WO2016076325A1 - 塩化アルカリ電解用イオン交換膜、製造方法、及び塩化アルカリ電解装置 - Google Patents
塩化アルカリ電解用イオン交換膜、製造方法、及び塩化アルカリ電解装置 Download PDFInfo
- Publication number
- WO2016076325A1 WO2016076325A1 PCT/JP2015/081640 JP2015081640W WO2016076325A1 WO 2016076325 A1 WO2016076325 A1 WO 2016076325A1 JP 2015081640 W JP2015081640 W JP 2015081640W WO 2016076325 A1 WO2016076325 A1 WO 2016076325A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ion exchange
- reinforcing
- layer
- yarn
- exchange membrane
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/34—Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
- C25B1/46—Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J39/00—Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/04—Processes using organic exchangers
- B01J39/05—Processes using organic exchangers in the strongly acidic form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J39/00—Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/08—Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/16—Organic material
- B01J39/18—Macromolecular compounds
- B01J39/20—Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J47/00—Ion-exchange processes in general; Apparatus therefor
- B01J47/12—Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F214/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F214/18—Monomers containing fluorine
- C08F214/26—Tetrafluoroethene
- C08F214/262—Tetrafluoroethene with fluorinated vinyl ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F216/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
- C08F216/12—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
- C08F216/14—Monomers containing only one unsaturated aliphatic radical
- C08F216/1466—Monomers containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F216/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
- C08F216/12—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
- C08F216/14—Monomers containing only one unsaturated aliphatic radical
- C08F216/1466—Monomers containing sulfur
- C08F216/1475—Monomers containing sulfur and oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2275—Heterogeneous membranes
- C08J5/2281—Heterogeneous membranes fluorine containing heterogeneous membranes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
- C25B13/04—Diaphragms; Spacing elements characterised by the material
- C25B13/08—Diaphragms; Spacing elements characterised by the material based on organic materials
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
- C25B9/23—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F216/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
- C08F216/12—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
- C08F216/14—Monomers containing only one unsaturated aliphatic radical
- C08F216/1416—Monomers containing oxygen in addition to the ether oxygen, e.g. allyl glycidyl ether
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2327/18—Homopolymers or copolymers of tetrafluoroethylene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2329/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
- C08J2329/10—Homopolymers or copolymers of unsaturated ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
- C08J5/2231—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
- C08J5/2243—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
- C08J5/225—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231 containing fluorine
Definitions
- the present invention relates to an ion exchange membrane for alkaline chloride electrolysis, a production method thereof, and an alkaline chloride electrolysis apparatus.
- an ion exchange membrane used in an alkali chloride electrolysis method for producing an alkali hydroxide and chlorine by electrolyzing an alkali chloride aqueous solution fluorine-containing ions having ion exchange groups (carboxylic acid type functional groups, sulfonic acid type functional groups, etc.)
- An electrolyte membrane made of a polymer is known.
- a reinforcing thread polytetrafluoroethylene (hereinafter referred to as PTFE) is usually added to the layer (S) containing a fluorinated polymer having a sulfonic acid type functional group. .) Reinforce by embedding a reinforcing cloth made of yarn or the like.
- PTFE polytetrafluoroethylene
- a method of using a reinforcing fabric in which a PTFE-based reinforcing yarn and a sacrificial yarn soluble in an alkaline aqueous solution (polyethylene terephthalate (hereinafter referred to as PET) yarn) are woven is proposed (for example, Patent Document 1). At least a part of the sacrificial yarn is dissolved in the following step (i) and most or all of the sacrificial yarn is eluted and removed in the step (ii). Therefore, at the time of the main operation of the alkali chloride electrolysis using the ion exchange membrane Then, the membrane resistance is not affected.
- an ion exchange membrane for alkaline chloride electrolysis having a reinforcing fabric having a reinforcing yarn and a sacrificial yarn, it is important to narrow the interval between the reinforcing yarns in the reinforcing fabric in order to increase the membrane strength.
- the membrane resistance increases and the electrolysis voltage increases. Therefore, it is difficult to reduce the electrolysis voltage while increasing the membrane strength of the ion exchange membrane.
- the present invention relates to an ion exchange membrane for alkali chloride electrolysis that can reduce the electrolysis voltage at the time of alkaline chloride electrolysis, the membrane resistance is low, and the ion exchange membrane, and the ion exchange membrane, even if the interval between reinforcing yarns is narrowed to increase the membrane strength
- An object of the present invention is to provide an alkali chloride electrolysis apparatus using the above.
- the gist of the present invention is the following [1] to [15].
- An alkali chloride electrolysis cell comprising a cathode and an anode, and an ion exchange membrane for alkali chloride electrolysis used by being installed so as to partition the inside of the electrolysis cell into a cathode chamber on the cathode side and an anode chamber on the anode side
- the ion exchange membrane for alkaline chloride electrolysis includes a layer (S) containing a fluorine-containing polymer having a sulfonic acid type functional group, and a reinforcing material arranged substantially in parallel with the layer (S) in the layer (S).
- the layer (S) includes one layer (Sa) disposed closest to the anode, one or more layers (Sb) disposed closer to the cathode than the layer (Sa), and a layer (Sa) It is a laminate with a reinforcing material disposed between or in layers (Sb),
- the reinforcing material is a woven fabric that optionally uses a reinforcing yarn for the weft and the warp, and a sacrificial yarn for the weft and the warp, In the cross section of the layer (S) perpendicular to the length direction of the reinforcing yarn, the average distance (d1) from the center of the reinforcing yarn to the center of the adjacent reinforcing yarn is 750 to 1000 ⁇ m, and in the layer (S), There is an elution portion formed by elution of the sacrificial yarn, and the total area (P) of the cross-sectional area of the elution portion and the cross-sectional area of the s
- Alkaline chloride electrolysis apparatus installed between the cathode and the cathode substantially in parallel, and installed so as to partition the cathode chamber on the cathode side and the anode chamber on the anode side.
- the ion exchange membrane for alkaline chloride electrolysis according to the present invention has low membrane resistance and can reduce the electrolysis voltage during alkaline chloride electrolysis even if the interval between the reinforcing yarns is narrowed to increase the membrane strength.
- the alkaline chloride electrolysis apparatus of the present invention has an ion exchange membrane for alkaline chloride electrolysis with high membrane strength, and has low membrane resistance and low electrolysis voltage during alkaline chloride electrolysis.
- the “ion exchange group” is a group in which at least a part of ions contained in the group can be exchanged with other ions.
- the following carboxylic acid type functional groups, sulfonic acid type functional groups and the like can be mentioned.
- the “carboxylic acid type functional group” means a carboxylic acid group (—COOH) or a carboxylic acid group (—COOM 1, where M 1 is an alkali metal or a quaternary ammonium base).
- the “sulfonic acid type functional group” means a sulfonic acid group (—SO 3 H) or a sulfonic acid group (—SO 3 M 2, where M 2 is an alkali metal or a quaternary ammonium base).
- the “group that can be converted into an ion exchange group” means a group that can be converted into an ion exchange group by a known treatment such as hydrolysis treatment or acidification treatment.
- the “group that can be converted into a carboxylic acid type functional group” means a group that can be converted into a carboxylic acid type functional group by a known process such as hydrolysis or acidification.
- the “group that can be converted into a sulfonic acid type functional group” means a group that can be converted into a sulfonic acid type functional group by a known treatment such as hydrolysis or acidification.
- the “perfluorocarbon polymer” means a polymer in which all hydrogen atoms bonded to carbon atoms in the polymer are substituted with fluorine atoms. Some of the fluorine atoms in the perfluorocarbon polymer may be substituted with chlorine atoms or bromine atoms.
- “Monomer” means a compound having a polymerization-reactive carbon-carbon double bond.
- the “unit (structural unit)” means a portion derived from a monomer that is present in the polymer and constitutes the polymer. A unit derived from the monomer resulting from addition polymerization of a monomer having a carbon-carbon unsaturated double bond is a divalent unit generated by cleavage of the unsaturated double bond. Also, a unit obtained by chemically converting the structure of a unit after polymer formation is called a unit.
- units derived from individual monomers are described by adding “units” to the monomer names.
- the “reinforcing cloth” means a cloth-like woven fabric used as a raw material for the “reinforcing material” for improving the strength of the ion exchange membrane.
- the “reinforcing fabric” is a woven fabric obtained by weaving a reinforcing yarn and a sacrificial yarn as warps and a reinforcing yarn and a sacrificial yarn as wefts. The warp and the weft are orthogonal to each other when a normal weaving method such as a plain woven fabric is used.
- the “reinforcing yarn” is a yarn constituting the warp and the weft of the reinforcing fabric.
- the “reinforcing yarn” is made of a material that does not dissolve even when immersed in an aqueous sodium hydroxide solution (for example, an aqueous solution having a concentration of 32% by mass), and does not form an elution portion. Therefore, the reinforcing yarn remains without being dissolved even after being immersed in an alkaline aqueous solution during the production of the ion exchange membrane, and maintains the mechanical strength and dimensional stability of the ion exchange membrane for alkaline chloride electrolysis.
- “Sacrificial yarn” is the warp yarn of the reinforcing fabric and the yarn that constitutes the weft.
- the reinforcing yarn and the sacrificial yarn may each be a monofilament composed of one filament or a multifilament composed of two or more filaments.
- a multifilament an aggregate of two or more filaments becomes one yarn.
- the thickness of the yarn refers to the maximum diameter in the case of one, and the maximum diameter when a bundle of a plurality of yarns is regarded as one in the case of a Marlichi filament.
- “Elution part” means a hole formed inside an ion exchange membrane as a result of elution of a single sacrificial yarn immersed in an aqueous sodium hydroxide solution (for example, an aqueous solution having a concentration of 32% by mass).
- one sacrificial yarn is a monofilament
- at least a part of the material of the monofilament elutes to form one hole in the ion exchange membrane.
- one sacrificial yarn is a multifilament
- at least a part of the multifilament elutes to form a group of a plurality of holes inside the ion exchange membrane. It is. It is not necessary for each of the holes to form a single hole. For example, the holes may penetrate each other and form a single hole.
- Reinforcing material is a part of the sacrificial yarn that elutes by immersing the reinforcing fabric laminated between the reinforced precursor membranes made of fluoropolymers in the ion exchange membrane manufacturing process. Material. When a part of the sacrificial yarn of the reinforcing cloth is eluted, the reinforcing material is composed of the sacrificial yarn and the reinforcing yarn remaining after dissolution. The reinforcing material in the case where all of the sacrificial yarn is dissolved consists of only the reinforcing yarn. That is, the reinforcing material is a material formed from a reinforcing yarn and a sacrificial yarn optionally included.
- the reinforcing yarn constituting the reinforcing material is used for warp and weft.
- the warp and the weft are usually orthogonal and exist in parallel with the MD direction and the TD direction of the ion exchange membrane, respectively.
- MD Machine Direction
- TD Transverse Direction
- MD is a direction in which a precursor film, a reinforced precursor film, and an ion exchange film are conveyed in the manufacture of an ion exchange film using a roll device.
- TD Transverse Direction
- the “center of the reinforcing yarn” means a point that is 1 ⁇ 2 of the maximum diameter of the reinforcing yarn in a cross section orthogonal to the direction in which the reinforcing yarn extends (that is, the length direction). Since the reinforcing yarn is used for the warp and the weft, there are two length directions. When the cross section of the reinforcing yarn is a perfect circle, the center of the reinforcing yarn is the center point of the circle, but when it is not a true circle, it means a point that is 1 ⁇ 2 of the maximum diameter. Further, the center when the reinforcing yarn is a multifilament refers to a half point of a line connecting the farthest centers.
- the “center of the elution portion” means the center in the width direction of the elution portion in a cross section orthogonal to the direction (ie, the length direction) in which the ion exchange membrane of the sacrificial yarn extends. Since the sacrificial yarn is also used for the warp and the weft, there are two length directions. When the sacrificial yarn is a monofilament, the center of the sacrificial yarn before elution is coincident with the center of the elution hole. The center of the elution hole when the sacrificial yarn is a multifilament refers to the midpoint between the end of one hole in the width direction and the end of the other hole in the cross section.
- the “opening ratio” means a percentage (%) of the area of the portion excluding the reinforcing yarn with respect to the area in the surface direction of the reinforcing material.
- “Reinforced precursor film” means a film in which a reinforcing cloth composed of reinforcing yarns and sacrificial yarns is disposed in a precursor film containing a fluorine-based polymer having a group that can be converted into an ion exchange group. It is preferable that two precursor films containing a fluorine-based polymer having a group that can be converted into an ion exchange group are manufactured, and a reinforcing cloth is laminated between the two precursor films.
- the “precursor film” means a film containing a fluorine-based polymer having a group that can be converted into an ion exchange group. It may be a film made of a single layer of a fluoropolymer having a group that can be converted into an ion exchange group, or may be a film made of a plurality of layers. In the present invention, in the production process, layers formed by joining layers having the same type of functional group and having the same ion exchange capacity, films, and layers and films are regarded as one layer.
- the ion exchange membrane for alkaline chloride electrolysis of the present invention (hereinafter also simply referred to as an ion exchange membrane) is used for alkaline chloride electrolysis used by being installed or mounted substantially vertically between an anode and a cathode during alkaline chloride electrolysis. Used.
- the ion exchange membrane is an ion exchange membrane having a layer (S) containing a fluoropolymer having a sulfonic acid type functional group, and the layer (S) is composed of one layer (Sa) and one or more layers. (Sb).
- the layer (Sa) is disposed on the most anode side of the layer (S), and the layer (Sb) is disposed on the cathode side with respect to the layer (Sa). Further, a reinforcing material is disposed between the layer (Sa) and the layer (Sb), and these are laminated to form a laminated structure.
- the reinforcing material is composed of a reinforcing yarn and a sacrificial yarn optionally included.
- the reinforcing material is obtained from the reinforcing cloth, but at least a part of the material of the sacrificial yarn of the reinforcing cloth is eluted and formed in the production process of the ion exchange membrane, and an elution portion is formed in the layer (S). .
- the reinforcing material has a function of improving the mechanical strength and dimensional stability of the ion exchange membrane.
- the layer (Sb) forming the layer (S) may be formed from one layer or may be formed from two or more layers.
- the ion exchange membrane for alkali chloride electrolysis of the present invention preferably further has one or more layers (C) containing a fluoropolymer having a carboxylated functional group on the surface of the layer (S) closest to the cathode. .
- FIG. 1 is a schematic cross-sectional view showing an example of the ion exchange membrane of the present invention.
- the ion exchange membrane 1 is obtained by reinforcing an electrolyte membrane 10 containing a fluorine-containing polymer having an ion exchange group with a reinforcing material 20.
- the electrolyte membrane 10 is a laminate composed of a layer (C) 12 containing a fluorinated polymer having a carboxylic acid type functional group and a layer (S) 14 containing a fluorinated polymer having a sulfonic acid type functional group.
- the layer (S) 14 has a two-layer structure of a layer (Sb) 16 located on the cathode side during alkali chloride electrolysis and a layer (Sa) 18 located on the anode side during alkali chloride electrolysis. That is, the electrolyte membrane 10 is a laminate in which the layer (C) 12, the layer (Sb) 16, and the layer (Sa) 18 are laminated in this order. Further, the reinforcing material 20 is disposed between the layer (Sb) 16 and the layer (Sa) 18 in the layer (S) 14.
- the reinforcing material 20 is a material that reinforces the electrolyte membrane 10 and is made of a woven fabric in which a reinforcing yarn 22 and an optional sacrificial yarn 24 are woven. However, in the ion exchange membrane manufacturing process, all of the sacrificial yarn was eluted. In some cases, the reinforcement consists only of reinforcement yarns.
- the layer (S) 14 has an elution portion 28 composed of a group of two or more holes formed by elution of at least part of the material of the two filaments 26 constituting the sacrificial yarn 24.
- the ion exchange membrane 1 is disposed in the electrolytic cell so that the layer (Sa) 18 faces the anode during alkali chloride electrolysis.
- the ion exchange membrane of the present invention is obtained by reinforcing an electrolyte membrane containing a fluoropolymer having a sulfonic acid type functional group with a reinforcing material.
- the electrolyte membrane includes at least a layer (S) containing a fluorinated polymer having a sulfonic acid type functional group, and if necessary, a fluorinated polymer having a carboxylic acid type functional group as a functional layer that exhibits high current efficiency. It is a film
- the electrolyte membrane may be a membrane composed only of the layer (S), or may be a laminated film in which the layer (S) and the layer (C) are laminated.
- the layer (S) has a laminated structure including a layer (Sa) and a layer (Sb).
- the reinforcement yarn prevents the movement of cations such as sodium ions in the membrane, so that the vicinity of the cathode side of the reinforcement yarn in the ion exchange membrane is substantially an electrolysis part. It is considered that the region does not act (hereinafter referred to as a current shielding region). Therefore, it is considered that when the interval between the reinforcing yarns is narrowed to increase the density, the current shielding region in the ion exchange membrane is increased, the membrane resistance is increased, and the electrolytic voltage is increased.
- the average distance (d1) from the center of the reinforcing yarn to the center of the adjacent reinforcing yarn is 750 to 1000 ⁇ m in the cross section perpendicular to the length direction of the reinforcing yarn.
- the total area (P) of the total cross-sectional area of the portion and the cross-sectional area of the sacrificial yarn remaining in the elution portion is 500 to 5000 ⁇ m 2
- the average number (n) of elution portions between adjacent reinforcing yarns is 4 to 6
- the total area (P) when the total area (P) is large, sodium ions and the like easily pass through the portion of the elution portion together with electroosmotic water in the vicinity of the reinforcing yarn, and the current shielding area becomes smaller, so the total area (P) is The membrane resistance in the vicinity of the reinforcing yarn is lower than when it is small.
- the volume of the elution part is larger at the part away from the reinforcing yarn than when the total area (P) is small, the extra resistance increases and the membrane resistance increases.
- the average number (n) of the elution parts is small, as in the case where the total area (P) is small, sodium ions or the like hardly pass in the vicinity of the reinforcing yarn, and the average number (n) of the elution parts is The membrane resistance in the vicinity of the reinforcing yarn is higher than when it is large.
- the volume of the elution part becomes small in the part away from the reinforcing yarn, the extra resistance does not increase, and the membrane resistance becomes lower than when the average number (n) of the elution part is large.
- the average number (n) of the elution parts when the average number (n) of the elution parts is large, sodium ions and the like easily pass in the vicinity of the reinforcing yarn, and the current shielding area becomes smaller, so that the average number (n) of the elution parts is small.
- the membrane resistance in the vicinity of the reinforcing yarn is lower than
- the volume of the elution part becomes large in the part away from the reinforcing yarn, the extra resistance increases, and the membrane resistance becomes higher than when the average number (n) of the elution part is small.
- the current shielding region near the reinforcing yarn is reduced, and the membrane resistance near the reinforcing yarn is lowered.
- the volume of the part elution part away from the reinforcing yarn is kept small to some extent, an increase in the membrane resistance at the part is suppressed.
- the degree of decrease in the membrane resistance in the vicinity of the reinforcing yarn is larger than the degree of increase in the membrane resistance in the portion away from the reinforcing yarn, the membrane resistance as a whole membrane is lowered, and the interval between the reinforcing yarns is reduced. It is considered that the electrolysis voltage during alkali chloride electrolysis can be reduced even if the film strength is increased by narrowing.
- the layer (Sa) located closest to the anode during alkaline chloride electrolysis in the layer (S) is 1.15 meq / g dry resin or more
- the layer (S The water content of the layer (Sa) in () increases.
- the moisture content of the layer (Sa) is increased, the moisture content of the layer (Sb) in the layer (S) is also sufficiently increased.
- the membrane resistance of the ion exchange membrane as a whole is sufficiently small. Become. Therefore, the electrolysis voltage during alkali chloride electrolysis is lowered.
- the average distance (d1), the total area (P), and the average number of elution parts (n) are controlled within a specific range, and the ion exchange capacity of the layer (Sa) in the layer (S) is determined. 1.15 meq / g dry resin or more.
- the effect of reducing the electrolysis voltage by using such an ion exchange membrane includes the control of the average distance (d1), the total area (P), the average number of elution parts (n), and the layer (Sa) in the layer (S).
- a synergistic effect greater than the combined effect of reducing the electrolysis voltage when the ion exchange capacity is individually controlled is obtained, and the electrolysis voltage during alkali chloride electrolysis is unexpectedly lowered.
- Examples of the fluorine-containing polymer having a sulfonic acid type functional group include a copolymer of a unit derived from a fluorine-containing monomer having a sulfonic acid type functional group and a unit derived from a fluorine-containing olefin.
- the fluorine-containing polymer having a sulfonic acid type functional group is a sulfonic acid group that can be converted to a sulfonic acid type functional group of a fluorine-containing polymer having a group that can be converted to a sulfonic acid type functional group described later in step (b) described later. Obtained by conversion to a functional group.
- the ion exchange capacity of the layer (Sa) located on the most anode side during alkali chloride electrolysis is 1.15 meq / g dry resin or more.
- the moisture content of the layer (Sa) in the layer (S) is increased.
- the water content of the layer (Sb) located on the cathode side of the layer (Sa) in the layer (S) is sufficiently high.
- the membrane resistance of the ion exchange membrane as a whole is sufficiently reduced, and the electrolysis voltage during alkaline chloride electrolysis is lowered.
- the lower limit of the ion exchange capacity of the layer (Sa) in the layer (S) is preferably 1.2 meq / g dry resin, more preferably 1.3 meq / g dry resin.
- the upper limit of the ion exchange capacity of the layer (Sa) is preferably 2.0 meq / g dry resin, more preferably 1.8 meq / g dry resin from the viewpoint of molding stability and membrane strength.
- the ion exchange capacity of the layer (Sa) and the ion exchange capacity of the layer (Sb) may be the same or different.
- the ion exchange capacity of the layer (Sb) is preferably lower than the ion exchange capacity of the layer (Sa) from the viewpoint of increasing the film strength.
- the ion exchange capacity of the layer (Sb) is preferably 0.6 to 1.19 meq / g dry resin, more preferably 0.7 to 1.19 meq / g dry resin. If the ion exchange capacity of the layer (Sb) is not less than the lower limit value, the membrane resistance of the ion exchange membrane can be easily lowered, and the electrolytic voltage during alkali chloride electrolysis can be easily lowered. If the ion exchange capacity of the layer (Sb) is not more than the above upper limit value, the strength as a membrane required during electrolysis and the deterioration resistance due to salt precipitation can be maintained.
- the thickness of the layer (Sb) is preferably 30 to 140 ⁇ m, more preferably 30 to 100 ⁇ m.
- the thickness of the layer (Sb) is not less than the lower limit, the mechanical strength of the ion exchange membrane is sufficiently high. If the thickness of the layer (Sb) is not more than the above upper limit value, the membrane resistance of the ion exchange membrane can be suppressed sufficiently low, and the increase in electrolysis voltage can be suppressed sufficiently.
- the thickness of the layer (Sa) is preferably 10 to 60 ⁇ m, and more preferably 10 to 40 ⁇ m.
- the thickness of the layer (Sa) is equal to or greater than the lower limit, the reinforcing cloth is accommodated in the electrolyte membrane, and the peeling resistance of the reinforcing cloth is improved. Further, the reinforcing cloth does not come too close to the surface of the electrolyte membrane, and it is difficult for cracks to enter the surface of the electrolyte membrane, and as a result, a decrease in mechanical strength is suppressed. If the thickness of the layer (Sa) is not more than the above upper limit value, the membrane resistance of the ion exchange membrane can be suppressed sufficiently low, and the increase in electrolysis voltage can be suppressed sufficiently.
- Examples of the fluorinated polymer having a carboxylic acid type functional group include a copolymer of a unit derived from a fluorinated monomer having a carboxylic acid type functional group and a unit derived from a fluorinated olefin.
- the fluorinated polymer having a carboxylic acid type functional group is a carboxylic acid group that can be converted to a carboxylic acid type functional group of the fluorinated polymer having a group that can be converted to a carboxylic acid type functional group described later in step (b) described later. Obtained by conversion to a functional group.
- the thickness of the layer (C) is preferably 5 to 50 ⁇ m, more preferably 10 to 35 ⁇ m. If the thickness of the layer (C) is not less than the lower limit, high current efficiency is likely to be exhibited. In addition, when sodium chloride is electrolyzed, the amount of sodium chloride in the sodium hydroxide product can be reduced. If the thickness of the layer (C) is not more than the above upper limit, the membrane resistance of the ion exchange membrane can be kept low and the electrolysis voltage tends to be low.
