WO2016075812A1 - Drive force control system for electric vehicle, electric vehicle, and rotary electrical machine - Google Patents

Drive force control system for electric vehicle, electric vehicle, and rotary electrical machine Download PDF

Info

Publication number
WO2016075812A1
WO2016075812A1 PCT/JP2014/080179 JP2014080179W WO2016075812A1 WO 2016075812 A1 WO2016075812 A1 WO 2016075812A1 JP 2014080179 W JP2014080179 W JP 2014080179W WO 2016075812 A1 WO2016075812 A1 WO 2016075812A1
Authority
WO
WIPO (PCT)
Prior art keywords
motors
motor
electric vehicle
torque
corrected
Prior art date
Application number
PCT/JP2014/080179
Other languages
French (fr)
Japanese (ja)
Inventor
隆明 石井
野中 剛
荘平 大賀
大戸 基道
森本 進也
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2014/080179 priority Critical patent/WO2016075812A1/en
Publication of WO2016075812A1 publication Critical patent/WO2016075812A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the disclosed embodiment relates to a driving force control system for an electric vehicle, an electric vehicle, and a rotating electric machine.
  • Patent Document 1 describes a driving force control device for a left and right wheel independent driving vehicle.
  • This driving force control device gradually reduces the driving force applied to the front wheels on the inner side in the turning direction when the driving source of the front wheels on the outer side in the turning direction becomes incapable of driving when the vehicle is turning.
  • the supply of the driving force to the front wheel on the outer side in the turning direction is immediately stopped.
  • the above-mentioned conventional technology can suppress the unstable running of the vehicle caused by a sudden change in the behavior of the vehicle, it cannot prevent the behavior change of the vehicle itself. For this reason, the yaw rate behavior that is the actual turning traveling state of the vehicle corresponding to the driver's steering operation cannot be maintained, and the straight-running stability before turning into a drive failure, the turning radius, etc. change. There are challenges.
  • the present invention has been made in view of such problems, and an electric vehicle capable of maintaining the yaw rate behavior even when the driving force distribution of the wheels is changed in order to avoid the inability to drive the motor.
  • An object is to provide a driving force control system, an electric vehicle, and a rotating electric machine.
  • a driving force control system for an electric vehicle that controls the driving force of a plurality of wheels of the electric vehicle, wherein the field magnetic flux is changed.
  • a plurality of motors that individually drive the plurality of wheels, a number of state sensors that individually detect the states of the plurality of motors, and a state of the motor based on a detection result of the state sensors.
  • a first state determination unit that determines whether or not the motor is appropriate; and when the state of any one or more of the plurality of motors is determined to be inappropriate by the first state determination unit, the motor A first command correction unit that corrects torque commands to the remaining motors so as to maintain the yaw moment of the electric vehicle when the correction is not performed and the yaw moment of the electric vehicle when the correction is not performed,
  • a driving force control system for an electric vehicle that controls the driving force of a plurality of wheels of the electric vehicle, the field magnetic flux changing, and the plurality of wheels.
  • a plurality of motors that individually drive the motor, the same number of temperature sensors as the motors that individually detect the temperatures of the motors, and whether or not the thermal state of the motor is appropriate based on the detected temperature of the temperature sensor
  • a second state determination unit that determines whether or not the thermal state of any one or more of the plurality of motors is inappropriate by the second state determination unit.
  • a second command correction unit that corrects torque commands to the remaining motors so that the yaw moment of the electric vehicle is maintained when the torque command is not corrected, and the yaw moment of the electric vehicle is maintained. 2 command supplement
  • a second field control unit individually controlling the field flux of the plurality of motors based on the torque command corrected by section, the driving force control system for an electric vehicle having applied.
  • an electric vehicle having a plurality of wheels and the driving force control system is applied.
  • a rotating electrical machine that is provided in the driving force control system of the electric vehicle and configured to change the field magnetic flux.
  • a driving force control system for an electric vehicle that controls the driving force of a plurality of wheels of the electric vehicle, wherein the field magnetic flux is changed, A plurality of motors for individually driving the wheels, and means for changing the driving force distribution of the plurality of wheels while maintaining the yaw moment of the electric vehicle by individually changing the field magnetic flux of the plurality of motors; , A driving force control system for an electric vehicle is applied.
  • a driving force control system for an electric vehicle that controls the driving force of a plurality of wheels of the electric vehicle, wherein the field magnetic flux is changed,
  • a plurality of motors that individually drive the wheels, the same number of temperature sensors that individually detect the temperatures of the plurality of motors, and whether the thermal state of the motor is appropriate based on the detected temperature of the temperature sensor And when it is determined that the thermal state of any one or more of the plurality of motors is not appropriate, the torque command to the motor is corrected to the decrease side, and the The torque commands to the remaining motors are corrected so that the yaw moment of the electric vehicle without correction is maintained, and the field fluxes of the plurality of motors are individually set based on the corrected torque commands.
  • a controller Gosuru the driving force control system for an electric vehicle having applied.
  • a driving force control method for an electric vehicle that controls the driving force of a plurality of wheels of the electric vehicle, based on a detected temperature of a motor detected by a temperature sensor.
  • Correcting the command to decrease, and correcting the torque command to the remaining motor so that the yaw moment of the electric vehicle when the correction is not made is maintained, and corrected by the command correction unit
  • Individually controlling the field flux of a plurality of motors configured to change field flux based on the torque command and individually driving the plurality of wheels.
  • Driving force control method for a vehicle is applied.
  • the controller controls the driving force of the plurality of wheels of the electric vehicle, and the thermal state of the motor is based on the detected temperature of the motor detected by the temperature sensor.
  • a state determination unit that determines whether or not the motor is appropriate; and when the state determination unit determines that the thermal state of any one or more of the plurality of motors is not appropriate,
  • a command correction unit that corrects the torque command to the remaining motor and corrects the torque command to the remaining motor so that the yaw moment of the electric vehicle when the torque command is not corrected is maintained.
  • a field controller configured to individually control the field flux of a plurality of motors configured to change a field flux based on the corrected torque command and individually driving the plurality of wheels. The controller having a applies.
  • the yaw rate behavior can be maintained even when the wheel driving force distribution is changed in order to avoid the inability to drive the motor.
  • FIG. 1 is a schematic diagram illustrating an example of a schematic configuration of an electric vehicle according to an embodiment. It is an axial sectional view showing an example of the composition of a motor. It is a perspective view showing an example of the state of a rotor when a field magnetic flux is the maximum. It is a perspective view showing an example of the state of a rotor when field magnetic flux is medium. It is a perspective view showing an example of the state of a rotor when a field magnetic flux is the minimum. It is a functional block diagram showing an example of the composition of a controller. It is a table
  • 11 is a schematic diagram schematically illustrating an example of torque command correction executed in steps S7 and S10 in FIG. 10. It is a time chart which compares and shows an example of the time change of the detected temperature which concerns on each of four motors, and an example of the time change of the torque command to the motor correct
  • Example of schematic configuration of electric vehicle> First, an example of a schematic configuration of the electric vehicle according to the present embodiment will be described with reference to FIG.
  • the electric vehicle 1 is configured to independently drive four wheels 2FL, 2FR, 2RL, and 2RR (hereinafter collectively referred to as “wheel 2” as appropriate) installed in the front, rear, left, and right.
  • This is an electric vehicle (EV) of a four-wheel independent drive system.
  • the wheels 2FL and 2RL are front wheels (front wheels), and the wheels 2RL and 2RR are rear wheels (rear wheels).
  • the wheel 2FL is a left front wheel (left front wheel)
  • the wheel 2RL is a right front wheel (right front wheel).
  • the wheel 2RL is a left rear wheel (left rear wheel)
  • the wheel 2RR is a right rear wheel (right rear wheel).
  • the electric vehicle 1 includes the wheels 2FL to 2RR and a driving force control system Sy that controls the driving force of the wheels 2FL to 2RR.
  • Wheels 2FL, 2FR, 2RL, and 2RR are connected to motors 3FL, 3FR, 3RL, and 3RR, which will be described later, via drive shafts 9FL, 9FR, 9RL, and 9RR, respectively.
  • the driving force control system Sy includes four motors 3FL, 3FR, 3RL, 3RR (corresponding to an example of a rotating electric machine), four temperature sensors 6FL, 6FR, 6RL, 6RR (corresponding to an example of a state sensor), and four Rotational speed sensors 25FL, 25FR, 25RL, and 25RR, a yaw rate sensor 7, a controller 5, and a battery 8 are included.
  • the motors 3FL to 3RR are collectively referred to as “motor 3”
  • the temperature sensors 6FL to 6RR are collectively referred to as “temperature sensor 6”.
  • the motors 3FL to 3RR are variable field type electric motors configured to change the field magnetic flux.
  • Motors 3FL to 3RR are connected to controller 5 via a power cable and operate based on the power from controller 5.
  • motors 3FL-3RR individually drive wheels 2FL-2RR.
  • Motors 3FL-3RR can also generate electric power by utilizing the rotation of wheels 2FL-2RR.
  • the temperature sensors 6FL to 6RR are mounted by, for example, a thermistor, and are respectively provided inside the motors 3FL to 3RR (for example, near the stator windings in the motor frame). Temperature sensors 6FL to 6RR detect the temperatures (examples of states) of motors 3FL to 3RR, respectively. The temperature detected by each of the temperature sensors 6FL to 6RR, that is, the detected temperature (an example of a detection result) is output to the controller 5 via the signal cable.
  • Rotational speed sensors 25FL to 25RR are provided in the motors 3FL to 3RR, respectively. Rotational speed sensors 25FL to 25RR detect the rotational speeds of motors 3FL to 3RR, respectively. The rotational speed detected by each of the rotational speed sensors 25FL to 25RR is output to the controller 5 via a signal cable.
  • the rotational speed sensors 25FL to 25RR may be provided outside the motors 3FL to 3RR (for example, the wheels 2FL to 2RR and the drive shafts 9FL to 9RR).
  • the yaw rate sensor 7 detects the yaw rate of the electric vehicle 1.
  • the yaw rate detected by the yaw rate sensor 7 is output to the controller 5 via a signal cable.
  • the controller 5 is mounted by, for example, an ECU having an inverter function.
  • the controller 5 converts the DC power from the battery 8 into AC power and supplies it to the motors 3FL to 3RR via the power cable.
  • the controller 5 controls the motors 3FL to 3RR and controls the driving forces of the wheels 2FL to 2RR.
  • the controller 5 can also charge the battery 8 by converting AC power generated by the motors 3FL to 3RR into DC power.
  • the controller 5 changes the driving force distribution of the wheels 2FL to 2RR while maintaining the yaw moment of the electric vehicle 1 by individually changing the field magnetic flux of the motors 3FL to 3RR. That is, the controller 5 corresponds to an example of “means for changing the driving force distribution of the plurality of wheels while maintaining the yaw moment of the electric vehicle by individually changing the field magnetic fluxes of the plurality of motors”.
  • the controller 5 individually controls the field magnetic fluxes of the motors 3FL to 3RR based on torque commands to the motors 3FL to 3RR for realizing the target driving forces of the wheels 2FL to 2RR, respectively.
  • the controller 5 determines whether or not the thermal state of each of the motors 3FL to 3RR is appropriate based on the detected temperature of each of the temperature sensors 6FL to 6RR.
  • the controller 5 determines that the thermal state of any one or more of the motors 3FL to 3RR is not appropriate, the controller 5 corrects the torque command to the motor 3 to the decrease side, The torque command to the remaining motor 3 is corrected (including correction that does not substantially change) so that the yaw moment of the electric vehicle 1 when the correction is not performed is maintained.
  • the controller 5 individually controls the field magnetic fluxes of the motors 3FL to 3RR based on the corrected torque commands to the motors 3FL to 3RR.
  • the controller 5 is not limited to individually controlling the field magnetic flux of the motors 3FL to 3RR based on the torque commands to the motors 3FL to 3RR, but based on the speed commands to the motors 3FL to 3RR.
  • the field magnetic flux of motors 3FL-3RR may be individually controlled.
  • the configuration of the driving force control system 1 of the electric vehicle 1 described above is merely an example, and any configuration other than the above may be used as long as the driving force of the wheels 2FL to 2RR can be controlled.
  • the controller 5 has an inverter function, and an inverter may be provided separately from the controller 5.
  • the controller 5 is not limited to a single device, and may be configured by a plurality of devices.
  • the configuration of the electric vehicle 1 described above is merely an example, and a configuration other than the above may be used.
  • the driving method of the electric vehicle 1 is not limited to the four-wheel independent driving method, and may be a front wheel independent driving method, a rear wheel independent driving method, or the like.
  • the electric vehicle 1 is not limited to an electric vehicle (EV) driven only by electric power from the battery 8, but is a hybrid electric vehicle (HEV) or plug-in hybrid electric with an external charging function added. It may be an automobile (PHEV), a hydrogen fuel cell automobile (FCV), or the like.
  • the number of the wheels 2 of the electric vehicle 1 is not limited to four, and may be another number.
  • Example of motor configuration> Next, an example of the configuration of the motors 3FL to 3RR will be described with reference to FIGS. Here, an example of the configuration of the motor 3FL among the motors 3FL to 3RR will be described as a representative example, but the configurations of the other motors 3FR to 3RR can be equivalent to the configuration of the motor 3FL.
  • the motor 3FL outputs the driving force of the wheel 2FL by rotating the shaft 34 connected to the drive shaft 9FL.
  • the driving force output side (right side in FIG. 2) by the motor 3FL is referred to as “load side”, and the opposite side (left side in FIG. 2) is referred to as “anti-load side”.
  • the motor 3FL includes the shaft 34, a rotor 30 provided outside the shaft 34, a stator 10 provided outside the stator 30, a frame 17 provided outside the stator 10, and a frame 17 includes a bracket 16 provided on the load side, a control motor 49 (see FIG. 1), a sensor magnet 20, and the rotational speed sensor 25FL.
  • the shaft 34 is rotatably supported by a load-side bearing 18 installed on the bracket 16 and an anti-load-side bearing 19 installed on the non-load side of the frame 17.
  • the frame 17 is fastened to the bracket 16 with bolts 11.
  • the sensor magnet 20 is provided on the side surface of the rotor 30 on the side opposite to the load.
  • the rotational speed sensor 25FL is provided facing the sensor magnet 20 in the frame 17, and detects the rotational speed of the rotor 30 as the rotational speed of the motor 3FL.
  • the rotational speed sensor 25FL may detect the rotational position and acceleration of the rotor 30 instead of or in addition to the rotational speed of the rotor 30 (the same applies to the other rotational speed sensors 25FR to 25RR). Further, the rotational speed sensor 25FL is not limited to a sensor that magnetically detects the rotational speed of the rotor 30, and may be a sensor that optically detects the rotational speed of the rotor 30. (The same applies to the other rotational speed sensors 25FR to 25RR).
  • the stator 10 includes a stator winding 12 and a stator core 13.
  • the stator winding 12 is attached to the stator core 13.
  • the stator core 13 is fastened to the bracket 16 by bolts 14.
  • a connection portion 21 is provided on the side opposite to the load of the stator 10.
  • the rotor 30 is configured such that a plurality of magnetic pole portions (details will be described later) provided with field magnets (details will be described later) are divided into two sets (fixed side and movable side) and relatively rotated. ing.
  • the control motor 49 is provided, for example, outside the anti-load side of the frame 17 and can change the field magnetic flux by relatively rotating the two sets of magnetic pole portions of the rotor 30.
  • the rotor 30 is divided into three parts in the axial direction, and the three parts thus divided are relatively rotated.
  • the rotor 30 includes a movable rotor 60 and two fixed rotors 50 and 50 disposed adjacent to both sides in the axial direction of the movable rotor 60, and is movable by the control motor 49.
  • the rotor 60 is structured to be rotated with respect to the fixed rotors 50 and 50.
  • the fixed rotors 50 and 50 are fixed to the shaft 34 by bolts 35 via the load side plate 31 and the anti-load side plate 33.
  • the gear wheel 23 is covered with a cover 24 and is rotatably supported by a bearing 26.
  • the feed male screw 42 and the feed screw 43 are, for example, trapezoidal threaded. Since the feed male screw 42 has a hexagonal hole and engages with the hexagonal shaft 23a of the gear wheel 23, rotation is transmitted so as to be movable in the axial direction.
  • two angular bearings are used face-to-face as the movable bearing 40 attached to the feed male screw 42 and are fixed by a bearing holder 44 and a bolt 45.
  • two angular bearings are used facing each other and fixed to the fixed bearing 41 attached to the feed screw 43 by a nut 29.
  • the fixed rotor 50 includes an annular first iron core 51 and a plurality of first permanent magnets 52 (corresponding to an example of a field magnet) embedded in the first iron core 51 in the axial direction.
  • the plurality of first permanent magnets 52 is a mode in which two first permanent magnets 52 with the same polarity facing each other form a V-shaped pair projecting radially inward, and the opposing magnetic poles are alternately varied in the circumferential direction.
  • the first iron core 51 is disposed. Thereby, a plurality of magnetic pole portions 53 (hereinafter also referred to as “first magnetic pole portions 53”) having different polarities in the circumferential direction of the fixed rotor 50 are formed.
  • the movable rotor 60 is rotatable with respect to the shaft 34.
  • the movable rotor 60 includes an annular second iron core 61 and a plurality of second permanent magnets (not shown) (corresponding to an example of field magnets) embedded in the axial direction of the second iron core 61.
  • the plurality of second permanent magnets is a mode in which two second permanent magnets with the same polarity facing each other form a V-shaped pair projecting radially inward, and the opposing magnetic poles are alternately varied in the circumferential direction.
  • Two iron cores 61 are arranged. Thereby, a plurality of N pole and S pole magnetic pole parts 63 (hereinafter also referred to as “second magnetic pole parts 63”) having different polarities alternately are formed in the circumferential direction of the movable rotor 60.
  • FIG. 3 corresponds to an example of the state of the rotor 30 when the field magnetic flux is maximum.
  • the magnetic pole portions of the same polarity of each fixed rotor 50 and the movable rotor 60 that is, the first magnetic pole portion 53 of the N pole (S pole) of each fixed rotor 50 and the N pole (S of the movable rotor 60).
  • the second magnetic pole portion 63 of the pole is aligned in the axial direction (the relative angle is 0 degree in electrical angle).
  • the field magnetic flux by the 1st permanent magnet 52 of each fixed rotor 50 and the 2nd permanent magnet of the movable rotor 60 will be in the maximum state.
  • FIG. 4 corresponds to an example of the state of the rotor 30 when the field magnetic flux is medium.
  • the movable rotor 60 rotates relative to the fixed rotors 50 and 50.
  • the first magnetic pole portion 53 of each fixed rotor 50 and the second magnetic pole portion 63 of the movable rotor 60 are the same polarity as the first magnetic pole portion 53 of the N pole (S pole) and the N pole (S pole).
  • the second magnetic pole portion 63 is aligned in the axial direction, and the first magnetic pole portion 53 of N pole (S pole) and the second magnetic pole portion 63 of S pole (N pole) having different polarities are aligned in the axial direction. It is in an intermediate state with the state. Accordingly, the field magnetic flux generated by the first permanent magnet 52 of each fixed rotor 50 and the second permanent magnet of the movable rotor 60 is in an intermediate state.
  • FIG. 5 corresponds to an example of the state of the rotor 30 when the field magnetic flux is minimum.
  • the magnetic pole portions having different polarities between the fixed rotor 50 and the movable rotor 60 that is, the first magnetic pole portion 53 of the N pole (S pole) of each fixed rotor 50 and the S pole (N of the movable rotor 60).
  • the second magnetic pole portion 63 of the pole is aligned in the axial direction (the relative angle is 180 degrees in terms of electrical angle).
  • the field magnetic flux by the 1st permanent magnet 52 of each fixed rotor 50 and the 2nd permanent magnet of the movable rotor 60 is the 1st iron core 51 of each fixed rotor 50, and the 2nd iron core of the movable rotor 60. Short-circuit with 61 and become the minimum state. As a result, the iron loss generated in the rotor 30 can be sufficiently reduced, and the motor 3FL can operate with high efficiency even in the high rotation operation region.
  • the field magnetic flux becomes maximum when the magnetic pole portions 53 and 63 having the same polarity are aligned in the axial direction, and the field magnetic flux (when the magnetic pole portions 53 and 63 having different polarities are aligned in the axial direction. (Induced voltage) is minimized.
  • the ratio of the current induced voltage to the maximum induced voltage that is, the state in which the magnetic pole parts 53 and 63 are relatively rotated with respect to the induced voltage constant in the state where the magnetic pole parts 53 and 63 having the same polarity are aligned and the magnetic field is strongest.
  • the ratio of the induced voltage constant in is referred to as “field susceptibility”.
  • the configuration of the motor 3FL described above is merely an example, and any configuration other than the above may be used as long as the field magnetic flux changes (the same applies to the other motors 3FR to 3RR).
  • the magnetic pole portions 53 and 54 of the rotor 30 are not limited to being relatively rotated by the control motor 49, and may be relatively rotated by hydraulic control or the like.
  • the number of divisions of the rotor 30 in the axial direction is not limited to 3, and may be other numbers.
  • the rotor 30 may not be divided.
  • the controller 5 includes a torque control unit 501, a torque determination unit 502, a temperature estimation unit 503, a temperature determination unit 504, and a state determination unit 505 (first state determination unit and second state determination).
  • a command correction unit 506 (corresponding to an example of a first command correction unit and a second command correction unit), a field control unit 507 (corresponding to an example of a first field control unit and a second field control unit), and The map recording unit 508 and the inverter unit 509 are included.
  • Each functional unit of the controller 5 can be implemented by a program executed by a CPU (not shown) provided in the controller 5 or a control device (not shown) provided in the controller 5.
  • the control device is configured by a dedicated integrated circuit or other electrical circuit constructed for a specific application such as ASIC or FPGA.
  • the torque control unit 501 generates a torque command to each of the motors 3FL to 3RR based on, for example, the opening degree of an accelerator pedal (not shown), the vehicle speed, and the like.
  • the torque determination unit 502 Based on the maximum torque of the motor 3, the torque determination unit 502 corrects the torque command to the motor 3 generated by the torque control unit 501. It is determined whether or not the total torque command when the torque command is not corrected can be maintained. Note that the maximum torque of the motor 3 is recorded in the controller 5 in advance.
  • the temperature estimation unit 503 estimates the temperature of the motor 3 after detection based on the temperature detected by the temperature sensor 6 or the like. Specifically, the temperature estimation unit 503 calculates the change amount of the detected temperature per unit time of the temperature sensor 6 related to the motor 3, and estimates the temperature of the motor 3 after a predetermined time based on the calculated change amount. To do.
  • the temperature determination unit 504 is based on the detected temperature of the temperature sensor 6 related to the motor 3 corrected by the command correction unit 506 so that the torque command is reduced, and the detected temperature related to the motor 3 is the upper limit of the allowable temperature range. It is determined whether or not the value is below.
  • the allowable temperature range is a temperature range in which the motor 3 can operate so as not to cause a thermal failure (for example, seizure or the like).
  • the upper limit value of the allowable temperature range is higher than the upper limit value of the recommended temperature range described later.
  • the allowable temperature range is recorded in the controller 5 in advance.
  • the state determination unit 505 determines whether the thermal state of the motor 3 is appropriate based on the temperature detected by the temperature sensor 6. At this time, the state determination unit 505 determines whether or not the detected temperature related to one or more of the motors 3FL to 3RR exceeds the recommended temperature range based on the detected temperatures of the temperature sensors 6FL to 6RR. judge.
  • the recommended temperature range is an ideal temperature range for the motor 3 to operate.
  • the recommended temperature range is recorded in the controller 5 in advance.
  • the state determination unit 505 drives the motor 3 in response to the torque command to the motor 3 generated by the torque control unit 501 based on the temperature of the motor 3 estimated by the temperature estimation unit 503, that is, the estimated temperature. When it does, it determines whether the said estimated temperature exceeds an allowable temperature range.
  • the state determination unit 505 determines that the thermal state of the motor 3 is not appropriate when the temperature estimated by the temperature estimation unit 503 exceeds the allowable temperature range.
  • the upper limit value of the allowable temperature range is not particularly limited, but is set to 150
  • the command correction unit 506 reduces the torque command to the motor 3 when the state determination unit 505 determines that the thermal state of any one or more of the motors 3FL to 3RR is not appropriate. And the torque command to the remaining motor 3 is corrected so that the yaw moment of the electric vehicle 1 when the correction is not performed is maintained.
  • the command correction unit 506 calculates the total torque command when the torque command to the motor 3 is not corrected by the torque determination unit 502 when the torque command to the motor 3 is corrected. If it is determined that the torque can be maintained, the torque commands to the remaining motors 3 are corrected so that the total torque command is maintained. On the other hand, the command correction unit 506 maintains the total torque command when the torque command to the motor 3 is not corrected by the torque determination unit 502 when the torque command to the motor 3 is corrected. If it is determined that it is not possible, among the remaining motors 3, the torque command to the motor 3 located on the opposite side of the motor 3, which has been corrected to the decrease side in the width direction of the electric vehicle 1, is reduced. to correct.
  • the command correction unit 506 outputs the torque command of the motor 3. Restore gradually.
  • the command correction unit 506 may finely adjust the correction of the torque command by feedback control based on the yaw rate detected by the yaw rate sensor 7. In this case, the maintenance accuracy of the yaw rate behavior of the electric vehicle 1 can be increased.
  • the field control unit 507 individually controls the field magnetic fluxes of the motors 3FL to 3RR based on the torque commands to the motors 3FL to 3RR corrected by the command correction unit 506. At this time, the field controller 507 controls the control motor 49 of each of the motors 3FL to 3RR based on the corrected torque command to each of the motors 3FL to 3RR, so that the field magnetic flux of the motors 3FL to 3RR is obtained. Control individually.
