JP2019062705A - Drive force control device for vehicle - Google Patents

Drive force control device for vehicle Download PDF

Info

Publication number
JP2019062705A
JP2019062705A JP2017187443A JP2017187443A JP2019062705A JP 2019062705 A JP2019062705 A JP 2019062705A JP 2017187443 A JP2017187443 A JP 2017187443A JP 2017187443 A JP2017187443 A JP 2017187443A JP 2019062705 A JP2019062705 A JP 2019062705A
Authority
JP
Japan
Prior art keywords
driving force
output
wheel motor
vehicle
distribution ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017187443A
Other languages
Japanese (ja)
Other versions
JP7017894B2 (en
Inventor
史之 守屋
Fumiyuki Moriya
史之 守屋
寛史 家永
Hiroshi Ienaga
寛史 家永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2017187443A priority Critical patent/JP7017894B2/en
Publication of JP2019062705A publication Critical patent/JP2019062705A/en
Application granted granted Critical
Publication of JP7017894B2 publication Critical patent/JP7017894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To maintain traveling stability while hindering a sudden decrease of the total drive force of a vehicle when limiting output of one drive force.SOLUTION: A drive force control device 100 is mounted in a vehicle 1 having a front wheel motor 11 and a rear wheel motor 12, controls their operations, and comprises an EVCU 20. The EVCU 20 sets a permissible range DR for a distribution ratio R for distributing total drive force to the front wheel motor 11 and the rear wheel motor 12. In a case where output of the rear wheel motor 12 is limited when the front wheel motor 11 and the rear wheel motor 12 are driven with respective drive forces within respective permissible ranges DR at the distribution ratio R, the EVCU decreases output of the rear wheel motor 12 and, at the same time, increases output of the front wheel motor 11, thereby maintaining the total drive force. In a case where the distribution ratio R deviates from the permissible range DR as the output of the front wheel motor 11 increases, the EVCU maintains the lower limit of the permissible range DR of the rear wheel motor 12 and, at the same time, decreases the total drive force.SELECTED DRAWING: Figure 2

Description

本発明は、複数の駆動源を有する車両の駆動力制御装置に関する。   The present invention relates to a driving force control device for a vehicle having a plurality of driving sources.

従来、電気自動車またはハイブリッド電気自動車の分野において、複数の駆動源から複数の車輪へ個別に動力を伝達して走行する車両(以下、独立駆動車両という。)が提案されている。このような車両では、運転操作に応じた要求駆動力或いは要求トルクを出力する際、複数の駆動源にどのように動力を配分するか自由度が生じる。   Conventionally, in the field of electric vehicles or hybrid electric vehicles, vehicles (hereinafter referred to as independently driven vehicles) that travel by individually transmitting power from a plurality of drive sources to a plurality of wheels have been proposed. In such a vehicle, when outputting the required driving force or the required torque according to the driving operation, there is a degree of freedom in how to distribute the power to a plurality of driving sources.

このような独立駆動車両において、駆動源としてモータ等が採用されている場合、その発熱(温度)などの状態に応じてこの駆動源の出力を制限する必要が生じる。
このとき、出力が制限された一の駆動源の出力を単純に減少させると、図6に実線の矢印で示すように、この一の駆動源に対応する車輪への駆動力のみが制限されて、各車輪への駆動力の配分比率が変化してしまい、車両の走行安定性が低下してしまう。
他方、車両の走行安定性を維持するために、駆動力の配分比率を維持しつつ一のモータの出力を減少させると、図6に破線の矢印で示すように、出力制限が不要な他の駆動源の出力も低下させることになり、車両の総駆動力が大きく低下してしまう。
In such an independently driven vehicle, when a motor or the like is employed as a drive source, it is necessary to limit the output of the drive source according to the state of heat generation (temperature) or the like.
At this time, if the output of one drive source whose output is limited is simply reduced, only the driving force to the wheel corresponding to this one drive source is limited, as shown by a solid arrow in FIG. The distribution ratio of the driving force to each wheel changes, and the running stability of the vehicle decreases.
On the other hand, if the output of one motor is reduced while maintaining the distribution ratio of the driving force in order to maintain the running stability of the vehicle, as shown by the broken arrow in FIG. The output of the driving source is also reduced, and the total driving force of the vehicle is significantly reduced.

そこで、例えば特許文献1,2に記載の技術では、出力制限された一の駆動源の出力を減少させる際に、この減少させた出力分だけ他の駆動源の出力を増加させて、車両の総駆動力を維持させている。   Therefore, for example, in the techniques described in Patent Documents 1 and 2, when reducing the output of one drive source whose output is limited, the output of the other drive source is increased by the reduced output, and The total driving force is maintained.

特開2009−247205号公報JP, 2009-247205, A 特開2005−204436号公報JP, 2005-204436, A

しかしながら、単純に車両の総駆動力を維持させつつ一の駆動源の出力を減少させただけでは、図6に一点鎖線の矢印で示すように、駆動力の配分比率が所望の走行安定性を得られる範囲から外れてしまうおそれがある。   However, if the output of one drive source is simply reduced while maintaining the total driving force of the vehicle, the distribution ratio of the driving force is as shown in FIG. There is a risk of getting out of the obtainable range.

本発明は、上記事情を鑑みてなされたもので、一の駆動源の出力を制限する場合に、車両の総駆動力の急激な低下を抑制しつつ走行安定性を維持させることができる車両の駆動力制御装置の提供を目的とする。   The present invention has been made in view of the above circumstances, and in the case of limiting the output of one drive source, it is possible to maintain running stability while suppressing a sharp drop in the total driving force of the vehicle. An object of the present invention is to provide a driving force control device.

上記目的を達成するために、請求項1に記載の発明は、
それぞれ異なる駆動系統を駆動する複数の駆動源を備える車両に搭載され、前記複数の駆動源の動作を制御する車両の駆動力制御装置であって、
前記複数の駆動源に出力させる総駆動力を当該複数の駆動源に配分する配分比率の許可範囲を設定する許可範囲設定手段と、
前記複数の駆動源が前記配分比率の許可範囲内の各駆動力で駆動されている状態において、当該複数の駆動源のうちの一の駆動源の出力を制限する場合、当該一の駆動源の出力を減少させつつ当該一の駆動源を除く他の駆動源の出力を増加させて、総駆動力を維持させる駆動力維持手段と、
前記駆動力維持手段による前記他の駆動源の出力の増加に伴って前記配分比率が前記許可範囲内から外れる場合に、前記一の駆動源における前記許可範囲の下限を維持させつつ総駆動力を減少させる駆動力減少手段と、
を備えることを特徴とする。
In order to achieve the above object, the invention according to claim 1 is
A driving force control device for a vehicle mounted on a vehicle including a plurality of driving sources for driving different driving systems and controlling operations of the plurality of driving sources,
Permission range setting means for setting a permission range of a distribution ratio to distribute the total driving force output to the plurality of driving sources to the plurality of driving sources;
In the case where the output of one of the plurality of drive sources is limited while the plurality of drive sources are driven by the respective drive forces within the permission range of the distribution ratio, the one drive source Driving force maintaining means for maintaining the total driving force by increasing the outputs of the other driving sources except the one driving source while decreasing the output;
When the distribution ratio deviates from the permission range as the output of the other drive source is increased by the driving force maintaining means, the total driving force is maintained while maintaining the lower limit of the permission range of the one drive source. Driving force reducing means for reducing
And the like.

請求項2に記載の発明は、請求項1に記載の車両の駆動力制御装置において、
前記駆動力減少手段は、前記配分比率が前記許可範囲の下限の所定範囲内まで至った後に、前記配分比率が当該許可範囲の下限に近づくに連れて総駆動力を次第に減少させることを特徴とする。
According to a second aspect of the present invention, there is provided a driving force control apparatus for a vehicle according to the first aspect, wherein
The driving force reducing means gradually reduces the total driving force as the distribution ratio approaches the lower limit of the permission range after the distribution ratio reaches a predetermined range of the lower limit of the permission range. Do.