- the reinforcing material is disposed in the layer (S) containing the fluorine-containing polymer having a sulfonic acid type functional group.
- Arranged in the layer (S) means that layers having the same type of functional group and having the same ion exchange capacity, films, and layers are laminated between the layers. Or is laminated between two layers (S) having different ion exchange capacities and the like.
- the reinforcing cloth is preferably laminated between the layers (Sa) and (Sb) or disposed in the layer (Sb), and is laminated between the layers (Sa) and (Sb). More preferably.
- the reinforcing material is a reinforcing material that reinforces the electrolyte membrane, and is a woven fabric in which reinforcing yarns and sacrificial yarns are woven.
- the average distance between reinforcing yarns, the average number of elution holes, and the cross-sectional area and elution holes of the elution holes which are measured in a cross section perpendicular to the length direction of the reinforcement yarns forming the reinforcement It is important for exhibiting the effects of the present invention that the total area (P) of the cross-sectional area of the undissolved sacrificial yarn existing inside is in a specific range.
- the average distance (d1) from the center of the reinforcing yarn to the center of the adjacent reinforcing yarn is 750 to 1000 ⁇ m, preferably 800 to 1000 ⁇ m, more preferably 800 to 930 ⁇ m. 800 to 900 ⁇ m is preferable.
- the average distance (d1) is within the above range, the electrolysis voltage during alkali chloride electrolysis can be reduced while increasing the film strength.
- the average distance (d1) is equal to or greater than the lower limit value, it is easy to reduce the electrolysis voltage during alkali chloride electrolysis. If the average distance (d1) is less than or equal to the upper limit value, it is easy to increase the membrane strength of the ion exchange membrane.
- the reinforcing material is laminated between the layer (Sa) and the layer (Sb) so that the warp and the weft are in the same direction as the MD direction and the TD direction in the production of the ion exchange membrane, respectively.
- the cross section perpendicular to the length direction of the reinforcing yarn includes an MD cross section perpendicular to the warp length direction (cross section cut perpendicular to the MD direction) and a TD cross section perpendicular to the weft length direction (perpendicular to the TD direction).
- Each cross section) is a measured value of both cross sections.
- the average distance (d1) is an average value of measured values of the distance from the center of the reinforcing yarn to the center of the adjacent reinforcing yarn.
- the measurement of the average distance is a value obtained by measuring the distances of 10 points selected at random in each cross section and averaging the measured values. The other average values are measured in the same manner.
- the distance from the center of the reinforcing yarn to the center of the adjacent reinforcing yarn in the cross section perpendicular to the length direction of the reinforcing yarn used for the warp and the weft is within the above range at all measurement points. Preferably it is. Thereby, it becomes easy to obtain the effect of reducing the electrolysis voltage during alkali chloride electrolysis while increasing the film strength. All measurement points are all points measured at random in order to calculate an average value. The same applies to values other than d1.
- the density (number of driving) of the reinforcing yarn in the reinforcing cloth is preferably 22 to 33 / inch, more preferably 25 to 30 / inch.
- the density of the reinforcing yarn is equal to or higher than the lower limit, the mechanical strength as the reinforcing material is sufficiently high. If the density of the reinforcing yarn is not more than the above upper limit value, the membrane resistance of the ion exchange membrane can be suppressed sufficiently low, and the increase of the electrolysis voltage can be suppressed sufficiently.
- the density of the sacrificial yarn is preferably an even multiple of the density of the reinforcing yarn.
- the density of the sacrificial yarn is preferably 4 times or 6 times that of the reinforcing yarn. In the case of an odd number of times, the warp yarn and the weft yarn of the reinforcing yarn do not alternately cross up and down, so that the fabric structure is not formed after the sacrificial yarn is eluted.
- the total density of the reinforcing yarn and the sacrificial yarn is preferably 110 to 198 yarns / inch from the viewpoint of ease of weaving and difficulty of misalignment.
- the opening ratio of the reinforcing material is preferably 60 to 90%, more preferably 70 to 85%.
- the membrane resistance of the ion exchange membrane can be suppressed sufficiently low, and an increase in electrolytic voltage can be sufficiently suppressed.
- the aperture ratio of the reinforcing material is equal to or less than the upper limit value, the mechanical strength as the reinforcing material is sufficiently high.
- the aperture ratio of the reinforcing material can be obtained from an optical micrograph.
- the thickness of the reinforcing material is preferably 60 to 150 ⁇ m, more preferably 80 to 130 ⁇ m.
- the thickness of the reinforcing material is not less than the lower limit, the mechanical strength as the reinforcing material is sufficiently high. If the thickness of the reinforcing material is less than or equal to the above upper limit value, the thickness of the yarn intersection is suppressed, and the influence of the increase in electrolytic voltage due to the current shielding of the reinforcing material can be sufficiently suppressed.
- the reinforcing yarn As the reinforcing yarn, those having resistance to high temperature, chlorine, sodium hypochlorite and sodium hydroxide in alkaline chloride electrolysis are preferable.
- the reinforcing yarn is preferably a yarn containing a fluorine-containing polymer, more preferably a yarn containing a perfluorocarbon polymer, more preferably a yarn containing PTFE, and only PTFE from the viewpoint of mechanical strength, heat resistance, and chemical resistance. PTFE yarn is particularly preferred.
- the reinforcing yarn may be a monofilament or a multifilament.
- the reinforcing yarn is a PTFE yarn
- a monofilament is preferable from the viewpoint of easy spinning, and a tape yarn obtained by slitting a PTFE film is more preferable.
- the fineness of the reinforcing yarn is preferably 50 to 200 denier, more preferably 80 to 150 denier. If the fineness of the reinforcing yarn is not less than the lower limit, the mechanical strength is sufficiently high. When the fineness of the reinforcing yarn is less than or equal to the above upper limit value, the membrane resistance of the ion exchange membrane can be suppressed sufficiently low, and an increase in electrolytic voltage can be sufficiently suppressed. Further, the reinforcing yarn does not come too close to the surface of the electrolyte membrane, and it is difficult for cracks to enter the surface of the electrolyte membrane. As a result, a decrease in mechanical strength is suppressed.
- the width of the reinforcing yarn viewed from the direction orthogonal to the cloth surface of the reinforcing material is 70 to 160 ⁇ m, preferably 90 to 150 ⁇ m, and more preferably 100 to 130 ⁇ m. If the width of the reinforcing yarn is not less than the lower limit, the membrane strength of the ion exchange membrane tends to increase. If the width of the reinforcing yarn is less than or equal to the above upper limit value, it is easy to reduce the membrane resistance of the ion exchange membrane, and it is easy to suppress an increase in electrolytic voltage.
- step (i) In the sacrificial yarn, part or all of the material is eluted in the alkaline aqueous solution in the following step (i), and an elution portion is formed in the layer (S) after the elution.
- the ion exchange membrane obtained through the step (i) is then placed in an electrolytic cell, and the conditioning operation of the following step (ii) is performed before the main operation of alkali chloride electrolysis. Even if there is a residual dissolution of the sacrificial yarn in step (i), in step (ii), most of the remainder of the material, preferably all, is eluted and removed in the alkaline aqueous solution.
- the sacrificial yarn is preferably a yarn containing at least one selected from the group consisting of PET, polybutylene terephthalate (hereinafter referred to as PBT), polytrimethylene terephthalate (hereinafter referred to as PTT), rayon, and cellulose.
- PBT polybutylene terephthalate
- PTT polytrimethylene terephthalate
- rayon rayon
- cellulose cellulose
- a PET yarn made of only PET, a PET / PBT yarn made of a mixture of PET and PBT, a PBT yarn made of only PBT, or a PTT yarn made of only PTT is more preferable.
- the sacrificial yarn is preferably a PET yarn from the viewpoint of cost.
- a PBT yarn or a PTT yarn is preferable, and a PTT yarn is particularly preferable from the viewpoint of obtaining an ion exchange membrane that is difficult to be eluted in an alkaline aqueous solution in the step (i) and has a sufficiently high mechanical strength.
- a PET / PBT mixed yarn is preferable from the viewpoint of a balance between cost and mechanical strength of the ion exchange membrane.
- the sacrificial yarn may be a multifilament in which a plurality of filaments are collected, or may be a monofilament.
- a multifilament is preferred because the contact area with the aqueous alkali solution is widened and the sacrificial yarn is easily eluted into the aqueous alkaline solution during step (ii).
- the number of filaments per sacrificial yarn is preferably 2 to 32, more preferably 2 to 16, and even more preferably 2 to 8. If the number of filaments is equal to or greater than the lower limit value, the sacrificial yarn is likely to be eluted into the alkaline aqueous solution during step (ii). If the number of filaments is less than or equal to the above upper limit, the fineness of the sacrificial yarn will not increase more than necessary.
- the fineness of the sacrificial yarn is preferably 7 to 100 denier, more preferably 9 to 60 denier, and still more preferably 12 to 40 denier before step (i).
- the fineness of the sacrificial yarn is equal to or greater than the lower limit, the mechanical strength is sufficiently high and the woven fabric property is sufficiently high. If the fineness of the sacrificial yarn is less than or equal to the above upper limit value, the holes formed after the sacrificial yarn is eluted will not be too close to the surface of the electrolyte membrane, and the surface of the electrolyte membrane is difficult to crack, resulting in mechanical A decrease in strength is suppressed.
- the ion exchange membrane of the present invention has an elution part formed in the layer (S) by elution of at least a part of the material of the sacrificial yarn in the steps (i) and (ii).
- the sacrificial yarn is a multifilament composed of two or more filaments
- at least part of the material of the multifilament elutes to form an elution portion composed of a collection of two or more holes.
- the sacrificial yarn is made of a monofilament, an elution portion consisting of one hole from which at least a part of the material of the monofilament has been eluted is formed.
- the step (i) when a part of the sacrificial yarn is not eluted and remains, the sacrificial yarn remaining in the elution portion exists.
- the ion exchange membrane it is preferable that a part of the sacrificial yarn remains even after step (i), and an elution portion is formed around the filament of the sacrificial yarn.
- the ion exchange membrane is cracked during handling of the ion exchange membrane from the production of the ion exchange membrane to before the conditioning operation of alkaline chloride electrolysis and when installing the ion exchange membrane in the electrolytic cell during the conditioning operation. Etc. are less likely to occur.
- most of the sacrificial yarn, preferably all of the sacrificial yarn elutes in the alkaline aqueous solution and is removed during step (ii).
- the total area (P) of the cross-sectional area of the elution portion and the cross-sectional area of the sacrificial yarn remaining in the elution portion in the cross section perpendicular to the length direction of the reinforcing yarn of the ion exchange membrane is 500 to 5000 ⁇ m 2 .
- the sacrificial yarn can be stored between the reinforcing yarns during weaving, and the electrolytic voltage during alkali chloride electrolysis can be reduced.
- the total area (P) is measured by observing a cross section of the ion exchange membrane dried at 90 ° C. for 2 hours or more with an optical electron microscope and using image software.
- the total area (P) is in the above range in the cross section perpendicular to the length direction of the reinforcing yarn.
- the cross section perpendicular to the length direction of the reinforcing yarn means a cross section cut perpendicular to the MD direction of the ion exchange membrane (hereinafter referred to as “MD cross section”) and a cross section cut perpendicular to the TD direction (hereinafter referred to as “TD cross section”). It means at least one cross section selected from “. That is, the total area (P) of at least one of the total area (P) in the MD cross section and the total area (P) in the TD cross section is in the above range.
- the MD cross section of the ion exchange membrane is preferably a cross section that does not overlap with the reinforcing yarn, the sacrificial yarn, and the elution hole arranged perpendicular to the MD direction in the reinforcing material embedded in the ion exchange membrane. It is the same.
- the total area (P) in the cross section in the present invention the average value of the total area (P) in the MD cross section and the total area (P) in the TD cross section is more preferably in the above range, and the total area (P) in the MD cross section. It is further preferable that both the total area (P) in the TD cross section and the total area (P) are in the above ranges.
- the total area (P) in the MD cross section can be obtained by measuring the total area (P) for 10 elution holes at random in the MD cross section of the ion exchange membrane and obtaining the average value thereof.
- the total area (P) in the TD cross section can be obtained in the same manner.
- the total area (P) becomes the cross-sectional area of the elution hole, and when the sacrificial yarn remaining in the elution hole exists, the total area ( P) is the total area of the cross-sectional area of the elution hole and the cross-sectional area of the sacrificial yarn remaining after elution.
- the average number (n) of elution portions between adjacent reinforcing yarns is 4 to 6, and 4 is particularly preferable.
- the average number (n) of the elution parts is 4 to 6, the electrolysis voltage at the time of alkaline chloride electrolysis can be reduced while increasing the film strength.
- the number of elution holes formed from one sacrificial yarn of multifilament is counted as one.
- the average distance (d2) from the center of the elution portion to the center of the adjacent elution portion in the cross section perpendicular to the length direction of the reinforcing yarn of the ion exchange membrane preferably satisfies the relationship of the following formula (1). It is more preferable to satisfy the relationship of the following formula (1-1), and it is more preferable to satisfy the following formula (1-2). Thereby, it becomes easy to obtain the effect of reducing the electrolysis voltage during alkali chloride electrolysis while increasing the film strength.
- d1 Average distance from the center of the reinforcing yarn to the center of the adjacent reinforcing yarn.
- d2 Average distance from the center of the elution hole to the center of the next elution hole.
- n Number of elution holes between adjacent reinforcing yarns.
- the average distance (d1) and the average distance (d2) satisfy the relationship of the above expression in a cross section orthogonal to the length direction of the reinforcing yarn.
- the cross section orthogonal to the length direction of the reinforcing yarn means at least one cross section selected from the MD cross section and the TD cross section of the ion exchange membrane. That is, it is preferable that the average distance (d1) and the average distance (d2) in at least one cross section selected from the MD cross section and the TD cross section satisfy the relationship of the above formula.
- the average value of the average distance (d1) in the MD cross section and the average distance (d1) in the TD cross section, and the average value of the average distance (d2) in the MD cross section and the average distance (d2) in the TD cross section are It is preferable to satisfy the equation, and it is more preferable that the average distance (d1) and the average distance (d2) satisfy the relationship of the above equation in both the MD cross section and the TD cross section.
- the average distance (d1) and the average distance (d2) in the MD cross section are measured by randomly measuring the average distance (d1) and the average distance (d2) at each of the ten locations in the MD cross section of the ion exchange membrane. It is obtained by calculating the average value.
- the average distance (d1) and average distance (d2) in the TD cross section can be obtained in the same manner.
- the above formula ( 1 ′) is preferably satisfied, the relationship of the following formula (1′-1) is more preferable, and the relationship of formula (1′-2) is more preferably satisfied.
- the measurement points measured for determining the average distance (d2) mean all the measurement points measured for calculating the average distance (d2).
- d2 ′ Distance from the center of the elution part to the center of the next elution part.
- d1 and n Same as above.
- the average distance (d3) from the center of the reinforcing yarn to the center of the adjacent elution portion in the cross section perpendicular to the length direction of the reinforcing yarn of the ion exchange membrane satisfies the relationship of the following formula (2). It is more preferable that the relationship of the following formula (2-1) is satisfied, and it is more preferable that the following formula (2-2) is satisfied. Thereby, it becomes easy to obtain the effect of reducing the electrolysis voltage during alkali chloride electrolysis while increasing the film strength.
- the average distance (d1) and the average distance (d3) satisfy the relationship of the above expression in a cross section orthogonal to the length direction of the reinforcing yarn.
- the cross section perpendicular to the length direction of the reinforcing yarn means at least one of the MD cross section and the TD cross section of the ion exchange membrane. That is, it is preferable that the average distance (d1) and the average distance (d3) in at least one cross section selected from the MD cross section and the TD cross section satisfy the relationship of the above formula.
- the average value of the average distance (d1) in the MD cross section and the average distance (d1) in the TD cross section, and the average value of the average distance (d3) in the MD cross section and the average distance (d3) in the TD cross section are It is preferable to satisfy the equation, and it is further preferable that the average distance (d1) and the average distance (d3) satisfy the relationship of the above equation in both the MD cross section and the TD cross section.
- the average distance (d1) and the average distance (d3) in the MD cross section are obtained by randomly measuring the average distance (d1) and the average distance (d3) at 10 locations in the MD cross section of the ion exchange membrane. Obtained by determining the value.
- the average distance (d1) and average distance (d3) in the TD cross section can be obtained in the same manner.
- all the distances d3 ′ from the center of the reinforcing yarn to the center of the adjacent elution part in the cross section perpendicular to the length direction of the reinforcing yarn of the ion exchange membrane are all expressed by the relationship of the above formula (2 ′). Is preferably satisfied, more preferably the relationship of the following formula (2′-1) is satisfied, and further preferably the relationship of the formula (2′-2) is satisfied. Thereby, it becomes easy to obtain the effect of reducing the electrolysis voltage during alkali chloride electrolysis while increasing the film strength.
- all the measurement locations measured in order to determine the average distance (d3) in the distance d3 ′ mean all the measurement locations measured in order to calculate the average distance (d3).
- any MD cross-section or TD cross-section it means 10 measurement points measured to obtain the average distance (d3).
- 0.5 ⁇ ⁇ d3 ′ / d1 ⁇ (n + 1) ⁇ ⁇ 1.5 (2 ′) 0.8 ⁇ ⁇ d3 ′ / d1 ⁇ (n + 1) ⁇ ⁇ 1.5 (2′ ⁇ 1) 0.9 ⁇ ⁇ d3 ′ / d1 ⁇ (n + 1) ⁇ ⁇ 1.4 (2′ ⁇ 2)
- the symbols in the formula (1 ′) have the following meanings.
- d3 ′ Distance from the center of the reinforcing yarn to the center of the adjacent elution part.
- d1 and n Same as above.
- a precursor layer (S′2) made of a fluorine-containing polymer having a group that can be converted into a sulfonic acid type functional group is obtained by a single layer extrusion method.
- the precursor layer (S′2), the reinforcing cloth, the laminated layer of the precursor layer (S′1) and the precursor layer (C ′) are arranged in this order, and these are laminated using a laminating roll or a vacuum laminating apparatus. Lamination is performed to obtain a reinforced precursor film. At this time, the laminated film of the precursor layer (S′1) and the precursor layer (C ′) is disposed so that the precursor layer (S′1) is in contact with the reinforcing cloth.
- the precursor layer (S′1) becomes the layer (Sb)
- the precursor layer (S′2) becomes the layer (Sa)
- the layer (Sa) the reinforcing material, the layer An ion exchange membrane in which (Sb) and the layer (C) are laminated in this order is obtained.
- fluoropolymer having a group that can be converted to a carboxylic acid type functional group examples include a unit derived from a fluorine-containing monomer having a group that can be converted into a carboxylic acid type functional group and a unit derived from a fluorine-containing olefin. A polymer is mentioned.
- the fluorine-containing monomer having a group that can be converted into a carboxylic acid type functional group a group that has one or more fluorine atoms in the molecule, has an ethylenic double bond, and can be converted into a carboxylic acid type functional group If it is a compound which has this, it will not specifically limit, A conventionally well-known thing can be used.
- the fluorine-containing monomer having a group that can be converted into a carboxylic acid type functional group is represented by the following formula (3) from the viewpoint of excellent production cost of the monomer, reactivity with other monomers, and characteristics of the resulting fluorine-containing polymer. Monomers are preferred.
- CF 2 CF— (O) p — (CF 2 ) q — (CF 2 CFX) r — (O) s — (CF 2 ) t — (CF 2 CFX ′) u —A 1 (3) .
- X in Formula (3) is a fluorine atom or a trifluoromethyl group.
- X ' is a fluorine atom or a trifluoromethyl group.
- both X and X 'are present in one molecule each may be the same or different.
- a 1 is a group that can be converted into a carboxylic acid type functional group.
- the group that can be converted into a carboxylic acid type functional group is a functional group that can be converted into a carboxylic acid type functional group by hydrolysis.
- Examples of the functional group that can be converted to a carboxylic acid type functional group include —CN, —COF, —COOR 1 (where R 1 is an alkyl group having 1 to 10 carbon atoms), —COONR 2 R 3 (wherein , R 2 and R 3 are a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 2 and R 3 may be the same or different.
- p is 0 or 1
- q is an integer from 0 to 12
- r is an integer from 0 to 3
- s is 0 or 1
- t is an integer from 0 to 12
- U is an integer of 0-3.
- p and s are not 0 simultaneously, and r and u are not 0 simultaneously. That is, 1 ⁇ p + s and 1 ⁇ r + u.
- CF 2 CF—O—CF 2 CF 2 —COOCH 3
- CF 2 CF—O—CF 2 CF 2 —CF 2 —COOCH 3
- CF 2 CF—O—CF 2 CF 2 —CF 2 CF 2 —COOCH 3
- CF 2 CF—O—CF 2 CF 2 —O—CF 2 CF 2 —COOCH 3
- CF 2 CF—O—CF 2 CF 2 —O—CF 2 CF 2 —COOCH 3
- CF 2 CF—O—CF 2 CF 2 —O—CF 2 CF 2 —CF 2 —COOCH 3
- CF 2 CF—O—CF 2 CF 2 —O—CF 2 CF 2 —CF 2 —COOCH 3
- CF 2 CF—O—CF 2 CF 2 —O—CF 2 CF 2 —CF 2 —COOCH 3
- CF 2 CF—O—CF 2 CF 2 —O—CF
- fluorinated olefin examples include fluoroolefins having 2 to 3 carbon atoms having one or more fluorine atoms in the molecule.
- TFE is particularly preferable from the viewpoints of monomer production cost, reactivity with other monomers, and excellent properties of the resulting fluoropolymer.
- a fluorine-containing olefin may be used individually by 1 type, and may be used in combination of 2 or more type.
- another monomer may be used for the fluorine-containing polymer forming the layer (C).
- the molecular weight of the fluorine-containing polymer having a group that can be converted into a carboxylic acid type functional group is preferably 150 ° C. or higher, more preferably 170 to 340 ° C. in terms of mechanical strength and film-forming property as an ion exchange membrane. 170 to 300 ° C. is more preferable.
- fluoropolymer having a group that can be converted into a sulfonic acid type functional group examples include a unit derived from a fluorine-containing monomer having a group that can be converted into a sulfonic acid type functional group and a unit derived from a fluorine-containing olefin. A polymer is mentioned.
- fluorine-containing monomer having a group that can be converted into a sulfonic acid type functional group a group that has one or more fluorine atoms in the molecule, has an ethylenic double bond, and can be converted into a sulfonic acid type functional group If it is a monomer which has this, it will not specifically limit, A conventionally well-known thing can be used.
- the fluorine-containing monomer having a group that can be converted into a sulfonic acid type functional group is represented by the following formula (4) from the viewpoint of excellent production cost of the monomer, reactivity with other monomers, and characteristics of the resulting fluorine-containing polymer. Or a monomer represented by the following formula (5) is preferred.
- CF 2 CF—O—R f2 —A 2 (4)
- CF 2 CF—R f2 —A 2 (5).
- R f2 is a C 1-20 perfluoroalkylene group, may contain an etheric oxygen atom, and may be linear or branched.
- a 2 is a group that can be converted into a sulfonic acid type functional group.
- the group that can be converted into a sulfonic acid type functional group is a functional group that can be converted into a sulfonic acid type functional group by hydrolysis. Examples of the functional group that can be converted into the sulfonic acid type functional group include —SO 2 F, —SO 2 Cl, —SO 2 Br, and the like.
- CF 2 ⁇ CF—O— (CF 2 ) a —SO 2 F (where a is an integer of 1 to 8), CF 2 ⁇ CF—O—CF 2 CF (CF 3 ) O (CF 2 ) a —SO 2 F (where a is an integer of 1 to 8), CF 2 CF [OCF 2 CF (CF 3 )] a SO 2 F (where a is an integer of 1 to 5)
- CF 2 CF (CF 2 ) b —SO 2 F (where b is an integer of 0 to 8), CF 2 ⁇ CF—CF 2 —O— (CF 2 ) b —SO 2 F (where b is an integer of 1 to 8)
- CF 2 CFOCF 2 CF 2 SO 2 F
- CF 2 CFOCF 2 CF 2 CF 2 SO 2 F
- CF 2 CFOCF 2 CF 2 CF 2 SO 2 F
- CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 SO 2 F
- CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 CF 2 SO 2 F
- CF 2 CFOCF 2 CF (CF 3 ) SO 2 F
- CF 2 CFCF 2 CF 2 SO 2 F
- CF 2 CF 2 CF 2 SO 2 F
- CF 2 CF—CF 2 —O—CF 2 CF 2 —SO 2 F.
- fluorine-containing monomer having a group that can be converted into a sulfonic acid type functional group the following monomers are more preferable from the viewpoint of easy industrial synthesis.
- CF 2 CFOCF 2 CF 2 SO 2 F
- CF 2 CFOCF 2 CF 2 CF 2 SO 2 F
- fluorine-containing olefin examples include those exemplified above, and TFE is particularly preferable from the viewpoint of excellent production cost of the monomer, reactivity with other monomers, and characteristics of the resulting fluorine-containing polymer.
- a fluorine-containing olefin may be used individually by 1 type, and may be used in combination of 2 or more type.
- another monomer may be used for the fluorine-containing polymer forming the layer (S).
- the other monomer include those exemplified above.
- the proportion of other monomers is preferably 30% by mass or less of the total monomers (100% by mass) from the viewpoint of maintaining ion exchange performance.
- the molecular weight of the fluorine-containing polymer having a group that can be converted into a sulfonic acid type functional group is preferably 150 ° C. or higher, more preferably 170 to 340 ° C. in terms of mechanical strength as an ion exchange membrane and film forming property. 170 to 300 ° C. is more preferable.
- a group that can be converted into a carboxylic acid type functional group and a group that can be converted into a sulfonic acid type functional group are hydrolyzed to obtain a carboxylic acid type functional group and a sulfonic acid type functional group, respectively.
- An ion exchange membrane is obtained by converting to As the hydrolysis method, for example, a method using a mixture of a water-soluble organic compound and an alkali metal hydroxide as described in JP-A-1-140987 is preferable.
- step (b) it is preferable that at least a part of the sacrificial yarn is hydrolyzed and eluted into the alkaline aqueous solution by bringing the reinforced precursor film into contact with the alkaline aqueous solution.
- FIG. 3 is a schematic view showing an example of the alkali chloride electrolysis apparatus of the present invention.
- the alkaline chloride electrolysis apparatus 100 of this embodiment includes an electrolytic cell 110 including a cathode 112 and an anode 114, and an electrolytic cell so that the interior of the electrolytic cell 110 is divided into a cathode chamber 116 on the cathode 112 side and an anode chamber 118 on the anode 114 side.
- an ion exchange membrane 1 mounted in 110.
- the ion exchange membrane 1 is mounted in the electrolytic cell 110 such that the layer (C) 12 is on the cathode 112 side and the layer (Sa) of the layer (S) 14 is on the anode 114 side.
- the cathode 112 may be disposed in contact with the ion exchange membrane 1 or may be disposed at a distance from the ion exchange membrane 1.
- a material constituting the cathode chamber 116 a material resistant to sodium hydroxide and hydrogen is preferable.
- the material include stainless steel and nickel.
- a material constituting the anode chamber 118 a material resistant to sodium chloride and chlorine is preferable.
- An example of the material is titanium.
- the cathode material is preferably made of stainless steel or nickel as the base material, and the electrode catalyst layer is made of Ni-S alloy, Raney Ni, NiO, Ni-Sn alloy, platinum group elements such as Pt or Ru, etc.
- the anode material is preferably titanium or the like having an oxide coating layer.
- a sodium chloride aqueous solution is supplied to the anode chamber 118 of the alkali chloride electrolysis apparatus 100, a potassium hydroxide aqueous solution is supplied to the cathode chamber 116, and the cathode chamber.
- the sodium chloride aqueous solution is electrolyzed while maintaining the concentration of the sodium hydroxide aqueous solution discharged from 116 at a predetermined concentration (for example, 32% by mass).
- TQ value is a value related to the molecular weight of the polymer, and was determined as a temperature indicating a volume flow rate: 100 mm 3 / sec.
- the volume flow rate is melted from an orifice (diameter: 1 mm, length: 1 mm) under pressure of 3 MPa using a Shimadzu flow tester CFD-100D (manufactured by Shimadzu Corporation) under a pressure of 3 MPa.
- the amount of outflow at the time of outflow (unit: mm 3 / sec).
- the cross section of the ion exchange membrane dried at 90 ° C. for 2 hours or more was observed with an optical microscope, and the MD cross section (cross section cut perpendicular to the MD direction) and TD cross section using image software (Pixs2000 PRO manufactured by Innotech).
- image software Pans2000 PRO manufactured by Innotech.
- the distance from the center of the reinforcing yarn to the center of the adjacent reinforcing yarn was measured at 10 points each, and the average value d1 was obtained from the average.
- the average values d1 to d3 are values of the reinforcing cloth disposed on the ion exchange membrane manufactured through steps (a) and (b), and after weaving, that is, through steps (a) and (b). Different from previous value.
- the total area (S) was similarly determined for the TD cross section. When the sacrificial yarn is completely dissolved, the total area (S) is the cross-sectional area of the elution hole, and when there is a sacrificial yarn remaining in the elution hole, the total area (S) is the elution hole. And the total cross-sectional area of the sacrificial yarn remaining after dissolution.
- the ion exchange membrane is placed in a test electrolytic cell having an effective energization area of 1.5 dm 2 (electrolytic surface size is 150 mm long ⁇ 100 mm wide) so that the layer (C) faces the cathode, and the anode is made of titanium.
- a punched metal (4 mm short axis, 8 mm long axis) coated with a solid solution of ruthenium oxide, iridium oxide, and titanium oxide is used, and the cathode is made of SUS304 punched metal (5 mm short diameter, 10 mm long diameter) with Raney nickel containing ruthenium.
- the electrodeposited material was used so that the electrode and the film were in direct contact and no gap was formed.
- the aperture ratio was determined by observing a cross section of the ion exchange membrane dried in the atmosphere at 90 ° C. for 2 hours or more perpendicularly to the length direction of the reinforcing yarn with an optical microscope, and image software (Pixs2000 PRO manufactured by Innotech). was used to calculate the aperture ratio. The calculation is based on the distance from the center of the reinforcing yarn to the center of the adjacent reinforcing yarn and the reinforcing yarn in each of the MD cross section (cross section cut perpendicular to the MD direction) and the TD cross section (cross section cut perpendicular to the TD direction). The width of each was measured at 10 locations, and calculated from the following formula.
- Example 1 Fluorine-containing polymer having a group that can be converted to a carboxylic acid-type functional group by copolymerizing TFE and a fluorine-containing monomer having a group that can be converted to a carboxylic acid-type functional group represented by the following formula (3-1) Capacity: 1.06 meq / g dry resin, TQ: 225 ° C.) (hereinafter referred to as polymer C) was synthesized.
- CF 2 CF—O—CF 2 CF 2 —CF 2 —COOCH 3 (3-1).
- CF 2 CF—O—CF 2 CF (CF 3 ) —O—CF 2 CF 2 —SO 2 F (4 ⁇ 1)
- Polymer C and polymer S1 are molded by co-extrusion method, and precursor layer (C ′) (thickness: 12 ⁇ m) made of polymer C and precursor layer (S′1) (thickness: 68 ⁇ m) made of polymer S1 A film A having a two-layer structure was obtained. Moreover, polymer S2 was shape
- a monofilament obtained by slitting to a thickness of 100 denier was used as a reinforcing yarn.
- a sacrificial yarn was a PET yarn composed of 18 denier multifilaments in which two 9 denier PET filaments were aligned. Plain weaving was performed so that one reinforcing yarn and four sacrificial yarns were alternately arranged to obtain a reinforcing fabric (reinforcing yarn density: 27 yarns / inch, sacrificial yarn density: 108 yarns / inch).
- the film B, the reinforcing cloth, the film A, and the release PET film are stacked in this order so that the precursor layer (C ′) of the film A is on the release PET film side. And laminated.
- the release PET film was peeled off to obtain a reinforced precursor film. Consists of 29.0% by mass of zirconium oxide (average particle size: 1 ⁇ m), 1.3% by mass of methylcellulose, 4.6% by mass of cyclohexanol, 1.5% by mass of cyclohexane and 63.6% by mass of water.
- the paste was transferred to the upper layer side of the precursor layer (S′2) of the reinforced precursor film by a roll press to form a gas release coating layer.
- the amount of zirconium oxide deposited was 20 g / m 2 .
- the reinforced precursor film having a gas release coating layer formed on one side was immersed in an aqueous solution of 5% by mass of dimethyl sulfoxide and 30% by mass of potassium hydroxide at 95 ° C. for 8 minutes.
- —COOCH 3 of polymer C and —SO 2 F of polymer S1 and polymer S2 are hydrolyzed and converted into ion exchange groups, and precursor layer (C ′) is converted into layer (C), and precursor layer ( A film having S′1) and precursor (S′2) as layers (S1) and (S2), respectively, was obtained.
- a dispersion was prepared by dispersing zirconium oxide (average particle size: 1 ⁇ m) at a concentration of 13% by mass in an ethanol solution containing 2.5% by mass of the acid type polymer of the polymer S1.
- the dispersion was sprayed on the layer (C) side of the membrane to form a gas releasable coating layer, and an ion exchange membrane having a gas releasable coating layer formed on both sides was obtained.
- the amount of zirconium oxide deposited was 3 g / m 2 .
- Example 2 Fluorine-containing polymer having a group that can be converted into a sulfonic acid-type functional group by copolymerizing TFE and a fluorine-containing monomer having a group that can be converted into a sulfonic acid-type functional group represented by the formula (4-1) Capacity: 1.30 meq / g dry resin, TQ: 235 ° C.) (hereinafter referred to as polymer S3) was synthesized. An ion exchange membrane was obtained in the same manner as in Example 1 except that the polymer S2 was changed to the polymer S3.
- Example 3 As a sacrificial yarn, an ion exchange membrane was obtained in the same manner as in Example 1 except that a PET yarn consisting of a 32-denier multifilament in which two 16-denier PET filaments were aligned and the polymer S2 was changed to the polymer S3. .
- Example 4 As the sacrificial yarn, PET yarn composed of 30 denier multifilaments in which 6 monofilaments of 5 denier are aligned and twisted is used. The density of the reinforcing yarn in the reinforcing fabric is 27 / inch, and the density of the sacrificial yarn is 54 / An ion exchange membrane was obtained in the same manner as in Example 1 except that the inch was changed and the polymer S2 was changed to the polymer S1.
- Example 5 As the sacrificial yarn, PET yarn composed of 30 denier multifilaments in which 6 monofilaments of 5 denier are aligned and twisted is used. The density of the reinforcing yarn in the reinforcing fabric is 27 / inch, and the density of the sacrificial yarn is 54 / An ion exchange membrane was obtained in the same manner as in Example 1 except that the inch was used.
- Example 6 As the sacrificial yarn, PET yarn composed of 30 denier multifilaments in which 6 monofilaments of 5 denier are aligned and twisted is used. The density of the reinforcing yarn in the reinforcing fabric is 27 / inch, and the density of the sacrificial yarn is 54 / An ion exchange membrane was obtained in the same manner as in Example 1 except that the inch was changed and the polymer S2 was changed to the polymer S3.
- Example 7 An ion exchange membrane was obtained in the same manner as in Example 1 except that the polymer S2 was changed to the polymer S1.
- Example 8 An ion exchange membrane was obtained in the same manner as in Example 1 except that a PET yarn composed of a 32-denier multifilament in which two 16-denier PET filaments were aligned as the sacrificial yarn, and the polymer S2 was changed to the polymer S1. .