  • the field control unit 507 determines a map (not shown) based on the rotation speed detected by each of the rotation speed sensors 25FL to 25RR and the torque command to each of the corrected motors 3FL to 3RR.
  • the map control for reading data with reference to is performed.
  • the map is recorded in advance in the map recording unit 508.
  • the data read out by the field control unit 507 is the phase angle of the current supplied to the stator winding 12 with respect to the target value of the magnetic field factor and the magnetic pole position generated by the combination of the magnetic pole parts 53 and 63 for each of the motors 3FL to 3RR. And the target value of the magnitude of the current.
  • the phase angle of the current increases, the rotational electromagnetic force generated by the stator 10 with respect to the magnetic poles of the rotor 30 advances and the field weakening strength increases.
  • FIGS. 7A and 7B show an example of control numerical value map measurement values at the time of maximum efficiency vector control of the motor 3FL.
  • FIG. 7A shows an example of the above-described field ratio, with the horizontal axis representing the rotational speed of the motor 3FL and the vertical axis representing the torque command during the maximum efficiency vector control of the motor 3FL.
  • FIG. 7B shows an example of the phase angle of the current with the horizontal axis representing the rotational speed of the motor 3FL and the vertical axis representing the torque command during the maximum efficiency vector control of the motor 3FL.
  • the field ratio is decreased as the rotation speed of the motor 3FL is increased, and is decreased as the torque command is decreased, and the phase angle of the current is increased as the rotation speed of the motor 3FL is increased.
  • the efficiency of the motor 3FL can be maximized by increasing the torque command as it is higher. For example, when the rotation speed of the motor 3FL is 16000 rev / min and the torque command is 70%, the relative angle of the magnetic pole portions 53 and 63 is adjusted so that the field ratio is 69%, and the phase angle of the current is set. By energizing the stator winding 12 at 78 °, the efficiency of the motor 3FL can be maximized.
  • FIG. 8 shows an example of a map in which data for reproducing the maximum efficiency vector control of the motor 3FL is recorded.
  • the horizontal axis represents the rotational speed of the motor 3FL and the vertical axis represents the torque command, and the field at which the field ratio, the current phase angle, and the magnitude of the current were recorded during the maximum efficiency vector control of the motor 3FL. An example is shown.
  • the field control unit 507 determines the corresponding location of the map based on the rotational speed detected by each of the rotational speed sensors 25FL to 25RR and the torque command to each of the corrected motors 3FL to 3RR. Are read as the target values of the magnetic field ratio, current phase angle, and current magnitude related to each of the motors 3FL to 3RR. Then, the field control unit 507 supplies the read electric power for realizing the target values of the magnetic fields related to the motors 3FL to 3RR to the control motors 49 of the motors 3FL to 3RR. , 63 are adjusted to individually control the field magnetic fluxes of the motors 3FL to 3RR.
  • FIG. 9 shows an example of the magnetic field characteristics with respect to the relative angles of the magnetic pole portions 53 and 63 of the motor 3FL.
  • the relative angle of the magnetic pole portions 53 and 63 of the motor 3FL is taken on the horizontal axis, and the magnetic field ratio is taken on the vertical axis.
  • an example of the magnetic field characteristics with respect to the relative angles of the magnetic pole portions 53 and 63 is shown.
  • the field ratio can be changed from 100% to 30% by changing the relative angle of the magnetic pole portions 53 and 63 from 0 ° to 120 °.
  • the inverter unit 509 converts the DC power from the battery 8 into AC power based on torque commands to the motors 3FL to 3RR, and the stator windings 12 of the motors 3FL to 3RR. To supply power.
  • inverter unit 509 drives each of motors 3FL to 3RR.
  • the inverter unit 509 converts the DC power from the battery 8 to AC based on the target value of the current phase angle and the target value of the magnitude of the current related to each of the motors 3FL to 3RR read by the field control unit 507.
  • the electric power is converted into electric power, and electric power is supplied to the stator windings 12 of the motors 3FL to 3RR.
  • the configuration of the controller 5 described above is merely an example, and the driving force distribution of the wheels 2FL to 2RR is maintained while maintaining the yaw moment of the electric vehicle 1 by individually changing the field magnetic flux of the motors 3FL to 3RR. Any configuration other than the above may be used as long as the configuration can be changed.
  • the processing content of each functional unit of the controller 5 is not limited to the content described above, and may be other content.
  • the separation of each functional unit of the controller 5 is not limited to the separation described above, and may be other than the above.
  • step S0 the torque control unit 501 generates a torque command to each of the motors 3FL to 3RR based on, for example, the opening degree of the accelerator pedal, the vehicle speed, and the like.
  • step S1 the controller 5 acquires the detected temperatures of the temperature sensors 6FL to 6RR.
  • step S2 state determination unit 505 determines whether the detected temperature related to one or more of motors 3FL to 3RR exceeds the recommended temperature range based on the detected temperatures of temperature sensors 6FL to 6RR. Determine whether or not. If the detected temperature related to any motor 3 does not exceed the recommended temperature range, the determination in step S2 is not satisfied, and the detected temperature of any temperature sensor 6 is sufficiently lower than the upper limit value of the allowable temperature range. The motor 3 is also regarded as having no risk of thermal failure, and the process proceeds to step S3.
  • step S3 the command correction unit 506 outputs the torque command to each of the motors 3FL to 3RR to the inverter unit 509 via the field control unit 507 without correcting the torque command.
  • step S31 inverter unit 509 converts DC power from battery 8 into AC power based on torque commands from command correction unit 506 to motors 3FL to 3RR, and fixes motors 3FL to 3RR. By supplying electric power to the child winding 12, each of the motors 3FL to 3RR is driven. Thereafter, the processing shown in this flowchart is terminated.
  • step S2 determines whether the detected temperature related to one or more motors 3 exceeds the recommended temperature range in step S2. If the detected temperature related to one or more motors 3 exceeds the recommended temperature range in step S2, the determination in step S2 is satisfied, and the process proceeds to step S4.
  • the temperature estimation unit 503 calculates the amount of change in the detected temperature per unit time of the temperature sensor 6 related to the motor 3 whose detected temperature exceeds the recommended temperature range. For example, the temperature estimation unit 503 changes between the detected temperature related to the motor 3 acquired in step S1 when the previous flowchart is executed and the detected temperature related to the motor 3 acquired in step S1 when the current flowchart is executed. A temperature change rate (rate of increase) obtained by dividing the amount by the flowchart execution time is calculated. And the temperature estimation part 503 estimates the temperature which concerns on the said motor 3 after predetermined time based on the calculated temperature change rate.
  • step S4 the state determination unit 505 determines, based on the estimated temperature of the temperature estimation unit 503, the motor 3 whose detected temperature exceeds the recommended temperature range, which is generated in step S0. In the case of driving corresponding to the above, it is determined whether or not the estimated temperature exceeds the allowable temperature range.
  • the estimated temperature of the motor 3 corresponding to the front wheel 2 hereinafter also referred to as “front wheel motor 3”
  • the motor 3 corresponding to the rear wheel 2 hereinafter also referred to as “rear wheel motor 3”. If both the estimated temperatures exceed the allowable temperature range, the process proceeds to step S5.
  • step S5 the command correction unit 506 corrects the torque commands to the motors 3FL to 3RR to the decreasing side at a uniform rate.
  • step S51 the inverter unit 509 converts the DC power from the battery 8 into AC power based on the torque command to each of the motors 3FL to 3RR corrected in step S5, and each of the motors 3FL to 3RR. Power is supplied to the stator winding 12. Thus, inverter unit 509 drives each of motors 3FL to 3RR. Thereafter, the processing shown in this flowchart is terminated.
  • FIG. 11 is a schematic diagram schematically showing an example of torque command correction executed in step S5.
  • the torque command to each of the motors 3FL to 3RR is corrected to the decreasing side at a uniform rate in step S5.
  • step S4 when one of the estimated temperature related to the front wheel motor 3 and the estimated temperature related to the rear wheel motor 3 exceeds the allowable temperature range, the process proceeds to step S6.
  • step S6 the controller 5 determines whether the motor 3 whose estimated temperature exceeds the allowable temperature range is the front wheel motor 3 or the rear wheel motor 3. When the motor 3 whose estimated temperature exceeds the allowable temperature range is the front wheel motor 3, the determination in step S6 is satisfied, and the process proceeds to step S7.
  • step S7 the command correction unit 506 corrects the torque command to at least one front wheel motor 3 of which the estimated temperature exceeds the allowable temperature range among the front wheel motors 3FL and 3FR to the decrease side by a predetermined value ⁇ .
  • step S8 the torque determination unit 502 sums the torque commands to all the motors 3 when the torque commands to the rear wheel motors 3RL and 3RR are corrected based on the maximum torque of the rear wheel motors 3RL and 3RR. Is calculated. Then, torque determination unit 502 calculates the difference between the calculated total torque command and the total torque command when the torque commands to rear wheel motors 3RL and 3RR are not corrected. Based on the calculated difference, the torque determination unit 502 determines whether or not the total torque command when the torque command is corrected can maintain the total torque command when the torque command is not corrected, that is, the rear wheel. It is determined whether or not the torque command to the motors 3RL and 3RR can be corrected to the increase side by the predetermined value ⁇ .
  • the sum of the torque commands can maintain the sum of the torque commands when the torque command is not corrected, that is, the torque commands to the rear wheel motors 3RL and 3RR can be corrected to an increase side by a predetermined value ⁇ . If YES, the determination at step S8 is satisfied, and the routine goes to step S9.
  • step S9 the command correction unit 506 is a rear wheel located on the same side of the rear wheel motors 3RL, 3RR as the front wheel motor 3 in which the torque command is corrected to the reduction side in step S7 in the width direction of the electric vehicle 1.
  • the torque command to the motor 3 is corrected to the increase side by a predetermined value ⁇ .
  • the total torque command when the torque command to the rear wheel motor 3 is corrected is maintained as the total torque command when the torque command to the rear wheel motor 3 is not corrected.
  • the process proceeds to step S141 described later.
  • the torque command to each of the front wheel motors 3FL and 3FR is corrected to the decrease side in step S7
  • the torque command to each of the rear wheel motors 3RL and 3RR is corrected to the increase side in this step S9. .
  • FIG. 12 is a schematic diagram schematically showing an example of torque command correction executed in steps S7 and S9.
  • the torque command to the front wheel motor 3FL is corrected to the decrease side in step S7
  • the torque command to the rear wheel motor 3RL is corrected to the increase side in step S9.
  • step S8 the sum of the torque commands when the torque command is corrected cannot maintain the sum of the torque commands when the torque command is not corrected, that is, the torque commands to the rear wheel motors 3RL and 3RR are set to a predetermined value ⁇ . If correction cannot be made to the increase side, the determination in step S8 is not satisfied, and the routine goes to step S10.
  • step S10 the command correction unit 506 is located on the opposite side of the rear wheel motors 3RL, 3RR on the side opposite to the front wheel motor 3 in which the torque command is corrected to the decrease side in step S7 in the width direction of the electric vehicle 1.
  • the torque command to the motor 3 is corrected to the decrease side by a predetermined value ⁇ . Thereafter, the process proceeds to step S141 described later.
  • FIG. 13 is a schematic diagram schematically showing an example of torque command correction executed in steps S7 and S10.
  • the torque command to the front wheel motor 3FL is corrected to the decrease side in step S7
  • the torque command to the rear wheel motor 3RR is corrected to the decrease side in step S10.
  • step S6 when the motor 3 whose estimated temperature exceeds the allowable temperature range is the rear wheel motor 3 in step S6, the determination in step S6 is not satisfied, and the process proceeds to step S11.
  • step S11 the command correction unit 506 corrects the torque command to at least one of the rear wheel motors 3RL, 3RR, which has an estimated temperature exceeding the allowable temperature range, to the decrease side by a predetermined value ⁇ .
  • step S12 the torque determination unit 502 calculates the sum of the torque commands to all the motors 3 when the torque commands to the front wheel motors 3LL and 3LR are corrected based on the maximum torque of the front wheel motors 3LL and 3LR. To do. Then, the torque determination unit 502 calculates a difference between the calculated sum of the torque commands and the sum of the torque commands when the torque commands to the front wheel motors 3LL and 3LR are not corrected. Based on the calculated difference, the torque determination unit 502 determines whether the total torque command when the torque command is corrected can maintain the total torque command when the torque command is not corrected, that is, the front wheel motor. It is determined whether the torque command to 3LL and 3LR can be corrected to the increase side by the predetermined value ⁇ .
  • the total torque command when the torque command is not corrected can be maintained. That is, the torque command to the front wheel motors 3LL and 3LR can be corrected to an increase side by a predetermined value ⁇ . If there is, the determination at step S12 is satisfied, and the routine goes to step S13.
  • the command correction unit 506 is a front wheel motor located on the same side of the front wheel motors 3LL and 3LR as the rear wheel motor 3 in which the torque command is corrected to decrease in the width direction of the electric vehicle 1 in step S11. 3 is corrected to the increase side by a predetermined value ⁇ . As a result, the total torque command when the torque command to the front wheel motor 3 is corrected is maintained as the total torque command when the torque command to the front wheel motor 3 is not corrected. Thereafter, the process proceeds to step S141 described later. If the torque command to each of the rear wheel motors 3RL and 3RR is corrected to the decrease side in step S11, the torque command to each of the front wheel motors 3LL and 3LR is corrected to the increase side in this step S13. .
  • step S12 when the torque command is corrected in step S12, the total torque command when the torque command is not corrected cannot be maintained. That is, the torque command to the front wheel motors 3LL and 3LR is set to the predetermined value ⁇ . If correction cannot be made on the increase side, the determination in step S12 is not satisfied, and the routine goes to step S14.
  • step S14 the command correction unit 506 is a front wheel motor located on the opposite side of the front wheel motors 3LL, 3LR in the width direction of the electric vehicle 1 from the rear wheel motor 3 in which the torque command is corrected to the decrease side in step S11. 3 is corrected to the decrease side by a predetermined value ⁇ . Thereafter, the process proceeds to step S141.
  • step S141 the field control unit 507 determines the rotational speed detected by each of the rotational speed sensors 25FL to 25RR and the torque command to each of the motors 3FL to 3RR corrected in any of the above steps S9, S10, S13, and S14. Based on the above, the aforementioned map control is performed. That is, the field control unit 507 reads out the magnetic field ratio, current phase angle, and current magnitude data relating to each of the motors 3FL to 3RR recorded at the corresponding locations in the map as their target values. Then, the field control unit 507 supplies the read electric power for realizing the target values of the magnetic fields related to the motors 3FL to 3RR to the control motors 49 of the motors 3FL to 3RR. By adjusting the relative angle of 63, the field magnetic fluxes of the motors 3FL to 3RR are individually controlled.
  • step S142 the inverter unit 509 causes the direct current from the battery 8 based on the target value of the current phase angle and the target value of the current magnitude related to each of the motors 3FL to 3RR read in step S141.
  • the electric power is converted into AC power, and the electric power is supplied to the stator windings 12 of the motors 3FL to 3RR.
  • inverter unit 509 drives each of motors 3FL to 3RR.
  • step S15 the controller 5 acquires the detected temperatures of the temperature sensors 6FL to 6RR.
  • step S16 the temperature determination unit 504 determines the motor 3 based on the detected temperature of the temperature sensor 6 related to the motor 3 in which the torque command is corrected to the decrease side in any one of the steps S7 and S11. It is determined whether or not the detected temperature related to is lower than the upper limit value of the allowable temperature range. If the detected temperatures for all the motors 3 whose torque commands have been corrected to decrease are not lower than the upper limit value of the recommended temperature range, the determination in step S16 is not satisfied, and step S17 described later is skipped. The process shown in the flowchart is terminated. . On the other hand, if the detected temperature for all the motors 3 whose torque command has been corrected to decrease is below the upper limit value of the recommended temperature range, the determination in step S16 is satisfied, and the routine proceeds to step S17.
  • step S17 the command correction unit 506 outputs torque commands to all the motors 3FL to 3RR including all the motors 3 in which the torque command has been corrected to the decrease side in any one of the steps S7 and S11. It is gradually restored so that it matches the torque command when no correction is made. Thereafter, the processing shown in this flowchart is terminated. The process shown in this flowchart is repeatedly executed.
  • the content of the driving force control method of the electric vehicle 1 demonstrated above is an example to the last, and may be another content.
  • the steps described in the flowchart shown in FIG. 10 are executed in parallel or individually even if they are not necessarily processed in time series, as well as processes performed in time series in the order described. Processing. Even in the steps processed in time series, the order can be appropriately changed depending on circumstances.
  • FIG. 14 shows a comparison between an example of the change over time of the detected temperature associated with each of the motors 3FL to 3RR and an example of the change over time of the torque command to the motor 3 corrected to the decrease side.
  • the field control unit 507 individually controls the field magnetic fluxes of the motors 3FL to 3RR based on the torque command corrected by the command correction unit 506. Since the torque applied to the wheel 2 is controlled by changing the field magnetic flux of the motor 3, the motor 3 can be driven with high efficiency in a wide torque range from low torque to high torque, as compared with the motor 3 in which the field magnetic flux is fixed. it can. Further, the motor 3 whose torque command is corrected to the decrease side is controlled so that the field magnetic flux decreases. Therefore, the iron loss can be reduced, and the copper loss can be reduced by improving the efficiency and reducing the armature current by not using (or reducing) the so-called field weakening current. As a result, the amount of heat generation can be reduced, and the temperature management of the motor 3 is facilitated.
  • the motor 3 relatively rotates the rotor 30 configured so that the magnetic pole portions 53 and 63 are relatively rotated by being divided into two sets, and the magnetic pole portions 53 and 63.
  • a control motor 49 a control motor 49.
  • the field control unit 507 controls the field magnetic flux of the motor 3 by controlling the control motor 49 based on the torque command. With such a structure, the field magnetic flux can be accurately controlled regardless of the load torque and rotation speed of the motor 3.
  • the field control unit 507 determines the target value of the magnetic field, the target value of the phase angle of the current, and the target value of the current phase angle based on the rotational speed of the motor 3 detected by the rotational speed sensor 25 and the torque command.
  • Map control is performed to read out the target value of the magnitude of the current with reference to the map.
  • the torque determination unit 502 can maintain the torque command sum when the torque command is corrected based on the maximum torque of the motor 3 and the torque command sum when the torque command is not corrected. It is determined whether or not. Then, when the command correction unit 506 determines that the torque command sum can be maintained by the torque determination unit 502, the command correction unit 506 corrects the torque command to the remaining motor 3 so that the torque command sum is maintained. .
  • the total driving force by all the wheels 2FL to 2RR can be maintained, so that not only the yaw rate behavior but also the acceleration in the front-rear direction can be maintained.
  • the vehicle can continue traveling at a speed state corresponding to the driver's accelerator pedal operation. Therefore, it is possible to prevent a thermal malfunction (burn-in or the like) of the motor 3 without deteriorating the running characteristics of the electric vehicle 1.
  • the motor 3 corrects the torque command to the decrease side in the width direction of the electric vehicle 1.
  • the torque command to the remaining motor 3 located on the opposite side of the motor is corrected to the decreasing side.
  • the ratio of the total driving force of the left wheels 2FL and 2RL after correction of the torque command and the total driving force of the right wheels 2FR and 2RR is set to the ratio of the driving force of the left wheels 2FL and 2RL before correction. It is possible to make the ratio of the sum and the sum of the driving forces of the right wheels 2FR and 2RR the same.
  • the temperature estimation unit 503 estimates the temperature of the motor 3 after detection based on the temperature detected by the temperature sensor 6. Then, the state determination unit 505 determines that the thermal state of the motor 3 is not appropriate when the temperature estimated by the temperature estimation unit 503 exceeds the allowable temperature range. Since it is determined by determining whether or not the temperature of the motor 3 exceeds the allowable temperature range, it is possible to prevent thermal defects such as image sticking without overheating the motor 3. Therefore, the durability of the motor 3 can be improved.
  • the temperature determination unit 504 determines whether or not the detected temperature of the motor 3 whose torque command has been corrected to the decrease side has fallen below the upper limit value of the allowable temperature range.
  • the command correction unit 506 gradually returns the torque command to the motor 3 corrected to the decrease side.
  • the thermal state of the motor 3 returns to an appropriate state, it is possible to immediately return to normal torque control (before correction), so that it is possible to reduce the influence on traveling due to correction of the torque command.
  • the torque command since the torque command is gradually restored, the change in running characteristics becomes gradual, and the driver does not feel uncomfortable.
  • the configuration of the controller 5A of the present modification is different from the controller 5 of the above-described embodiment in that it has a new drive mode selection unit 510 and replaces the command correction unit 506 with the command correction.
  • a point having a unit 506A (corresponding to an example of a first command correction unit and a second command correction unit).
  • the controller 5A is provided with four drive modes: “all wheel drive mode”, “front wheel drive mode”, “rear wheel drive mode”, and “diagonal wheel drive mode”.
  • the all-wheel drive mode is a mode in which all the wheels 2FL to 2RR of the electric vehicle 1 are driven.
  • the front wheel drive mode is a mode in which the wheels 2FL and 2FR in front of the electric vehicle 1 are driven.
  • the rear wheel drive mode is a mode in which the wheels 2RL and 2RR behind the electric vehicle 1 are driven.
  • the diagonal wheel drive mode is a mode for driving the right front wheel and left rear wheel 2FR, 2RL of the electric vehicle 1.
  • the diagonal wheel drive mode is not limited to a mode in which the right front and left rear wheels 2FR and 2RL of the electric vehicle 1 are driven, and the left front and right rear wheels 2FL of the electric vehicle 1 are not limited. , 2RR may be driven.
  • the drive mode selection unit 510 selects the four drive modes in the order of the all-wheel drive mode, the front wheel drive mode, the rear wheel drive mode, and the diagonal wheel drive mode according to, for example, the specifications and travel settings of the electric vehicle 1. Select and execute according to the priority order.
  • the command correction unit 506A when the state determination unit 505 determines that the thermal state of any one or more of the two motors 3 in the drive ON state is not appropriate, the drive mode selection unit 510 In accordance with the drive mode selected and executed according to the priority order, the torque command to the motor 3 is corrected to the decrease side, and the remaining yaw moment of the electric vehicle 1 when the correction is not performed is maintained. The torque command to the motor 3 is corrected.
  • the drive mode selection unit 510 when the all-wheel drive mode is selected and executed by the drive mode selection unit 510, all the motors 3FL to 3RR are turned on. If the state determination unit 505 determines that the thermal state of any one or more of the motors 3FL to 3RR is not appropriate, the command correction unit 506A and the command correction unit 506 of the above embodiment Similar processing is executed.
  • the front wheel drive mode is selected and executed by the drive mode selection unit 510, among the motors 3FL to 3RR, the front wheel motors 3FL and 3FR are turned on, and the rear The wheel motors 3RL and 3RR are set in the drive OFF state.
  • the state determination unit 505 determines that the thermal state of the front wheel motor 3FL is not appropriate, for example, the command correction unit 506A reduces the torque command to the front wheel motor 3FL.
  • the torque command to the remaining front wheel motor 3FR is also corrected to the decreasing side so that the yaw moment of the electric vehicle 1 without the correction is maintained.
  • the rear wheel motors 3RL and 3RR among the motors 3FL to 3RR are set in the drive ON state.
  • the front wheel motors 3FL and 3FR are turned off.
  • the command correction unit 506A issues a torque command to the rear wheel motor 3RL. While being corrected to the decrease side, the torque command to the remaining rear wheel motor 3RR is also corrected to the decrease side so that the yaw moment of the electric vehicle 1 without the correction is maintained.
  • the command correction unit 506A decreases the torque command to the front wheel motor 3FR.
  • the torque command to the remaining rear wheel motor 3RL is also corrected to the decreasing side so that the yaw moment of the electric vehicle 1 when the correction is not performed is maintained.
  • the torque command can be corrected in accordance with the optimum drive mode according to the specifications of the electric vehicle 1 and the travel settings.
  • the vehicle motion characteristics can be set to the safest side
  • the turning characteristic becomes understeer, so that the vehicle body is hard to spin and the vehicle movement characteristic can be set to the safe side. Therefore, the driving safety can be improved by setting the priority order with the driving mode having a high safety as the higher order.
  • the temperatures of the motors 3FL to 3RR are individually detected by the temperature sensors 6FL to 6RR, and the state determination unit 505 determines whether or not the thermal state of the motor 3 is appropriate based on the temperature detected by the temperature sensor 6.
  • the case where the command correction unit 506 corrects the torque command when it is determined that the thermal state of any one or more motors 3 is not appropriate has been described.
  • the embodiment is not limited to such contents.
  • four state sensors individually detect states other than the temperatures of the motors 3FL to 3RR, and based on the detection results of the state sensors, the state determination unit determines whether the state of the motor 3 is appropriate. When it is determined that the state of one or more motors 3 is not appropriate, the torque correction command may be corrected by the command correction unit.
  • FIGS. 1, 6 and 15 show an example of the flow of the signal or power, and do not limit the flow direction of the signal or power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