請求項3に記載の発明は、請求項2に記載の車両の駆動力制御装置において、
前記駆動力減少手段は、総駆動力の時間変化率が略一定となるように当該総駆動力を減少させることを特徴とする。
The invention according to claim 3 is the drive power control device for a vehicle according to claim 2.
The driving force reducing means is characterized in that the total driving force is reduced so that the time rate of change of the total driving force becomes substantially constant.

請求項4に記載の発明は、請求項1〜3のいずれか一項に記載の車両の駆動力制御装置において、
前記駆動力維持手段は、前記一の駆動源の出力を所定の出力上限値以下に制限する場合、前記出力上限値よりも所定値だけ低い値まで当該一の駆動源の出力を減少させることを特徴とする。
The invention according to claim 4 is the drive power control device for a vehicle according to any one of claims 1 to 3.
When limiting the output of the one drive source to a predetermined output upper limit value or less, the driving force maintaining means reduces the output of the one drive source to a value lower by a predetermined value than the output upper limit value. It features.

請求項5に記載の発明は、請求項1〜4のいずれか一項に記載の車両の駆動力制御装置において、
前記車両の走行状態を検知する検知手段を備え、
前記許可範囲設定手段は、前記走行状態に基づいて、所要の走行安定性が得られる前記配分比率の範囲として前記許可範囲を設定することを特徴とする。
The invention according to claim 5 is the drive power control device for a vehicle according to any one of claims 1 to 4,
A detection unit that detects the traveling state of the vehicle;
The permission range setting means sets the permission range as a range of the distribution ratio at which a required running stability can be obtained based on the traveling state.

請求項6に記載の発明は、請求項1〜5のいずれか一項に記載の車両の駆動力制御装置において、
前記複数の駆動源が、前輪の動力を発生させる前輪モータと、後輪の動力を発生させる後輪モータとから構成されていることを特徴とする。
The invention according to claim 6 relates to the driving force control device for a vehicle according to any one of claims 1 to 5,
The plurality of drive sources are characterized by comprising a front wheel motor generating motive power of front wheels and a rear wheel motor generating motive power of rear wheels.

請求項1に記載の発明によれば、複数の駆動源のうちの一の駆動源の出力を制限する場合、まず、この一の駆動源の出力が減少されつつ当該一の駆動源を除く他の駆動源の出力が増加されて、総駆動力が維持される。そして、このときの他の駆動源の出力の増加に伴って駆動力の配分比率が許可範囲内から外れる場合には、一の駆動源における許可範囲の下限が維持されつつ総駆動力が減少される。
したがって、一の駆動源の出力を制限する場合に、車両の総駆動力の急激な低下を抑制しつつ、駆動力の配分比率を許可範囲内に保持して走行安定性を維持させることができる。
According to the invention of claim 1, when limiting the output of one of the plurality of drive sources, the output of the one drive source is reduced while excluding the one of the one drive source. The output of the drive source is increased to maintain the total drive power. Then, if the drive power distribution ratio deviates from the allowable range with an increase in the output of another drive source at this time, the total drive power is reduced while the lower limit of the allowable range of one drive source is maintained. Ru.
Therefore, when limiting the output of one drive source, it is possible to maintain the running stability by maintaining the distribution ratio of the driving force within the permitted range while suppressing a sharp drop in the total driving force of the vehicle. .

請求項2に記載の発明によれば、配分比率が許可範囲内から外れないよう、一の駆動源における許可範囲の下限が維持されつつ総駆動力が減少される際には、配分比率が許可範囲の下限の所定範囲内まで至った後に、配分比率が当該許可範囲の下限に近づくに連れて総駆動力が次第に減少される。
これにより、車両の総駆動力を減少させるときの急激な低下(変化)を抑制することができ、車両の乗員の違和感を低減することができる。
According to the second aspect of the invention, when the total driving force is reduced while maintaining the lower limit of the allowable range of one drive source so that the allocation ratio does not deviate from the allowable range, the allocation ratio is permitted. After reaching the lower limit of the range, the total driving force is gradually reduced as the allocation ratio approaches the lower limit of the permission range.
As a result, it is possible to suppress a sharp drop (change) when reducing the total driving force of the vehicle, and to reduce the discomfort of the vehicle occupant.

請求項3に記載の発明によれば、配分比率が許可範囲の下限の所定範囲内まで至って総駆動力が次第に減少されるときに、その時間変化率が略一定となるように総駆動力が減少される。
これにより、車両の総駆動力を減少させるときの急激な低下を、より一層抑制することができる。
According to the invention as set forth in claim 3, when the distribution ratio reaches within the predetermined range of the lower limit of the permission range and the total driving force is gradually decreased, the total driving force is made so that the time change rate becomes substantially constant. Be reduced.
Thus, it is possible to further suppress a sharp drop when reducing the total driving force of the vehicle.

請求項4に記載の発明によれば、一の駆動源の出力を所定の出力上限値以下に制限する場合に、この一の駆動源の出力が、出力上限値に略一致するように制御されるのではなく、出力上限値よりも所定値だけ低い値まで減少される。
これにより、出力を制限する一の駆動源の出力を極力抑えることができ、当該一の駆動源の発熱に伴うさらなる出力上限値の低下を抑制することができる。
According to the fourth aspect of the invention, when the output of one drive source is limited to a predetermined output upper limit value or less, the output of the one drive source is controlled to substantially match the output upper limit value. And is reduced to a value lower than the output upper limit value by a predetermined value.
As a result, the output of one drive source that limits the output can be suppressed as much as possible, and it is possible to suppress a further decrease in the output upper limit value caused by the heat generation of the one drive source.

請求項5に記載の発明によれば、検知手段に検知された車両の走行状態に基づいて、所要の走行安定性が得られる配分比率の範囲としてその許可範囲が設定されるので、配分比率を許可範囲内に保持することで、より確実に走行安定性を維持することができる。   According to the fifth aspect of the invention, the permission range is set as the range of the distribution ratio at which the required traveling stability can be obtained based on the traveling state of the vehicle detected by the detection means. Driving stability can be more reliably maintained by keeping the permission range.

実施形態における車両の概略構成を示す構成図である。It is a block diagram which shows schematic structure of the vehicle in embodiment. 実施形態における駆動力配分処理の流れを示すフローチャートである。It is a flow chart which shows a flow of driving power distribution processing in an embodiment. 駆動力配分処理における駆動力の配分比率の一例を示すグラフである。It is a graph which shows an example of the distribution ratio of the driving force in a driving force distribution process. 駆動力配分処理における駆動力の配分比率の一例を示すグラフである。It is a graph which shows an example of the distribution ratio of the driving force in a driving force distribution process. 駆動力配分処理における駆動力の配分比率の一例を示すグラフである。It is a graph which shows an example of the distribution ratio of the driving force in a driving force distribution process. 従来の駆動力配分における駆動力の配分比率を示すグラフである。It is a graph which shows the distribution ratio of the driving force in the conventional driving force distribution.

以下、本発明の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<構成>
まず、本実施形態に係る車両1の構成について説明する。図1は、車両1の概略構成を示す構成図である。
<Configuration>
First, the configuration of the vehicle 1 according to the present embodiment will be described. FIG. 1 is a configuration diagram showing a schematic configuration of a vehicle 1.

この図に示すように、車両1は、前輪2と後輪3とを互いに独立してモータ駆動させる電気自動車(EV:Electric Vehicle)である。具体的に、車両1は、左右の前輪2、左右の後輪3、前輪モータ11、後輪モータ12、前輪トランスミッション13、後輪トランスミッション14、EVCU(Electric Vehicles Control Unit)20、及びセンサ群(31〜39)を備える。これらのうち、前輪モータ11及び後輪モータ12は、本発明に係る複数の駆動源の一例に相当する。また、前輪2及び前輪トランスミッション13と、後輪3及び後輪トランスミッション14とは、本発明に係る複数の駆動系統の一例に相当する。   As shown in this figure, the vehicle 1 is an electric vehicle (EV: Electric Vehicle) in which the front wheel 2 and the rear wheel 3 are motor-driven independently of each other. Specifically, the vehicle 1 includes left and right front wheels 2, left and right rear wheels 3, front wheel motor 11, rear wheel motor 12, front wheel transmission 13, rear wheel transmission 14, EVCU (Electric Vehicles Control Unit) 20, and sensor groups 31 to 39). Among these, the front wheel motor 11 and the rear wheel motor 12 correspond to an example of a plurality of drive sources according to the present invention. The front wheel 2 and the front wheel transmission 13 and the rear wheel 3 and the rear wheel transmission 14 correspond to an example of a plurality of drive systems according to the present invention.

本実施形態に係る車両1の駆動力制御装置(以下、単に「駆動力制御装置」という。)100は、車両1に搭載されて前輪モータ11及び後輪モータ12の動作を制御する装置であり、特に、これら前輪モータ11及び後輪モータ12の一方が出力を制限された(出力を減少させる必要が生じた)場合でも好適な駆動力配分が可能なものである。この駆動力制御装置100は、上述した構成のうち、EVCU20とセンサ群(31〜39)とを含んだ部分に相当する。   A driving force control device (hereinafter simply referred to as a “driving force control device”) 100 of the vehicle 1 according to the present embodiment is a device mounted on the vehicle 1 to control the operation of the front wheel motor 11 and the rear wheel motor 12 Particularly, even when one of the front wheel motor 11 and the rear wheel motor 12 is limited in output (when the output needs to be reduced), it is possible to suitably distribute the driving force. The driving force control device 100 corresponds to a portion including the EVCU 20 and the sensor group (31 to 39) in the configuration described above.

前輪モータ11及び後輪モータ12は、EVCU20からの指令に基づいて前後輪の駆動系統を個別に駆動する。具体的には、前輪モータ11が前輪トランスミッション13を介して左右の前輪2を駆動させ、後輪モータ12が後輪トランスミッション14を介して左右の後輪3を駆動させる。より詳しくは、前輪モータ11及び後輪モータ12の各々に対応した図示しない駆動回路が、EVCU20からの指令に応じてバッテリの電力を変換して前輪モータ11及び後輪モータ12へ出力し、前輪モータ11及び後輪モータ12が、この電力に基づいて動力を発生させる。   The front wheel motor 11 and the rear wheel motor 12 individually drive the drive systems of the front and rear wheels based on a command from the EVCU 20. Specifically, the front wheel motor 11 drives the left and right front wheels 2 via the front wheel transmission 13, and the rear wheel motor 12 drives the left and right rear wheels 3 via the rear wheel transmission 14. More specifically, a drive circuit (not shown) corresponding to each of front wheel motor 11 and rear wheel motor 12 converts the electric power of the battery according to the command from EVCU 20 and outputs it to front wheel motor 11 and rear wheel motor 12 The motor 11 and the rear wheel motor 12 generate power based on this power.

EVCU20は、車両1を統合制御するものである。具体的に、EVCU20は、本実施形態においては、車両1に与えられる要求駆動力が、左右の前輪2の駆動力と、左右の後輪3の駆動力とに適切に配分されるように、指令を出力する。要求駆動力は、例えば乗員の運転操作(例えばアクセル操作量を表すアクセルセンサ35のセンサ信号)によって車両1に与えられる。EVCU20は、駆動力の配分が実現されるように、前輪モータ11及び後輪モータ12の各々に目標出力(目標トルク)の指令を出力する。   The EVCU 20 integrally controls the vehicle 1. Specifically, in the present embodiment, the EVCU 20 appropriately distributes the required driving force given to the vehicle 1 to the driving force of the left and right front wheels 2 and the driving force of the left and right rear wheels 3 Output a command. The required driving force is applied to the vehicle 1 by, for example, a driver's driving operation (for example, a sensor signal of an accelerator sensor 35 representing an accelerator operation amount). The EVCU 20 outputs a command of target output (target torque) to each of the front wheel motor 11 and the rear wheel motor 12 so that the distribution of the driving force is realized.

センサ群は、車両1の走行状態を検出するセンサとして、例えば、前後加速度センサ31と、左右加速度センサ32と、ヨーレートセンサ33と、車輪速センサ34とを含む。前後加速度センサ31は、車両1の前後方向の加速度を検出する。左右加速度センサ32は、車両1の左右方向の加速度を検出する。ヨーレートセンサ33は、車両1のヨーレートを検出する。車輪速センサ34は、左右の前輪2及び左右の後輪3の各々の車輪速(回転速度)を検出する。   The sensor group includes, for example, a longitudinal acceleration sensor 31, a lateral acceleration sensor 32, a yaw rate sensor 33, and a wheel speed sensor 34 as sensors for detecting the traveling state of the vehicle 1. The longitudinal acceleration sensor 31 detects an acceleration in the longitudinal direction of the vehicle 1. The left and right acceleration sensor 32 detects an acceleration in the left and right direction of the vehicle 1. The yaw rate sensor 33 detects the yaw rate of the vehicle 1. The wheel speed sensor 34 detects the wheel speeds (rotational speeds) of the left and right front wheels 2 and the left and right rear wheels 3.

また、センサ群は、乗員の運転操作を検出するセンサとして、アクセルセンサ35と、操舵角センサ36と、ブレーキセンサ37とを含む。アクセルセンサ35は、乗員のアクセル操作量を検出する。操舵角センサ36は、乗員のハンドル操作量を検出する。ブレーキセンサ37は、乗員のブレーキ操作量を検出する。
さらに、センサ群は、前輪モータ11及び後輪モータ12の出力制限を検知するセンサとして、前輪モータ11の温度計38と、後輪モータ12の温度計39と、上述した車輪速センサ34とを含む。
The sensor group also includes an accelerator sensor 35, a steering angle sensor 36, and a brake sensor 37 as sensors for detecting the driver's driving operation. The accelerator sensor 35 detects an accelerator operation amount of the occupant. The steering angle sensor 36 detects the steering wheel operation amount of the occupant. The brake sensor 37 detects a brake operation amount of the occupant.
Further, as a sensor group for detecting the output limitation of the front wheel motor 11 and the rear wheel motor 12, the sensor group includes a thermometer 38 of the front wheel motor 11, a thermometer 39 of the rear wheel motor 12, and the wheel speed sensor 34 described above. Including.

<駆動力配分処理>
続いて、駆動力制御装置100が要求駆動力を前輪モータ11及び後輪モータ12に配分する駆動力配分処理について説明する。
図2は、この駆動力配分処理の流れを示すフローチャートであり、図3〜図5は、駆動力配分処理における前輪モータ11及び後輪モータ12への駆動力の配分比率の一例を示すグラフである。
<Driving force distribution processing>
Subsequently, a driving force distribution process in which the driving force control device 100 distributes the required driving force to the front wheel motor 11 and the rear wheel motor 12 will be described.
FIG. 2 is a flowchart showing the flow of the driving force distribution process, and FIGS. 3 to 5 are graphs showing an example of the distribution ratio of the driving force to the front wheel motor 11 and the rear wheel motor 12 in the driving force distribution process. is there.

駆動力配分処理は、車両1が走行モードの際に、数ミリ秒など短い周期で繰り返し実行される。
この駆動力配分処理が開始されると、図2に示すように、まずEVCU20は、センサ群(31〜39)の各センサ値を取得する(ステップS1)。これらのうち、例えばアクセルセンサ35のセンサ値は、前輪モータ11及び後輪モータ12が出力すべき駆動力の総計である要求駆動力として入力される。
The driving power distribution process is repeatedly performed in a short cycle such as several milliseconds when the vehicle 1 is in the traveling mode.
When this driving force distribution process is started, as shown in FIG. 2, first, the EVCU 20 acquires each sensor value of the sensor group (31 to 39) (step S1). Among these, for example, a sensor value of the accelerator sensor 35 is input as a required driving force which is a total of driving forces to be output by the front wheel motor 11 and the rear wheel motor 12.

次に、EVCU20は、要求駆動力の配分比率(要求駆動力を前輪モータ11及び後輪モータ12に配分するその比率)の基準となる基準比率を決定する(ステップS2)。基準比率は、例えば車両1の走行状態に応じて、高い走行安定性が得られる要求駆動力の配分比率として決定される。   Next, the EVCU 20 determines a reference ratio as a reference of the distribution ratio of the required driving force (the ratio of distributing the required driving force to the front wheel motor 11 and the rear wheel motor 12) (step S2). The reference ratio is determined, for example, as a distribution ratio of the required driving power at which high traveling stability can be obtained, according to the traveling state of the vehicle 1.

具体的に、このステップS2では、まずEVCU20は、車両1の荷重配分に応じたベース基準比率を算出する。ベース基準比率は、例えば勾配のない道路を直進して走行する際に、走行安定性が最も高くなる理想的な駆動力の配分比率である。車両1の荷重配分は、取得された複数のセンサ値のうち、前後加速度と左右加速度の値に基づいて算出される。
次に、EVCU20は、操舵角に対応した基準比率の変化量と、道路勾配に対応した基準比率の変化量とを各々算出する。操舵角は、操舵角センサ36の出力値から取得され、道路勾配は、例えばアクセル操作量と車速の変化量との関係から推定される。EVCU20は、操舵角及び道路勾配の各々と基準比率の変化量との関係を示すデータテーブルを予め記憶しており、これらのデータテーブルを用いて操舵角及び道路勾配から基準比率の変化量を算出する。
そして、EVCU20は、操舵角及び道路勾配に対応した基準比率の各変化量をベース基準比率に統合させて、基準比率を算出する。
Specifically, in step S2, the EVCU 20 first calculates a base reference ratio according to the load distribution of the vehicle 1. The base reference ratio is, for example, an ideal distribution ratio of driving power at which traveling stability is highest when traveling straight on a non-graded road. The load distribution of the vehicle 1 is calculated based on the longitudinal acceleration and the lateral acceleration among the plurality of acquired sensor values.
Next, the EVCU 20 calculates the amount of change of the reference ratio corresponding to the steering angle and the amount of change of the reference ratio corresponding to the road slope. The steering angle is acquired from the output value of the steering angle sensor 36, and the road gradient is estimated from, for example, the relationship between the accelerator operation amount and the change amount of the vehicle speed. The EVCU 20 stores in advance a data table indicating the relationship between each of the steering angle and the road gradient and the change in the reference ratio, and calculates the change in the reference ratio from the steering angle and the road gradient using these data tables. Do.
Then, the EVCU 20 integrates each change amount of the reference ratio corresponding to the steering angle and the road slope into the base reference ratio to calculate the reference ratio.

こうして求められた基準比率は、車両の荷重配分と、走行状態を表す個々の補正パラメータ(操舵角および道路勾配)とに対応して、高い走行安定性を実現する理想的な配分比率となる。ただし、走行状態を表す補正パラメータは操舵角と道路勾配に限定されず、理想的な駆動力の配分比率に影響を与えるパラメータであれば、他のパラメータを用いて同様の補正処理を行ってもよい。   The reference ratio thus determined is an ideal distribution ratio that achieves high traveling stability, corresponding to the load distribution of the vehicle and the individual correction parameters (steering angle and road slope) representing the traveling state. However, the correction parameter representing the traveling state is not limited to the steering angle and the road slope, and other parameters may be used to perform the same correction processing as long as the parameters affect the ideal distribution ratio of the driving force. Good.

次に、EVCU20は、車両1の走行状態に基づいて、要求駆動力の配分比率の許可範囲を設定する(ステップS3)。許可範囲は、要求駆動力の配分比率として選択可能な比率の範囲を示すものであり、車両の走行安定性を妨げない配分比率の範囲として設定される。   Next, the EVCU 20 sets the permission range of the distribution ratio of the required driving force based on the traveling state of the vehicle 1 (step S3). The permission range indicates a range of ratios that can be selected as the distribution ratio of the required driving force, and is set as a range of distribution ratios that does not interfere with the traveling stability of the vehicle.

具体的に、このステップS3では、まずEVCU20は、取得された複数のセンサ値に基づいて、車両1の走行状態を表す複数のパラメータの値を算出する。複数のパラメータとしては、例えば、車速、スリップ率、前後加速度、横加速度、アンダーステア度合、オーバーステア度合、ブレーキ操作量などが含まれる。これら複数のパラメータは、走行安定性の必要度に影響を与えるパラメータである。
次に、EVCU20は、算出された複数のパラメータの各値と個別に対応した上限側許容幅および下限側許容幅の幅長を算出する。ここで、上限側許容幅とは、走行安定性を妨げない範囲で前輪2への駆動力の配分比率を高くできる許容幅であり、下限側許容幅とは、走行安定性を妨げない範囲で後輪3への駆動力の配分比率を高くできる許容幅である。個々のパラメータの値と、上限側許容幅及び下限側許容幅との関係は、これらが互いに対応付けられたデータテーブル又は関数の形式で予め記憶されている。これらの関係は、走行安定性の必要度が高くなれば許容幅が小さくなり、走行安定性の必要度が低くなれば許容幅が大きくなるような対応関係である。EVCU20は、これらのデータテーブル又は関数を用い、複数のパラメータの各々について上限側許容幅と下限側許容幅とを算出する。
なお、車両1の挙動に乱れのない走行状態においては、上限側許容幅と下限側許容幅とは同じ大きさになる。しかし、アンダーステア傾向時或いはオーバーステア傾向時などの車両1の挙動に乱れが生じた走行状態においては、上限側許容幅と下限側許容幅とは同じ大きさにならない。例えばアンダーステア傾向が弱く現れた場合、前輪2の駆動力の比率を高めるとアンダーステア傾向を助長してしまう。そのため、前輪2への駆動力の配分比率を高くできる許容幅は、後輪3への駆動力の配分比率を高くできる許容幅よりも小さくなる。したがって、アンダーステア度合に応じた上限側許容幅は下限側許容幅よりも小さく設定される。一方、オーバーステア度合に応じた上限側許容幅は、アンダーステア度合の場合とは反対に、下限側許容幅よりも大きく設定される。
Specifically, in step S3, first, the EVCU 20 calculates values of a plurality of parameters representing the traveling state of the vehicle 1 based on the plurality of acquired sensor values. The plurality of parameters include, for example, vehicle speed, slip ratio, longitudinal acceleration, lateral acceleration, understeer degree, oversteer degree, brake operation amount and the like. These multiple parameters are parameters that affect the need for running stability.
Next, the EVCU 20 calculates the width lengths of the upper limit allowable width and the lower limit allowable width individually corresponding to the calculated values of the plurality of parameters. Here, the upper limit side allowable width is an allowable range in which the distribution ratio of the driving force to the front wheels 2 can be increased within the range that does not interfere with the traveling stability, and the lower limit side allowable range does not interfere with the traveling stability. This is an allowable range in which the distribution ratio of the driving force to the rear wheel 3 can be increased. The relationship between the values of the individual parameters and the upper and lower allowable limits is stored in advance in the form of a data table or function in which these are associated with one another. These relationships are correspondence relationships in which the tolerance range decreases as the need for running stability increases, and the tolerance range increases as the need for running stability decreases. The EVCU 20 uses the data table or the function to calculate the upper limit side allowable width and the lower limit side allowable width for each of the plurality of parameters.
In the traveling state in which the behavior of the vehicle 1 is not disturbed, the upper limit side allowable width and the lower limit side allowable width have the same size. However, in the traveling state in which the behavior of the vehicle 1 is disturbed during the understeer tendency or the oversteer tendency, the upper limit side allowable width and the lower limit side allowable width are not the same size. For example, when the understeer tendency appears weak, increasing the ratio of the driving force of the front wheel 2 promotes the understeer tendency. Therefore, the allowable range in which the distribution ratio of the driving force to the front wheels 2 can be increased is smaller than the allowable range in which the distribution ratio of the driving forces to the rear wheels 3 can be increased. Therefore, the upper limit side allowable width corresponding to the understeer degree is set smaller than the lower limit side allowable width. On the other hand, the upper limit side allowable width according to the oversteer degree is set larger than the lower limit side allowable width, contrary to the case of the understeer degree.

複数のパラメータの各々に対応した複数の上限側許容幅と複数の下限側許容幅とを算出したら、EVCU20は、これらの中から最小の上限側許容幅と、最小の下限側許容幅とを抽出する。そして、EVCU20は、これら最小の上限側許容幅及び下限側許容幅を基準比率に付加して、配分比率の許可範囲を算出する。これにより、複数のパラメータの全てに関して所要の走行安定性が得られる配分比率の許容幅を求めることができる。   After calculating the plurality of upper limit side allowable widths and the plurality of lower limit side allowable widths corresponding to each of the plurality of parameters, EVCU 20 extracts the minimum upper limit side allowable width and the minimum lower limit side allowable width from among them. Do. Then, the EVCU 20 adds the minimum upper limit side allowable width and the lower limit side allowable width to the reference ratio to calculate the permission range of the distribution ratio. In this way, it is possible to determine the allowable range of the distribution ratio for obtaining the required running stability for all of the plurality of parameters.

次に、EVCU20は、配分比率の許可範囲内で、前輪モータ11及び後輪モータ12に駆動力を配分する(ステップS4)。本実施形態では、図3に示すように、配分比率Rが、上限側許容限界PL1から下限側許容限界PL2までの許可範囲DR内における所定の理想配分比率DRi(例えば上述の基準比率)とされるものとする。
なお、本実施形態では、この時点では、前輪モータ11及び後輪モータ12のいずれも出力が制限されていないものとする。前輪モータ11及び後輪モータ12のいずれかが出力制限を受けて、その出力上限値が設定されていた場合には、配分比率Rが当該出力上限値以下の範囲で設定される。
Next, the EVCU 20 distributes the driving force to the front wheel motor 11 and the rear wheel motor 12 within the permission range of the distribution ratio (step S4). In the present embodiment, as shown in FIG. 3, the distribution ratio R is set to a predetermined ideal distribution ratio DRi (for example, the above-mentioned reference ratio) within the permission range DR from the upper limit side allowable limit PL1 to the lower limit side allowable limit PL2. Shall be
In the present embodiment, at this point in time, it is assumed that neither the front wheel motor 11 nor the rear wheel motor 12 has its output limited. When one of the front wheel motor 11 and the rear wheel motor 12 receives output restriction, and the output upper limit value is set, the distribution ratio R is set in the range equal to or less than the output upper limit value.

次に、EVCU20は、前輪モータ11及び後輪モータ12のいずれかが出力を制限され、これに伴って当該モータの現状の出力値を減少させる必要があるか否かを判定する(ステップS5)。
ここで、前輪モータ11及び後輪モータ12の出力制限要因としては、モータ温度や車速等が挙げられる。例えば、モータ温度が所定の閾値以上であった場合、モータの出力はこのモータ温度に応じた制限値以下に制限される。また車速についても、所定値以上のときにモータの最大トルクが制限される場合がある。
そこで、EVCU20は、ステップS1で取得された複数のセンサ値のうち、前輪モータ11及び後輪モータ12の各温度と車速等とに基づいて、各モータの出力上限値を取得し、前輪モータ11及び後輪モータ12の出力値の減少要否を判定する。
Next, the EVCU 20 determines whether or not the output of either the front wheel motor 11 or the rear wheel motor 12 is limited, and the current output value of the motor needs to be reduced accordingly (step S5). .
Here, motor temperature, a vehicle speed, etc. are mentioned as an output restriction factor of front wheel motor 11 and rear wheel motor 12, for example. For example, when the motor temperature is equal to or higher than a predetermined threshold value, the output of the motor is limited to the limit value or less corresponding to the motor temperature. Further, with regard to the vehicle speed, the maximum torque of the motor may be limited when the vehicle speed exceeds a predetermined value.
Therefore, the EVCU 20 acquires the output upper limit value of each of the plurality of sensor values acquired in step S1 based on the respective temperatures of the front wheel motor 11 and the rear wheel motor 12, the vehicle speed, etc. And it is determined whether the output value of the rear wheel motor 12 needs to be reduced.

ステップS5において、前輪モータ11及び後輪モータ12のいずれの出力値も減少させる必要がないと判定した場合(ステップS5;No)、EVCU20は、上述のステップS1へ処理を移行する。   If it is determined in step S5 that the output value of neither the front wheel motor 11 nor the rear wheel motor 12 needs to be decreased (step S5; No), the EVCU 20 shifts the process to step S1 described above.

一方、ステップS5において、前輪モータ11及び後輪モータ12のいずれかの出力値を減少させる必要があると判定した場合には(ステップS5;Yes)、EVCU20は、出力減少が必要な一方のモータの出力値を出力上限値に対応させて減少させるとともに、他方のモータの出力値を増加させて、総駆動力(前輪モータ11及び後輪モータ12の合計出力)を維持させる(ステップS6)。   On the other hand, when it is determined in step S5 that the output value of either the front wheel motor 11 or the rear wheel motor 12 needs to be decreased (step S5; Yes), the EVCU 20 selects one of the motors that needs an output decrease. The output value of is decreased according to the output upper limit value, and the output value of the other motor is increased to maintain the total driving force (the total output of the front wheel motor 11 and the rear wheel motor 12) (step S6).

以下、本実施形態においては、後輪モータ12の出力が制限されたものとする。
この場合、ステップS6では、図4(a)に示すように、EVCU20は、後輪モータ12の出力上限値Fに対応させて当該後輪モータ12の出力値を減少させつつ、この減少させた分だけ前輪モータ11の出力値を増加させることで、総駆動力を維持させる。
これにより、出力上限値Fの低下に対応させて単純に後輪モータ12の出力のみを減少させる場合と異なり、総駆動力の急激な低下を抑制することができる。
Hereinafter, in the present embodiment, it is assumed that the output of the rear wheel motor 12 is limited.
In this case, in step S6, as shown in FIG. 4A, the EVCU 20 decreases the output value of the rear wheel motor 12 corresponding to the output upper limit value F of the rear wheel motor 12 and reduces the same. By increasing the output value of the front wheel motor 11 by an amount, the total driving force is maintained.
Thus, unlike the case where only the output of the rear wheel motor 12 is simply reduced according to the decrease of the output upper limit value F, it is possible to suppress the rapid decrease of the total driving force.

なお、このときには、後輪モータ12の出力値は、出力上限値Fに略一致させてもよいし、図4(b)に示すように、出力上限値Fよりも所定値だけ低い値としてもよい。出力上限値Fよりも低い出力値とした場合には、後輪モータ12の発熱がより抑えられるため、さらなる出力上限値Fの低下が抑制される。   At this time, the output value of the rear wheel motor 12 may be made substantially equal to the output upper limit F, or, as shown in FIG. 4B, even if the output upper limit F is lower than the output upper limit F by a predetermined value. Good. When the output value is lower than the output upper limit value F, the heat generation of the rear wheel motor 12 is further suppressed, so that the further decrease in the output upper limit value F is suppressed.

次に、EVCU20は、上述のステップS6での配分比率Rの変更に伴って、配分比率Rが許可範囲DR内から外れるか否かを判定する(ステップS7)。つまり、出力制限された一方のモータの出力上限値Fが、総駆動力を維持させつつ当該一方のモータの出力値を減少させたときの許可範囲DRの限界の出力値以下まで下がるか否かが判定される。
すなわち、本実施形態では、例えば図5(a)に示すような配分比率Rを示すグラフにおいて、後輪モータ12の出力上限値Fが、後輪モータ12の出力値を減少させるときの総駆動力一定ライン(一点鎖線で図示)と、上限側許容限界PL1(後輪モータ12における許可範囲DRの下限)との交点よりも下まで下がるか否かが判定される。
そして、配分比率Rは許可範囲DR内から外れないと判定した場合(ステップS7;No)、EVCU20は、上述のステップS1へ処理を移行する。
Next, the EVCU 20 determines whether the distribution ratio R is out of the permission range DR in accordance with the change of the distribution ratio R in step S6 described above (step S7). That is, whether or not the output upper limit F of one motor whose output is limited falls below the limit output value of the permission range DR when the output value of the one motor is decreased while maintaining the total driving force. Is determined.
That is, in the present embodiment, for example, in the graph showing the distribution ratio R as shown in FIG. 5A, the total drive when the output upper limit F of the rear wheel motor 12 decreases the output value of the rear wheel motor 12 It is determined whether or not it falls below the point of intersection of the force constant line (shown by an alternate long and short dash line) and the upper limit side allowable limit PL1 (the lower limit of the permission range DR of the rear wheel motor 12).
Then, if it is determined that the allocation ratio R does not deviate from within the permission range DR (step S7; No), the EVCU 20 shifts the process to the above-described step S1.

一方、ステップS7において、配分比率Rが許可範囲DR内から外れると判定した場合には(ステップS7;Yes)、EVCU20は、配分比率Rの許容限界を維持させつつ総駆動力を減少させる(ステップS8)。
本実施形態では、図5(a)に示すように、上述のステップS6での配分比率Rの変更によって、総駆動力が維持されつつ配分比率Rが上限側許容限界PL1(後輪モータ12における許可範囲DRの下限)まで到達する。そして、その後に、この上限側許容限界PL1が維持されつつ、前輪モータ11及び後輪モータ12の両方の出力が減少されて、総駆動力が減少される。
これにより、許可範囲DR内での配分比率Rを保って車両1の走行安定性を維持しつつ、出力上限値Fに対応させて後輪モータ12の出力値を減少させることができる。
On the other hand, when it is determined in step S7 that the allocation ratio R is out of the permission range DR (step S7; Yes), the EVCU 20 decreases the total driving force while maintaining the allowable limit of the allocation ratio R (step S7). S8).
In the present embodiment, as shown in FIG. 5A, by changing the distribution ratio R in step S6 described above, the total driving force is maintained while the distribution ratio R is at the upper limit tolerance PL1 (in the rear wheel motor 12). The lower limit of the permission range DR is reached. Thereafter, while the upper limit side allowable limit PL1 is maintained, the outputs of both the front wheel motor 11 and the rear wheel motor 12 are reduced to reduce the total driving force.
Thus, the output value of the rear wheel motor 12 can be reduced corresponding to the output upper limit F while maintaining the distribution ratio R within the permission range DR and maintaining the traveling stability of the vehicle 1.

なお、このときには、図5(b)に示すように、配分比率Rが許容限界(上限側許容限界PL1)の付近まで至った後に、配分比率Rが許容限界に近づくに連れて総駆動力を次第に(緩やかに)減少させるようにしてもよい。この場合、総駆動力の時間変化率が略一定となるように当該総駆動力を減少させることが好ましい。これにより、総駆動力の急激な低下を抑制して、ユーザ(車両1の乗員)の違和感を低減することができる。   At this time, as shown in FIG. 5 (b), after the distribution ratio R reaches near the allowable limit (upper limit allowable limit PL1), the total driving force is calculated as the allocation ratio R approaches the allowable limit. You may make it decrease gradually (slowly). In this case, it is preferable to reduce the total driving force so that the temporal change rate of the total driving force is substantially constant. As a result, it is possible to suppress the sudden decrease of the total driving force and reduce the discomfort of the user (the occupant of the vehicle 1).

次に、EVCU20は、駆動力配分処理を終了させるか否かを判定し(ステップS9)、終了させないと判定した場合には(ステップS9;No)、上述のステップS1へ処理を移行する。そして、車両1の走行状態の検出とそれに基づく駆動力の配分等とが順次繰り返される。
一方、例えば車両1が停止するなどにより駆動力配分処理を終了させると判定した場合には(ステップS9;Yes)、EVCU20は、駆動力配分処理を終了させる。
Next, the EVCU 20 determines whether or not to end the driving power distribution process (step S9), and when it is determined not to end (step S9; No), shifts the process to step S1 described above. Then, the detection of the traveling state of the vehicle 1 and the distribution of the driving force based thereon are sequentially repeated.
On the other hand, if it is determined that the driving power distribution processing is to be ended due to, for example, the vehicle 1 stopping (step S9; Yes), the EVCU 20 ends the driving power distribution processing.

<効果>
以上のように、本実施形態の駆動力制御装置100によれば、後輪モータ12の出力を制限する場合、まず、この後輪モータ12の出力が減少されつつ前輪モータ11の出力が増加されて、総駆動力が維持される。そして、このときの前輪モータ11の出力の増加に伴って駆動力の配分比率Rが許可範囲DR内から外れる場合には、後輪モータ12における許可範囲DRの下限である上限側許容限界PL1が維持されつつ総駆動力が減少される。
したがって、一の駆動源の出力を制限する場合に、車両1の総駆動力の急激な低下を抑制しつつ、駆動力の配分比率Rを許可範囲DR内に保持して走行安定性を維持させることができる。
<Effect>
As described above, according to the driving force control device 100 of the present embodiment, when the output of the rear wheel motor 12 is limited, first, the output of the front wheel motor 11 is increased while the output of the rear wheel motor 12 is decreased. Total driving force is maintained. Then, when the distribution ratio R of the driving force deviates from within the permission range DR with the increase of the output of the front wheel motor 11 at this time, the upper limit side allowable limit PL1 which is the lower limit of the permission range DR in the rear wheel motor 12 The total driving force is reduced while being maintained.
Therefore, when limiting the output of one drive source, the drive power distribution ratio R is held within the permission range DR while maintaining the running stability while suppressing a sharp drop in the total drive force of the vehicle 1 be able to.

また、配分比率Rが許可範囲DR内から外れないよう、上限側許容限界PL1が維持されつつ総駆動力が減少される際には、配分比率Rが上限側許容限界PL1の所定範囲内まで至った後に、配分比率Rが当該上限側許容限界PL1に近づくに連れて総駆動力を次第に減少させることが好ましい。
これにより、車両1の総駆動力を減少させるときの急激な低下(変化)を抑制することができ、車両1の乗員の違和感を低減することができる。
Further, when the total driving force is decreased while maintaining the upper limit side allowable limit PL1 so that the allocation ratio R does not deviate from within the permission range DR, the distribution rate R reaches within the predetermined range of the upper limit side allowable limit PL1. After that, it is preferable to gradually reduce the total driving force as the allocation ratio R approaches the upper limit side allowable limit PL1.
As a result, it is possible to suppress a sharp drop (change) when the total driving force of the vehicle 1 is reduced, and to reduce the discomfort of the occupant of the vehicle 1.

また、配分比率Rが上限側許容限界PL1の所定範囲内まで至って総駆動力が次第に減少されるときには、その時間変化率が略一定となるように総駆動力を減少させることが好ましい。
これにより、車両1の総駆動力を減少させるときの急激な低下を、より一層抑制することができる。
Further, when the distribution ratio R reaches a predetermined range of the upper limit side allowable limit PL1 and the total driving force is gradually decreased, it is preferable to reduce the total driving force so that the time change rate becomes substantially constant.
As a result, it is possible to further suppress a sharp drop when reducing the total driving force of the vehicle 1.

また、後輪モータ12の出力を出力上限値F以下に制限する場合に、この後輪モータ12の出力は、出力上限値Fに略一致するように制御されるのではなく、出力上限値Fよりも所定値だけ低い値まで減少される。
これにより、出力を制限する後輪モータ12の出力を極力抑えることができ、当該後輪モータ12の発熱に伴うさらなる出力上限値Fの低下を抑制することができる。
When the output of the rear wheel motor 12 is limited to the output upper limit F or less, the output of the rear wheel motor 12 is not controlled to substantially match the output upper limit F, but the output upper limit F It is reduced to a value lower than the predetermined value.
As a result, the output of the rear wheel motor 12 that limits the output can be suppressed as much as possible, and a further decrease in the output upper limit F associated with the heat generation of the rear wheel motor 12 can be suppressed.

また、センサ群に検知された車両1の走行状態に基づいて、所要の走行安定性が得られる配分比率Rの範囲としてその許可範囲DRが設定されるので、配分比率Rを許可範囲DR内に保持することで、より確実に走行安定性を維持することができる。   Further, based on the traveling state of the vehicle 1 detected by the sensor group, the permission range DR is set as the range of the distribution ratio R in which the required traveling stability can be obtained, so the distribution ratio R falls within the permission range DR. By holding it, traveling stability can be more reliably maintained.

<変形例>
なお、本発明を適用可能な実施形態は、上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
<Modification>
The embodiment to which the present invention can be applied is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.

例えば、上記実施形態では、複数の駆動源として前輪モータ11と後輪モータ12とを適用した例を示した。しかし、複数の駆動源は、モータに限られず、例えば前輪の動力をエンジン(内燃機関)が発生させ、後輪の動力をモータが発生させるなどのように、エンジンを含んでいてもよい。すなわち、車両は、電気自動車(EV:Electric Vehicle)、ハイブリッド自動車(HV:Hybrid Vehicle)、ハイブリッド電気自動車(HEV:Hybrid Electric Vehicle)、燃料電池自動車(FCV:Fuel Cell Vehicle)としてもよい。   For example, in the said embodiment, the example which applied the front wheel motor 11 and the rear wheel motor 12 as a some drive source was shown. However, the plurality of drive sources are not limited to the motor, and may include an engine such as an engine (internal combustion engine) generating motive power of front wheels and a motor generating motive power of rear wheels. That is, the vehicle may be an electric vehicle (EV: electric vehicle), a hybrid vehicle (HV: hybrid vehicle), a hybrid electric vehicle (HEV: hybrid electric vehicle), or a fuel cell vehicle (FCV: fuel cell vehicle).

また、上記実施形態では、前輪2と後輪3とで駆動力を配分する例を示した。しかし、前後左右の個々の車輪ごと、或いは、2つの後輪と、左前輪と、右前輪との3組の車輪ごとなど、駆動力を配分する車輪の組み合わせは適宜変更可能である。
さらに、複数の駆動系統に対応する駆動源の数量の組合せも特に限定されない。例えば、前輪モータ11を1つ、後輪モータ12を2つとしてもよい。
Moreover, in the said embodiment, the example which distributes driving force by the front wheel 2 and the rear wheel 3 was shown. However, the combination of the wheels to which the driving force is distributed, such as each pair of front and rear, left and right wheels, or two sets of two rear wheels, left front wheel and right front wheel, can be changed as appropriate.
Furthermore, the combination of the number of drive sources corresponding to a plurality of drive systems is not particularly limited. For example, one front wheel motor 11 and two rear wheel motors 12 may be used.

また、上記実施形態では、駆動系統として前輪トランスミッション13及び後輪トランスミッション14を含むものを示したが、トランスミッションは無くても良く、例えばトランスミッションに代わる動力伝達機構が設けられていてもよい。   In the above embodiment, the drive system includes the front wheel transmission 13 and the rear wheel transmission 14. However, the transmission may not be provided. For example, a power transmission mechanism may be provided instead of the transmission.

また、上記実施形態では、基準比率に影響する複数種類のパラメータとして、操舵角と道路勾配とを示したが、これらに限られず、他の走行状態を表わすパラメータが含まれていてもよい。また、上記実施形態では、許可範囲の許容幅に影響する複数種類のパラメータとして、車速、スリップ率、前後加速度、等々のパラメータを示したが、他の走行状態を表わすパラメータが含まれていてもよい。また、これらのうち2つのパラメータをまとめた関数値を1つのパラメータとして扱ってもよい。   Further, in the above embodiment, the steering angle and the road gradient are shown as a plurality of types of parameters that affect the reference ratio, but the present invention is not limited to these, and parameters representing other traveling conditions may be included. In the above embodiment, the vehicle speed, the slip ratio, the longitudinal acceleration, etc. are shown as a plurality of types of parameters that affect the allowable range of the permission range, but parameters representing other traveling states may be included. Good. Moreover, you may treat the function value which put together two parameters among these as one parameter.

また、上記実施形態では、駆動力の配分比率Rの許可範囲DRを、基準比率に許容幅を加えて計算した例を示したが、許可範囲の計算の仕方は、この方法に限られない。
例えば、走行状態に応じて走行安定性が高まる配分比率Rの範囲を、許可範囲として直接求めるようにしてもよい。具体的には、車速などが所定条件となっている場合において、前輪駆動力:後輪駆動力の比率が例えば9:1〜1:9の範囲内を許可範囲DRとすることが考えられる。また、基準となる上限側許容限界PL1及び下限側許容限界PL2を定めておき、これらを車速などの走行状態に基づいて変化させることで、許可範囲DRを変化させたりしてもよい。
In the above embodiment, the permission range DR of the distribution ratio R of the driving force is calculated by adding the allowable range to the reference ratio. However, the method of calculating the permission range is not limited to this method.
For example, the range of the distribution ratio R in which the traveling stability is increased according to the traveling state may be directly obtained as the permission range. Specifically, when the vehicle speed or the like is a predetermined condition, it is conceivable to set the ratio of the front wheel driving force to the rear wheel driving force within the range of 9: 1 to 1: 9, for example, as the permission range DR. Further, the allowable range DR may be changed by setting the upper limit side allowable limit PL1 and the lower limit side allowable limit PL2 as the reference and changing them based on the traveling state such as the vehicle speed.

また、上記実施形態では、前輪モータ11及び後輪モータ12のいずれかが出力制限を受けた場合に、その出力上限値が設定されることとしたが、この出力上限値は各モータの温度や車速等に基づいて常時設定されることとしてもよい。   In the above embodiment, when either the front wheel motor 11 or the rear wheel motor 12 receives output limitation, the output upper limit value is set. However, the output upper limit value may be the temperature of each motor It may be always set based on the vehicle speed or the like.

また、上記実施形態では、EVCU20が各種制御を行うこととしたが、この制御主体はEVCUに限定されない。例えば、他のECU(Electric Control Unit)が各種制御を行うこととしてもよいし、センサ群からの出力が他のECUに入力されて当該他のECUがセンサ値をEVCU20に出力することなどとしてもよい。
具体的には、MCU(Motor Control Unit)が、前輪モータ温度計38及び後輪モータ温度計39から取得した前輪モータ11及び後輪モータ12の各温度等に基づいて、前輪モータ11及び後輪モータ12それぞれの出力上限値を設定することとしてもよい。そして、このMCUから出力される各モータの出力上限値に基づいて、EVCU20が各モータを駆動制御することなどとしてもよい。
Further, although the EVCU 20 performs various controls in the above embodiment, this control subject is not limited to the EVCU. For example, another ECU (Electric Control Unit) may perform various controls, or an output from a sensor group may be input to another ECU and the other ECU may output a sensor value to EVCU 20. Good.
Specifically, based on the temperatures of front wheel motor 11 and rear wheel motor 12 acquired from front wheel motor thermometer 38 and rear wheel motor thermometer 39 by the MCU (Motor Control Unit), front wheel motor 11 and rear wheel 12 are obtained. The output upper limit value of each motor 12 may be set. The EVCU 20 may drive and control each motor based on the output upper limit value of each motor output from the MCU.

1 車両
2 前輪
3 後輪
11 前輪モータ
12 後輪モータ
20 EVCU
38 前輪モータ温度計
39 後輪モータ温度計
100 駆動力制御装置
R 配分比率
DR 許可範囲
PL1 上限側許容限界
PL2 下限側許容限界
F 出力上限値
1 vehicle 2 front wheel 3 rear wheel 11 front wheel motor 12 rear wheel motor 20 EVCU
38 front wheel motor thermometer 39 rear wheel motor thermometer 100 driving force control device R distribution ratio DR permission range PL1 upper limit side allowable limit PL2 lower limit side allowable limit F output upper limit value

Claims (6)

それぞれ異なる駆動系統を駆動する複数の駆動源を備える車両に搭載され、前記複数の駆動源の動作を制御する車両の駆動力制御装置であって、
前記複数の駆動源に出力させる総駆動力を当該複数の駆動源に配分する配分比率の許可範囲を設定する許可範囲設定手段と、
前記複数の駆動源が前記配分比率の許可範囲内の各駆動力で駆動されている状態において、当該複数の駆動源のうちの一の駆動源の出力を制限する場合、当該一の駆動源の出力を減少させつつ当該一の駆動源を除く他の駆動源の出力を増加させて、総駆動力を維持させる駆動力維持手段と、
前記駆動力維持手段による前記他の駆動源の出力の増加に伴って前記配分比率が前記許可範囲内から外れる場合に、前記一の駆動源における前記許可範囲の下限を維持させつつ総駆動力を減少させる駆動力減少手段と、
を備えることを特徴とする車両の駆動力制御装置。
A driving force control device for a vehicle mounted on a vehicle including a plurality of driving sources for driving different driving systems and controlling operations of the plurality of driving sources,
Permission range setting means for setting a permission range of a distribution ratio to distribute the total driving force output to the plurality of driving sources to the plurality of driving sources;
In the case where the output of one of the plurality of drive sources is limited while the plurality of drive sources are driven by the respective drive forces within the permission range of the distribution ratio, the one drive source Driving force maintaining means for maintaining the total driving force by increasing the outputs of the other driving sources except the one driving source while decreasing the output;
When the distribution ratio deviates from the permission range as the output of the other drive source is increased by the driving force maintaining means, the total driving force is maintained while maintaining the lower limit of the permission range of the one drive source. Driving force reducing means for reducing
A driving force control device for a vehicle, comprising:
前記駆動力減少手段は、前記配分比率が前記許可範囲の下限の所定範囲内まで至った後に、前記配分比率が当該許可範囲の下限に近づくに連れて総駆動力を次第に減少させることを特徴とする請求項1に記載の車両の駆動力制御装置。   The driving force reducing means gradually reduces the total driving force as the distribution ratio approaches the lower limit of the permission range after the distribution ratio reaches a predetermined range of the lower limit of the permission range. The driving force control device of a vehicle according to claim 1. 前記駆動力減少手段は、総駆動力の時間変化率が略一定となるように当該総駆動力を減少させることを特徴とする請求項2に記載の車両の駆動力制御装置。   3. The driving force control apparatus according to claim 2, wherein the driving force reducing means decreases the total driving force such that a time change rate of the total driving force becomes substantially constant. 前記駆動力維持手段は、前記一の駆動源の出力を所定の出力上限値以下に制限する場合、前記出力上限値よりも所定値だけ低い値まで当該一の駆動源の出力を減少させることを特徴とする請求項1〜3のいずれか一項に記載の車両の駆動力制御装置。   When limiting the output of the one drive source to a predetermined output upper limit value or less, the driving force maintaining means reduces the output of the one drive source to a value lower by a predetermined value than the output upper limit value. The driving force control device for a vehicle according to any one of claims 1 to 3, characterized by the above. 前記車両の走行状態を検知する検知手段を備え、
前記許可範囲設定手段は、前記走行状態に基づいて、所要の走行安定性が得られる前記配分比率の範囲として前記許可範囲を設定することを特徴とする請求項1〜4のいずれか一項に記載の車両の駆動力制御装置。
A detection unit that detects the traveling state of the vehicle;
The permission range setting means sets the permission range as a range of the distribution ratio at which a required running stability can be obtained, based on the traveling state. Driving force control device for a vehicle as described.
前記複数の駆動源が、前輪の動力を発生させる前輪モータと、後輪の動力を発生させる後輪モータとから構成されていることを特徴とする請求項1〜5のいずれか一項に記載の車両の駆動力制御装置。   The plurality of drive sources according to any one of claims 1 to 5, wherein the plurality of drive sources are constituted by a front wheel motor generating motive power of front wheels and a rear wheel motor generating motive power of rear wheels. Driving force control device for vehicles.
JP2017187443A 2017-09-28 2017-09-28 Vehicle driving force control device Active JP7017894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017187443A JP7017894B2 (en) 2017-09-28 2017-09-28 Vehicle driving force control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017187443A JP7017894B2 (en) 2017-09-28 2017-09-28 Vehicle driving force control device

Publications (2)

Publication Number Publication Date
JP2019062705A true JP2019062705A (en) 2019-04-18
JP7017894B2 JP7017894B2 (en) 2022-02-09

Family

ID=66177853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017187443A Active JP7017894B2 (en) 2017-09-28 2017-09-28 Vehicle driving force control device

Country Status (1)

Country Link
JP (1) JP7017894B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021016285A (en) * 2019-07-16 2021-02-12 株式会社Subaru vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09284911A (en) * 1996-04-08 1997-10-31 Toyota Motor Corp Driving controller for four wheel driving type hybrid vehicle
JP2002227679A (en) * 2001-02-02 2002-08-14 Nissan Motor Co Ltd Control device for hybrid vehicle
JP2005204436A (en) * 2004-01-16 2005-07-28 Nissan Motor Co Ltd Drive force control device of wheel independently driven type electric vehicle
JP2007245845A (en) * 2006-03-15 2007-09-27 Nissan Motor Co Ltd Driving force controller for four-wheel drive vehicle
JP2007276674A (en) * 2006-04-10 2007-10-25 Nissan Motor Co Ltd Driving force distribution control device for hybrid four-wheel drive vehicle
JP2009273274A (en) * 2008-05-08 2009-11-19 Toyota Motor Corp Controller for vehicle
WO2016075812A1 (en) * 2014-11-14 2016-05-19 株式会社安川電機 Drive force control system for electric vehicle, electric vehicle, and rotary electrical machine
JP2016088381A (en) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 Hybrid automobile

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09284911A (en) * 1996-04-08 1997-10-31 Toyota Motor Corp Driving controller for four wheel driving type hybrid vehicle
JP2002227679A (en) * 2001-02-02 2002-08-14 Nissan Motor Co Ltd Control device for hybrid vehicle
JP2005204436A (en) * 2004-01-16 2005-07-28 Nissan Motor Co Ltd Drive force control device of wheel independently driven type electric vehicle
JP2007245845A (en) * 2006-03-15 2007-09-27 Nissan Motor Co Ltd Driving force controller for four-wheel drive vehicle
JP2007276674A (en) * 2006-04-10 2007-10-25 Nissan Motor Co Ltd Driving force distribution control device for hybrid four-wheel drive vehicle
JP2009273274A (en) * 2008-05-08 2009-11-19 Toyota Motor Corp Controller for vehicle
JP2016088381A (en) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 Hybrid automobile
WO2016075812A1 (en) * 2014-11-14 2016-05-19 株式会社安川電機 Drive force control system for electric vehicle, electric vehicle, and rotary electrical machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021016285A (en) * 2019-07-16 2021-02-12 株式会社Subaru vehicle
JP7339797B2 (en) 2019-07-16 2023-09-06 株式会社Subaru vehicle

Also Published As

Publication number Publication date
JP7017894B2 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
US11472411B2 (en) Battery electric vehicle (BEV) torque split control
US11007880B2 (en) Method and apparatus for controlling electric machines
JP6236168B2 (en) Method for controlling an electric motor in a serial hybrid vehicle or a fully electric vehicle having at least two independently driven axles
JP6503760B2 (en) Driving force control device for electric vehicle
EP3028893B1 (en) Vehicle
US9783061B2 (en) Method for operating an electric drive module
JP6379148B2 (en) Vehicle driving force control device
CN104943682B (en) Controlling torque of vehicle traction motor
JP6646260B2 (en) Vehicle drive system
JP6730668B2 (en) Vehicle drive device
JP2013028329A (en) Vehicle control method using in-wheel motor
JP2007245995A (en) Control device for hybrid four-wheel drive vehicle
US20170137012A1 (en) Powertrain and method of coordinating chassis and propulsion system torque limits
JP6326469B2 (en) Vehicle driving force control device
US20150151744A1 (en) Vehicle body vibration control device for vehicle
JP7017894B2 (en) Vehicle driving force control device
JP2009029413A (en) Method for operating electric machine, and controller for executing the method, and vehicle
JP7017895B2 (en) Vehicle driving force control device
JP4905085B2 (en) Driving force distribution control device for four-wheel drive vehicles
JP6114591B2 (en) Electric car
JP6690339B2 (en) Driving force control device
US9663080B2 (en) System and method for braking recuperation in motor vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220128

R150 Certificate of patent or registration of utility model

Ref document number: 7017894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150