- Table 1 shows the measurement results of the average distances d1 to d3, the total area (P), the width of the reinforcing yarn, and the electrolytic voltage of each ion exchange membrane in each example.
- Example 1 to 3 using ion exchange membranes that satisfy the conditions of the present invention the average number (n) of elution parts is less than 4, and the ion exchange capacity of the layer (Sa) of the layer (S) is 1.15 meq.
- Example 4 using an ion exchange membrane of less than / gram dry resin the electrolysis voltage was low despite the small average value distance (d1).
- Example 1 compared to Example 4, the ion exchange capacity of the layer (Sa) was 1.25 meq / g dry resin, and the voltage difference was ⁇ 20 mV, the average number of elution parts ( In Example 7 where n) is 4, the voltage difference is ⁇ 40 mV, and the sum of these voltage differences is ⁇ 60 mV.
- the voltage difference with respect to Example 4 of Example 1 which combined the countermeasures of Example 5 and Example 7 was ⁇ 70 mV, which was larger than the voltage difference obtained by adding Example 5 and Example 7, and a synergistic effect was observed.
- Example 1 compared with Example 4, the ion exchange capacity of the layer (Sa) was 1.30 meq / g dry resin, and the voltage difference was ⁇ 25 mV, the average number of elution parts.
- Example 7 in which (n) is 4 the voltage difference is ⁇ 40 mV, and the voltage difference obtained by adding these is ⁇ 65 mV.
- the voltage difference with respect to Example 4 of Example 2 which combined the countermeasures of Example 6 and Example 7 was ⁇ 75 mV, which was larger than the voltage difference obtained by adding Example 6 and Example 7, and a synergistic effect was observed.
- Example 1 compared with Example 4, the ion exchange capacity of the layer (Sa) was 1.30 meq / g dry resin, and the voltage difference was ⁇ 25 mV, the average number of elution parts.
- Example 8 in which (n) is 4, the voltage difference is ⁇ 40 mV, and the voltage difference obtained by adding these is ⁇ 65 mV.
- the voltage difference with respect to Example 4 of Example 3 which combined the countermeasures of Example 6 and Example 8 was ⁇ 85 mV, which was larger than the voltage difference obtained by adding Example 6 and Example 8, and a synergistic effect was observed.
- the measured values were within the above ranges at all 10 locations.
- the electrolysis apparatus having an ion exchange membrane for alkaline chloride electrolysis according to the present invention is widely used to produce chlorine and sodium hydroxide or potassium hydroxide by electrolysis such as industrial sodium chloride aqueous solution and potassium chloride aqueous solution. . It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2014-227994 filed on November 10, 2014 are cited here as disclosure of the specification of the present invention. Incorporated.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
膜強度を高めつつ、膜抵抗を低くして塩化アルカリ電解時の電解電圧を低減できる塩化アルカリ電解用イオン交換膜を提供する。 層(S)14が、補強糸22と犠牲糸24とを製織した補強材20が配置され、犠牲糸24の材料の少なくとも一部が溶出して形成された溶出部28を有し、補強糸の経糸に直交する断面において、補強糸22の中心からその隣の補強糸22の中心までの平均距離(d1)、溶出部28の断面積と、該溶出部28内に残存する犠牲糸24の断面積とを合計した総面積(P)、隣り合う補強糸22間の溶出部の数n、および層(S)14における塩化アルカリ電解時に最も陽極側に位置する層(Sa)のイオン交換容量を特定の範囲に制御した塩化アルカリ電解用イオン交換膜1。
Description
本発明は、塩化アルカリ電解用イオン交換膜、その製造方法、塩化アルカリ電解装置に関する。
塩化アルカリ水溶液を電解し、水酸化アルカリと塩素とを製造する塩化アルカリ電解法に用いられるイオン交換膜としては、イオン交換基(カルボン酸型官能基、スルホン酸型官能基等)を有する含フッ素ポリマーからなる電解質膜が知られている。
電解質膜では、機械的強度や寸法安定性を維持する点から、通常、スルホン酸型官能基を有する含フッ素ポリマーを含む層(S)に、補強糸(ポリテトラフルオロエチレン(以下、PTFEと記す。)糸等)からなる補強布を埋め込んで補強する。しかし、PTFE糸等からなる補強布を有するイオン交換膜は、膜抵抗が高くなり、電解電圧が上昇する。
電解質膜では、機械的強度や寸法安定性を維持する点から、通常、スルホン酸型官能基を有する含フッ素ポリマーを含む層(S)に、補強糸(ポリテトラフルオロエチレン(以下、PTFEと記す。)糸等)からなる補強布を埋め込んで補強する。しかし、PTFE糸等からなる補強布を有するイオン交換膜は、膜抵抗が高くなり、電解電圧が上昇する。
そこで、PTFE系等の補強糸と、アルカリ性水溶液に可溶な犠牲糸(ポリエチレンテレフタレート(以下、PETと記す。)糸等)とを混織した補強布を用いる方法が提案されている(例えば、特許文献1)。犠牲糸は、以下の段階(i)で少なくとも一部が溶解し、段階(ii)で大部分または全部が溶出して除去されるため、イオン交換膜を用いた塩化アルカリ電解の本運転の時点では膜抵抗に影響を及ぼさない。
段階(i):イオン交換基に変換できる基を有する含フッ素ポリマーを含む前駆体膜が補強布で補強された強化前駆体膜をアルカリ性水溶液に浸漬し、イオン交換基に変換できる基を加水分解してイオン交換基に変換する。
段階(ii):イオン交換膜を電解槽に配置し、塩化アルカリ電解の本運転前のコンディショニング運転を行う。
段階(i):イオン交換基に変換できる基を有する含フッ素ポリマーを含む前駆体膜が補強布で補強された強化前駆体膜をアルカリ性水溶液に浸漬し、イオン交換基に変換できる基を加水分解してイオン交換基に変換する。
段階(ii):イオン交換膜を電解槽に配置し、塩化アルカリ電解の本運転前のコンディショニング運転を行う。
補強糸と犠牲糸を有する補強布を有する塩化アルカリ電解用イオン交換膜において、膜強度を高めるためには、補強布における補強糸の間隔をより狭くすることが重要である。しかし、補強糸の間隔を狭くすると、膜抵抗が高くなり、電解電圧が高くなる。そのため、イオン交換膜の膜強度を高めつつ、電解電圧を低減することは難しい。
本発明は、補強糸の間隔を狭くして膜強度を高くしても、膜抵抗が低く塩化アルカリ電解時の電解電圧を低減できる塩化アルカリ電解用イオン交換膜、その製造方法および該イオン交換膜を用いた塩化アルカリ電解装置を提供することを目的とする。
本発明の要旨は、以下の[1]~[15]にある。
[1]陰極および陽極を備える塩化アルカリ電解槽と、前記電解槽内を前記陰極側の陰極室と前記陽極側の陽極室とに区切るように設置させて用いられる塩化アルカリ電解用イオン交換膜であって、該塩化アルカリ電解用イオン交換膜は、スルホン酸型官能基を有する含フッ素ポリマーを含む層(S)と前記層(S)中に層(S)と略並行に配置された補強材とを有し、
前記層(S)は、最も陽極側に配置された1層の層(Sa)と、層(Sa)よりも陰極側に配置された1層以上の層(Sb)と、層(Sa)と層(Sb)間もしくは層(Sb)中に配置された補強材との積層体であり、
補強材は、緯糸および経糸に補強糸、および、緯糸および経糸に犠牲糸を任意に用いた織物であり、
補強糸の長さ方向に直交する層(S)の断面において、補強糸の中心から隣の補強糸の中心までの平均距離(d1)は750~1000μmであり、層(S)中には、犠牲糸が溶出してなる溶出部が存在し、前記溶出部の断面積と前記溶出部内に残存する犠牲糸の断面積との総面積(P)は500~5000μm2であり、隣り合う補強糸間の溶出部の平均数は4~6個であり、
かつ、前記層(Sa)のイオン交換容量が1.15ミリ当量/グラム乾燥樹脂以上である、ことを特徴とする塩化アルカリ電解用イオン交換膜。
[2]層(Sb)のイオン交換容量が、前記層(Sa)のイオン交換容量よりも低い、[1]の塩化アルカリ電解用イオン交換膜。
[3]層(S)の最も陰極側の面に、カルボン酸型官能基を有する含フッ素ポリマーを含む1層以上の層(C)を有する、[1]または[2]の塩化アルカリ電解用イオン交換膜。
[1]陰極および陽極を備える塩化アルカリ電解槽と、前記電解槽内を前記陰極側の陰極室と前記陽極側の陽極室とに区切るように設置させて用いられる塩化アルカリ電解用イオン交換膜であって、該塩化アルカリ電解用イオン交換膜は、スルホン酸型官能基を有する含フッ素ポリマーを含む層(S)と前記層(S)中に層(S)と略並行に配置された補強材とを有し、
前記層(S)は、最も陽極側に配置された1層の層(Sa)と、層(Sa)よりも陰極側に配置された1層以上の層(Sb)と、層(Sa)と層(Sb)間もしくは層(Sb)中に配置された補強材との積層体であり、
補強材は、緯糸および経糸に補強糸、および、緯糸および経糸に犠牲糸を任意に用いた織物であり、
補強糸の長さ方向に直交する層(S)の断面において、補強糸の中心から隣の補強糸の中心までの平均距離(d1)は750~1000μmであり、層(S)中には、犠牲糸が溶出してなる溶出部が存在し、前記溶出部の断面積と前記溶出部内に残存する犠牲糸の断面積との総面積(P)は500~5000μm2であり、隣り合う補強糸間の溶出部の平均数は4~6個であり、
かつ、前記層(Sa)のイオン交換容量が1.15ミリ当量/グラム乾燥樹脂以上である、ことを特徴とする塩化アルカリ電解用イオン交換膜。
[2]層(Sb)のイオン交換容量が、前記層(Sa)のイオン交換容量よりも低い、[1]の塩化アルカリ電解用イオン交換膜。
[3]層(S)の最も陰極側の面に、カルボン酸型官能基を有する含フッ素ポリマーを含む1層以上の層(C)を有する、[1]または[2]の塩化アルカリ電解用イオン交換膜。
[4]補強糸の長さ方向に直交する断面において、下式(1)を満たす関係が成立する、[1]~[3]のいずれかの塩化アルカリ電解用イオン交換膜。
0.5≦{d2/d1×(n+1)}≦1.5 ・・・(1)
但し、式(1)中の記号は以下の意味を示す。
d1:補強糸の中心から隣の補強糸の中心までの平均距離。
d2:溶出部の中心から、隣の溶出部の中心までの平均距離。
n:隣り合う補強糸間に存在する溶出部の平均数。
[5]補強糸の長さ方向に直交する断面において、前記平均距離(d1)および平均距離(d2)を決定するために測定した全ての測定箇所において、下式(1’)を満たす関係が成立する、[4]の塩化アルカリ電解用イオン交換膜。
0.5≦{d2’/d1×(n+1)}≦1.5 ・・・(1’)
但し、式(1’)中の記号は以下の意味を示す。
d2’:任意の測定箇所における、溶出部の中心から、隣の溶出部の中心までの距離。
d1およびn:前記と同じ。
[6]補強糸の長さ方向に直交する断面において、下式(2)を満たす関係が成立する、[1]~[5]のいずれかの塩化アルカリ電解用イオン交換膜。
0.5≦{d3/d1×(n+1)}≦1.5 ・・・(2)
但し、式(2)中の記号は以下の意味を示す。
d3:補強糸の中心から、隣の溶出部の中心までの平均距離。
d1、n:前記と同じ。
0.5≦{d2/d1×(n+1)}≦1.5 ・・・(1)
但し、式(1)中の記号は以下の意味を示す。
d1:補強糸の中心から隣の補強糸の中心までの平均距離。
d2:溶出部の中心から、隣の溶出部の中心までの平均距離。
n:隣り合う補強糸間に存在する溶出部の平均数。
[5]補強糸の長さ方向に直交する断面において、前記平均距離(d1)および平均距離(d2)を決定するために測定した全ての測定箇所において、下式(1’)を満たす関係が成立する、[4]の塩化アルカリ電解用イオン交換膜。
0.5≦{d2’/d1×(n+1)}≦1.5 ・・・(1’)
但し、式(1’)中の記号は以下の意味を示す。
d2’:任意の測定箇所における、溶出部の中心から、隣の溶出部の中心までの距離。
d1およびn:前記と同じ。
[6]補強糸の長さ方向に直交する断面において、下式(2)を満たす関係が成立する、[1]~[5]のいずれかの塩化アルカリ電解用イオン交換膜。
0.5≦{d3/d1×(n+1)}≦1.5 ・・・(2)
但し、式(2)中の記号は以下の意味を示す。
d3:補強糸の中心から、隣の溶出部の中心までの平均距離。
d1、n:前記と同じ。
[7]補強糸の長さ方向に直交する断面において、前記平均距離(d1)および平均距離(d3)を決定するために測定した全ての測定箇所において、下式(2’)を満たす関係が成立する、[6]の塩化アルカリ電解用イオン交換膜。
0.5≦{d3’/d1×(n+1)}≦1.5 ・・・(2’)
但し、式(1’)中の記号は以下の意味を示す。
d3’:任意の測定箇所における補強糸の中心から、隣の溶出部の中心までの距離。
d1およびn:前記と同じ。
[8]補強糸の長さ方向に直交する断面における前記補強糸の太さが70~160μmである、[1]~[7]のいずれかの塩化アルカリ電解用イオン交換膜。
[9]陰極および陽極を備える電解槽と、[1]~[8]のいずれかの塩化アルカリ電解用イオン交換膜を有し、前記塩化アルカリ電解用イオン交換膜は、前記電解槽内の陽極と陰極との間に略並行に設置され、かつ陰極側の陰極室と前記陽極側の陽極室とに区切るように設置されてなる塩化アルカリ電解装置。
[10]イオン交換基に変換できる基を有する含フッ素ポリマーを含む前駆体膜中に、補強糸と犠牲糸とからなる補強布が配置された強化前駆体膜を得て、次に前記強化前駆体膜をアルカリ性水溶液に接触させることによって、イオン交換基に変換できる基をイオン交換基に変換するとともに、補強布中の犠牲糸の少なくとも一部を溶出させて、イオン交換基を有する含フッ素ポリマーと、補強布中の犠牲糸の少なくとも一部が溶出した補強材と、溶出部を有するイオン交換膜を得る、[1]の記載のイオン交換膜の製造方法。
[11]塩化アルカリ電解時に層(Sa)よりも陰極側に位置する層(Sb)のイオン交換容量が、前記層(Sa)のイオン交換容量よりも低い、[10]の塩化アルカリ電解用イオン交換膜の製造方法。
[12]前記層(Sa)とは反対側の面に、カルボン酸型官能基を有する含フッ素ポリマーを含む層(C)を更に有する、[10]または[11]の記載の塩化アルカリ電解用イオン交換膜の製造方法。
[13]補強糸の経糸に直交する断面において、下式(1)を満たす関係が成立する、[10]~[12]のいずれかの塩化アルカリ電解用イオン交換膜の製造方法。
0.5≦{d2/d1×(n+1)}≦1.5 ・・・(1)
但し、式(1)中の記号は以下の意味を示す。
d1:補強糸の中心から隣の補強糸の中心までの平均距離。
d2:溶出部の中心から、隣の溶出部の中心までの平均距離。
n:隣り合う補強糸間の溶出部の数。
[14]補強糸の経糸に直交する断面において、下式(2)を満たす関係が成立する、[10]~[13]のいずれかの塩化アルカリ電解用イオン交換膜の製造方法。
0.5≦{d3/d1×(n+1)}≦1.5 ・・・(2)
但し、式(2)中の記号は以下の意味を示す。
d3:補強糸の中心から、隣の溶出部の中心までの平均距離。
d1、n:前記と同じ。
[15]前記補強布の布面に直交する方向から見た前記補強糸の幅が70~160μmである、[10]~[14]のいずれかの塩化アルカリ電解用イオン交換膜の製造方法。
0.5≦{d3’/d1×(n+1)}≦1.5 ・・・(2’)
但し、式(1’)中の記号は以下の意味を示す。
d3’:任意の測定箇所における補強糸の中心から、隣の溶出部の中心までの距離。
d1およびn:前記と同じ。
[8]補強糸の長さ方向に直交する断面における前記補強糸の太さが70~160μmである、[1]~[7]のいずれかの塩化アルカリ電解用イオン交換膜。
[9]陰極および陽極を備える電解槽と、[1]~[8]のいずれかの塩化アルカリ電解用イオン交換膜を有し、前記塩化アルカリ電解用イオン交換膜は、前記電解槽内の陽極と陰極との間に略並行に設置され、かつ陰極側の陰極室と前記陽極側の陽極室とに区切るように設置されてなる塩化アルカリ電解装置。
[10]イオン交換基に変換できる基を有する含フッ素ポリマーを含む前駆体膜中に、補強糸と犠牲糸とからなる補強布が配置された強化前駆体膜を得て、次に前記強化前駆体膜をアルカリ性水溶液に接触させることによって、イオン交換基に変換できる基をイオン交換基に変換するとともに、補強布中の犠牲糸の少なくとも一部を溶出させて、イオン交換基を有する含フッ素ポリマーと、補強布中の犠牲糸の少なくとも一部が溶出した補強材と、溶出部を有するイオン交換膜を得る、[1]の記載のイオン交換膜の製造方法。
[11]塩化アルカリ電解時に層(Sa)よりも陰極側に位置する層(Sb)のイオン交換容量が、前記層(Sa)のイオン交換容量よりも低い、[10]の塩化アルカリ電解用イオン交換膜の製造方法。
[12]前記層(Sa)とは反対側の面に、カルボン酸型官能基を有する含フッ素ポリマーを含む層(C)を更に有する、[10]または[11]の記載の塩化アルカリ電解用イオン交換膜の製造方法。
[13]補強糸の経糸に直交する断面において、下式(1)を満たす関係が成立する、[10]~[12]のいずれかの塩化アルカリ電解用イオン交換膜の製造方法。
0.5≦{d2/d1×(n+1)}≦1.5 ・・・(1)
但し、式(1)中の記号は以下の意味を示す。
d1:補強糸の中心から隣の補強糸の中心までの平均距離。
d2:溶出部の中心から、隣の溶出部の中心までの平均距離。
n:隣り合う補強糸間の溶出部の数。
[14]補強糸の経糸に直交する断面において、下式(2)を満たす関係が成立する、[10]~[13]のいずれかの塩化アルカリ電解用イオン交換膜の製造方法。
0.5≦{d3/d1×(n+1)}≦1.5 ・・・(2)
但し、式(2)中の記号は以下の意味を示す。
d3:補強糸の中心から、隣の溶出部の中心までの平均距離。
d1、n:前記と同じ。
[15]前記補強布の布面に直交する方向から見た前記補強糸の幅が70~160μmである、[10]~[14]のいずれかの塩化アルカリ電解用イオン交換膜の製造方法。
本発明の塩化アルカリ電解用イオン交換膜は、補強糸の間隔を狭くして膜強度を高くしても、膜抵抗が低く塩化アルカリ電解時の電解電圧を低減できる。
本発明の塩化アルカリ電解装置は、膜強度の高い塩化アルカリ電解用イオン交換膜を有し、かつ膜抵抗が低く塩化アルカリ電解時の電解電圧が低い。
本発明の塩化アルカリ電解装置は、膜強度の高い塩化アルカリ電解用イオン交換膜を有し、かつ膜抵抗が低く塩化アルカリ電解時の電解電圧が低い。
以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
「イオン交換基」とは、該基に含まれるイオンの少なくとも一部が他のイオンに交換し得る基である。下記のカルボン酸型官能基、スルホン酸型官能基等が挙げられる。
「カルボン酸型官能基」とは、カルボン酸基(-COOH)、カルボン酸塩基(-COOM1。但し、M1はアルカリ金属または第4級アンモニウム塩基である。)を意味する。
「スルホン酸型官能基」とは、スルホン酸基(-SO3H)、またはスルホン酸塩基(-SO3M2。但し、M2はアルカリ金属または第4級アンモニウム塩基である。)を意味する。
「イオン交換基に変換できる基」とは、加水分解処理、酸型化処理等の公知の処理によって、イオン交換基に変換できる基を意味する。
「カルボン酸型官能基に変換できる基」とは、加水分解処理、酸型化処理等の公知の処理によって、カルボン酸型官能基に変換できる基を意味する。
「スルホン酸型官能基に変換できる基」とは、加水分解処理、酸型化処理等の公知の処理によって、スルホン酸型官能基に変換できる基を意味する。
「イオン交換基」とは、該基に含まれるイオンの少なくとも一部が他のイオンに交換し得る基である。下記のカルボン酸型官能基、スルホン酸型官能基等が挙げられる。
「カルボン酸型官能基」とは、カルボン酸基(-COOH)、カルボン酸塩基(-COOM1。但し、M1はアルカリ金属または第4級アンモニウム塩基である。)を意味する。
「スルホン酸型官能基」とは、スルホン酸基(-SO3H)、またはスルホン酸塩基(-SO3M2。但し、M2はアルカリ金属または第4級アンモニウム塩基である。)を意味する。
「イオン交換基に変換できる基」とは、加水分解処理、酸型化処理等の公知の処理によって、イオン交換基に変換できる基を意味する。
「カルボン酸型官能基に変換できる基」とは、加水分解処理、酸型化処理等の公知の処理によって、カルボン酸型官能基に変換できる基を意味する。
「スルホン酸型官能基に変換できる基」とは、加水分解処理、酸型化処理等の公知の処理によって、スルホン酸型官能基に変換できる基を意味する。
「ペルフルオロカーボンポリマー」とは、ポリマー中の炭素原子に結合している水素原子の全部がフッ素原子に置換されたポリマーを意味する。ペルフルオロカーボンポリマー中のフッ素原子の一部は、塩素原子または臭素原子に置換されていてもよい。
「モノマー」とは、重合反応性の炭素-炭素二重結合を有する化合物を意味する。
「単位(構成単位)」とは、ポリマー中に存在してポリマーを構成する、モノマーに由来する部分を意味する。炭素-炭素不飽和二重結合を有するモノマーの付加重合により生じる、該モノマーに由来する単位は、該不飽和二重結合が開裂して生じた2価の単位である。また、ある単位の構造をポリマー形成後に化学的に変換したものも単位という。なお、以下、場合により、個々のモノマーに由来する単位をそのモノマー名に「単位」を付して記載する。
「モノマー」とは、重合反応性の炭素-炭素二重結合を有する化合物を意味する。
「単位(構成単位)」とは、ポリマー中に存在してポリマーを構成する、モノマーに由来する部分を意味する。炭素-炭素不飽和二重結合を有するモノマーの付加重合により生じる、該モノマーに由来する単位は、該不飽和二重結合が開裂して生じた2価の単位である。また、ある単位の構造をポリマー形成後に化学的に変換したものも単位という。なお、以下、場合により、個々のモノマーに由来する単位をそのモノマー名に「単位」を付して記載する。
「補強布」とは、イオン交換膜の強度の向上させるための「補強材」の原料として用いられる布状の織物を意味する。「補強布」は、経糸に補強糸と犠牲糸を、緯糸に補強糸と犠牲糸を、製織してなる織物からなる。経糸と緯糸は、平織布等の通常の製織法による場合は直交している。
「補強糸」とは、補強布の経糸と、緯糸を、それぞれ構成する糸である。「補強糸」はり、水酸化ナトリウム水溶液(例えば、濃度が32質量%の水溶液)に浸漬しても溶解しない材料からなり、溶出部を形成しない材料からなる。よって補強糸は、イオン交換膜の製造時にアルカリ水溶液に浸漬した後も溶解せずに残存し、塩化アルカリ電解用イオン交換膜の機械的強度や寸法安定性を維持する。
「犠牲糸」とは、補強布の経糸と、緯糸を構成する糸であり、水酸化ナトリウム水溶液(濃度が32質量%の水溶液)に浸漬した時に、水酸化ナトリウム水溶液に溶解することから、溶出して溶出部を形成する材料からなる。イオン交換膜の製造においてアルカリ水溶液に浸漬されることにより、層(S)中に存在する補強布中の犠牲糸の一部または全部が溶出してなる溶出部が形成される。犠牲糸の一部が溶出する場合には、溶出部の中に、溶出残りの犠牲糸が存在する。
「補強糸」とは、補強布の経糸と、緯糸を、それぞれ構成する糸である。「補強糸」はり、水酸化ナトリウム水溶液(例えば、濃度が32質量%の水溶液)に浸漬しても溶解しない材料からなり、溶出部を形成しない材料からなる。よって補強糸は、イオン交換膜の製造時にアルカリ水溶液に浸漬した後も溶解せずに残存し、塩化アルカリ電解用イオン交換膜の機械的強度や寸法安定性を維持する。
「犠牲糸」とは、補強布の経糸と、緯糸を構成する糸であり、水酸化ナトリウム水溶液(濃度が32質量%の水溶液)に浸漬した時に、水酸化ナトリウム水溶液に溶解することから、溶出して溶出部を形成する材料からなる。イオン交換膜の製造においてアルカリ水溶液に浸漬されることにより、層(S)中に存在する補強布中の犠牲糸の一部または全部が溶出してなる溶出部が形成される。犠牲糸の一部が溶出する場合には、溶出部の中に、溶出残りの犠牲糸が存在する。