[Problem] To maintain yaw rate behavior even when drive force distribution to wheels has been made to vary in order to avoid loss of motor drive capability. [Solution] A drive force control system Sy of an electric vehicle 1 comprises: motors 3FL-3RR which are configured so as to have varying magnetic field fluxes and which individually drive wheels 2FL-2RR; temperature sensors 6FL-6RR that individually detect the temperatures of the motors 3FL-3RR; a state determination unit 505 that determines whether the thermal states of the motors 3 are suitable on the basis of the temperatures detected by the temperature sensors 6; a command correction unit 506 that, if the state determination unit 505 has determined that the thermal state of one or more of the motors 3 is not suitable, corrects a torque command to said motor 3 towards the reduction side and, in order to maintain the electric vehicle 1 yaw moment in a case where such correction is not performed, the command correction unit corrects the torque commands to the remaining motors 3; and a field control unit 507 that individually controls the magnetic field fluxes of the motors 3FL-3RR on the basis of the torque commands corrected by the command correction unit 506.

Description

電動車両の駆動力制御システム、電動車両、及び回転電機Electric vehicle driving force control system, electric vehicle, and rotating electric machine
 開示の実施形態は、電動車両の駆動力制御システム、電動車両、及び回転電機に関する。 The disclosed embodiment relates to a driving force control system for an electric vehicle, an electric vehicle, and a rotating electric machine.
 特許文献1には、左右輪独立駆動車の駆動力制御装置が記載されている。この駆動力制御装置は、自動車の旋回時に旋回方向外輪側の前輪の駆動源が駆動不能に陥ると、旋回方向内輪側の前輪に対する駆動力を徐々に低下させていき、所定時間経過後には駆動力の供給を停止させ、自動車の旋回時に旋回方向内輪側の前輪の駆動源が駆動不能に陥ると、旋回方向外輪側の前輪に対する駆動力の供給を直ちに停止させるものである。 Patent Document 1 describes a driving force control device for a left and right wheel independent driving vehicle. This driving force control device gradually reduces the driving force applied to the front wheels on the inner side in the turning direction when the driving source of the front wheels on the outer side in the turning direction becomes incapable of driving when the vehicle is turning. When the power supply is stopped and the driving source of the front wheel on the inner side in the turning direction becomes incapable of driving during the turning of the automobile, the supply of the driving force to the front wheel on the outer side in the turning direction is immediately stopped.
特開平8-168112号公報JP-A-8-168112
 上記従来技術では、車両の唐突な挙動変化によって生じる車両の不安定な走行を抑制することはできるものの、車両の挙動変化そのものまでは防止することができない。このため、運転者の操舵操作に対応した車両の実際の旋回走行状態であるヨーレート挙動を維持することができず、駆動不能に陥る前の直進安定性や、旋回半径等が変化してしまうという課題がある。 Although the above-mentioned conventional technology can suppress the unstable running of the vehicle caused by a sudden change in the behavior of the vehicle, it cannot prevent the behavior change of the vehicle itself. For this reason, the yaw rate behavior that is the actual turning traveling state of the vehicle corresponding to the driver's steering operation cannot be maintained, and the straight-running stability before turning into a drive failure, the turning radius, etc. change. There are challenges.
 本発明はこのような問題点に鑑みてなされたものであり、モータの駆動不能を回避するために車輪の駆動力配分を変化させた場合でも、ヨーレート挙動を維持することが可能な電動車両の駆動力制御システム、電動車両、及び回転電機を提供することを目的とする。 The present invention has been made in view of such problems, and an electric vehicle capable of maintaining the yaw rate behavior even when the driving force distribution of the wheels is changed in order to avoid the inability to drive the motor. An object is to provide a driving force control system, an electric vehicle, and a rotating electric machine.
 上記課題を解決するため、本発明の一の観点によれば、電動車両の複数の車輪の駆動力を制御する電動車両の駆動力制御システムであって、界磁磁束が変化するように構成され、前記複数の車輪を個別に駆動する複数のモータと、前記複数のモータの状態を個別に検出する、前記モータと同数の状態センサと、前記状態センサの検出結果に基づいて前記モータの状態が適切か否かを判定する第1状態判定部と、前記第1状態判定部により前記複数のモータのうちのいずれか1つ以上の前記モータの状態が適切でないと判定された場合に、当該モータへのトルク指令を減少側に補正すると共に、当該補正をしない場合の前記電動車両のヨーモーメントが維持されるように、残りの前記モータへのトルク指令を補正する第1指令補正部と、前記第1指令補正部により補正された前記トルク指令に基づいて前記複数のモータの界磁磁束を個別に制御する第1界磁制御部と、を有する電動車両の駆動力制御システムが適用される。 In order to solve the above problems, according to one aspect of the present invention, there is provided a driving force control system for an electric vehicle that controls the driving force of a plurality of wheels of the electric vehicle, wherein the field magnetic flux is changed. A plurality of motors that individually drive the plurality of wheels, a number of state sensors that individually detect the states of the plurality of motors, and a state of the motor based on a detection result of the state sensors. A first state determination unit that determines whether or not the motor is appropriate; and when the state of any one or more of the plurality of motors is determined to be inappropriate by the first state determination unit, the motor A first command correction unit that corrects torque commands to the remaining motors so as to maintain the yaw moment of the electric vehicle when the correction is not performed and the yaw moment of the electric vehicle when the correction is not performed, Driving force control system for an electric vehicle having a, a first field control unit individually controlling the field flux of the plurality of motors based on the torque command which is corrected by 1 command correction unit is applied.
 また、本発明の別の観点によれば、電動車両の複数の車輪の駆動力を制御する電動車両の駆動力制御システムであって、界磁磁束が変化するように構成され、前記複数の車輪を個別に駆動する複数のモータと、前記複数のモータの温度を個別に検出する、前記モータと同数の温度センサと、前記温度センサの検出温度に基づいて前記モータの熱的状態が適切か否かを判定する第2状態判定部と、前記第2状態判定部により前記複数のモータのうちのいずれか1つ以上の前記モータの熱的状態が適切でないと判定された場合に、当該モータへのトルク指令を減少側に補正すると共に、当該補正をしない場合の前記電動車両のヨーモーメントが維持されるように、残りの前記モータへのトルク指令を補正する第2指令補正部と、前記第2指令補正部により補正された前記トルク指令に基づいて前記複数のモータの界磁磁束を個別に制御する第2界磁制御部と、を有する電動車両の駆動力制御システムが適用される。 According to another aspect of the present invention, there is provided a driving force control system for an electric vehicle that controls the driving force of a plurality of wheels of the electric vehicle, the field magnetic flux changing, and the plurality of wheels. A plurality of motors that individually drive the motor, the same number of temperature sensors as the motors that individually detect the temperatures of the motors, and whether or not the thermal state of the motor is appropriate based on the detected temperature of the temperature sensor A second state determination unit that determines whether or not the thermal state of any one or more of the plurality of motors is inappropriate by the second state determination unit. A second command correction unit that corrects torque commands to the remaining motors so that the yaw moment of the electric vehicle is maintained when the torque command is not corrected, and the yaw moment of the electric vehicle is maintained. 2 command supplement A second field control unit individually controlling the field flux of the plurality of motors based on the torque command corrected by section, the driving force control system for an electric vehicle having applied.
 また、本発明のさらに別の観点によれば、複数の車輪と、前記駆動力制御システムと、を有する電動車両が適用される。 Further, according to still another aspect of the present invention, an electric vehicle having a plurality of wheels and the driving force control system is applied.
 また、本発明のさらに別の観点によれば、前記電動車両の駆動力制御システムに備えられ、界磁磁束が変化するように構成される回転電機が適用される。 Further, according to still another aspect of the present invention, there is applied a rotating electrical machine that is provided in the driving force control system of the electric vehicle and configured to change the field magnetic flux.
 また、本発明のさらに別の観点によれば、電動車両の複数の車輪の駆動力を制御する電動車両の駆動力制御システムであって、界磁磁束が変化するように構成され、前記複数の車輪を個別に駆動する複数のモータと、前記複数のモータの界磁磁束を個別に変化させることで、前記電動車両のヨーモーメントを維持しつつ前記複数の車輪の駆動力配分を変化させる手段と、を有する電動車両の駆動力制御システムが適用される。 According to still another aspect of the present invention, there is provided a driving force control system for an electric vehicle that controls the driving force of a plurality of wheels of the electric vehicle, wherein the field magnetic flux is changed, A plurality of motors for individually driving the wheels, and means for changing the driving force distribution of the plurality of wheels while maintaining the yaw moment of the electric vehicle by individually changing the field magnetic flux of the plurality of motors; , A driving force control system for an electric vehicle is applied.
 また、本発明のさらに別の観点によれば、電動車両の複数の車輪の駆動力を制御する電動車両の駆動力制御システムであって、界磁磁束が変化するように構成され、前記複数の車輪を個別に駆動する複数のモータと、前記複数のモータの温度を個別に検出する、前記モータと同数の温度センサと、前記温度センサの検出温度に基づいて前記モータの熱的状態が適切か否かを判定し、前記複数のモータのうちのいずれか1つ以上の前記モータの熱的状態が適切でないと判定された場合に、当該モータへのトルク指令を減少側に補正すると共に、当該補正をしない場合の前記電動車両のヨーモーメントが維持されるように、残りの前記モータへのトルク指令を補正し、補正された前記トルク指令に基づいて前記複数のモータの界磁磁束を個別に制御するコントローラと、を有する電動車両の駆動力制御システムが適用される。 According to still another aspect of the present invention, there is provided a driving force control system for an electric vehicle that controls the driving force of a plurality of wheels of the electric vehicle, wherein the field magnetic flux is changed, A plurality of motors that individually drive the wheels, the same number of temperature sensors that individually detect the temperatures of the plurality of motors, and whether the thermal state of the motor is appropriate based on the detected temperature of the temperature sensor And when it is determined that the thermal state of any one or more of the plurality of motors is not appropriate, the torque command to the motor is corrected to the decrease side, and the The torque commands to the remaining motors are corrected so that the yaw moment of the electric vehicle without correction is maintained, and the field fluxes of the plurality of motors are individually set based on the corrected torque commands. A controller Gosuru, the driving force control system for an electric vehicle having applied.
 また、本発明のさらに別の観点によれば、電動車両の複数の車輪の駆動力を制御する電動車両の駆動力制御方法であって、温度センサにより検出されたモータの検出温度に基づいて前記モータの熱的状態が適切か否かを判定するステップと、複数の前記モータのうちのいずれか1つ以上の前記モータの熱的状態が適切でないと判定された場合に、当該モータへのトルク指令を減少側に補正すると共に、当該補正をしない場合の前記電動車両のヨーモーメントが維持されるように、残りの前記モータへのトルク指令を補正するステップと、前記指令補正部により補正された前記トルク指令に基づいて、界磁磁束が変化するように構成され前記複数の車輪を個別に駆動する複数のモータの前記界磁磁束を個別に制御するステップと、を有する電動車両の駆動力制御方法が適用される。 According to still another aspect of the present invention, there is provided a driving force control method for an electric vehicle that controls the driving force of a plurality of wheels of the electric vehicle, based on a detected temperature of a motor detected by a temperature sensor. A step of determining whether or not a thermal state of the motor is appropriate; and a torque to the motor when it is determined that the thermal state of any one or more of the plurality of motors is not appropriate. Correcting the command to decrease, and correcting the torque command to the remaining motor so that the yaw moment of the electric vehicle when the correction is not made is maintained, and corrected by the command correction unit Individually controlling the field flux of a plurality of motors configured to change field flux based on the torque command and individually driving the plurality of wheels. Driving force control method for a vehicle is applied.
 また、本発明のさらに別の観点によれば、電動車両の複数の車輪の駆動力を制御するコントローラであって、温度センサにより検出されたモータの検出温度に基づいて前記モータの熱的状態が適切か否かを判定する状態判定部と、前記状態判定部により複数の前記モータのうちのいずれか1つ以上の前記モータの熱的状態が適切でないと判定された場合に、当該モータへのトルク指令を減少側に補正すると共に、当該補正をしない場合の前記電動車両のヨーモーメントが維持されるように、残りの前記モータへのトルク指令を補正する指令補正部と、前記指令補正部により補正された前記トルク指令に基づいて、界磁磁束が変化するように構成され前記複数の車輪を個別に駆動する複数のモータの前記界磁磁束を個別に制御する界磁制御部と、を有するコントローラが適用される。 According to still another aspect of the present invention, the controller controls the driving force of the plurality of wheels of the electric vehicle, and the thermal state of the motor is based on the detected temperature of the motor detected by the temperature sensor. A state determination unit that determines whether or not the motor is appropriate; and when the state determination unit determines that the thermal state of any one or more of the plurality of motors is not appropriate, A command correction unit that corrects the torque command to the remaining motor and corrects the torque command to the remaining motor so that the yaw moment of the electric vehicle when the torque command is not corrected is maintained. A field controller configured to individually control the field flux of a plurality of motors configured to change a field flux based on the corrected torque command and individually driving the plurality of wheels. The controller having a applies.
 本発明の電動車両の駆動力制御システム等によれば、モータの駆動不能を回避するために車輪の駆動力配分を変化させた場合でも、ヨーレート挙動を維持することができる。 According to the driving force control system for an electric vehicle of the present invention, the yaw rate behavior can be maintained even when the wheel driving force distribution is changed in order to avoid the inability to drive the motor.
一実施形態の電動車両の概略構成の一例を表す模式図である。1 is a schematic diagram illustrating an example of a schematic configuration of an electric vehicle according to an embodiment. モータの構成の一例を表す軸方向断面図である。It is an axial sectional view showing an example of the composition of a motor. 界磁磁束が最大のときの回転子の状態の一例を表す斜視図である。It is a perspective view showing an example of the state of a rotor when a field magnetic flux is the maximum. 界磁磁束が中程度のときの回転子の状態の一例を表す斜視図である。It is a perspective view showing an example of the state of a rotor when field magnetic flux is medium. 界磁磁束が最小のときの回転子の状態の一例を表す斜視図である。It is a perspective view showing an example of the state of a rotor when a field magnetic flux is the minimum. コントローラの構成の一例を表す機能ブロック図である。It is a functional block diagram showing an example of the composition of a controller. モータの最大効率ベクトル制御時の制御数値マップ測定値の一例を示す表である。It is a table | surface which shows an example of the control numerical map measured value at the time of the maximum efficiency vector control of a motor. モータの最大効率ベクトル制御時の制御数値マップ測定値の一例を示す表である。It is a table | surface which shows an example of the control numerical map measured value at the time of the maximum efficiency vector control of a motor. モータの最大効率ベクトル制御を再現するためのデータが記録されたマップの一例を示す表である。It is a table | surface which shows an example of the map with which the data for reproducing the maximum efficiency vector control of a motor were recorded. モータの2組の磁極部の相対角度に対する界磁率の特性の一例を示すグラフである。It is a graph which shows an example of the characteristic of the magnetic field field with respect to the relative angle of two sets of magnetic pole parts of a motor. 電動車両の駆動力制御方法の一例を表すフローチャートである。It is a flowchart showing an example of the driving force control method of an electric vehicle. 図10中のステップS5で実行するトルク指令の補正の一例を模式的に表す模式図である。It is a schematic diagram which represents typically an example of correction | amendment of the torque command performed by step S5 in FIG. 図10中のステップS7,S9で実行するトルク指令の補正の一例を模式的に表す模式図である。It is a schematic diagram which represents typically an example of correction | amendment of the torque command performed by step S7, S9 in FIG. 図10中のステップS7,S10で実行するトルク指令の補正の一例を模式的に表す模式図である。FIG. 11 is a schematic diagram schematically illustrating an example of torque command correction executed in steps S7 and S10 in FIG. 10. 4つのモータそれぞれに係る検出温度の時間変化の一例と、減少側に補正されるモータへのトルク指令の時間変化の一例とを対比して示すタイムチャートである。It is a time chart which compares and shows an example of the time change of the detected temperature which concerns on each of four motors, and an example of the time change of the torque command to the motor correct | amended by the reduction | decrease side. 駆動モードを選択して実行する変形例における、コントローラの構成の一例を表す機能ブロック図である。It is a functional block diagram showing an example of the structure of the controller in the modification which selects and performs a drive mode. 前方輪駆動モードが選択して実行された場合における、モータそれぞれの駆動状態の一例を表す模式図である。It is a schematic diagram showing an example of the drive state of each motor when the front wheel drive mode is selected and executed. 前方輪駆動モードが選択して実行された場合における、トルク指令の補正の一例を模式的に表す模式図である。It is a schematic diagram which represents typically an example of correction | amendment of a torque command in case the front wheel drive mode is selected and performed. 後方輪駆動モードが選択して実行された場合における、モータそれぞれの駆動状態の一例を表す模式図である。It is a schematic diagram showing an example of the drive state of each motor when the rear wheel drive mode is selected and executed. 後方輪駆動モードが選択して実行された場合における、トルク指令の補正の一例を模式的に表す模式図である。It is a schematic diagram which represents typically an example of correction | amendment of a torque command when a rear-wheel drive mode is selected and performed. 対角輪駆動モードが選択して実行された場合における、モータそれぞれの駆動状態の一例を表す模式図である。It is a schematic diagram showing an example of the drive state of each motor when the diagonal wheel drive mode is selected and executed. 対角輪駆動モードが選択して実行された場合における、トルク指令の補正の一例を模式的に表す模式図である。It is a schematic diagram which represents typically an example of correction | amendment of a torque command when the diagonal wheel drive mode is selected and performed.
 以下、一実施形態について図面を参照しつつ説明する。なお、本明細書及び図面において、実質的に同一の機能を有する構成要素については、原則として同一の符号で表し、これらの構成要素についての重複説明は、適宜省略する。 Hereinafter, an embodiment will be described with reference to the drawings. In the present specification and drawings, components having substantially the same function are represented by the same reference numerals in principle, and repeated description of these components will be omitted as appropriate.
 <1.電動車両の概略構成の例>
 まず、図1を参照しつつ、本実施形態の電動車両の概略構成の一例について説明する。
<1. Example of schematic configuration of electric vehicle>
First, an example of a schematic configuration of the electric vehicle according to the present embodiment will be described with reference to FIG.
 図1に示すように、電動車両1は、前後左右に設置された4つの車輪2FL,2FR,2RL,2RR(以下適宜「車輪2」と総称する。)を独立して駆動するように構成された4輪独立駆動方式の電気自動車(EV)である。なお、車輪2FL,2RLは、前方の車輪(前輪)であり、車輪2RL,2RRは、後方の車輪(後輪)である。具体的には、車輪2FLは、左側前方の車輪(左前輪)であり、車輪2RLは、右側前方の車輪(右前輪)である。また、車輪2RLは、左側後方の車輪(左後輪)であり、車輪2RRは、右側後方の車輪(右後輪)である。電動車両1は、上記車輪2FL~2RRと、車輪2FL~2RRの駆動力を制御する駆動力制御システムSyとを有する。 As shown in FIG. 1, the electric vehicle 1 is configured to independently drive four wheels 2FL, 2FR, 2RL, and 2RR (hereinafter collectively referred to as “wheel 2” as appropriate) installed in the front, rear, left, and right. This is an electric vehicle (EV) of a four-wheel independent drive system. The wheels 2FL and 2RL are front wheels (front wheels), and the wheels 2RL and 2RR are rear wheels (rear wheels). Specifically, the wheel 2FL is a left front wheel (left front wheel), and the wheel 2RL is a right front wheel (right front wheel). The wheel 2RL is a left rear wheel (left rear wheel), and the wheel 2RR is a right rear wheel (right rear wheel). The electric vehicle 1 includes the wheels 2FL to 2RR and a driving force control system Sy that controls the driving force of the wheels 2FL to 2RR.
 車輪2FL,2FR,2RL,2RRは、それぞれドライブシャフト9FL,9FR,9RL,9RRを介して後述のモータ3FL,3FR,3RL,3RRに連結されている。 Wheels 2FL, 2FR, 2RL, and 2RR are connected to motors 3FL, 3FR, 3RL, and 3RR, which will be described later, via drive shafts 9FL, 9FR, 9RL, and 9RR, respectively.
 駆動力制御システムSyは、4つのモータ3FL,3FR,3RL,3RR(回転電機の一例に相当)と、4つの温度センサ6FL,6FR,6RL,6RR(状態センサの一例に相当)と、4つの回転速度センサ25FL,25FR,25RL,25RRと、ヨーレートセンサ7と、コントローラ5と、バッテリ8とを有する。なお、以下適宜、モータ3FL~3RRを「モータ3」と総称し、温度センサ6FL~6RRを「温度センサ6」と総称する。 The driving force control system Sy includes four motors 3FL, 3FR, 3RL, 3RR (corresponding to an example of a rotating electric machine), four temperature sensors 6FL, 6FR, 6RL, 6RR (corresponding to an example of a state sensor), and four Rotational speed sensors 25FL, 25FR, 25RL, and 25RR, a yaw rate sensor 7, a controller 5, and a battery 8 are included. Hereinafter, as appropriate, the motors 3FL to 3RR are collectively referred to as “motor 3”, and the temperature sensors 6FL to 6RR are collectively referred to as “temperature sensor 6”.
 モータ3FL~3RRは、界磁磁束が変化するように構成された可変界磁型の電動モータである。モータ3FL~3RRは、電力ケーブルを介してコントローラ5と接続され、コントローラ5からの電力に基づいて動作する。これにより、モータ3FL~3RRは、車輪2FL~2RRを個別に駆動する。また、モータ3FL~3RRは、車輪2FL~2RRの回転を利用して発電することもできる。 The motors 3FL to 3RR are variable field type electric motors configured to change the field magnetic flux. Motors 3FL to 3RR are connected to controller 5 via a power cable and operate based on the power from controller 5. Thus, motors 3FL-3RR individually drive wheels 2FL-2RR. Motors 3FL-3RR can also generate electric power by utilizing the rotation of wheels 2FL-2RR.
 温度センサ6FL~6RRは、例えばサーミスタにより実装され、それぞれモータ3FL~3RRの内部(例えばモータフレーム内の固定子巻線近傍)に設けられている。温度センサ6FL~6RRは、それぞれモータ3FL~3RRの温度(状態の一例)を検出する。温度センサ6FL~6RRそれぞれが検出した温度、つまり検出温度(検出結果の一例)は、信号ケーブルを介してコントローラ5に出力される。 The temperature sensors 6FL to 6RR are mounted by, for example, a thermistor, and are respectively provided inside the motors 3FL to 3RR (for example, near the stator windings in the motor frame). Temperature sensors 6FL to 6RR detect the temperatures (examples of states) of motors 3FL to 3RR, respectively. The temperature detected by each of the temperature sensors 6FL to 6RR, that is, the detected temperature (an example of a detection result) is output to the controller 5 via the signal cable.
 回転速度センサ25FL~25RRは、それぞれモータ3FL~3RRの内部に設けられている。回転速度センサ25FL~25RRは、それぞれモータ3FL~3RRの回転速度を検出する。回転速度センサ25FL~25RRそれぞれが検出した回転速度は、信号ケーブルを介してコントローラ5に出力される。 Rotational speed sensors 25FL to 25RR are provided in the motors 3FL to 3RR, respectively. Rotational speed sensors 25FL to 25RR detect the rotational speeds of motors 3FL to 3RR, respectively. The rotational speed detected by each of the rotational speed sensors 25FL to 25RR is output to the controller 5 via a signal cable.
 なお、回転速度センサ25FL~25RRは、モータ3FL~3RRの外部(例えば車輪2FL~2RRやドライブシャフト9FL~9RR等)に設けられてもよい。 The rotational speed sensors 25FL to 25RR may be provided outside the motors 3FL to 3RR (for example, the wheels 2FL to 2RR and the drive shafts 9FL to 9RR).
 ヨーレートセンサ7は、電動車両1のヨーレートを検出する。ヨーレートセンサ7が検出したヨーレートは、信号ケーブルを介してコントローラ5に出力される。 The yaw rate sensor 7 detects the yaw rate of the electric vehicle 1. The yaw rate detected by the yaw rate sensor 7 is output to the controller 5 via a signal cable.
 コントローラ5は、例えばインバータ機能を備えるECU等により実装される。コントローラ5は、バッテリ8からの直流電力を交流電力に変換し、電力ケーブルを介してモータ3FL~3RRに供給する。これにより、コントローラ5は、モータ3FL~3RRを制御し、車輪2FL~2RRの駆動力を制御する。また、コントローラ5は、モータ3FL~3RRにより発電された交流電力を直流電力に変換し、バッテリ8を充電することもできる。 The controller 5 is mounted by, for example, an ECU having an inverter function. The controller 5 converts the DC power from the battery 8 into AC power and supplies it to the motors 3FL to 3RR via the power cable. As a result, the controller 5 controls the motors 3FL to 3RR and controls the driving forces of the wheels 2FL to 2RR. The controller 5 can also charge the battery 8 by converting AC power generated by the motors 3FL to 3RR into DC power.
 この際、コントローラ5は、モータ3FL~3RRの界磁磁束を個別に変化させることで、電動車両1のヨーモーメントを維持しつつ車輪2FL~2RRの駆動力分配を変化させる。つまり、コントローラ5は、「複数のモータの界磁磁束を個別に変化させることで、電動車両のヨーモーメントを維持しつつ複数の車輪の駆動力分配を変化させる手段」の一例に相当する。 At this time, the controller 5 changes the driving force distribution of the wheels 2FL to 2RR while maintaining the yaw moment of the electric vehicle 1 by individually changing the field magnetic flux of the motors 3FL to 3RR. That is, the controller 5 corresponds to an example of “means for changing the driving force distribution of the plurality of wheels while maintaining the yaw moment of the electric vehicle by individually changing the field magnetic fluxes of the plurality of motors”.
 具体的には、コントローラ5は、車輪2FL~2RRそれぞれの目標駆動力を実現するためのモータ3FL~3RRそれぞれへのトルク指令に基づいて、モータ3FL~3RRの界磁磁束を個別に制御する。 Specifically, the controller 5 individually controls the field magnetic fluxes of the motors 3FL to 3RR based on torque commands to the motors 3FL to 3RR for realizing the target driving forces of the wheels 2FL to 2RR, respectively.
 より具体的には、コントローラ5は、温度センサ6FL~6RRそれぞれの検出温度等に基づいて、モータ3FL~3RRそれぞれの熱的状態が適切か否かを判定する。そして、コントローラ5は、モータ3FL~3RRのうちのいずれか1つ以上のモータ3の熱的状態が適切でないと判定された場合に、当該モータ3へのトルク指令を減少側に補正すると共に、当該補正をしない場合の電動車両1のヨーモーメントが維持されるように、残りのモータ3へのトルク指令を補正(実質的に変更しない補正も含む。)する。そして、コントローラ5は、補正されたモータ3FL~3RRそれぞれへのトルク指令に基づいて、モータ3FL~3RRの界磁磁束を個別に制御する。 More specifically, the controller 5 determines whether or not the thermal state of each of the motors 3FL to 3RR is appropriate based on the detected temperature of each of the temperature sensors 6FL to 6RR. When the controller 5 determines that the thermal state of any one or more of the motors 3FL to 3RR is not appropriate, the controller 5 corrects the torque command to the motor 3 to the decrease side, The torque command to the remaining motor 3 is corrected (including correction that does not substantially change) so that the yaw moment of the electric vehicle 1 when the correction is not performed is maintained. Then, the controller 5 individually controls the field magnetic fluxes of the motors 3FL to 3RR based on the corrected torque commands to the motors 3FL to 3RR.
 なお、コントローラ5は、モータ3FL~3RRへのトルク指令に基づいてモータ3FL~3RRの界磁磁束を個別に制御する場合に限定されるものではなく、モータ3FL~3RRへの速度指令に基づいてモータ3FL~3RRの界磁磁束を個別に制御してもよい。 The controller 5 is not limited to individually controlling the field magnetic flux of the motors 3FL to 3RR based on the torque commands to the motors 3FL to 3RR, but based on the speed commands to the motors 3FL to 3RR. The field magnetic flux of motors 3FL-3RR may be individually controlled.
 また、上記で説明した電動車両1の駆動力制御システム1の構成は、あくまで一例であり、車輪2FL~2RRの駆動力を制御可能な構成であれば、上記以外の構成であってもよい。例えば、コントローラ5がインバータ機能を備える場合に限定されるものではなく、コントローラ5とは別にインバータを設けてもよい。また、コントローラ5は、1つの装置である場合に限定されるものではなく、複数の装置により構成されてもよい。 Further, the configuration of the driving force control system 1 of the electric vehicle 1 described above is merely an example, and any configuration other than the above may be used as long as the driving force of the wheels 2FL to 2RR can be controlled. For example, it is not limited to the case where the controller 5 has an inverter function, and an inverter may be provided separately from the controller 5. The controller 5 is not limited to a single device, and may be configured by a plurality of devices.
 また、上記で説明した電動車両1の構成は、あくまで一例であり、上記以外の構成であってもよい。例えば、電動車両1の駆動方式は、4輪独立駆動方式に限定されるものではなく、前輪独立駆動方式や、後輪独立駆動方式等であってもよい。また、電動車両1は、バッテリ8からの電力のみにより駆動される電気自動車(EV)である場合に限定されるものではなく、ハイブリッド電気自動車(HEV)、外部充電機能を追加したプラグインハイブリッド電気自動車(PHEV)、水素燃料電池自動車(FCV)等であってもよい。また、電動車両1の車輪2の数は、4つに限定されるものではなく、他の数であってもよい。 Further, the configuration of the electric vehicle 1 described above is merely an example, and a configuration other than the above may be used. For example, the driving method of the electric vehicle 1 is not limited to the four-wheel independent driving method, and may be a front wheel independent driving method, a rear wheel independent driving method, or the like. The electric vehicle 1 is not limited to an electric vehicle (EV) driven only by electric power from the battery 8, but is a hybrid electric vehicle (HEV) or plug-in hybrid electric with an external charging function added. It may be an automobile (PHEV), a hydrogen fuel cell automobile (FCV), or the like. Moreover, the number of the wheels 2 of the electric vehicle 1 is not limited to four, and may be another number.
 <2.モータの構成の例>
 次に、図2~図5を参照しつつ、モータ3FL~3RRの構成の一例について説明する。ここでは、モータ3FL~3RRのうち、モータ3FLの構成の一例について代表に説明するが、他のモータ3FR~3RRの構成についてもモータ3FLの構成と同等することができる。
<2. Example of motor configuration>
Next, an example of the configuration of the motors 3FL to 3RR will be described with reference to FIGS. Here, an example of the configuration of the motor 3FL among the motors 3FL to 3RR will be described as a representative example, but the configurations of the other motors 3FR to 3RR can be equivalent to the configuration of the motor 3FL.
 図2に示すように、モータ3FLは、上記ドライブシャフト9FLに連結されたシャフト34を回転することで、上記車輪2FLの駆動力を出力する。なお、本明細書中では、モータ3FLによる駆動力出力側(図2中右側)を「負荷側」といい、その反対側(図2中左側)を「反負荷側」ということにする。 As shown in FIG. 2, the motor 3FL outputs the driving force of the wheel 2FL by rotating the shaft 34 connected to the drive shaft 9FL. In this specification, the driving force output side (right side in FIG. 2) by the motor 3FL is referred to as “load side”, and the opposite side (left side in FIG. 2) is referred to as “anti-load side”.
 モータ3FLは、上記シャフト34と、シャフト34の外側に設けられた回転子30と、固定子30の外側に設けられた固定子10と、固定子10の外側に設けられたフレーム17と、フレーム17の負荷側に設けられたブラケット16と、制御モータ49(図1参照)と、センサマグネット20と、上記回転速度センサ25FLとを有する。 The motor 3FL includes the shaft 34, a rotor 30 provided outside the shaft 34, a stator 10 provided outside the stator 30, a frame 17 provided outside the stator 10, and a frame 17 includes a bracket 16 provided on the load side, a control motor 49 (see FIG. 1), a sensor magnet 20, and the rotational speed sensor 25FL.
 シャフト34は、ブラケット16に設置された負荷側軸受18と、フレーム17の反負荷側に設置された反負荷側軸受19とにより、回転自在に支持されている。フレーム17は、ボルト11によりブラケット16に締結されている。センサマグネット20は、回転子30の反負荷側の側面に設けられている。回転速度センサ25FLは、フレーム17内においてセンサマグネット20に対向して設けられ、回転子30の回転速度を、モータ3FLの回転速度として検出する。 The shaft 34 is rotatably supported by a load-side bearing 18 installed on the bracket 16 and an anti-load-side bearing 19 installed on the non-load side of the frame 17. The frame 17 is fastened to the bracket 16 with bolts 11. The sensor magnet 20 is provided on the side surface of the rotor 30 on the side opposite to the load. The rotational speed sensor 25FL is provided facing the sensor magnet 20 in the frame 17, and detects the rotational speed of the rotor 30 as the rotational speed of the motor 3FL.
 なお、回転速度センサ25FLは、回転子30の回転速度に代えて又は加えて、回転子30の回転位置や加速度を検出してもよい(他の回転速度センサ25FR~25RRも同様)。また、回転速度センサ25FLは、回転子30の回転速度を磁気的に検出するセンサである場合に限定されるものではなく、回転子30の回転速度を光学的に検出するセンサであってもよい(他の回転速度センサ25FR~25RRも同様)。 The rotational speed sensor 25FL may detect the rotational position and acceleration of the rotor 30 instead of or in addition to the rotational speed of the rotor 30 (the same applies to the other rotational speed sensors 25FR to 25RR). Further, the rotational speed sensor 25FL is not limited to a sensor that magnetically detects the rotational speed of the rotor 30, and may be a sensor that optically detects the rotational speed of the rotor 30. (The same applies to the other rotational speed sensors 25FR to 25RR).
 固定子10は、固定子巻線12と、固定子鉄心13とを備える。固定子巻線12は、固定子鉄心13に装着されている。固定子鉄心13は、ボルト14によりブラケット16に締結されている。固定子10の反負荷側には、結線部21が設けられている。 The stator 10 includes a stator winding 12 and a stator core 13. The stator winding 12 is attached to the stator core 13. The stator core 13 is fastened to the bracket 16 by bolts 14. A connection portion 21 is provided on the side opposite to the load of the stator 10.
 回転子30は、界磁用磁石(詳細は後述)が設置された複数の磁極部(詳細は後述)が2組(固定側及び可動側)に分かれて相対的に回動するように構成されている。 The rotor 30 is configured such that a plurality of magnetic pole portions (details will be described later) provided with field magnets (details will be described later) are divided into two sets (fixed side and movable side) and relatively rotated. ing.
 制御モータ49は、例えばフレーム17の反負荷側の外部に設けられ、回転子30の2組の磁極部を相対的に回動させることで、界磁磁束を変化させることが可能である。 The control motor 49 is provided, for example, outside the anti-load side of the frame 17 and can change the field magnetic flux by relatively rotating the two sets of magnetic pole portions of the rotor 30.
  (2-1.回転子の構成の例)
 以下、図2及び図3を参照しつつ、回転子30の構成の一例について説明する。
(2-1. Example of rotor configuration)
Hereinafter, an example of the configuration of the rotor 30 will be described with reference to FIGS. 2 and 3.
 図2及び図3に示すように、回転子30は、軸方向に3つに分割され、それら分割された3つの部分が相対的に回動するように、構成されている。具体的には、回転子30は、可動回転子60と、可動回転子60の軸方向両側に隣接して配置された2つの固定回転子50,50とを有し、上記制御モータ49により可動回転子60が固定回転子50,50に対し回動される構造となっている。固定回転子50,50は、負荷側プレート31及び反負荷側プレート33を介してボルト35によりシャフト34に固定されている。 As shown in FIGS. 2 and 3, the rotor 30 is divided into three parts in the axial direction, and the three parts thus divided are relatively rotated. Specifically, the rotor 30 includes a movable rotor 60 and two fixed rotors 50 and 50 disposed adjacent to both sides in the axial direction of the movable rotor 60, and is movable by the control motor 49. The rotor 60 is structured to be rotated with respect to the fixed rotors 50 and 50. The fixed rotors 50 and 50 are fixed to the shaft 34 by bolts 35 via the load side plate 31 and the anti-load side plate 33.
 すなわち、制御モータ49がウォームギヤ27を回転させると、ギヤホイール23が回転し、送りおねじ42が送りめねじ43に対し軸方向に移動する。送りおねじ42の負荷側端部には可動軸受40が装着され、回転子30の回転を遮断しつつピン36及びピンホルダ28を軸方向に移動させる。ピン36は、シャフト34の外側のスライダ37を軸方向に移動させる。スライダ37の外側がハブ32と捩れスプラインで係合しているため、スライダ37が軸方向に移動すると、ハブ32と、それに係合された可動回転子60とが、固定回転子50,50に対し回動する。ハブ32の両側には、Oリング15が装着され、充填されたグリスの飛散を防止している。 That is, when the control motor 49 rotates the worm gear 27, the gear wheel 23 rotates and the feed male screw 42 moves in the axial direction with respect to the feed screw 43. A movable bearing 40 is attached to the load side end of the feed male screw 42 to move the pin 36 and the pin holder 28 in the axial direction while blocking the rotation of the rotor 30. The pin 36 moves the slider 37 outside the shaft 34 in the axial direction. Since the outer side of the slider 37 is engaged with the hub 32 by a torsion spline, when the slider 37 moves in the axial direction, the hub 32 and the movable rotor 60 engaged therewith are fixed to the fixed rotors 50 and 50. Rotate against. O-rings 15 are mounted on both sides of the hub 32 to prevent the filled grease from scattering.
 ギヤホイール23は、カバー24により覆われ、軸受26により回転自在に支持されている。送りおねじ42及び送りめねじ43は、例えば台形ねじ加工がなされている。送りおねじ42は、六角穴を有し、ギヤホイール23の六角シャフト23aに係合しているため、軸方向に移動可能に回転が伝達される。送りおねじ42に装着された可動軸受40には、例えばアンギュラベアリングが2個向かい合わせで用いられ、軸受ホルダ44及びボルト45により固定されている。送りめねじ43に装着された固定軸受41にも、例えばアンギュラベアリングが2個向かい合わせで用いられ、ナット29により固定されている。 The gear wheel 23 is covered with a cover 24 and is rotatably supported by a bearing 26. The feed male screw 42 and the feed screw 43 are, for example, trapezoidal threaded. Since the feed male screw 42 has a hexagonal hole and engages with the hexagonal shaft 23a of the gear wheel 23, rotation is transmitted so as to be movable in the axial direction. For example, two angular bearings are used face-to-face as the movable bearing 40 attached to the feed male screw 42 and are fixed by a bearing holder 44 and a bolt 45. For example, two angular bearings are used facing each other and fixed to the fixed bearing 41 attached to the feed screw 43 by a nut 29.
 固定回転子50は、環状の第1鉄心51と、第1鉄心51に軸方向に埋設された複数の第1永久磁石52(界磁用磁石の一例に相当)とを備える。複数の第1永久磁石52は、同極同士が対向した2つの第1永久磁石52が径方向内側に凸のV字状の対をなす態様で、対向する磁極を周方向に交互に異ならせて第1鉄心51に配置されている。これにより、固定回転子50の周方向に交互に極性の異なるN極及びS極の複数の磁極部53(以下「第1磁極部53」ともいう。)が形成されている。 The fixed rotor 50 includes an annular first iron core 51 and a plurality of first permanent magnets 52 (corresponding to an example of a field magnet) embedded in the first iron core 51 in the axial direction. The plurality of first permanent magnets 52 is a mode in which two first permanent magnets 52 with the same polarity facing each other form a V-shaped pair projecting radially inward, and the opposing magnetic poles are alternately varied in the circumferential direction. The first iron core 51 is disposed. Thereby, a plurality of magnetic pole portions 53 (hereinafter also referred to as “first magnetic pole portions 53”) having different polarities in the circumferential direction of the fixed rotor 50 are formed.
 可動回転子60は、シャフト34に対し回転可能となっている。可動回転子60は、環状の第2鉄心61と、第2鉄心61の軸方向に埋設された複数の図示しない第2永久磁石(界磁用磁石の一例に相当)とを備えている。複数の第2永久磁石は、同極同士が対向した2つの第2永久磁石が径方向内側に凸のV字状の対をなす態様で、対向する磁極を周方向に交互に異ならせて第2鉄心61に配置されている。これにより、可動回転子60の周方向に交互に極性の異なるN極及びS極の複数の磁極部63(以下「第2磁極部63」ともいう。)が形成されている。 The movable rotor 60 is rotatable with respect to the shaft 34. The movable rotor 60 includes an annular second iron core 61 and a plurality of second permanent magnets (not shown) (corresponding to an example of field magnets) embedded in the axial direction of the second iron core 61. The plurality of second permanent magnets is a mode in which two second permanent magnets with the same polarity facing each other form a V-shaped pair projecting radially inward, and the opposing magnetic poles are alternately varied in the circumferential direction. Two iron cores 61 are arranged. Thereby, a plurality of N pole and S pole magnetic pole parts 63 (hereinafter also referred to as “second magnetic pole parts 63”) having different polarities alternately are formed in the circumferential direction of the movable rotor 60.
  (2-2.回転子の界磁磁束の変化の例)
 以下、図3~図5を参照しつつ、回転子30の界磁磁束の変化の一例について説明する。
(2-2. Example of change in rotor field magnetic flux)
Hereinafter, an example of changes in the field magnetic flux of the rotor 30 will be described with reference to FIGS.
 図3は、界磁磁束が最大のときの回転子30の状態の一例に対応する。このときには、各固定回転子50と可動回転子60との同じ極性の磁極部、つまり各固定回転子50のN極(S極)の第1磁極部53と可動回転子60のN極(S極)の第2磁極部63とが軸方向に揃う(相対角度が電気角で0度となる)。これにより、各固定回転子50の第1永久磁石52と可動回転子60の第2永久磁石とによる界磁磁束は、最大の状態となる。 FIG. 3 corresponds to an example of the state of the rotor 30 when the field magnetic flux is maximum. At this time, the magnetic pole portions of the same polarity of each fixed rotor 50 and the movable rotor 60, that is, the first magnetic pole portion 53 of the N pole (S pole) of each fixed rotor 50 and the N pole (S of the movable rotor 60). The second magnetic pole portion 63 of the pole is aligned in the axial direction (the relative angle is 0 degree in electrical angle). Thereby, the field magnetic flux by the 1st permanent magnet 52 of each fixed rotor 50 and the 2nd permanent magnet of the movable rotor 60 will be in the maximum state.
 図4は、界磁磁束が中程度のときの回転子30の状態の一例に対応する。このときには、可動回転子60が固定回転子50,50に対し相対的に回動する。そして、各固定回転子50の第1磁極部53と可動回転子60の第2磁極部63とは、同じ極性であるN極(S極)の第1磁極部53とN極(S極)の第2磁極部63とが軸方向に揃う状態と、異なる極性であるN極(S極)の第1磁極部53とS極(N極)の第2磁極部63とが軸方向に揃う状態との中間状態にある。したがって、各固定回転子50の第1永久磁石52と可動回転子60の第2永久磁石とによる界磁磁束は、中程度の状態となる。 FIG. 4 corresponds to an example of the state of the rotor 30 when the field magnetic flux is medium. At this time, the movable rotor 60 rotates relative to the fixed rotors 50 and 50. The first magnetic pole portion 53 of each fixed rotor 50 and the second magnetic pole portion 63 of the movable rotor 60 are the same polarity as the first magnetic pole portion 53 of the N pole (S pole) and the N pole (S pole). The second magnetic pole portion 63 is aligned in the axial direction, and the first magnetic pole portion 53 of N pole (S pole) and the second magnetic pole portion 63 of S pole (N pole) having different polarities are aligned in the axial direction. It is in an intermediate state with the state. Accordingly, the field magnetic flux generated by the first permanent magnet 52 of each fixed rotor 50 and the second permanent magnet of the movable rotor 60 is in an intermediate state.
 図5は、界磁磁束が最小のときの回転子30の状態の一例に対応する。このときには、各固定回転子50と可動回転子60との異なる極性の磁極部、つまり各固定回転子50のN極(S極)の第1磁極部53と可動回転子60のS極(N極)の第2磁極部63とが軸方向に揃う(相対角度が電気角で180度となる)。これにより、各固定回転子50の第1永久磁石52と可動回転子60の第2永久磁石とによる界磁磁束は、各固定回転子50の第1鉄心51と可動回転子60の第2鉄心61との間で短絡し、最小の状態となる。その結果、回転子30に発生する鉄損の低減を十分行うことができ、モータ3FLは、高回転運転領域でも高効率で作動することができる。 FIG. 5 corresponds to an example of the state of the rotor 30 when the field magnetic flux is minimum. At this time, the magnetic pole portions having different polarities between the fixed rotor 50 and the movable rotor 60, that is, the first magnetic pole portion 53 of the N pole (S pole) of each fixed rotor 50 and the S pole (N of the movable rotor 60). The second magnetic pole portion 63 of the pole is aligned in the axial direction (the relative angle is 180 degrees in terms of electrical angle). Thereby, the field magnetic flux by the 1st permanent magnet 52 of each fixed rotor 50 and the 2nd permanent magnet of the movable rotor 60 is the 1st iron core 51 of each fixed rotor 50, and the 2nd iron core of the movable rotor 60. Short-circuit with 61 and become the minimum state. As a result, the iron loss generated in the rotor 30 can be sufficiently reduced, and the motor 3FL can operate with high efficiency even in the high rotation operation region.
 以上のように、極性の等しい磁極部53,63が軸方向に揃うときに界磁磁束(誘起電圧)は最大となり、極性の異なる磁極部53,63が軸方向に揃うときに界磁磁束(誘起電圧)は最小となる。なお、最大の誘起電圧に対する現在の誘起電圧の比率、つまり、極性の等しい磁極部53,63が並び磁界が最も強い状態における誘起電圧定数に対する、磁極部53,63が相対的に回動した状態における誘起電圧定数の割合を、「界磁率」という。 As described above, the field magnetic flux (induced voltage) becomes maximum when the magnetic pole portions 53 and 63 having the same polarity are aligned in the axial direction, and the field magnetic flux (when the magnetic pole portions 53 and 63 having different polarities are aligned in the axial direction. (Induced voltage) is minimized. The ratio of the current induced voltage to the maximum induced voltage, that is, the state in which the magnetic pole parts 53 and 63 are relatively rotated with respect to the induced voltage constant in the state where the magnetic pole parts 53 and 63 having the same polarity are aligned and the magnetic field is strongest. The ratio of the induced voltage constant in is referred to as “field susceptibility”.
 なお、上記で説明したモータ3FLの構成は、あくまで一例であり、界磁磁束が変化するような構成であれば上記以外の構成あってもよい(他のモータ3FR~3RRも同様)。例えば、回転子30の磁極部53,54は、制御モータ49により相対的に回動される場合に限定されるものではなく、油圧制御等により相対的に回動されてもよい。また、回転子30の軸方向への分割数は、3に限定されるものではなく、他の数であってもよい。あるいは、回転子30は、分割されていなくてもよい。 Note that the configuration of the motor 3FL described above is merely an example, and any configuration other than the above may be used as long as the field magnetic flux changes (the same applies to the other motors 3FR to 3RR). For example, the magnetic pole portions 53 and 54 of the rotor 30 are not limited to being relatively rotated by the control motor 49, and may be relatively rotated by hydraulic control or the like. Further, the number of divisions of the rotor 30 in the axial direction is not limited to 3, and may be other numbers. Alternatively, the rotor 30 may not be divided.
 <3.コントローラの構成の例>
 次に、図6を参照しつつ、コントローラ5の構成の一例について、具体的に機能ブロックで実装した例について説明する。
<3. Example of controller configuration>
Next, with reference to FIG. 6, an example of the configuration of the controller 5 that is specifically implemented with functional blocks will be described.
 図6に示すように、コントローラ5は、トルク制御部501と、トルク判定部502と、温度推定部503と、温度判定部504と、状態判定部505(第1状態判定部及び第2状態判定部の一例に相当)と、指令補正部506(第1指令補正部及び第2指令補正部の一例に相当)と、界磁制御部507(第1界磁制御部及び第2界磁制御部の一例に相当)と、マップ記録部508と、インバータ部509とを有する。これらコントローラ5の各機能部は、コントローラ5に備えられたCPU(図示せず)が実行するプログラム、又は、コントローラ5に備えられた制御装置(図示せず)により実装可能である。制御装置は、例えばASICやFPGA等の特定の用途向けに構築された専用集積回路やその他の電気回路等で構成される。 As shown in FIG. 6, the controller 5 includes a torque control unit 501, a torque determination unit 502, a temperature estimation unit 503, a temperature determination unit 504, and a state determination unit 505 (first state determination unit and second state determination). A command correction unit 506 (corresponding to an example of a first command correction unit and a second command correction unit), a field control unit 507 (corresponding to an example of a first field control unit and a second field control unit), and The map recording unit 508 and the inverter unit 509 are included. Each functional unit of the controller 5 can be implemented by a program executed by a CPU (not shown) provided in the controller 5 or a control device (not shown) provided in the controller 5. The control device is configured by a dedicated integrated circuit or other electrical circuit constructed for a specific application such as ASIC or FPGA.
 トルク制御部501は、例えばアクセルペダル(図示せず)の開度や車速等に基づいて、モータ3FL~3RRそれぞれへのトルク指令を生成する。 The torque control unit 501 generates a torque command to each of the motors 3FL to 3RR based on, for example, the opening degree of an accelerator pedal (not shown), the vehicle speed, and the like.
 トルク判定部502は、モータ3の最大トルクに基づいて、トルク制御部501が生成した当該モータ3へのトルク指令を補正した場合における全てのモータ3へのトルク指令の総和が、当該モータ3へのトルク指令を補正しない場合におけるトルク指令の総和を維持できるか否かを判定する。なお、モータ3の最大トルクは、コントローラ5に予め記録されている。 Based on the maximum torque of the motor 3, the torque determination unit 502 corrects the torque command to the motor 3 generated by the torque control unit 501. It is determined whether or not the total torque command when the torque command is not corrected can be maintained. Note that the maximum torque of the motor 3 is recorded in the controller 5 in advance.
 温度推定部503は、温度センサ6の検出温度等に基づいて、検出後のモータ3の温度を推定する。具体的には、温度推定部503は、モータ3に係る温度センサ6の単位時間当たりの検出温度の変化量を算出し、算出した変化量に基づいて、所定時間後のモータ3の温度を推定する。 The temperature estimation unit 503 estimates the temperature of the motor 3 after detection based on the temperature detected by the temperature sensor 6 or the like. Specifically, the temperature estimation unit 503 calculates the change amount of the detected temperature per unit time of the temperature sensor 6 related to the motor 3, and estimates the temperature of the motor 3 after a predetermined time based on the calculated change amount. To do.
 温度判定部504は、後述のように指令補正部506がトルク指令を減少側に補正したモータ3に係る温度センサ6の検出温度に基づいて、当該モータ3に係る検出温度が許容温度域の上限値を下回ったか否かを判定する。許容温度域とは、モータ3が熱的不具合(例えば焼き付き等)を生じないように動作することができる温度範囲である。許容温度域の上限値は、後述の推奨温度域の上限値よりも高い。なお、許容温度域は、コントローラ5に予め記録されている。 As described later, the temperature determination unit 504 is based on the detected temperature of the temperature sensor 6 related to the motor 3 corrected by the command correction unit 506 so that the torque command is reduced, and the detected temperature related to the motor 3 is the upper limit of the allowable temperature range. It is determined whether or not the value is below. The allowable temperature range is a temperature range in which the motor 3 can operate so as not to cause a thermal failure (for example, seizure or the like). The upper limit value of the allowable temperature range is higher than the upper limit value of the recommended temperature range described later. The allowable temperature range is recorded in the controller 5 in advance.
 状態判定部505は、温度センサ6の検出温度に基づいて、モータ3の熱的状態が適切か否かを判定する。この際、状態判定部505は、温度センサ6FL~6RRそれぞれの検出温度に基づいて、モータ3FL~3RRのうちの1つ以上のモータ3に係る検出温度が推奨温度域を超えているか否かを判定する。推奨温度域とは、モータ3が動作するのに理想的な温度範囲である。なお、推奨温度域は、コントローラ5に予め記録されている。また、状態判定部505は、温度推定部503が推定したモータ3の温度、つまり推定温度に基づいて、モータ3をトルク制御部501で生成された当該モータ3へのトルク指令に対応して駆動する場合に、当該推定温度が許容温度域を超えるか否かを判定する。そして、状態判定部505は、温度推定部503による推定温度が許容温度域を超える場合に、モータ3の熱的状態が適切でないと判定する。なお、許容温度域の上限値は、特に限定されるものではないが、例えば150度に設定される。 The state determination unit 505 determines whether the thermal state of the motor 3 is appropriate based on the temperature detected by the temperature sensor 6. At this time, the state determination unit 505 determines whether or not the detected temperature related to one or more of the motors 3FL to 3RR exceeds the recommended temperature range based on the detected temperatures of the temperature sensors 6FL to 6RR. judge. The recommended temperature range is an ideal temperature range for the motor 3 to operate. The recommended temperature range is recorded in the controller 5 in advance. The state determination unit 505 drives the motor 3 in response to the torque command to the motor 3 generated by the torque control unit 501 based on the temperature of the motor 3 estimated by the temperature estimation unit 503, that is, the estimated temperature. When it does, it determines whether the said estimated temperature exceeds an allowable temperature range. The state determination unit 505 determines that the thermal state of the motor 3 is not appropriate when the temperature estimated by the temperature estimation unit 503 exceeds the allowable temperature range. The upper limit value of the allowable temperature range is not particularly limited, but is set to 150 degrees, for example.
 指令補正部506は、状態判定部505によりモータ3FL~3RRのうちのいずれか1つ以上のモータ3の熱的状態が適切でないと判定された場合に、当該モータ3へのトルク指令を減少側に補正すると共に、当該補正をしない場合の電動車両1のヨーモーメントが維持されるように、残りのモータ3へのトルク指令を補正する。 The command correction unit 506 reduces the torque command to the motor 3 when the state determination unit 505 determines that the thermal state of any one or more of the motors 3FL to 3RR is not appropriate. And the torque command to the remaining motor 3 is corrected so that the yaw moment of the electric vehicle 1 when the correction is not performed is maintained.
 この際、指令補正部506は、トルク判定部502により、上記モータ3へのトルク指令を補正した場合におけるトルク指令の総和が、当該モータ3へのトルク指令を補正しない場合におけるトルク指令の総和を維持できると判定された場合には、トルク指令の総和が維持されるように、上記残りのモータ3へのトルク指令を補正する。一方、指令補正部506は、トルク判定部502により、上記モータ3へのトルク指令を補正した場合におけるトルク指令の総和が、当該モータ3へのトルク指令を補正しない場合におけるトルク指令の総和を維持できないと判定された場合には、上記残りのモータ3のうち、電動車両1の幅方向においてトルク指令を減少側に補正したモータ3と反対側に位置するモータ3へのトルク指令を減少側に補正する。 At this time, the command correction unit 506 calculates the total torque command when the torque command to the motor 3 is not corrected by the torque determination unit 502 when the torque command to the motor 3 is corrected. If it is determined that the torque can be maintained, the torque commands to the remaining motors 3 are corrected so that the total torque command is maintained. On the other hand, the command correction unit 506 maintains the total torque command when the torque command to the motor 3 is not corrected by the torque determination unit 502 when the torque command to the motor 3 is corrected. If it is determined that it is not possible, among the remaining motors 3, the torque command to the motor 3 located on the opposite side of the motor 3, which has been corrected to the decrease side in the width direction of the electric vehicle 1, is reduced. to correct.
 また、指令補正部506は、温度判定部504により、トルク指令を減少側に補正したモータ3の検出温度が許容温度域の上限値を下回ったと判定された場合に、当該モータ3のトルク指令を徐々に復帰させる。 In addition, when the temperature determination unit 504 determines that the detected temperature of the motor 3 that has corrected the torque command to the decrease side is lower than the upper limit value of the allowable temperature range, the command correction unit 506 outputs the torque command of the motor 3. Restore gradually.
 なお、指令補正部506は、ヨーレートセンサ7が検出したヨーレートに基づいて、上記トルク指令の補正をフィードバック制御により微調整してもよい。この場合には、電動車両1のヨーレート挙動の維持精度を高めることができる。 The command correction unit 506 may finely adjust the correction of the torque command by feedback control based on the yaw rate detected by the yaw rate sensor 7. In this case, the maintenance accuracy of the yaw rate behavior of the electric vehicle 1 can be increased.
 界磁制御部507は、指令補正部506により補正されたモータ3FL~3RRそれぞれへのトルク指令に基づいて、モータ3FL~3RRの界磁磁束を個別に制御する。この際、界磁制御部507は、上記補正されたモータ3FL~3RRそれぞれへのトルク指令に基づいて、モータ3FL~3RRそれぞれの上記制御モータ49を制御することで、モータ3FL~3RRの界磁磁束を個別に制御する。 The field control unit 507 individually controls the field magnetic fluxes of the motors 3FL to 3RR based on the torque commands to the motors 3FL to 3RR corrected by the command correction unit 506. At this time, the field controller 507 controls the control motor 49 of each of the motors 3FL to 3RR based on the corrected torque command to each of the motors 3FL to 3RR, so that the field magnetic flux of the motors 3FL to 3RR is obtained. Control individually.
 より具体的には、界磁制御部507は、上記回転速度センサ25FL~25RRそれぞれが検出した回転速度と、上記補正されたモータ3FL~3RRそれぞれへのトルク指令とに基づいて、マップ(図示せず)を参照してデータを読み出すマップ制御を行う。なお、マップは、マップ記録部508に予め記録されている。界磁制御部507が読み出すデータは、モータ3FL~3RRそれぞれに係る、上記界磁率の目標値、上記磁極部53,63が結合して作り出す磁極位置に対する上記固定子巻線12に通電する電流の位相角の目標値、及び当該電流の大きさの目標値である。なお、電流の位相角が大きくなるほど、回転子30の磁極に対し固定子10が発する回転電磁力が進角すると共に、弱め界磁力が強まる。 More specifically, the field control unit 507 determines a map (not shown) based on the rotation speed detected by each of the rotation speed sensors 25FL to 25RR and the torque command to each of the corrected motors 3FL to 3RR. The map control for reading data with reference to is performed. The map is recorded in advance in the map recording unit 508. The data read out by the field control unit 507 is the phase angle of the current supplied to the stator winding 12 with respect to the target value of the magnetic field factor and the magnetic pole position generated by the combination of the magnetic pole parts 53 and 63 for each of the motors 3FL to 3RR. And the target value of the magnitude of the current. As the phase angle of the current increases, the rotational electromagnetic force generated by the stator 10 with respect to the magnetic poles of the rotor 30 advances and the field weakening strength increases.
 図7A,Bに、モータ3FLの最大効率ベクトル制御時の制御数値マップ測定値の一例を示す。図7Aには、モータ3FLの最大効率ベクトル制御時の、モータ3FLの回転速度を横軸、トルク指令を縦軸に取って、上記界磁率の一例を示している。図7Bには、モータ3FLの最大効率ベクトル制御時の、モータ3FLの回転速度を横軸、トルク指令を縦軸に取って、上記電流の位相角の一例を示している。 FIGS. 7A and 7B show an example of control numerical value map measurement values at the time of maximum efficiency vector control of the motor 3FL. FIG. 7A shows an example of the above-described field ratio, with the horizontal axis representing the rotational speed of the motor 3FL and the vertical axis representing the torque command during the maximum efficiency vector control of the motor 3FL. FIG. 7B shows an example of the phase angle of the current with the horizontal axis representing the rotational speed of the motor 3FL and the vertical axis representing the torque command during the maximum efficiency vector control of the motor 3FL.
 図7A,Bに示す例では、界磁率を、モータ3FLの回転速度が速いほど小さくし、またトルク指令が低いほど小さくすると共に、電流の位相角を、モータ3FLの回転速度が速いほど大きくし、またトルク指令が高いほど大きくすることで、モータ3FLの効率を最大とすることができる。例えば、モータ3FLの回転速度が16000rev/min、トルク指令が70%である場合には、界磁率が69%となるように磁極部53,63の相対角度を調整すると共に、電流の位相角を78°として固定子巻線12に通電することで、モータ3FLの効率を最大とすることができる。 In the example shown in FIGS. 7A and 7B, the field ratio is decreased as the rotation speed of the motor 3FL is increased, and is decreased as the torque command is decreased, and the phase angle of the current is increased as the rotation speed of the motor 3FL is increased. Moreover, the efficiency of the motor 3FL can be maximized by increasing the torque command as it is higher. For example, when the rotation speed of the motor 3FL is 16000 rev / min and the torque command is 70%, the relative angle of the magnetic pole portions 53 and 63 is adjusted so that the field ratio is 69%, and the phase angle of the current is set. By energizing the stator winding 12 at 78 °, the efficiency of the motor 3FL can be maximized.
 図8に、モータ3FLの最大効率ベクトル制御を再現するためのデータが記録されたマップの一例を示す。図8では、モータ3FLの回転速度を横軸、トルク指令を縦軸に取って、モータ3FLの最大効率ベクトル制御時の、界磁率、電流の位相角、及び電流の大きさが記録された場所の一例を示している。 FIG. 8 shows an example of a map in which data for reproducing the maximum efficiency vector control of the motor 3FL is recorded. In FIG. 8, the horizontal axis represents the rotational speed of the motor 3FL and the vertical axis represents the torque command, and the field at which the field ratio, the current phase angle, and the magnitude of the current were recorded during the maximum efficiency vector control of the motor 3FL. An example is shown.
 図8に示す例では、例えば、モータ3FLの回転速度がNmからNm+1の間にあり、トルク指令がTnからTn+1の間にある場合には、Dmnの場所からデータが読み出される。Dmnの場所には、界磁率αmn、電流の位相角βmn、及び電流の大きさImnのデータが記録されている。なお、マップには、例えばモータ3FLが運転される全ての回転速度とトルク指令とに対するデータが記録されている。 In the example shown in FIG. 8, for example, when the rotational speed of the motor 3FL is between Nm and Nm + 1 and the torque command is between Tn and Tn + 1, data is read from the location of Dmn. In the place of Dmn, data of a field factor αmn, a current phase angle βmn, and a current magnitude Imn are recorded. In the map, for example, data for all rotation speeds and torque commands at which the motor 3FL is operated is recorded.
 図6に示すように、界磁制御部507は、回転速度センサ25FL~25RRそれぞれが検出した回転速度と、上記補正されたモータ3FL~3RRそれぞれへのトルク指令とに基づいて、上記マップの対応する場所に記録されたモータ3FL~3RRそれぞれに係る界磁率、電流の位相角、電流の大きさのデータを、それらの目標値として読み出す。そして、界磁制御部507は、読み出したモータ3FL~3RRそれぞれに係る界磁率の目標値を実現するための電力を、モータ3FL~3RRそれぞれの制御モータ49に供給し、制御モータ49により上記磁極部53,63の相対角度を調整することで、モータ3FL~3RRの界磁磁束を個別に制御する。 As shown in FIG. 6, the field control unit 507 determines the corresponding location of the map based on the rotational speed detected by each of the rotational speed sensors 25FL to 25RR and the torque command to each of the corrected motors 3FL to 3RR. Are read as the target values of the magnetic field ratio, current phase angle, and current magnitude related to each of the motors 3FL to 3RR. Then, the field control unit 507 supplies the read electric power for realizing the target values of the magnetic fields related to the motors 3FL to 3RR to the control motors 49 of the motors 3FL to 3RR. , 63 are adjusted to individually control the field magnetic fluxes of the motors 3FL to 3RR.
 図9に、モータ3FLの磁極部53,63の相対角度に対する界磁率の特性の一例を示す。図9では、モータ3FLの磁極部53,63の相対角度を横軸、界磁率を縦軸に取って、磁極部53,63が並び磁界が最も強い状態における誘起電圧定数の大きさを100%とした場合における、磁極部53,63の相対角度に対する界磁率の特性の一例を示している。図9に示す例では、磁極部53,63の相対角度を0°から120°まで変化させることで、界磁率を100%から30%まで変化できることが示されている。 FIG. 9 shows an example of the magnetic field characteristics with respect to the relative angles of the magnetic pole portions 53 and 63 of the motor 3FL. In FIG. 9, the relative angle of the magnetic pole portions 53 and 63 of the motor 3FL is taken on the horizontal axis, and the magnetic field ratio is taken on the vertical axis. In this case, an example of the magnetic field characteristics with respect to the relative angles of the magnetic pole portions 53 and 63 is shown. In the example shown in FIG. 9, it is shown that the field ratio can be changed from 100% to 30% by changing the relative angle of the magnetic pole portions 53 and 63 from 0 ° to 120 °.
 図6に示すように、インバータ部509は、モータ3FL~3RRそれぞれへのトルク指令に基づいて、上記バッテリ8からの直流電力を交流電力に変換し、モータ3FL~3RRそれぞれの固定子巻線12に電力を供給する。これにより、インバータ部509は、モータ3FL~3RRそれぞれを駆動する。この際、インバータ部509は、界磁制御部507により読み出されたモータ3FL~3RRそれぞれに係る電流の位相角の目標値及び電流の大きさの目標値に基づいて、バッテリ8からの直流電力を交流電力に変換し、モータ3FL~3RRそれぞれの固定子巻線12に電力を供給する。 As shown in FIG. 6, the inverter unit 509 converts the DC power from the battery 8 into AC power based on torque commands to the motors 3FL to 3RR, and the stator windings 12 of the motors 3FL to 3RR. To supply power. Thus, inverter unit 509 drives each of motors 3FL to 3RR. At this time, the inverter unit 509 converts the DC power from the battery 8 to AC based on the target value of the current phase angle and the target value of the magnitude of the current related to each of the motors 3FL to 3RR read by the field control unit 507. The electric power is converted into electric power, and electric power is supplied to the stator windings 12 of the motors 3FL to 3RR.
 なお、上記で説明したコントローラ5の構成は、あくまで一例であり、モータ3FL~3RRの界磁磁束を個別に変化させることで電動車両1のヨーモーメントを維持しつつ車輪2FL~2RRの駆動力分配を変化させることが可能な構成であれば上記以外の構成であってもよい。例えば、コントローラ5の各機能部の処理内容は、上記で説明した内容に限定されるものではなく、他の内容であってもよい。また、コントローラ5の各機能部の切り分けは、上記で説明した切り分けに限定されるものではなく、上記以外の切り分けであってもよい。 The configuration of the controller 5 described above is merely an example, and the driving force distribution of the wheels 2FL to 2RR is maintained while maintaining the yaw moment of the electric vehicle 1 by individually changing the field magnetic flux of the motors 3FL to 3RR. Any configuration other than the above may be used as long as the configuration can be changed. For example, the processing content of each functional unit of the controller 5 is not limited to the content described above, and may be other content. Further, the separation of each functional unit of the controller 5 is not limited to the separation described above, and may be other than the above.
 <4.電動車両の駆動力制御方法の例>
 次に、図10を参照しつつ、コントローラ5を用いた電動車両1の駆動力制御方法の一例について説明する。
<4. Example of driving force control method for electric vehicle>
Next, an example of a driving force control method for the electric vehicle 1 using the controller 5 will be described with reference to FIG.
 図10に示すように、まずステップS0で、トルク制御部501は、例えばアクセルペダルの開度や車速等に基づいて、モータ3FL~3RRそれぞれへのトルク指令を生成する。 As shown in FIG. 10, first in step S0, the torque control unit 501 generates a torque command to each of the motors 3FL to 3RR based on, for example, the opening degree of the accelerator pedal, the vehicle speed, and the like.
 その後、ステップS1で、コントローラ5は、温度センサ6FL~6RRそれぞれの検出温度を取得する。 Thereafter, in step S1, the controller 5 acquires the detected temperatures of the temperature sensors 6FL to 6RR.
 そして、ステップS2で、状態判定部505は、温度センサ6FL~6RRそれぞれの検出温度に基づいて、モータ3FL~3RRのうちの1つ以上のモータ3に係る検出温度が推奨温度域を超えているか否かを判定する。いずれのモータ3に係る検出温度も推奨温度域を越えていない場合には、ステップS2の判定は満たされず、いずれの温度センサ6の検出温度も許容温度域の上限値よりも十分低く、いずれのモータ3も熱的不具合を生じるおそれがないとみなされ、ステップS3に移る。 In step S2, state determination unit 505 determines whether the detected temperature related to one or more of motors 3FL to 3RR exceeds the recommended temperature range based on the detected temperatures of temperature sensors 6FL to 6RR. Determine whether or not. If the detected temperature related to any motor 3 does not exceed the recommended temperature range, the determination in step S2 is not satisfied, and the detected temperature of any temperature sensor 6 is sufficiently lower than the upper limit value of the allowable temperature range. The motor 3 is also regarded as having no risk of thermal failure, and the process proceeds to step S3.
 ステップS3では、指令補正部506は、モータ3FL~3RRそれぞれへのトルク指令を補正せずに、界磁制御部507を介してインバータ部509に出力する。 In step S3, the command correction unit 506 outputs the torque command to each of the motors 3FL to 3RR to the inverter unit 509 via the field control unit 507 without correcting the torque command.
 そして、ステップS31で、インバータ部509は、指令補正部506からのモータ3FL~3RRそれぞれへのトルク指令に基づいて、バッテリ8からの直流電力を交流電力に変換し、モータ3FL~3RRそれぞれの固定子巻線12に電力を供給することで、モータ3FL~3RRそれぞれを駆動する。その後、このフローチャートに示す処理が終了される。 In step S31, inverter unit 509 converts DC power from battery 8 into AC power based on torque commands from command correction unit 506 to motors 3FL to 3RR, and fixes motors 3FL to 3RR. By supplying electric power to the child winding 12, each of the motors 3FL to 3RR is driven. Thereafter, the processing shown in this flowchart is terminated.
 一方、ステップS2で、1つ以上のモータ3に係る検出温度が推奨温度域を越えている場合には、ステップS2の判定が満たされて、ステップS4に移る。 On the other hand, if the detected temperature related to one or more motors 3 exceeds the recommended temperature range in step S2, the determination in step S2 is satisfied, and the process proceeds to step S4.
 ステップS21では、温度推定部503は、検出温度が推奨温度域を越えているモータ3に係る温度センサ6の単位時間当たりの検出温度の変化量を算出する。例えば、温度推定部503は、前回のフローチャート実行時のステップS1で取得された当該モータ3に係る検出温度と今回のフローチャート実行時のステップS1で取得された当該モータ3に係る検出温度との変化量をフローチャート実行時間で除した温度変化率(上昇率)を算出する。そして、温度推定部503は、算出した温度変化率に基づいて、所定時間後の当該モータ3に係る温度を推定する。 In step S21, the temperature estimation unit 503 calculates the amount of change in the detected temperature per unit time of the temperature sensor 6 related to the motor 3 whose detected temperature exceeds the recommended temperature range. For example, the temperature estimation unit 503 changes between the detected temperature related to the motor 3 acquired in step S1 when the previous flowchart is executed and the detected temperature related to the motor 3 acquired in step S1 when the current flowchart is executed. A temperature change rate (rate of increase) obtained by dividing the amount by the flowchart execution time is calculated. And the temperature estimation part 503 estimates the temperature which concerns on the said motor 3 after predetermined time based on the calculated temperature change rate.
 その後、ステップS4で、状態判定部505は、温度推定部503の推定温度に基づいて、検出温度が推奨温度域を越えているモータ3を上記ステップS0で生成された当該モータ3へのトルク指令に対応して駆動する場合に、当該推定温度が許容温度域を越えるか否かを判定する。前方の車輪2に対応するモータ3(以下「前輪モータ3」ともいう。)に係る推定温度、及び、後方の車輪2に対応するモータ3(以下「後輪モータ3」ともいう。)に係る推定温度の両方が許容温度域を越える場合には、ステップS5に移る。 Thereafter, in step S4, the state determination unit 505 determines, based on the estimated temperature of the temperature estimation unit 503, the motor 3 whose detected temperature exceeds the recommended temperature range, which is generated in step S0. In the case of driving corresponding to the above, it is determined whether or not the estimated temperature exceeds the allowable temperature range. The estimated temperature of the motor 3 corresponding to the front wheel 2 (hereinafter also referred to as “front wheel motor 3”) and the motor 3 corresponding to the rear wheel 2 (hereinafter also referred to as “rear wheel motor 3”). If both the estimated temperatures exceed the allowable temperature range, the process proceeds to step S5.
 ステップS5では、指令補正部506は、モータ3FL~3RRそれぞれへのトルク指令を一律の割合で減少側に補正する。 In step S5, the command correction unit 506 corrects the torque commands to the motors 3FL to 3RR to the decreasing side at a uniform rate.
 そして、ステップS51で、インバータ部509は、上記ステップS5で補正されたモータ3FL~3RRそれぞれへのトルク指令に基づいて、バッテリ8からの直流電力を交流電力に変換し、モータ3FL~3RRそれぞれの固定子巻線12に電力を供給する。これにより、インバータ部509は、モータ3FL~3RRそれぞれを駆動する。その後、このフローチャートに示す処理が終了される。 In step S51, the inverter unit 509 converts the DC power from the battery 8 into AC power based on the torque command to each of the motors 3FL to 3RR corrected in step S5, and each of the motors 3FL to 3RR. Power is supplied to the stator winding 12. Thus, inverter unit 509 drives each of motors 3FL to 3RR. Thereafter, the processing shown in this flowchart is terminated.
 図11は、上記ステップS5で実行するトルク指令の補正の一例を模式的に表す模式図である。図11に示す例では、上記ステップS5でモータ3FL~3RRそれぞれへのトルク指令が一律の割合で減少側に補正されている。 FIG. 11 is a schematic diagram schematically showing an example of torque command correction executed in step S5. In the example shown in FIG. 11, the torque command to each of the motors 3FL to 3RR is corrected to the decreasing side at a uniform rate in step S5.
 図10に示すように、ステップS4で、前輪モータ3に係る推定温度及び後輪モータ3に係る推定温度のいずれか一方が許容温度域を越える場合には、ステップS6に移る。 As shown in FIG. 10, in step S4, when one of the estimated temperature related to the front wheel motor 3 and the estimated temperature related to the rear wheel motor 3 exceeds the allowable temperature range, the process proceeds to step S6.
 ステップS6では、コントローラ5は、推定温度が許容温度域を越えるモータ3が、前輪モータ3であるか後輪モータ3であるかを判定する。推定温度が許容温度域を越えるモータ3が前輪モータ3である場合には、ステップS6の判定が満たされて、ステップS7に移る。 In step S6, the controller 5 determines whether the motor 3 whose estimated temperature exceeds the allowable temperature range is the front wheel motor 3 or the rear wheel motor 3. When the motor 3 whose estimated temperature exceeds the allowable temperature range is the front wheel motor 3, the determination in step S6 is satisfied, and the process proceeds to step S7.
 ステップS7では、指令補正部506は、前輪モータ3FL,3FRのうち、推定温度が許容温度域を越える少なくとも一方の前輪モータ3へのトルク指令を所定値αだけ減少側に補正する。 In step S7, the command correction unit 506 corrects the torque command to at least one front wheel motor 3 of which the estimated temperature exceeds the allowable temperature range among the front wheel motors 3FL and 3FR to the decrease side by a predetermined value α.
 その後、ステップS8で、トルク判定部502は、後輪モータ3RL,3RRの最大トルクに基づいて、後輪モータ3RL,3RRへのトルク指令を補正した場合における全てのモータ3へのトルク指令の総和を算出する。そして、トルク判定部502は、算出したトルク指令の総和と、後輪モータ3RL,3RRへのトルク指令を補正しない場合におけるトルク指令の総和との差を算出する。そして、トルク判定部502は、算出した差に基づいて、上記トルク指令を補正した場合におけるトルク指令の総和が上記トルク指令を補正しない場合におけるトルク指令の総和を維持できるか否か、つまり後輪モータ3RL,3RRへのトルク指令を上記所定値αだけ増大側に補正可能か否かを判定する。上記トルク指令を補正した場合におけるトルク指令の総和が上記トルク指令を補正しない場合におけるトルク指令の総和を維持できる、つまり後輪モータ3RL,3RRへのトルク指令を所定値αだけ増大側に補正可能である場合には、ステップS8の判定が満たされて、ステップS9に移る。 Thereafter, in step S8, the torque determination unit 502 sums the torque commands to all the motors 3 when the torque commands to the rear wheel motors 3RL and 3RR are corrected based on the maximum torque of the rear wheel motors 3RL and 3RR. Is calculated. Then, torque determination unit 502 calculates the difference between the calculated total torque command and the total torque command when the torque commands to rear wheel motors 3RL and 3RR are not corrected. Based on the calculated difference, the torque determination unit 502 determines whether or not the total torque command when the torque command is corrected can maintain the total torque command when the torque command is not corrected, that is, the rear wheel. It is determined whether or not the torque command to the motors 3RL and 3RR can be corrected to the increase side by the predetermined value α. When the torque command is corrected, the sum of the torque commands can maintain the sum of the torque commands when the torque command is not corrected, that is, the torque commands to the rear wheel motors 3RL and 3RR can be corrected to an increase side by a predetermined value α. If YES, the determination at step S8 is satisfied, and the routine goes to step S9.
 ステップS9では、指令補正部506は、後輪モータ3RL,3RRのうち、電動車両1の幅方向において上記ステップS7でトルク指令が減少側に補正された前輪モータ3と同じ側に位置する後輪モータ3へのトルク指令を所定値αだけ増大側に補正する。これにより、当該後輪モータ3へのトルク指令を補正した場合におけるトルク指令の総和が、当該後輪モータ3へのトルク指令を補正しない場合におけるトルク指令の総和を維持される。その後、後述のステップS141に移る。なお、上記ステップS7で前輪モータ3FL,3FRそれぞれへのトルク指令が減少側に補正された場合には、このステップS9では、後輪モータ3RL,3RRそれぞれへのトルク指令が増大側に補正される。 In step S9, the command correction unit 506 is a rear wheel located on the same side of the rear wheel motors 3RL, 3RR as the front wheel motor 3 in which the torque command is corrected to the reduction side in step S7 in the width direction of the electric vehicle 1. The torque command to the motor 3 is corrected to the increase side by a predetermined value α. As a result, the total torque command when the torque command to the rear wheel motor 3 is corrected is maintained as the total torque command when the torque command to the rear wheel motor 3 is not corrected. Thereafter, the process proceeds to step S141 described later. When the torque command to each of the front wheel motors 3FL and 3FR is corrected to the decrease side in step S7, the torque command to each of the rear wheel motors 3RL and 3RR is corrected to the increase side in this step S9. .
 図12は、上記ステップS7,S9で実行するトルク指令の補正の一例を模式的に表す模式図である。図12に示す例では、上記ステップS7で前輪モータ3FLへのトルク指令が減少側に補正され、上記ステップS9で後輪モータ3RLへのトルク指令が増大側に補正されている。 FIG. 12 is a schematic diagram schematically showing an example of torque command correction executed in steps S7 and S9. In the example shown in FIG. 12, the torque command to the front wheel motor 3FL is corrected to the decrease side in step S7, and the torque command to the rear wheel motor 3RL is corrected to the increase side in step S9.
 一方、ステップS8で、上記トルク指令を補正した場合におけるトルク指令の総和が上記トルク指令を補正しない場合におけるトルク指令の総和を維持できない、つまり後輪モータ3RL,3RRへのトルク指令を所定値αだけ増大側に補正不可能である場合には、ステップS8の判定は満たされず、ステップS10に移る。 On the other hand, in step S8, the sum of the torque commands when the torque command is corrected cannot maintain the sum of the torque commands when the torque command is not corrected, that is, the torque commands to the rear wheel motors 3RL and 3RR are set to a predetermined value α. If correction cannot be made to the increase side, the determination in step S8 is not satisfied, and the routine goes to step S10.
 ステップS10では、指令補正部506は、後輪モータ3RL,3RRのうち、電動車両1の幅方向において上記ステップS7でトルク指令が減少側に補正された前輪モータ3と反対側に位置する後輪モータ3へのトルク指令を所定値αだけ減少側に補正する。その後、後述のステップS141に移る。 In step S10, the command correction unit 506 is located on the opposite side of the rear wheel motors 3RL, 3RR on the side opposite to the front wheel motor 3 in which the torque command is corrected to the decrease side in step S7 in the width direction of the electric vehicle 1. The torque command to the motor 3 is corrected to the decrease side by a predetermined value α. Thereafter, the process proceeds to step S141 described later.
 図13は、上記ステップS7,S10で実行するトルク指令の補正の一例を模式的に表す模式図である。図13に示す例では、上記ステップS7で前輪モータ3FLへのトルク指令が減少側に補正され、上記ステップS10で後輪モータ3RRへのトルク指令が減少側に補正されている。 FIG. 13 is a schematic diagram schematically showing an example of torque command correction executed in steps S7 and S10. In the example shown in FIG. 13, the torque command to the front wheel motor 3FL is corrected to the decrease side in step S7, and the torque command to the rear wheel motor 3RR is corrected to the decrease side in step S10.
 一方、ステップS6で、推定温度が許容温度域を越えるモータ3が後輪モータ3である場合には、ステップS6の判定が満たされず、ステップS11に移る。 On the other hand, when the motor 3 whose estimated temperature exceeds the allowable temperature range is the rear wheel motor 3 in step S6, the determination in step S6 is not satisfied, and the process proceeds to step S11.
 ステップS11では、指令補正部506は、後輪モータ3RL,3RRのうち、推定温度が許容温度域を越える少なくとも一方の後輪モータ3へのトルク指令を所定値αだけ減少側に補正する。 In step S11, the command correction unit 506 corrects the torque command to at least one of the rear wheel motors 3RL, 3RR, which has an estimated temperature exceeding the allowable temperature range, to the decrease side by a predetermined value α.
 そして、ステップS12で、トルク判定部502は、前輪モータ3LL,3LRの最大トルクに基づいて、前輪モータ3LL,3LRへのトルク指令を補正した場合における全てのモータ3へのトルク指令の総和を算出する。そして、トルク判定部502は、算出したトルク指令の総和と、前輪モータ3LL,3LRへのトルク指令を補正しない場合におけるトルク指令の総和との差を算出する。そして、トルク判定部502は、算出した差に基づいて、上記トルク指令を補正した場合におけるトルク指令の総和が上記トルク指令を補正しない場合におけるトルク指令の総和を維持できるか否か、つまり前輪モータ3LL,3LRへのトルク指令を上記所定値αだけ増大側に補正可能か否かを判定する。上記トルク指令を補正した場合におけるトルク指令の総和が上記トルク指令を補正しない場合におけるトルク指令の総和を維持できる、つまり前輪モータ3LL,3LRへのトルク指令を所定値αだけ増大側に補正可能である場合には、ステップS12の判定が満たされて、ステップS13に移る。 In step S12, the torque determination unit 502 calculates the sum of the torque commands to all the motors 3 when the torque commands to the front wheel motors 3LL and 3LR are corrected based on the maximum torque of the front wheel motors 3LL and 3LR. To do. Then, the torque determination unit 502 calculates a difference between the calculated sum of the torque commands and the sum of the torque commands when the torque commands to the front wheel motors 3LL and 3LR are not corrected. Based on the calculated difference, the torque determination unit 502 determines whether the total torque command when the torque command is corrected can maintain the total torque command when the torque command is not corrected, that is, the front wheel motor. It is determined whether the torque command to 3LL and 3LR can be corrected to the increase side by the predetermined value α. When the torque command is corrected, the total torque command when the torque command is not corrected can be maintained. That is, the torque command to the front wheel motors 3LL and 3LR can be corrected to an increase side by a predetermined value α. If there is, the determination at step S12 is satisfied, and the routine goes to step S13.
 ステップS13では、指令補正部506は、前輪モータ3LL,3LRのうち、電動車両1の幅方向において上記ステップS11でトルク指令が減少側に補正された後輪モータ3と同じ側に位置する前輪モータ3へのトルク指令を所定値αだけ増大側に補正する。これにより、当該前輪モータ3へのトルク指令を補正した場合におけるトルク指令の総和が、当該前輪モータ3へのトルク指令を補正しない場合におけるトルク指令の総和を維持される。その後、後述のステップS141に移る。なお、上記ステップS11で後輪モータ3RL,3RRそれぞれへのトルク指令が減少側に補正された場合には、このステップS13では、前輪モータ3LL,3LRそれぞれへのトルク指令が増大側に補正される。 In step S13, the command correction unit 506 is a front wheel motor located on the same side of the front wheel motors 3LL and 3LR as the rear wheel motor 3 in which the torque command is corrected to decrease in the width direction of the electric vehicle 1 in step S11. 3 is corrected to the increase side by a predetermined value α. As a result, the total torque command when the torque command to the front wheel motor 3 is corrected is maintained as the total torque command when the torque command to the front wheel motor 3 is not corrected. Thereafter, the process proceeds to step S141 described later. If the torque command to each of the rear wheel motors 3RL and 3RR is corrected to the decrease side in step S11, the torque command to each of the front wheel motors 3LL and 3LR is corrected to the increase side in this step S13. .
 一方、ステップS12で、上記トルク指令を補正した場合におけるトルク指令の総和が上記トルク指令を補正しない場合におけるトルク指令の総和を維持できない、つまり前輪モータ3LL,3LRへのトルク指令を所定値αだけ増大側に補正不可能である場合には、ステップS12の判定は満たされず、ステップS14に移る。 On the other hand, when the torque command is corrected in step S12, the total torque command when the torque command is not corrected cannot be maintained. That is, the torque command to the front wheel motors 3LL and 3LR is set to the predetermined value α. If correction cannot be made on the increase side, the determination in step S12 is not satisfied, and the routine goes to step S14.
 ステップS14では、指令補正部506は、前輪モータ3LL,3LRのうち、電動車両1の幅方向において上記ステップS11でトルク指令が減少側に補正された後輪モータ3と反対側に位置する前輪モータ3へのトルク指令を所定値αだけ減少側に補正する。その後、ステップS141に移る。 In step S14, the command correction unit 506 is a front wheel motor located on the opposite side of the front wheel motors 3LL, 3LR in the width direction of the electric vehicle 1 from the rear wheel motor 3 in which the torque command is corrected to the decrease side in step S11. 3 is corrected to the decrease side by a predetermined value α. Thereafter, the process proceeds to step S141.
 ステップS141では、界磁制御部507は、回転速度センサ25FL~25RRそれぞれが検出した回転速度と、上記ステップS9,S10,S13,S14のいずれかのステップで補正されたモータ3FL~3RRそれぞれへのトルク指令とに基づいて、前述のマップ制御を行う。すなわち、界磁制御部507は、前述のマップの対応する場所に記録されたモータ3FL~3RRそれぞれに係る界磁率、電流の位相角、電流の大きさのデータを、それらの目標値として読み出す。そして、界磁制御部507は、読み出したモータ3FL~3RRそれぞれに係る界磁率の目標値を実現するための電力を、モータ3FL~3RRそれぞれの制御モータ49に供給し、制御モータ49により磁極部53,63の相対角度を調整することで、モータ3FL~3RRの界磁磁束を個別に制御する。 In step S141, the field control unit 507 determines the rotational speed detected by each of the rotational speed sensors 25FL to 25RR and the torque command to each of the motors 3FL to 3RR corrected in any of the above steps S9, S10, S13, and S14. Based on the above, the aforementioned map control is performed. That is, the field control unit 507 reads out the magnetic field ratio, current phase angle, and current magnitude data relating to each of the motors 3FL to 3RR recorded at the corresponding locations in the map as their target values. Then, the field control unit 507 supplies the read electric power for realizing the target values of the magnetic fields related to the motors 3FL to 3RR to the control motors 49 of the motors 3FL to 3RR. By adjusting the relative angle of 63, the field magnetic fluxes of the motors 3FL to 3RR are individually controlled.
 その後、ステップS142で、インバータ部509は、上記ステップS141で読み出されたモータ3FL~3RRそれぞれに係る電流の位相角の目標値及び電流の大きさの目標値に基づいて、バッテリ8からの直流電力を交流電力に変換し、モータ3FL~3RRそれぞれの固定子巻線12に電力を供給する。これにより、インバータ部509は、モータ3FL~3RRそれぞれを駆動する。 Thereafter, in step S142, the inverter unit 509 causes the direct current from the battery 8 based on the target value of the current phase angle and the target value of the current magnitude related to each of the motors 3FL to 3RR read in step S141. The electric power is converted into AC power, and the electric power is supplied to the stator windings 12 of the motors 3FL to 3RR. Thus, inverter unit 509 drives each of motors 3FL to 3RR.
 そして、ステップS15で、コントローラ5は、温度センサ6FL~6RRそれぞれの検出温度を取得する。 In step S15, the controller 5 acquires the detected temperatures of the temperature sensors 6FL to 6RR.
 その後、ステップS16で、温度判定部504は、上記ステップS7,S11のいずれか一方のステップでトルク指令が減少側に補正されたモータ3に係る温度センサ6の検出温度に基づいて、当該モータ3に係る検出温度が許容温度域の上限値を下回ったか否かを判定する。トルク指令が減少側に補正された全てのモータ3に係る検出温度が推奨温度域の上限値を下回っていない場合には、ステップS16の判定が満たされず、後述のステップS17がスキップされて、このフローチャートに示す処理が終了される。。一方、トルク指令が減少側に補正された全てのモータ3に係る検出温度が推奨温度域の上限値を下回った場合には、ステップS16の判定が満たされて、ステップS17に移る。 Thereafter, in step S16, the temperature determination unit 504 determines the motor 3 based on the detected temperature of the temperature sensor 6 related to the motor 3 in which the torque command is corrected to the decrease side in any one of the steps S7 and S11. It is determined whether or not the detected temperature related to is lower than the upper limit value of the allowable temperature range. If the detected temperatures for all the motors 3 whose torque commands have been corrected to decrease are not lower than the upper limit value of the recommended temperature range, the determination in step S16 is not satisfied, and step S17 described later is skipped. The process shown in the flowchart is terminated. . On the other hand, if the detected temperature for all the motors 3 whose torque command has been corrected to decrease is below the upper limit value of the recommended temperature range, the determination in step S16 is satisfied, and the routine proceeds to step S17.
 ステップS17では、指令補正部506は、上記ステップS7,S11のいずれか一方のステップでトルク指令が減少側に補正された全てのモータ3を含む、全てのモータ3FL~3RRへのトルク指令を、補正しない場合におけるトルク指令に一致させるように、徐々に復帰させる。その後、このフローチャートに示す処理が終了される。なお、このフローチャートに示す処理は、繰り返し実行される。 In step S17, the command correction unit 506 outputs torque commands to all the motors 3FL to 3RR including all the motors 3 in which the torque command has been corrected to the decrease side in any one of the steps S7 and S11. It is gradually restored so that it matches the torque command when no correction is made. Thereafter, the processing shown in this flowchart is terminated. The process shown in this flowchart is repeatedly executed.
 なお、上記で説明した電動車両1の駆動力制御方法の内容は、あくまで一例であり、他の内容であってもよい。例えば、図10に示すフローチャートに記述されたステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的に又は個別的に実行される処理をも含む。また、時系列的に処理されるステップでも、場合によっては適宜順序を変更することが可能である。 In addition, the content of the driving force control method of the electric vehicle 1 demonstrated above is an example to the last, and may be another content. For example, the steps described in the flowchart shown in FIG. 10 are executed in parallel or individually even if they are not necessarily processed in time series, as well as processes performed in time series in the order described. Processing. Even in the steps processed in time series, the order can be appropriately changed depending on circumstances.
 図14に、モータ3FL~3RRそれぞれに係る検出温度の時間変化の一例と、減少側に補正されるモータ3へのトルク指令の時間変化の一例とを対比して示す。 FIG. 14 shows a comparison between an example of the change over time of the detected temperature associated with each of the motors 3FL to 3RR and an example of the change over time of the torque command to the motor 3 corrected to the decrease side.
 図14に示す例では、時刻t1でモータ3FL~3RRのうちの1つのモータ3に係る検出温度が推奨温度域を超えると、当該モータ3に係る時刻t1から時刻Δt後までの検出温度の変化量に基づいて、その後の当該モータ3の温度が推定される。この際、当該モータ3の推定温度が許容温度域を超える場合には、時刻t2から時刻t3までの時間D1で当該モータ3へのトルク指令が減少側に補正される。当該モータ3へのトルク指令は、時刻t3以降も継続して減少側に補正されるが、時刻t4で当該モータ3に係る検出温度が推奨温度域の上限値を下回ると、時刻t4から時刻t5までの時間D2をかけて、補正をしない場合のトルク指令に一致するように徐々に復帰する。なお、D1<D2である。 In the example shown in FIG. 14, when the detected temperature related to one of the motors 3FL to 3RR exceeds the recommended temperature range at time t1, the change in detected temperature from time t1 related to the motor 3 to after time Δt. The subsequent temperature of the motor 3 is estimated based on the amount. At this time, if the estimated temperature of the motor 3 exceeds the allowable temperature range, the torque command to the motor 3 is corrected to the decreasing side at time D1 from time t2 to time t3. The torque command to the motor 3 is continuously corrected to decrease after time t3. However, when the detected temperature related to the motor 3 falls below the upper limit value of the recommended temperature range at time t4, the time from time t4 to time t5 is corrected. The time is gradually recovered so as to coincide with the torque command when no correction is made over time D2. Note that D1 <D2.
 なお、上記では、モータ3FL~3RRのうち、検出温度が推奨温度域を超えた1つのモータ3以外の、残りの3つのモータ3に関する説明を省略している。 In the above description, the description of the remaining three motors 3 other than the one of the motors 3FL to 3RR whose detected temperature exceeds the recommended temperature range is omitted.
 <5.本実施形態による効果の例>
 以上説明したように、本実施形態では、指令補正部506により熱的状態が適切でないモータ3へのトルク指令が減少側に補正される際に、電動車両1のヨーモーメントを維持するように、残りのモータ3へのトルク指令が補正される。これにより、モータ3の熱的不具合(焼き付き等)を回避できると共に、車輪2FL~2RRの駆動力配分の変化に伴うヨーモーメントの変化を抑制して、ヨーレート挙動を維持することが可能となる。その結果、例えば直進走行中にトルク指令の補正を行う場合であっても直進性を損なうことがなく、また旋回走行中にトルク指令の補正を行う場合であっても旋回特性を維持することができる。
<5. Examples of effects according to this embodiment>
As described above, in this embodiment, when the command correction unit 506 corrects the torque command to the motor 3 whose thermal state is not appropriate to the decrease side, the yaw moment of the electric vehicle 1 is maintained. Torque commands to the remaining motors 3 are corrected. As a result, it is possible to avoid a thermal malfunction (burn-in, etc.) of the motor 3, and to suppress a change in the yaw moment accompanying a change in the driving force distribution of the wheels 2FL to 2RR and maintain the yaw rate behavior. As a result, for example, even when the torque command is corrected during straight traveling, straight travel performance is not impaired, and even when the torque command is corrected during turning, the turning characteristics can be maintained. it can.
 また、本実施形態では、界磁制御部507が指令補正部506により補正されたトルク指令に基づいてモータ3FL~3RRの界磁磁束を個別に制御する。モータ3の界磁磁束を変化させて車輪2に与えるトルクを制御するので、界磁磁束が固定されたモータ3に比べて、低トルクから高トルクまで広いトルク範囲で高効率に駆動することができる。また、トルク指令が減少側に補正されたモータ3は、界磁磁束が減少するように制御される。したがって、鉄損を低減できると共に、効率の向上及びいわゆる弱め界磁電流を用いない(あるいは少なくできる)ことによる電機子電流の低下により、銅損も低減できる。その結果、発熱量を減少させることができるので、モータ3の温度管理も容易となる。 In this embodiment, the field control unit 507 individually controls the field magnetic fluxes of the motors 3FL to 3RR based on the torque command corrected by the command correction unit 506. Since the torque applied to the wheel 2 is controlled by changing the field magnetic flux of the motor 3, the motor 3 can be driven with high efficiency in a wide torque range from low torque to high torque, as compared with the motor 3 in which the field magnetic flux is fixed. it can. Further, the motor 3 whose torque command is corrected to the decrease side is controlled so that the field magnetic flux decreases. Therefore, the iron loss can be reduced, and the copper loss can be reduced by improving the efficiency and reducing the armature current by not using (or reducing) the so-called field weakening current. As a result, the amount of heat generation can be reduced, and the temperature management of the motor 3 is facilitated.
 また、本実施形態では特に、モータ3が、磁極部53,63が2組に分かれて相対的に回動するように構成された回転子30と、磁極部53,63を相対的に回動させる制御モータ49とを有する。また、界磁制御部507が、トルク指令に基づいて制御モータ49を制御することでモータ3の界磁磁束を制御する。このような構造とすることで、モータ3の負荷トルクや回転速度に関わりなく、界磁磁束を正確に制御することができる。 Further, in this embodiment, in particular, the motor 3 relatively rotates the rotor 30 configured so that the magnetic pole portions 53 and 63 are relatively rotated by being divided into two sets, and the magnetic pole portions 53 and 63. And a control motor 49. Further, the field control unit 507 controls the field magnetic flux of the motor 3 by controlling the control motor 49 based on the torque command. With such a structure, the field magnetic flux can be accurately controlled regardless of the load torque and rotation speed of the motor 3.
 また、本実施形態では特に、界磁制御部507が、回転速度センサ25により検出されたモータ3の回転速度と、トルク指令とに基づいて、界磁率の目標値、電流の位相角の目標値、及び電流の大きさの目標値を、マップを参照して読み出すマップ制御を行う。このようなマップ制御により、モータ3の界磁磁束を回転速度とトルク指令とに応じて微調整することができるので、各車輪2に対し精度の高いトルク制御を実行することができる。 In the present embodiment, in particular, the field control unit 507 determines the target value of the magnetic field, the target value of the phase angle of the current, and the target value of the current phase angle based on the rotational speed of the motor 3 detected by the rotational speed sensor 25 and the torque command. Map control is performed to read out the target value of the magnitude of the current with reference to the map. By such map control, the field magnetic flux of the motor 3 can be finely adjusted according to the rotation speed and the torque command, so that highly accurate torque control can be executed for each wheel 2.
 また、本実施形態では特に、トルク判定部502が、モータ3の最大トルクに基づいて、トルク指令を補正した場合におけるトルク指令の総和が、トルク指令を補正しない場合におけるトルク指令の総和を維持できるか否かを判定する。そして、指令補正部506が、トルク判定部502によりトルク指令の総和を維持できると判定された場合に、トルク指令の総和が維持されるように、上記残りのモータ3へのトルク指令を補正する。これにより、全車輪2FL~2RRによる総駆動力を維持することができるので、ヨーレート挙動の維持のみならず、前後方向の加速度も維持することができる。その結果、トルク指令の補正後も、運転者のアクセルペダル操作に対応した速度状態で走行を継続できる。したがって、電動車両1の走行特性を低下させることなくモータ3の熱的不具合(焼き付き等)を防止できる。 In this embodiment, in particular, the torque determination unit 502 can maintain the torque command sum when the torque command is corrected based on the maximum torque of the motor 3 and the torque command sum when the torque command is not corrected. It is determined whether or not. Then, when the command correction unit 506 determines that the torque command sum can be maintained by the torque determination unit 502, the command correction unit 506 corrects the torque command to the remaining motor 3 so that the torque command sum is maintained. . As a result, the total driving force by all the wheels 2FL to 2RR can be maintained, so that not only the yaw rate behavior but also the acceleration in the front-rear direction can be maintained. As a result, even after the torque command is corrected, the vehicle can continue traveling at a speed state corresponding to the driver's accelerator pedal operation. Therefore, it is possible to prevent a thermal malfunction (burn-in or the like) of the motor 3 without deteriorating the running characteristics of the electric vehicle 1.
 また、本実施形態では特に、指令補正部506が、トルク判定部502によりトルク指令の総和を維持できないと判定された場合に、電動車両1の幅方向においてトルク指令を減少側に補正したモータ3と反対側に位置する残りのモータ3へのトルク指令を減少側に補正する。これにより、トルク指令の補正後の左側の車輪2FL,2RLの駆動力の合計と右側の車輪2FR,2RRの駆動力の合計との比率を、補正前の左側の車輪2FL,2RLの駆動力の合計と右側の車輪2FR,2RRの駆動力の合計との比率と、同一にすることが可能となる。その結果、車体に発生するヨーモーメントが変化するのを防止できるので、ヨーレート挙動を維持する確実性を高めることができる。したがって、電動車両1の旋回特性を維持しながらモータ3の熱的不具合(焼き付き等)を防止できる。 In the present embodiment, in particular, when the command correction unit 506 determines that the torque determination unit 502 cannot maintain the total torque command, the motor 3 corrects the torque command to the decrease side in the width direction of the electric vehicle 1. The torque command to the remaining motor 3 located on the opposite side of the motor is corrected to the decreasing side. As a result, the ratio of the total driving force of the left wheels 2FL and 2RL after correction of the torque command and the total driving force of the right wheels 2FR and 2RR is set to the ratio of the driving force of the left wheels 2FL and 2RL before correction. It is possible to make the ratio of the sum and the sum of the driving forces of the right wheels 2FR and 2RR the same. As a result, since it is possible to prevent the yaw moment generated in the vehicle body from changing, the certainty of maintaining the yaw rate behavior can be enhanced. Therefore, it is possible to prevent a thermal malfunction (burn-in) of the motor 3 while maintaining the turning characteristics of the electric vehicle 1.
 また、本実施形態では特に、温度推定部503が、温度センサ6の検出温度に基づいて検出後のモータ3の温度を推定する。そして、状態判定部505が、温度推定部503による推定温度が許容温度域を超える場合に、モータ3の熱的状態が適切でないと判定する。モータ3の温度が許容温度域を超えるか否かを推定して判断することから、モータ3をオーバーヒートさせることなく、焼き付き等の熱的不具合を防止できる。したがって、モータ3の耐久性を向上できる。 In the present embodiment, in particular, the temperature estimation unit 503 estimates the temperature of the motor 3 after detection based on the temperature detected by the temperature sensor 6. Then, the state determination unit 505 determines that the thermal state of the motor 3 is not appropriate when the temperature estimated by the temperature estimation unit 503 exceeds the allowable temperature range. Since it is determined by determining whether or not the temperature of the motor 3 exceeds the allowable temperature range, it is possible to prevent thermal defects such as image sticking without overheating the motor 3. Therefore, the durability of the motor 3 can be improved.
 また、本実施形態では特に、温度判定部504が、トルク指令を減少側に補正したモータ3の検出温度が許容温度域の上限値を下回ったか否かを判定する。そして、指令補正部506が、温度判定部504により検出温度が許容温度域の上限値を下回ったと判定された場合に、減少側に補正したモータ3へのトルク指令を徐々に復帰させる。これにより、モータ3の熱的状態が適切な状態に復帰した際に、直ちに(補正前の)通常のトルク制御に戻すことができるので、トルク指令の補正による走行への影響を低減できる。また、トルク指令の復帰を徐々に行うので、走行特性の変化が緩やかなものとなり、運転者に違和感を与えることがない。 In the present embodiment, in particular, the temperature determination unit 504 determines whether or not the detected temperature of the motor 3 whose torque command has been corrected to the decrease side has fallen below the upper limit value of the allowable temperature range. When the temperature determination unit 504 determines that the detected temperature has fallen below the upper limit value of the allowable temperature range, the command correction unit 506 gradually returns the torque command to the motor 3 corrected to the decrease side. As a result, when the thermal state of the motor 3 returns to an appropriate state, it is possible to immediately return to normal torque control (before correction), so that it is possible to reduce the influence on traveling due to correction of the torque command. In addition, since the torque command is gradually restored, the change in running characteristics becomes gradual, and the driver does not feel uncomfortable.
 <6.変形例等>
 なお、実施形態は、上記内容に限られるものではなく、その趣旨及び技術的思想を逸脱しない範囲内で種々の変形が可能である。以下、そのような変形例を順次説明する。
<6. Modified example>
In addition, embodiment is not restricted to the said content, A various deformation | transformation is possible within the range which does not deviate from the meaning and technical idea. Hereinafter, such modifications will be sequentially described.
  (6-1.駆動モードを選択して実行する場合)
 以下、図15を参照しつつ、本変形例のコントローラの構成の一例について、具体的に機能ブロックで実装した例について説明する。なお、以下では、主として上記実施形態のコントローラ5の構成と異なる点について説明する。
(6-1. Selecting and executing the drive mode)
Hereinafter, with reference to FIG. 15, an example in which the example of the configuration of the controller of the present modification is specifically implemented with functional blocks will be described. In the following description, differences from the configuration of the controller 5 of the above embodiment will be mainly described.
 図15に示すように、本変形例のコントローラ5Aの構成において、上記実施形態のコントローラ5と異なる点は、駆動モード選択部510を新たに有し、前述の指令補正部506に代えて指令補正部506A(第1指令補正部及び第2指令補正部の一例に相当)を有する点等である。 As shown in FIG. 15, the configuration of the controller 5A of the present modification is different from the controller 5 of the above-described embodiment in that it has a new drive mode selection unit 510 and replaces the command correction unit 506 with the command correction. A point having a unit 506A (corresponding to an example of a first command correction unit and a second command correction unit).
 また、コントローラ5Aには、「全輪駆動モード」「前方輪駆動モード」「後方輪駆動モード」「対角輪駆動モード」の4つの駆動モードが準備されている。全輪駆動モードは、電動車両1の全ての車輪2FL~2RRを駆動するモードである。前方輪駆動モードは、電動車両1の前方の車輪2FL,2FRを駆動するモードである。後方輪駆動モードは、電動車両1の後方の車輪2RL,2RRを駆動するモードである。対角輪駆動モードは、電動車両1の右側前方及び左側後方の車輪2FR,2RLを駆動するモードである。 In addition, the controller 5A is provided with four drive modes: “all wheel drive mode”, “front wheel drive mode”, “rear wheel drive mode”, and “diagonal wheel drive mode”. The all-wheel drive mode is a mode in which all the wheels 2FL to 2RR of the electric vehicle 1 are driven. The front wheel drive mode is a mode in which the wheels 2FL and 2FR in front of the electric vehicle 1 are driven. The rear wheel drive mode is a mode in which the wheels 2RL and 2RR behind the electric vehicle 1 are driven. The diagonal wheel drive mode is a mode for driving the right front wheel and left rear wheel 2FR, 2RL of the electric vehicle 1.
 なお、対角輪駆動モードは、電動車両1の右側前方及び左側後方の車輪2FR,2RLを駆動するモードである場合に限定されるものではなく、電動車両1の左側前方及び右側後方の車輪2FL,2RRを駆動するモードであってもよい。 The diagonal wheel drive mode is not limited to a mode in which the right front and left rear wheels 2FR and 2RL of the electric vehicle 1 are driven, and the left front and right rear wheels 2FL of the electric vehicle 1 are not limited. , 2RR may be driven.
 駆動モード選択部510は、例えば電動車両1の仕様や走行設定等に応じて、上記4つの駆動モードを、全輪駆動モード、前方輪駆動モード、後方輪駆動モード、対角輪駆動モードの順による優先順位により選択して実行する。 The drive mode selection unit 510 selects the four drive modes in the order of the all-wheel drive mode, the front wheel drive mode, the rear wheel drive mode, and the diagonal wheel drive mode according to, for example, the specifications and travel settings of the electric vehicle 1. Select and execute according to the priority order.
 指令補正部506Aは、前述の状態判定部505により駆動ON状態の2つのモータ3のうちいずれか1つ以上のモータ3の熱的状態が適切でないと判定された場合に、駆動モード選択部510が上記優先順位により選択して実行した駆動モードに従って、当該モータ3へのトルク指令を減少側に補正すると共に、当該補正をしない場合の電動車両1のヨーモーメントが維持されるように、残りのモータ3へのトルク指令を補正する。 The command correction unit 506A, when the state determination unit 505 determines that the thermal state of any one or more of the two motors 3 in the drive ON state is not appropriate, the drive mode selection unit 510 In accordance with the drive mode selected and executed according to the priority order, the torque command to the motor 3 is corrected to the decrease side, and the remaining yaw moment of the electric vehicle 1 when the correction is not performed is maintained. The torque command to the motor 3 is corrected.
 例えば、駆動モード選択部510により全輪駆動モードが選択して実行された場合には、全てのモータ3FL~3RRが駆動ON状態とされる。そして、状態判定部505によりモータ3FL~3RRのうちいずれか1つ以上のモータ3の熱的状態が適切でないと判定された場合には、指令補正部506Aにより上記実施形態の指令補正部506と同様の処理が実行される。 For example, when the all-wheel drive mode is selected and executed by the drive mode selection unit 510, all the motors 3FL to 3RR are turned on. If the state determination unit 505 determines that the thermal state of any one or more of the motors 3FL to 3RR is not appropriate, the command correction unit 506A and the command correction unit 506 of the above embodiment Similar processing is executed.
 また、図16Aに示すように、駆動モード選択部510により前方輪駆動モードが選択して実行された場合には、モータ3FL~3RRのうち、前輪モータ3FL,3FRが駆動ON状態とされ、後輪モータ3RL,3RRが駆動OFF状態とされる。そして、図16Bに示すように、状態判定部505により例えば前輪モータ3FLの熱的状態が適切でないと判定された場合には、指令補正部506Aにより、当該前輪モータ3FLへのトルク指令が減少側に補正されると共に、当該補正をしない場合の電動車両1のヨーモーメントが維持されるように、残りの前輪モータ3FRへのトルク指令も減少側に補正される。 As shown in FIG. 16A, when the front wheel drive mode is selected and executed by the drive mode selection unit 510, among the motors 3FL to 3RR, the front wheel motors 3FL and 3FR are turned on, and the rear The wheel motors 3RL and 3RR are set in the drive OFF state. Then, as shown in FIG. 16B, when the state determination unit 505 determines that the thermal state of the front wheel motor 3FL is not appropriate, for example, the command correction unit 506A reduces the torque command to the front wheel motor 3FL. In addition, the torque command to the remaining front wheel motor 3FR is also corrected to the decreasing side so that the yaw moment of the electric vehicle 1 without the correction is maintained.
 また、図17Aに示すように、駆動モード選択部510により後方輪駆動モードが選択して実行された場合には、モータ3FL~3RRのうち、後輪モータ3RL,3RRが駆動ON状態とされ、前輪モータ3FL,3FRが駆動OFF状態とされる。そして、図17Bに示すように、状態判定部505により例えば後輪モータ3RLの熱的状態が適切でないと判定された場合には、指令補正部506Aにより、当該後輪モータ3RLへのトルク指令が減少側に補正されると共に、当該補正をしない場合の電動車両1のヨーモーメントが維持されるように、残りの後輪モータ3RRへのトルク指令も減少側に補正される。 Further, as shown in FIG. 17A, when the rear wheel drive mode is selected and executed by the drive mode selection unit 510, the rear wheel motors 3RL and 3RR among the motors 3FL to 3RR are set in the drive ON state. The front wheel motors 3FL and 3FR are turned off. Then, as shown in FIG. 17B, when the state determination unit 505 determines that the thermal state of the rear wheel motor 3RL is not appropriate, for example, the command correction unit 506A issues a torque command to the rear wheel motor 3RL. While being corrected to the decrease side, the torque command to the remaining rear wheel motor 3RR is also corrected to the decrease side so that the yaw moment of the electric vehicle 1 without the correction is maintained.
 また、図18Aに示すように、駆動モード選択部510により対角輪駆動モードが選択して実行された場合には、モータ3FL~3RRのうち、前輪モータ3FR及び後輪モータ3RLが駆動ON状態とされ、前輪モータ3FL及び後輪モータ3RRが駆動OFF状態とされる。そして、図18Bに示すように、状態判定部505により例えば前輪モータ3FRの熱的状態が適切でないと判定された場合には、指令補正部506Aにより、当該前輪モータ3FRへのトルク指令が減少側に補正されると共に、当該補正をしない場合の電動車両1のヨーモーメントが維持されるように、残りの後輪モータ3RLへのトルク指令も減少側に補正される。 As shown in FIG. 18A, when the diagonal wheel drive mode is selected and executed by the drive mode selection unit 510, among the motors 3FL to 3RR, the front wheel motor 3FR and the rear wheel motor 3RL are in the drive ON state. Thus, the front wheel motor 3FL and the rear wheel motor 3RR are turned off. As shown in FIG. 18B, when the state determination unit 505 determines that the thermal state of the front wheel motor 3FR is not appropriate, for example, the command correction unit 506A decreases the torque command to the front wheel motor 3FR. In addition, the torque command to the remaining rear wheel motor 3RL is also corrected to the decreasing side so that the yaw moment of the electric vehicle 1 when the correction is not performed is maintained.
 以上説明した本変形例によれば、電動車両1の仕様や走行設定等に応じた最適な駆動モードにしたがってトルク指令を補正することができる。また、例えば全輪駆動モードでは、車体の重量配分等に応じて車輪2FL~2RRの駆動力配分を最適に決定することができることから、車両の運動特性を最も安全側に設定することができ、前方輪駆動モードでは、旋回特性がアンダーステアとなることから、車体がスピンしにくく車両の運動特性を安全側に設定できる。したがって、安全性の高い駆動モードを上位とした上記優先順位とすることで、走行安全性を高めることができる。 According to this modification described above, the torque command can be corrected in accordance with the optimum drive mode according to the specifications of the electric vehicle 1 and the travel settings. Further, for example, in the all-wheel drive mode, since the driving force distribution of the wheels 2FL to 2RR can be optimally determined according to the weight distribution of the vehicle body, the vehicle motion characteristics can be set to the safest side, In the front wheel drive mode, the turning characteristic becomes understeer, so that the vehicle body is hard to spin and the vehicle movement characteristic can be set to the safe side. Therefore, the driving safety can be improved by setting the priority order with the driving mode having a high safety as the higher order.
  (6-2.その他)
 以上では、温度センサ6FL~6RRによりモータ3FL~3RRの温度を個別に検出し、温度センサ6の検出温度に基づいて状態判定部505によりモータ3の熱的状態が適切か否かを判定して、いずれか1つ以上のモータ3の熱的状態が適切でないと判定された場合に、指令補正部506によりトルク指令を補正する場合について説明した。しかし、実施形態は、このような内容に限定されるものではない。例えば、4つの状態センサによりモータ3FL~3RRの温度以外の状態を個別に検出し、状態センサの検出結果に基づいて状態判定部によりモータ3の状態が適切か否かを判定して、いずれか1つ以上のモータ3の状態が適切でないと判定された場合に、指令補正部によりトルク指令を補正してもよい。
(6-2. Others)
In the above, the temperatures of the motors 3FL to 3RR are individually detected by the temperature sensors 6FL to 6RR, and the state determination unit 505 determines whether or not the thermal state of the motor 3 is appropriate based on the temperature detected by the temperature sensor 6. The case where the command correction unit 506 corrects the torque command when it is determined that the thermal state of any one or more motors 3 is not appropriate has been described. However, the embodiment is not limited to such contents. For example, four state sensors individually detect states other than the temperatures of the motors 3FL to 3RR, and based on the detection results of the state sensors, the state determination unit determines whether the state of the motor 3 is appropriate. When it is determined that the state of one or more motors 3 is not appropriate, the torque correction command may be corrected by the command correction unit.
 また、以上の説明において、「垂直」「平行」「平面」等の記載がある場合には、当該記載は厳密な意味ではない。すなわち、それら「垂直」「平行」「平面」等とは、設計上、製造上の公差、誤差が許容され、「実質的に垂直」「実質的に平行」「実質的に平面」等という意味である。 In addition, in the above description, when there are descriptions such as “vertical”, “parallel”, and “plane”, the descriptions are not strict. That is, the terms “vertical”, “parallel”, “plane”, etc., allow tolerances and errors in design and mean “substantially vertical”, “substantially parallel”, “substantially plane”, etc. It is.
 また、以上の説明において、外観上の寸法や大きさが「同一」「等しい」「異なる」等の記載がある場合は、当該記載は厳密な意味ではない。すなわち、それら「同一」「等しい」「異なる」等とは、設計上、製造上の公差、誤差が許容され、「実質的に同一」「実質的に等しい」「実質的に異なる」等という意味である。 In addition, in the above description, when there is a description such as “same”, “equal”, “different”, etc., in terms of external dimensions and size, the description is not strict. That is, the terms “same”, “equal”, “different”, etc. mean that “tolerance and error in design and manufacturing are allowed”, “substantially the same”, “substantially equal”, “substantially different”, etc. It is.
 但し、例えばしきい値や基準値等、所定の判定基準となる値あるいは区切りとなる値の記載がある場合は、それらに対しての「同一」「等しい」「異なる」等は、上記とは異なり、厳密な意味である。 However, if there is a description of a value that becomes a predetermined judgment criterion or a value that becomes a delimiter, such as a threshold value or a reference value, the “same”, “equal”, “different” etc. It is different and has a strict meaning.
 また、図1、図6、及び図15中に示す矢印は、信号又は電力の流れの一例を示すものであり、信号又は電力の流れ方向を限定するものではない。 Further, the arrows shown in FIGS. 1, 6 and 15 show an example of the flow of the signal or power, and do not limit the flow direction of the signal or power.
 また、以上既に述べた以外にも、上記実施形態や各変形例による手法を適宜組み合わせて利用してもよい。 In addition to those already described above, the methods according to the above-described embodiment and each modification may be used in appropriate combination.
 その他、一々例示はしないが、上記実施形態や各変形例は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。 In addition, although not illustrated one by one, the above-described embodiment and each modification are implemented with various modifications within a range not departing from the gist thereof.
 1      電動車両
 2FL,FR,RL,RR  車輪
 3FL,FR,RL,RR  モータ(回転電機の一例)
 5      コントローラ
 5A     コントローラ
 6FL,FR,RL,RR  温度センサ(状態センサの一例)
 10     固定子
 12     固定子巻線
 30     回転子
 25FL,FR,RL,RR 回転速度センサ
 49     制御モータ
 52     第1永久磁石(界磁用磁石の一例)
 53     第1磁極部(磁極部の一例)
 63     第2磁極部(磁極部の一例)
 502    トルク判定部
 503    温度推定部
 504    温度判定部
 505    状態判定部(第1状態判定部及び第2状態判定部の一例)
 506    指令補正部(第1指令補正部及び第2指令補正部の一例)
 506A   指令補正部(第1指令補正部及び第2指令補正部の一例)
 507    界磁制御部(第1界磁制御部及び第2界磁制御部の一例)
 510    駆動モード選択部
 Sy     駆動力制御システム
1 Electric vehicle 2FL, FR, RL, RR Wheel 3FL, FR, RL, RR Motor (an example of a rotating electrical machine)
5 Controller 5A Controller 6FL, FR, RL, RR Temperature sensor (example of status sensor)
DESCRIPTION OF SYMBOLS 10 Stator 12 Stator winding 30 Rotor 25FL, FR, RL, RR Rotational speed sensor 49 Control motor 52 1st permanent magnet (an example of field magnet)
53 1st magnetic pole part (an example of a magnetic pole part)
63 2nd magnetic pole part (an example of a magnetic pole part)
502 torque determination unit 503 temperature estimation unit 504 temperature determination unit 505 state determination unit (an example of a first state determination unit and a second state determination unit)
506 Command correction unit (an example of a first command correction unit and a second command correction unit)
506A Command correction unit (an example of a first command correction unit and a second command correction unit)
507 Field controller (an example of a first field controller and a second field controller)
510 Drive Mode Selection Unit Sy Drive Force Control System

Claims (11)

  1.  電動車両の複数の車輪の駆動力を制御する電動車両の駆動力制御システムであって、
     界磁磁束が変化するように構成され、前記複数の車輪を個別に駆動する複数のモータと、
     前記複数のモータの状態を個別に検出する、前記モータと同数の状態センサと、
     前記状態センサの検出結果に基づいて前記モータの状態が適切か否かを判定する第1状態判定部と、
     前記第1状態判定部により前記複数のモータのうちのいずれか1つ以上の前記モータの状態が適切でないと判定された場合に、当該モータへのトルク指令を減少側に補正すると共に、当該補正をしない場合の前記電動車両のヨーモーメントが維持されるように、残りの前記モータへのトルク指令を補正する第1指令補正部と、
     前記第1指令補正部により補正された前記トルク指令に基づいて前記複数のモータの界磁磁束を個別に制御する第1界磁制御部と、
    を有することを特徴とする電動車両の駆動力制御システム。
    An electric vehicle driving force control system for controlling the driving force of a plurality of wheels of an electric vehicle,
    A plurality of motors configured to change the field magnetic flux and individually driving the plurality of wheels;
    The same number of state sensors as the motors for individually detecting the states of the plurality of motors;
    A first state determination unit that determines whether or not the state of the motor is appropriate based on a detection result of the state sensor;
    When the first state determination unit determines that the state of any one or more of the plurality of motors is not appropriate, the torque command to the motor is corrected to the decrease side and the correction A first command correction unit that corrects torque commands to the remaining motors so that the yaw moment of the electric vehicle when not being
    A first field control unit for individually controlling the field magnetic flux of the plurality of motors based on the torque command corrected by the first command correction unit;
    A driving force control system for an electric vehicle characterized by comprising:
  2.  電動車両の複数の車輪の駆動力を制御する電動車両の駆動力制御システムであって、
     界磁磁束が変化するように構成され、前記複数の車輪を個別に駆動する複数のモータと、
     前記複数のモータの温度を個別に検出する、前記モータと同数の温度センサと、
     前記温度センサの検出温度に基づいて前記モータの熱的状態が適切か否かを判定する第2状態判定部と、
     前記第2状態判定部により前記複数のモータのうちのいずれか1つ以上の前記モータの熱的状態が適切でないと判定された場合に、当該モータへのトルク指令を減少側に補正すると共に、当該補正をしない場合の前記電動車両のヨーモーメントが維持されるように、残りの前記モータへのトルク指令を補正する第2指令補正部と、
     前記第2指令補正部により補正された前記トルク指令に基づいて前記複数のモータの界磁磁束を個別に制御する第2界磁制御部と、
    を有することを特徴とする電動車両の駆動力制御システム。
    An electric vehicle driving force control system for controlling the driving force of a plurality of wheels of an electric vehicle,
    A plurality of motors configured to change the field magnetic flux and individually driving the plurality of wheels;
    Detecting the temperatures of the plurality of motors individually, the same number of temperature sensors as the motors;
    A second state determination unit that determines whether or not the thermal state of the motor is appropriate based on the temperature detected by the temperature sensor;
    When the second state determination unit determines that the thermal state of any one or more of the plurality of motors is not appropriate, corrects the torque command to the motor to the decrease side, and A second command correction unit that corrects torque commands to the remaining motors so that the yaw moment of the electric vehicle when the correction is not performed is maintained;
    A second field control unit for individually controlling field magnetic fluxes of the plurality of motors based on the torque command corrected by the second command correction unit;
    A driving force control system for an electric vehicle characterized by comprising:
  3.  前記モータは、
     固定子巻線を備えた固定子と、
     界磁用磁石が設置された複数の磁極部が2組に分かれて相対的に回動するように構成された回転子と、
     2組の前記磁極部を相対的に回動させる制御モータと、を有し、
     前記第1界磁制御部又は前記第2界磁制御部は、
     前記トルク指令に基づいて前記制御モータを制御することで前記モータの界磁磁束を制御する
    ことを特徴とする請求項1又は2に記載の電動車両の駆動力制御システム。
    The motor is
    A stator with a stator winding;
    A rotor configured such that a plurality of magnetic pole portions in which field magnets are installed are divided into two sets and rotate relatively;
    A control motor for relatively rotating two sets of the magnetic pole portions,
    The first field controller or the second field controller is
    3. The driving force control system for an electric vehicle according to claim 1, wherein a field magnetic flux of the motor is controlled by controlling the control motor based on the torque command.
  4.  前記複数のモータの回転速度を個別に検出する、前記モータと同数の回転速度センサをさらに有し、
     前記第1界磁制御部又は前記第2界磁制御部は、
     前記回転速度と前記トルク指令に基づいて、極性の等しい2組の前記磁極部が並び界磁が最も強い状態における誘起電圧定数に対する前記2組の磁極部が相対的に回動した状態における誘起電圧定数の割合である界磁率、前記2組の磁極部が総合して作り出す磁極位置に対する前記固定子巻線に通電する電流の位相角、及び電流の目標値を、マップを参照して読み出すマップ制御を行う
    ことを特徴とする請求項3に記載の電動車両の駆動力制御システム。
    Further comprising the same number of rotation speed sensors as the motors for individually detecting the rotation speeds of the plurality of motors;
    The first field controller or the second field controller is
    Based on the rotational speed and the torque command, two sets of the magnetic pole portions having the same polarity are aligned and the induced voltage in the state where the two magnetic pole portions are rotated relative to the induced voltage constant in the state where the field is strongest. Map control that reads out the field ratio, which is a constant ratio, the phase angle of the current applied to the stator winding with respect to the magnetic pole position created by the two sets of magnetic pole portions, and the target value of the current with reference to the map The driving force control system for an electric vehicle according to claim 3, wherein:
  5.  前記モータの最大トルクに基づいて、前記トルク指令を補正した場合における全ての前記モータへの前記トルク指令の総和が、前記トルク指令を補正しない場合における前記トルク指令の総和を維持できるか否かを判定するトルク判定部をさらに有し、
     前記第1指令補正部又は前記第2指令補正部は、
     前記トルク判定部により前記トルク指令の総和を維持できると判定された場合に、前記トルク指令の総和が維持されるように、前記残りのモータへの前記トルク指令を補正する
    ことを特徴とする請求項1乃至4のいずれか1項に記載の電動車両の駆動力制御システム。
    Whether or not the sum of the torque commands to all the motors when the torque command is corrected based on the maximum torque of the motor can maintain the sum of the torque commands when the torque command is not corrected A torque determination unit for determining;
    The first command correction unit or the second command correction unit is
    The torque command to the remaining motors is corrected so that the sum of the torque commands is maintained when the torque determination unit determines that the sum of the torque commands can be maintained. Item 5. The driving force control system for an electric vehicle according to any one of Items 1 to 4.
  6.  前記第1指令補正部又は前記第2指令補正部は、
     前記トルク判定部により前記トルク指令の総和を維持できないと判定された場合に、前記電動車両の幅方向において前記トルク指令を減少側に補正した前記モータと反対側に位置する前記残りのモータへの前記トルク指令を減少側に補正する
    ことを特徴とする請求項5に記載の電動車両の駆動力制御システム。
    The first command correction unit or the second command correction unit is
    When it is determined by the torque determination unit that the sum of the torque commands cannot be maintained, the remaining motors positioned on the opposite side of the motor that has corrected the torque commands to the decreasing side in the width direction of the electric vehicle 6. The driving force control system for an electric vehicle according to claim 5, wherein the torque command is corrected to a decreasing side.
  7.  前記温度センサの検出温度に基づいて検出後の前記モータの温度を推定する温度推定部をさらに有し、
     前記第2状態判定部は、
     前記温度推定部による推定温度が、前記モータに熱的不具合が生じない温度範囲である許容温度域を超える場合に、前記モータの熱的状態が適切でないと判定する
    ことを特徴とする請求項2乃至6のいずれか1項に記載の電動車両の駆動力制御システム。
    A temperature estimation unit that estimates the temperature of the motor after detection based on the detection temperature of the temperature sensor;
    The second state determination unit
    3. The thermal state of the motor is determined to be inappropriate when the temperature estimated by the temperature estimation unit exceeds an allowable temperature range that is a temperature range in which no thermal failure occurs in the motor. The driving force control system for an electric vehicle according to any one of claims 1 to 6.
  8.  前記トルク指令を減少側に補正した前記モータの検出温度が前記許容温度域の上限値を下回ったか否かを判定する温度判定部をさらに有し、
     前記第2指令補正部は、
     前記温度判定部により前記検出温度が前記上限値を下回ったと判定された場合に、減少側に補正した前記モータの前記トルク指令を徐々に復帰させる
    ことを特徴とする請求項7に記載の電動車両の駆動力制御システム。
    A temperature determination unit that determines whether or not the detected temperature of the motor that has corrected the torque command to the decrease side is lower than an upper limit value of the allowable temperature range;
    The second command correction unit is
    8. The electric vehicle according to claim 7, wherein when the temperature determination unit determines that the detected temperature is lower than the upper limit value, the torque command of the motor corrected to decrease is gradually returned. Driving force control system.
  9.  前記電動車両が前後左右に備える4つの前記車輪のうち、全ての前記車輪を駆動する全輪駆動モード、前方の前記車輪を駆動する前方輪駆動モード、後方の前記車輪を駆動する後方輪駆動モード、右側前方及び左側後方の前記車輪又は左側前方及び右側後方の前記車輪を駆動する対角輪駆動モード、の4つの駆動モードを、前記全輪駆動モード、前記前方輪駆動モード、前記後方輪駆動モード、前記対角輪駆動モードの順による優先順位により選択して実行する駆動モード選択部をさらに有し、
     前記第1指令補正部又は前記第2指令補正部は、
     前記駆動モード選択部が前記優先順位により選択して実行した前記駆動モードに従って、前記モータへのトルク指令を減少側に補正すると共に、当該補正をしない場合の前記電動車両のヨーモーメントが維持されるように、残りの前記モータへのトルク指令を補正する
    ことを特徴とする請求項1乃至8のいずれか1項に記載の電動車両の駆動力制御システム。
    Of the four wheels provided in the front, rear, left, and right of the electric vehicle, an all-wheel drive mode for driving all the wheels, a front wheel drive mode for driving the front wheels, and a rear wheel drive mode for driving the rear wheels. Four wheel drive modes, right wheel front and left rear wheel or diagonal wheel drive mode for driving left wheel front and right rear wheel, the all wheel drive mode, the front wheel drive mode, and the rear wheel drive. A drive mode selection unit that selects and executes the priority according to the order of the modes and the diagonal wheel drive modes,
    The first command correction unit or the second command correction unit is
    According to the drive mode selected and executed by the drive mode selection unit according to the priority order, the torque command to the motor is corrected to the decrease side, and the yaw moment of the electric vehicle when the correction is not performed is maintained. As described above, the torque command to the remaining motor is corrected, and the driving force control system for an electric vehicle according to any one of claims 1 to 8.
  10.  複数の車輪と、
     請求項1乃至9のいずれか1項に記載の駆動力制御システムと、
    を有することを特徴とする電動車両。
    Multiple wheels,
    The driving force control system according to any one of claims 1 to 9,
    An electric vehicle comprising:
  11.  請求項1乃至9のいずれか1項に記載の電動車両の駆動力制御システムに備えられ、界磁磁束が変化するように構成される
    ことを特徴とする回転電機。
    A rotating electrical machine provided in the driving force control system for an electric vehicle according to any one of claims 1 to 9, and configured to change a field magnetic flux.
PCT/JP2014/080179 2014-11-14 2014-11-14 Drive force control system for electric vehicle, electric vehicle, and rotary electrical machine WO2016075812A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/080179 WO2016075812A1 (en) 2014-11-14 2014-11-14 Drive force control system for electric vehicle, electric vehicle, and rotary electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/080179 WO2016075812A1 (en) 2014-11-14 2014-11-14 Drive force control system for electric vehicle, electric vehicle, and rotary electrical machine

Publications (1)

Publication Number Publication Date
WO2016075812A1 true WO2016075812A1 (en) 2016-05-19

Family

ID=55953925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080179 WO2016075812A1 (en) 2014-11-14 2014-11-14 Drive force control system for electric vehicle, electric vehicle, and rotary electrical machine

Country Status (1)

Country Link
WO (1) WO2016075812A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019062705A (en) * 2017-09-28 2019-04-18 株式会社Subaru Drive force control device for vehicle
JP2019062706A (en) * 2017-09-28 2019-04-18 株式会社Subaru Drive force control device for vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005204436A (en) * 2004-01-16 2005-07-28 Nissan Motor Co Ltd Drive force control device of wheel independently driven type electric vehicle
JP2013046440A (en) * 2011-08-22 2013-03-04 Yaskawa Electric Corp Rotary electric machine
JP2013215019A (en) * 2012-03-30 2013-10-17 Honda Motor Co Ltd Vehicular drive device
JP2014036532A (en) * 2012-08-10 2014-02-24 Toyota Motor Corp Vehicular drive force control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005204436A (en) * 2004-01-16 2005-07-28 Nissan Motor Co Ltd Drive force control device of wheel independently driven type electric vehicle
JP2013046440A (en) * 2011-08-22 2013-03-04 Yaskawa Electric Corp Rotary electric machine
JP2013215019A (en) * 2012-03-30 2013-10-17 Honda Motor Co Ltd Vehicular drive device
JP2014036532A (en) * 2012-08-10 2014-02-24 Toyota Motor Corp Vehicular drive force control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019062705A (en) * 2017-09-28 2019-04-18 株式会社Subaru Drive force control device for vehicle
JP2019062706A (en) * 2017-09-28 2019-04-18 株式会社Subaru Drive force control device for vehicle
JP7017895B2 (en) 2017-09-28 2022-02-09 株式会社Subaru Vehicle driving force control device
JP7017894B2 (en) 2017-09-28 2022-02-09 株式会社Subaru Vehicle driving force control device

Similar Documents

Publication Publication Date Title
JP4634321B2 (en) Control device for electric four-wheel drive vehicle
US8073592B2 (en) Steering system
US7954827B2 (en) Steering system
JP4879657B2 (en) Electric motor control device
JP5886008B2 (en) Electric vehicle motor control device
JP2011125150A (en) Device and method for controlling electric vehicle
JP2006256454A (en) Torque distribution control device of vehicle
JP5477458B2 (en) Stabilizer system
WO2015080021A1 (en) Control device for electric vehicle
JP2010268566A (en) Controller for independent wheel drive electric vehicles
WO2016075812A1 (en) Drive force control system for electric vehicle, electric vehicle, and rotary electrical machine
WO2015002033A1 (en) Drive torque control device
CN107848426B (en) Drive control device for wheel independent drive type vehicle
JP2010132095A (en) Vehicle control system
JP2013184663A (en) Control device for vehicle
WO2016079836A1 (en) Driving force control system for electric vehicle, electric vehicle, rotary electric machine
WO2016043077A1 (en) Vehicle drive control device
WO2016125686A1 (en) Vehicle braking/driving torque control device
JP6283983B2 (en) Control device for electric vehicle
JP4835198B2 (en) Vehicle behavior control device
JP6664885B2 (en) Vehicle braking / driving torque control device
JP6671988B2 (en) Auxiliary control device such as turning of electric vehicle with independent control of left and right wheels
JP6663724B2 (en) Electric motor device
JP2015154528A (en) Control device of electric automobile
CN110696794B (en) Device and method for generating a command signal for influencing the slip control of a vehicle wheel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14906016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP