JP7017895B2 - Vehicle driving force control device - Google Patents

Vehicle driving force control device Download PDF

Info

Publication number
JP7017895B2
JP7017895B2 JP2017187444A JP2017187444A JP7017895B2 JP 7017895 B2 JP7017895 B2 JP 7017895B2 JP 2017187444 A JP2017187444 A JP 2017187444A JP 2017187444 A JP2017187444 A JP 2017187444A JP 7017895 B2 JP7017895 B2 JP 7017895B2
Authority
JP
Japan
Prior art keywords
output
driving force
drive
upper limit
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017187444A
Other languages
Japanese (ja)
Other versions
JP2019062706A (en
Inventor
史之 守屋
寛史 家永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2017187444A priority Critical patent/JP7017895B2/en
Publication of JP2019062706A publication Critical patent/JP2019062706A/en
Application granted granted Critical
Publication of JP7017895B2 publication Critical patent/JP7017895B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、複数の駆動源を有する車両の駆動力制御装置に関する。 The present invention relates to a driving force control device for a vehicle having a plurality of driving sources.

従来、電気自動車またはハイブリッド電気自動車の分野において、複数の駆動源から複数の車輪へ個別に動力を伝達して走行する車両(以下、独立駆動車両という。)が提案されている。このような車両では、運転操作に応じた要求駆動力或いは要求トルクを出力する際、複数の駆動源にどのように動力を配分するか自由度が生じる。 Conventionally, in the field of an electric vehicle or a hybrid electric vehicle, a vehicle (hereinafter referred to as an independently driven vehicle) has been proposed in which power is individually transmitted from a plurality of drive sources to a plurality of wheels to travel. In such a vehicle, when outputting the required driving force or the required torque according to the driving operation, there is a degree of freedom in how to distribute the power to a plurality of driving sources.

このような独立駆動車両において、駆動源としてモータ等が採用されている場合、その発熱(温度)などの状態に応じてこの駆動源の出力を制限する必要が生じる。
そして、一の駆動源を出力制限された状態から復帰させる際には、復帰後に再び熱等により出力が制限されないよう、十分に温度が下がってから制限解除を行う必要がある(例えば、特許文献1,2参照)。
そのため、車両の総駆動力を回復させるまでに時間を要するという問題があった。
In such an independently driven vehicle, when a motor or the like is adopted as a drive source, it becomes necessary to limit the output of the drive source according to a state such as heat generation (temperature) thereof.
Then, when returning one drive source from the output restricted state, it is necessary to release the restriction after the temperature has sufficiently dropped so that the output is not restricted again due to heat or the like after the restoration (for example, Patent Document). See 1 and 2).
Therefore, there is a problem that it takes time to recover the total driving force of the vehicle.

特開2009-247205号公報Japanese Unexamined Patent Publication No. 2009-247205 特開2005-204436号公報Japanese Unexamined Patent Publication No. 2005-204436

本発明は、上記事情を鑑みてなされたもので、一の駆動源の出力制限を解除する場合に、従来よりも速やかに車両の総駆動力を回復させることができる車両の駆動力制御装置の提供を目的とする。 The present invention has been made in view of the above circumstances, and is a vehicle driving force control device capable of recovering the total driving force of a vehicle more quickly than before when the output limitation of one drive source is released. The purpose is to provide.

上記目的を達成するために、請求項1に記載の発明は、
それぞれ異なる駆動系統を駆動する複数の駆動源を備える車両に搭載され、前記複数の駆動源の動作を制御する車両の駆動力制御装置であって、
前記複数の駆動源それぞれの温度情報を取得する温度取得手段と、
前記複数の駆動源それぞれの出力上限値を、当該駆動源の温度情報に基づいて設定する出力上限設定手段と、
前記複数の駆動源に出力させる総駆動力を当該複数の駆動源に配分する配分比率の許可範囲を設定する許可範囲設定手段と、
前記複数の駆動源を前記配分比率の許可範囲内かつ前記出力上限値以下の各駆動力で駆動する駆動制御手段と、
を備え、
前記駆動制御手段は、
前記複数の駆動源のうちの一の駆動源の出力が前記出力上限値により制限されている状態から、当該出力上限値の上昇に伴って前記一の駆動源の出力を増加させるときに、
前記総駆動力が前記車両に与えられる要求駆動力未満であり、かつ、前記一の駆動源の温度が第1温度以下まで低下した場合には、前記一の駆動源の出力を増加させて前記総駆動力を増加させる第1出力制御を実施し、
前記第1出力制御により前記総駆動力が前記要求駆動力に達し、かつ、前記一の駆動源の温度が前記第1温度よりも低い第2温度以下まで低下した場合には、前記一の駆動源の出力を増加させつつ、前記複数の駆動源のうち当該一の駆動源を除く他の駆動源の出力を減少させて、前記総駆動力を維持させる第2出力制御を実施し、
前記第1出力制御では、前記出力上限値の上昇に応じて前記一の駆動源の出力を増加させ、前記第2出力制御では、前記出力上限値の上昇に対して前記一の駆動源の出力の増加を遅延させることを特徴とする。
In order to achieve the above object, the invention according to claim 1 is
A vehicle driving force control device that is mounted on a vehicle having a plurality of drive sources for driving different drive systems and controls the operation of the plurality of drive sources.
A temperature acquisition means for acquiring temperature information of each of the plurality of drive sources,
An output upper limit setting means for setting an output upper limit value of each of the plurality of drive sources based on the temperature information of the drive source, and an output upper limit setting means.
A permission range setting means for setting a permission range of a distribution ratio for distributing the total driving force to be output to the plurality of drive sources to the plurality of drive sources.
A drive control means for driving the plurality of drive sources with each driving force within the permitted range of the distribution ratio and equal to or less than the output upper limit value.
Equipped with
The drive control means is
When the output of one of the plurality of drive sources is limited by the output upper limit value and the output of the one drive source is increased as the output upper limit value increases.
When the total driving force is less than the required driving force given to the vehicle and the temperature of the one driving source drops to the first temperature or lower , the output of the one driving source is increased. The first output control that increases the total driving force is carried out,
When the total driving force reaches the required driving force by the first output control and the temperature of the one driving source drops to the second temperature or less, which is lower than the first temperature, the one driving force is described. A second output control is performed to maintain the total driving force by increasing the output of the source and decreasing the output of the other driving sources other than the one driving source among the plurality of driving sources.
In the first output control, the output of the one drive source is increased in response to an increase in the output upper limit value, and in the second output control, the output of the one drive source is increased in response to an increase in the output upper limit value. It is characterized by delaying the increase of.

請求項2に記載の発明は、請求項1に記載の車両の駆動力制御装置において、
前記駆動制御手段は、前記第1出力制御では、前記配分比率を前記一の駆動源における前記許可範囲の下限としつつ当該一の駆動源の出力を増加させて、前記総駆動力を増加させることを特徴とする。
The invention according to claim 2 is the vehicle driving force control device according to claim 1.
In the first output control, the drive control means increases the output of the one drive source while setting the distribution ratio as the lower limit of the permitted range in the one drive source to increase the total drive force. It is characterized by.

請求項3に記載の発明は、請求項1又は2に記載の車両の駆動力制御装置において、
前記駆動制御手段は、前記第2出力制御では、前記第1出力制御により前記総駆動力が前記要求駆動力に達してから、所定時間だけ前記配分比率を前記一の駆動源における前記許可範囲の下限に維持させることを特徴とする。
The invention according to claim 3 is the vehicle driving force control device according to claim 1 or 2.
In the second output control, the drive control means sets the distribution ratio within the permitted range in the one drive source for a predetermined time after the total drive force reaches the required drive force by the first output control. It is characterized by keeping it at the lower limit.

請求項4に記載の発明は、請求項1又は2に記載の車両の駆動力制御装置において、
前記駆動制御手段は、前記第2出力制御では、前記第1出力制御により前記総駆動力が前記要求駆動力に達した場合に、当該総駆動力を維持させつつ、前記出力上限値以下の範囲内で前記一の駆動源の出力を増加させることを特徴とする。
The invention according to claim 4 is the vehicle driving force control device according to claim 1 or 2.
In the second output control, when the total driving force reaches the required driving force by the first output control, the drive control means maintains the total driving force and is in a range equal to or less than the output upper limit value. It is characterized in that the output of the one drive source is increased.

請求項5に記載の発明は、請求項1又は2に記載の車両の駆動力制御装置において、
前記駆動制御手段は、前記第2出力制御では、前記第1出力制御により前記総駆動力が前記要求駆動力に達した場合に、前記他の駆動源の温度情報に基づいて、前記配分比率を前記一の駆動源における前記許可範囲の下限に維持させるか、或いは、前記出力上限値以下の範囲内で前記一の駆動源の出力を増加させつつ前記他の駆動源の出力を減少させて前記総駆動力を維持させるかを選択することを特徴とする。
The invention according to claim 5 is the vehicle driving force control device according to claim 1 or 2.
In the second output control, the drive control means determines the distribution ratio based on the temperature information of the other drive source when the total drive force reaches the required drive force by the first output control. The output of the one drive source is maintained at the lower limit of the permitted range, or the output of the other drive source is decreased while increasing the output of the one drive source within the range equal to or less than the output upper limit value. It is characterized by selecting whether to maintain the total driving force.

請求項6に記載の発明は、請求項1~5のいずれか一項に記載の車両の駆動力制御装置において、
前記車両の走行状態を検知する検知手段を備え、
前記許可範囲設定手段は、前記走行状態に基づいて、所要の走行安定性が得られる前記配分比率の範囲として前記許可範囲を設定することを特徴とする。
The invention according to claim 6 is the vehicle driving force control device according to any one of claims 1 to 5.
A detection means for detecting the running state of the vehicle is provided.
The permission range setting means is characterized in that the permission range is set as a range of the distribution ratio from which the required running stability can be obtained, based on the running state.

請求項7に記載の発明は、請求項1~6のいずれか一項に記載の車両の駆動力制御装置において、
前記複数の駆動源が、前輪の動力を発生させる前輪モータと、後輪の動力を発生させる後輪モータとから構成されていることを特徴とする。
The invention according to claim 7 is the vehicle driving force control device according to any one of claims 1 to 6.
The plurality of drive sources are characterized by including a front wheel motor that generates power for the front wheels and a rear wheel motor that generates power for the rear wheels.

請求項8に記載の発明は、請求項1~6のいずれか一項に記載の車両の駆動力制御装置において、
前記複数の駆動源が、前輪の動力を発生させるエンジンと、後輪の動力を発生させるモータとから構成されていることを特徴とする。
The invention according to claim 8 is the vehicle driving force control device according to any one of claims 1 to 6.
The plurality of drive sources are characterized by including an engine that generates power for the front wheels and a motor that generates power for the rear wheels.

請求項9に記載の発明は、請求項7又は8に記載の車両の駆動力制御装置において、
前記出力上限設定手段は、モータの出力上限値を設定するMCUであり、
前記駆動制御手段は、前記出力上限設定手段から出力された前記出力上限値に基づいてモータを駆動制御するEVCUであることを特徴とする。
The invention according to claim 9 is the vehicle driving force control device according to claim 7 or 8.
The output upper limit setting means is an MCU that sets an output upper limit value of the motor .
The drive control means is an EVCU that drives and controls a motor based on the output upper limit value output from the output upper limit setting means.

請求項1に記載の発明によれば、一の駆動源の出力が制限されている状態から、出力上限値の上昇に伴って当該一の駆動源の出力を増加させるときに、車両の総駆動力が要求駆動力未満であった場合には、一の駆動源の出力を増加させて総駆動力を増加させる第1出力制御が実施される。そして、この第1出力制御により総駆動力が要求駆動力に達したら、一の駆動源の出力を増加させつつ他の駆動源の出力を減少させて総駆動力を維持させる第2出力制御が実施される。このとき、第1出力制御では、出力上限値の上昇に応じて一の駆動源の出力を増加させ、第2出力制御では、出力上限値の上昇に対して一の駆動源の出力の増加を遅延させる。
このように、総駆動力を優先的に回復させるように段階的に出力制限を解除することにより、単に十分な温度低下を確認してから一時に出力制限を解除していた従来に比べ、速やかに車両の総駆動力を回復させることができる。
According to the first aspect of the present invention, when the output of one drive source is limited and the output of the one drive source is increased as the upper limit of the output increases, the total drive of the vehicle is increased. When the force is less than the required driving force, the first output control is carried out to increase the output of one driving source to increase the total driving force. Then, when the total driving force reaches the required driving force by this first output control, the second output control that increases the output of one driving source and decreases the output of the other driving source to maintain the total driving force is performed. Will be implemented. At this time, in the first output control, the output of one drive source is increased according to the increase in the output upper limit value, and in the second output control, the output of one drive source is increased in response to the increase in the output upper limit value. Delay.
In this way, by gradually releasing the output limit so as to preferentially recover the total driving force, it is quicker than in the past where the output limit was temporarily released after simply confirming a sufficient temperature drop. The total driving force of the vehicle can be restored.

請求項2に記載の発明によれば、一の駆動源の出力を増加させて総駆動力を増加させるときに、配分比率が一の駆動源における許可範囲の下限とされるので、一の駆動源の出力を極力抑えつつ車両の総駆動力を回復させることができる。 According to the second aspect of the present invention, when the output of one drive source is increased to increase the total drive force, the distribution ratio is set to the lower limit of the permitted range in one drive source, so that one drive is used. The total driving force of the vehicle can be restored while suppressing the output of the source as much as possible.

請求項3に記載の発明によれば、増加させた総駆動力が要求駆動力に達したときに、配分比率が一の駆動源における許可範囲の下限に所定時間だけ維持される。
これにより、一の駆動源の出力を極力抑えることでき、当該一の駆動源の温度低下を促進させることができる。
According to the third aspect of the invention, when the increased total driving force reaches the required driving force, the distribution ratio is maintained at the lower limit of the permitted range in one driving source for a predetermined time.
As a result, the output of one drive source can be suppressed as much as possible, and the temperature drop of the one drive source can be promoted.

請求項4に記載の発明によれば、増加させた総駆動力が要求駆動力に達した場合に、当該総駆動力が維持されつつ、出力上限値以下の範囲内で一の駆動源の出力が増加される。
これにより、配分比率を早期に理想配分に近づけることができ、ひいては、速やかに走行安定性を回復させることができる。
According to the invention of claim 4, when the increased total driving force reaches the required driving force, the output of one driving source is output within the range of the output upper limit value or less while maintaining the total driving force. Is increased.
As a result, the allocation ratio can be brought closer to the ideal allocation at an early stage, and the running stability can be quickly restored.

請求項5に記載の発明によれば、増加させた総駆動力が要求駆動力に達した場合に、複数の駆動源のうちの一の駆動源を除く他の駆動源の温度情報に基づいて、配分比率を一の駆動源における許可範囲の下限に維持させるか、或いは、出力上限値以下の範囲内で一の駆動源の出力を増加させつつ他の駆動源の出力を減少させて総駆動力を維持させるかが選択される。
これにより、例えば他の駆動源の温度を抑制したい場合には後者の処理を選択するなどして、他の駆動源の温度を制御することができる。
According to the invention of claim 5, when the increased total driving force reaches the required driving force, it is based on the temperature information of the other driving sources excluding one of the plurality of driving sources. , The distribution ratio is maintained at the lower limit of the permitted range in one drive source, or the output of one drive source is increased and the output of another drive source is decreased within the range below the upper limit of the output to reduce the total drive. It is selected whether to maintain the force.
Thereby, for example, when it is desired to suppress the temperature of another drive source, the latter process can be selected to control the temperature of the other drive source.

請求項6に記載の発明によれば、検知手段に検知された車両の走行状態に基づいて、所要の走行安定性が得られる配分比率の範囲としてその許可範囲が設定されるので、配分比率を許可範囲内に保持することで、より確実に走行安定性を維持することができる。 According to the invention of claim 6, since the permitted range is set as the range of the distribution ratio at which the required running stability can be obtained based on the running state of the vehicle detected by the detection means, the distribution ratio is set. By keeping it within the permitted range, running stability can be maintained more reliably.

実施形態における車両の概略構成を示す構成図である。It is a block diagram which shows the schematic structure of the vehicle in an embodiment. 実施形態における駆動力配分処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the driving force distribution processing in an embodiment. 駆動力配分処理における駆動力の配分比率の一例を示すグラフである。It is a graph which shows an example of the distribution ratio of the driving force in the driving force distribution processing. 駆動力配分処理における後輪モータの温度チャートの一例である。This is an example of a temperature chart of a rear wheel motor in a driving force distribution process. 駆動力配分処理における駆動力の配分比率の一例を示すグラフである。It is a graph which shows an example of the distribution ratio of the driving force in the driving force distribution processing. 駆動力配分処理における駆動力の配分比率の一例を示すグラフである。It is a graph which shows an example of the distribution ratio of the driving force in the driving force distribution processing. 駆動力配分処理における駆動力の配分比率の一例を示すグラフである。It is a graph which shows an example of the distribution ratio of the driving force in the driving force distribution processing. 駆動力配分処理における総駆動力、各モータ駆動力及び駆動力配分率のタイムチャートの一例である。This is an example of a time chart of the total driving force, each motor driving force, and the driving force distribution rate in the driving force distribution process. 実施形態における車両の概略構成の一変形例を示す構成図である。It is a block diagram which shows one modification of the schematic structure of the vehicle in an embodiment.

以下、本発明の実施形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<構成>
まず、本実施形態に係る車両1の構成について説明する。図1は、車両1の概略構成を示す構成図である。
<Structure>
First, the configuration of the vehicle 1 according to the present embodiment will be described. FIG. 1 is a configuration diagram showing a schematic configuration of a vehicle 1.

この図に示すように、車両1は、前輪2と後輪3とを互いに独立してモータ駆動させる電気自動車(EV:Electric Vehicle)である。具体的に、車両1は、左右の前輪2、左右の後輪3、前輪モータ11、後輪モータ12、前輪トランスミッション13、後輪トランスミッション14、ラジエータ15、EVCU(Electric Vehicles Control Unit)20、及びセンサ群(31~39)を備える。これらのうち、前輪モータ11及び後輪モータ12は、本発明に係る複数の駆動源の一例に相当する。また、前輪2及び前輪トランスミッション13と、後輪3及び後輪トランスミッション14とは、本発明に係る複数の駆動系統の一例に相当する。 As shown in this figure, the vehicle 1 is an electric vehicle (EV) in which the front wheels 2 and the rear wheels 3 are driven by motors independently of each other. Specifically, the vehicle 1 includes left and right front wheels 2, left and right rear wheels 3, front wheel motor 11, rear wheel motor 12, front wheel transmission 13, rear wheel transmission 14, radiator 15, EVCU (Electric Vehicles Control Unit) 20, and A group of sensors (31 to 39) is provided. Of these, the front wheel motor 11 and the rear wheel motor 12 correspond to an example of a plurality of drive sources according to the present invention. Further, the front wheel 2 and the front wheel transmission 13 and the rear wheel 3 and the rear wheel transmission 14 correspond to an example of a plurality of drive systems according to the present invention.

本実施形態に係る車両1の駆動力制御装置(以下、単に「駆動力制御装置」という。)100は、車両1に搭載されて前輪モータ11及び後輪モータ12の動作を制御する装置であり、特に、これら前輪モータ11及び後輪モータ12の一方が出力を制限された場合に、その制限解除に伴う駆動力復帰を好適に行えるものである。この駆動力制御装置100は、上述した構成のうち、EVCU20とセンサ群(31~39)とを含んだ部分に相当する。 The driving force control device (hereinafter, simply referred to as “driving force control device”) 100 of the vehicle 1 according to the present embodiment is a device mounted on the vehicle 1 to control the operation of the front wheel motor 11 and the rear wheel motor 12. In particular, when one of the front wheel motor 11 and the rear wheel motor 12 has a limited output, the driving force can be preferably restored due to the release of the limitation. The driving force control device 100 corresponds to a portion of the above-mentioned configuration including the EVCU 20 and the sensor group (31 to 39).

前輪モータ11及び後輪モータ12は、EVCU20からの指令に基づいて前後輪の駆動系統を個別に駆動する。具体的には、前輪モータ11が前輪トランスミッション13を介して左右の前輪2を駆動させ、後輪モータ12が後輪トランスミッション14を介して左右の後輪3を駆動させる。より詳しくは、前輪モータ11及び後輪モータ12の各々に対応した図示しない駆動回路が、EVCU20からの指令に応じてバッテリの電力を変換して前輪モータ11及び後輪モータ12へ出力し、前輪モータ11及び後輪モータ12が、この電力に基づいて動力を発生させる。 The front wheel motor 11 and the rear wheel motor 12 individually drive the drive systems of the front and rear wheels based on the command from the EVCU 20. Specifically, the front wheel motor 11 drives the left and right front wheels 2 via the front wheel transmission 13, and the rear wheel motor 12 drives the left and right rear wheels 3 via the rear wheel transmission 14. More specifically, a drive circuit (not shown) corresponding to each of the front wheel motor 11 and the rear wheel motor 12 converts the electric power of the battery in response to a command from the EVCU 20 and outputs the power to the front wheel motor 11 and the rear wheel motor 12 to output the front wheels. The motor 11 and the rear wheel motor 12 generate electric power based on this electric power.

ラジエータ15は、車両1の各種機器を冷却するためのものであり、本実施形態においては、前輪モータ11及び後輪モータ12を冷却する。このラジエータ15と前輪モータ11及び後輪モータ12とは、図示しない循環ポンプが設けられた配管を介して連結されており、この配管に冷却水を循環させることで前輪モータ11及び後輪モータ12が水冷される。 The radiator 15 is for cooling various devices of the vehicle 1, and in the present embodiment, the front wheel motor 11 and the rear wheel motor 12 are cooled. The radiator 15, the front wheel motor 11 and the rear wheel motor 12 are connected to each other via a pipe provided with a circulation pump (not shown), and the front wheel motor 11 and the rear wheel motor 12 are connected by circulating cooling water through the pipe. Is water-cooled.

EVCU20は、車両1を統合制御するものである。具体的に、EVCU20は、本実施形態においては、車両1に与えられる要求駆動力が、左右の前輪2の駆動力と、左右の後輪3の駆動力とに適切に配分されるように、指令を出力する。要求駆動力は、例えば乗員の運転操作(例えばアクセル操作量を表すアクセルセンサ35のセンサ信号)によって車両1に与えられる。EVCU20は、駆動力の配分が実現されるように、前輪モータ11及び後輪モータ12の各々に目標出力(目標トルク)の指令を出力する。 The EVCU 20 is for integrated control of the vehicle 1. Specifically, in the present embodiment, the EVCU 20 appropriately distributes the required driving force given to the vehicle 1 to the driving force of the left and right front wheels 2 and the driving force of the left and right rear wheels 3. Output a command. The required driving force is given to the vehicle 1 by, for example, an occupant's driving operation (for example, a sensor signal of an accelerator sensor 35 representing an accelerator operation amount). The EVCU 20 outputs a target output (target torque) command to each of the front wheel motor 11 and the rear wheel motor 12 so that the distribution of the driving force is realized.

センサ群は、車両1の走行状態を検出するセンサとして、例えば、前後加速度センサ31と、左右加速度センサ32と、ヨーレートセンサ33と、車輪速センサ34とを含む。前後加速度センサ31は、車両1の前後方向の加速度を検出する。左右加速度センサ32は、車両1の左右方向の加速度を検出する。ヨーレートセンサ33は、車両1のヨーレートを検出する。車輪速センサ34は、左右の前輪2及び左右の後輪3の各々の車輪速(回転速度)を検出する。 The sensor group includes, for example, a front-rear acceleration sensor 31, a left-right acceleration sensor 32, a yaw rate sensor 33, and a wheel speed sensor 34 as sensors for detecting the traveling state of the vehicle 1. The front-back acceleration sensor 31 detects the front-back acceleration of the vehicle 1. The left-right acceleration sensor 32 detects the left-right acceleration of the vehicle 1. The yaw rate sensor 33 detects the yaw rate of the vehicle 1. The wheel speed sensor 34 detects the wheel speeds (rotational speeds) of the left and right front wheels 2 and the left and right rear wheels 3.

また、センサ群は、乗員の運転操作を検出するセンサとして、アクセルセンサ35と、操舵角センサ36と、ブレーキセンサ37とを含む。アクセルセンサ35は、乗員のアクセル操作量を検出する。操舵角センサ36は、乗員のハンドル操作量を検出する。ブレーキセンサ37は、乗員のブレーキ操作量を検出する。
さらに、センサ群は、前輪モータ11及び後輪モータ12の出力制限を検知するセンサとして、前輪モータ11の温度計38と、後輪モータ12の温度計39と、上述した車輪速センサ34とを含む。
Further, the sensor group includes an accelerator sensor 35, a steering angle sensor 36, and a brake sensor 37 as sensors for detecting the driving operation of the occupant. The accelerator sensor 35 detects the amount of accelerator operation by the occupant. The steering angle sensor 36 detects the amount of steering wheel operation by the occupant. The brake sensor 37 detects the amount of brake operation by the occupant.
Further, the sensor group includes a thermometer 38 of the front wheel motor 11, a thermometer 39 of the rear wheel motor 12, and the wheel speed sensor 34 described above as sensors for detecting the output limitation of the front wheel motor 11 and the rear wheel motor 12. include.

<駆動力配分処理>
続いて、駆動力制御装置100が駆動力を前輪モータ11及び後輪モータ12に配分する駆動力配分処理について説明する。
図2は、この駆動力配分処理の流れを示すフローチャートであり、図3、図5~図7は、駆動力配分処理における前輪モータ11及び後輪モータ12への駆動力の配分比率の一例を示すグラフであり、図4は、駆動力配分処理における後輪モータ温度Trmの温度チャートの一例である。また、図8は、駆動力配分処理における総駆動力、各モータ駆動力及び駆動力配分率のタイムチャートの一例である。
<Driving force distribution processing>
Subsequently, the driving force distribution process in which the driving force control device 100 distributes the driving force to the front wheel motor 11 and the rear wheel motor 12 will be described.
FIG. 2 is a flowchart showing the flow of the driving force distribution process, and FIGS. 3 and 5 to 7 show an example of the driving force distribution ratio to the front wheel motor 11 and the rear wheel motor 12 in the driving force distribution process. FIG. 4 is an example of a temperature chart of the rear wheel motor temperature Trm in the driving force distribution process. Further, FIG. 8 is an example of a time chart of the total driving force, each motor driving force, and the driving force distribution rate in the driving force distribution process.

駆動力配分処理は、車両1が走行モードの際に、数ミリ秒など短い周期で繰り返し実行される。
この駆動力配分処理が開始されると、図2に示すように、まずEVCU20は、前輪モータ温度計38及び後輪モータ温度計39を含むセンサ群(31~39)の各センサ値を取得する(ステップS1)。これらのうち、例えばアクセルセンサ35のセンサ値は、前輪モータ11及び後輪モータ12が出力すべき駆動力の総計である要求駆動力として入力される。
The driving force distribution process is repeatedly executed in a short cycle such as several milliseconds when the vehicle 1 is in the traveling mode.
When this driving force distribution process is started, as shown in FIG. 2, the EVCU 20 first acquires each sensor value of the sensor group (31 to 39) including the front wheel motor thermometer 38 and the rear wheel motor thermometer 39. (Step S1). Of these, for example, the sensor value of the accelerator sensor 35 is input as the required driving force, which is the total driving force to be output by the front wheel motor 11 and the rear wheel motor 12.

次に、EVCU20は、要求駆動力の配分比率(要求駆動力を前輪モータ11及び後輪モータ12に配分するその比率)の基準となる基準比率を決定する(ステップS2)。基準比率は、例えば車両1の走行状態に応じて、高い走行安定性が得られる要求駆動力の配分比率として決定される。 Next, the EVCU 20 determines a reference ratio that serves as a reference for the required driving force distribution ratio (the ratio of the required driving force distributed to the front wheel motor 11 and the rear wheel motor 12) (step S2). The reference ratio is determined as, for example, the distribution ratio of the required driving force that can obtain high running stability according to the running state of the vehicle 1.

具体的に、このステップS2では、まずEVCU20は、車両1の荷重配分に応じたベース基準比率を算出する。ベース基準比率は、例えば勾配のない道路を直進して走行する際に、走行安定性が最も高くなる理想的な駆動力の配分比率である。車両1の荷重配分は、取得された複数のセンサ値のうち、前後加速度と左右加速度の値に基づいて算出される。
次に、EVCU20は、操舵角に対応した基準比率の変化量と、道路勾配に対応した基準比率の変化量とを各々算出する。操舵角は、操舵角センサ36の出力値から取得され、道路勾配は、例えばアクセル操作量と車速の変化量との関係から推定される。EVCU20は、操舵角及び道路勾配の各々と基準比率の変化量との関係を示すデータテーブルを予め記憶しており、これらのデータテーブルを用いて操舵角及び道路勾配から基準比率の変化量を算出する。
そして、EVCU20は、操舵角及び道路勾配に対応した基準比率の各変化量をベース基準比率に統合させて、基準比率を算出する。
Specifically, in this step S2, the EVCU 20 first calculates the base reference ratio according to the load distribution of the vehicle 1. The base reference ratio is an ideal driving force distribution ratio that maximizes driving stability when traveling straight on a road with no slope, for example. The load distribution of the vehicle 1 is calculated based on the values of the front-rear acceleration and the left-right acceleration among the acquired plurality of sensor values.
Next, the EVCU 20 calculates the amount of change in the reference ratio corresponding to the steering angle and the amount of change in the reference ratio corresponding to the road gradient. The steering angle is acquired from the output value of the steering angle sensor 36, and the road gradient is estimated from, for example, the relationship between the accelerator operation amount and the change amount of the vehicle speed. The EVCU 20 stores in advance a data table showing the relationship between each of the steering angle and the road gradient and the change amount of the reference ratio, and calculates the change amount of the reference ratio from the steering angle and the road gradient using these data tables. do.
Then, the EVCU 20 calculates the reference ratio by integrating each change amount of the reference ratio corresponding to the steering angle and the road gradient into the base reference ratio.

こうして求められた基準比率は、車両の荷重配分と、走行状態を表す個々の補正パラメータ(操舵角および道路勾配)とに対応して、高い走行安定性を実現する理想的な配分比率となる。ただし、走行状態を表す補正パラメータは操舵角と道路勾配に限定されず、理想的な駆動力の配分比率に影響を与えるパラメータであれば、他のパラメータを用いて同様の補正処理を行ってもよい。 The reference ratio thus obtained is an ideal distribution ratio that realizes high driving stability in accordance with the load distribution of the vehicle and the individual correction parameters (steering angle and road gradient) representing the driving state. However, the correction parameters that represent the driving condition are not limited to the steering angle and the road gradient, and if the parameters affect the ideal driving force distribution ratio, the same correction processing can be performed using other parameters. good.

次に、EVCU20は、車両1の走行状態に基づいて、要求駆動力の配分比率の許可範囲を設定する(ステップS3)。許可範囲は、要求駆動力の配分比率として選択可能な比率の範囲を示すものであり、車両の走行安定性を妨げない配分比率の範囲として設定される。 Next, the EVCU 20 sets a permitted range of the required driving force distribution ratio based on the traveling state of the vehicle 1 (step S3). The permitted range indicates a range of ratios that can be selected as the distribution ratio of the required driving force, and is set as a range of distribution ratios that do not interfere with the running stability of the vehicle.

具体的に、このステップS3では、まずEVCU20は、取得された複数のセンサ値に基づいて、車両1の走行状態を表す複数のパラメータの値を算出する。複数のパラメータとしては、例えば、車速、スリップ率、前後加速度、横加速度、アンダーステア度合、オーバーステア度合、ブレーキ操作量などが含まれる。これら複数のパラメータは、走行安定性の必要度に影響を与えるパラメータである。
次に、EVCU20は、算出された複数のパラメータの各値と個別に対応した上限側許容幅および下限側許容幅の幅長を算出する。ここで、上限側許容幅とは、走行安定性を妨げない範囲で前輪2への駆動力の配分比率を高くできる許容幅であり、下限側許容幅とは、走行安定性を妨げない範囲で後輪3への駆動力の配分比率を高くできる許容幅である。個々のパラメータの値と、上限側許容幅及び下限側許容幅との関係は、これらが互いに対応付けられたデータテーブル又は関数の形式で予め記憶されている。これらの関係は、走行安定性の必要度が高くなれば許容幅が小さくなり、走行安定性の必要度が低くなれば許容幅が大きくなるような対応関係である。EVCU20は、これらのデータテーブル又は関数を用い、複数のパラメータの各々について上限側許容幅と下限側許容幅とを算出する。
なお、車両1の挙動に乱れのない走行状態においては、上限側許容幅と下限側許容幅とは同じ大きさになる。しかし、アンダーステア傾向時或いはオーバーステア傾向時などの車両1の挙動に乱れが生じた走行状態においては、上限側許容幅と下限側許容幅とは同じ大きさにならない。例えばアンダーステア傾向が弱く現れた場合、前輪2の駆動力の比率を高めるとアンダーステア傾向を助長してしまう。そのため、前輪2への駆動力の配分比率を高くできる許容幅は、後輪3への駆動力の配分比率を高くできる許容幅よりも小さくなる。したがって、アンダーステア度合に応じた上限側許容幅は下限側許容幅よりも小さく設定される。一方、オーバーステア度合に応じた上限側許容幅は、アンダーステア度合の場合とは反対に、下限側許容幅よりも大きく設定される。
Specifically, in this step S3, the EVCU 20 first calculates the values of a plurality of parameters representing the traveling state of the vehicle 1 based on the acquired plurality of sensor values. The plurality of parameters include, for example, vehicle speed, slip ratio, front-rear acceleration, lateral acceleration, degree of understeer, degree of oversteer, amount of brake operation, and the like. These plurality of parameters are parameters that affect the degree of running stability.
Next, the EVCU 20 calculates the width length of the upper limit side allowable width and the lower limit side allowable width individually corresponding to each value of the calculated plurality of parameters. Here, the upper limit side allowable width is a permissible width that can increase the distribution ratio of the driving force to the front wheels 2 within a range that does not hinder the running stability, and the lower limit side permissible width is a range that does not hinder the running stability. It is an allowable range that can increase the distribution ratio of the driving force to the rear wheels 3. The relationship between the value of each parameter and the upper limit side allowable width and the lower limit side allowable width is stored in advance in the form of a data table or function in which they are associated with each other. These relationships are such that the permissible width becomes smaller as the necessity of running stability becomes higher, and the permissible width becomes larger as the necessity of running stability becomes lower. The EVCU 20 uses these data tables or functions to calculate the upper limit side allowable width and the lower limit side allowable width for each of the plurality of parameters.
In a traveling state where the behavior of the vehicle 1 is not disturbed, the upper limit side allowable width and the lower limit side allowable width are the same size. However, in a traveling state in which the behavior of the vehicle 1 is disturbed, such as when there is a tendency for understeer or when there is a tendency for oversteer, the upper limit side allowable width and the lower limit side allowable width do not become the same size. For example, when the understeer tendency appears weakly, increasing the ratio of the driving force of the front wheels 2 promotes the understeer tendency. Therefore, the allowable range in which the distribution ratio of the driving force to the front wheels 2 can be increased is smaller than the allowable range in which the distribution ratio of the driving force to the rear wheels 3 can be increased. Therefore, the upper limit side allowable width according to the degree of understeer is set smaller than the lower limit side allowable width. On the other hand, the upper limit side allowable width according to the degree of oversteer is set to be larger than the lower limit side allowable width, contrary to the case of the understeer degree.

複数のパラメータの各々に対応した複数の上限側許容幅と複数の下限側許容幅とを算出したら、EVCU20は、これらの中から最小の上限側許容幅と、最小の下限側許容幅とを抽出する。そして、EVCU20は、これら最小の上限側許容幅及び下限側許容幅を基準比率に付加して、配分比率の許可範囲を算出する。これにより、複数のパラメータの全てに関して所要の走行安定性が得られる配分比率の許容幅を求めることができる。 After calculating the plurality of upper limit side allowable widths and the plurality of lower limit side allowable widths corresponding to each of the plurality of parameters, EVCU 20 extracts the minimum upper limit side allowable width and the minimum lower limit side allowable width from these. do. Then, the EVCU 20 adds these minimum upper limit side allowable widths and lower limit side allowable widths to the reference ratio to calculate the allowable range of the distribution ratio. As a result, it is possible to obtain an allowable range of distribution ratios that can obtain the required running stability for all of the plurality of parameters.

次に、EVCU20は、前輪モータ温度計38及び後輪モータ温度計39から取得した前輪モータ11及び後輪モータ12の各温度や車速等に基づいて、これら前輪モータ11及び後輪モータ12それぞれの出力上限値を設定する(ステップS4)。 Next, the EVCU 20 determines each of the front wheel motor 11 and the rear wheel motor 12 based on the temperatures, vehicle speeds, etc. of the front wheel motor 11 and the rear wheel motor 12 acquired from the front wheel motor thermometer 38 and the rear wheel motor thermometer 39. The output upper limit value is set (step S4).

次に、EVCU20は、配分比率の許可範囲内かつ出力上限値以下の各駆動力となるように、前輪モータ11及び後輪モータ12に駆動力を配分する(ステップS5)。 Next, the EVCU 20 distributes the driving force to the front wheel motor 11 and the rear wheel motor 12 so that the driving force is within the permitted range of the distribution ratio and equal to or less than the output upper limit value (step S5).

次に、EVCU20は、前輪モータ11及び後輪モータ12のいずれかが出力を制限されているか否かを判定する(ステップS6)。
本実施形態においては、図3及び図4に示すように、後輪モータ温度Trmが通常時(出力制限されていないとき)の後輪モータ12の出力制限温度Tsを超えるまで上昇したことに伴って(図4のf1)、後輪モータ12の出力上限値Fが低下し、後輪モータ12が出力を制限されているものとする。そして、この出力上限値Fの低下に応じて後輪モータ12の出力値が減少されつつ前輪モータ11の出力値もやや減少されて、配分比率Rが所定の理想配分比率DRi(例えば上述の基準比率)から上限側許容限界PL1上に変更されたものとする。ただし、このときの配分比率Rは、許可範囲DR内であればよく、上限側許容限界PL1上でなくともよい。ここで、上限側許容限界PL1とは、許可範囲DRにおける配分比率Rの許容限界のうち、前輪2への駆動力の配分比率が高い方であり、下限側許容限界PL2とは、後輪3への駆動力の配分比率が高い方である。
こうして後輪モータ12の出力値を減少させることで、後輪モータ温度Trmが低下していき、これに伴って出力上限値Fが上昇する。
Next, the EVCU 20 determines whether or not the output of either the front wheel motor 11 or the rear wheel motor 12 is restricted (step S6).
In the present embodiment, as shown in FIGS. 3 and 4, the rear wheel motor temperature Trm rises to exceed the output limit temperature Ts of the rear wheel motor 12 in the normal state (when the output is not limited). (F1 in FIG. 4), it is assumed that the output upper limit value F of the rear wheel motor 12 is lowered and the output of the rear wheel motor 12 is limited. Then, the output value of the rear wheel motor 12 is reduced and the output value of the front wheel motor 11 is slightly reduced in accordance with the decrease in the output upper limit value F, and the distribution ratio R is a predetermined ideal distribution ratio DRi (for example, the above-mentioned reference). It is assumed that the ratio) has been changed to the upper limit side allowable limit PL1. However, the distribution ratio R at this time may be within the permission range DR and may not be on the upper limit side allowable limit PL1. Here, the upper limit side allowable limit PL1 is the one with the higher distribution ratio of the driving force to the front wheels 2 among the allowable limits of the distribution ratio R in the permission range DR, and the lower limit side allowable limit PL2 is the rear wheel 3 The ratio of the driving force to the vehicle is higher.
By reducing the output value of the rear wheel motor 12 in this way, the rear wheel motor temperature Trm decreases, and the output upper limit value F increases accordingly.

ステップS6において、前輪モータ11及び後輪モータ12のいずれも出力制限されていないと判定した場合(ステップS6;No)、EVCU20は、上述のステップS1へ処理を移行する。 If it is determined in step S6 that neither the front wheel motor 11 nor the rear wheel motor 12 has output limitation (step S6; No), EVCU 20 shifts the process to step S1 described above.

一方、ステップS6において、前輪モータ11及び後輪モータ12のいずれかが出力を制限されていると判定した場合には(ステップS6;Yes)、EVCU20は、車両1の総駆動力(前輪モータ11及び後輪モータ12の合計出力)が要求駆動力未満か否かを判定する(ステップS7)。
そして、総駆動力が要求駆動力に達していた場合(ステップS7;No)、EVCU20は、後述のステップS9へ処理を移行する。なお、ここでは、総駆動力が要求駆動力を超える場合はないものとする。
On the other hand, if it is determined in step S6 that either the front wheel motor 11 or the rear wheel motor 12 has the output restricted (step S6; Yes), the EVCU 20 determines the total driving force of the vehicle 1 (front wheel motor 11). And whether or not the total output of the rear wheel motor 12) is less than the required driving force (step S7).
Then, when the total driving force has reached the required driving force (step S7; No), the EVCU 20 shifts the process to step S9 described later. Here, it is assumed that the total driving force does not exceed the required driving force.

また、ステップS7において、総駆動力が要求駆動力未満であった場合には(ステップS7;Yes)、EVCU20は、出力制限された一方のモータの出力をその出力上限値の回復(上昇)に応じて増加させ、総駆動力を要求駆動力まで増加させる第1出力制御を実施する(ステップS8)。
本実施形態では、後輪モータ温度Trmが第1温度T1以下まで低下した場合に(図4のf2)、EVCU20は、図5及び図8に示すように、出力上限値Fの上昇に伴って後輪モータ12の出力を増加させつつ前輪モータ11の出力も増加させる(図8の(I))。そして、EVCU20は、配分比率Rを上限側許容限界PL1(後輪モータ12における許可範囲DRの下限)上に維持させつつ、総駆動力を要求駆動力まで増加させる。ここで、第1温度T1とは、特に限定はされないが、例えば、この第1温度T1の状態での一方のモータに所定の負荷(例えば一定時間の最大出力など)を与えた場合でも、当該一方のモータの温度が出力制限温度Tsを超えないような温度である(図4の二点鎖線参照)。この第1温度T1は、当該一方のモータを冷却するラジエータ15の冷却能力等に基づいて予め設定されている。
これにより、走行安定性を維持できる範囲内で後輪モータ12の出力を極力抑えつつ、総駆動力を優先して回復させることができる。
ただし、このときには、出力上限値F以下の範囲で後輪モータ12の出力を増加させつつ総駆動力を増加させればよく、配分比率Rを上限側許容限界PL1上に維持させなくともよい。
Further, in step S7, when the total driving force is less than the required driving force (step S7; Yes), the EVCU 20 restores (increases) the output of the output of one of the motors whose output is limited. The first output control is carried out to increase the total driving force to the required driving force (step S8).
In the present embodiment, when the rear wheel motor temperature Trm drops to the first temperature T1 or less (f2 in FIG. 4), the EVCU 20 increases with the increase in the output upper limit value F as shown in FIGS. 5 and 8. While increasing the output of the rear wheel motor 12, the output of the front wheel motor 11 is also increased ((I) in FIG. 8). Then, the EVCU 20 increases the total driving force to the required driving force while maintaining the distribution ratio R above the upper limit side allowable limit PL1 (the lower limit of the permitted range DR in the rear wheel motor 12). Here, the first temperature T1 is not particularly limited, but for example, even when a predetermined load (for example, maximum output for a certain period of time) is applied to one of the motors in the state of the first temperature T1. The temperature is such that the temperature of one of the motors does not exceed the output limit temperature Ts (see the two-dot chain line in FIG. 4). The first temperature T1 is preset based on the cooling capacity of the radiator 15 for cooling the one motor and the like.
As a result, the total driving force can be preferentially recovered while suppressing the output of the rear wheel motor 12 as much as possible within the range in which the running stability can be maintained.
However, at this time, the total driving force may be increased while increasing the output of the rear wheel motor 12 within the range of the output upper limit value F or less, and the distribution ratio R may not be maintained above the upper limit side allowable limit PL1.

総駆動力が要求駆動力に達したら、EVCU20は、出力制限された一方のモータの出力を増加させつつ、出力制限されていない他方のモータの出力を減少させて、総駆動力を維持させる第2出力制御を実施する(ステップS9)。
本実施形態では、後輪モータ温度Trmが第2温度T2以下まで低下した場合に(図4のf3)、EVCU20は、図6に示すように、後輪モータ12の出力制限をさらに解除して総駆動力を維持させつつ出力を増加させ、配分比率Rを理想配分比率DRiに復帰させる。ここで、第2温度T2とは、第1温度T1よりも低い温度であって、例えば一方のモータが出力制限を完全に解除できる程度に十分に冷却されたと判断できる温度である。この第2温度T2は、当該一方のモータを冷却するラジエータ15の冷却能力等に基づいて予め設定されている。
When the total driving force reaches the required driving force, the EVCU 20 increases the output of one motor whose output is limited and decreases the output of the other motor whose output is not limited to maintain the total driving force. 2 Output control is performed (step S9).
In the present embodiment, when the rear wheel motor temperature Trm drops to the second temperature T2 or less (f3 in FIG. 4), the EVCU 20 further releases the output limitation of the rear wheel motor 12 as shown in FIG. The output is increased while maintaining the total driving force, and the distribution ratio R is returned to the ideal distribution ratio DRi. Here, the second temperature T2 is a temperature lower than the first temperature T1, and is a temperature at which it can be determined that, for example, one of the motors has been sufficiently cooled to the extent that the output limitation can be completely released. The second temperature T2 is preset based on the cooling capacity of the radiator 15 for cooling the one motor and the like.

このステップS9の第2出力制御では、EVCU20は、出力上限値の上昇に対して一方のモータの出力の増加を遅延させる。この場合の遅延態様は特に限定されない。
例えば、図7(a)及び図8に示すように、総駆動力が要求駆動力に達してから、所定時間だけ配分比率Rを上限側許容限界PL1に維持させたままとしてもよい(図8の(II)~(III))。これにより、後輪モータ12の出力を抑えて、その冷却を促進させることができる。
ただし、この場合には、図7(b)に示すように、要求駆動力を維持させつつ出力上限値F以下の範囲で後輪モータ12の出力を増加させて、配分比率Rを理想配分比率DRiに近づけてもよい。これにより、総駆動力の回復とともに、走行安定性も回復させることができる。
なお、これらいずれの処理を選択するかは、特に限定はされないが、前輪モータ11(つまり、出力制限されていない他方のモータ)のモータ温度に基づいて決めてもよい。例えば、前輪モータ11のモータ温度がさほど上昇していないときには、図7(a)に示す前者の処理を選択しておき、前輪モータ11のモータ温度が上昇してきたら、図7(b)に示す後者の処理に切り替えて前輪モータ11の出力を抑えるなどとしてもよい。
In the second output control in step S9, the EVCU 20 delays the increase in the output of one of the motors with respect to the increase in the upper limit value of the output. The delay mode in this case is not particularly limited.
For example, as shown in FIGS. 7 (a) and 8 (FIG. 8), after the total driving force reaches the required driving force, the distribution ratio R may be maintained at the upper limit side allowable limit PL1 for a predetermined time (FIG. 8). (II)-(III)). As a result, the output of the rear wheel motor 12 can be suppressed and its cooling can be promoted.
However, in this case, as shown in FIG. 7B, the output of the rear wheel motor 12 is increased within the range of the output upper limit value F or less while maintaining the required driving force, and the distribution ratio R is set to the ideal distribution ratio. It may be brought closer to DRi. As a result, it is possible to recover the running stability as well as the recovery of the total driving force.
Which of these processes is selected is not particularly limited, but may be determined based on the motor temperature of the front wheel motor 11 (that is, the other motor whose output is not limited). For example, when the motor temperature of the front wheel motor 11 has not risen so much, the former process shown in FIG. 7A is selected, and when the motor temperature of the front wheel motor 11 rises, it is shown in FIG. 7B. The latter process may be switched to suppress the output of the front wheel motor 11.

次に、EVCU20は、駆動力配分処理を終了させるか否かを判定し(ステップS10)、終了させないと判定した場合には(ステップS10;No)、上述のステップS1へ処理を移行する。そして、車両1の走行状態の検出とそれに基づく駆動力の配分等とが順次繰り返される。
一方、例えば車両1が停止するなどにより駆動力配分処理を終了させると判定した場合には(ステップS10;Yes)、EVCU20は、駆動力配分処理を終了させる。
Next, the EVCU 20 determines whether or not to end the driving force distribution process (step S10), and if it is determined not to end (step S10; No), the process shifts to the above-mentioned step S1. Then, the detection of the traveling state of the vehicle 1 and the distribution of the driving force based on the detection are sequentially repeated.
On the other hand, when it is determined that the driving force distribution process is terminated due to, for example, the vehicle 1 being stopped (step S10; Yes), the EVCU 20 terminates the driving force distribution process.

<効果>
以上のように、本実施形態の駆動力制御装置100によれば、後輪モータ12の出力が制限されている状態から、出力上限値Fの上昇に伴って当該後輪モータ12の出力を増加させるときに、車両1の総駆動力が要求駆動力未満であった場合には、後輪モータ12の出力を増加させて総駆動力を増加させる第1出力制御が実施される。そして、この第1出力制御により総駆動力が要求駆動力に達したら、後輪モータ12の出力を増加させつつ前輪モータ11の出力を減少させて総駆動力を維持させる第2出力制御が実施される。このとき、第1出力制御では、出力上限値Fの上昇に応じて後輪モータ12の出力を増加させ、第2出力制御では、出力上限値Fの上昇に対して後輪モータ12の出力の増加を遅延させる。
このように、総駆動力を優先的に回復させるように段階的に出力制限を解除することにより、単に十分な温度低下を確認してから一時に出力制限を解除していた従来に比べ、速やかに車両1の総駆動力を回復させることができる。
<Effect>
As described above, according to the driving force control device 100 of the present embodiment, the output of the rear wheel motor 12 is increased as the output upper limit value F increases from the state where the output of the rear wheel motor 12 is restricted. If the total driving force of the vehicle 1 is less than the required driving force, the first output control is performed to increase the output of the rear wheel motor 12 to increase the total driving force. Then, when the total driving force reaches the required driving force by this first output control, the second output control is carried out in which the output of the front wheel motor 11 is decreased while increasing the output of the rear wheel motor 12 to maintain the total driving force. Will be done. At this time, in the first output control, the output of the rear wheel motor 12 is increased according to the increase in the output upper limit value F, and in the second output control, the output of the rear wheel motor 12 is increased in response to the increase in the output upper limit value F. Delay the increase.
In this way, by gradually releasing the output limit so as to preferentially recover the total driving force, it is quicker than in the past where the output limit was temporarily released after simply confirming a sufficient temperature drop. The total driving force of the vehicle 1 can be restored.

また、後輪モータ12の出力を増加させて総駆動力を増加させるときに、配分比率Rが上限側許容限界PL1(すなわち後輪モータ12における許可範囲DRの下限)とされるので、後輪モータ12の出力を極力抑えつつ車両1の総駆動力を回復させることができる。 Further, when the output of the rear wheel motor 12 is increased to increase the total driving force, the distribution ratio R is set to the upper limit side allowable limit PL1 (that is, the lower limit of the permitted range DR in the rear wheel motor 12). The total driving force of the vehicle 1 can be recovered while suppressing the output of the motor 12 as much as possible.

また、総駆動力が要求駆動力に達したときに、配分比率Rを上限側許容限界PL1に所定時間だけ維持させてもよい。
これにより、後輪モータ12の出力を極力抑えることでき、当該後輪モータ12の温度低下を促進させることができる。
Further, when the total driving force reaches the required driving force, the distribution ratio R may be maintained at the upper limit side allowable limit PL1 for a predetermined time.
As a result, the output of the rear wheel motor 12 can be suppressed as much as possible, and the temperature drop of the rear wheel motor 12 can be promoted.

また、総駆動力が要求駆動力に達した場合に、当該総駆動力を維持させつつ、出力上限値F以下の範囲内で後輪モータ12の出力を増加させてもよい。
これにより、配分比率Rを早期に理想配分比率DRiに近づけることができ、ひいては、速やかに走行安定性を回復させることができる。
Further, when the total driving force reaches the required driving force, the output of the rear wheel motor 12 may be increased within the range of the output upper limit value F or less while maintaining the total driving force.
As a result, the allocation ratio R can be brought closer to the ideal allocation ratio DRi at an early stage, and eventually the running stability can be quickly restored.

また、この場合に、前輪モータ11の温度に基づいて、配分比率Rを上限側許容限界PL1に維持させるか、或いは、出力上限値F以下の範囲内で後輪モータ12の出力を増加させつつ前輪モータ11の出力を減少させて総駆動力を維持させるかを選択してもよい。
これにより、例えば前輪モータ11の温度を抑制したい場合には後者の処理を選択するなどして、前輪モータ11の温度を制御することができる。
Further, in this case, the distribution ratio R is maintained at the upper limit side allowable limit PL1 based on the temperature of the front wheel motor 11, or the output of the rear wheel motor 12 is increased within the range of the output upper limit value F or less. You may choose whether to reduce the output of the front wheel motor 11 to maintain the total driving force.
Thereby, for example, when it is desired to suppress the temperature of the front wheel motor 11, the temperature of the front wheel motor 11 can be controlled by selecting the latter process.

また、センサ群に検知された車両1の走行状態に基づいて、所要の走行安定性が得られる配分比率Rの範囲としてその許可範囲DRが設定されるので、配分比率Rを許可範囲DR内に保持することで、より確実に走行安定性を維持することができる。 Further, since the permitted range DR is set as the range of the distributed ratio R in which the required running stability can be obtained based on the running state of the vehicle 1 detected by the sensor group, the distributed ratio R is set within the permitted range DR. By holding it, running stability can be maintained more reliably.

<変形例>
なお、本発明を適用可能な実施形態は、上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
<Modification example>
The embodiment to which the present invention is applicable is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.

例えば、上記実施形態では、複数の駆動源として前輪モータ11と後輪モータ12とを適用した例を示した。しかし、複数の駆動源は、モータに限られず、例えば前輪の動力をエンジン(内燃機関)が発生させ、後輪の動力をモータが発生させるなどのように、エンジンを含んでいてもよい。すなわち、車両は、電気自動車(EV:Electric Vehicle)、ハイブリッド自動車(HV:Hybrid Vehicle)、ハイブリッド電気自動車(HEV:Hybrid Electric Vehicle)、燃料電池自動車(FCV:Fuel Cell Vehicle)としてもよい。 For example, in the above embodiment, an example in which the front wheel motor 11 and the rear wheel motor 12 are applied as a plurality of drive sources is shown. However, the plurality of drive sources are not limited to the motor, and may include an engine, for example, the engine (internal combustion engine) generates the power of the front wheels and the motor generates the power of the rear wheels. That is, the vehicle may be an electric vehicle (EV: Electric Vehicle), a hybrid vehicle (HV: Hybrid Vehicle), a hybrid electric vehicle (HEV: Hybrid Electric Vehicle), or a fuel cell vehicle (FCV: Fuel Cell Vehicle).

また、上記実施形態では、前輪2と後輪3とで駆動力を配分する例を示した。しかし、前後左右の個々の車輪ごと、或いは、2つの後輪と、左前輪と、右前輪との3組の車輪ごとなど、駆動力を配分する車輪の組み合わせは適宜変更可能である。
さらに、複数の駆動系統に対応する駆動源の数量の組合せも特に限定されない。例えば、前輪モータ11を1つ、後輪モータ12を2つとしてもよい。
Further, in the above embodiment, an example in which the driving force is distributed between the front wheels 2 and the rear wheels 3 is shown. However, the combination of wheels that distribute driving force can be appropriately changed, such as for each of the front, rear, left, and right wheels, or for each of the two rear wheels, and for each of the three sets of wheels, the left front wheel and the right front wheel.
Further, the combination of the number of drive sources corresponding to a plurality of drive systems is not particularly limited. For example, one front wheel motor 11 and two rear wheel motors 12 may be used.

また、上記実施形態では、駆動系統として前輪トランスミッション13及び後輪トランスミッション14を含むものを示したが、トランスミッションは無くても良く、例えばトランスミッションに代わる動力伝達機構が設けられていてもよい。 Further, in the above embodiment, the drive system including the front wheel transmission 13 and the rear wheel transmission 14 is shown, but the transmission may not be provided, and for example, a power transmission mechanism may be provided instead of the transmission.

また、上記実施形態では、前輪モータ温度計38及び後輪モータ温度計39により前輪モータ11及び後輪モータ12の各モータ温度を検知し、このモータ温度を用いて出力上限値の設定などの各種制御を行うこととした。
しかし、この各種制御に用いるパラメータは、前輪モータ11及び後輪モータ12のモータ温度に関する情報を有するものであれば、当該モータ温度自体でなくともよい。例えば、前輪モータ11及び後輪モータ12を冷却する冷却水の温度を検知する温度計を設け、この冷却水温度を用いて各種制御を行ったり、この冷却水温度からモータ温度を間接的に取得したりすることとしてもよい。
Further, in the above embodiment, the front wheel motor thermometer 38 and the rear wheel motor thermometer 39 detect the motor temperatures of the front wheel motor 11 and the rear wheel motor 12, and the motor temperature is used to set the output upper limit value and the like. I decided to control it.
However, the parameters used for these various controls do not have to be the motor temperatures themselves as long as they have information on the motor temperatures of the front wheel motor 11 and the rear wheel motor 12. For example, a thermometer that detects the temperature of the cooling water that cools the front wheel motor 11 and the rear wheel motor 12 is provided, and various controls are performed using the cooling water temperature, or the motor temperature is indirectly acquired from the cooling water temperature. It may be done.

また、上記実施形態では、基準比率に影響する複数種類のパラメータとして、操舵角と道路勾配とを示したが、これらに限られず、他の走行状態を表わすパラメータが含まれていてもよい。また、上記実施形態では、許可範囲の許容幅に影響する複数種類のパラメータとして、車速、スリップ率、前後加速度、等々のパラメータを示したが、他の走行状態を表わすパラメータが含まれていてもよい。また、これらのうち2つのパラメータをまとめた関数値を1つのパラメータとして扱ってもよい。 Further, in the above embodiment, the steering angle and the road gradient are shown as a plurality of types of parameters that affect the reference ratio, but the present invention is not limited to these, and parameters representing other traveling states may be included. Further, in the above embodiment, parameters such as vehicle speed, slip ratio, front-rear acceleration, etc. are shown as a plurality of types of parameters that affect the allowable width of the permitted range, but even if parameters representing other driving conditions are included. good. Further, the function value obtained by combining two of these parameters may be treated as one parameter.

また、上記実施形態では、駆動力の配分比率Rの許可範囲DRを、基準比率に許容幅を加えて計算した例を示したが、許可範囲の計算の仕方は、この方法に限られない。例えば、走行状態に応じて走行安定性が高まる配分比率Rの範囲を、許可範囲として直接求めるようにしてもよい。 Further, in the above embodiment, an example in which the permission range DR of the driving force distribution ratio R is calculated by adding the allowable range to the reference ratio is shown, but the method of calculating the permission range is not limited to this method. For example, the range of the distribution ratio R in which the running stability is improved according to the running state may be directly obtained as the permitted range.

また、上記実施形態では、EVCU20が各種制御を行うこととしたが、この制御主体はEVCUに限定されない。例えば、他のECU(Electric Control Unit)が各種制御を行うこととしてもよいし、センサ群からの出力が他のECUに入力されて当該他のECUがセンサ値をEVCU20に出力することなどとしてもよい。
具体的には、図9に示すように、MCU(Motor Control Unit)21が、前輪モータ温度計38及び後輪モータ温度計39から取得した前輪モータ11及び後輪モータ12の各温度等に基づいて、前輪モータ11及び後輪モータ12それぞれの出力上限値を設定することとしてもよい。そして、このMCU21から出力される各モータの出力上限値に基づいて、EVCU20が各モータを駆動制御することとすればよい。
Further, in the above embodiment, the EVCU 20 performs various controls, but the control subject is not limited to the EVCU. For example, another ECU (Electric Control Unit) may perform various controls, or the output from the sensor group may be input to the other ECU and the other ECU may output the sensor value to the EVCU 20. good.
Specifically, as shown in FIG. 9, the MCU (Motor Control Unit) 21 is based on the temperatures of the front wheel motor 11 and the rear wheel motor 12 acquired from the front wheel motor thermometer 38 and the rear wheel motor thermometer 39. Alternatively, the output upper limit values of the front wheel motor 11 and the rear wheel motor 12 may be set. Then, the EVCU 20 may drive and control each motor based on the output upper limit value of each motor output from the MCU 21.

1 車両
2 前輪
3 後輪
11 前輪モータ
12 後輪モータ
20 EVCU
21 MCU
38 前輪モータ温度計
39 後輪モータ温度計
100 駆動力制御装置
R 配分比率
DR 許可範囲
DRi 理想配分比率
PL1 上限側許容限界
PL2 下限側許容限界
F 出力上限値
1 Vehicle 2 Front wheels 3 Rear wheels 11 Front wheel motors 12 Rear wheel motors 20 EVCU
21 MCU
38 Front wheel motor thermometer 39 Rear wheel motor thermometer 100 Driving force control device R Distribution ratio DR Allowed range DRi Ideal distribution ratio PL1 Upper limit side allowable limit PL2 Lower limit side allowable limit F Output upper limit value

Claims (9)

それぞれ異なる駆動系統を駆動する複数の駆動源を備える車両に搭載され、前記複数の駆動源の動作を制御する車両の駆動力制御装置であって、
前記複数の駆動源それぞれの温度情報を取得する温度取得手段と、
前記複数の駆動源それぞれの出力上限値を、当該駆動源の温度情報に基づいて設定する出力上限設定手段と、
前記複数の駆動源に出力させる総駆動力を当該複数の駆動源に配分する配分比率の許可範囲を設定する許可範囲設定手段と、
前記複数の駆動源を前記配分比率の許可範囲内かつ前記出力上限値以下の各駆動力で駆動する駆動制御手段と、
を備え、
前記駆動制御手段は、
前記複数の駆動源のうちの一の駆動源の出力が前記出力上限値により制限されている状態から、当該出力上限値の上昇に伴って前記一の駆動源の出力を増加させるときに、
前記総駆動力が前記車両に与えられる要求駆動力未満であり、かつ、前記一の駆動源の温度が第1温度以下まで低下した場合には、前記一の駆動源の出力を増加させて前記総駆動力を増加させる第1出力制御を実施し、
前記第1出力制御により前記総駆動力が前記要求駆動力に達し、かつ、前記一の駆動源の温度が前記第1温度よりも低い第2温度以下まで低下した場合には、前記一の駆動源の出力を増加させつつ、前記複数の駆動源のうち当該一の駆動源を除く他の駆動源の出力を減少させて、前記総駆動力を維持させる第2出力制御を実施し、
前記第1出力制御では、前記出力上限値の上昇に応じて前記一の駆動源の出力を増加させ、前記第2出力制御では、前記出力上限値の上昇に対して前記一の駆動源の出力の増加を遅延させることを特徴とする車両の駆動力制御装置。
A vehicle driving force control device that is mounted on a vehicle having a plurality of drive sources for driving different drive systems and controls the operation of the plurality of drive sources.
A temperature acquisition means for acquiring temperature information of each of the plurality of drive sources,
An output upper limit setting means for setting an output upper limit value of each of the plurality of drive sources based on the temperature information of the drive source, and an output upper limit setting means.
A permission range setting means for setting a permission range of a distribution ratio for distributing the total driving force to be output to the plurality of drive sources to the plurality of drive sources.
A drive control means for driving the plurality of drive sources with each driving force within the permitted range of the distribution ratio and equal to or less than the output upper limit value.
Equipped with
The drive control means is
When the output of one of the plurality of drive sources is limited by the output upper limit value and the output of the one drive source is increased as the output upper limit value increases.
When the total driving force is less than the required driving force given to the vehicle and the temperature of the one driving source drops to the first temperature or lower , the output of the one driving source is increased. The first output control that increases the total driving force is carried out,
When the total driving force reaches the required driving force by the first output control and the temperature of the one driving source drops to the second temperature or less, which is lower than the first temperature, the one driving force is described. A second output control is performed to maintain the total driving force by increasing the output of the source and decreasing the output of the other driving sources other than the one driving source among the plurality of driving sources.
In the first output control, the output of the one drive source is increased according to the increase of the output upper limit value, and in the second output control, the output of the one drive source is increased with respect to the increase of the output upper limit value. A vehicle driving force control device characterized by delaying the increase in.
前記駆動制御手段は、前記第1出力制御では、前記配分比率を前記一の駆動源における前記許可範囲の下限としつつ当該一の駆動源の出力を増加させて、前記総駆動力を増加させることを特徴とする請求項1に記載の車両の駆動力制御装置。 In the first output control, the drive control means increases the output of the one drive source while setting the distribution ratio as the lower limit of the allowable range in the one drive source to increase the total drive force. The vehicle driving force control device according to claim 1. 前記駆動制御手段は、前記第2出力制御では、前記第1出力制御により前記総駆動力が前記要求駆動力に達してから、所定時間だけ前記配分比率を前記一の駆動源における前記許可範囲の下限に維持させることを特徴とする請求項1又は2に記載の車両の駆動力制御装置。 In the second output control, the drive control means sets the distribution ratio within the permitted range in the one drive source for a predetermined time after the total drive force reaches the required drive force by the first output control. The vehicle driving force control device according to claim 1 or 2, wherein the vehicle is maintained at a lower limit. 前記駆動制御手段は、前記第2出力制御では、前記第1出力制御により前記総駆動力が前記要求駆動力に達した場合に、当該総駆動力を維持させつつ、前記出力上限値以下の範囲内で前記一の駆動源の出力を増加させることを特徴とする請求項1又は2に記載の車両の駆動力制御装置。 In the second output control, when the total driving force reaches the required driving force by the first output control, the drive control means maintains the total driving force and is in a range equal to or less than the output upper limit value. The vehicle driving force control device according to claim 1 or 2, wherein the output of the one driving source is increased. 前記駆動制御手段は、前記第2出力制御では、前記第1出力制御により前記総駆動力が前記要求駆動力に達した場合に、前記他の駆動源の温度情報に基づいて、前記配分比率を前記一の駆動源における前記許可範囲の下限に維持させるか、或いは、前記出力上限値以下の範囲内で前記一の駆動源の出力を増加させつつ前記他の駆動源の出力を減少させて前記総駆動力を維持させるかを選択することを特徴とする請求項1又は2に記載の車両の駆動力制御装置。 In the second output control, the drive control means determines the distribution ratio based on the temperature information of the other drive source when the total drive force reaches the required drive force by the first output control. The output of the one drive source is maintained at the lower limit of the permitted range, or the output of the other drive source is decreased while increasing the output of the one drive source within the range equal to or less than the output upper limit value. The driving force control device for a vehicle according to claim 1 or 2, wherein the driver selects whether to maintain the total driving force. 前記車両の走行状態を検知する検知手段を備え、
前記許可範囲設定手段は、前記走行状態に基づいて、所要の走行安定性が得られる前記配分比率の範囲として前記許可範囲を設定することを特徴とする請求項1~5のいずれか一項に記載の車両の駆動力制御装置。
A detection means for detecting the running state of the vehicle is provided.
The one according to any one of claims 1 to 5, wherein the permission range setting means sets the permission range as a range of the distribution ratio from which the required running stability can be obtained. The vehicle driving force control device described.
前記複数の駆動源が、前輪の動力を発生させる前輪モータと、後輪の動力を発生させる後輪モータとから構成されていることを特徴とする請求項1~6のいずれか一項に記載の車両の駆動力制御装置。 The invention according to any one of claims 1 to 6, wherein the plurality of drive sources are composed of a front wheel motor that generates power for the front wheels and a rear wheel motor that generates power for the rear wheels. Vehicle driving force control device. 前記複数の駆動源が、前輪の動力を発生させるエンジンと、後輪の動力を発生させるモータとから構成されていることを特徴とする請求項1~6のいずれか一項に記載の車両の駆動力制御装置。 The vehicle according to any one of claims 1 to 6, wherein the plurality of drive sources are composed of an engine that generates power of the front wheels and a motor that generates power of the rear wheels. Driving force control device. 前記出力上限設定手段は、モータの出力上限値を設定するMCUであり、
前記駆動制御手段は、前記出力上限設定手段から出力された前記出力上限値に基づいてモータを駆動制御するEVCUであることを特徴とする請求項7又は8に記載の車両の駆動力制御装置。
The output upper limit setting means is an MCU that sets an output upper limit value of the motor .
The vehicle driving force control device according to claim 7 or 8, wherein the drive control means is an EVCU that drives and controls a motor based on the output upper limit value output from the output upper limit setting means.
JP2017187444A 2017-09-28 2017-09-28 Vehicle driving force control device Active JP7017895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017187444A JP7017895B2 (en) 2017-09-28 2017-09-28 Vehicle driving force control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017187444A JP7017895B2 (en) 2017-09-28 2017-09-28 Vehicle driving force control device

Publications (2)

Publication Number Publication Date
JP2019062706A JP2019062706A (en) 2019-04-18
JP7017895B2 true JP7017895B2 (en) 2022-02-09

Family

ID=66177850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017187444A Active JP7017895B2 (en) 2017-09-28 2017-09-28 Vehicle driving force control device

Country Status (1)

Country Link
JP (1) JP7017895B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7041704B2 (en) * 2020-03-12 2022-03-24 本田技研工業株式会社 Behavior control device and behavior control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227679A (en) 2001-02-02 2002-08-14 Nissan Motor Co Ltd Control device for hybrid vehicle
JP2005204436A (en) 2004-01-16 2005-07-28 Nissan Motor Co Ltd Drive force control device of wheel independently driven type electric vehicle
JP2007276674A (en) 2006-04-10 2007-10-25 Nissan Motor Co Ltd Driving force distribution control device for hybrid four-wheel drive vehicle
JP2009273274A (en) 2008-05-08 2009-11-19 Toyota Motor Corp Controller for vehicle
JP2010158944A (en) 2009-01-07 2010-07-22 Nissan Motor Co Ltd Driving force distribution controller of hybrid vehicle
WO2016075812A1 (en) 2014-11-14 2016-05-19 株式会社安川電機 Drive force control system for electric vehicle, electric vehicle, and rotary electrical machine
JP2016088381A (en) 2014-11-07 2016-05-23 トヨタ自動車株式会社 Hybrid automobile
JP2016222151A (en) 2015-06-01 2016-12-28 アイシン精機株式会社 Clutch characteristic learning device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09284911A (en) * 1996-04-08 1997-10-31 Toyota Motor Corp Driving controller for four wheel driving type hybrid vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227679A (en) 2001-02-02 2002-08-14 Nissan Motor Co Ltd Control device for hybrid vehicle
JP2005204436A (en) 2004-01-16 2005-07-28 Nissan Motor Co Ltd Drive force control device of wheel independently driven type electric vehicle
JP2007276674A (en) 2006-04-10 2007-10-25 Nissan Motor Co Ltd Driving force distribution control device for hybrid four-wheel drive vehicle
JP2009273274A (en) 2008-05-08 2009-11-19 Toyota Motor Corp Controller for vehicle
JP2010158944A (en) 2009-01-07 2010-07-22 Nissan Motor Co Ltd Driving force distribution controller of hybrid vehicle
JP2016088381A (en) 2014-11-07 2016-05-23 トヨタ自動車株式会社 Hybrid automobile
WO2016075812A1 (en) 2014-11-14 2016-05-19 株式会社安川電機 Drive force control system for electric vehicle, electric vehicle, and rotary electrical machine
JP2016222151A (en) 2015-06-01 2016-12-28 アイシン精機株式会社 Clutch characteristic learning device

Also Published As

Publication number Publication date
JP2019062706A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
US10384669B2 (en) Apparatus and method for controlling vehicle having motor
JP6261154B2 (en) Vehicle control method using in-wheel motor
KR100901591B1 (en) Method for control regenerative braking of electric vehicle
JP6730667B2 (en) Vehicle drive device
JP4710723B2 (en) Driving force control device for electric vehicle
JP4481261B2 (en) Control device for hybrid four-wheel drive vehicle
JP6646260B2 (en) Vehicle drive system
JP6683949B2 (en) Vehicle drive device
JP6730668B2 (en) Vehicle drive device
JP2011516319A (en) Method for coupling an electric traction machine to a hybrid vehicle and hybrid vehicle for carrying out said method
JP6500672B2 (en) Control system
JP5316576B2 (en) Vehicle control device
JP6326469B2 (en) Vehicle driving force control device
JP2012186962A (en) Device and method for controlling vehicle holding
JP7017895B2 (en) Vehicle driving force control device
JP2016179721A (en) Hybrid vehicle
JP2003209905A (en) Controller of hybrid vehicle
US20170267228A1 (en) Devices and methods for distributing an overall target torque specification
JP7017894B2 (en) Vehicle driving force control device
JP6439553B2 (en) Control system
JP4428063B2 (en) Vehicle driving force control device and vehicle driving force control method
JP5724704B2 (en) Regenerative control device for electric vehicle
JP2007182180A (en) Vehicle in which brake pad temperature is known individually
JP2008179262A (en) Warming-up controller
JP2008132892A (en) Driving force distribution control device of four-wheel-drive vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220128

R150 Certificate of patent or registration of utility model

Ref document number: 7017895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150