補強糸および犠牲糸は、それぞれ1本のフィラメントからなるモノフィラメントであっても、2本以上のフィラメントからなるマルチフィラメントであってもよい。マルチフィラメントの場合は、2本以上のフィラメントの集合体が1本の糸となる。糸の太さは、1本の場合は最大直径、マルリチフィラメントである場合は、複数の糸の束を1本とみなしたときの最大直径をいう。
「溶出部」は、一本の犠牲糸が、水酸化ナトリウム水溶液(例えば、濃度が32質量%の水溶液)に浸漬されることにより溶出した結果、イオン交換膜内部に生成する孔を意味する。一本の犠牲糸がモノフィラメントの場合は、該モノフィラメントの材料の少なくとも一部が溶出してイオン交換膜内部に1つの孔が形成される。1本の犠牲糸がマルチフィラメントの場合は、該マルチフィラメントの少なくとも一部が溶出してイオン交換膜内部に複数の孔の集まりが形成されるが、この複数の孔の集まりが1つの溶出部である。前記孔の集まりは、それぞれ単独に孔を形成している必要はなく、例えば相互に貫通して1つの孔の形状となっていてもよい。
「補強材」は、イオン交換膜の製造工程において、フッ素系ポリマーからなる強化前駆体膜の間に積層された補強布がアルカリ水溶液に浸漬されることにより、犠牲糸の一部または全部が溶出した材料である。補強布の犠牲糸の一部が溶出した場合の補強材は、溶出残りの犠牲糸と補強糸とからなる。犠牲糸の全部が溶解した場合の補強材は、補強糸のみからなる。即ち、補強材は、補強糸と、任意に含まれる犠牲糸から形成される材料である。
「溶出部」は、一本の犠牲糸が、水酸化ナトリウム水溶液(例えば、濃度が32質量%の水溶液)に浸漬されることにより溶出した結果、イオン交換膜内部に生成する孔を意味する。一本の犠牲糸がモノフィラメントの場合は、該モノフィラメントの材料の少なくとも一部が溶出してイオン交換膜内部に1つの孔が形成される。1本の犠牲糸がマルチフィラメントの場合は、該マルチフィラメントの少なくとも一部が溶出してイオン交換膜内部に複数の孔の集まりが形成されるが、この複数の孔の集まりが1つの溶出部である。前記孔の集まりは、それぞれ単独に孔を形成している必要はなく、例えば相互に貫通して1つの孔の形状となっていてもよい。
「補強材」は、イオン交換膜の製造工程において、フッ素系ポリマーからなる強化前駆体膜の間に積層された補強布がアルカリ水溶液に浸漬されることにより、犠牲糸の一部または全部が溶出した材料である。補強布の犠牲糸の一部が溶出した場合の補強材は、溶出残りの犠牲糸と補強糸とからなる。犠牲糸の全部が溶解した場合の補強材は、補強糸のみからなる。即ち、補強材は、補強糸と、任意に含まれる犠牲糸から形成される材料である。
補強材を構成する補強糸は、経糸と緯糸に使われる。経糸と緯糸は、通常、直交しており、それぞれイオン交換膜のMD方向とTD方向と並行に存在する。なお、MD(Machine Direction)とは、ロール装置を使用するイオン交換膜の製造において、前駆体膜、強化前駆体膜、およびイオン交換膜が搬送される方向である。TD(Transverse Direction)とはMD方向と垂直の方向である。
「補強糸の中心」とは、補強糸の糸が伸びる方向(すなわち長さ方向)に直交する断面における、補強糸の最大直径の1/2の点を意味する。補強糸は、経糸および緯糸に用いられていることから、それらの長さ方向は2方向が存在する。
補強糸の断面が真円である場合の補強糸の中心は円の中心点であるが、真円以外の場合は、最大直径の1/2である点をいう。また補強糸がマルチフィラメントである場合の中心は、一番離れた中心を結ぶ線の1/2の点をいう。
「溶出部の中心」とは、犠牲糸のイオン交換膜が伸びる方向(すなわち長さ方向)に直交する断面における、溶出部の幅方向の中心を意味する。犠牲糸も経糸および緯糸に用いられていることから、それらの長さ方向は、2方向が存在する。犠牲糸がモノフィラメントである場合には、溶出前の犠牲糸の中心と溶出孔の中心とは一致する。犠牲糸がマルチフィラメントである場合の溶出孔の中心とは、前記断面において、幅方向の一方の孔の端部ともう一方の孔の端部との中間点をいう。
「補強糸の中心」とは、補強糸の糸が伸びる方向(すなわち長さ方向)に直交する断面における、補強糸の最大直径の1/2の点を意味する。補強糸は、経糸および緯糸に用いられていることから、それらの長さ方向は2方向が存在する。
補強糸の断面が真円である場合の補強糸の中心は円の中心点であるが、真円以外の場合は、最大直径の1/2である点をいう。また補強糸がマルチフィラメントである場合の中心は、一番離れた中心を結ぶ線の1/2の点をいう。
「溶出部の中心」とは、犠牲糸のイオン交換膜が伸びる方向(すなわち長さ方向)に直交する断面における、溶出部の幅方向の中心を意味する。犠牲糸も経糸および緯糸に用いられていることから、それらの長さ方向は、2方向が存在する。犠牲糸がモノフィラメントである場合には、溶出前の犠牲糸の中心と溶出孔の中心とは一致する。犠牲糸がマルチフィラメントである場合の溶出孔の中心とは、前記断面において、幅方向の一方の孔の端部ともう一方の孔の端部との中間点をいう。
「開口率」とは、補強材の面方向の面積に対する、補強糸を除いた部分の面積の百分率(%)を意味する。
「強化前駆体膜」とは、イオン交換基に変換できる基を有するフッ素系ポリマーを含む前駆体膜中に、補強糸と犠牲糸とからなる補強布が配置された膜を意味する。イオン交換基に変換できる基を有するフッ素系ポリマーを含む前駆体膜を2枚製造し、2枚の前駆体膜の間に補強布を積層することが好ましい。
「前駆体膜」とは、イオン交換基に変換できる基を有するフッ素系ポリマーを含む膜を意味する。イオン交換基に変換できる基を有するフッ素系ポリマーの単層からなる膜であってもよく、複数の層からなる膜であってもよい。
本発明において、製造工程にて、同一の型の官能基を有しかつ同じイオン交換容量の層同士、フィルム同士、層とフィルムを接合して形成された層は一つの層とみなす。
「強化前駆体膜」とは、イオン交換基に変換できる基を有するフッ素系ポリマーを含む前駆体膜中に、補強糸と犠牲糸とからなる補強布が配置された膜を意味する。イオン交換基に変換できる基を有するフッ素系ポリマーを含む前駆体膜を2枚製造し、2枚の前駆体膜の間に補強布を積層することが好ましい。
「前駆体膜」とは、イオン交換基に変換できる基を有するフッ素系ポリマーを含む膜を意味する。イオン交換基に変換できる基を有するフッ素系ポリマーの単層からなる膜であってもよく、複数の層からなる膜であってもよい。
本発明において、製造工程にて、同一の型の官能基を有しかつ同じイオン交換容量の層同士、フィルム同士、層とフィルムを接合して形成された層は一つの層とみなす。
<塩化アルカリ電解用イオン交換膜>
本発明の塩化アルカリ電解用イオン交換膜(以下、単にイオン交換膜とも記す。)は、塩化アルカリ電解時の陽極と陰極との間に略垂直に設置又は装着させて用いられる塩化アルカリ電解用に用いられる。該イオン交換膜は、スルホン酸型官能基を有する含フッ素ポリマーを含む層(S)を有するイオン交換膜であり、層(S)は、1層の層(Sa)と、1層以上の層(Sb)とからなる。また、層(Sa)は、層(S)の最も陽極側に配置され、層(Sb)は層(Sa)よりも陰極側に配置される。
更に、層(Sa)と層(Sb)間には補強材が配置され、これらが積層されて積層体の構造を有する。
本発明の塩化アルカリ電解用イオン交換膜(以下、単にイオン交換膜とも記す。)は、塩化アルカリ電解時の陽極と陰極との間に略垂直に設置又は装着させて用いられる塩化アルカリ電解用に用いられる。該イオン交換膜は、スルホン酸型官能基を有する含フッ素ポリマーを含む層(S)を有するイオン交換膜であり、層(S)は、1層の層(Sa)と、1層以上の層(Sb)とからなる。また、層(Sa)は、層(S)の最も陽極側に配置され、層(Sb)は層(Sa)よりも陰極側に配置される。
更に、層(Sa)と層(Sb)間には補強材が配置され、これらが積層されて積層体の構造を有する。
補強材は、補強糸と任意に含まれる犠牲糸とからなる。補強材は補強布から得られるが、補強布の犠牲糸の材料の少なくとも一部は、イオン交換真膜の製造工程において溶出して形成され、層(S)中に溶出部を形成している。補強材は、イオン交換膜の機械的強度や寸法安定性が向上させる機能を有する。
層(S)を形成する層(Sb)は、1つの層から形成されていてもよく、2つ以上の層から形成されていてもよい。層(Sb)が2つ以上の層からなる場合においても、本明細書においては「層(Sb)」と記載し、全ての層(Sb)を意味する。
本発明の塩化アルカリ電解用イオン交換膜は、層(S)の最も陰極側の面に、カルボン酸化型官能基を有する含フッ素ポリマーを含む1層以上の層(C)を更に有することが好ましい。
層(S)を形成する層(Sb)は、1つの層から形成されていてもよく、2つ以上の層から形成されていてもよい。層(Sb)が2つ以上の層からなる場合においても、本明細書においては「層(Sb)」と記載し、全ての層(Sb)を意味する。
本発明の塩化アルカリ電解用イオン交換膜は、層(S)の最も陰極側の面に、カルボン酸化型官能基を有する含フッ素ポリマーを含む1層以上の層(C)を更に有することが好ましい。
図1は、本発明のイオン交換膜の一例を示す模式断面図である。
イオン交換膜1は、イオン交換基を有する含フッ素ポリマーを含む電解質膜10が、補強材20で補強されたものである。
電解質膜10は、カルボン酸型官能基を有する含フッ素ポリマーを含む層(C)12と、スルホン酸型官能基を有する含フッ素ポリマーを含む層(S)14とからなる積層体である。層(S)14は、塩化アルカリ電解時に陰極側に位置する層(Sb)16と、塩化アルカリ電解時に陽極側に位置する層(Sa)18との2層構成になっている。すなわち、電解質膜10は、層(C)12、層(Sb)16および層(Sa)18がこの順に積層された積層体である。また、層(S)14における層(Sb)16と層(Sa)18の間に補強材20が配置されている。
補強材20は、電解質膜10を補強する材料であり、補強糸22と任意に含まれる犠牲糸24とを製織した織物からなるが、イオン交換膜の製造工程において、犠牲糸の全部が溶出した場合には、補強材は補強糸のみからなる。
層(S)14は、犠牲糸24を構成する2本のフィラメント26の材料の少なくとも一部が溶出して形成された2つ以上の孔の集まりからなる溶出部28を有している。
イオン交換膜1は、塩化アルカリ電解時に、層(Sa)18が陽極に面するように電解槽内に配置される。
イオン交換膜1は、イオン交換基を有する含フッ素ポリマーを含む電解質膜10が、補強材20で補強されたものである。
電解質膜10は、カルボン酸型官能基を有する含フッ素ポリマーを含む層(C)12と、スルホン酸型官能基を有する含フッ素ポリマーを含む層(S)14とからなる積層体である。層(S)14は、塩化アルカリ電解時に陰極側に位置する層(Sb)16と、塩化アルカリ電解時に陽極側に位置する層(Sa)18との2層構成になっている。すなわち、電解質膜10は、層(C)12、層(Sb)16および層(Sa)18がこの順に積層された積層体である。また、層(S)14における層(Sb)16と層(Sa)18の間に補強材20が配置されている。
補強材20は、電解質膜10を補強する材料であり、補強糸22と任意に含まれる犠牲糸24とを製織した織物からなるが、イオン交換膜の製造工程において、犠牲糸の全部が溶出した場合には、補強材は補強糸のみからなる。
層(S)14は、犠牲糸24を構成する2本のフィラメント26の材料の少なくとも一部が溶出して形成された2つ以上の孔の集まりからなる溶出部28を有している。
イオン交換膜1は、塩化アルカリ電解時に、層(Sa)18が陽極に面するように電解槽内に配置される。
<塩化アルカリ電解用イオン交換膜の構成>
本発明のイオン交換膜は、スルホン酸型官能基を有する含フッ素ポリマーを含む電解質膜が、補強材で補強されたものである。
電解質膜は、スルホン酸型官能基を有する含フッ素ポリマーを含む層(S)を少なくとも備え、必要に応じて、高い電流効率を発現する機能層としての、カルボン酸型官能基を有する含フッ素ポリマーを含む層(C)を更に備える膜である。電解質膜は、層(S)のみからなる膜であってもよく、層(S)と層(C)が積層された積層膜であってもよい。層(S)は、層(Sa)と層(Sb)とからなる積層構造を有する。
本発明のイオン交換膜は、スルホン酸型官能基を有する含フッ素ポリマーを含む電解質膜が、補強材で補強されたものである。
電解質膜は、スルホン酸型官能基を有する含フッ素ポリマーを含む層(S)を少なくとも備え、必要に応じて、高い電流効率を発現する機能層としての、カルボン酸型官能基を有する含フッ素ポリマーを含む層(C)を更に備える膜である。電解質膜は、層(S)のみからなる膜であってもよく、層(S)と層(C)が積層された積層膜であってもよい。層(S)は、層(Sa)と層(Sb)とからなる積層構造を有する。
イオン交換膜が補強材で補強されている場合、補強糸は膜内でのナトリウムイオン等の陽イオンの移動を妨げるため、イオン交換膜内の補強糸の陰極側近傍が実質的に電解部として作用しない領域(以下、電流遮蔽領域と記す。)となると考えられる。そのため、補強糸の間隔を狭くしてその密度を高めると、イオン交換膜内の電流遮蔽領域がより多くなり、膜抵抗が上昇して電解電圧が高くなると考えられる。
これに対して、本発明のイオン交換膜では、補強糸の長さ方向に直交する断面において、補強糸の中心からその隣の補強糸の中心までの平均距離(d1)を750~1000μm、溶出部の断面積と、当該溶出部内に残存する犠牲糸の断面積とを合計した総面積(P)を500~5000μm2、隣り合う補強糸間の溶出部の平均数(n)を4~6個に制御することで、膜強度を高めつつ膜抵抗を低減できる。
これに対して、本発明のイオン交換膜では、補強糸の長さ方向に直交する断面において、補強糸の中心からその隣の補強糸の中心までの平均距離(d1)を750~1000μm、溶出部の断面積と、当該溶出部内に残存する犠牲糸の断面積とを合計した総面積(P)を500~5000μm2、隣り合う補強糸間の溶出部の平均数(n)を4~6個に制御することで、膜強度を高めつつ膜抵抗を低減できる。
前記した総面積(P)が小さいときは、補強糸近傍において溶出部の部分をナトリウムイオン等が通過しにくく、総面積(P)が大きいときに比べて補強糸近傍の膜抵抗が高くなる。一方、補強糸から離れた部分は溶出部の体積が、総面積(P)が大きいときに比べて小さいため、余分な抵抗が増えず、膜抵抗が低くなる。また、前記した総面積(P)が大きいときは、補強糸近傍において溶出部の部分を電気浸透水とともにナトリウムイオン等が通過しやすく、電流遮蔽領域がより小さくなるため、総面積(P)が小さいときに比べて補強糸近傍の膜抵抗が低くなる。一方、補強糸から離れた部分は溶出部の体積が、総面積(P)が小さいときに比べて大きいため、余分な抵抗が増えて膜抵抗が高くなる。
また、前記した溶出部の平均数(n)が小さいときは、総面積(P)が小さい場合と同様に、補強糸近傍でナトリウムイオン等が通過しにくく、溶出部の平均数(n)が大きいときに比べて補強糸近傍の膜抵抗が高くなる。一方、補強糸から離れた部分は溶出部の体積が小さくなるので、余分な抵抗が増えず、溶出部の平均数(n)が大きいときに比べて膜抵抗が低くなる。また、前記した溶出部の平均数(n)が大きいときは、補強糸近傍でナトリウムイオン等が通過しやすく、電流遮蔽領域がより小さくなることで、溶出部の平均数(n)が小さいときに比べて補強糸近傍の膜抵抗が低くなる。一方、補強糸から離れた部分は溶出部の体積が大きくなるので、余分な抵抗が増えて、溶出部の平均数(n)が小さいときに比べて膜抵抗が高くなる。
本発明では、前記した総面積(P)および溶出部の平均数(n)を特定の範囲に制御することで、補強糸近傍の電流遮蔽領域を小さくして補強糸近傍の膜抵抗を低くしつつ、補強糸から離れた部分溶出部の体積がある程度小さく維持されているため当該部分での膜抵抗の上昇が抑えられている。このように、補強糸から離れた部分での膜抵抗の上昇度合いに比べて、補強糸近傍の膜抵抗の低下度合いが大きくなるため、膜全体としての膜抵抗が低くなり、補強糸の間隔を狭くして膜強度を高めても塩化アルカリ電解時の電解電圧を低減できると考えられる。
また、本発明では、層(S)における塩化アルカリ電解時に最も陽極に面する側に位置する層(Sa)のイオン交換容量が1.15ミリ当量/グラム乾燥樹脂以上であるため、層(S)における該層(Sa)の含水率が高くなる。層(Sa)の含水率が高くなることで、それに伴って層(S)における層(Sb)の含水率も充分に高くなり、結果としてイオン交換膜の膜全体としての膜抵抗が充分に小さくなる。そのため、塩化アルカリ電解時の電解電圧が低くなる。
本発明では、平均距離(d1)、総面積(P)、および溶出部の平均数(n)を特定の範囲内に制御することと、層(S)における層(Sa)のイオン交換容量を1.15ミリ当量/グラム乾燥樹脂以上にする。このようなイオン交換膜を用いることによる電解電圧低減効果は、平均距離(d1)、総面積(P)、溶出部の平均数(n)の制御と、層(S)における層(Sa)のイオン交換容量の制御とを個々に実施した場合の電解電圧低減効果の足し合わせた効果よりも大きな相乗効果が得られ、塩化アルカリ電解時の電解電圧が予想外に低くなる。
[電解質膜]
以下、電解質膜を構成する各層について説明する。
(層(S))
スルホン酸型官能基を有する含フッ素ポリマーとしては、スルホン酸型官能基を有する含フッ素モノマーに由来する単位と、含フッ素オレフィンに由来する単位との共重合体が挙げられる。
スルホン酸型官能基を有する含フッ素ポリマーは、後述する工程(b)にて、後述するスルホン酸型官能基に変換できる基を有する含フッ素ポリマーのスルホン酸型官能基に変換できる基をスルホン酸型官能基に転換することによって得られる。
以下、電解質膜を構成する各層について説明する。
(層(S))
スルホン酸型官能基を有する含フッ素ポリマーとしては、スルホン酸型官能基を有する含フッ素モノマーに由来する単位と、含フッ素オレフィンに由来する単位との共重合体が挙げられる。
スルホン酸型官能基を有する含フッ素ポリマーは、後述する工程(b)にて、後述するスルホン酸型官能基に変換できる基を有する含フッ素ポリマーのスルホン酸型官能基に変換できる基をスルホン酸型官能基に転換することによって得られる。
<層(S)のイオン交換容量>
層(S)における塩化アルカリ電解時に最も陽極側に位置する層(Sa)のイオン交換容量は、1.15ミリ当量/グラム乾燥樹脂以上である。層(Sa)のイオン交換容量が1.15ミリ当量/グラム乾燥樹脂以上であることで、層(S)における層(Sa)の含水率が高くなる。また、それに伴って層(S)における層(Sa)よりも陰極側に位置する層(Sb)の含水率も充分に高くなる。これにより、結果としてイオン交換膜の膜全体としての膜抵抗が充分に小さくなり、塩化アルカリ電解時の電解電圧が低くなる。
層(S)における層(Sa)のイオン交換容量の下限値は、1.2ミリ当量/グラム乾燥樹脂が好ましく、1.3ミリ当量/グラム乾燥樹脂がより好ましい。層(Sa)のイオン交換容量の上限値は、成形安定性および膜強度の点から、2.0ミリ当量/グラム乾燥樹脂が好ましく、1.8ミリ当量/グラム乾燥樹脂がより好ましい。
層(S)における塩化アルカリ電解時に最も陽極側に位置する層(Sa)のイオン交換容量は、1.15ミリ当量/グラム乾燥樹脂以上である。層(Sa)のイオン交換容量が1.15ミリ当量/グラム乾燥樹脂以上であることで、層(S)における層(Sa)の含水率が高くなる。また、それに伴って層(S)における層(Sa)よりも陰極側に位置する層(Sb)の含水率も充分に高くなる。これにより、結果としてイオン交換膜の膜全体としての膜抵抗が充分に小さくなり、塩化アルカリ電解時の電解電圧が低くなる。
層(S)における層(Sa)のイオン交換容量の下限値は、1.2ミリ当量/グラム乾燥樹脂が好ましく、1.3ミリ当量/グラム乾燥樹脂がより好ましい。層(Sa)のイオン交換容量の上限値は、成形安定性および膜強度の点から、2.0ミリ当量/グラム乾燥樹脂が好ましく、1.8ミリ当量/グラム乾燥樹脂がより好ましい。
本発明では、層(Sa)のイオン交換容量と層(Sb)のイオン交換容量は、同じであってもよく、異なっていてもよい。
層(Sb)のイオン交換容量は、膜強度が高くなる点から、層(Sa)のイオン交換容量よりも低くなっていることが好ましい。
層(Sb)のイオン交換容量は、膜強度が高くなる点から、層(Sa)のイオン交換容量よりも低くなっていることが好ましい。
層(Sb)のイオン交換容量は、0.6~1.19ミリ当量/グラム乾燥樹脂が好ましく、0.7~1.19ミリ当量/グラム乾燥樹脂がより好ましい。層(Sb)のイオン交換容量が前記下限値以上であれば、イオン交換膜の膜抵抗を低くしやすく、塩化アルカリ電解時の電解電圧を低くしやすい。層(Sb)のイオン交換容量が前記上限値以下であれば、電解中に求められる膜としての強度および塩析出による劣化耐性を維持できる。
<層(S)の厚さ>
層(Sb)の厚さは、30~140μmが好ましく、30~100μmがより好ましい。層(Sb)の厚さが前記下限値以上であれば、イオン交換膜の機械的強度が充分に高くなる。層(Sb)の厚さが前記上限値以下であれば、イオン交換膜の膜抵抗が充分に低く抑えられ、電解電圧の上昇が充分に抑えられる。
層(Sb)の厚さは、30~140μmが好ましく、30~100μmがより好ましい。層(Sb)の厚さが前記下限値以上であれば、イオン交換膜の機械的強度が充分に高くなる。層(Sb)の厚さが前記上限値以下であれば、イオン交換膜の膜抵抗が充分に低く抑えられ、電解電圧の上昇が充分に抑えられる。
層(Sa)の厚さは、10~60μmが好ましく、10~40μmがより好ましい。層(Sa)の厚さが前記下限値以上であれば、補強布が電解質膜中に収まり、補強布の剥離耐性が向上する。また、電解質膜の表面に補強布が近づきすぎることがなく、電解質膜の表面にクラックが入りにくく、その結果、機械的強度の低下が抑えられる。層(Sa)の厚さが前記上限値以下であれば、イオン交換膜の膜抵抗が充分に低く抑えられ、電解電圧の上昇が充分に抑えられる。
(層(C))
カルボン酸型官能基を有する含フッ素ポリマーとしては、例えば、カルボン酸型官能基を有する含フッ素モノマーに由来する単位と、含フッ素オレフィンに由来する単位との共重合体が挙げられる。
カルボン酸型官能基を有する含フッ素ポリマーは、後述する工程(b)にて、後述するカルボン酸型官能基に変換できる基を有する含フッ素ポリマーのカルボン酸型官能基に変換できる基をカルボン酸型官能基に転換することによって得られる。
カルボン酸型官能基を有する含フッ素ポリマーとしては、例えば、カルボン酸型官能基を有する含フッ素モノマーに由来する単位と、含フッ素オレフィンに由来する単位との共重合体が挙げられる。
カルボン酸型官能基を有する含フッ素ポリマーは、後述する工程(b)にて、後述するカルボン酸型官能基に変換できる基を有する含フッ素ポリマーのカルボン酸型官能基に変換できる基をカルボン酸型官能基に転換することによって得られる。
層(C)の厚さは、5~50μmが好ましく、10~35μmがより好ましい。層(C)の厚さが前記下限値以上であれば、高い電流効率が発現しやすい。また、塩化ナトリウムの電解を行った場合には、製品となる水酸化ナトリウム中の塩化ナトリウム量を少なくできる。層(C)の厚さが前記上限値以下であれば、イオン交換膜の膜抵抗が低く抑えられ、電解電圧が低くなりやすい。
[補強材の位置]
補強材は、スルホン酸型官能基を有する含フッ素ポリマーを含む層(S)中に配置されている。層(S)中に配置されているとは、同一の型の官能基を有しかつ同じイオン交換容量の層同士、フィルム同士、層とフィルムを積層する際にその間に積層されて1つの層に配置されるか、またはイオン交換容量等が異なる2つの層(S)間に積層されていることを意味する。
補強布は層(Sa)と層(Sb)の間に積層されるか、又は層(Sb)層中に配置されていることが好ましく、層(Sa)と層(Sb)の間に積層されることがより好ましい。
補強材は、スルホン酸型官能基を有する含フッ素ポリマーを含む層(S)中に配置されている。層(S)中に配置されているとは、同一の型の官能基を有しかつ同じイオン交換容量の層同士、フィルム同士、層とフィルムを積層する際にその間に積層されて1つの層に配置されるか、またはイオン交換容量等が異なる2つの層(S)間に積層されていることを意味する。
補強布は層(Sa)と層(Sb)の間に積層されるか、又は層(Sb)層中に配置されていることが好ましく、層(Sa)と層(Sb)の間に積層されることがより好ましい。
[補強材]
補強材は電解質膜を補強する補強材であり、補強糸と犠牲糸とを製織した織物である。
補強材は電解質膜を補強する補強材であり、補強糸と犠牲糸とを製織した織物である。
本発明のイオン交換膜において、補強材を形成する補強糸の長さ方向に直交する断面において測定される、補強糸間の平均距離、溶出孔の平均数、および溶出孔の断面積と溶出孔内に存在する溶出残りの犠牲糸の断面積とを合計面積(P)が、それぞれ特定の範囲にあることが、本発明の効果を発揮するために重要である。
補強糸の長さ方向に直交する断面における、補強糸の中心からその隣の補強糸の中心までの平均距離(d1)は、750~1000μmであり、800~1000μmが好ましく、800~930μmがより好ましく、800~900μmが特に好ましい。平均距離(d1)が前記範囲内であれば、膜強度を高めつつ、塩化アルカリ電解時の電解電圧を低減できる。前記平均距離(d1)が前記下限値以上であれば、塩化アルカリ電解時の電解電圧を低減しやすい。前記平均距離(d1)が前記上限値以下であれば、イオン交換膜の膜強度の高くしやすい。
補強材は、経糸、緯糸は、それぞれ、イオン交換膜の製造におけるMD方向、TD方向と同一の方向になるように層(Sa)と層(Sb)間に積層される。
補強糸の長さ方向に直交する断面には、経糸の長さ方向に直交するMD断面(MD方向に垂直に裁断した断面)と緯糸の長さ方向に直交するTD断面(TD方向に垂直に裁断した断面)のそれぞれの断面が存在し、両断面の測定値である。また平均距離(d1)とは、補強糸の中心からその隣の補強糸の中心までの距離の測定値の平均値である。平均距離の測定は、各断面における無作為に選んだ各10箇所の距離を測定し、それらの測定値を平均した値である。他の平均値についても、同様に測定される。
補強糸の長さ方向に直交する断面における、補強糸の中心からその隣の補強糸の中心までの平均距離(d1)は、750~1000μmであり、800~1000μmが好ましく、800~930μmがより好ましく、800~900μmが特に好ましい。平均距離(d1)が前記範囲内であれば、膜強度を高めつつ、塩化アルカリ電解時の電解電圧を低減できる。前記平均距離(d1)が前記下限値以上であれば、塩化アルカリ電解時の電解電圧を低減しやすい。前記平均距離(d1)が前記上限値以下であれば、イオン交換膜の膜強度の高くしやすい。
補強材は、経糸、緯糸は、それぞれ、イオン交換膜の製造におけるMD方向、TD方向と同一の方向になるように層(Sa)と層(Sb)間に積層される。
補強糸の長さ方向に直交する断面には、経糸の長さ方向に直交するMD断面(MD方向に垂直に裁断した断面)と緯糸の長さ方向に直交するTD断面(TD方向に垂直に裁断した断面)のそれぞれの断面が存在し、両断面の測定値である。また平均距離(d1)とは、補強糸の中心からその隣の補強糸の中心までの距離の測定値の平均値である。平均距離の測定は、各断面における無作為に選んだ各10箇所の距離を測定し、それらの測定値を平均した値である。他の平均値についても、同様に測定される。
本発明では、経糸および緯糸に用いた補強糸の長さ方向に直交する断面における、補強糸の中心からその隣の補強糸の中心までの距離が、全ての測定箇所において前記範囲内となっていることが好ましい。これにより、膜強度を高めつつ、塩化アルカリ電解時の電解電圧を低減する効果が得られやすくなる。全ての測定箇所とは、平均値を算出するために無作為に測定した点の全てをいう。d1以外の値においても、同様である。
