due to this structure, the first chamber C1 may be subjected to a vacuum process.
  • the first chamber C1 controls the degree of vacuum so that the cooling process can be efficiently performed
  • the second chamber C2 creates an inert atmosphere and adjusts the pressure according to the degree of exhaustion of the molten metal in the crucible 30.
  • Figure 4 is a block diagram showing the configuration associated with the control of the molten metal supply unit of the quench solidification apparatus according to an embodiment
  • Figure 5 is a vacuum control of the first chamber and pressure control of the second chamber of the quench solidification apparatus according to an embodiment
  • the quenching and solidifying apparatus may further include a continuous supply controller 60.
  • the continuous supply controller 60 controls the components of FIG. 3 to control the molten metal to be sequentially supplied from the plurality of molten metal supplies 40 to the crucible 30. Specifically, in the case of the auxiliary crucible type, the continuous supply controller 60 sequentially opens and closes the gates of the molten metal supply parts 40a and 40b, and then controls the crucible transfer means 47 so that the auxiliary crucible can be transferred to the crucible side. Transfer. When the auxiliary crucible is transferred to the crucible side, the molten metal supply means 49 is controlled to supply the molten metal from the auxiliary crucible to the crucible.
  • the quenching and solidifying apparatus may include a vacuum degree adjusting unit 71 and a pressure adjusting unit 73.
  • the pressure adjusting unit 73 may adjust the pressure applied to the molten metal contained in the crucible by adjusting the pressure in the second chamber C2. At this time, the pressure adjusting unit 73 may adjust the pressure by supplying an inert gas into the above-described second chamber C2.
  • the vacuum degree adjusting unit 71 may adjust the degree of vacuum in the first chamber C1.
  • the vacuum degree of the first chamber (C1) is preferably to be adjusted in the range of 0.1 to 10 torr.
  • the rapid cooling rate decreases, resulting in a decrease in cooling efficiency and a decrease in yield.
  • the control for creating such an environment is difficult, as well as the cooling roll 10. Vortex occurs due to rotation, which can cause the nozzle to cool rapidly and become clogged.
  • control unit 65 controls the pressure adjusting unit 73 and the vacuum dynamic control unit 71 to control the pressure of the second chamber (C2) and the degree of vacuum of the first chamber (C1) to the cooling roll through the crucible
  • the final feed pressure of the molten metal to be fed can be controlled.
  • control unit 65 may control the pressure adjusting unit 73 to increase the pressure of the second chamber C2 in proportion to the exhausted state of the molten metal contained in the crucible.
  • the molten metal contained in the crucible is controlled to maintain a constant level as described above. However, the level of molten metal accommodated in the crucible may be lowered in the process of replacing the molten metal between the first auxiliary crucible and the second auxiliary crucible as described above.
  • the controller 65 may increase the vacuum degree of the first chamber in proportion to the exhausted state of the molten metal supplied to the crucible.
  • the degree of vacuum to increase the degree of vacuum of the first chamber C1 in proportion to the exhausted state of the molten metal in the crucible in a manner similar to the technique of controlling the pressure of the second chamber C2 to increase with the state of the molten metal in the crucible.
  • the adjusting unit 71 can be controlled. As the degree of vacuum of the first chamber C1 increases, the pressure relative to the first chamber C1 of the second chamber C2 gradually increases. In this manner, an effect similar to that of gradually increasing the pressure of the second chamber C2 can be obtained.
  • the controller 65 may simultaneously control the vacuum of the first chamber C1 and the pressure of the second chamber C2. For example, it is also possible to gradually increase the vacuum of the first chamber C1 and the pressure of the second chamber C2 simultaneously in proportion to the exhausted state of the molten metal contained in the crucible. Similar to the techniques described above, even when the molten metal contained in the crucible is exhausted, the pressure of the molten metal supplied from the crucible to the cooling roll can be kept constant by maintaining the pressure in the second chamber C2 at an appropriate level. have.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

본 발명은 연속식 급랭 응고 장치에 관한 것으로서, 구체적으로 본 발명에 따른 연속식 급랭 응고장치는 외주면 상에 공급되는 용융금속을 냉각시키는 냉각롤; 냉각롤에 용융금속을 공급하는 도가니; 원재료 금속을 용융하고, 상기 용융된 금속을 상기 도가니에 순차적으로 공급하는 적어도 둘 이상의 용탕공급부;를 포함한다.

Description

연속식 급랭 응고 장치
본 발명은 연속식 급랭 응고 장치에 관한 것으로서, 보다 상세하게는 합금의 연속적인 급속 응고가 가능한 장치에 관한 것이다.
리튬 이차 전지는 최근 하이브리드 자동차(HEV; Hybrid Electric Vehicle), 플러그인 하이브리드 자동차(PHEV; Plug-in Hybrid Electric Vehicle), 전기 자동차(EV; Electric Vehicle)의 수송용 응용 분야 및 스마트 그리드(Smart Grid) 적용 전력 저장 장치 등 전력의 소비가 많은 부분에까지 적용되고 있다.
이러한 경향에 따라 리튬 이차 전지의 에너지 밀도를 향상시키기 위하여 전극재료의 변경, 도포기술의 향상, 패킹(packing) 기술의 향상, 음극의 리튬 흡수율 향상 등을 도모하고 있으나, 전극재료의 변경 이외의 수단은 종래의 내부공간 최적화 및 설계에 의해 발전되어 왔고 현재에는 그 한계에 이르렀다고 알려져 있다.
최근에는 리튬 이차 전지의 에너지 밀도의 향상을 위해 음극 활물질로서, Si 계열, Sn 계열의 합금을 사용하는 연구가 진행되고 있다. 음극 소재로서 Si 계열을 사용하면, 흑연의 이론 용량(372Ah/Kg)에 대비하여, 10배 이상의 이론 용량(4010Ah/Kg)을 기대할 수 있어 에너지 밀도 측면에서 상당히 우수하다.
그러나, 흑연의 이론적 체적변화율이 12%인데 비하여, Si의 경우 그 20배 이상인 3~400%의 체적변화율을 보인다. 그러므로, Si 계열의 합금을 음극활물질로 활용할 경우, 반복적인 충방전에 의해 리튬 이온이 음극재료 내로 들어오고 나오는 과정에서 부피 변화에 의한 팽창으로 기인하여 입자들이 점차 떨어져 나가게 되므로, 사이클 특성이 저하되는 단점이 발생한다. 활물질의 부피변화가 크면 활물질 입자의 균열, 활물질과 집전체와의 접촉 불량 등이 생기기 때문에, 충방전 사이클 수명이 단축된다는 문제도 발생한다.
특히 활물질 입자에 균열이 생겼을 경우, 활물질 입자의 표면적이 증가되기 때문에, 활물질 입자와 비수 전해질과의 반응이 증대되는 결과, 비수 전해질의 분해 생성물로 이루어지는 피막이 활물질 표면에 형성되기 쉬워진다. 이러한 피막이 형성되면, 활물질과 비수 전해질 사이의 계면 저항이 증대되고, 그것이 충방전 사이클 수명을 짧게 하는 큰 원인이 된다. 이러한 문제점을 해결하기 위해서는 음극활물질로 사용되는 물질의 조직을 균일하게 형성하여야 한다.
Si 계열의 음극활물질을 제조하는 방법으로는 멜트 스피닝(melt spinning) 법이 사용될 수 있는데, 멜트 스피닝법에 의한 제조 장치에 대한 개념도가 도 1에 도시되어 있다. 멜트 스피닝 법에 의한 제조 장치는, 원재료가 되는 합금을 용융시키고 수용하는 도가니(501)와, 이 도가니(501)로부터 배출된 용융 합금(502)과 접촉하는 회전 롤러(503)를 구비한다. 도가니(501)에서 배출된 용융 합금(502)은 회전 롤러(503)에 접촉하여 냉각되며, 이에 의한 산출물은 리본 타입(ribbon type)으로 형성된다.
다만, 이러한 제조 장치의 경우 용융된 원재료를 모두 소진하는 경우 원재료를 재 보충하기 위하여 밀폐된 상태의 장치를 개방하는 등의 교체를 위한 추가 작업이 필요하게 되어 작업의 연속성이 저하되며, 다시 공급된 원재료를 용융시켜야 하는 등 전체 공정이 지연되는 문제점이 발생한다.
본 발명은 용융하고자 하는 원재료 금속의 보충을 위한 잦은 장치의 개방을 최소화하고 작업의 연속성을 최대한 유지할 수 있는 연속적인 용융 금속의 공급이 가능한 연속식 급랭 응고장치를 제공한다.
또한 본 발명은 순차적인 용융 금속의 공급이 용이한 구조를 갖는 연속식 급랭 응고장치를 제공한다.
또한 본 발명은 용융된 금속이 냉각롤에 공급되어 냉각되는 냉각 챔버에서 진공 공정이 가능하도록 하는 연속식 급랭 응고장치를 제공한다.
또한 본 발명은 도가니 내의 용탕의 소진 정도와 상관없이 일정한 압력으로 냉각롤에 용융 금속의 공급이 가능하도록 제어하는 수단을 구비하는 연속식 급랭 응고장치를 제공한다.
본 발명에 따른 연속식 급랭 응고장치는 외주면 상에 공급되는 용융금속을 냉각시키는 냉각롤; 냉각롤에 용융금속을 공급하는 도가니; 원재료 금속을 용융하고, 상기 용융된 금속을 상기 도가니에 순차적으로 공급하는 적어도 둘 이상의 용탕공급부;를 포함한다.
또한 상기 용탕공급부는 내부에 수용된 원재료 금속을 용융시키는 용해로일 수 있다.
또한 상기 용탕공급부는, 내부 가열 수단을 구비하는 보조 도가니 챔버; 상기 추가 도가니 챔버를 개폐하는 게이트; 및 상기 추가 도가니 챔버 내에서 상기 원재료 금속을 용융하고, 상기 게이트의 개방 시 상기 도가니 측으로 이송되어 상기 용융된 금속을 상기 도가니에 공급하는 보조 도가니;를 포함할 수 있다.
또한 상기 다수의 용탕공급부들로부터 순차적으로 용융 금속이 공급되도록 상기 게이트의 개폐 및 상기 보조 도가니의 이송을 제어하는 연속 공급 제어부를 더 포함할 수 있다.
또한 상기 도가니로부터 공급되는 용융금속이 상기 냉각롤에 의하여 냉각되는 밀폐된 공간을 형성하는 제1 챔버; 상기 제1 챔버와 독립된 공간으로 형성되고, 상기 용탕공급부에 의하여 상기 도가니에 용융금속이 공급되는 밀폐된 공간을 형성하는 제2 챔버;를 포함할 수 있다.
또한 상기 제2 챔버의 압력을 조절하는 압력 조절부;를 더 포함할 수 있다.
또한 상기 압력 조절부는 상기 제2 챔버 내에 불활성 가스를 공급하여 압력을 제어할 수 있다.
또한 상기 도가니에 공급된 용융 금속의 소진 상태에 비례하여 상기 제2 챔버의 압력을 증가시키도록 상기 압력 조절부를 제어하는 제어부를 포함할 수 있다.
상기 제1 챔버의 진공도를 제어하는 진공도 조절부;를 더 포함할 수 있다.
또한 상기 도가니에 공급된 용융 금속의 소진 상태에 비례하여 상기 제1 챔버의 진공도를 증가시키도록 상기 진공도 조절부를 제어하는 제어부를 포함할 수 있다.
또한 상기 제1 챔버의 진공도는 0.1 내지 10 torr 의 범위에서 조절될 수 있다.
또한 상기 제2 챔버의 압력을 조절하는 압력 조절부; 및 상기 도가니에 공급된 용융 금속의 소진 상태에 비례하여 상기 제1 챔버의 진공도 및 상기 제2 챔버의 압력을 증가시키도록 각각 상기 진공도 조절부 및 상기 압력 조절부를 제어하는 제어부를 포함할 수 있다.
본 발명에 따르면 복수의 보조 도가니 또는 용해로를 이용하여 순차적인 용탕의 공급이 가능하도록 함으로써 용융하고자 하는 원재료 금속의 보충을 위한 잦은 장치의 개방을 최소화하고 작업의 연속성을 최대한 유지할 수 있다.
또한 본 발명에 따르면 용탕이 도가니 내로 공급되는 공급 챔버와 용융된 금속이 냉각롤에 공급되어 냉각되는 냉각 챔버를 별도의 독립적인 밀폐 공간으로 구획함으로써 진공 공정이 가능하도록 할 수 있다.
또한 본 발명에 따르면 상술한 공급 챔버의 압력과 냉각 챔버의 진공도를 각각 또는 동시에 조절하여 도가니 내의 용탕의 소진 정도와 상관없이 일정한 압력으로 냉각롤에 용융 금속의 공급이 가능하도록 제어할 수 있다.
도 1은 종래의 멜트 스피닝법에 의한 제조장치를 개략적으로 나타내는 개략도이다.
도 2는 본 발명의 일 실시예에 따른 급랭 응고장치를 나타내는 모식적인 평면도이다.
도 3은 일 실시예에 따른 급랭 응고장치를 나타내는 모식적인 종단면도이다.
도 4는 일 실시예에 따른 급랭 응고장치 중 용탕 공급부의 제어와 관련된 구성들을 나타내는 블록도이다.
도 5는 일 실시예에 따른 급랭 응고장치 중 제1 챔버의 진공도와 제2 챔버의 압력 조절과 관련된 구성들을 나타내는 블록도이다.
본 발명에 따른 연속식 급랭 응고장치는 외주면 상에 공급되는 용융금속을 냉각시키는 냉각롤; 냉각롤에 용융금속을 공급하는 도가니; 원재료 금속을 용융하고, 상기 용융된 금속을 상기 도가니에 순차적으로 공급하는 적어도 둘 이상의 용탕공급부;를 포함한다.
이하 첨부된 도면을 참조하여 본 발명의 실시예를 설명한다. 특별한 정의나 언급이 없는 경우에 본 설명에 사용하는 방향을 표시하는 용어는 도면에 표시된 상태를 기준으로 한다. 또한 각 실시예를 통하여 동일한 도면부호는 동일한 부재를 가리킨다. 한편, 도면상에서 표시되는 각 구성은 설명의 편의를 위하여 그 두께나 치수가 과장될 수 있으며, 실제로 해당 치수나 구성간의 비율로 구성되어야 함을 의미하지는 않는다.
도 2 및 도 3을 참조하여 일 실시예에 따른 연속 급랭 응고장치를 설명한다. 도 2는 본 발명의 일 실시예에 따른 급랭 응고장치를 나타내는 모식적인 평면도이고, 도 3은 일 실시예에 따른 급랭 응고장치를 나타내는 모식적인 종단면도이다.
냉각롤(10)은 도가니(30)로부터 공급되는 용융금속, 즉 용탕을 냉각시킨다. 구체적으로 냉각롤(10)은 모터(20)로부터 회전력을 전달받아 일정한 회전축을 중심으로 회전한다. 냉각롤(10)은 용탕에 비하여 상대적으로 낮은 온도를 갖는 외주면을 이용하여 공급되는 용탕을 냉각시킨 후 일정한 방향(D2)으로 비산시키게 된다.
저장부(50)에는 냉각롤(10)에 의하여 냉각되고 일정한 방향(D2)을 따라 비행하는 냉각된 재료 예를 들면 리본형 합금이 적치되어 저장된다.
도가니(30)는 냉각롤(10) 상부에 위치하며 내부에 수용된 용융된 금속을 냉각롤(10)의 외주면에 공급하게 된다. 구체적으로 도가니(30)는 용탕 공급부(40)로부터 용탕을 공급받는다. 도가니(30)에 수용된 용탕은 도가니(30)에 인접하거나 구비되는 가열부(35)에 의하여 가열되어 적절한 온도로 조절된다.
용탕공급부(40)는 둘 이상 구비된다. 용탕공급부(40)들은 각각 원재료 금속을 용융하고, 용융된 금속을 도가니(30)에 순차적으로 공급한다. 이 때 용탕공급부(40) 들은 어느 하나가 도가니(30)에 용탕을 공급하는 동안 나머지 용탕공급부(40)들은 다음 공급될 금속을 용융하기 위하여 가열하거나 온도를 유지하면서 대기한다. 또한 각각의 용탕공급부(40)는 도가니(30) 내에 수용된 용융된 금속의 출탕 속도에 따라 용탕공급부(40)에 연속적으로 공급하는 용융 금속의 양을 조절한다. 즉, 용탕공급부(40)는 도나니(30)로부터 출탕되는 용융 금속의 양만큼을 보충하여 일정한 수준의 금속이 도가니(30) 내에 유지되도록 하는 것이 바람직하다.
이 때 도가니(30) 내의 용융 금속의 수준을 센싱하기 위하여 다양한 장치들이 이용될 수 있다. 예를 들어 도가니(30) 자체에 바이메탈 등을 다수 구비하여 부분적인 온도 측정으로 용탕의 수준을 감지하는 것도 가능하고, 도가니(30) 내측을 촬영하는 촬상부(미도시)를 설치하여 도가니(30)내의 용탕 수준을 영상처리를 통하여 센싱하는 것도 가능하다.
구체적으로 용탕공급부(40)는 보조 도가니 챔버(43), 보조 도가니(41) 및 게이트(45)를 포함한다. 보조 도가니(41)는 도가니(30)에 공급될 용탕을 제조하기 위하여 원재료 금속 및/또는 용융된 금속을 수용한다. 보조 도가니 챔버(43)는 가열 수단들을 구비하여 보조 도가니(41)를 가열하여 용탕을 제조하거나 온도를 유지시킬 수 있는 밀폐 공간을 제공하며, 게이트(45)는 보조 도가니 챔버(43)를 개폐하여 보조 도가니(41)가 출입할 수 있는 경로를 제공한다.
보조 도가니(41)는 보조 도가니 챔버(43)로부터 도가니(30) 상부에 이르기까지 별도의 이송수단(미도시)에 의하여 이송된 후 내부에 수용되어 있는 용탕을 도가니(30)에 공급할 수 있다.
한편, 이와 같은 용탕공급부(40)들은 별도의 챔버 등을 생략하고 단순히 둘 이상의 용해로(미도시)를 이용하여 순차적으로 용융된 금속을 공급하도록 하는 것도 가능하다.
도 3을 참조하여 설명하면, 본 실시예에 따른 급랭 응고장치는 도가니(30)로부터 공급되는 용융금속이 냉각롤(10)에 의하여 냉각되는 공간을 형성하는 제1 챔버(C1)와 용탕공급부(40)에 의하여 도가니(30)에 용융금속이 공급되는 공간을 형성하는 제2 챔버(C2)를 포함할 수 있다.
이 때 제1 챔버(C1)와 제2 챔버(C2)는 각각 밀폐된 독립 공간으로 형성되는 것이 바람직하다. 예를 들어 제1 챔버(C1)와 제2 챔버(C2)는 챔버 격벽(CP)에 의하여 구획될 수 있다. 이러한 구조로 인하여 제1 챔버(C1)는 진공 공정이 가능하게 된다.
즉, 제1 챔버(C1)는 진공도를 제어하여 냉각 공정을 효율적으로 수행할 수 있도록 하고, 제2 챔버(C2)는 불활성 분위기를 조성하고 도가니(30) 내의 용탕의 소진 정도에 따라 압력을 조절하여 일정한 압력으로 도가니(30) 내의 용탕이 냉각롤(10)로 공급될 수 있도록 제어한다.
이와 관련된 구체적인 구성부 및 설명은 이하에서 설명한다.
도 3 내지 도 5를 참조하여 일 실시예에 따른 연속 공급 제어부와 압력 및 진공도를 제어하기 위한 제어부에 대하여 설명한다. 도 4는 일 실시예에 따른 급랭 응고장치 중 용탕 공급부의 제어와 관련된 구성들을 나타내는 블록도이고, 도 5는 일 실시예에 따른 급랭 응고장치 중 제1 챔버의 진공도와 제2 챔버의 압력 조절과 관련된 구성들을 나타내는 블록도이다.
도 3 및 도 4를 참조하여 설명하면, 본 실시예에 따른 급랭 응고장치는 연속 공급 제어부(60)를 더 포함할 수 있다.
연속 공급 제어부(60)는 도 3의 구성부들을 제어하여 다수의 용탕 공급부(40)들로부터 도가니(30)로 순차적으로 용탕이 공급되도록 제어하는 구성부이다. 구체적으로 보조 도가니 타입으 경우 연속 공급 제어부(60)는 각 용탕 공급부(40a, 40b)들의 게이트를 순차적으로 개폐한 후 보조 도가니가 이송 가능하도록 도가니 이송수단(47)을 제어하여 보조 도가니를 도가니 측으로 이송시킨다. 보조 도가니가 도가니 측으로 이송되면 용탕 공급수단(49)을 제어하여 보조 도가니로부터 도가니로 용탕이 공급되도록 한다.
도 5를 참조하여 설명하면, 본 실시예에 따른 급랭 응고장치는 진공도 조절부(71)와 압력 조절부(73)를 포함할 수 있다.
압력 조절부(73)는 제2 챔버(C2) 내의 압력을 조절하여 도가니 내에 수용된 용융 금속에 가해지는 압력을 조절할 수 있다. 이 때 압력 조절부(73)는 불활성 가스를 상술한 제2 챔버(C2) 내에 공급함으로써 압력을 조절할 수 있다.
진공도 조절부(71)는 제1 챔버(C1) 내의 진공도를 조절할 수 있다. 이 때 제1 챔버(C1)의 진공도는 0.1 내지 10 torr 의 범위에서 조절되도록 하는 것이 바람직하다. 10 torr 이하의 저진공도에서는 급냉 속도가 떨어짐으로써 냉각 효율이 떨어지고 수율이 저하되는 문제가 발생할 수 있으며, 0.1 이하의 고진공도의 경우 이러한 환경을 조성하기 위한 제어가 힘들 뿐 아니라 냉각롤(10)의 회전에 따른 와류가 발생하여 노즐이 급격히 식어 막히는 현상이 발생할 수 있다.
한편, 제어부(65)는 압력 조절부(73)와 진공동 조절부(71)를 제어하여 제2 챔버(C2)의 압력과 제1 챔버(C1)의 진공도를 제어함으로써 도가니를 통하여 냉각롤에 공급되는 용융금속의 최종 공급 압력을 제어할 수 있다.
*구체적으로 제어부(65)는 도가니에 수용된 용융 금속의 소진 상태에 비례하여 제2 챔버(C2)의 압력을 증가시키도록 압력 조절부(73)를 제어할 수 있다. 도가니에 수용된 용융 금속은 앞서 설명한 바와 같이 일정 수준이 유지되도록 제어된다. 다만, 앞서 설명한 제1 보조 도가니와 제2 보조 도가니 간 용융 금속을 공급하기 위하여 교체되는 과정에서는 도가니에 수용된 용융 금속의 수준이 하강할 수 있다.
이 때 도가니에 수용된 용융 금속이 소진되어 감에 따라 제2 챔버(C2) 내의 압력을 점차 낮아지게 되며, 이에 따라 도가니로부터 냉각롤에 공급되는 용융금속의 압력도 점차 낮아지게 된다. 이 때 제2 챔버(C2)의 내부 압력을 도가니에 수용된 용융 금속의 소진 상태에 비례하여 증가시켜 줌으로써 도가니에 수용된 용융 금속이 냉각롤에 공급되도록 가해지는 압력을 증가시킬 수 있다.
또한 제어부(65)는 도가니에 공급된 용융 금속의 소진 상태에 비례하여 제1 챔버의 진공도를 증가시키는 것도 가능하다. 제2 챔버(C2)의 압력을 도가니 내 용융금속의 상태에 따라 증가시키도록 제어하는 기술과 유사한 방식으로 제1 챔버(C1)의 진공도를 도가니 내 용융 금속의 소진 상태에 비례하여 증가시키도록 진공도 조절부(71)를 제어할 수 있다. 제1 챔버(C1)의 진공도가 증가할수록 제2 챔버(C2)의 제1 챔버(C1)에 대한 상대적인 압력은 점층적으로 증가하게 된다. 이러한 방식으로도 제2 챔버(C2)의 압력을 점층적으로 증가시키는 것과 유사한 효과를 얻을 수 있다.
또한 제어부(65)는 제1 챔버(C1)의 진공도와 제2 챔버(C2)의 압력을 동시에 제어하는 것도 가능하다. 예를 들어 도가니 내 수용된 용융 금속의 소진 상태에 비례하여 제1 챔버(C1)의 진공도와 제2 챔버(C2)의 압력을 동시에 점층적으로 증가시키는 것도 가능하다. 앞서 설명한 기술들과 마찬가지로 도가니 내에 수용되어 있는 용융 금속이 소진되는 경우에도 제2 챔버(C2)의 압력을 적절한 수준으로 유지시켜 줌으로써 도가니로부터 냉각롤에 공급되는 용융 금속의 압력을 일정하게 유지시킬 수 있다.
이상 본 발명의 바람직한 실시예에 대하여 설명하였으나, 본 발명의 기술적 사상이 상술한 바람직한 실시예에 한정되는 것은 아니며, 특허청구범위에 구체화된 본 발명의 기술적 사상을 벗어나지 않는 범주에서 다양하게 구현될 수 있다.

Claims (12)

  1. 외주면 상에 공급되는 용융금속을 냉각시키는 냉각롤;
    냉각롤에 용융금속을 공급하는 도가니;
    원재료 금속을 용융하고, 상기 용융된 금속을 상기 도가니에 순차적으로 공급하는 적어도 둘 이상의 용탕공급부;를 포함하는 연속식 급랭 응고 장치.
  2. 제1항에 있어서,
    상기 용탕공급부는 내부에 수용된 원재료 금속을 용융시키는 용해로인 연속식 급랭 응고 장치.
  3. 제1항에 있어서,
    상기 용탕공급부는,
    내부 가열 수단을 구비하는 보조 도가니 챔버;
    상기 추가 도가니 챔버를 개폐하는 게이트; 및
    상기 추가 도가니 챔버 내에서 상기 원재료 금속을 용융하고, 상기 게이트의 개방 시 상기 도가니 측으로 이송되어 상기 용융된 금속을 상기 도가니에 공급하는 보조 도가니;를 포함하는 연속식 급랭 응고 장치.
  4. 제3항에 있어서,
    상기 다수의 용탕공급부들로부터 순차적으로 용융 금속이 공급되도록 상기 게이트의 개폐 및 상기 보조 도가니의 이송을 제어하는 연속 공급 제어부를 더 포함하는 연속식 급랭 응고 장치.
  5. 제1항에 있어서,
    상기 도가니로부터 공급되는 용융금속이 상기 냉각롤에 의하여 냉각되는 밀폐된 공간을 형성하는 제1 챔버;
    상기 제1 챔버와 독립된 공간으로 형성되고, 상기 용탕공급부에 의하여 상기 도가니에 용융금속이 공급되는 밀폐된 공간을 형성하는 제2 챔버;를 포함하는 연속식 급랭 응고 장치.
  6. 제5항에 있어서,
    상기 제2 챔버의 압력을 조절하는 압력 조절부;를 더 포함하는 연속식 급랭 응고 장치.
  7. 제6항에 있어서,
    상기 압력 조절부는 상기 제2 챔버 내에 불활성 가스를 공급하여 압력을 제어하는 연속식 급랭 응고 장치.
  8. 제6항에 있어서,
    상기 도가니에 공급된 용융 금속의 소진 상태에 비례하여 상기 제2 챔버의 압력을 증가시키도록 상기 압력 조절부를 제어하는 제어부를 포함하는 연속식 급랭 응고 장치.
  9. 제5항에 있어서,
    상기 제1 챔버의 진공도를 제어하는 진공도 조절부;를 더 포함하는 연속식 급랭 응고 장치.
  10. 제9항에 있어서,
    상기 도가니에 공급된 용융 금속의 소진 상태에 비례하여 상기 제1 챔버의 진공도를 증가시키도록 상기 진공도 조절부를 제어하는 제어부를 포함하는 연속식 급랭 응고 장치.
  11. 제9항에 있어서,
    상기 제1 챔버의 진공도는 0.1 내지 10 torr 의 범위에서 조절되는 연속식 급랭 응고 장치.
  12. 제9항에 있어서,
    상기 제2 챔버의 압력을 조절하는 압력 조절부; 및
    상기 도가니에 공급된 용융 금속의 소진 상태에 비례하여 상기 제1 챔버의 진공도 및 상기 제2 챔버의 압력을 증가시키도록 각각 상기 진공도 조절부 및 상기 압력 조절부를 제어하는 제어부를 포함하는 연속식 급랭 응고 장치.
PCT/KR2015/011024 2014-11-11 2015-10-19 연속식 급랭 응고 장치 WO2016076544A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580061322.XA CN107107174A (zh) 2014-11-11 2015-10-19 连续快速冷却凝固装置
US15/522,607 US10610926B2 (en) 2014-11-11 2015-10-19 Continuous rapid-cooling solidification apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140156302A KR102334640B1 (ko) 2014-11-11 2014-11-11 연속식 급랭 응고 장치
KR10-2014-0156302 2014-11-11

Publications (1)

Publication Number Publication Date
WO2016076544A1 true WO2016076544A1 (ko) 2016-05-19

Family

ID=55954587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011024 WO2016076544A1 (ko) 2014-11-11 2015-10-19 연속식 급랭 응고 장치

Country Status (4)

Country Link
US (1) US10610926B2 (ko)
KR (1) KR102334640B1 (ko)
CN (1) CN107107174A (ko)
WO (1) WO2016076544A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107350440A (zh) * 2017-08-02 2017-11-17 芜湖君华材料有限公司 一种全封闭铁基磁性非晶带材制备系统
CN107377905A (zh) * 2017-07-31 2017-11-24 芜湖君华材料有限公司 一种铁基非晶合金磁性带材快淬收集装置
CN114406215A (zh) * 2021-12-15 2022-04-29 钢铁研究总院 一种利用液态金属进行强制冷却的真空快淬冷却系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102310445B1 (ko) * 2014-11-11 2021-10-12 일진전기 주식회사 독립제어 챔버형 급랭 응고 장치
CN111570746B (zh) * 2020-06-15 2021-06-22 西安斯瑞先进铜合金科技有限公司 一种真空连铸铸造生产设备
KR102476773B1 (ko) * 2021-06-08 2022-12-12 윤정의 급랭 응고 시스템
CN116037698B (zh) * 2023-02-07 2023-07-21 浙江菲尔特过滤科技股份有限公司 一种基于辊锻的金属纤维加工设备及加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4449568A (en) * 1980-02-28 1984-05-22 Allied Corporation Continuous casting controller
JPS6024247A (ja) * 1983-07-18 1985-02-06 Unitika Ltd 液体急冷金属製品の連続製造方法
JPS62156053A (ja) * 1985-12-27 1987-07-11 Tohoku Metal Ind Ltd 超急冷合金薄帯の製造装置
JPS63260687A (ja) * 1987-04-20 1988-10-27 Nippon Steel Corp 金属材料の製造法
WO2000047351A1 (en) * 1999-02-09 2000-08-17 Energy Conversion Devices, Inc. Continuous spin melt casting of materials

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1291760B (de) * 1963-11-08 1969-04-03 Suedwestfalen Ag Stahlwerke Verfahren und Vorrichtung zum diskontinuierlichen und kontinuierlichen Vakuum-Schmelzen und -Giessen von Staehlen und stahlaehnlichen Legierungen (Superiegierungen)
US3658119A (en) * 1968-04-03 1972-04-25 Airco Inc Apparatus for processing molten metal in a vacuum
US5028277A (en) * 1989-03-02 1991-07-02 Nippon Steel Corporation Continuous thin sheet of TiAl intermetallic compound and process for producing same
US5305816A (en) * 1991-06-21 1994-04-26 Sumitomo Heavy Industries, Ltd. Method of producing long size preform using spray deposit
JP4219390B1 (ja) * 2007-09-25 2009-02-04 昭和電工株式会社 合金の製造装置
CN102205417B (zh) * 2010-03-29 2016-04-06 有研稀土新材料股份有限公司 一种快淬合金的制造方法及设备
CN102091763B (zh) * 2010-12-13 2015-02-18 滨州益谦非晶金属材料有限公司 一种用于制备非晶带材的连续给料装置
CN108907123B (zh) * 2012-03-15 2020-10-02 日立金属株式会社 非晶态合金薄带的制造方法
KR102310445B1 (ko) * 2014-11-11 2021-10-12 일진전기 주식회사 독립제어 챔버형 급랭 응고 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4449568A (en) * 1980-02-28 1984-05-22 Allied Corporation Continuous casting controller
JPS6024247A (ja) * 1983-07-18 1985-02-06 Unitika Ltd 液体急冷金属製品の連続製造方法
JPS62156053A (ja) * 1985-12-27 1987-07-11 Tohoku Metal Ind Ltd 超急冷合金薄帯の製造装置
JPS63260687A (ja) * 1987-04-20 1988-10-27 Nippon Steel Corp 金属材料の製造法
WO2000047351A1 (en) * 1999-02-09 2000-08-17 Energy Conversion Devices, Inc. Continuous spin melt casting of materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107377905A (zh) * 2017-07-31 2017-11-24 芜湖君华材料有限公司 一种铁基非晶合金磁性带材快淬收集装置
CN107350440A (zh) * 2017-08-02 2017-11-17 芜湖君华材料有限公司 一种全封闭铁基磁性非晶带材制备系统
CN107350440B (zh) * 2017-08-02 2019-07-09 朗峰新材料(菏泽)有限公司 一种全封闭铁基磁性非晶带材制备系统
CN114406215A (zh) * 2021-12-15 2022-04-29 钢铁研究总院 一种利用液态金属进行强制冷却的真空快淬冷却系统

Also Published As

Publication number Publication date
KR102334640B1 (ko) 2021-12-07
US20170320130A1 (en) 2017-11-09
CN107107174A (zh) 2017-08-29
KR20160056474A (ko) 2016-05-20
US10610926B2 (en) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2016076544A1 (ko) 연속식 급랭 응고 장치
WO2016076545A1 (ko) 독립제어 챔버형 급랭 응고 장치
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
KR101126769B1 (ko) 다수의 3상 전원 램프를 포함하는 램프 히터 및 이를 이용한 이차 전지 제조용 건조 장치
WO2018124635A1 (ko) 분리막 및 이를 포함하는 리튬-황 전지
WO2014084502A1 (ko) 규소계 복합체 및 이의 제조방법
WO2013172576A1 (ko) 이차전지 제조용 전극 건조 오븐 자동 급기 유량 제어 장치
WO2018124636A1 (ko) 분리막 및 이를 포함하는 리튬-황 전지
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2019226020A1 (ko) 음극 활물질용 복합 입자 및 이를 포함하는 전고체 전지용 음극
WO2017209371A1 (ko) 상전이 물질을 포함하는 전지셀
CN111715857B (zh) 一种金属锂合金负极的制备装置及方法
WO2015099233A1 (ko) 음극 활물질, 이를 포함하는 이차 전지 및 음극 활물질의 제조 방법
CN101252181B (zh) 电化学元件及其电极的制造方法、锂化处理方法和锂化处理装置
US20100285360A1 (en) Li-ION BATTERY WITH ANODE COATING
WO2022025652A1 (ko) 폐흑연을 이용한 방열 시트의 제조 방법
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2022014736A1 (ko) 저온 소결공정을 위한 산화물계 고체전해질을 포함하는 전고체전지 및 이의 제조방법
WO2021210739A1 (ko) 규소산화물 제조장치 및 제조방법, 규소산화물 음극재
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2015119486A1 (ko) 전기 화학 소자
WO2019066585A1 (ko) 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2022045644A1 (ko) 전극 건조 장치
WO2022260427A1 (ko) 메탈 콜로이드 입자를 이용한 고체 전해질의 롤투롤 형성 방법
WO2023085654A1 (ko) 무지부의 열 주름을 방지할 수 있는 전극 시트 건조 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859541

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15522607

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15859541

Country of ref document: EP

Kind code of ref document: A1