WO2015002033A1 - Drive torque control device - Google Patents

Drive torque control device Download PDF

Info

Publication number
WO2015002033A1
WO2015002033A1 PCT/JP2014/066728 JP2014066728W WO2015002033A1 WO 2015002033 A1 WO2015002033 A1 WO 2015002033A1 JP 2014066728 W JP2014066728 W JP 2014066728W WO 2015002033 A1 WO2015002033 A1 WO 2015002033A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
drive
drive torque
error amount
correction
Prior art date
Application number
PCT/JP2014/066728
Other languages
French (fr)
Japanese (ja)
Inventor
崇志 瀬尾
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2015002033A1 publication Critical patent/WO2015002033A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/102Indicating wheel slip ; Correction of wheel slip of individual wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • B60K17/046Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/04Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for differential gearing
    • B60K2023/043Control means for varying left-right torque distribution, e.g. torque vectoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/22Yaw angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/465Slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/087Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a drive torque control device that controls the drive torque of left and right drive wheels independently in a vehicle.
  • a drive torque control device that controls left and right drive torques independently is known (see, for example, Patent Document 1).
  • an error may occur in the actual drive torque with respect to the torque command value depending on the state of the left and right drive units and changes in the environment.
  • the actual drive torque of the left and right wheels is detected by a torque sensor, and the target drive torque (torque command value) is based on the deviation between the two. I am trying to correct.
  • the present invention has been made paying attention to the above problem, and an object of the present invention is to provide a drive torque control device capable of suppressing the drive torque error amount of the actual drive torque with respect to the torque command value in the drive unit even when traveling straight ahead.
  • the present invention provides: Torque control means for independently controlling at least one of left and right drive torques of the motors of the left drive unit and the right drive unit; Based on the detected value of the left driving torque change factor detected by the first detecting means and the detected value of the right driving torque change factor detected by the second detecting means, the actual driving torque of the left driving unit and the right side At least one of the two drive units is such that the left-right torque difference from the actual drive torque of the drive unit approaches the left-right torque difference when there is no error between the torque command value and the actual drive torque in the left and right drive units.
  • the driving torque control device includes a correcting unit that corrects the torque command value output to the motor.
  • the correction means detects the drive torque error amount of the actual drive torque with respect to the torque command value based on the detected value of the left and right drive torque change factors without detecting the actual drive torque.
  • the torque command value is corrected so as to decrease. Therefore, even when different torque command values are intentionally given to the left and right drive wheels, such as during vehicle attitude control other than straight running, based on the detected values of the left and right drive torque change factors, It can correct
  • FIG. 3 is a cross-sectional view showing a drive unit applied to the drive torque control device of the first embodiment.
  • FIG. 6 is a flowchart showing a flow of torque correction processing in the drive torque control apparatus of Embodiment 1, and shows a flow of processing for calculating a driving force error in the left and right drive units.
  • FIG. FIG. 6 is a flowchart showing a flow of torque correction processing in the drive torque control apparatus of Embodiment 1, and shows a flow of correction processing based on the calculated error amount.
  • Left rear wheel for explaining the relationship between torque command value, driving force error, and correction amount in the left and right driving units corresponding to the lubricating oil temperature as the driving force change factor used in the driving force control apparatus of the first embodiment They are an oil temperature-drive torque error map, a left rear wheel command current map, a right rear wheel oil temperature-drive torque error map, and a right rear wheel command current map.
  • Left rear wheel motor temperature for explaining the relationship between the torque command value, the actual drive torque, and the correction amount in the left and right drive units based on the motor temperature as the drive torque change factor used in the drive torque control apparatus of the first embodiment -A drive torque error map, a left rear wheel command current map, a right rear wheel motor temperature-a drive torque error map.
  • Left rear wheel for explaining the relationship between the torque command value, the actual drive torque, and the correction amount in the left and right drive units based on the amount of pump lubricating oil as a drive torque change factor used in the drive torque control device of the first embodiment They are a pump lubricant amount-drive torque error map, a left rear wheel command current map, a right rear wheel pump lubricant amount-drive torque error map, and a right rear wheel command current map.
  • Left rear wheel oil temperature-drive torque error map for explaining the relationship between the torque command value, the actual drive torque, and the correction amount in the left and right drive units corresponding to the lubricating oil temperature in the drive torque control apparatus of the second embodiment
  • 5 is a time chart illustrating an operation example for explaining a relationship between a basic target driving torque and a left and right target driving torque at the time of vehicle attitude control (yaw moment control) in the embodiment.
  • FIG. 1 is a schematic system diagram showing an overall control system related to a braking / driving system of an electric vehicle provided with a driving torque control apparatus according to Embodiment 1 of the present invention.
  • This electric vehicle includes left and right front wheels 1FL and 1FR and left and right rear wheels 1RL and 1RR.
  • the left and right rear wheels 1FL, 1FR are used as driving wheels and can be driven by individual electric motors 3RL, 3RR (in-wheel motor IWM) built in the respective driving units WD, and the left and right front wheels 1FL, Steering is possible by turning 1 FR.
  • the electric motors 3RL and 3RR are motor / generators that can also function as a generator, and can regeneratively brake the left and right rear wheels 1RL and 1RR that are motor-driven as described above in response to a predetermined power generation load.
  • the electric vehicle shown in FIG. 1 includes a vehicle controller 11 that performs drive control and regenerative control of the electric motors 3RL and 3RR (in-wheel motor IWM).
  • the vehicle controller 11 can execute vehicle behavior control by causing differential rotation of the left and right rear wheels 1RL and 1RR based on drive control of the electric motors 3RL and 3RR (in-wheel motor IWM).
  • the vehicle controller 11 includes an accelerator opening sensor 12, a steering angle sensor 13, a yaw rate sensor 14, a longitudinal acceleration sensor 15, a lateral acceleration sensor 16, wheel speed sensors 17RL and 17RR, an oil temperature sensor 18, a motor temperature sensor 19, and a pump P. A signal is input from.
  • the accelerator opening sensor 12 detects an accelerator opening APO that is an accelerator pedal depression amount (not shown).
  • the steering angle sensor 13 detects the steering angle ⁇ of the steering wheel.
  • the yaw rate sensor 14 detects a yaw rate ⁇ that is a behavior around the vertical axis of the vehicle.
  • the longitudinal acceleration sensor 15 detects the longitudinal acceleration Gx of the vehicle.
  • the lateral acceleration sensor 16 detects the lateral acceleration Gy of the vehicle.
  • the wheel speed sensors 17RL and 17RR detect the wheel speeds VwL and VwR of the left and right rear wheels 1RL and 1RR driven by the motor.
  • the oil temperature sensor 18 detects the lubricating oil temperature To as a left and right driving torque change factor in each drive unit WD as the first detection means and the second detection means.
  • the motor temperature sensor 19 uses a motor temperature Tmo, which is a temperature as a left / right driving torque change factor of a stator 31 (to be described later) of each of the electric motors 3RL and 3RR (in-wheel motor IWM) as first detection means and second detection means. To detect. In addition, a signal indicating a pump lubricating oil amount Ov (oil amount L / min per unit time) as a left-right driving torque change factor is input to the vehicle controller 11 from a pump P that discharges lubricating oil, which will be described later. .
  • the vehicle controller 11 Based on the input information from these sensors 12 to 16, 17RL, 17RR, 18, 19 and pump P, the vehicle controller 11 drives the target motor torques tTmL, tTmR of the electric motors 3RL, 3RR that drive the left and right rear wheels 1RL, 1RR. Ask for. Further, the vehicle controller 11 outputs these target motor torques tTML and tTmR as torque command values tTm to the inverter 20 that performs drive / regeneration control of the electric motors 3RL and 3RR, respectively.
  • the torque command value tTm is a command value of actual drive torque from the drive unit WD. Therefore, the target motor torques tTmL and tTmR based on the torque command value tTm are also motor torques for obtaining the actual driving torque.
  • the inverter 20 supplies DC-AC converted power from the battery (not shown) to the electric motors 3RL and 3RR according to the target motor torques tTML and tTmR.
  • the left and right rear wheels 1RL, 1RR are driven or regenerated by the motor torques TmL, TmR formed in the electric motors 3RL, 3RR.
  • FIG. 2 is a longitudinal sectional view of the drive unit WD, and the in-wheel motor unit is accommodated in the unit case 100.
  • the unit case 100 is configured by coupling a case main body 101 and a rear cover 102.
  • the unit case 100 houses the electric motor 3 and the planetary gear set 40.
  • the electric motor 3 includes an annular stator 31 fitted and fixed to the inner periphery of the case body 101, and a rotor 32 disposed concentrically with a radial gap on the inner periphery of the stator 31. .
  • the planetary gear set 40 functions as a speed reduction mechanism that couples the input shaft 51 and the output shaft 52 that are arranged to face each other in a coaxial manner, and that decelerates the rotation of the input shaft 51 and transmits it to the output shaft 52.
  • the planetary gear set 40 includes a sun gear 41, a ring gear 42, and a planetary pinion 43.
  • the sun gear 41 is provided integrally with the input shaft 51.
  • the ring gear 42 is coaxial with the sun gear 41 and is supported by the case body 101 at a position shifted in the axial direction from the sun gear 41.
  • the planetary pinion 43 has a stepped structure provided so as to mesh with the sun gear 41 and the ring gear 42, and is supported by the pinion shaft 44. Further, the pinion shaft 44 is supported by a carrier 45, and the carrier 45 rotates integrally with the output shaft 52.
  • a wheel hub 53 is coupled to the output shaft 52, and a brake drum 54 is coupled to the wheel hub 53 concentrically.
  • the wheel 60 of the wheel W is coupled to the wheel hub 53 by bolts 61.
  • the unit case 100 stores lubricating oil OIL, and the pump P forcibly supplies the lubricating oil OIL to the planetary gear set 40 and the electric motor 3 to perform lubrication and cooling. .
  • the sun gear 41 rotates the planetary pinion 43. Since the ring gear 42 fixed at this time functions as a reaction force receiver, the stepped planetary pinion 43 performs a planetary motion that rolls along the ring gear 42. Do.
  • the planetary movement of the planetary pinion 43 is transmitted to the output shaft 52 through the carrier 45, and the output shaft 52 is decelerated and rotated in the same direction as the input shaft 51. Then, the rotation of the output shaft 52 is transmitted to the wheel W through the wheel hub 53 coupled thereto, and the wheel W is driven to rotate.
  • the vehicle controller 11 controls the drive of the drive units WD of the left and right rear wheels 1RL and 1RR.
  • the torque command values tTm for the drive units WD and WD of the left and right rear wheels 1RL and 1RR are controlled independently. In this case, control is normally performed so that the drive torques of the left and right rear wheels 1RL and 1RR are equal.
  • the vehicle controller 11 also executes control for intentionally changing the driving torques of the left and right rear wheels 1RL and 1RR during well-known vehicle attitude control (yaw moment control) or the like.
  • vehicle attitude control for example, a difference is given to the driving torque of the left and right rear wheels 1RL and 1RR so that the yaw rate of the vehicle matches the target yaw rate, and the yaw rate generated in the vehicle is increased or decreased.
  • control for giving a drive torque difference to the left and right rear wheels 1RL and 1RR as described above is included.
  • the left and right drive torque control including the vehicle attitude control (yaw moment control) described above will be described.
  • the attitude control torque ⁇ T is added to one of the left and right basic target drive torques Tmo to obtain the target drive torque of the drive unit WD of this one (right rear wheel 1RR in the example of FIG. 8). decide. Further, the target drive torque of the other drive unit WD (left rear wheel 1RL in the example of FIG. 8) is determined by subtracting the attitude control torque ⁇ T from the basic target drive torque Tmo.
  • the target drive torques of the left and right drive units WD are the basic target drive torques Tmo, which are equal to the left and right.
  • the vehicle target driving torque described above is a braking / driving torque according to the driving state requested by the driver based on information on the accelerator opening, the vehicle speed, and the braking force, as is well known. Half of this is the basic target drive torque Tmo.
  • steps S1L to S4L and steps S1R to S4R are performed for the drive units WD of the left and right rear wheels 1RL and 1RR, which are drive wheels, respectively. Since the contents of the process are the same on the left and right, steps S1L to S4L, which are processes on the left rear wheel 1RL side, will be described as a representative of both.
  • step S1L a process for calculating the drive torque error amount ⁇ LTt is performed on the drive unit WD of the left rear wheel 1RL based on the lubricating oil temperature To detected by the oil temperature sensor 18.
  • the calculation of the drive torque error amount ⁇ LTt based on the lubricating oil temperature To is performed by calculating the left rear wheel oil temperature-drive torque degree difference map and the right rear wheel oil temperature-drive torque error map of the left and right drive units WD shown in FIG. Based on.
  • the oil temperature-driving torque error map for each of the left and right rear wheels is determined based on the driving torque error amount of the actual driving torque (driving torque error amount ⁇ LTt) with respect to the torque command value tTm corresponding to the lubricating oil temperature To in the driving unit WD by experiment and simulation in advance. ) Is stored.
  • the driving torque error amount ⁇ LTt is generated on the minus side as the lubricating oil temperature To is lower, while the driving torque error amount ⁇ LTt is on the plus side as the temperature is higher. It is set to the characteristic that occurs.
  • step S2L a process for calculating a drive torque error amount ⁇ LTm is performed for the left wheel based on the motor temperature Tmo detected by the motor temperature sensor 19. This calculation is performed based on the left rear wheel motor temperature-drive torque error map and the right rear wheel motor temperature-drive torque error map of the left and right drive units WD shown in FIG.
  • This motor temperature-driving torque error map stores the driving torque error amount (driving torque error amount ⁇ LTm) of the actual driving torque with respect to the torque command value tTm corresponding to the motor temperature Tmo in advance through experiments and simulations.
  • the driving torque error amount ⁇ LTm is generated on the positive side as the motor temperature Tmo is lower, while the driving torque error amount ⁇ LTm is increased as the motor temperature Tmo is higher. Is set to a characteristic that occurs on the negative side.
  • step S3L a process of calculating a drive torque error amount ⁇ LTp based on the pump lubricant oil amount Ov of the drive unit WD is performed. This calculation is performed based on the left rear wheel pump lubricant amount-drive torque error map and right rear wheel lubricant amount-drive torque error map of the left and right drive units WD shown in FIG.
  • the driving torque error amount (driving torque error amount ⁇ LTp) with the actual driving torque with respect to the torque command value tTm corresponding to the pump lubricating oil amount Ov is stored in advance through experiments and simulations. Is.
  • the torque error amount ⁇ LTp is set to a characteristic that occurs on the negative side.
  • a left rear wheel total drive torque error amount ⁇ LTtotal is calculated.
  • the left rear wheel total drive torque error amount ⁇ LTtotal is a value obtained by adding the drive torque error amounts ⁇ LTt, ⁇ LTm, and ⁇ LTp calculated in steps S1L to S3L as shown in the following equation (1).
  • ⁇ LTtotal ⁇ LTt + ⁇ LTm + ⁇ LTp (1)
  • step S5 whether or not the torque command value tTm needs to be corrected is determined for each of the left and right rear wheels 1RL and 1RR.
  • This necessity determination is made by comparing each total drive torque error amount ⁇ LTtotal, ⁇ RTtotal with the necessity determination threshold value, and if both total drive torque error amounts ⁇ LTtotal, ⁇ RTtotal are below the necessity determination threshold value, the drive torque correction is unnecessary.
  • Judge. This necessity determination threshold value is set in order to eliminate unnecessary correction of a small amount of drive torque error, and the value is set as appropriate.
  • step S5 If it is determined in step S5 that driving torque correction is unnecessary, the process proceeds to step S10, and if it is determined that at least one of the total driving torque error amounts ⁇ LTtotal and ⁇ RTtotal needs to be corrected, the process proceeds to step S6. Then, in step S10, which proceeds when it is determined in step S5 that drive torque correction is unnecessary, the left rear wheel drive torque correction amount ⁇ LT and the right rear wheel drive torque correction amount ⁇ RT are set to zero.
  • step S6 and step S7 that proceed when it is determined in step S5 that drive torque correction is necessary, it is determined whether or not the total drive torque error amounts ⁇ LTtotal and ⁇ RTtotal are within the control limit value range. To do. That is, as the control limit value, a control limit torque upper limit value Tmax that is the upper limit value and a control limit torque lower limit value Tmin that is the lower limit value are set.
  • step S6 it is determined whether or not the total drive torque error amounts ⁇ LTtotal and ⁇ RTtotal are less than the control limit torque upper limit value Tmax. Then, when the total drive torque error amounts ⁇ LTtotal and ⁇ RTtotal are less than the control limit torque upper limit value Tmax, the process proceeds to step S7, and when the total drive torque error amounts ⁇ LTtotal, ⁇ RTtotal are equal to or greater than the control limit torque upper limit value Tmax, the process proceeds to step S11.
  • the control limit torque upper limit value Tmax a preset motor rated torque of the electric motor 3 can be used. Alternatively, the maximum output power that can be output from the electric motor 3 can be calculated and used at this time by adding the battery charge amount, motor temperature, inverter temperature, and the like to the motor rated torque.
  • step S7 it is determined whether each total drive torque error amount ⁇ LTtotal, ⁇ RTtotal is larger than the control limit torque lower limit value Tmin. If it is larger than the control limit torque lower limit value Tmin, the process proceeds to step S8, and if it is less than the control limit torque lower limit value Tmin, the process proceeds to step S12.
  • the control limit torque lower limit value Tmin is the minimum controllable output value of the electric motor 3.
  • step S8 the left rear wheel drive torque correction amount ⁇ LT is set to the left rear wheel total drive torque error amount ⁇ LTtotal, and the right rear wheel drive torque correction amount ⁇ RT is set to the right rear wheel total drive torque error amount ⁇ RTtotal.
  • step S9 values obtained by adding initial variation correction amounts ⁇ and ⁇ to the left rear wheel drive torque correction amount ⁇ LT and right rear wheel drive torque correction amount ⁇ RT set in step S8, respectively.
  • the drive torque correction amounts are ⁇ LT and ⁇ RT.
  • the torque command current map is corrected according to the drive torque correction amounts ⁇ LT and ⁇ RT finally obtained in this way. That is, each drive unit WD has initial variations due to component variations and assembly variations at the time of manufacture. Therefore, the error (variation) of the actual drive torque with respect to the torque command value tTm at the completion of the drive unit WD is measured and set (stored) in advance as initial variation correction amounts ⁇ and ⁇ .
  • the initial variation correction amounts ⁇ and ⁇ are added to the left rear wheel drive torque correction amount ⁇ LT and the right rear wheel drive torque correction amount ⁇ RT.
  • the left rear wheel oil temperature-driving force error map of FIG. 4 when the driving torque error amount ⁇ LTt is generated on the plus side based on the lubricating oil temperature to1 in the left rear wheel 1RL, the left rear wheel The value indicated by the arrow in the command current map is the left rear wheel drive torque correction amount ⁇ LT.
  • the current value A corresponding to the torque command value tTm is corrected to be lowered. That is, the torque command current map showing the relationship between the torque command value tTm and the current value A shown on the lower side of FIG. 4 is obtained from the current value characteristic indicated by the dotted line used at that time, and the left rear wheel drive torque correction amount ⁇ LT. Only shift as shown by the solid line in the figure. As a result, the driving torque error amount ⁇ LTt at the lubricating oil temperature To1 can be reduced.
  • the right rear wheel driving torque correction amount ⁇ RT is generated on the plus side at the lubricating oil temperature to2.
  • the command current map shown on the lower side of FIG. 4 is minus the right rear wheel drive torque correction amount ⁇ RT from the current value characteristic shown by the dotted line used at that time to the current value characteristic shown by the solid line in FIG. Shift to the side.
  • the correction of the current value A is performed based on the total driving torque error amounts ⁇ LTtotal and ⁇ RTtotal instead of the driving torque error amounts ⁇ LTt and ⁇ RTt.
  • the correction is also performed on the left and right rear wheel command currents on the lower side of FIG. As shown in the map, each is performed independently.
  • step S6 when the total drive torque error amounts ⁇ LTtotal and ⁇ RTtotal of the left and right rear wheels 1RL and 1RR are outside the control limit value range in steps S6 and S7 will be described.
  • step S6 when the total drive torque error amounts ⁇ LTtotal and ⁇ RTtotal of the left and right rear wheels 1RL, 1RR are larger than the control limit torque upper limit value Tmax, the process proceeds to step S11.
  • step S11 correction is performed so that the corrected left and right drive torque error amounts ⁇ LTt, ⁇ RTt are the same while the drive torque correction amounts ⁇ LT, ⁇ RT are set to the control limit torque upper limit value Tmax.
  • the left rear wheel total drive torque error amount ⁇ LTtotal exceeds the control limit torque upper limit value Tmax.
  • the right rear wheel drive torque correction amount ⁇ RT is obtained by the following equation (2) so that the corrected left and right drive torque error amounts ⁇ LTt and ⁇ RTt are the same.
  • step S7 if the left and right rear wheel total drive torque error amounts ⁇ LTtotal and ⁇ RTtotal are smaller than the control limit torque lower limit value Tmin, the process proceeds to step S12. In this step S12, the left and right rear wheel drive torque correction amounts ⁇ LT, ⁇ RT are within the control limit value range, and the left and right drive torque error amounts are corrected to be the same.
  • the right rear wheel drive torque correction amount ⁇ RT is obtained by the following equation (4) so that the corrected left and right drive torque error amounts ⁇ LTt and ⁇ RTt are the same.
  • each drive torque error amount ⁇ LTt, ⁇ RTt, ⁇ LTm, ⁇ RTm, ⁇ LTp, ⁇ RTp is added to the left and right to calculate a left rear wheel total drive torque error amount ⁇ LTtotal and a right rear wheel total drive torque error amount ⁇ RTtotal.
  • a total driving torque error amount with respect to the torque command value tTm is estimated (steps S4L and S4R) in which the influences of the plurality of driving torque change factors are summed and canceled.
  • both drive torque correction amounts ⁇ LT and ⁇ RT are set to 0 (step S10).
  • the left rear wheel total drive torque error amount ⁇ LTtotal and the right rear wheel total drive torque error amount ⁇ RTtotal corresponding to the basic correction amount are within the control limit value range. To do. If the corrected control amount is within the range of the control limit value, the total drive torque error amounts ⁇ LTtotal, ⁇ RTtotal are corrected as the drive torque correction amounts ⁇ LT, ⁇ RT, and when the control limit value is exceeded, Correction is performed with the drive torque correction amounts ⁇ LT and ⁇ RT as control limit values.
  • the left rear wheel drive torque correction amount ⁇ LT is limited to the control limit torque upper limit value Tmax
  • the control limit is determined from the left rear wheel total drive torque error amount ⁇ LTtotal.
  • a drive torque error amount that is the amount obtained by subtracting the torque upper limit value Tmax remains. Therefore, the right rear wheel drive torque correction amount ⁇ RT is not the right rear wheel total drive torque error amount ⁇ RTtotal, but is a value obtained by subtracting the remaining drive torque error amount ( ⁇ LTtotal ⁇ Tmax).
  • a drive torque error amount similar to that of the rear wheel 1RL is generated.
  • the correction amount is increased to the control limit lower limit value to perform correction.
  • the driving torque error amount remains in the torque command value tTm and the actual driving torque by raising the correction amount. Therefore, the other drive wheel is corrected so that the same drive torque error amount occurs.
  • the left rear wheel drive torque correction amount ⁇ LT is limited to the control limit torque lower limit value Tmin
  • the control limit is determined from the left rear wheel total drive torque error amount ⁇ LTtotal.
  • a drive torque error amount that is an amount obtained by subtracting the torque lower limit value Tmin is generated in reverse. Therefore, the right rear wheel drive torque correction amount ⁇ RT is not the right rear wheel total drive torque error amount ⁇ RTtotal, but is a value obtained by adding the remaining drive torque error amount ( ⁇ LTtotal ⁇ Tmin).
  • a drive torque error amount similar to that of the rear wheel 1RL is generated. Note that initial variation correction amounts ⁇ and ⁇ generated due to variations at the time of manufacture are finally added to the drive torque correction amounts ⁇ LT and ⁇ RT.
  • the drive torque control apparatus of Embodiment 1 is A left-side drive unit WD and a right-side drive unit WD that are mounted on the vehicle in a pair on the left and right sides and that drive the left and right rear wheels 1RL and 1RR by the electric motor 3, A vehicle controller 11 as torque control means for independently controlling at least one of left and right drive torques of the electric motor 3; As a first detection means for detecting the lubricating oil temperature To, the motor temperature Tmo, and the pump lubricating oil amount Ov as left driving torque change factors that cause an error between the target driving torque and the actual driving torque in the left driving unit WD.
  • Oil temperature sensor 18, motor temperature sensor 19 and drive signal from pump P As second detection means for detecting the lubricating oil temperature To, the motor temperature Tmo, and the pump lubricating oil amount Ov as the right driving torque change factors causing an error between the target driving torque and the actual driving torque in the right driving unit WD.
  • Oil temperature sensor 18, motor temperature sensor 19 and drive signal from pump P The left-right torque difference between the actual drive torque of the left drive unit WD and the actual drive torque of the right drive unit WD based on the detection values To, Tmo, Ov of the first detection means and the second detection means Is output to at least one of the electric motors 3 of both drive units WD and WD so as to approach the left-right torque difference when there is no error between the target drive torque and the actual drive torque in the left and right drive units WD and WD.
  • a portion of the vehicle controller 11 that performs the processing of the flowchart of FIG. 3B as correction means for correcting the torque command value tTm to be It is characterized by having.
  • the actual drive torque of the left drive unit WD is based on a drive torque change factor that causes an error between the target drive torque and the actual drive torque, such as a change in the state of the drive unit WD or a change in the environment. So that the left and right torque difference between the right drive unit WD and the actual drive torque of the right drive unit WD approaches the left and right torque difference when there is no error between the target drive torque and the actual drive torque in the left and right drive units WD and WD.
  • the torque command value tTm is corrected. Therefore, even when different torque command values tTm are intentionally given to the left and right drive wheels, such as during vehicle attitude control, the drive torque error amount of the actual drive torque with respect to the torque command value tTm can be reduced.
  • the drive torque control device of the first embodiment is In the portions where the processes of steps S1L to S4L and S1R to S4R are performed as the drive torque error amount estimation means, the drive torque error amount characteristic which is the characteristic of the drive torque error amount with respect to the drive torque change factor is shown in FIGS.
  • the map is set in advance as a map, and the drive torque error amount is estimated based on the drive torque error amount characteristic and the detected value.
  • the estimation of the drive torque error amount is performed because the estimation of the drive torque error amount is performed based on the characteristics of the drive torque error amount with respect to the preset drive torque change factor and the detected value of the drive torque change factor. It is possible to simplify. As a result, it is possible to improve the in-vehicle performance while suppressing the calculation load.
  • the drive torque control apparatus of the first embodiment is The portion that performs the processing of steps S5 to S20 as the correcting means is characterized in that correction is executed when the amount of driving torque error is larger than a preset necessity determination threshold value (step S5). As described above, when the drive torque error amount is smaller than the necessity determination threshold value, the correction is not executed. For this reason, for example, it is possible not to execute correction for a minute driving torque error amount that may occur even during normal straight traveling depending on the road surface condition, and the control load can be reduced accordingly.
  • the drive torque control apparatus of Embodiment 1 is The detecting means detects a plurality of driving torque change factors (lubricating oil temperature To, motor temperature Tmo, pump lubricating oil amount Ov),
  • the part that performs the processing of steps S1L to S4L and S1R to S4R as the drive torque error amount estimation means estimates the drive torque error amount for each drive torque change factor, adds the drive torque error amounts, and adds up the total drive torque error amount.
  • ⁇ LTtotal, ⁇ RTtotal are obtained,
  • the portion that performs the processing of steps S5 to S20 as the correction means is characterized in that the correction is executed based on the total drive torque error amounts ⁇ LTtotal and ⁇ RTtotal.
  • the estimation is based on one drive torque change factor.
  • the estimation accuracy can be improved. Accordingly, the correction accuracy of the driving torque can be improved.
  • the drive torque change based on the drive resistance of the drive portion due to the difference in the lubricating oil temperature To can be detected for each of the left and right drive units WD and WD. Can be estimated.
  • the drive torque change due to the difference of the motor temperature Tmo can be estimated by each of the drive units WD and WD.
  • the pump lubricant oil amount Ov of the left and right drive units WD and WD respectively, the drive torque change due to the difference in the lubrication performance due to the difference in the pump lubricant oil amount Ov is estimated in each of the drive units WD and WD. can do.
  • the drive torque control device of Embodiment 1 The part that performs the processing of steps S5 to S20 as the correction means is that the total drive torque error amounts ⁇ LTtotal and ⁇ RTtotal corresponding to the correction amount of the torque command value tTm based on the drive torque error amount are preliminarily set on one of the left and right drive units WD.
  • the drive unit WD on the limited side may not be able to sufficiently suppress the drive torque error amount.
  • the drive torque error amount of one drive unit WD that does not limit the correction is significantly reduced. It is possible to prevent the drive torque error amounts from becoming different.
  • the drive torque control apparatus is different from the first embodiment in the content of the setting process of each drive torque correction amount ⁇ LT, ⁇ RT. That is, in the first embodiment, correction is performed so as to eliminate the error between the torque command value tTm and the actual drive torque on the left and right sides, but in the second embodiment, only the side on which the left and right drive torque error amounts are large is corrected. This is an example in which correction is made to match the amount of drive torque error on the smaller side. That is, even if there is an error amount between the torque command value tTm and the actual drive torque on the left and right, there is no problem as long as the drive torque error amount is the same.
  • the difference ⁇ LRt is used as the right rear wheel drive torque correction amount ⁇ RT to reduce the error amount.
  • the difference ⁇ LRt may be the difference between the total drive torque error amounts ⁇ LTtotal and ⁇ RTtotal.
  • initial variation correction amounts ⁇ and ⁇ may be added to both total drive torque error amounts ⁇ LTtotal and ⁇ RTtotal, respectively.
  • the drive torque control device of the present invention has been described based on the embodiments. However, the specific configuration is not limited to these embodiments, and the invention according to each claim of the claims is described. Design changes and additions are allowed without departing from the gist.
  • the drive unit is applied to an electric vehicle that drives the left and right rear wheels.
  • the drive wheels driven by the drive unit and the number of wheels are not limited to this, and can be applied not only to driving left and right front wheels but also to driving four or more wheels.
  • the lubricating oil temperature, the motor temperature, and the pump lubricating oil amount are shown as the driving torque change factors, but the factors are not limited to these.
  • the driving torque error amount estimating means calculates the driving torque error amount for the driving torque change factor based on the map.
  • the driving torque error amount estimating means is calculated by other means such as an arithmetic expression. Also good.
  • the initial variation error amount is added to the correction of the driving torque error has been shown. However, based on this initial variation error amount, the current value characteristic with respect to the torque command value is corrected in advance. Also good.
  • the drive torque of the electric motor is controlled independently on the left and right, but only one of the target drive torques of both motors is increased or decreased independently of the target drive torque. Control may be performed.
  • the correction unit estimates the torque command value based on the drive torque error amount estimated by the drive torque error estimation amount estimation unit.
  • the torque command value may be corrected directly from the torque change factor. In this case, for example, in the example as shown in FIG. 4, the relationship between the oil temperature and the command current map is obtained in advance, and the command current map is directly corrected from the detected value of the oil temperature, so that the drive torque error is calculated from the oil temperature. It is possible to correct the driving torque without obtaining the amount.

Abstract

Provided is a drive torque control device capable of suppressing a drive torque error in the actual drive torque relative to the torque command value in a drive unit even during a period other than when travelling in a straight line. The drive torque control device is characterized in that a vehicle controller (11) is provided with a portion that executes a process illustrated in a flowchart shown in Fig. 3B for correcting a torque command value (tTm) to be outputted to the electric motor (3) of at least one of the left and right drive units (WD, WD) on the basis of lubricant temperature (To), motor temperature (Tmo), and pump lubricant amount (Ov), which are drive-torque shift factors causing the actual drive torque to shift from the target drive torque for the right and left drive units (WD, WD), said correction being carried out so that the torque difference between the actual drive torque of the left drive unit (WD) and the actual drive torque of the right drive unit (WD) approaches the torque difference between the right and left drive units (WD, WD) when no torque difference exists between the target drive torque and the actual drive torque in the right and left drive units (WD, WD).

Description

駆動トルク制御装置Drive torque control device
 本発明は、車両において左右駆動輪を独立してその駆動トルクを制御する駆動トルク制御装置に関する。 The present invention relates to a drive torque control device that controls the drive torque of left and right drive wheels independently in a vehicle.
 従来、左右の駆動トルクを独立に制御する駆動トルク制御装置が知られている(例えば、特許文献1参照)。
  このような左右独立の駆動トルク制御では、左右それぞれの駆動ユニットの状態や、環境の変化によって、トルク指令値に対する実際の駆動トルクに誤差が発生することがある。このような駆動トルク誤差が、左右で異なる不具合を防止するために、従来技術では、トルクセンサにより、左右輪の実駆動トルクを検出し、両者の偏差に基づいて目標駆動トルク(トルク指令値)を補正するようにしている。
2. Description of the Related Art Conventionally, a drive torque control device that controls left and right drive torques independently is known (see, for example, Patent Document 1).
In such left and right independent drive torque control, an error may occur in the actual drive torque with respect to the torque command value depending on the state of the left and right drive units and changes in the environment. In order to prevent such a problem that the drive torque error differs between right and left, in the prior art, the actual drive torque of the left and right wheels is detected by a torque sensor, and the target drive torque (torque command value) is based on the deviation between the two. I am trying to correct.
特開2005-160262号公報JP 2005-160262 A
 しかしながら、上記の従来技術では、左右輪の実駆動トルクを検出し、その偏差に基づいて補正を行っているため、例えば、直進走行のような左右輪の駆動トルクが一致する走行状態でしか、補正を行うことができない。すなわち、車両の姿勢制御時や旋回時など、左右駆動輪の目標駆動トルクが異なる制御中には、仮に、トルク指令値に対する実駆動トルクに誤差が生じていても、補正を行うことが困難であった。
  また、トルクセンサ設置によるコスト増という問題もあった。
However, in the above prior art, since the actual driving torque of the left and right wheels is detected and correction is performed based on the deviation, for example, only in a traveling state where the driving torques of the left and right wheels coincide with each other, such as straight traveling, Correction cannot be performed. In other words, it is difficult to perform correction even if there is an error in the actual drive torque with respect to the torque command value during control in which the target drive torque of the left and right drive wheels is different, such as during vehicle attitude control or turning. there were.
In addition, there is a problem of increased cost due to the installation of the torque sensor.
 本発明は、上記問題に着目してなされたもので、直進走行時以外でも、駆動ユニットにおけるトルク指令値に対する実駆動トルクの駆動トルク誤差量を抑制可能な駆動トルク制御装置を提供することを目的とする。 The present invention has been made paying attention to the above problem, and an object of the present invention is to provide a drive torque control device capable of suppressing the drive torque error amount of the actual drive torque with respect to the torque command value in the drive unit even when traveling straight ahead. And
 上記目的を達成するため、本発明は、
左側駆動ユニットおよび右側駆動ユニットのモータの駆動トルクの少なくとも左右一方を独立して制御するトルク制御手段と、
前記第1の検出手段が検出する左側駆動トルク変化因子の検出値および前記第2の検出手段が検出する右側駆動トルク変化因子の検出値に基づいて、前記左側駆動ユニットの実駆動トルクと前記右側駆動ユニットの実駆動トルクとの左右トルク差が、前記左右両駆動ユニットにおいて前記トルク指令値と前記実駆動トルクとの誤差が無いときの左右トルク差に近付くように、両駆動ユニットの少なくとも一方の前記モータに出力する前記トルク指令値を補正する補正手段と、を備えていることを特徴とする駆動トルク制御装置とした。
In order to achieve the above object, the present invention provides:
Torque control means for independently controlling at least one of left and right drive torques of the motors of the left drive unit and the right drive unit;
Based on the detected value of the left driving torque change factor detected by the first detecting means and the detected value of the right driving torque change factor detected by the second detecting means, the actual driving torque of the left driving unit and the right side At least one of the two drive units is such that the left-right torque difference from the actual drive torque of the drive unit approaches the left-right torque difference when there is no error between the torque command value and the actual drive torque in the left and right drive units. The driving torque control device includes a correcting unit that corrects the torque command value output to the motor.
 本発明の駆動トルク制御装置では、補正手段は、実駆動トルクを検出することなしに、左右側両駆動トルク変化因子の検出値に基づいて、トルク指令値に対する実駆動トルクの駆動トルク誤差量を減少させるようにトルク指令値を補正する。
  したがって、直進時以外の車両姿勢制御時などのように、意図的に左右の駆動輪に異なるトルク指令値を与えている場合でも、左右側両駆動トルク変化因子の検出値に基づいて、上記のトルク指令値に対する実駆動トルクの駆動トルク誤差量を抑制するよう補正することができる。
In the drive torque control device of the present invention, the correction means detects the drive torque error amount of the actual drive torque with respect to the torque command value based on the detected value of the left and right drive torque change factors without detecting the actual drive torque. The torque command value is corrected so as to decrease.
Therefore, even when different torque command values are intentionally given to the left and right drive wheels, such as during vehicle attitude control other than straight running, based on the detected values of the left and right drive torque change factors, It can correct | amend so that the drive torque error amount of the actual drive torque with respect to a torque command value may be suppressed.
本発明の実施の形態1の駆動トルク制御装置を備えた電気自動車の駆動系に係わる全体制御システムを示す概略系統図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic system diagram which shows the whole control system regarding the drive system of the electric vehicle provided with the drive torque control apparatus of Embodiment 1 of this invention. 実施の形態1の駆動トルク制御装置に適用した駆動ユニットを示す断面図である。FIG. 3 is a cross-sectional view showing a drive unit applied to the drive torque control device of the first embodiment. 実施の形態1の駆動トルク制御装置におけるトルク補正処理の流れを示すフローチャートであって、左右の駆動ユニットにおける駆動力誤差を算定する処理の流れを示している。FIG. 6 is a flowchart showing a flow of torque correction processing in the drive torque control apparatus of Embodiment 1, and shows a flow of processing for calculating a driving force error in the left and right drive units. FIG. 実施の形態1の駆動トルク制御装置におけるトルク補正処理の流れを示すフローチャートであって、算定した誤差量に基づく補正処理の流れを示している。FIG. 6 is a flowchart showing a flow of torque correction processing in the drive torque control apparatus of Embodiment 1, and shows a flow of correction processing based on the calculated error amount. FIG. 実施の形態1の駆動力制御装置に用いる駆動力変化因子としての潤滑油温度に対応する左右の駆動ユニットにおけるトルク指令値と駆動力誤差と補正量との関係を説明するための、左後輪油温-駆動トルク誤差マップ、左後輪指令電流マップ、右後輪油温-駆動トルク誤差マップ、右後輪指令電流マップである。Left rear wheel for explaining the relationship between torque command value, driving force error, and correction amount in the left and right driving units corresponding to the lubricating oil temperature as the driving force change factor used in the driving force control apparatus of the first embodiment They are an oil temperature-drive torque error map, a left rear wheel command current map, a right rear wheel oil temperature-drive torque error map, and a right rear wheel command current map. 実施の形態1の駆動トルク制御装置に用いる駆動トルク変化因子としてのモータ温度に基づく左右の駆動ユニットにおけるトルク指令値と実駆動トルクと補正量との関係を説明するための、左後輪モータ温度-駆動トルク誤差マップ、左後輪指令電流マップ、右後輪モータ温度-駆動トルク誤差マップである。Left rear wheel motor temperature for explaining the relationship between the torque command value, the actual drive torque, and the correction amount in the left and right drive units based on the motor temperature as the drive torque change factor used in the drive torque control apparatus of the first embodiment -A drive torque error map, a left rear wheel command current map, a right rear wheel motor temperature-a drive torque error map. 実施の形態1の駆動トルク制御装置に用いる駆動トルク変化因子としてのポンプ潤滑油量に基づく左右の駆動ユニットにおけるトルク指令値と実駆動トルクと補正量との関係を説明するための、左後輪ポンプ潤滑油量-駆動トルク誤差マップ、左後輪指令電流マップ、右後輪ポンプ潤滑油量-駆動トルク誤差マップ、右後輪指令電流マップである。Left rear wheel for explaining the relationship between the torque command value, the actual drive torque, and the correction amount in the left and right drive units based on the amount of pump lubricating oil as a drive torque change factor used in the drive torque control device of the first embodiment They are a pump lubricant amount-drive torque error map, a left rear wheel command current map, a right rear wheel pump lubricant amount-drive torque error map, and a right rear wheel command current map. 実施の形態2の駆動トルク制御装置における潤滑油温度に対応する左右の駆動ユニットにおけるトルク指令値と実駆動トルクと補正量との関係を説明するための、左後輪油温-駆動トルク誤差マップ、左後輪指令電流マップ、右後輪油温-駆動トルク誤差マップ、右後輪指令電流マップである。Left rear wheel oil temperature-drive torque error map for explaining the relationship between the torque command value, the actual drive torque, and the correction amount in the left and right drive units corresponding to the lubricating oil temperature in the drive torque control apparatus of the second embodiment , Left rear wheel command current map, right rear wheel oil temperature-drive torque error map, and right rear wheel command current map. 実施の形態における車両姿勢制御(ヨーモーメント制御)時の基本目標駆動トルクと、左右の目標駆動トルクとの関係を説明するための動作例を示すタイムチャートである。5 is a time chart illustrating an operation example for explaining a relationship between a basic target driving torque and a left and right target driving torque at the time of vehicle attitude control (yaw moment control) in the embodiment.
 以下、本発明の駆動トルク制御装置を実施するための形態を、図面に示す実施の形態に基づいて説明する。
(実施の形態1)
  まず、実施の形態1の駆動トルク制御装置を備えた電気自動車の全体構成について説明する。
  図1は、本発明の実施の形態1である駆動トルク制御装置を具えた電気自動車の制駆動系に係わる全体制御システムを示す概略系統図である。
EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing the drive torque control apparatus of this invention is demonstrated based on embodiment shown in drawing.
(Embodiment 1)
First, the overall configuration of an electric vehicle provided with the drive torque control device of the first embodiment will be described.
FIG. 1 is a schematic system diagram showing an overall control system related to a braking / driving system of an electric vehicle provided with a driving torque control apparatus according to Embodiment 1 of the present invention.
 この電気自動車は、左右前輪1FL,1FRおよび左右後輪1RL,1RRを備えている。そして、左右後輪1FL,1FRを駆動輪として、それぞれの駆動ユニットWDに内蔵させた個々の電動モータ3RL,3RR(インホイールモータIWM)により駆動して走行可能であり、かつ、左右前輪1FL,1FRの転舵により操向可能である。 This electric vehicle includes left and right front wheels 1FL and 1FR and left and right rear wheels 1RL and 1RR. The left and right rear wheels 1FL, 1FR are used as driving wheels and can be driven by individual electric motors 3RL, 3RR (in-wheel motor IWM) built in the respective driving units WD, and the left and right front wheels 1FL, Steering is possible by turning 1 FR.
 電動モータ3RL,3RRはそれぞれ、発電機としても機能し得るモータ/ジェネレータで、上記の通りモータ駆動される左右後輪1RL,1RRを、所定の発電負荷に応動して回生制動することができる。 The electric motors 3RL and 3RR are motor / generators that can also function as a generator, and can regeneratively brake the left and right rear wheels 1RL and 1RR that are motor-driven as described above in response to a predetermined power generation load.
 また、図1に示す電気自動車は、電動モータ3RL,3RR(インホイールモータIWM)の駆動制御および回生制御を行う車両コントローラ11を備えている。そして、車両コントローラ11は、電動モータ3RL,3RR(インホイールモータIWM)の駆動制御に基づいて、左右後輪1RL,1RRに差回転を生じさせて車両挙動制御が実行可能となっている。 Further, the electric vehicle shown in FIG. 1 includes a vehicle controller 11 that performs drive control and regenerative control of the electric motors 3RL and 3RR (in-wheel motor IWM). The vehicle controller 11 can execute vehicle behavior control by causing differential rotation of the left and right rear wheels 1RL and 1RR based on drive control of the electric motors 3RL and 3RR (in-wheel motor IWM).
 車両コントローラ11には、アクセル開度センサ12、操舵角センサ13、ヨーレートセンサ14、前後加速度センサ15、横加速度センサ16、車輪速センサ17RL,17RR、油温センサ18、モータ温度センサ19、ポンプPから信号が入力される。 The vehicle controller 11 includes an accelerator opening sensor 12, a steering angle sensor 13, a yaw rate sensor 14, a longitudinal acceleration sensor 15, a lateral acceleration sensor 16, wheel speed sensors 17RL and 17RR, an oil temperature sensor 18, a motor temperature sensor 19, and a pump P. A signal is input from.
 なお、アクセル開度センサ12は、図示を省略したアクセルペダル踏み込み量であるアクセル開度APOを検出する。
  操舵角センサ13は、ステアリングホイールの操舵角θを検出する。
  ヨーレートセンサ14は、車両の鉛直軸線周りの挙動であるヨーレートφを検出する。
  前後加速度センサ15は、車両の前後加速度Gxを検出する。
  横加速度センサ16は、車両の横加速度Gyを検出する。
  車輪速センサ17RL,17RRは、モータ駆動される左右後輪1RL,1RRの車輪速VwL,VwRを検出する。
  油温センサ18は、第1の検出手段および第2の検出手段として各駆動ユニットWD内の左右駆動トルク変化因子としての潤滑油温度Toを検出する。
  モータ温度センサ19は、第1の検出手段および第2の検出手段として各電動モータ3RL,3RR(インホイールモータIWM)の後述するステータ31の左右駆動トルク変化因子としての温度であるモータ温度Tmoを検出する。
  加えて、車両コントローラ11には、後述する潤滑油を吐出するポンプPから、左右駆動トルク変化因子としてのポンプ潤滑油量Ov(単位時間当たりの油量L/min)を示す信号が入力される。
The accelerator opening sensor 12 detects an accelerator opening APO that is an accelerator pedal depression amount (not shown).
The steering angle sensor 13 detects the steering angle θ of the steering wheel.
The yaw rate sensor 14 detects a yaw rate φ that is a behavior around the vertical axis of the vehicle.
The longitudinal acceleration sensor 15 detects the longitudinal acceleration Gx of the vehicle.
The lateral acceleration sensor 16 detects the lateral acceleration Gy of the vehicle.
The wheel speed sensors 17RL and 17RR detect the wheel speeds VwL and VwR of the left and right rear wheels 1RL and 1RR driven by the motor.
The oil temperature sensor 18 detects the lubricating oil temperature To as a left and right driving torque change factor in each drive unit WD as the first detection means and the second detection means.
The motor temperature sensor 19 uses a motor temperature Tmo, which is a temperature as a left / right driving torque change factor of a stator 31 (to be described later) of each of the electric motors 3RL and 3RR (in-wheel motor IWM) as first detection means and second detection means. To detect.
In addition, a signal indicating a pump lubricating oil amount Ov (oil amount L / min per unit time) as a left-right driving torque change factor is input to the vehicle controller 11 from a pump P that discharges lubricating oil, which will be described later. .
 車両コントローラ11は、これらセンサ12~16、17RL,17RR,18,19およびポンプPからの入力情報を基に、左右後輪1RL,1RRを駆動する電動モータ3RL,3RRの目標モータトルクtTmL,tTmRを求める。
  さらに、車両コントローラ11は、これら目標モータトルクtTmL,tTmRを、それぞれ、トルク指令値tTmとして、電動モータ3RL,3RRの駆動・回生制御を行なうインバータ20に出力する。なお、トルク指令値tTmは、駆動ユニットWDからの実駆動トルクの指令値である。よって、このトルク指令値tTmに基づく目標モータトルクtTmL,tTmRも、実駆動トルクを得るためのモータトルクである。
Based on the input information from these sensors 12 to 16, 17RL, 17RR, 18, 19 and pump P, the vehicle controller 11 drives the target motor torques tTmL, tTmR of the electric motors 3RL, 3RR that drive the left and right rear wheels 1RL, 1RR. Ask for.
Further, the vehicle controller 11 outputs these target motor torques tTML and tTmR as torque command values tTm to the inverter 20 that performs drive / regeneration control of the electric motors 3RL and 3RR, respectively. The torque command value tTm is a command value of actual drive torque from the drive unit WD. Therefore, the target motor torques tTmL and tTmR based on the torque command value tTm are also motor torques for obtaining the actual driving torque.
 そして、インバータ20は、目標モータトルクtTmL,tTmRに応じてバッテリ(図示省略)から電動モータ3RL,3RRへDC-AC変換電力を供給する。これにより電動モータ3RL,3RRに形成されるモータトルクTmL,TmRにより、左右後輪1RL,1RRが駆動あるいは回生される。 The inverter 20 supplies DC-AC converted power from the battery (not shown) to the electric motors 3RL and 3RR according to the target motor torques tTML and tTmR. As a result, the left and right rear wheels 1RL, 1RR are driven or regenerated by the motor torques TmL, TmR formed in the electric motors 3RL, 3RR.
 (駆動ユニットの構成)
  次に、電動モータ3RL,3RR(インホイールモータIWM)を備えた駆動ユニットWDの構成を図2に基づいて説明する。なお、以下の説明において、電動モータ3RL,3RRは、左右の違いを特定しない場合には、単に電動モータ3と標記する。
(Configuration of drive unit)
Next, the configuration of the drive unit WD provided with the electric motors 3RL, 3RR (in-wheel motor IWM) will be described with reference to FIG. In the following description, the electric motors 3RL and 3RR are simply referred to as the electric motor 3 unless a difference between left and right is specified.
 図2は、駆動ユニットWDの縦断面図であって、インホイールモータユニットは、ユニットケース100に収容されている。また、ユニットケース100は、ケース本体101およびリヤカバー102を結合させて構成されている。 FIG. 2 is a longitudinal sectional view of the drive unit WD, and the in-wheel motor unit is accommodated in the unit case 100. The unit case 100 is configured by coupling a case main body 101 and a rear cover 102.
 ユニットケース100内には、電動モータ3および遊星歯車組40が収納されている。
  電動モータ3は、ケース本体101の内周に嵌合して固設した円環状のステータ31と、このステータ31の内周にラジアルギャップを持たせて同心に配置したロータ32とを備えている。
The unit case 100 houses the electric motor 3 and the planetary gear set 40.
The electric motor 3 includes an annular stator 31 fitted and fixed to the inner periphery of the case body 101, and a rotor 32 disposed concentrically with a radial gap on the inner periphery of the stator 31. .
 遊星歯車組40は、同軸に突き合わせて対向配置した入力軸51および出力軸52を結合し、入力軸51の回転を減速して出力軸52に伝達する減速機構として機能する。
  この遊星歯車組40は、サンギヤ41、リングギヤ42、プラネタリピニオン43を備えている。
  サンギヤ41は、入力軸51に一体に設けられている。
  また、リングギヤ42は、サンギヤ41と同軸であるとともに、サンギヤ41と軸方向にずらした位置でケース本体101に支持されている。
The planetary gear set 40 functions as a speed reduction mechanism that couples the input shaft 51 and the output shaft 52 that are arranged to face each other in a coaxial manner, and that decelerates the rotation of the input shaft 51 and transmits it to the output shaft 52.
The planetary gear set 40 includes a sun gear 41, a ring gear 42, and a planetary pinion 43.
The sun gear 41 is provided integrally with the input shaft 51.
The ring gear 42 is coaxial with the sun gear 41 and is supported by the case body 101 at a position shifted in the axial direction from the sun gear 41.
 プラネタリピニオン43は、サンギヤ41およびリングギヤ42に噛み合って設けられた段付き構造のもので、ピニオンシャフト44に支持されている。さらに、ピニオンシャフト44は、キャリア45に支持され、このキャリア45は、出力軸52と一体的に回転する。 The planetary pinion 43 has a stepped structure provided so as to mesh with the sun gear 41 and the ring gear 42, and is supported by the pinion shaft 44. Further, the pinion shaft 44 is supported by a carrier 45, and the carrier 45 rotates integrally with the output shaft 52.
 また、出力軸52には、ホイールハブ53が結合され、このホイールハブ53に、同心に、ブレーキドラム54が結合されている。そして、ホイールハブ53に、車輪Wのホイール60がボルト61により結合されている。 Further, a wheel hub 53 is coupled to the output shaft 52, and a brake drum 54 is coupled to the wheel hub 53 concentrically. The wheel 60 of the wheel W is coupled to the wheel hub 53 by bolts 61.
 なお、ユニットケース100内には、潤滑油OILが貯留されているとともに、ポンプPにより、この潤滑油OILが強制的に遊星歯車組40および電動モータ3に供給されて、その潤滑および冷却を行なう。 The unit case 100 stores lubricating oil OIL, and the pump P forcibly supplies the lubricating oil OIL to the planetary gear set 40 and the electric motor 3 to perform lubrication and cooling. .
 <駆動ユニットの動作>
  以下に、上述した駆動ユニットWDの動作を説明する。
  電動モータ3のステータ31に通電すると、これからの電磁力でロータ32が回転駆動され、その回転駆動トルクは入力軸51を介して遊星歯車組40のサンギヤ41に伝達される。
<Operation of drive unit>
The operation of the drive unit WD described above will be described below.
When the stator 31 of the electric motor 3 is energized, the rotor 32 is rotationally driven by the electromagnetic force from now on, and the rotational driving torque is transmitted to the sun gear 41 of the planetary gear set 40 via the input shaft 51.
 これによりサンギヤ41は、プラネタリピニオン43を回転させるが、このとき固定されたリングギヤ42が反力受けとして機能するため、段付きプラネタリピニオン43は、リングギヤ42に沿って転動するような遊星運動を行う。
  このプラネタリピニオン43の遊星運動はキャリア45を介して出力軸52に伝達され、出力軸52は、入力軸51と同方向に減速して回転される。
  そして、この出力軸52の回転が、これに結合されたホイールハブ53を介して車輪Wに伝達され、この車輪Wを回転駆動させる。
As a result, the sun gear 41 rotates the planetary pinion 43. Since the ring gear 42 fixed at this time functions as a reaction force receiver, the stepped planetary pinion 43 performs a planetary motion that rolls along the ring gear 42. Do.
The planetary movement of the planetary pinion 43 is transmitted to the output shaft 52 through the carrier 45, and the output shaft 52 is decelerated and rotated in the same direction as the input shaft 51.
Then, the rotation of the output shaft 52 is transmitted to the wheel W through the wheel hub 53 coupled thereto, and the wheel W is driven to rotate.
 (車両コントローラによる制御)
  車両コントローラ11は、前述したように、左右後輪1RL,1RRの駆動ユニットWDの駆動を制御する。
  この駆動制御において、本実施の形態1では、左右後輪1RL,1RRの駆動ユニットWD、WDに対するトルク指令値tTmを、それぞれ独立して制御を行なう。
  この場合、通常は、左右後輪1RL,1RRの駆動トルクが等しくなるように制御する。
(Control by vehicle controller)
As described above, the vehicle controller 11 controls the drive of the drive units WD of the left and right rear wheels 1RL and 1RR.
In this drive control, in Embodiment 1, the torque command values tTm for the drive units WD and WD of the left and right rear wheels 1RL and 1RR are controlled independently.
In this case, control is normally performed so that the drive torques of the left and right rear wheels 1RL and 1RR are equal.
 また、車両コントローラ11は、周知の車両姿勢制御(ヨーモーメント制御)などの際には、左右後輪1RL,1RRの駆動トルクを意図的に異ならせる制御も実行する。
  このような車両姿勢制御としては、例えば、車両のヨーレートが、目標ヨーレートに一致するように左右後輪1RL,1RRの駆動トルクに差を与え、車両に生じているヨーレートを増加させたり、減少させたりする制御を行なう。また、左右後輪1RL,1RRに駆動輪スリップが生じた場合に、これを抑制させるべく、上述のような左右後輪1RL,1RRに駆動トルク差を与える制御を含む。
 上述の車両姿勢制御(ヨーモーメント制御)を含む左右の駆動トルク制御について説明を加える。
  すなわち、通常(直進時など)は、車両目標駆動トルクの半分を左右の駆動ユニットWDの基本目標駆動トルクTmo(図8参照)とする。そして、車両姿勢制御時には、左右のうち一方の基本目標駆動トルクTmoに姿勢制御用のトルクΔTを加算してこの一方(図8の例では右後輪1RR)の駆動ユニットWDの目標駆動トルクを決定する。
  また、他方の駆動ユニットWD(図8の例では左後輪1RL)の目標駆動トルクは、基本目標駆動トルクTmoから姿勢制御用のトルクΔTを減算して決定する。
  なお、直進状態で、車両姿勢制御を実行しない場合は、左右の駆動ユニットWDの目標駆動トルクは、それぞれ、基本目標駆動トルクTmoとなり、左右等しくなる。
  また、上述の車両目標駆動トルクは、周知のようにアクセル開度、車速および制動力に係わる情報に基づいて、運転者が要求する運転状態に応じた制駆動トルクであり、繰り返しになるが、その半分が、基本目標駆動トルクTmoとなる。
Further, the vehicle controller 11 also executes control for intentionally changing the driving torques of the left and right rear wheels 1RL and 1RR during well-known vehicle attitude control (yaw moment control) or the like.
As such vehicle attitude control, for example, a difference is given to the driving torque of the left and right rear wheels 1RL and 1RR so that the yaw rate of the vehicle matches the target yaw rate, and the yaw rate generated in the vehicle is increased or decreased. Control. In addition, when drive wheel slip occurs in the left and right rear wheels 1RL and 1RR, control for giving a drive torque difference to the left and right rear wheels 1RL and 1RR as described above is included.
The left and right drive torque control including the vehicle attitude control (yaw moment control) described above will be described.
That is, normally (such as when traveling straight), half of the vehicle target drive torque is set as the basic target drive torque Tmo (see FIG. 8) of the left and right drive units WD. At the time of vehicle attitude control, the attitude control torque ΔT is added to one of the left and right basic target drive torques Tmo to obtain the target drive torque of the drive unit WD of this one (right rear wheel 1RR in the example of FIG. 8). decide.
Further, the target drive torque of the other drive unit WD (left rear wheel 1RL in the example of FIG. 8) is determined by subtracting the attitude control torque ΔT from the basic target drive torque Tmo.
When the vehicle attitude control is not executed in the straight traveling state, the target drive torques of the left and right drive units WD are the basic target drive torques Tmo, which are equal to the left and right.
The vehicle target driving torque described above is a braking / driving torque according to the driving state requested by the driver based on information on the accelerator opening, the vehicle speed, and the braking force, as is well known. Half of this is the basic target drive torque Tmo.
 (駆動トルク補正制御)
  次に、図3A,図3Bのフローチャートに基づいて、実施の形態1の駆動トルク制御装置における駆動トルク補正制御について説明する。この駆動トルク補正制御は、電動モータ3(駆動ユニットWD)の実駆動トルクが、トルク指令値tTmに一致するように(すなわち、トルク指令値=駆動ユニットWDの実駆動トルクとなるように)、両者の間の駆動トルク誤差量を減少させるように補正する制御である。詳細には、本実施の形態では、電動モータ3の駆動トルクは、減速機構としての遊星歯車組40により増大されて駆動ユニットWDから出力されるため、モータ出力は、実駆動トルクとは異なる。
  図3Aのフローチャートにおいて、ステップS1L~S4LとステップS1R~S4Rとは、それぞれ、駆動輪である左右後輪1RL,1RRの駆動ユニットWDを対象に行なうものである。そして、その処理の内容は、左右で同様であるため、両者を代表して、左後輪1RL側の処理であるステップS1L~S4Lについて説明する。
(Drive torque correction control)
Next, drive torque correction control in the drive torque control apparatus of Embodiment 1 will be described based on the flowcharts of FIGS. 3A and 3B. This drive torque correction control is performed so that the actual drive torque of the electric motor 3 (drive unit WD) matches the torque command value tTm (that is, the torque command value = the actual drive torque of the drive unit WD). In this control, the drive torque error amount between them is corrected so as to decrease. Specifically, in the present embodiment, the drive torque of the electric motor 3 is increased by the planetary gear set 40 as a speed reduction mechanism and output from the drive unit WD, so the motor output is different from the actual drive torque.
In the flowchart of FIG. 3A, steps S1L to S4L and steps S1R to S4R are performed for the drive units WD of the left and right rear wheels 1RL and 1RR, which are drive wheels, respectively. Since the contents of the process are the same on the left and right, steps S1L to S4L, which are processes on the left rear wheel 1RL side, will be described as a representative of both.
 まず、ステップS1Lでは、左後輪1RLの駆動ユニットWDについて、油温センサ18が検出する潤滑油温度Toに基づいて、駆動トルク誤差量ΔLTtを算出する処理を行なう。
  なお、この潤滑油温度Toに基づく駆動トルク誤差量ΔLTtの算出は、図4に示す左右の駆動ユニットWDの左後輪油温-駆動トルク度差マップ、右後輪油温-駆動トルク誤差マップに基づいて行なう。左右後輪各油温-駆動トルク誤差マップは、あらかじめ実験やシミュレーションにより、駆動ユニットWD内の潤滑油温度Toに応じたトルク指令値tTmに対する実駆動トルクの駆動トルク誤差量(駆動トルク誤差量ΔLTt)が記憶されたものである。なお、図4に示す左右後輪各油温-駆動トルク誤差マップでは、潤滑油温度Toが低温となるほど駆動トルク誤差量ΔLTtがマイナス側に生じる一方、高温となるほど駆動トルク誤差量ΔLTtがプラス側に生じる特性に設定されている。
First, in step S1L, a process for calculating the drive torque error amount ΔLTt is performed on the drive unit WD of the left rear wheel 1RL based on the lubricating oil temperature To detected by the oil temperature sensor 18.
The calculation of the drive torque error amount ΔLTt based on the lubricating oil temperature To is performed by calculating the left rear wheel oil temperature-drive torque degree difference map and the right rear wheel oil temperature-drive torque error map of the left and right drive units WD shown in FIG. Based on. The oil temperature-driving torque error map for each of the left and right rear wheels is determined based on the driving torque error amount of the actual driving torque (driving torque error amount ΔLTt) with respect to the torque command value tTm corresponding to the lubricating oil temperature To in the driving unit WD by experiment and simulation in advance. ) Is stored. In the oil temperature-driving torque error map for the left and right rear wheels shown in FIG. 4, the driving torque error amount ΔLTt is generated on the minus side as the lubricating oil temperature To is lower, while the driving torque error amount ΔLTt is on the plus side as the temperature is higher. It is set to the characteristic that occurs.
 ステップS2Lでは、左輪について、モータ温度センサ19が検出するモータ温度Tmoに基づいて、駆動トルク誤差量ΔLTmを算出する処理を行なう。
  なお、この算出は、図5に示す、左右の駆動ユニットWDの左後輪モータ温度-駆動トルク誤差マップ、右後輪モータ温度-駆動トルク誤差マップに基づいて行なう。このモータ温度-駆動トルク誤差マップは、あらかじめ実験やシミュレーションにより、モータ温度Tmoに応じたトルク指令値tTmに対する実駆動トルクの駆動トルク誤差量(駆動トルク誤差量ΔLTm)が記憶されたものである。なお、図5に示す左右後輪各モータ温度-駆動トルク誤差マップでは、モータ温度Tmoが低温となるほど駆動トルク誤差量ΔLTmがプラス側に生じる一方、モータ温度Tmoが高温となるほど駆動トルク誤差量ΔLTmがマイナス側に生じる特性に設定されている。
In step S2L, a process for calculating a drive torque error amount ΔLTm is performed for the left wheel based on the motor temperature Tmo detected by the motor temperature sensor 19.
This calculation is performed based on the left rear wheel motor temperature-drive torque error map and the right rear wheel motor temperature-drive torque error map of the left and right drive units WD shown in FIG. This motor temperature-driving torque error map stores the driving torque error amount (driving torque error amount ΔLTm) of the actual driving torque with respect to the torque command value tTm corresponding to the motor temperature Tmo in advance through experiments and simulations. In the left and right rear wheel motor temperature-driving torque error map shown in FIG. 5, the driving torque error amount ΔLTm is generated on the positive side as the motor temperature Tmo is lower, while the driving torque error amount ΔLTm is increased as the motor temperature Tmo is higher. Is set to a characteristic that occurs on the negative side.
 ステップS3Lでは、駆動ユニットWDのポンプ潤滑油量Ovに基づいて、駆動トルク誤差量ΔLTpを算出する処理を行なう。
  なお、この算出は、図6に示す、左右の駆動ユニットWDの左後輪ポンプ潤滑油量-駆動トルク誤差マップ、右後輪潤滑油量-駆動トルク誤差マップに基づいて行なう。この潤滑油量-駆動トルク誤差マップは、あらかじめ実験やシミュレーションにより、ポンプ潤滑油量Ovに応じたトルク指令値tTmに対する実駆動トルクとの駆動トルク誤差量(駆動トルク誤差量ΔLTp)が記憶されたものである。なお、図6に示す左右後輪各潤滑油量-駆動トルク誤差マップでは、ポンプ潤滑油量Ovが少ないほど駆動トルク誤差量ΔLTpがプラス側に生じる一方、ポンプ潤滑油量Ovが増加するほど駆動トルク誤差量ΔLTpがマイナス側に生じる特性に設定されている。
In step S3L, a process of calculating a drive torque error amount ΔLTp based on the pump lubricant oil amount Ov of the drive unit WD is performed.
This calculation is performed based on the left rear wheel pump lubricant amount-drive torque error map and right rear wheel lubricant amount-drive torque error map of the left and right drive units WD shown in FIG. In this lubricating oil amount-driving torque error map, the driving torque error amount (driving torque error amount ΔLTp) with the actual driving torque with respect to the torque command value tTm corresponding to the pump lubricating oil amount Ov is stored in advance through experiments and simulations. Is. In the left and right rear wheel lubricating oil amount-driving torque error map shown in FIG. 6, the smaller the pump lubricating oil amount Ov, the more positive the driving torque error amount ΔLTp, while the larger the pump lubricating oil amount Ov, the more the driving. The torque error amount ΔLTp is set to a characteristic that occurs on the negative side.
 ステップS4Lでは、左後輪総合駆動トルク誤差量ΔLTtotalを算出する。なお、この左後輪総合駆動トルク誤差量ΔLTtotalは、下記式(1)に示すように、ステップS1L~S3Lにて算出した各駆動トルク誤差量ΔLTt、ΔLTm、ΔLTpを加算した値である。
ΔLTtotal=ΔLTt+ΔLTm+ΔLTp ・・・(1)
 以上のステップS1L~S4Lの処理により、左後輪総合駆動トルク誤差量ΔLTtotalを算出するとともに、ステップS1R~S4Rにより右後輪総合駆動トルク誤差量ΔRTtotalを算出したら、図3Bに示すステップS5に進む。
In step S4L, a left rear wheel total drive torque error amount ΔLTtotal is calculated. The left rear wheel total drive torque error amount ΔLTtotal is a value obtained by adding the drive torque error amounts ΔLTt, ΔLTm, and ΔLTp calculated in steps S1L to S3L as shown in the following equation (1).
ΔLTtotal = ΔLTt + ΔLTm + ΔLTp (1)
When the left rear wheel total driving torque error amount ΔLTtotal is calculated by the processing of steps S1L to S4L and the right rear wheel total driving torque error amount ΔRTtotal is calculated by steps S1R to S4R, the process proceeds to step S5 shown in FIG. 3B. .
 ステップS5では、トルク指令値tTmの補正の必要性の有無判定を、左右後輪1RL,1RRのそれぞれについて行なう。この必要性の有無判定は、各総合駆動トルク誤差量ΔLTtotal,ΔRTtotalと必要性判定閾値とを比較し、両総合駆動トルク誤差量ΔLTtotal,ΔRTtotalが必要性判定閾値を下回ると、駆動トルク補正が不要と判断する。この必要性判定閾値は、無駄に微小な駆動トルク誤差量の補正を行うことを排除するために設定されており、その値は、適宜設定する。 In step S5, whether or not the torque command value tTm needs to be corrected is determined for each of the left and right rear wheels 1RL and 1RR. This necessity determination is made by comparing each total drive torque error amount ΔLTtotal, ΔRTtotal with the necessity determination threshold value, and if both total drive torque error amounts ΔLTtotal, ΔRTtotal are below the necessity determination threshold value, the drive torque correction is unnecessary. Judge. This necessity determination threshold value is set in order to eliminate unnecessary correction of a small amount of drive torque error, and the value is set as appropriate.
 このステップS5において駆動トルク補正が不要と判定した場合は、ステップS10に進み、両総合駆動トルク誤差量ΔLTtotal,ΔRTtotalの少なくとも一方の補正が必要と判定した場合はステップS6に進む。
  そして、ステップS5にて駆動トルク補正不要と判断した場合に進むステップS10では、左後輪駆動トルク補正量ΔLTおよび右後輪駆動トルク補正量ΔRTを0に設定する。
If it is determined in step S5 that driving torque correction is unnecessary, the process proceeds to step S10, and if it is determined that at least one of the total driving torque error amounts ΔLTtotal and ΔRTtotal needs to be corrected, the process proceeds to step S6.
Then, in step S10, which proceeds when it is determined in step S5 that drive torque correction is unnecessary, the left rear wheel drive torque correction amount ΔLT and the right rear wheel drive torque correction amount ΔRT are set to zero.
 一方、ステップS5にて、駆動トルク補正が必要と判定された場合に進むステップS6およびステップS7では、各総合駆動トルク誤差量ΔLTtotal,ΔRTtotalが、制御限界値の範囲内であるか否かを判定する。すなわち、制御限界値としては、その上限値である制御限界トルク上限値Tmaxと、その下限値である制御限界トルク下限値Tminと、が設定されている。 On the other hand, in step S6 and step S7 that proceed when it is determined in step S5 that drive torque correction is necessary, it is determined whether or not the total drive torque error amounts ΔLTtotal and ΔRTtotal are within the control limit value range. To do. That is, as the control limit value, a control limit torque upper limit value Tmax that is the upper limit value and a control limit torque lower limit value Tmin that is the lower limit value are set.
 そして、ステップS6では、各総合駆動トルク誤差量ΔLTtotal,ΔRTtotalが、制御限界トルク上限値Tmax未満であるか否か判定する。そして、各総合駆動トルク誤差量ΔLTtotal,ΔRTtotalが、制御限界トルク上限値Tmax未満でステップS7に進み、制御限界トルク上限値Tmax以上でステップS11に進む。なお、制御限界トルク上限値Tmaxは、あらかじめ設定された電動モータ3のモータ定格トルクを用いることができる。あるいは、このモータ定格トルクに、その時点のバッテリ充電量、モータ温度、インバータ温度などを加味して、その時点で、電動モータ3の出力可能な最大出力を演算して用いることもできる。 In step S6, it is determined whether or not the total drive torque error amounts ΔLTtotal and ΔRTtotal are less than the control limit torque upper limit value Tmax. Then, when the total drive torque error amounts ΔLTtotal and ΔRTtotal are less than the control limit torque upper limit value Tmax, the process proceeds to step S7, and when the total drive torque error amounts ΔLTtotal, ΔRTtotal are equal to or greater than the control limit torque upper limit value Tmax, the process proceeds to step S11. As the control limit torque upper limit value Tmax, a preset motor rated torque of the electric motor 3 can be used. Alternatively, the maximum output power that can be output from the electric motor 3 can be calculated and used at this time by adding the battery charge amount, motor temperature, inverter temperature, and the like to the motor rated torque.
 一方、ステップS7では、各総合駆動トルク誤差量ΔLTtotal,ΔRTtotalが制御限界トルク下限値Tminよりも大きいか判定する。そして、制御限界トルク下限値Tminよりも大きい場合はステップS8に進み、制御限界トルク下限値Tmin以下の場合はステップS12に進む。この制御限界トルク下限値Tminは、電動モータ3の制御可能な最小出力値である。 On the other hand, in step S7, it is determined whether each total drive torque error amount ΔLTtotal, ΔRTtotal is larger than the control limit torque lower limit value Tmin. If it is larger than the control limit torque lower limit value Tmin, the process proceeds to step S8, and if it is less than the control limit torque lower limit value Tmin, the process proceeds to step S12. The control limit torque lower limit value Tmin is the minimum controllable output value of the electric motor 3.
 各総合駆動トルク誤差量ΔLTtotal,ΔRTtotalが、制御限界値の範囲内、すなわち、制御限界トルク下限値Tminと制御限界トルク上限値Tmaxとの範囲内の場合には、ステップS8に進む。このステップS8では、左後輪駆動トルク補正量ΔLTを左後輪総合駆動トルク誤差量ΔLTtotalに設定し、右後輪駆動トルク補正量ΔRTを右後輪総合駆動トルク誤差量ΔRTtotalに設定する。 If the total drive torque error amounts ΔLTtotal, ΔRTtotal are within the control limit value range, that is, within the range between the control limit torque lower limit value Tmin and the control limit torque upper limit value Tmax, the process proceeds to step S8. In step S8, the left rear wheel drive torque correction amount ΔLT is set to the left rear wheel total drive torque error amount ΔLTtotal, and the right rear wheel drive torque correction amount ΔRT is set to the right rear wheel total drive torque error amount ΔRTtotal.
 さらに、ステップS8に続くステップS9では、ステップS8にて設定された左後輪駆動トルク補正量ΔLT、右後輪駆動トルク補正量ΔRTに、それぞれ、初期バラツキ補正量α、βを加算した値を各駆動トルク補正量ΔLT,ΔRTとする。そして、こうして最終的に得られた各駆動トルク補正量ΔLT,ΔRTに応じてトルク指令電流マップの補正を行う。
  すなわち、各駆動ユニットWDは、それぞれ、製造時の部品バラツキや組付バラツキなどによる初期バラツキを有している。したがって、駆動ユニットWDの完成時におけるトルク指令値tTmに対する実駆動トルクの誤差(バラツキ)を、それぞれ測定し、これを初期バラツキ補正量α、βとしてあらかじめ設定(記憶)している。ステップS9では、左後輪駆動トルク補正量ΔLT、右後輪駆動トルク補正量ΔRTに、この初期バラツキ補正量α、βを加算する。
Further, in step S9 following step S8, values obtained by adding initial variation correction amounts α and β to the left rear wheel drive torque correction amount ΔLT and right rear wheel drive torque correction amount ΔRT set in step S8, respectively. The drive torque correction amounts are ΔLT and ΔRT. Then, the torque command current map is corrected according to the drive torque correction amounts ΔLT and ΔRT finally obtained in this way.
That is, each drive unit WD has initial variations due to component variations and assembly variations at the time of manufacture. Therefore, the error (variation) of the actual drive torque with respect to the torque command value tTm at the completion of the drive unit WD is measured and set (stored) in advance as initial variation correction amounts α and β. In step S9, the initial variation correction amounts α and β are added to the left rear wheel drive torque correction amount ΔLT and the right rear wheel drive torque correction amount ΔRT.
 次に、これら各駆動トルク補正量ΔLT,ΔRTに基づくトルク指令電流マップの補正について説明する。
  図4,図5,図6において、下側に示しているのが、トルク指令値tTmに対する電流値Aの関係を示すトルク指令電流マップである。
  ここで、図4に示す潤滑油温度Toを駆動トルク変化因子とした場合の各駆動トルク補正量ΔLT,ΔRTに基づくトルク指令電流マップの補正を例に挙げて説明する。
Next, correction of the torque command current map based on these drive torque correction amounts ΔLT and ΔRT will be described.
4, 5, and 6, the lower side is a torque command current map showing the relationship of the current value A to the torque command value tTm.
Here, correction of the torque command current map based on the respective drive torque correction amounts ΔLT and ΔRT when the lubricating oil temperature To shown in FIG. 4 is used as a drive torque change factor will be described as an example.
 すなわち、図4の左後輪油温-駆動力誤差マップに示すように、左後輪1RLにおいて、潤滑油温度to1に基づいて駆動トルク誤差量ΔLTtがプラス側に生じている場合、左後輪指令電流マップにおいて矢印に示す値が左後輪駆動トルク補正量ΔLTとなる。この場合、図4の下側に示すように、トルク指令値tTmに対応する電流値Aを下げるように補正する。つまり、図4の下側に示すトルク指令値tTmと電流値Aとの関係を示すトルク指令電流マップを、その時点で用いている点線により示す電流値特性から、左後輪駆動トルク補正量ΔLTだけ同図の実線に示すようにシフトさせる。これにより、潤滑油温度To1における駆動トルク誤差量ΔLTtを軽減できる。 That is, as shown in the left rear wheel oil temperature-driving force error map of FIG. 4, when the driving torque error amount ΔLTt is generated on the plus side based on the lubricating oil temperature to1 in the left rear wheel 1RL, the left rear wheel The value indicated by the arrow in the command current map is the left rear wheel drive torque correction amount ΔLT. In this case, as shown on the lower side of FIG. 4, the current value A corresponding to the torque command value tTm is corrected to be lowered. That is, the torque command current map showing the relationship between the torque command value tTm and the current value A shown on the lower side of FIG. 4 is obtained from the current value characteristic indicated by the dotted line used at that time, and the left rear wheel drive torque correction amount ΔLT. Only shift as shown by the solid line in the figure. As a result, the driving torque error amount ΔLTt at the lubricating oil temperature To1 can be reduced.
 図4の右後輪油温-駆動トルク誤差マップに示す右後輪1RRにおいても、同様に、潤滑油温度to2では、右後輪駆動トルク補正量ΔRTがプラス側に生じている。この場合、図4の下側に示す指令電流マップを、その時点で用いている点線により示す電流値特性から、同図の実線に示す電流値特性に、右後輪駆動トルク補正量ΔRTだけマイナス側にシフトさせる。
  なお、本実施の形態1では、このような電流値Aの補正を、上記の駆動トルク誤差量ΔLTt、ΔRTtに代えて、各総合駆動トルク誤差量ΔLTtotal,ΔRTtotalに基づいて行なう。
  また、本実施の形態1では、左右の駆動ユニットWDに対して、独立してトルク指令値tTmの制御を実行しているため、その補正も、図4の下側の左右各後輪指令電流マップに示すように、それぞれ、独立して行なう。
Similarly, in the right rear wheel 1RR shown in the right rear wheel oil temperature-driving torque error map in FIG. 4, the right rear wheel driving torque correction amount ΔRT is generated on the plus side at the lubricating oil temperature to2. In this case, the command current map shown on the lower side of FIG. 4 is minus the right rear wheel drive torque correction amount ΔRT from the current value characteristic shown by the dotted line used at that time to the current value characteristic shown by the solid line in FIG. Shift to the side.
In the first embodiment, the correction of the current value A is performed based on the total driving torque error amounts ΔLTtotal and ΔRTtotal instead of the driving torque error amounts ΔLTt and ΔRTt.
Further, in the first embodiment, since the control of the torque command value tTm is executed independently for the left and right drive units WD, the correction is also performed on the left and right rear wheel command currents on the lower side of FIG. As shown in the map, each is performed independently.
 次に、ステップS6,S7において、左右後輪1RL,1RRの総合駆動トルク誤差量ΔLTtotal、ΔRTtotalが、制御限界値範囲外である場合の補正について説明する。
  ステップS6において、左右後輪1RL,1RRの総合駆動トルク誤差量ΔLTtotal、ΔRTtotalが、制御限界トルク上限値Tmaxよりも大きい場合は、ステップS11に進む。このステップS11では、各駆動トルク補正量ΔLT,ΔRTを制御限界トルク上限値Tmaxとしつつ、補正後の左右の駆動トルク誤差量ΔLTt、ΔRTtが同一になるように補正を行う。
Next, correction when the total drive torque error amounts ΔLTtotal and ΔRTtotal of the left and right rear wheels 1RL and 1RR are outside the control limit value range in steps S6 and S7 will be described.
In step S6, when the total drive torque error amounts ΔLTtotal and ΔRTtotal of the left and right rear wheels 1RL, 1RR are larger than the control limit torque upper limit value Tmax, the process proceeds to step S11. In step S11, correction is performed so that the corrected left and right drive torque error amounts ΔLTt, ΔRTt are the same while the drive torque correction amounts ΔLT, ΔRT are set to the control limit torque upper limit value Tmax.
 具体例について、左後輪総合駆動トルク誤差量ΔLTtotalが、制御限界トルク上限値Tmaxを超えた場合について説明する。
  この場合、左後輪駆動トルク補正量ΔLTは、制御限界トルク上限値Tmaxに補正量を制限する。
  すなわち、ΔLT=Tmaxとする。
  一方、右後輪駆動トルク補正量ΔRTは、補正後の左右の駆動トルク誤差量ΔLTt、ΔRTtが同一となるように、下記式(2)により求める。
ΔRT=ΔRTtotal-(ΔLTtotal-Tmax) ・・・(2)
  すなわち、左後輪1RLについては、左後輪駆動トルク補正量ΔLT(=制御限界トルク上限値Tmax)にて駆動トルク補正を行なっても、(ΔLTtotal-Tmax)の駆動トルク誤差量ΔLTtが残る。よって、右後輪1RRについても、上記Tmaxに制限した補正後に、これと同一の駆動トルク誤差量ΔRTtが残るように、右後輪駆動トルク補正量ΔRTを設定している。
A specific example will be described in which the left rear wheel total drive torque error amount ΔLTtotal exceeds the control limit torque upper limit value Tmax.
In this case, the left rear wheel drive torque correction amount ΔLT limits the correction amount to the control limit torque upper limit value Tmax.
That is, ΔLT = Tmax.
On the other hand, the right rear wheel drive torque correction amount ΔRT is obtained by the following equation (2) so that the corrected left and right drive torque error amounts ΔLTt and ΔRTt are the same.
ΔRT = ΔRTtotal− (ΔLTtotal−Tmax) (2)
That is, for the left rear wheel 1RL, even if drive torque correction is performed with the left rear wheel drive torque correction amount ΔLT (= control limit torque upper limit value Tmax), a drive torque error amount ΔLTt of (ΔLTtotal−Tmax) remains. Therefore, the right rear wheel drive torque correction amount ΔRT is set so that the same drive torque error amount ΔRTt remains after the correction limited to the Tmax for the right rear wheel 1RR.
 なお、上記とは逆に、右後輪総合駆動トルク誤差量ΔRTtotalが、制御限界トルク上限値Tmaxを超えた場合は、ΔRT=Tmaxとする。また、左後輪駆動トルク補正量ΔLTは、補正後の駆動トルク誤差量ΔLTtが、補正後の右後輪1RRの駆動トルク誤差量ΔRTtと同一の値となるように、下記式(3)により設定する。
ΔLT=ΔLTtotal-(ΔRTtotal-Tmax) ・・・(3)
 そして、ステップS7において、左右後輪総合駆動トルク誤差量ΔLTtotal、ΔRTtotalが、制御限界トルク下限値Tminよりも小さい場合は、ステップS12に進む。このステップS12では、左右後輪駆動トルク補正量ΔLT,ΔRTを制御限界値の範囲内としつつ、左右の駆動トルク誤差量が同一になるように補正する。
Contrary to the above, when the right rear wheel total drive torque error amount ΔRTtotal exceeds the control limit torque upper limit value Tmax, ΔRT = Tmax is set. Further, the left rear wheel drive torque correction amount ΔLT is expressed by the following equation (3) so that the corrected drive torque error amount ΔLTt becomes the same value as the corrected drive torque error amount ΔRTt of the right rear wheel 1RR. Set.
ΔLT = ΔLTtotal− (ΔRTtotal−Tmax) (3)
In step S7, if the left and right rear wheel total drive torque error amounts ΔLTtotal and ΔRTtotal are smaller than the control limit torque lower limit value Tmin, the process proceeds to step S12. In this step S12, the left and right rear wheel drive torque correction amounts ΔLT, ΔRT are within the control limit value range, and the left and right drive torque error amounts are corrected to be the same.
 具体例を、まず、左後輪総合駆動トルク誤差量ΔLTtotalが、制御限界トルク下限値Tminを下回った場合について説明する。
  この場合、左後輪駆動トルク補正量ΔLTは、制御限界トルク下限値Tminに補正量を制限する。
  すなわち、ΔLT=Tminとする。
  一方、右後輪駆動トルク補正量ΔRTは、補正後の左右の駆動トルク誤差量ΔLTt、ΔRTtが同一となるように、下記式(4)により求める。
ΔRT=ΔRTtotal+(Tmin-ΔLTtotal) ・・・(4)
  すなわち、左後輪1RLについては、左後輪駆動トルク補正量ΔLT=制御限界トルク下限値Tminに制限して駆動トルク補正を行なった場合に、(Tmin-ΔLTtotal)の駆動トルク誤差量ΔLTtがマイナス側に生じる。よって、右後輪1RRについても、上記Tminに制限した補正後に、この駆動トルク誤差量ΔLTtと同一となるように、右後輪駆動トルク補正量ΔRTを上記式(4)により演算する。
A specific example will be described first when the left rear wheel total drive torque error amount ΔLTtotal is less than the control limit torque lower limit value Tmin.
In this case, the left rear wheel drive torque correction amount ΔLT limits the correction amount to the control limit torque lower limit value Tmin.
That is, ΔLT = Tmin.
On the other hand, the right rear wheel drive torque correction amount ΔRT is obtained by the following equation (4) so that the corrected left and right drive torque error amounts ΔLTt and ΔRTt are the same.
ΔRT = ΔRTtotal + (Tmin−ΔLTtotal) (4)
That is, for the left rear wheel 1RL, when the drive torque correction is performed by limiting the left rear wheel drive torque correction amount ΔLT = the control limit torque lower limit value Tmin, the drive torque error amount ΔLTt of (Tmin−ΔLTtotal) is negative. To the side. Therefore, the right rear wheel drive torque correction amount ΔRT is calculated by the above equation (4) so that the right rear wheel 1RR also becomes the same as the drive torque error amount ΔLTt after the correction limited to Tmin.
 なお、右後輪総合駆動トルク誤差量ΔRTtotalが、制御限界トルク下限値Tminを下回った場合は、ΔRT=Tminとし、左後輪駆動トルク補正量ΔLTを、右後輪1RRと同一の駆動トルク誤差量となるように、下記式(5)により設定する。
ΔLT=ΔLTtotal+(Tmin-ΔRTtotal) ・・・(5)
  また、ステップS11,S12にて、各駆動トルク補正量ΔLT、ΔRTを設定した場合も、ステップS9に進んで、各駆動トルク補正量ΔLT、ΔRTに基づいて、指令電流マップの補正を行う。
If the right rear wheel total drive torque error amount ΔRTtotal falls below the control limit torque lower limit value Tmin, ΔRT = Tmin, and the left rear wheel drive torque correction amount ΔLT is the same drive torque error as that of the right rear wheel 1RR. It is set by the following formula (5) so as to be an amount.
ΔLT = ΔLTtotal + (Tmin−ΔRTtotal) (5)
Further, when the drive torque correction amounts ΔLT and ΔRT are set in steps S11 and S12, the process proceeds to step S9, and the command current map is corrected based on the drive torque correction amounts ΔLT and ΔRT.
 (作用)
  次に、実施の形態1の作用を説明する。
  本実施の形態1の駆動トルク制御装置にあっては、トルク指令値tTmに対して、実駆動トルクが乖離する駆動トルク変化因子としての、駆動ユニットWDの潤滑油温度To、モータ温度Tmo、ポンプ潤滑油量Ovを検出する。
  そして、潤滑油温度To、モータ温度Tmo、ポンプ潤滑油量Ovに基づき、トルク指令値tTmに対し、各駆動トルク変化因子を要因として実駆動トルクとの間に生じる各駆動トルク誤差量ΔLTt、ΔRTt、ΔLTm、ΔRTm、ΔLTp、ΔRTpを推定する。なお、以上の処理は、ステップS1L~S3L、ステップS1R~S4Rの処理に基づく。
(Function)
Next, the operation of the first embodiment will be described.
In the drive torque control apparatus according to the first embodiment, the lubricating oil temperature To, the motor temperature Tmo, and the pump of the drive unit WD as drive torque change factors that cause the actual drive torque to deviate from the torque command value tTm. Lubricating oil amount Ov is detected.
Then, based on the lubricating oil temperature To, the motor temperature Tmo, and the pump lubricating oil amount Ov, the drive torque error amounts ΔLTt, ΔRTt generated between the torque command value tTm and the actual drive torque due to the respective drive torque change factors. , ΔLTm, ΔRTm, ΔLTp, ΔRTp are estimated. The above processing is based on the processing in steps S1L to S3L and steps S1R to S4R.
 さらに各駆動トルク誤差量ΔLTt、ΔRTt、ΔLTm、ΔRTm、ΔLTp、ΔRTpを左右それぞれ合計し、左後輪総合駆動トルク誤差量ΔLTtotalおよび右後輪総合駆動トルク誤差量ΔRTtotalを演算する。これにより、複数の駆動トルク変化因子による影響を合計および相殺した、トルク指令値tTmに対する総合的な駆動トルク誤差量を推定する(ステップS4L,S4R)。 Further, each drive torque error amount ΔLTt, ΔRTt, ΔLTm, ΔRTm, ΔLTp, ΔRTp is added to the left and right to calculate a left rear wheel total drive torque error amount ΔLTtotal and a right rear wheel total drive torque error amount ΔRTtotal. As a result, a total driving torque error amount with respect to the torque command value tTm is estimated (steps S4L and S4R) in which the influences of the plurality of driving torque change factors are summed and canceled.
 そして、これら左後輪総合駆動トルク誤差量ΔLTtotalおよび右後輪総合駆動トルク誤差量ΔRTtotalが、必要性判定閾値を超えている場合は、トルク指令値tTmと実駆動トルクとの間に補正が必要な駆動トルク誤差量が生じていると判定する(ステップS5)。なお、左後輪総合駆動トルク誤差量ΔLTtotalおよび右後輪総合駆動トルク誤差量ΔRTtotalが必要性判定閾値を超えていない場合は、両駆動トルク補正量ΔLT、ΔRTを0とする(ステップS10)。 When these left rear wheel total drive torque error amount ΔLTtotal and right rear wheel total drive torque error amount ΔRTtotal exceed the necessity determination threshold value, correction is necessary between the torque command value tTm and the actual drive torque. It is determined that a large amount of drive torque error has occurred (step S5). If the left rear wheel total drive torque error amount ΔLTtotal and the right rear wheel total drive torque error amount ΔRTtotal do not exceed the necessity determination threshold value, both drive torque correction amounts ΔLT and ΔRT are set to 0 (step S10).
 補正が必要と判定した場合は、基本的な補正量に相当する左後輪総合駆動トルク誤差量ΔLTtotalおよび右後輪総合駆動トルク誤差量ΔRTtotalが、制御限界値の範囲内であるか否か判定する。そして、補正制御量が制御限界値の範囲内であれば、各総合駆動トルク誤差量ΔLTtotal、ΔRTtotalを各駆動トルク補正量ΔLT,ΔRTとして補正を行い、この制御限界値を超えている場合は、各駆動トルク補正量ΔLT,ΔRTを制御限界値とする補正を行う。 If it is determined that correction is necessary, it is determined whether the left rear wheel total drive torque error amount ΔLTtotal and the right rear wheel total drive torque error amount ΔRTtotal corresponding to the basic correction amount are within the control limit value range. To do. If the corrected control amount is within the range of the control limit value, the total drive torque error amounts ΔLTtotal, ΔRTtotal are corrected as the drive torque correction amounts ΔLT, ΔRT, and when the control limit value is exceeded, Correction is performed with the drive torque correction amounts ΔLT and ΔRT as control limit values.
 この各駆動トルク補正量ΔLT,ΔRTを制御限界値に制限する補正について、まず、上限で制限する場合を説明する。
  この場合、各駆動トルク補正量ΔLT、ΔRTの一方を、制御限界トルク上限値Tmaxに制限する。そして、このように補正量を制御限界トルク上限値Tmaxに制限することで、トルク指令値tTmとの間に残る駆動トルク誤差量が、もう一方の車輪側にも生じるようにし、左右後輪1RL,1RRにおける駆動トルク誤差量が等しくなるようにする。
Regarding the correction for limiting each of the drive torque correction amounts ΔLT and ΔRT to the control limit value, a case where the upper limit is used will be described first.
In this case, one of the drive torque correction amounts ΔLT and ΔRT is limited to the control limit torque upper limit value Tmax. By limiting the correction amount to the control limit torque upper limit value Tmax in this way, a drive torque error amount remaining between the torque command value tTm is also generated on the other wheel side, and the left and right rear wheels 1RL. , 1RR so that the drive torque error amount becomes equal.
 具体的には、例えば、左後輪1RLにおいて、左後輪駆動トルク補正量ΔLTを、制御限界トルク上限値Tmaxに制限した場合、補正後には、左後輪総合駆動トルク誤差量ΔLTtotalから制御限界トルク上限値Tmaxを差し引いた量の駆動トルク誤差量が残る。
  よって、右後輪駆動トルク補正量ΔRTは、右後輪総合駆動トルク誤差量ΔRTtotalとするのではなく、上記残った駆動トルク誤差量(ΔLTtotal-Tmax)を差し引いた値とし、補正後も、左後輪1RLと同様の駆動トルク誤差量が生じるようにする。
Specifically, for example, in the left rear wheel 1RL, when the left rear wheel drive torque correction amount ΔLT is limited to the control limit torque upper limit value Tmax, after the correction, the control limit is determined from the left rear wheel total drive torque error amount ΔLTtotal. A drive torque error amount that is the amount obtained by subtracting the torque upper limit value Tmax remains.
Therefore, the right rear wheel drive torque correction amount ΔRT is not the right rear wheel total drive torque error amount ΔRTtotal, but is a value obtained by subtracting the remaining drive torque error amount (ΔLTtotal−Tmax). A drive torque error amount similar to that of the rear wheel 1RL is generated.
 また、各総合駆動トルク誤差量ΔLTtotal、ΔRTtotalの一方が、制御限界トルク下限値Tminに満たない場合、補正量を制御限界下限値まで引き上げて補正を行う。この場合、補正量の引き上げにより、トルク指令値tTmと実駆動トルクとに駆動トルク誤差量が残る。そこで、もう一方の駆動輪にも、同様の駆動トルク誤差量が生じるように補正する。 Further, when one of the total driving torque error amounts ΔLTtotal and ΔRTtotal is less than the control limit torque lower limit value Tmin, the correction amount is increased to the control limit lower limit value to perform correction. In this case, the driving torque error amount remains in the torque command value tTm and the actual driving torque by raising the correction amount. Therefore, the other drive wheel is corrected so that the same drive torque error amount occurs.
 具体的には、例えば、左後輪1RLにおいて、左後輪駆動トルク補正量ΔLTを、制御限界トルク下限値Tminに制限した場合、補正後には、左後輪総合駆動トルク誤差量ΔLTtotalから制御限界トルク下限値Tminを差し引いた量の駆動トルク誤差量が逆に生じる。
  よって、右後輪駆動トルク補正量ΔRTは、右後輪総合駆動トルク誤差量ΔRTtotalとするのではなく、上記残った駆動トルク誤差量(ΔLTtotal-Tmin)を加算した値とし、補正後も、左後輪1RLと同様の駆動トルク誤差量が生じるようにする。
  なお、各駆動トルク補正量ΔLT、ΔRTには、最後に、製造時のバラツキにより生じた、初期バラツキ補正量α、βを加算する。
Specifically, for example, in the left rear wheel 1RL, when the left rear wheel drive torque correction amount ΔLT is limited to the control limit torque lower limit value Tmin, after the correction, the control limit is determined from the left rear wheel total drive torque error amount ΔLTtotal. A drive torque error amount that is an amount obtained by subtracting the torque lower limit value Tmin is generated in reverse.
Therefore, the right rear wheel drive torque correction amount ΔRT is not the right rear wheel total drive torque error amount ΔRTtotal, but is a value obtained by adding the remaining drive torque error amount (ΔLTtotal−Tmin). A drive torque error amount similar to that of the rear wheel 1RL is generated.
Note that initial variation correction amounts α and β generated due to variations at the time of manufacture are finally added to the drive torque correction amounts ΔLT and ΔRT.
 以上のように、左右後輪1RL,1RRにおいて、トルク指令値tTmと実駆動トルク(推定値)との間に誤差が生じないか、左右で同量の誤差が生じるように補正を行うことにより、左右後輪1RL,1RRにおいて、意図しない駆動トルク差が生じないようにできる。
  すなわち、直進走行時には、左右後輪1RL,1RRに、実駆動トルク差が生じないようにして、運転者の意図しない車両の片流れなどの車両挙動不具合を防止することができる。
As described above, in the left and right rear wheels 1RL and 1RR, by correcting so that no error occurs between the torque command value tTm and the actual drive torque (estimated value), or the same amount of error occurs on the left and right. In the left and right rear wheels 1RL, 1RR, an unintended drive torque difference can be prevented from occurring.
That is, during straight running, it is possible to prevent a vehicle behavior problem such as a single flow of the vehicle that is not intended by the driver by preventing a difference in actual driving torque between the left and right rear wheels 1RL and 1RR.
 また、車両姿勢制御などにより、左右後輪1RL,1RRに異なるトルク指令値tTmを与えている場合も、左右で独立して、トルク指令値tTmと実駆動トルクとが一致するように補正するか、この両者の誤差が、左右で均等になるように補正する。このように、左右後輪1RL,1RRに異なるトルク指令値tTmを与えている場合でも、トルク指令値tTmと実駆動トルクとが乖離しないように補正を行うことが可能となる。すなわち、左側の駆動ユニットWDの実駆動トルクと右側の駆動ユニットWDの実駆動トルクとの左右トルク差が、左右両駆動ユニットWD,WDにおいて目標駆動トルクと実駆動トルクとの誤差が無いときの左右トルク差に近付くように補正を行うことができる。 Also, even when different torque command values tTm are given to the left and right rear wheels 1RL and 1RR due to vehicle attitude control, etc., whether the torque command value tTm and the actual driving torque are corrected independently in the left and right directions. The error between the two is corrected so as to be equal on the left and right. Thus, even when different torque command values tTm are given to the left and right rear wheels 1RL, 1RR, it is possible to perform correction so that the torque command value tTm does not deviate from the actual drive torque. That is, when the left-right torque difference between the actual drive torque of the left drive unit WD and the actual drive torque of the right drive unit WD is not an error between the target drive torque and the actual drive torque in the left and right drive units WD, WD. Correction can be performed so as to approach the left-right torque difference.
 (実施の形態1の効果)
  実施の形態1のトルク検出装置にあっては、下記に列挙する効果を得ることができる。
  1)実施の形態1の駆動トルク制御装置は、
左右で対を成して車両に搭載され、電動モータ3により左右後輪1RL,1RRを駆動させる左側駆動ユニットWDおよび右側駆動ユニットWDと、
前記電動モータ3の駆動トルクの少なくとも左右一方を独立して制御するトルク制御手段としての車両コントローラ11と、
前記左側駆動ユニットWDでの目標駆動トルクと実駆動トルクとの誤差を生じさせる左側駆動トルク変化因子としての潤滑油温度To、モータ温度Tmo、ポンプ潤滑油量Ovを検出する第1の検出手段としての油温センサ18、モータ温度センサ19およびポンプPからの駆動信号と、
前記右側駆動ユニットWDでの目標駆動トルクと実駆動トルクとの誤差を生じさせる右側駆動トルク変化因子としての潤滑油温度To、モータ温度Tmo、ポンプ潤滑油量Ovを検出する第2の検出手段としての油温センサ18、モータ温度センサ19およびポンプPからの駆動信号と、
前記第1の検出手段および前記第2の検出手段の各検出値To,Tmo,Ovに基づいて、前記左側駆動ユニットWDの実駆動トルクと前記右側駆動ユニットWDの実駆動トルクとの左右トルク差が、前記左右両駆動ユニットWD,WDにおいて前記目標駆動トルクと前記実駆動トルクとの誤差が無いときの左右トルク差に近付くように、両駆動ユニットWD,WDの少なくとも一方の電動モータ3に出力するトルク指令値tTmを補正する補正手段として図3Bのフローチャートの処理を行なう車両コントローラ11の部分と、
を備えていることを特徴とする。
  本実施の形態1では、駆動ユニットWDの状態変化や環境の変化のような目標駆動トルクと実駆動トルクとの誤差を生じさせる駆動トルク変化因子に基づいて、前記左側駆動ユニットWDの実駆動トルクと前記右側駆動ユニットWDの実駆動トルクとの左右トルク差が、前記左右両駆動ユニットWD,WDにおいて前記目標駆動トルクと前記実駆動トルクとの誤差が無いときの左右トルク差に近付くように、トルク指令値tTmを補正する。したがって、車両姿勢制御時などのように、意図的に左右の駆動輪に異なるトルク指令値tTmを与えている場合でも、トルク指令値tTmに対する実駆動トルクの駆動トルク誤差量を減少させることができる。
  よって、直進走行以外でも、トルク指令値tTmに対する実駆動トルクの駆動トルク誤差量を抑制する補正を実行可能である。
  また、直進走行時には、左右の目標駆動トルクが同一であることから、上記補正により左右駆動輪における駆動トルク誤差量の差を軽減することができる。これにより、運転者の意図しない車両の片流れなどの車両挙動不具合を防止することができる。
(Effect of Embodiment 1)
In the torque detection device of the first embodiment, the effects listed below can be obtained.
1) The drive torque control apparatus of Embodiment 1 is
A left-side drive unit WD and a right-side drive unit WD that are mounted on the vehicle in a pair on the left and right sides and that drive the left and right rear wheels 1RL and 1RR by the electric motor 3,
A vehicle controller 11 as torque control means for independently controlling at least one of left and right drive torques of the electric motor 3;
As a first detection means for detecting the lubricating oil temperature To, the motor temperature Tmo, and the pump lubricating oil amount Ov as left driving torque change factors that cause an error between the target driving torque and the actual driving torque in the left driving unit WD. Oil temperature sensor 18, motor temperature sensor 19 and drive signal from pump P,
As second detection means for detecting the lubricating oil temperature To, the motor temperature Tmo, and the pump lubricating oil amount Ov as the right driving torque change factors causing an error between the target driving torque and the actual driving torque in the right driving unit WD. Oil temperature sensor 18, motor temperature sensor 19 and drive signal from pump P,
The left-right torque difference between the actual drive torque of the left drive unit WD and the actual drive torque of the right drive unit WD based on the detection values To, Tmo, Ov of the first detection means and the second detection means Is output to at least one of the electric motors 3 of both drive units WD and WD so as to approach the left-right torque difference when there is no error between the target drive torque and the actual drive torque in the left and right drive units WD and WD. A portion of the vehicle controller 11 that performs the processing of the flowchart of FIG. 3B as correction means for correcting the torque command value tTm to be
It is characterized by having.
In the first embodiment, the actual drive torque of the left drive unit WD is based on a drive torque change factor that causes an error between the target drive torque and the actual drive torque, such as a change in the state of the drive unit WD or a change in the environment. So that the left and right torque difference between the right drive unit WD and the actual drive torque of the right drive unit WD approaches the left and right torque difference when there is no error between the target drive torque and the actual drive torque in the left and right drive units WD and WD. The torque command value tTm is corrected. Therefore, even when different torque command values tTm are intentionally given to the left and right drive wheels, such as during vehicle attitude control, the drive torque error amount of the actual drive torque with respect to the torque command value tTm can be reduced. .
Therefore, it is possible to execute correction that suppresses the drive torque error amount of the actual drive torque with respect to the torque command value tTm even in cases other than straight traveling.
Further, since the left and right target drive torques are the same during straight running, the above correction can reduce the difference in the amount of drive torque error between the left and right drive wheels. As a result, it is possible to prevent a vehicle behavior failure such as a single flow of the vehicle not intended by the driver.
 2)実施の形態1の駆動トルク制御装置は、
駆動トルク誤差量推定手段としてステップS1L~S4L、S1R~S4Rの処理を行なう部分は、駆動トルク変化因子に対する駆動トルク誤差量の特性である駆動トルク誤差量特性が図4,図5,図6に示すマップとしてあらかじめ設定されており、この駆動トルク誤差量特性と検出値とに基づいて、駆動トルク誤差量の推定を行なうことを特徴とする。
  このように、駆動トルク誤差量の推定は、あらかじめ設定された駆動トルク変化因子に対する駆動トルク誤差量の特性と、駆動トルク変化因子の検出値とに基づいて行なうため、駆動トルク誤差量の推定演算の簡略化を図ることが可能である。これにより、演算負荷を抑えて、車載性を向上可能である。
2) The drive torque control device of the first embodiment is
In the portions where the processes of steps S1L to S4L and S1R to S4R are performed as the drive torque error amount estimation means, the drive torque error amount characteristic which is the characteristic of the drive torque error amount with respect to the drive torque change factor is shown in FIGS. The map is set in advance as a map, and the drive torque error amount is estimated based on the drive torque error amount characteristic and the detected value.
Thus, the estimation of the drive torque error amount is performed because the estimation of the drive torque error amount is performed based on the characteristics of the drive torque error amount with respect to the preset drive torque change factor and the detected value of the drive torque change factor. It is possible to simplify. As a result, it is possible to improve the in-vehicle performance while suppressing the calculation load.
 3)実施の形態1の駆動トルク制御装置は、
補正手段としてステップS5~S20の処理を行なう部分は、駆動トルク誤差量があらかじめ設定された必要性判定閾値よりも大きい場合に(ステップS5)、補正を実行することを特徴とする。
  このように、駆動トルク誤差量が必要性判定閾値よりも小さい場合には、補正を実行しないようにした。このため、例えば、路面状態により、通常の直進時にも生じ得るような微小な駆動トルク誤差量に対する補正を実行しないようにでき、その分、制御負荷を軽減することができる。
3) The drive torque control apparatus of the first embodiment is
The portion that performs the processing of steps S5 to S20 as the correcting means is characterized in that correction is executed when the amount of driving torque error is larger than a preset necessity determination threshold value (step S5).
As described above, when the drive torque error amount is smaller than the necessity determination threshold value, the correction is not executed. For this reason, for example, it is possible not to execute correction for a minute driving torque error amount that may occur even during normal straight traveling depending on the road surface condition, and the control load can be reduced accordingly.
 4)実施の形態1の駆動トルク制御装置は、
検出手段は、複数の駆動トルク変化因子(潤滑油温度To、モータ温度Tmo、ポンプ潤滑油量Ov)検出し、
駆動トルク誤差量推定手段としてステップS1L~S4L、S1R~S4Rの処理を行なう部分は、駆動トルク変化因子ごとに駆動トルク誤差量を推定し、各駆動トルク誤差量を加算して総合駆動トルク誤差量ΔLTtotal,ΔRTtotalを求め、
補正手段としてステップS5~S20の処理を行なう部分は、総合駆動トルク誤差量ΔLTtotal,ΔRTtotalに基づいて前記補正を実行することを特徴とする。
  このように、複数の駆動トルク変化因子に基づいて、トルク指令値tTmと実駆動トルクとの駆動トルク誤差量を推定するため、1つの駆動トルク変化因子に基づいて推定を行なうものと比較して、推定精度を向上させることができる。よって、駆動トルクの補正精度も向上させることができる。
  加えて、左右の駆動ユニットWD,WDの潤滑油温度Toをそれぞれ検出することにより、潤滑油温度Toの違いによる駆動部分の駆動抵抗に基づく駆動トルク変化を、左右の駆動ユニットWD,WDのそれぞれで推定することができる。
  同様に、左右の駆動ユニットWD,WDのモータ温度Tmoをそれぞれ検出することで、モータ温度Tmoの違いによる駆動トルク変化を、駆動ユニットWD,WDのそれぞれで推定することができる。
  同様に、左右の駆動ユニットWD,WDのポンプ潤滑油量Ovをそれぞれ検出することで、ポンプ潤滑油量Ovの違いによる潤滑性能の違いによる駆動トルク変化を、駆動ユニットWD,WDのそれぞれで推定することができる。
4) The drive torque control apparatus of Embodiment 1 is
The detecting means detects a plurality of driving torque change factors (lubricating oil temperature To, motor temperature Tmo, pump lubricating oil amount Ov),
The part that performs the processing of steps S1L to S4L and S1R to S4R as the drive torque error amount estimation means estimates the drive torque error amount for each drive torque change factor, adds the drive torque error amounts, and adds up the total drive torque error amount. ΔLTtotal, ΔRTtotal are obtained,
The portion that performs the processing of steps S5 to S20 as the correction means is characterized in that the correction is executed based on the total drive torque error amounts ΔLTtotal and ΔRTtotal.
Thus, in order to estimate the drive torque error amount between the torque command value tTm and the actual drive torque based on a plurality of drive torque change factors, the estimation is based on one drive torque change factor. The estimation accuracy can be improved. Accordingly, the correction accuracy of the driving torque can be improved.
In addition, by detecting the lubricating oil temperature To of the left and right drive units WD and WD, respectively, the drive torque change based on the drive resistance of the drive portion due to the difference in the lubricating oil temperature To can be detected for each of the left and right drive units WD and WD. Can be estimated.
Similarly, by detecting the motor temperature Tmo of the left and right drive units WD and WD, respectively, the drive torque change due to the difference of the motor temperature Tmo can be estimated by each of the drive units WD and WD.
Similarly, by detecting the pump lubricant oil amount Ov of the left and right drive units WD and WD, respectively, the drive torque change due to the difference in the lubrication performance due to the difference in the pump lubricant oil amount Ov is estimated in each of the drive units WD and WD. can do.
 5)実施の形態1の駆動トルク制御装置は、
補正手段としてステップS5~S20の処理を行なう部分は、左右の駆動ユニットWDの一方で、駆動トルク誤差量に基づくトルク指令値tTmの補正量に相当する総合駆動トルク誤差量ΔLTtotal,ΔRTtotalが、あらかじめ設定された制御限界値を超えた場合は、これら各駆動トルク補正量ΔLT,ΔRTの一方を制御限界値(制御限界トルク上限値Tmax、制御限界トルク下限値Tmin)の範囲内に制限するとともに、この制限により残される駆動トルク誤差量[(ΔLTtotalまたはΔRTtotal)-Tmax]、[Tmin-(ΔLTtotalまたはΔRTtotal)]に基づいて、両駆動ユニットWDにおける駆動トルク誤差量が同量となるよう両駆動ユニットWDに対するトルク指令値tTmの補正を行なうことを特徴とする。
  トルク指令値tTmと実駆動トルクとの駆動トルク誤差量が制御限界を超えた場合には、各駆動トルク補正量ΔLT,ΔRTを制御限界の範囲内に制限することにより、制御限界値を超える制御が実行されることによる不具合を抑制できる。
  また、このように補正量を制限することにより、この制限した側の駆動ユニットWDでは、駆動トルク誤差量を十分に抑制できないおそれがある。この場合に、左右の駆動トルク誤差量が同量となるように補正を行うことにより、補正の制限を行なわない一方の駆動ユニットWDの駆動トルク誤差量のみが大幅に軽減されてしまって、左右の駆動トルク誤差量が異なる状態となること抑制することができる。
5) The drive torque control device of Embodiment 1
The part that performs the processing of steps S5 to S20 as the correction means is that the total drive torque error amounts ΔLTtotal and ΔRTtotal corresponding to the correction amount of the torque command value tTm based on the drive torque error amount are preliminarily set on one of the left and right drive units WD. When the set control limit value is exceeded, one of these drive torque correction amounts ΔLT, ΔRT is limited within the range of the control limit value (control limit torque upper limit value Tmax, control limit torque lower limit value Tmin), Based on the drive torque error amount [(ΔLTtotal or ΔRTtotal) −Tmax], [Tmin− (ΔLTtotal or ΔRTtotal)] remaining due to this limitation, both drive units have the same drive torque error amount in both drive units WD. Correct the torque command value tTm for WD. It is characterized in.
When the drive torque error amount between the torque command value tTm and the actual drive torque exceeds the control limit, the control exceeding the control limit value is performed by limiting the drive torque correction amounts ΔLT and ΔRT within the control limit range. It is possible to suppress problems caused by the execution of.
In addition, by limiting the correction amount in this way, the drive unit WD on the limited side may not be able to sufficiently suppress the drive torque error amount. In this case, by performing the correction so that the left and right drive torque error amounts are the same, only the drive torque error amount of one drive unit WD that does not limit the correction is significantly reduced. It is possible to prevent the drive torque error amounts from becoming different.
 6)実施の形態1の駆動トルク制御装置は、
補正手段としてステップS5~S20の処理を行なう部分は、左右の駆動ユニットWD,WDにおけるトルク指令値tTmに対する実駆動トルクの初期バラツキ誤差に相当する初期バラツキ補正量α、βが、あらかじめ入力されており、前記補正時には、初期バラツキ補正量α、βを加算することを特徴とする。
  トルク指令値tTmに対する実駆動トルクの駆動トルク誤差量は、駆動トルク変化因子以外にも、製造バラツキや組付誤差などの製造工程における初期バラツキ誤差によるものも含まれる。
  そこで、この初期バラツキ誤差を検出し、これを加算することにより、初期バラツキを要因とするトルク指令値tTmと実駆動トルクとの駆動トルク誤差量も抑制可能となり、補正制御精度をいっそう向上させることができる。
6) The drive torque control apparatus of Embodiment 1
In the portion that performs the processing of steps S5 to S20 as correction means, initial variation correction amounts α and β corresponding to the initial variation error of the actual drive torque with respect to the torque command value tTm in the left and right drive units WD and WD are input in advance. In the correction, initial variation correction amounts α and β are added.
The driving torque error amount of the actual driving torque with respect to the torque command value tTm includes, in addition to the driving torque change factor, those due to initial variation errors in the manufacturing process such as manufacturing variations and assembly errors.
Therefore, by detecting this initial variation error and adding it, the amount of torque error between the torque command value tTm and the actual driving torque caused by the initial variation can be suppressed, and the correction control accuracy can be further improved. Can do.
 (他の実施の形態)
  次に、他の実施の形態のトルク検出装置について説明する。
  なお、他の実施の形態は、実施の形態1の変形例であるため、実施の形態1と共通する構成には実施の形態1と同じ符号を付して説明を省略し、実施の形態1との相違点のみ説明する。
(Other embodiments)
Next, a torque detection device according to another embodiment will be described.
Since the other embodiment is a modification of the first embodiment, the same reference numerals as those in the first embodiment are assigned to the same components as those in the first embodiment, and the description thereof is omitted. Only the differences will be described.
 (実施の形態2)
  実施の形態2の駆動トルク制御装置は、各駆動トルク補正量ΔLT,ΔRTの設定処理の内容が実施の形態1と異なる。すなわち、実施の形態1では、左右でそれぞれトルク指令値tTmと実駆動トルクとの誤差を無くすように補正を行っていたが、実施の形態2では、左右の駆動トルク誤差量の大きい側のみを、小さい側の駆動トルク誤差量に一致させる補正を行うようにした例である。つまり、左右でトルク指令値tTmと実駆動トルクとの誤差量が生じていても、その駆動トルク誤差量が同一であれば支障は無いとしたものである。
(Embodiment 2)
The drive torque control apparatus according to the second embodiment is different from the first embodiment in the content of the setting process of each drive torque correction amount ΔLT, ΔRT. That is, in the first embodiment, correction is performed so as to eliminate the error between the torque command value tTm and the actual drive torque on the left and right sides, but in the second embodiment, only the side on which the left and right drive torque error amounts are large is corrected. This is an example in which correction is made to match the amount of drive torque error on the smaller side. That is, even if there is an error amount between the torque command value tTm and the actual drive torque on the left and right, there is no problem as long as the drive torque error amount is the same.
 図7は、左右の駆動ユニットWDにおける潤滑油温度Toに基づく駆動トルク誤差量および補正量の算出例を示している。
  すなわち、実施の形態2では、実施の形態1のステップS1L,S1Rと同様に駆動トルク誤差量ΔLTt、ΔRTtを算出したら、両者の差ΔLRt(=ΔLTt-ΔRTt)を算出する。
  そして、この駆動トルク誤差量ΔLTt、ΔRTtの差ΔLRtが、実施の形態1のステップS5に示した必要性判定閾値を超えている場合に、駆動トルク誤差量の絶対値が大きい側の電流特性マップを、差ΔLRtに相当する左後輪駆動トルク補正量ΔLTだけ補正する。なお、図7に示す例とは逆に、右後輪駆動トルク誤差量ΔRTtの絶対値の方が大きい場合は、上記の差ΔLRtを右後輪駆動トルク補正量ΔRTとして、誤差量を減少させる側に補正を行う。
  また、駆動トルク変化因子として、実施の形態1と同様に複数の因子を用いた場合には、上述の差ΔLRtは、両総合駆動トルク誤差量ΔLTtotal,ΔRTtotalの差を用いるようにすればよい。また、両総合駆動トルク誤差量ΔLTtotal,ΔRTtotalには、それぞれ、実施の形態1と同様に、初期バラツキ補正量α、βを加算してもよい。
FIG. 7 shows a calculation example of the drive torque error amount and the correction amount based on the lubricating oil temperature To in the left and right drive units WD.
That is, in the second embodiment, when the drive torque error amounts ΔLTt and ΔRTt are calculated as in steps S1L and S1R of the first embodiment, the difference ΔLRt (= ΔLTt−ΔRTt) between them is calculated.
When the difference ΔLRt between the drive torque error amounts ΔLTt and ΔRTt exceeds the necessity determination threshold shown in step S5 of the first embodiment, the current characteristic map on the side where the absolute value of the drive torque error amount is larger Is corrected by the left rear wheel drive torque correction amount ΔLT corresponding to the difference ΔLRt. In contrast to the example shown in FIG. 7, when the absolute value of the right rear wheel drive torque error amount ΔRTt is larger, the difference ΔLRt is used as the right rear wheel drive torque correction amount ΔRT to reduce the error amount. To the side.
Further, when a plurality of factors are used as the drive torque change factors as in the first embodiment, the difference ΔLRt may be the difference between the total drive torque error amounts ΔLTtotal and ΔRTtotal. Further, as in the first embodiment, initial variation correction amounts α and β may be added to both total drive torque error amounts ΔLTtotal and ΔRTtotal, respectively.
 したがって、実施の形態2にあっても、実施の形態1にて述べた、1)2)3)4)6)に記載した構成に基づいて、同様の効果を得ることができる。 Therefore, even in the second embodiment, the same effect can be obtained based on the configuration described in the first embodiment and described in 1), 2), 3), 4), and 6).
 以上、本発明の駆動トルク制御装置を実施の形態に基づき説明してきたが、具体的な構成については、これらの実施の形態に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
  例えば、実施の形態では、駆動ユニットとして、左右後輪を駆動する電動車両に適用したものを例示した。しかしながら、駆動ユニットにより駆動させる駆動輪およびその輪数は、これに限定されず、左右前輪を駆動するものにも適用するほか、4輪以上の複数輪を駆動するものにも適用できる。
  また、実施の形態では、駆動トルク変化因子として、潤滑油温度、モータ温度、ポンプ潤滑油量を示したが、この因子としてはこれに限定されるものではない。例えば、駆動トルク変化因子として、これらの少なくともいずれか1つを用いてもよいのに加え、これ以外の因子を用いてもよい。これ以外の因子としては、電動モータへ供給される電流の電圧、電流値、あるいはバッテリSOC、ユニット内の潤滑油量などを用いることもできる。
  また、実施の形態では、駆動トルク誤差量推定手段は、駆動トルク変化因子に対する駆動トルク誤差量を、マップに基づいて演算するものを示したが、演算式など他の手段により演算するようにしてもよい。
  また、実施の形態では、駆動トルク誤差の補正に、初期バラツキ誤差量を加算する例を示したが、この初期バラツキ誤差量に基づいて、トルク指令値に対する電流値特性をあらかじめ補正しておいてもよい。
  また、実施の形態では、電動モータの駆動トルクは、左右独立して制御するものを示したが、両モータの目標駆動トルクに対して、一方のみを、独立して目標駆動トルクに対して増減させる制御を行なうようにしてもよい。
  また、実施の形態では、補正手段は、駆動トルク誤差推定量推定手段が推定した駆動トルク誤差量に基づいて、トルク指令値を推定しているが、駆動トルク誤差量を推定せずに、駆動トルク変化因子からトルク指令値を直接補正してもよい。この場合、例えば、図4のような例では、油温度と指令電流マップとの関係を予め求めておき、油温度の検出値から指令電流マップを直接補正することにより、油温度から駆動トルク誤差量を求めずに、駆動トルクを補正することが可能である。また、この場合、実施の形態2のように、両駆動ユニットにおいて、検出値の検出値が、誤差が生じる側に大きい方の駆動ユニットのみの補正を行って、両駆動ユニット間の誤差量を低減させるようにしてもよい。
  実施の形態では、基本目標駆動トルクの指令電流マップを補正する例について説明したが、指令値自体を補正してもよい。例えば、姿勢制御時であれば、基本目標駆動トルクに、姿勢制御用のトルクΔTを加算、減算した値を補正してもよい。
 また、実施の形態では、駆動ユニットから出力される実駆動トルクと、その実駆動トルクを得るためのトルク指令値と、の誤差を補正する例を示したが、モータの出力トルクと、その出力トルクを得るためのトルク指令値と、の誤差を補正するようにしてもよい。
The drive torque control device of the present invention has been described based on the embodiments. However, the specific configuration is not limited to these embodiments, and the invention according to each claim of the claims is described. Design changes and additions are allowed without departing from the gist.
For example, in the embodiment, the drive unit is applied to an electric vehicle that drives the left and right rear wheels. However, the drive wheels driven by the drive unit and the number of wheels are not limited to this, and can be applied not only to driving left and right front wheels but also to driving four or more wheels.
Further, in the embodiment, the lubricating oil temperature, the motor temperature, and the pump lubricating oil amount are shown as the driving torque change factors, but the factors are not limited to these. For example, in addition to using at least one of these as a driving torque change factor, other factors may be used. As other factors, the voltage of the current supplied to the electric motor, the current value, the battery SOC, the amount of lubricating oil in the unit, or the like can be used.
In the embodiment, the driving torque error amount estimating means calculates the driving torque error amount for the driving torque change factor based on the map. However, the driving torque error amount estimating means is calculated by other means such as an arithmetic expression. Also good.
Further, in the embodiment, an example in which the initial variation error amount is added to the correction of the driving torque error has been shown. However, based on this initial variation error amount, the current value characteristic with respect to the torque command value is corrected in advance. Also good.
In the embodiment, the drive torque of the electric motor is controlled independently on the left and right, but only one of the target drive torques of both motors is increased or decreased independently of the target drive torque. Control may be performed.
In the embodiment, the correction unit estimates the torque command value based on the drive torque error amount estimated by the drive torque error estimation amount estimation unit. The torque command value may be corrected directly from the torque change factor. In this case, for example, in the example as shown in FIG. 4, the relationship between the oil temperature and the command current map is obtained in advance, and the command current map is directly corrected from the detected value of the oil temperature, so that the drive torque error is calculated from the oil temperature. It is possible to correct the driving torque without obtaining the amount. In this case, as in the second embodiment, in both drive units, correction is performed only for the drive unit whose detected value is larger on the side where the error occurs, and the error amount between the two drive units is reduced. You may make it reduce.
In the embodiment, the example of correcting the command current map of the basic target drive torque has been described. However, the command value itself may be corrected. For example, during posture control, a value obtained by adding and subtracting posture control torque ΔT to the basic target drive torque may be corrected.
Further, in the embodiment, the example in which the error between the actual drive torque output from the drive unit and the torque command value for obtaining the actual drive torque is corrected has been described. However, the output torque of the motor and the output torque thereof are illustrated. You may make it correct | amend the difference | error of the torque command value for obtaining this.
関連出願の相互参照Cross-reference of related applications
 本出願は、2013年7月4日に日本国特許庁に出願された特願2013-140254に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-140254 filed with the Japan Patent Office on July 4, 2013, the entire disclosure of which is fully incorporated herein by reference.

Claims (10)

  1.  左右で対を成して車両に搭載され、モータにより左右駆動輪を駆動させる左側駆動ユニットおよび右側駆動ユニットと、
     前記モータの駆動トルクの少なくとも左右一方を独立して制御するトルク制御手段と、
     前記左側駆動ユニットでの目標駆動トルクと実駆動トルクとの誤差を生じさせる左側駆動トルク変化因子を検出する第1の検出手段と、
     前記右側駆動ユニットでの目標駆動トルクと実駆動トルクとの誤差を生じさせる右側駆動トルク変化因子を検出する第2の検出手段と、
     前記第1の検出手段および前記第2の検出手段の検出値に基づいて、前記左側駆動ユニットの実駆動トルクと前記右側駆動ユニットの実駆動トルクとの左右トルク差が、前記左右両駆動ユニットにおいて前記目標駆動トルクと前記実駆動トルクとの誤差が無いときの左右トルク差に近付くように、両駆動ユニットの少なくとも一方の前記モータに出力するトルク指令値を補正する補正手段と、
    を備えていることを特徴とする駆動トルク制御装置。
    A left-side drive unit and a right-side drive unit, which are mounted on the vehicle in pairs on the left and right sides, and drive left and right drive wheels by a motor;
    Torque control means for independently controlling at least one of the left and right driving torques of the motor;
    First detecting means for detecting a left driving torque change factor that causes an error between the target driving torque and the actual driving torque in the left driving unit;
    Second detection means for detecting a right drive torque change factor that causes an error between the target drive torque and the actual drive torque in the right drive unit;
    Based on the detection values of the first detection means and the second detection means, a left-right torque difference between the actual drive torque of the left drive unit and the actual drive torque of the right drive unit is determined in the left and right drive units. Correction means for correcting a torque command value to be output to at least one of the motors of both drive units so as to approach a left-right torque difference when there is no error between the target drive torque and the actual drive torque;
    A drive torque control device comprising:
  2.  請求項1に記載の駆動トルク制御装置において、
     前記検出手段の検出値に基づいて、前記トルク指令値に対する前記実駆動トルクの駆動トルク誤差量を推定する駆動トルク誤差量推定手段をさらに備え、
     前記補正手段は、前記駆動トルク誤差量推定手段によって推定された駆動トルク誤差量が減少するよう、両駆動ユニットの少なくとも一方の前記モータに出力する前記トルク指令値を補正することを特徴とする駆動トルク制御装置。
    The drive torque control device according to claim 1,
    Drive torque error amount estimation means for estimating a drive torque error amount of the actual drive torque with respect to the torque command value based on a detection value of the detection means;
    The correction means corrects the torque command value output to at least one of the motors of both drive units so that the drive torque error amount estimated by the drive torque error amount estimation means decreases. Torque control device.
  3.  請求項2に記載の駆動トルク制御装置において、
     前記駆動トルク誤差量推定手段は、前記駆動トルク変化因子に対する前記駆動トルク誤差量の特性である駆動トルク誤差量特性があらかじめ設定され、前記検出値と前記駆動トルク誤差量特性とに基づいて、前記駆動トルク誤差量の推定を行なうことを特徴とする駆動トルク制御装置。
    The drive torque control device according to claim 2,
    The driving torque error amount estimation means is preset with a driving torque error amount characteristic that is a characteristic of the driving torque error amount with respect to the driving torque change factor, and based on the detected value and the driving torque error amount characteristic, A drive torque control device that estimates a drive torque error amount.
  4.  請求項2または請求項3に記載の駆動トルク制御装置において、
     前記補正手段は、前記駆動トルク誤差量があらかじめ設定された必要性判定閾値よりも大きい場合に、前記補正を実行することを特徴とする駆動トルク制御装置。
    In the drive torque control device according to claim 2 or 3,
    The drive torque control apparatus, wherein the correction means performs the correction when the drive torque error amount is larger than a preset necessity determination threshold value.
  5.  請求項2~請求項4のいずれか1項に記載の駆動トルク制御装置において、
     前記駆動トルク変化因子に、前記モータと前記駆動輪との間に設けられた駆動トルク伝達機構を潤滑する潤滑液の温度が含まれることを特徴とする駆動トルク制御装置。
    The drive torque control device according to any one of claims 2 to 4,
    The drive torque control device characterized in that the drive torque change factor includes a temperature of a lubricating liquid for lubricating a drive torque transmission mechanism provided between the motor and the drive wheel.
  6.  請求項2~請求項5のいずれか1項に記載の駆動トルク制御装置において、
     前記駆動トルク変化因子に、前記モータの温度が含まれることを特徴とする駆動トルク制御装置。
    The drive torque control device according to any one of claims 2 to 5,
    The drive torque control device, wherein the drive torque change factor includes a temperature of the motor.
  7.  請求項2~請求項6のいずれか1項に記載の駆動トルク制御装置において、
     前記駆動トルク変化因子に、前記モータと前記駆動輪との間の駆動トルク伝達機構を潤滑する潤滑液の供給量が含まれることを特徴とする駆動トルク制御装置。
    The drive torque control device according to any one of claims 2 to 6,
    The drive torque control device according to claim 1, wherein the drive torque change factor includes a supply amount of a lubricating liquid for lubricating a drive torque transmission mechanism between the motor and the drive wheels.
  8.  請求項2~請求項7のいずれか1項に記載の駆動トルク制御装置において、
     前記検出手段は、複数の前記駆動トルク変化因子を検出し、
     前記駆動トルク誤差量推定手段は、各駆動トルク変化因子ごとに前記駆動トルク誤差量を推定し、かつ、各駆動トルク誤差量を加算して総合駆動トルク誤差量を求め、
     前記補正手段は、前記総合駆動トルク誤差量に基づいて前記補正を実行することを特徴とする駆動トルク制御装置。
    The drive torque control device according to any one of claims 2 to 7,
    The detection means detects a plurality of driving torque change factors,
    The driving torque error amount estimation means estimates the driving torque error amount for each driving torque change factor, and adds each driving torque error amount to obtain a total driving torque error amount,
    The drive torque control apparatus characterized in that the correction means executes the correction based on the total drive torque error amount.
  9.  請求項2~請求項8のいずれか1項に記載の駆動トルク制御装置において、
     前記補正手段は、前記左右の駆動ユニットの一方で、前記駆動トルク誤差量に基づく前記トルク指令値の補正量が、あらかじめ設定された制御限界値を超えた場合は、この一方の駆動ユニットに対する前記補正量を制御限界値の範囲内に制限し、かつ、もう一方の駆動ユニットは、前記駆動トルク誤差量が、前記一方の駆動ユニットの前記制限後の前記駆動トルク誤差量と同量となるように前記補正量を設定することを特徴とする駆動トルク制御装置。
    The drive torque control device according to any one of claims 2 to 8,
    When the correction amount of the torque command value based on the drive torque error amount exceeds a preset control limit value on one of the left and right drive units, the correction means The correction amount is limited within the range of the control limit value, and the other drive unit has the drive torque error amount equal to the drive torque error amount after the limit of the one drive unit. The correction amount is set to the drive torque control device.
  10.  請求項1~請求項9のいずれか1項に記載の駆動トルク制御装置において、
     前記トルク制御手段は、前記補正手段が補正した前記トルク指令値を用いて、前記車両のヨーモーメントを制御すべく前記左右駆動ユニットの少なくとも一方の前記目標駆動トルクを決定するヨーモーメント制御を実行することを特徴とする駆動トルク制御装置。
    The drive torque control device according to any one of claims 1 to 9,
    The torque control means executes yaw moment control that determines the target drive torque of at least one of the left and right drive units to control the yaw moment of the vehicle using the torque command value corrected by the correction means. A drive torque control device characterized by that.
PCT/JP2014/066728 2013-07-04 2014-06-24 Drive torque control device WO2015002033A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-140254 2013-07-04
JP2013140254 2013-07-04

Publications (1)

Publication Number Publication Date
WO2015002033A1 true WO2015002033A1 (en) 2015-01-08

Family

ID=52143612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066728 WO2015002033A1 (en) 2013-07-04 2014-06-24 Drive torque control device

Country Status (1)

Country Link
WO (1) WO2015002033A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110605973A (en) * 2019-09-18 2019-12-24 北京理工大学 Control method for operation stability of multi-axis distributed electrically-driven vehicle based on layered structure
CN111251902A (en) * 2020-02-18 2020-06-09 吉利汽车研究院(宁波)有限公司 Distributed axle electric driving system and control method thereof
WO2020143978A1 (en) * 2019-01-08 2020-07-16 Bayerische Motoren Werke Aktiengesellschaft Device for calibrating two electric motors mounted on one axle in two-axle motor vehicles
WO2022253498A1 (en) * 2021-05-31 2022-12-08 Bernward Welschof Turas drive and tracked vehicle with turas drive

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1118210A (en) * 1997-06-20 1999-01-22 Nissan Motor Co Ltd Controller of hybrid system vehicle
JP2005065377A (en) * 2003-08-08 2005-03-10 Nissan Motor Co Ltd Driving torque controller of four-wheel drive electric automobile
JP2005184911A (en) * 2003-12-17 2005-07-07 Nissan Motor Co Ltd Motor input and output factor correcting device of wheel-independent drive electric vehicle
JP2009120021A (en) * 2007-11-14 2009-06-04 Mazda Motor Corp Wheel drive system for vehicle
JP2009248689A (en) * 2008-04-03 2009-10-29 Toyota Motor Corp Driving force control device for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1118210A (en) * 1997-06-20 1999-01-22 Nissan Motor Co Ltd Controller of hybrid system vehicle
JP2005065377A (en) * 2003-08-08 2005-03-10 Nissan Motor Co Ltd Driving torque controller of four-wheel drive electric automobile
JP2005184911A (en) * 2003-12-17 2005-07-07 Nissan Motor Co Ltd Motor input and output factor correcting device of wheel-independent drive electric vehicle
JP2009120021A (en) * 2007-11-14 2009-06-04 Mazda Motor Corp Wheel drive system for vehicle
JP2009248689A (en) * 2008-04-03 2009-10-29 Toyota Motor Corp Driving force control device for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143978A1 (en) * 2019-01-08 2020-07-16 Bayerische Motoren Werke Aktiengesellschaft Device for calibrating two electric motors mounted on one axle in two-axle motor vehicles
US11850949B2 (en) 2019-01-08 2023-12-26 Bayerische Motoren Werke Aktiengesellschaft Device for calibrating two electric motors mounted on one axle in two-axle motor vehicles
CN110605973A (en) * 2019-09-18 2019-12-24 北京理工大学 Control method for operation stability of multi-axis distributed electrically-driven vehicle based on layered structure
CN111251902A (en) * 2020-02-18 2020-06-09 吉利汽车研究院(宁波)有限公司 Distributed axle electric driving system and control method thereof
WO2022253498A1 (en) * 2021-05-31 2022-12-08 Bernward Welschof Turas drive and tracked vehicle with turas drive

Similar Documents

Publication Publication Date Title
JP4513612B2 (en) Vehicle torque distribution control device
US20150284005A1 (en) Vehicle Control Device
JP5832868B2 (en) Electric car
US10029678B2 (en) Drive control device with traction control function for right-left independent drive vehicle
WO2012121197A1 (en) Electric vehicle
WO2015002033A1 (en) Drive torque control device
WO2014069281A1 (en) Electric vehicle control device and electric vehicle
US10889188B2 (en) Drive control device for vehicle with independently driven wheels
JP6577850B2 (en) Vehicle control apparatus and vehicle control method
JP6267440B2 (en) Vehicle control device
JP5531730B2 (en) Vehicle control device
JP2010241166A (en) Four-wheel drive controller and four-wheel drive control method for vehicle
JP2009226991A (en) Controller for vehicle
JP4935022B2 (en) Vehicle left and right torque distribution control device
WO2016125686A1 (en) Vehicle braking/driving torque control device
JP5792430B2 (en) Vehicle control device
JP6114591B2 (en) Electric car
KR20120041555A (en) Vehicle with multiple axis driven independently
JP5397294B2 (en) Vehicle control device
JP6664885B2 (en) Vehicle braking / driving torque control device
JP6425937B2 (en) Vehicle roll control device
WO2021182428A1 (en) Drive control device for vehicle having independently driven wheels
JP6613172B2 (en) Vehicle control apparatus and vehicle control method
WO2013172062A1 (en) Electric drive vehicle travel control method
WO2016079836A1 (en) Driving force control system for electric vehicle, electric vehicle, rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14818854

Country of ref document: EP

Kind code of ref document: A1