補強布における補強糸の密度(打ち込み数)は、22~33本/インチが好ましく、25~30本/インチがより好ましい。補強糸の密度が前記下限値以上であれば、補強材としての機械的強度が充分に高くなる。補強糸の密度が前記上限値以下であれば、イオン交換膜の膜抵抗が充分に低く抑えられ、電解電圧の上昇が充分に抑えられる。
犠牲糸の密度は、補強糸の密度の偶数倍が好ましい。具体的には、犠牲糸の密度は、補強糸の密度の4倍または6倍が好ましい。奇数倍の場合、補強糸の経糸と緯糸とが交互に上下に交差しないため、犠牲糸が溶出した後に、織物組織が形成されない。
補強糸および犠牲糸の合計の密度は、製織のしやすさ、目ずれの起きにくさの点から、110~198本/インチが好ましい。
補強糸および犠牲糸の合計の密度は、製織のしやすさ、目ずれの起きにくさの点から、110~198本/インチが好ましい。
補強材の開口率は、60~90%が好ましく、70~85%がより好ましい。前記補強材の開口率が前記下限値以上であれば、イオン交換膜の膜抵抗が充分に低く抑えられ、電解電圧の上昇が充分に抑えられる。前記補強材の開口率が前記上限値以下であれば、補強材としての機械的強度が充分に高くなる。前記補強材の開口率は、光学顕微鏡写真から求めることができる。
補強材の厚さは、60~150μmが好ましく、80~130μmがより好ましい。補強材の厚さが前記下限値以上であれば、補強材としての機械的強度が充分に高くなる。補強材の厚さが前記上限値以下であれば、糸交点の厚みが抑えられ、補強材の電流遮蔽による電解電圧上昇の影響を充分に抑えられる。
(補強糸)
補強糸としては、塩化アルカリ電解における高温、塩素、次亜塩素酸ナトリウム、水酸化ナトリウムに対する耐性を有するものが好ましい。
補強糸としては、機械的強度、耐熱性、耐薬品性の点から、含フッ素ポリマーを含む糸が好ましく、ペルフルオロカーボンポリマーを含む糸がより好ましく、PTFEを含む糸が更に好ましく、PTFEのみからなるPTFE糸が特に好ましい。
補強糸としては、塩化アルカリ電解における高温、塩素、次亜塩素酸ナトリウム、水酸化ナトリウムに対する耐性を有するものが好ましい。
補強糸としては、機械的強度、耐熱性、耐薬品性の点から、含フッ素ポリマーを含む糸が好ましく、ペルフルオロカーボンポリマーを含む糸がより好ましく、PTFEを含む糸が更に好ましく、PTFEのみからなるPTFE糸が特に好ましい。
補強糸は、モノフィラメントであってもよく、マルチフィラメントであってもよい。補強糸がPTFE糸の場合、紡糸が容易である点から、モノフィラメントが好ましく、PTFEフィルムをスリットして得られたテープヤーンがより好ましい。
補強糸の繊度は、50~200デニールが好ましく、80~150デニールがより好ましい。補強糸の繊度が前記下限値以上であれば、機械的強度が充分に高くなる。補強糸の繊度が前記上限値以下であれば、イオン交換膜の膜抵抗が充分に低く抑えられ、電解電圧の上昇が充分に抑えられる。また、電解質膜の表面に補強糸が近づきすぎることがなく、電解質膜の表面にクラックが入りにくく、その結果、機械的強度の低下が抑えられる。
補強材の布面に直交する方向から見た補強糸の幅は、70~160μmであり、90~150μmが好ましく、100~130μmがより好ましい。補強糸の幅が前記下限値以上であれば、イオン交換膜の膜強度が高くなりやすい。補強糸の幅が前記上限値以下であれば、イオン交換膜の膜抵抗を低くしやすく、電解電圧の上昇を抑えやすい。
(犠牲糸)
犠牲糸は、下記段階(i)においてその材料の一部または全部がアルカリ性水溶液に溶出し、溶出した後の層(S)には溶出部が形成される。また段階(i)を経て得られたイオン交換膜は、その後、電解槽に配置され、塩化アルカリ電解の本運転の前に、下記段階(ii)のコンディショニング運転が行われる。段階(i)で犠牲糸の溶解残りがあった場合においても、段階(ii)において、犠牲糸はその材料の残部の大部分、好ましくは全部がアルカリ性水溶液に溶出して除去される。
段階(i):イオン交換基に変換できる基を有する含フッ素ポリマーを含む前駆体膜が補強布で補強された強化前駆体膜をアルカリ性水溶液に浸漬させることによって、イオン交換基に変換できる基を加水分解してイオン交換基に変換してイオン交換膜を製造する。
段階(ii):イオン交換膜を電解槽に配置し、塩化アルカリ電解の本運転前のコンディショニング運転を行う。
犠牲糸は、下記段階(i)においてその材料の一部または全部がアルカリ性水溶液に溶出し、溶出した後の層(S)には溶出部が形成される。また段階(i)を経て得られたイオン交換膜は、その後、電解槽に配置され、塩化アルカリ電解の本運転の前に、下記段階(ii)のコンディショニング運転が行われる。段階(i)で犠牲糸の溶解残りがあった場合においても、段階(ii)において、犠牲糸はその材料の残部の大部分、好ましくは全部がアルカリ性水溶液に溶出して除去される。
段階(i):イオン交換基に変換できる基を有する含フッ素ポリマーを含む前駆体膜が補強布で補強された強化前駆体膜をアルカリ性水溶液に浸漬させることによって、イオン交換基に変換できる基を加水分解してイオン交換基に変換してイオン交換膜を製造する。
段階(ii):イオン交換膜を電解槽に配置し、塩化アルカリ電解の本運転前のコンディショニング運転を行う。
犠牲糸としては、PET、ポリブチレンテレフタレート(以下、PBTと記す。)、ポリトリメチレンテレフタレート(以下、PTTと記す。)、レーヨン、およびセルロースからなる群から選ばれる少なくとも1種を含む糸が好ましい。また、PETのみからなるPET糸、PETおよびPBTの混合物からなるPET/PBT糸、PBTのみからなるPBT糸、またはPTTのみからなるPTT糸がより好ましい。
犠牲糸としては、コストの点からは、PET糸が好ましい。犠牲糸としては、段階(i)の際にアルカリ性水溶液に溶出しにくく、機械的強度が充分に高いイオン交換膜が得られる点からは、PBT糸又はPTT糸が好ましく、PTT糸が特に好ましい。犠牲糸としては、コストと、イオン交換膜の機械的強度とのバランスの点からは、PET/PBTの混紡糸が好ましい。
犠牲糸は、フィラメントが複数集まったマルチフィラメントであってもよく、モノフィラメントであってもよい。アルカリ水溶液との接触面積が広くなり、段階(ii)の際に犠牲糸が容易にアルカリ性水溶液に溶出する点から、マルチフィラメントが好ましい。
犠牲糸がマルチフィラメントの場合、犠牲糸の1本あたりのフィラメントの数は、2~32本が好ましく、2~16本がより好ましく、2~8本が更に好ましい。フィラメントの数が前記下限値以上であれば、段階(ii)の際に犠牲糸がアルカリ性水溶液に溶出しやすい。フィラメントの数が前記上限値以下であれば、犠牲糸の繊度が必要以上に大きくならない。
犠牲糸の繊度は、段階(i)の前において、7~100デニールが好ましく、9~60デニールがより好ましく、12~40デニールが更に好ましい。犠牲糸の繊度が前記下限値以上であれば、機械的強度が充分に高くなるとともに、織布性が充分高くなる。犠牲糸の繊度が前記上限値以下であれば、犠牲糸が溶出した後に形成される孔が電解質膜の表面に近づきすぎることがなく、電解質膜の表面にクラックが入りにくく、その結果、機械的強度の低下が抑えられる。
(溶出部)
本発明のイオン交換膜は、層(S)に、上記段階(i)、段階(ii)の際に犠牲糸の材料の少なくとも一部が溶出して形成された溶出部を有している。犠牲糸が2本以上のフィラメントからなるマルチフィラメントの場合、該マルチフィラメントの材料の少なくとも一部が溶出し、2つ以上の孔の集まりからなる溶出部が形成される。犠牲糸がモノフィラメントからなる場合は、該モノフィラメントの材料の少なくとも一部が溶出した1つの孔からなる溶出部が形成される。段階(i)において、犠牲糸の一部が溶出せず残った場合には、溶出部の中に溶出残りの犠牲糸が存在する。
本発明のイオン交換膜は、層(S)に、上記段階(i)、段階(ii)の際に犠牲糸の材料の少なくとも一部が溶出して形成された溶出部を有している。犠牲糸が2本以上のフィラメントからなるマルチフィラメントの場合、該マルチフィラメントの材料の少なくとも一部が溶出し、2つ以上の孔の集まりからなる溶出部が形成される。犠牲糸がモノフィラメントからなる場合は、該モノフィラメントの材料の少なくとも一部が溶出した1つの孔からなる溶出部が形成される。段階(i)において、犠牲糸の一部が溶出せず残った場合には、溶出部の中に溶出残りの犠牲糸が存在する。
イオン交換膜では、段階(i)の後においても犠牲糸の一部が残存し、犠牲糸のフィラメントのまわりに溶出部が形成されていることが好ましい。これにより、イオン交換膜の製造後から塩化アルカリ電解のコンディショニング運転の前までのイオン交換膜の取り扱い時や、コンディショニング運転の際の電解槽へのイオン交換膜の設置時において、イオン交換膜にクラック等の破損が発生しにくくなる。
段階(i)の後に犠牲糸の一部が残存していたとしても、段階(ii)の際に犠牲糸の大部分、好ましくは全部がアルカリ性水溶液に溶出し、除去されるため、イオン交換膜を用いた塩化アルカリ電解の本運転の時点では、膜抵抗に影響を及ぼさない。電解槽にイオン交換膜を設置した後は、イオン交換膜に外部から大きな力が作用することはないため、犠牲糸が完全にアルカリ性水溶液に溶出し、除去されても、イオン交換膜にクラック等の破損は発生しにくい。
なお、本発明では、段階(i)の際に犠牲糸の全てを溶出させ、段階(ii)を行う前に犠牲糸が残存していない溶出部を形成させてもよい。
段階(i)の後に犠牲糸の一部が残存していたとしても、段階(ii)の際に犠牲糸の大部分、好ましくは全部がアルカリ性水溶液に溶出し、除去されるため、イオン交換膜を用いた塩化アルカリ電解の本運転の時点では、膜抵抗に影響を及ぼさない。電解槽にイオン交換膜を設置した後は、イオン交換膜に外部から大きな力が作用することはないため、犠牲糸が完全にアルカリ性水溶液に溶出し、除去されても、イオン交換膜にクラック等の破損は発生しにくい。
なお、本発明では、段階(i)の際に犠牲糸の全てを溶出させ、段階(ii)を行う前に犠牲糸が残存していない溶出部を形成させてもよい。
イオン交換膜の補強糸の長さ方向に直交する断面における、溶出部の断面積と、当該溶出部内に残存する犠牲糸の断面積とを合計した総面積(P)は、500~5000μm2であり、1000~5000μm2が好ましく、1000~4000μm2がより好ましく、1000~3000μm2が特に好ましい。前記総面積(P)が前記下限値以上であれば、製織時に犠牲糸の糸切れを起こさず補強布を製作でき、塩化アルカリ電解時の電解電圧を低減できる。前記総面積(P)が前記上限値以下であれば、製織時に補強糸の間に犠牲糸を収めることができ、塩化アルカリ電解時の電解電圧を低減できる。
前記総面積(P)は、90℃で2時間以上乾燥したイオン交換膜の断面を光学電子顕微鏡にて観察し、画像ソフトを用いて測定される。
本発明においては、補強糸の長さ方向に直交する断面において、総面積(P)が前記範囲にある。補強糸の長さ方向に直交する断面とは、イオン交換膜のMD方向に垂直に裁断した断面(以下、「MD断面」という。)およびTD方向に垂直に裁断した断面(以下、「TD断面」という。)から選ばれる少なくとも一方の断面を意味する。すなわち、MD断面における総面積(P)およびTD断面における総面積(P)の少なくとも一方の総面積(P)が前記の範囲にある。
また、本発明においてイオン交換膜のMD断面は、イオン交換膜に埋設される補強材中のMD方向と垂直に配置された補強糸、犠牲糸および溶出孔と重ならない断面が好ましく、TD断面も同様である。
本発明における断面における総面積(P)は、MD断面における総面積(P)およびTD断面における総面積(P)の平均値が前記範囲にあることがより好ましく、MD断面における総面積(P)およびTD断面における総面積(P)の両方が前記の範囲にあることが更に好ましい。
MD断面における総面積(P)は、イオン交換膜のMD断面において、無作為に10箇所の溶出孔について総面積(P)を測定し、それらの平均値を求めることにより得られる。TD断面にける総面積(P)も同様にして求めることにより得られる。
イオン交換膜において、犠牲糸が完全に溶解している場合には、総面積(P)は溶出孔の断面積となり、溶出孔内に溶出残りの犠牲糸が存在する場合には、総面積(P)は溶出孔の断面積と溶出残りの犠牲糸の断面積とを合計した面積となる。
前記総面積(P)は、90℃で2時間以上乾燥したイオン交換膜の断面を光学電子顕微鏡にて観察し、画像ソフトを用いて測定される。
本発明においては、補強糸の長さ方向に直交する断面において、総面積(P)が前記範囲にある。補強糸の長さ方向に直交する断面とは、イオン交換膜のMD方向に垂直に裁断した断面(以下、「MD断面」という。)およびTD方向に垂直に裁断した断面(以下、「TD断面」という。)から選ばれる少なくとも一方の断面を意味する。すなわち、MD断面における総面積(P)およびTD断面における総面積(P)の少なくとも一方の総面積(P)が前記の範囲にある。
また、本発明においてイオン交換膜のMD断面は、イオン交換膜に埋設される補強材中のMD方向と垂直に配置された補強糸、犠牲糸および溶出孔と重ならない断面が好ましく、TD断面も同様である。
本発明における断面における総面積(P)は、MD断面における総面積(P)およびTD断面における総面積(P)の平均値が前記範囲にあることがより好ましく、MD断面における総面積(P)およびTD断面における総面積(P)の両方が前記の範囲にあることが更に好ましい。
MD断面における総面積(P)は、イオン交換膜のMD断面において、無作為に10箇所の溶出孔について総面積(P)を測定し、それらの平均値を求めることにより得られる。TD断面にける総面積(P)も同様にして求めることにより得られる。
イオン交換膜において、犠牲糸が完全に溶解している場合には、総面積(P)は溶出孔の断面積となり、溶出孔内に溶出残りの犠牲糸が存在する場合には、総面積(P)は溶出孔の断面積と溶出残りの犠牲糸の断面積とを合計した面積となる。
イオン交換膜の補強糸の長さ方向に直交する断面における、隣り合う補強糸間の溶出部の平均数(n)は、4~6個であり、4個が特に好ましい。前記溶出部の平均数(n)が4~6個であることで、膜強度を高めつつ、塩化アルカリ電解時の電解電圧を低減できる。なお、マルチフィラメントの犠牲糸1本から形成される溶出孔は1個と数える
イオン交換膜の補強糸の長さ方向に直交する断面における、溶出部の中心から、その隣の溶出部の中心までの平均距離(d2)は、下式(1)の関係を満たすことが好ましく、下式(1-1)の関係を満たすことがより好ましく、下式(1-2)を満たすことが更に好ましい。これにより、膜強度を高めつつ、塩化アルカリ電解時の電解電圧を低減する効果が得られやすくなる。
0.5≦{d2/d1×(n+1)}≦1.5 ・・・(1)
0.7≦{d2/d1×(n+1)}≦1.4 ・・・(1-1)
0.8≦{d2/d1×(n+1)}≦1.2 ・・・(1-2)
但し、d1:補強糸の中心から隣の補強糸の中心までの平均距離。
d2:溶出孔の中心から、隣の溶出孔の中心までの平均距離。
n:隣り合う補強糸間の溶出孔の数。
なお、本発明においては、補強糸の長さ方向に直交する断面において、前記平均距離(d1)および平均距離(d2)が、前記式の関係を満たすことが好ましい。補強糸の長さ方向に直交する断面とは、イオン交換膜のMD断面およびTD断面から選ばれる少なくとも一方の断面を意味する。すなわち、MD断面およびTD断面から選ばれる少なくとも一方の断面における平均距離(d1)および平均距離(d2)が、前記式の関係を満たすことが好ましい。
本発明においては、MD断面における平均距離(d1)とTD断面における平均距離(d1)との平均値およびMD断面における平均距離(d2)とTD断面における平均距離(d2)との平均値が前記式を満たすことが好ましく、MD断面およびTD断面の両方において平均距離(d1)および平均距離(d2)が前記式の関係を満たすことがさらに好ましい。
MD断面における平均距離(d1)と平均距離(d2)の値は、イオン交換膜のMD断面において、無作為に各10箇所の平均距離(d1)と平均距離(d2)を測定し、それらの平均値を求めることにより得られる。TD断面における平均距離(d1)および平均距離(d2)も同様にして求めることにより得られる。
0.5≦{d2/d1×(n+1)}≦1.5 ・・・(1)
0.7≦{d2/d1×(n+1)}≦1.4 ・・・(1-1)
0.8≦{d2/d1×(n+1)}≦1.2 ・・・(1-2)
但し、d1:補強糸の中心から隣の補強糸の中心までの平均距離。
d2:溶出孔の中心から、隣の溶出孔の中心までの平均距離。
n:隣り合う補強糸間の溶出孔の数。
なお、本発明においては、補強糸の長さ方向に直交する断面において、前記平均距離(d1)および平均距離(d2)が、前記式の関係を満たすことが好ましい。補強糸の長さ方向に直交する断面とは、イオン交換膜のMD断面およびTD断面から選ばれる少なくとも一方の断面を意味する。すなわち、MD断面およびTD断面から選ばれる少なくとも一方の断面における平均距離(d1)および平均距離(d2)が、前記式の関係を満たすことが好ましい。
本発明においては、MD断面における平均距離(d1)とTD断面における平均距離(d1)との平均値およびMD断面における平均距離(d2)とTD断面における平均距離(d2)との平均値が前記式を満たすことが好ましく、MD断面およびTD断面の両方において平均距離(d1)および平均距離(d2)が前記式の関係を満たすことがさらに好ましい。
MD断面における平均距離(d1)と平均距離(d2)の値は、イオン交換膜のMD断面において、無作為に各10箇所の平均距離(d1)と平均距離(d2)を測定し、それらの平均値を求めることにより得られる。TD断面における平均距離(d1)および平均距離(d2)も同様にして求めることにより得られる。
本発明では、イオン交換膜の補強糸の長さ方向に直交する断面における、溶出部の中心から、その隣の溶出部の中心までの距離(d2’)の全ての測定箇所において、前記式(1’)の関係を満たすことが好ましく、下式(1’-1)の関係を満たすことがより好ましく、式(1’-2)の関係を満たすことがさらに好ましい。これにより、膜強度を高めつつ、塩化アルカリ電解時の電解電圧を低減する効果が得られやすくなる。なお、距離d2’における、平均距離(d2)を決定するために測定した全ての測定箇所とは、前記平均距離(d2)を算出するために測定した全ての測定箇所を意味する。具体的には、MD断面またはTD断面において、平均距離(d2)を得るために測定した各10個所の測定点をいう。
0.5≦{d2’/d1×(n+1)}≦1.5 ・・・(1’)
0.7≦{d2’/d1×(n+1)}≦1.4 ・・・(1’-1)
0.8≦{d2’/d1×(n+1)}≦1.2 ・・・(1’-2)
但し、式(1’)中の記号は以下の意味を示す。
d2’:溶出部の中心から、隣の溶出部の中心までの距離。
d1およびn:前記と同じ。
0.5≦{d2’/d1×(n+1)}≦1.5 ・・・(1’)
0.7≦{d2’/d1×(n+1)}≦1.4 ・・・(1’-1)
0.8≦{d2’/d1×(n+1)}≦1.2 ・・・(1’-2)
但し、式(1’)中の記号は以下の意味を示す。
d2’:溶出部の中心から、隣の溶出部の中心までの距離。
d1およびn:前記と同じ。
また、イオン交換膜の補強糸の長さ方向に直交する断面における、補強糸の中心から、その隣の溶出部の中心までの平均距離(d3)は、下式(2)の関係を満たすことが好ましく、下式(2-1)の関係を満たすことがより好ましく、下式(2-2)を満たすことがさらに好ましい。これにより、膜強度を高めつつ、塩化アルカリ電解時の電解電圧を低減する効果が得られやすくなる。
0.5≦{d3/d1×(n+1)}≦1.5 ・・・(2)
0.8≦{d3/d1×(n+1)}≦1.5 ・・・(2-1)
0.9≦{d3/d1×(n+1)}≦1.4 ・・・(2-2)
但し、式(2)中の記号は以下の意味を示す。
d3:補強糸の中心から、隣の溶出孔の中心までの平均距離。
d1およびn:前記と同じ。
0.5≦{d3/d1×(n+1)}≦1.5 ・・・(2)
0.8≦{d3/d1×(n+1)}≦1.5 ・・・(2-1)
0.9≦{d3/d1×(n+1)}≦1.4 ・・・(2-2)
但し、式(2)中の記号は以下の意味を示す。
d3:補強糸の中心から、隣の溶出孔の中心までの平均距離。
d1およびn:前記と同じ。
なお、本発明においては、補強糸の長さ方向に直交する断面において、前記平均距離(d1)および平均距離(d3)が、前記式の関係を満たすことが好ましい。補強糸の長さ方向に直交する断面とは、イオン交換膜のMD断面またはTD断面の少なくとも一方の断面を意味する。すなわち、MD断面およびTD断面から選ばれる少なくとも一方の断面における平均距離(d1)および平均距離(d3)が、前記式の関係を満たすことが好ましい。
本発明においては、MD断面における平均距離(d1)とTD断面における平均距離(d1)との平均値およびMD断面における平均距離(d3)とTD断面における平均距離(d3)との平均値が前記式を満たすことが好ましく、MD断面およびTD断面の両方において平均距離(d1)および平均距離(d3)が前記式の関係を満たすことが更に好ましい。
MD断面における平均距離(d1)と平均距離(d3)の値は、イオン交換膜のMD断面において、無作為に10箇所の平均距離(d1)と平均距離(d3)を測定し、それらの平均値を求めることにより得られる。TD断面における平均距離(d1)および平均距離(d3)も同様にして求めることにより得られる。
本発明においては、MD断面における平均距離(d1)とTD断面における平均距離(d1)との平均値およびMD断面における平均距離(d3)とTD断面における平均距離(d3)との平均値が前記式を満たすことが好ましく、MD断面およびTD断面の両方において平均距離(d1)および平均距離(d3)が前記式の関係を満たすことが更に好ましい。
MD断面における平均距離(d1)と平均距離(d3)の値は、イオン交換膜のMD断面において、無作為に10箇所の平均距離(d1)と平均距離(d3)を測定し、それらの平均値を求めることにより得られる。TD断面における平均距離(d1)および平均距離(d3)も同様にして求めることにより得られる。
本発明では、イオン交換膜の補強糸の長さ方向に直交する断面における、補強糸の中心から、その隣の溶出部の中心までの距離d3’の全てが、前記式(2’)の関係を満たすことが好ましく、下式(2’-1)の関係を満たすことがより好ましく、式(2’-2)の関係を満たすことが更に好ましい。これにより、膜強度を高めつつ、塩化アルカリ電解時の電解電圧を低減する効果が得られやすくなる。なお、距離d3’における、平均距離(d3)を決定するために測定した全ての測定箇所とは、前記平均距離(d3)を算出するために測定した全ての測定箇所を意味する。具体的には、任意のMD断面またはTD断面において、平均距離(d3)を得るために測定した各10個所の測定箇所をいう。
0.5≦{d3’/d1×(n+1)}≦1.5 ・・・(2’)
0.8≦{d3’/d1×(n+1)}≦1.5 ・・・(2’-1)
0.9≦{d3’/d1×(n+1)}≦1.4 ・・・(2’-2)
但し、式(1’)中の記号は以下の意味を示す。
d3’:補強糸の中心から、隣の溶出部の中心までの距離。
d1およびn:前記と同じ。
0.5≦{d3’/d1×(n+1)}≦1.5 ・・・(2’)
0.8≦{d3’/d1×(n+1)}≦1.5 ・・・(2’-1)
0.9≦{d3’/d1×(n+1)}≦1.4 ・・・(2’-2)
但し、式(1’)中の記号は以下の意味を示す。
d3’:補強糸の中心から、隣の溶出部の中心までの距離。
d1およびn:前記と同じ。
[製造方法]
図1に示される層(Sa)、補強布、層(Sb)および層(C)からなるイオン交換膜の場合を例にして、イオン交換膜の製造方法の1例を示す。イオン交換膜は、例えば、下記の工程(a)、工程(b)を経て製造される。
工程(a):イオン交換基に変換できる基を有する含フッ素ポリマーを含む前駆体膜が、補強糸と犠牲糸とからなる補強布で補強された強化前駆体膜を得る。
工程(b):強化前駆体膜をアルカリ性水溶液に接触させることによって、前駆体基を加水分解してイオン交換基に変換し、イオン交換膜を得る。
図1に示される層(Sa)、補強布、層(Sb)および層(C)からなるイオン交換膜の場合を例にして、イオン交換膜の製造方法の1例を示す。イオン交換膜は、例えば、下記の工程(a)、工程(b)を経て製造される。
工程(a):イオン交換基に変換できる基を有する含フッ素ポリマーを含む前駆体膜が、補強糸と犠牲糸とからなる補強布で補強された強化前駆体膜を得る。
工程(b):強化前駆体膜をアルカリ性水溶液に接触させることによって、前駆体基を加水分解してイオン交換基に変換し、イオン交換膜を得る。
(工程(a))
共押出法によって、カルボン酸型官能基に変換できる基を有する含フッ素ポリマーからなる前駆体層(C’)と、スルホン酸型官能基に変換できる基を有する含フッ素ポリマーからなる前駆体層(S’1)との積層体を得る。
別途、単層押出法によって、スルホン酸型官能基に変換できる基を有する含フッ素ポリマーからなる前駆体層(S’2)を得る。
ついで、前駆体層(S’2)、補強布、前駆体層(S’1)と前駆体層(C’)との積層膜の順に配置し、積層ロールまたは真空積層装置を用いてこれらを積層して強化前駆体膜を得る。この際、前駆体層(S’1)と前駆体層(C’)との積層膜は、前駆体層(S’1)が補強布に接するように配置する。強化前駆体膜を加水分解処理することにより、前駆体層(S’1)は層(Sb)、前駆体層(S’2)は層(Sa)となり、層(Sa)、補強材、層(Sb)、層(C)がこの順に積層されたイオン交換膜が得られる。
共押出法によって、カルボン酸型官能基に変換できる基を有する含フッ素ポリマーからなる前駆体層(C’)と、スルホン酸型官能基に変換できる基を有する含フッ素ポリマーからなる前駆体層(S’1)との積層体を得る。
別途、単層押出法によって、スルホン酸型官能基に変換できる基を有する含フッ素ポリマーからなる前駆体層(S’2)を得る。
ついで、前駆体層(S’2)、補強布、前駆体層(S’1)と前駆体層(C’)との積層膜の順に配置し、積層ロールまたは真空積層装置を用いてこれらを積層して強化前駆体膜を得る。この際、前駆体層(S’1)と前駆体層(C’)との積層膜は、前駆体層(S’1)が補強布に接するように配置する。強化前駆体膜を加水分解処理することにより、前駆体層(S’1)は層(Sb)、前駆体層(S’2)は層(Sa)となり、層(Sa)、補強材、層(Sb)、層(C)がこの順に積層されたイオン交換膜が得られる。
(カルボン酸型官能基に変換できる基を有する含フッ素ポリマー)
カルボン酸型官能基に変換できる基を有する含フッ素ポリマーとしては、例えば、カルボン酸型官能基に変換できる基を有する含フッ素モノマーに由来する単位と、含フッ素オレフィンに由来する単位とを有する共重合体が挙げられる。
カルボン酸型官能基に変換できる基を有する含フッ素ポリマーとしては、例えば、カルボン酸型官能基に変換できる基を有する含フッ素モノマーに由来する単位と、含フッ素オレフィンに由来する単位とを有する共重合体が挙げられる。
カルボン酸型官能基に変換できる基を有する含フッ素モノマーとしては、分子中に1個以上のフッ素原子を有し、エチレン性の二重結合を有し、かつカルボン酸型官能基に変換できる基を有する化合物であれば、特に限定されず、従来から公知のものを用いることができる。
カルボン酸型官能基に変換できる基を有する含フッ素モノマーとしては、モノマーの製造コスト、他のモノマーとの反応性、得られる含フッ素ポリマーの特性に優れる点から、下式(3)で表されるモノマーが好ましい。
CF2=CF-(O)p-(CF2)q-(CF2CFX)r-(O)s-(CF2)t-(CF2CFX’)u-A1 ・・・(3)。
CF2=CF-(O)p-(CF2)q-(CF2CFX)r-(O)s-(CF2)t-(CF2CFX’)u-A1 ・・・(3)。
式(3)におけるXは、フッ素原子またはトリフルオロメチル基である。また、X’は、フッ素原子またはトリフルオロメチル基である。1分子中にXおよびX’の両方が存在する場合、それぞれは同一であってもよく、異なっていてもよい。
A1は、カルボン酸型官能基に変換できる基である。カルボン酸型官能基に変換できる基は、加水分解によってカルボン酸型官能基に変換し得る官能基である。カルボン酸型官能基に変換し得る官能基としては、-CN、-COF、-COOR1(但し、R1は炭素原子数1~10のアルキル基である。)、-COONR2R3(但し、R2およびR3は、水素原子または炭素原子数1~10のアルキル基である。R2およびR3は、同一であってもよく、異なっていてもよい。)等が挙げられる。
pは、0または1であり、qは、0~12の整数であり、rは、0~3の整数であり、sは、0または1であり、tは、0~12の整数であり、uは、0~3の整数である。但し、pおよびsが同時に0になることはなく、rおよびuが同時に0になることはない。すなわち、1≦p+sであり、1≦r+uである。
式(3)で表されるモノマーの具体例としては、下記の化合物が挙げられ、製造が容易である点から、p=1、q=0、r=1、s=0~1、t=1~3、u=0~1である化合物が好ましい。
CF2=CF-O-CF2CF2-COOCH3、
CF2=CF-O-CF2CF2-CF2-COOCH3、
CF2=CF-O-CF2CF2-CF2CF2-COOCH3、
CF2=CF-O-CF2CF2-O-CF2CF2-COOCH3、
CF2=CF-O-CF2CF2-O-CF2CF2-CF2-COOCH3、
CF2=CF-O-CF2CF2-O-CF2CF2-CF2CF2-COOCH3、
CF2=CF-O-CF2-CF2CF2-O-CF2CF2-COOCH3、
CF2=CF-O-CF2CF(CF3)-O-CF2CF2-COOCH3、
CF2=CF-O-CF2CF(CF3)-O-CF2-CF2CF2-COOCH2。
カルボン酸型官能基に変換できる基を有する含フッ素モノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
CF2=CF-O-CF2CF2-COOCH3、
CF2=CF-O-CF2CF2-CF2-COOCH3、
CF2=CF-O-CF2CF2-CF2CF2-COOCH3、
CF2=CF-O-CF2CF2-O-CF2CF2-COOCH3、
CF2=CF-O-CF2CF2-O-CF2CF2-CF2-COOCH3、
CF2=CF-O-CF2CF2-O-CF2CF2-CF2CF2-COOCH3、
CF2=CF-O-CF2-CF2CF2-O-CF2CF2-COOCH3、
CF2=CF-O-CF2CF(CF3)-O-CF2CF2-COOCH3、
CF2=CF-O-CF2CF(CF3)-O-CF2-CF2CF2-COOCH2。
カルボン酸型官能基に変換できる基を有する含フッ素モノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
含フッ素オレフィンとしては、例えば、分子中に1個以上のフッ素原子を有する炭素原子数が2~3のフルオロオレフィンが挙げられる。フルオロオレフィンとしては、テトラフルオロエチレン(CF2=CF2)(以下、TFEと記す。)、クロロトリフルオロエチレン(CF2=CFCl)、フッ化ビニリデン(CF2=CH2)、フッ化ビニル(CH2=CHF)、ヘキサフルオロプロピレン(CF2=CFCF3)等が挙げられる。なかでも、モノマーの製造コスト、他のモノマーとの反応性、得られる含フッ素ポリマーの特性に優れる点から、TFEが特に好ましい。含フッ素オレフィンは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
本発明において、層(C)を形成する含フッ素ポリマーには、カルボン酸型官能基に変換できる基を有する含フッ素モノマーおよび含フッ素オレフィンに加えて、更に他のモノマーを用いてもよい。他のモノマーとしては、CF2=CF2-Rf、CF2=CF-ORf(但し、Rfは炭素原子数1~10のペルフルオロアルキル基である。)、CF2=CFO(CF2)vCF=CF2(但し、vは1~3の整数である。)等が挙げられる。他のモノマーを共重合させることによって、イオン交換膜の可撓性や機械的強度を向上できる。他のモノマーの割合は、イオン交換性能の維持の点から、全モノマー(100質量%)のうち30質量%以下が好ましい。
カルボン酸型官能基に変換できる基を有する含フッ素ポリマーの分子量は、イオン交換膜としての機械的強度および製膜性の点から、TQ値で150℃以上が好ましく、170~340℃がより好ましく、170~300℃が更に好ましい。
(スルホン酸型官能基に変換できる基を有する含フッ素ポリマー)
スルホン酸型官能基に変換できる基を有する含フッ素ポリマーとしては、例えば、スルホン酸型官能基に変換できる基を有する含フッ素モノマーに由来する単位と、含フッ素オレフィンに由来する単位とを有する共重合体が挙げられる。
スルホン酸型官能基に変換できる基を有する含フッ素ポリマーとしては、例えば、スルホン酸型官能基に変換できる基を有する含フッ素モノマーに由来する単位と、含フッ素オレフィンに由来する単位とを有する共重合体が挙げられる。
スルホン酸型官能基に変換できる基を有する含フッ素モノマーとしては、分子中に1個以上のフッ素原子を有し、エチレン性の二重結合を有し、かつスルホン酸型官能基に変換できる基を有するモノマーであれば、特に限定されず、従来から公知のものを用いることができる。
スルホン酸型官能基に変換できる基を有する含フッ素モノマーとしては、モノマーの製造コスト、他のモノマーとの反応性、得られる含フッ素ポリマーの特性に優れる点から、下式(4)で表されるモノマーまたは下式(5)で表されるモノマーが好ましい。
CF2=CF-O-Rf2-A2 ・・・(4)、
CF2=CF-Rf2-A2 ・・・(5)。
CF2=CF-O-Rf2-A2 ・・・(4)、
CF2=CF-Rf2-A2 ・・・(5)。
Rf2は、炭素数1~20のペルフルオロアルキレン基であり、エーテル性の酸素原子を含んでいてもよく、直鎖状または分岐状のいずれでもよい。
A2は、スルホン酸型官能基に変換できる基である。スルホン酸型官能基に変換できる基は、加水分解によってスルホン酸型官能基に変換し得る官能基である。スルホン酸型官能基に変換し得る官能基としては、-SO2F、-SO2Cl、-SO2Br等が挙げられる。
A2は、スルホン酸型官能基に変換できる基である。スルホン酸型官能基に変換できる基は、加水分解によってスルホン酸型官能基に変換し得る官能基である。スルホン酸型官能基に変換し得る官能基としては、-SO2F、-SO2Cl、-SO2Br等が挙げられる。
式(4)で表されるモノマーとしては、具体的には下記のモノマーが好ましい。
CF2=CF-O-(CF2)a-SO2F(但し、aは1~8の整数である。)、
CF2=CF-O-CF2CF(CF3)O(CF2)a-SO2F(但し、aは1~8の整数である。)、
CF2=CF[OCF2CF(CF3)]aSO2F(但し、aは1~5の整数である。)
CF2=CF-O-(CF2)a-SO2F(但し、aは1~8の整数である。)、
CF2=CF-O-CF2CF(CF3)O(CF2)a-SO2F(但し、aは1~8の整数である。)、
CF2=CF[OCF2CF(CF3)]aSO2F(但し、aは1~5の整数である。)
式(5)で表されるモノマーとしては、具体的には下記のモノマーが好ましい。
CF2=CF(CF2)b-SO2F(但し、bは0~8の整数である。)、
CF2=CF-CF2-O-(CF2)b-SO2F(但し、bは1~8の整数である。)
CF2=CF(CF2)b-SO2F(但し、bは0~8の整数である。)、
CF2=CF-CF2-O-(CF2)b-SO2F(但し、bは1~8の整数である。)
スルホン酸型官能基に変換できる基を有する含フッ素モノマーとしては、工業的な合成が容易である点から、下記のモノマーがより好ましい。
CF2=CFOCF2CF2SO2F、
CF2=CFOCF2CF2CF2SO2F、
CF2=CFOCF2CF2CF2CF2SO2F、
CF2=CFOCF2CF(CF3)OCF2CF2SO2F、
CF2=CFOCF2CF(CF3)OCF2CF2CF2SO2F、
CF2=CFOCF2CF(CF3)SO2F、
CF2=CFCF2CF2SO2F、
CF2=CFCF2CF2CF2SO2F、
CF2=CF-CF2-O-CF2CF2-SO2F。
スルホン酸型官能基に変換できる基を有する含フッ素モノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
CF2=CFOCF2CF2SO2F、
CF2=CFOCF2CF2CF2SO2F、
CF2=CFOCF2CF2CF2CF2SO2F、
CF2=CFOCF2CF(CF3)OCF2CF2SO2F、
CF2=CFOCF2CF(CF3)OCF2CF2CF2SO2F、
CF2=CFOCF2CF(CF3)SO2F、
CF2=CFCF2CF2SO2F、
CF2=CFCF2CF2CF2SO2F、
CF2=CF-CF2-O-CF2CF2-SO2F。
スルホン酸型官能基に変換できる基を有する含フッ素モノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
含フッ素オレフィンとしては、先に例示したものが挙げられ、モノマーの製造コスト、他のモノマーとの反応性、得られる含フッ素ポリマーの特性に優れる点から、TFEが特に好ましい。含フッ素オレフィンは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
本発明においては、層(S)を形成する含フッ素ポリマーに、スルホン酸型官能基に変換できる基を有する含フッ素モノマーおよび含フッ素オレフィンに加えて、更に他のモノマーを用いてもよい。他のモノマーとしては、先に例示したものが挙げられる。他のモノマーを共重合させることによって、イオン交換膜の可撓性や機械的強度を向上できる。他のモノマーの割合は、イオン交換性能の維持の点から、全モノマー(100質量%)のうち30質量%以下が好ましい。
スルホン酸型官能基に変換できる基を有する含フッ素ポリマーの分子量は、イオン交換膜としての機械的強度および製膜性の点から、TQ値で150℃以上が好ましく、170~340℃がより好ましく、170~300℃が更に好ましい。
(工程(b))
このようにして得られた強化前駆体膜の、カルボン酸型官能基に変換できる基およびスルホン酸型官能基に変換できる基を、加水分解してそれぞれカルボン酸型官能基およびスルホン酸型官能基に転換することによって、イオン交換膜が得られる。加水分解の方法としては、例えば、特開平1-140987号公報に記載されているような、水溶性有機化合物とアルカリ金属の水酸化物との混合物を用いる方法が好ましい。
このようにして得られた強化前駆体膜の、カルボン酸型官能基に変換できる基およびスルホン酸型官能基に変換できる基を、加水分解してそれぞれカルボン酸型官能基およびスルホン酸型官能基に転換することによって、イオン交換膜が得られる。加水分解の方法としては、例えば、特開平1-140987号公報に記載されているような、水溶性有機化合物とアルカリ金属の水酸化物との混合物を用いる方法が好ましい。
工程(b)においては、強化前駆体膜をアルカリ性水溶液に接触させることによって、犠牲糸の少なくとも一部を加水分解してアルカリ性水溶液に溶出させることが好ましい。
<塩化アルカリ電解装置>
本発明の塩化アルカリ電解装置は、本発明の塩化アルカリ電解用イオン交換膜を有する以外は、公知の態様を採用できる。図3は、本発明の塩化アルカリ電解装置の一例を示した模式図である。
本実施形態の塩化アルカリ電解装置100は、陰極112および陽極114を備える電解槽110と、電解槽110内を陰極112側の陰極室116と陽極114側の陽極室118とに区切るように電解槽110内に装着されるイオン交換膜1と、を有する。
イオン交換膜1は、層(C)12が陰極112側、層(S)14の層(Sa)が陽極114側となるように電解槽110内に装着する。
本発明の塩化アルカリ電解装置は、本発明の塩化アルカリ電解用イオン交換膜を有する以外は、公知の態様を採用できる。図3は、本発明の塩化アルカリ電解装置の一例を示した模式図である。
本実施形態の塩化アルカリ電解装置100は、陰極112および陽極114を備える電解槽110と、電解槽110内を陰極112側の陰極室116と陽極114側の陽極室118とに区切るように電解槽110内に装着されるイオン交換膜1と、を有する。
イオン交換膜1は、層(C)12が陰極112側、層(S)14の層(Sa)が陽極114側となるように電解槽110内に装着する。
陰極112は、イオン交換膜1に接触させて配置してもよく、イオン交換膜1との間に間隔を開けて配置してもよい。
陰極室116を構成する材料としては、水酸化ナトリウムおよび水素に耐性がある材料が好ましい。該材料としては、ステンレス、ニッケル等が挙げられる。陽極室118を構成する材料としては、塩化ナトリウムおよび塩素に耐性がある材料が好ましい。該材料としては、チタンが挙げられる。
また、陰極の材料は、好ましくは基材としてステンレスやニッケルが用いられ、電極触媒層としてNi―S 合金,ラネーNi,NiO,Ni―Sn 合金,Pt やRu などの白金族元素等が使用され、陽極の材料は、好ましくは酸化物被覆層を有するチタン等が使用される。
陰極室116を構成する材料としては、水酸化ナトリウムおよび水素に耐性がある材料が好ましい。該材料としては、ステンレス、ニッケル等が挙げられる。陽極室118を構成する材料としては、塩化ナトリウムおよび塩素に耐性がある材料が好ましい。該材料としては、チタンが挙げられる。
また、陰極の材料は、好ましくは基材としてステンレスやニッケルが用いられ、電極触媒層としてNi―S 合金,ラネーNi,NiO,Ni―Sn 合金,Pt やRu などの白金族元素等が使用され、陽極の材料は、好ましくは酸化物被覆層を有するチタン等が使用される。
例えば、塩化カリウム水溶液を電解して水酸化ナトリウム水溶液を製造する場合は、塩化アルカリ電解装置100の陽極室118に塩化ナトリウム水溶液を供給し、陰極室116に水酸化カリウム水溶液を供給し、陰極室116から排出される水酸化ナトリウム水溶液の濃度を所定の濃度(例えば、32質量%)に保ちながら、塩化ナトリウム水溶液を電解する。
以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。例1~3は、実施例であり、例4~8は、比較例である。
(TQ値)
TQ値は、ポリマーの分子量に関係する値であって、容量流速:100mm3/秒を示す温度として求めた。容量流速は、島津フローテスターCFD-100D(島津製作所社製)を用い、イオン交換基に変換できる基を有する含フッ素ポリマーを3MPaの加圧下にオリフィス(径:1mm、長さ:1mm)から溶融、流出させたときの流出量(単位:mm3/秒)とした。
(TQ値)
TQ値は、ポリマーの分子量に関係する値であって、容量流速:100mm3/秒を示す温度として求めた。容量流速は、島津フローテスターCFD-100D(島津製作所社製)を用い、イオン交換基に変換できる基を有する含フッ素ポリマーを3MPaの加圧下にオリフィス(径:1mm、長さ:1mm)から溶融、流出させたときの流出量(単位:mm3/秒)とした。
(イオン交換容量)
イオン交換基に変換できる基を有する含フッ素ポリマーの約0.5gを、そのTQ値より約10℃高い温度にて平板プレスしてフィルム状にし、得られたフィルム状のサンプルを透過型赤外分光分析装置によって分析した。得られたスペクトルのCF2ピーク、CH3ピーク、OHピーク、CFピーク、SO2Fピークの各ピーク高さを用いて、カルボン酸型官能基に変換できる基またはスルホン酸型官能基に変換できる基を有する単位の割合を算出し、これを、加水分解処理後に得られる含フッ素ポリマーにおけるカルボン酸型官能基またはスルホン酸型官能基を有する単位の割合とし、イオン交換容量が既知のサンプルを検量線として用い、イオン交換容量を求めた。
なお、末端基が酸型もしくはK型もしくはNa型であるイオン交換基を有するフィルムに関しても、同様に測定が可能である。
イオン交換基に変換できる基を有する含フッ素ポリマーの約0.5gを、そのTQ値より約10℃高い温度にて平板プレスしてフィルム状にし、得られたフィルム状のサンプルを透過型赤外分光分析装置によって分析した。得られたスペクトルのCF2ピーク、CH3ピーク、OHピーク、CFピーク、SO2Fピークの各ピーク高さを用いて、カルボン酸型官能基に変換できる基またはスルホン酸型官能基に変換できる基を有する単位の割合を算出し、これを、加水分解処理後に得られる含フッ素ポリマーにおけるカルボン酸型官能基またはスルホン酸型官能基を有する単位の割合とし、イオン交換容量が既知のサンプルを検量線として用い、イオン交換容量を求めた。
なお、末端基が酸型もしくはK型もしくはNa型であるイオン交換基を有するフィルムに関しても、同様に測定が可能である。
(補強糸、溶出部の距離)
90℃で2時間以上乾燥させたイオン交換膜の断面を光学顕微鏡にて観察し、画像ソフト(イノテック社製Pixs2000 PRO)を用いて、MD断面(MD方向に垂直に裁断した断面)およびTD断面(TD方向に垂直に裁断した断面)のそれぞれにおいて、補強糸の中心からその隣の補強糸の中心までの距離を各10箇所ずつ測定し、それらの平均から平均値d1を求めた。また、平均値d2、d3についても同様に求めた。
なお、平均値d1~3は、工程(a)および(b)を経て製造されたイオン交換膜に配置された補強布の値であり、製織後すなわち工程(a)および工程(b)を経る前の値とは異なる。
90℃で2時間以上乾燥させたイオン交換膜の断面を光学顕微鏡にて観察し、画像ソフト(イノテック社製Pixs2000 PRO)を用いて、MD断面(MD方向に垂直に裁断した断面)およびTD断面(TD方向に垂直に裁断した断面)のそれぞれにおいて、補強糸の中心からその隣の補強糸の中心までの距離を各10箇所ずつ測定し、それらの平均から平均値d1を求めた。また、平均値d2、d3についても同様に求めた。
なお、平均値d1~3は、工程(a)および(b)を経て製造されたイオン交換膜に配置された補強布の値であり、製織後すなわち工程(a)および工程(b)を経る前の値とは異なる。
(断面積の測定方法)
大気中、90℃で2時間以上乾燥させたイオン交換膜の補強糸の長さ方向に垂直に切断した断面を光学顕微鏡にて観察し、画像ソフト(イノテック社製Pixs2000 PRO)を用いて、溶出部の断面積と、当該溶出部内に残存する犠牲糸の断面積とを合計した総面積(P)を測定した。総面積(P)は、MD断面およびTD断面において無作為に各10箇所ずつ測定を行った。MD断面について、総断面積(S)を10箇所の測定値の平均値として求めた。TD断面についても同様にして総面積(S)を求めた。
犠牲糸が完全に溶解している場合には、総面積(S)は溶出孔の断面積となり、溶出孔内に溶出残りの犠牲糸が存在する場合には、総面積(S)は溶出孔の断面積と溶出残りの犠牲糸の断面積とを合計した値となる。
大気中、90℃で2時間以上乾燥させたイオン交換膜の補強糸の長さ方向に垂直に切断した断面を光学顕微鏡にて観察し、画像ソフト(イノテック社製Pixs2000 PRO)を用いて、溶出部の断面積と、当該溶出部内に残存する犠牲糸の断面積とを合計した総面積(P)を測定した。総面積(P)は、MD断面およびTD断面において無作為に各10箇所ずつ測定を行った。MD断面について、総断面積(S)を10箇所の測定値の平均値として求めた。TD断面についても同様にして総面積(S)を求めた。
犠牲糸が完全に溶解している場合には、総面積(S)は溶出孔の断面積となり、溶出孔内に溶出残りの犠牲糸が存在する場合には、総面積(S)は溶出孔の断面積と溶出残りの犠牲糸の断面積とを合計した値となる。
(補強糸の幅の測定方法)
大気中、90℃で2時間以上乾燥させたイオン交換膜の断面を光学顕微鏡にて観察し、画像ソフト(イノテック社製Pixs2000 PRO)を用いて、補強布の布面に直交する方向(面に対して垂直な方向)から見た補強糸の幅を測定した。該補強糸の幅は、MD断面およびTD断面において各10箇所ずつ測定を行った。MD断面ついて、補強糸の幅を10箇所の測定値の平均値として求めた。TD断面についても同様にして補強糸の幅を求めた。
大気中、90℃で2時間以上乾燥させたイオン交換膜の断面を光学顕微鏡にて観察し、画像ソフト(イノテック社製Pixs2000 PRO)を用いて、補強布の布面に直交する方向(面に対して垂直な方向)から見た補強糸の幅を測定した。該補強糸の幅は、MD断面およびTD断面において各10箇所ずつ測定を行った。MD断面ついて、補強糸の幅を10箇所の測定値の平均値として求めた。TD断面についても同様にして補強糸の幅を求めた。
(電解電圧の測定方法)
イオン交換膜を、層(C)が陰極に面するように、有効通電面積が1.5dm2(電解面サイズが縦150mm×横100mm)の試験用電解槽内に配置し、陽極としてはチタンのパンチドメタル(短径4mm、長径8mm)に酸化ルテニウムと酸化イリジウムと酸化チタンの固溶体を被覆したものを用い、陰極としてはSUS304製パンチドメタル(短径5mm、長径10mm)にルテニウム入りラネーニッケルを電着したものを用い、電極と膜が直接接し、ギャップが生じないように設置した。
陰極室から排出される水酸化ナトリウム濃度:32質量%、陽極室に供給する塩化ナトリウム濃度:200g/Lとなるように調整しながら、温度:90℃、電流密度:6kA/m2の条件で、塩化ナトリウム水溶液の電解を行い、運転開始から3~10日後の電解電圧(V)及び電流効率(%)を測定した。
イオン交換膜を、層(C)が陰極に面するように、有効通電面積が1.5dm2(電解面サイズが縦150mm×横100mm)の試験用電解槽内に配置し、陽極としてはチタンのパンチドメタル(短径4mm、長径8mm)に酸化ルテニウムと酸化イリジウムと酸化チタンの固溶体を被覆したものを用い、陰極としてはSUS304製パンチドメタル(短径5mm、長径10mm)にルテニウム入りラネーニッケルを電着したものを用い、電極と膜が直接接し、ギャップが生じないように設置した。
陰極室から排出される水酸化ナトリウム濃度:32質量%、陽極室に供給する塩化ナトリウム濃度:200g/Lとなるように調整しながら、温度:90℃、電流密度:6kA/m2の条件で、塩化ナトリウム水溶液の電解を行い、運転開始から3~10日後の電解電圧(V)及び電流効率(%)を測定した。
(開口率の測定方法)
開口率は、大気中、90℃で2時間以上乾燥させたイオン交換膜の、補強糸の長さ方向に垂直に切断した断面を光学顕微鏡にて観察し、画像ソフト(イノテック社製Pixs2000 PRO)を用いて、開口率を算出した。算出は、MD断面(MD方向に垂直に裁断した断面)およびTD断面(TD方向に垂直に裁断した断面)のそれぞれにおいて、補強糸の中心からその隣の補強糸の中心までの距離および補強糸の幅を各10箇所ずつ測定し、以下の式から算出した。
{(MD断面の補強糸間の距離―MD断面の補強糸の幅)×(TD断面の補強糸間の距離―TD断面の補強糸の幅)}/{(MD断面の補強糸間の距離)×(TD断面の補強糸間の距離)}×100
開口率は、大気中、90℃で2時間以上乾燥させたイオン交換膜の、補強糸の長さ方向に垂直に切断した断面を光学顕微鏡にて観察し、画像ソフト(イノテック社製Pixs2000 PRO)を用いて、開口率を算出した。算出は、MD断面(MD方向に垂直に裁断した断面)およびTD断面(TD方向に垂直に裁断した断面)のそれぞれにおいて、補強糸の中心からその隣の補強糸の中心までの距離および補強糸の幅を各10箇所ずつ測定し、以下の式から算出した。
{(MD断面の補強糸間の距離―MD断面の補強糸の幅)×(TD断面の補強糸間の距離―TD断面の補強糸の幅)}/{(MD断面の補強糸間の距離)×(TD断面の補強糸間の距離)}×100
〔例1〕
TFEと下式(3-1)で表されるカルボン酸型官能基に変換できる基を有する含フッ素モノマーとを共重合してカルボン酸型官能基に変換できる基を有する含フッ素ポリマー(イオン交換容量:1.06ミリ当量/グラム乾燥樹脂、TQ:225℃)(以下、ポリマーCと記す。)を合成した。
CF2=CF-O-CF2CF2-CF2-COOCH3 ・・・(3-1)。
TFEと下式(3-1)で表されるカルボン酸型官能基に変換できる基を有する含フッ素モノマーとを共重合してカルボン酸型官能基に変換できる基を有する含フッ素ポリマー(イオン交換容量:1.06ミリ当量/グラム乾燥樹脂、TQ:225℃)(以下、ポリマーCと記す。)を合成した。
CF2=CF-O-CF2CF2-CF2-COOCH3 ・・・(3-1)。
TFEと下式(4-1)で表されるスルホン酸型官能基に変換できる基を有する含フッ素モノマーとを共重合してスルホン酸型官能基に変換できる基を有する含フッ素ポリマー(イオン交換容量:1.1ミリ当量/グラム乾燥樹脂、TQ:235℃)(以下、ポリマーS1と記す。)を合成した。同様に、TFEと下式(4-1)で表されるスルホン酸型官能基に変換できる基を有する含フッ素モノマーとを共重合してスルホン酸型官能基に変換できる基を有する含フッ素ポリマー(イオン交換容量:1.25ミリ当量/グラム乾燥樹脂、TQ:235℃)(以下、ポリマーS2と記す。)を合成した。
CF2=CF-O-CF2CF(CF3)-O-CF2CF2-SO2F ・・(4-1)
CF2=CF-O-CF2CF(CF3)-O-CF2CF2-SO2F ・・(4-1)
ポリマーCとポリマーS1とを共押し出し法により成形し、ポリマーCからなる前駆体層(C’)(厚さ:12μm)およびポリマーS1からなる前駆体層(S’1)(厚さ:68μm)の2層構成のフィルムAを得た。
また、ポリマーS2を溶融押し出し法により成形し、前駆体層(S’2)となるフィルムB(厚さ:30μm)を得た。
また、ポリマーS2を溶融押し出し法により成形し、前駆体層(S’2)となるフィルムB(厚さ:30μm)を得た。
PTFEフィルムを急速延伸した後、100デニールの太さにスリットして得たモノフィラメントに2000回/mの撚糸をかけたPTFE糸を補強糸とした。9デニールのPETフィラメントを2本引き揃えた18デニールのマルチフィラメントからなるPET糸を犠牲糸とした。補強糸1本と犠牲糸4本とが交互に配列されるように平織りし、補強布(補強糸の密度:27本/インチ、犠牲糸の密度:108本/インチ)を得た。
フィルムB、補強布、フィルムA、離型用PETフィルム(厚さ:100μm)の順に、かつフィルムAの前駆体層(C’)が離型用PETフィルム側となるように重ね、ロールを用いて積層した。離型用PETフィルムを剥がし、強化前駆体膜を得た。
酸化ジルコニウム(平均粒子径:1μm)の29.0質量%、メチルセルロースの1.3質量%、シクロヘキサノールの4.6質量%、シクロヘキサンの1.5質量%および水の63.6質量%からなるペーストを、強化前駆体膜の前駆体層(S’2)の上層側にロールプレスにより転写し、ガス開放性被覆層を形成した。酸化ジルコニウムの付着量は、20g/m2とした。
フィルムB、補強布、フィルムA、離型用PETフィルム(厚さ:100μm)の順に、かつフィルムAの前駆体層(C’)が離型用PETフィルム側となるように重ね、ロールを用いて積層した。離型用PETフィルムを剥がし、強化前駆体膜を得た。
酸化ジルコニウム(平均粒子径:1μm)の29.0質量%、メチルセルロースの1.3質量%、シクロヘキサノールの4.6質量%、シクロヘキサンの1.5質量%および水の63.6質量%からなるペーストを、強化前駆体膜の前駆体層(S’2)の上層側にロールプレスにより転写し、ガス開放性被覆層を形成した。酸化ジルコニウムの付着量は、20g/m2とした。
片面にガス開放性被覆層を形成した強化前駆体膜を、5質量%のジメチルスルホキシドおよび30質量%の水酸化カリウムの水溶液に95℃で8分間浸漬した。これにより、ポリマーCの-COOCH3ならびにポリマーS1およびポリマーS2の-SO2Fを加水分解してイオン交換基に転換し、前駆体層(C’)を層(C)に、前駆体層(S’1)および前駆体(S’2)をそれぞれ層(S1)および層(S2)とした膜を得た。
ポリマーS1の酸型ポリマーを2.5質量%含むエタノール溶液に、酸化ジルコニウム(平均粒子径:1μm)を13質量%の濃度で分散させた分散液を調製した。該分散液を、前記膜の層(C)側に噴霧し、ガス開放性被覆層を形成し、両面にガス開放性被覆層が形成されたイオン交換膜を得た。酸化ジルコニウムの付着量は3g/m2とした。
ポリマーS1の酸型ポリマーを2.5質量%含むエタノール溶液に、酸化ジルコニウム(平均粒子径:1μm)を13質量%の濃度で分散させた分散液を調製した。該分散液を、前記膜の層(C)側に噴霧し、ガス開放性被覆層を形成し、両面にガス開放性被覆層が形成されたイオン交換膜を得た。酸化ジルコニウムの付着量は3g/m2とした。
〔例2〕
TFEと前記式(4-1)で表されるスルホン酸型官能基に変換できる基を有する含フッ素モノマーとを共重合してスルホン酸型官能基に変換できる基を有する含フッ素ポリマー(イオン交換容量:1.30ミリ当量/グラム乾燥樹脂、TQ:235℃)(以下、ポリマーS3と記す。)を合成した。
ポリマーS2をポリマーS3に変更した以外は、例1と同様にしてイオン交換膜を得た。
TFEと前記式(4-1)で表されるスルホン酸型官能基に変換できる基を有する含フッ素モノマーとを共重合してスルホン酸型官能基に変換できる基を有する含フッ素ポリマー(イオン交換容量:1.30ミリ当量/グラム乾燥樹脂、TQ:235℃)(以下、ポリマーS3と記す。)を合成した。
ポリマーS2をポリマーS3に変更した以外は、例1と同様にしてイオン交換膜を得た。
〔例3〕
犠牲糸として、16デニールのPETフィラメントを2本引き揃えた32デニールのマルチフィラメントからなるPET糸を用い、ポリマーS2をポリマーS3に変更した以外は、例1と同様にしてイオン交換膜を得た。
犠牲糸として、16デニールのPETフィラメントを2本引き揃えた32デニールのマルチフィラメントからなるPET糸を用い、ポリマーS2をポリマーS3に変更した以外は、例1と同様にしてイオン交換膜を得た。
〔例4〕
犠牲糸として、5デニールのモノフィラメントを6本引き揃えて撚った30デニールのマルチフィラメントからなるPET糸を用い、補強布における補強糸の密度を27本/インチ、犠牲糸の密度を54本/インチとし、更にポリマーS2をポリマーS1に変更した以外は、例1と同様にしてイオン交換膜を得た。
犠牲糸として、5デニールのモノフィラメントを6本引き揃えて撚った30デニールのマルチフィラメントからなるPET糸を用い、補強布における補強糸の密度を27本/インチ、犠牲糸の密度を54本/インチとし、更にポリマーS2をポリマーS1に変更した以外は、例1と同様にしてイオン交換膜を得た。
〔例5〕
犠牲糸として、5デニールのモノフィラメントを6本引き揃えて撚った30デニールのマルチフィラメントからなるPET糸を用い、補強布における補強糸の密度を27本/インチ、犠牲糸の密度を54本/インチとした以外は、例1と同様にしてイオン交換膜を得た。
犠牲糸として、5デニールのモノフィラメントを6本引き揃えて撚った30デニールのマルチフィラメントからなるPET糸を用い、補強布における補強糸の密度を27本/インチ、犠牲糸の密度を54本/インチとした以外は、例1と同様にしてイオン交換膜を得た。
〔例6〕
犠牲糸として、5デニールのモノフィラメントを6本引き揃えて撚った30デニールのマルチフィラメントからなるPET糸を用い、補強布における補強糸の密度を27本/インチ、犠牲糸の密度を54本/インチとし、更にポリマーS2をポリマーS3に変更した以外は、例1と同様にしてイオン交換膜を得た。
犠牲糸として、5デニールのモノフィラメントを6本引き揃えて撚った30デニールのマルチフィラメントからなるPET糸を用い、補強布における補強糸の密度を27本/インチ、犠牲糸の密度を54本/インチとし、更にポリマーS2をポリマーS3に変更した以外は、例1と同様にしてイオン交換膜を得た。
〔例7〕
ポリマーS2をポリマーS1に変更した以外は、例1と同様にしてイオン交換膜を得た。
ポリマーS2をポリマーS1に変更した以外は、例1と同様にしてイオン交換膜を得た。
〔例8〕
犠牲糸として、16デニールのPETフィラメントを2本引き揃えた32デニールのマルチフィラメントからなるPET糸を用い、ポリマーS2をポリマーS1に変更した以外は、例1と同様にしてイオン交換膜を得た。
犠牲糸として、16デニールのPETフィラメントを2本引き揃えた32デニールのマルチフィラメントからなるPET糸を用い、ポリマーS2をポリマーS1に変更した以外は、例1と同様にしてイオン交換膜を得た。
各例におけるイオン交換膜の各平均距離d1~d3、総面積(P)、補強糸の幅および電解電圧の測定結果を表1に示す。
本発明の条件を満たすイオン交換膜を用いた例1~3では、溶出部の平均数(n)が4未満で、層(S)の層(Sa)のイオン交換容量が1.15ミリ当量/グラム乾燥樹脂未満のイオン交換膜を用いた例4に比べて、平均値距離(d1)が小さいにも関わらず電解電圧が低かった。
また、例1~3は、例4と比較して、層(Sa)のイオン交換容量を1.25ミリ当量/グラム乾燥樹脂とした例5で電圧差が-20mV、溶出部の平均数(n)を4とした例7で電圧差が-40mVであり、これらを足し合わせた電圧差は-60mVである。これに対し、例5と例7の対策を組み合わせた例1の例4に対する電圧差は-70mVであり、例5と例7を足し合わせた電圧差よりも大きく、相乗効果が見られた。
同様に、例1~3は、例4と比較して、層(Sa)のイオン交換容量を1.30ミリ当量/グラム乾燥樹脂とした例6で電圧差が-25mV、溶出部の平均数(n)を4とした例7で電圧差が-40mVであり、これらを足し合わせた電圧差は-65mVである。これに対し、例6と例7の対策を組み合わせた例2の例4に対する電圧差は-75mVであり、例6と例7を足し合わせた電圧差よりも大きく、相乗効果が見られた。
同様に、例1~3は、例4と比較して、層(Sa)のイオン交換容量を1.30ミリ当量/グラム乾燥樹脂とした例6で電圧差が-25mV、溶出部の平均数(n)を4とした例7で電圧差が-40mVであり、これらを足し合わせた電圧差は-65mVである。これに対し、例6と例7の対策を組み合わせた例2の例4に対する電圧差は-75mVであり、例6と例7を足し合わせた電圧差よりも大きく、相乗効果が見られた。
同様に、例1~3は、例4と比較して、層(Sa)のイオン交換容量を1.30ミリ当量/グラム乾燥樹脂とした例6で電圧差が-25mV、溶出部の平均数(n)を4とした例8で電圧差が-40mVであり、これらを足し合わせた電圧差は-65mVである。これに対し、例6と例8の対策を組み合わせた例3の例4に対する電圧差は-85mVであり、例6と例8を足し合わせた電圧差よりも大きく、相乗効果が見られた。
なお、例1~3の平均距離d1~d3、総面積(P)、補強糸の幅の測定においては、各10箇所全てで上記範囲内の測定値であった。
なお、例1~3の平均距離d1~d3、総面積(P)、補強糸の幅の測定においては、各10箇所全てで上記範囲内の測定値であった。
本発明の塩化アルカリ電解用イオン交換膜を有する電解装置は、工業的な塩化ナトリウム水溶液や塩化カリウム水溶液など電解して、塩素と水酸化ナトリウ若しくは水酸化カリウムを製造するために広範に使用される。
なお、2014年11月10日に出願された日本特許出願2014-227994号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
なお、2014年11月10日に出願された日本特許出願2014-227994号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
1:塩化アルカリ電解用イオン交換膜 10:電解質膜 12:層(C) 14:層(S) 16:層(Sb) 18:層(Sa) 20:補強材 22:補強糸 24:犠牲糸 26:フィラメント 28:溶出部 Sa:層(S)の層(Sa) 121:NaCl水 122:淡NaCl水 123:電気透析水
Claims (15)
- 陰極および陽極を備える塩化アルカリ電解槽と、前記電解槽内を前記陰極側の陰極室と前記陽極側の陽極室とに区切るように設置させて用いられる塩化アルカリ電解用イオン交換膜であって、
該塩化アルカリ電解用イオン交換膜は、スルホン酸型官能基を有する含フッ素ポリマーを含む層(S)と前記層(S)中に層(S)と略並行に配置された補強材とを有し、
前記層(S)は、最も陽極側に配置された1層の層(Sa)と、層(Sa)よりも陰極側に配置された1層以上の層(Sb)と、層(Sa)と層(Sb)間もしくは層(Sb)中に配置された補強材との積層体であり、
補強材は、緯糸および経糸に補強糸、および、緯糸および経糸に犠牲糸を任意に用いた織物であり、
補強糸の長さ方向に直交する層(S)の断面において、補強糸の中心から隣の補強糸の中心までの平均距離(d1)は750~1000μmであり、層(S)中には、犠牲糸が溶出してなる溶出部が存在し、前記溶出部の断面積と前記溶出部内に残存する犠牲糸の断面積との総面積(P)は500~5000μm2であり、隣り合う補強糸間の溶出部の平均数は4~6個であり、
かつ、前記層(Sa)のイオン交換容量が1.15ミリ当量/グラム乾燥樹脂以上である、ことを特徴とする塩化アルカリ電解用イオン交換膜。 - 層(Sb)のイオン交換容量が、前記層(Sa)のイオン交換容量よりも低い、請求項1に記載の塩化アルカリ電解用イオン交換膜。
- 層(S)の最も陰極側の面に、カルボン酸型官能基を有する含フッ素ポリマーを含む1層以上の層(C)を有する、請求項1または2に記載の塩化アルカリ電解用イオン交換膜。
- 補強糸の長さ方向に直交する断面において、下式(1)を満たす関係が成立する、請求項1~3のいずれか一項に記載の塩化アルカリ電解用イオン交換膜。
0.5≦{d2/d1×(n+1)}≦1.5 ・・・(1)
但し、式(1)中の記号は以下の意味を示す。
d1:補強糸の中心から隣の補強糸の中心までの平均距離。
d2:溶出部の中心から、隣の溶出部の中心までの平均距離。
n:隣り合う補強糸間に存在する溶出部の平均数。 - 補強糸の長さ方向に直交する断面において、前記平均距離(d1)および平均距離(d2)を決定するために測定した全ての測定箇所において、下式(1’)を満たす関係が成立する、請求項4に記載の塩化アルカリ電解用イオン交換膜。
0.5≦{d2’/d1×(n+1)}≦1.5 ・・・(1’)
但し、式(1’)中の記号は以下の意味を示す。
d2’:任意の測定箇所における、溶出部の中心から、隣の溶出部の中心までの距離。
d1およびn:前記と同じ。 - 補強糸の長さ方向に直交する断面において、下式(2)を満たす関係が成立する、請求項1~5のいずれか一項に記載の塩化アルカリ電解用イオン交換膜。
0.5≦{d3/d1×(n+1)}≦1.5 ・・・(2)
但し、式(2)中の記号は以下の意味を示す。
d3:補強糸の中心から、隣の溶出部の中心までの平均距離。
d1、n:前記と同じ。 - 補強糸の長さ方向に直交する断面において、前記平均距離(d1)および平均距離(d3)を決定するために測定した全ての測定箇所において、下式(2’)を満たす関係が成立する、請求項6に記載の塩化アルカリ電解用イオン交換膜。
0.5≦{d3’/d1×(n+1)}≦1.5 ・・・(2’)
但し、式(1’)中の記号は以下の意味を示す。
d3’:任意の測定箇所における補強糸の中心から、隣の溶出部の中心までの距離。
d1およびn:前記と同じ。 - 補強糸の長さ方向に直交する断面における前記補強糸の太さが70~160μmである、請求項1~7のいずれか一項に記載の塩化アルカリ電解用イオン交換膜。
- 陰極および陽極を備える電解槽と、請求項1~8のいずれか一項に記載の塩化アルカリ電解用イオン交換膜を有し、前記塩化アルカリ電解用イオン交換膜は、前記電解槽内の陽極と陰極との間に略並行に設置され、かつ陰極側の陰極室と前記陽極側の陽極室とに区切るように設置されてなる塩化アルカリ電解装置。
- イオン交換基に変換できる基を有する含フッ素ポリマーを含む前駆体膜中に、補強糸と犠牲糸とからなる補強布が配置された強化前駆体膜を得て、次に前記強化前駆体膜をアルカリ性水溶液に接触させることによって、イオン交換基に変換できる基をイオン交換基に変換するとともに、補強布中の犠牲糸の少なくとも一部を溶出させて、イオン交換基を有する含フッ素ポリマーと、補強布中の犠牲糸の少なくとも一部が溶出した補強材と、溶出部を有するイオン交換膜を得る、請求項1に記載のイオン交換膜の製造方法。
- 塩化アルカリ電解時に層(Sa)よりも陰極側に位置する層(Sb)のイオン交換容量が、前記層(Sa)のイオン交換容量よりも低い、請求項10に記載の塩化アルカリ電解用イオン交換膜の製造方法。
- 前記層(Sa)とは反対側の面に、カルボン酸型官能基を有する含フッ素ポリマーを含む層(C)を更に有する、請求項10または11に記載の塩化アルカリ電解用イオン交換膜の製造方法。
- 補強糸の経糸に直交する断面において、下式(1)を満たす関係が成立する、請求項10~12のいずれか一項に記載の塩化アルカリ電解用イオン交換膜の製造方法。
0.5≦{d2/d1×(n+1)}≦1.5 ・・・(1)
但し、式(1)中の記号は以下の意味を示す。
d1:補強糸の中心から隣の補強糸の中心までの平均距離。
d2:溶出部の中心から、隣の溶出部の中心までの平均距離。
n:隣り合う補強糸間の溶出部の数。 - 補強糸の経糸に直交する断面において、下式(2)を満たす関係が成立する、請求項10~13のいずれか一項に記載の塩化アルカリ電解用イオン交換膜の製造方法。
0.5≦{d3/d1×(n+1)}≦1.5 ・・・(2)
但し、式(2)中の記号は以下の意味を示す。
d3:補強糸の中心から、隣の溶出部の中心までの平均距離。
d1、n:前記と同じ。 - 前記補強布の布面に直交する方向から見た前記補強糸の幅が70~160μmである、請求項10~14のいずれか一項に記載の塩化アルカリ電解用イオン交換膜の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580061146.XA CN107109673B (zh) | 2014-11-10 | 2015-11-10 | 碱金属氯化物电解用离子交换膜、制造方法、以及碱金属氯化物电解装置 |
JP2016559067A JP6586961B2 (ja) | 2014-11-10 | 2015-11-10 | 塩化アルカリ電解用イオン交換膜、製造方法、及び塩化アルカリ電解装置 |
EP15858150.4A EP3219830B1 (en) | 2014-11-10 | 2015-11-10 | Ion-exchange membrane for alkali chloride electrolysis, manufacturing method, and alkali chloride electrolysis device |
US15/491,371 US11020734B2 (en) | 2014-11-10 | 2017-04-19 | Ion exchange membrane for alkali chloride electrolysis, production method, and alkali chloride electrolysis apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014227994 | 2014-11-10 | ||
JP2014-227994 | 2014-11-10 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/491,371 Continuation US11020734B2 (en) | 2014-11-10 | 2017-04-19 | Ion exchange membrane for alkali chloride electrolysis, production method, and alkali chloride electrolysis apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016076325A1 true WO2016076325A1 (ja) | 2016-05-19 |
Family
ID=55954408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/081640 WO2016076325A1 (ja) | 2014-11-10 | 2015-11-10 | 塩化アルカリ電解用イオン交換膜、製造方法、及び塩化アルカリ電解装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11020734B2 (ja) |
EP (1) | EP3219830B1 (ja) |
JP (1) | JP6586961B2 (ja) |
CN (1) | CN107109673B (ja) |
WO (1) | WO2016076325A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018139028A1 (ja) | 2017-01-27 | 2018-08-02 | 旭化成株式会社 | イオン交換膜及び電解槽 |
WO2019088299A1 (ja) * | 2017-11-06 | 2019-05-09 | Agc株式会社 | 固体高分子電解質膜、膜電極接合体および水電解装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3184671B1 (en) * | 2014-08-20 | 2019-11-13 | AGC Inc. | Ion exchange membrane for alkali chloride electrolysis, and alkali chloride electrolysis apparatus |
WO2017179663A1 (ja) * | 2016-04-13 | 2017-10-19 | 旭硝子株式会社 | 塩化アルカリ電解用イオン交換膜、その製造方法及び塩化アルカリ電解装置 |
JP6927191B2 (ja) * | 2017-12-19 | 2021-08-25 | Agc株式会社 | 塩化アルカリ電解用イオン交換膜、塩化アルカリ電解用イオン交換膜の製造方法および塩化アルカリ電解装置 |
KR102659583B1 (ko) * | 2021-03-16 | 2024-04-23 | 현대모비스 주식회사 | 고분자 전해질막 및 이를 포함하는 연료전지 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07188434A (ja) * | 1993-10-29 | 1995-07-25 | E I Du Pont De Nemours & Co | 変更レノ・ウイーブフアブリツクで強化された膜 |
JP2002079114A (ja) * | 2000-09-11 | 2002-03-19 | Asahi Kasei Corp | 補強された陽イオン交換膜の製造方法 |
JP2004043594A (ja) * | 2002-07-10 | 2004-02-12 | Asahi Glass Co Ltd | イオン交換膜、およびその製造方法 |
WO2011052538A1 (ja) * | 2009-10-26 | 2011-05-05 | 旭化成ケミカルズ株式会社 | 陽イオン交換膜、それを用いた電解槽及び陽イオン交換膜の製造方法 |
JP2013163857A (ja) * | 2012-02-13 | 2013-08-22 | Asahi Kasei Chemicals Corp | 陽イオン交換膜及びこれを用いた電解槽 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100441747C (zh) * | 2003-12-05 | 2008-12-10 | 山东东岳高分子材料有限公司 | 全氟离子交换溶合增强膜及其制备方法 |
WO2013129399A1 (ja) * | 2012-02-27 | 2013-09-06 | 旭硝子株式会社 | 強化電解質膜およびその製造方法 |
EP3184671B1 (en) * | 2014-08-20 | 2019-11-13 | AGC Inc. | Ion exchange membrane for alkali chloride electrolysis, and alkali chloride electrolysis apparatus |
-
2015
- 2015-11-10 JP JP2016559067A patent/JP6586961B2/ja active Active
- 2015-11-10 CN CN201580061146.XA patent/CN107109673B/zh active Active
- 2015-11-10 EP EP15858150.4A patent/EP3219830B1/en active Active
- 2015-11-10 WO PCT/JP2015/081640 patent/WO2016076325A1/ja active Application Filing
-
2017
- 2017-04-19 US US15/491,371 patent/US11020734B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07188434A (ja) * | 1993-10-29 | 1995-07-25 | E I Du Pont De Nemours & Co | 変更レノ・ウイーブフアブリツクで強化された膜 |
JP2002079114A (ja) * | 2000-09-11 | 2002-03-19 | Asahi Kasei Corp | 補強された陽イオン交換膜の製造方法 |
JP2004043594A (ja) * | 2002-07-10 | 2004-02-12 | Asahi Glass Co Ltd | イオン交換膜、およびその製造方法 |
WO2011052538A1 (ja) * | 2009-10-26 | 2011-05-05 | 旭化成ケミカルズ株式会社 | 陽イオン交換膜、それを用いた電解槽及び陽イオン交換膜の製造方法 |
JP2013163857A (ja) * | 2012-02-13 | 2013-08-22 | Asahi Kasei Chemicals Corp | 陽イオン交換膜及びこれを用いた電解槽 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018139028A1 (ja) | 2017-01-27 | 2018-08-02 | 旭化成株式会社 | イオン交換膜及び電解槽 |
JP2018145530A (ja) * | 2017-01-27 | 2018-09-20 | 旭化成株式会社 | イオン交換膜及び電解槽 |
JP2018145529A (ja) * | 2017-01-27 | 2018-09-20 | 旭化成株式会社 | イオン交換膜及び電解槽 |
KR20180118713A (ko) * | 2017-01-27 | 2018-10-31 | 아사히 가세이 가부시키가이샤 | 이온교환막 및 전해조 |
KR102168932B1 (ko) | 2017-01-27 | 2020-10-23 | 아사히 가세이 가부시키가이샤 | 이온교환막 및 전해조 |
US11047056B2 (en) | 2017-01-27 | 2021-06-29 | Asahi Kasei Kabushiki Kaisha | Ion exchange membrane and electrolyzer |
WO2019088299A1 (ja) * | 2017-11-06 | 2019-05-09 | Agc株式会社 | 固体高分子電解質膜、膜電極接合体および水電解装置 |
Also Published As
Publication number | Publication date |
---|---|
US20170218527A1 (en) | 2017-08-03 |
JPWO2016076325A1 (ja) | 2017-08-24 |
CN107109673B (zh) | 2019-06-04 |
JP6586961B2 (ja) | 2019-10-09 |
EP3219830A4 (en) | 2018-05-16 |
EP3219830A1 (en) | 2017-09-20 |
EP3219830B1 (en) | 2020-04-22 |
CN107109673A (zh) | 2017-08-29 |
US11020734B2 (en) | 2021-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6586961B2 (ja) | 塩化アルカリ電解用イオン交換膜、製造方法、及び塩化アルカリ電解装置 | |
JP6270714B2 (ja) | 強化電解質膜およびその製造方法 | |
US11447881B2 (en) | Ion exchange membrane for alkali chloride electrolysis and alkali chloride electrolysis apparatus | |
US11066751B2 (en) | Ion exchange membrane for alkali chloride electrolysis, method for its production and alkali chloride electrolysis apparatus | |
US10865489B2 (en) | Ion exchange membrane for alkali chloride electrolysis, and alkali chloride electrolysis apparatus | |
US10926253B2 (en) | Process for producing ion exchange membrane for electrolysis, and ion exchange membrane for electrolysis | |
KR101950130B1 (ko) | 이온 교환막 | |
US11434337B2 (en) | Ion exchange membrane for alkali chloride electrolysis, and alkali chloride electrolysis apparatus | |
JPWO2017154925A1 (ja) | イオン交換膜、その製造方法および塩化アルカリ電解装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15858150 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016559067 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015858150 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |