WO2016043077A1 - Vehicle drive control device - Google Patents

Vehicle drive control device Download PDF

Info

Publication number
WO2016043077A1
WO2016043077A1 PCT/JP2015/075305 JP2015075305W WO2016043077A1 WO 2016043077 A1 WO2016043077 A1 WO 2016043077A1 JP 2015075305 W JP2015075305 W JP 2015075305W WO 2016043077 A1 WO2016043077 A1 WO 2016043077A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
command current
torque
command
vehicle
Prior art date
Application number
PCT/JP2015/075305
Other languages
French (fr)
Japanese (ja)
Inventor
国棟 李
Original Assignee
Ntn株式会社
国棟 李
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 国棟 李 filed Critical Ntn株式会社
Publication of WO2016043077A1 publication Critical patent/WO2016043077A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a drive control device for a vehicle that drives one of two front wheels, two rear wheels, or both of them, and is applied to, for example, an in-wheel electric vehicle or an on-board electric vehicle. Regarding technology.
  • Electric vehicles that drive wheels with electric motors and hybrid electric vehicles that combine electric motors with other prime movers are in practical use.
  • a decrease in performance or abnormality of the motor for driving the vehicle greatly affects the running stability of the vehicle.
  • a technique for suppressing a decrease in running stability of a vehicle due to a decrease in performance of a motor or the like has been proposed.
  • Patent Document 1 This technology suppresses the temperature rise of motors used in electric vehicles. Specifically, the increase in the coil temperature of the motor is observed, and when the temperature exceeds a predetermined temperature, the output of the motor starts to be limited, and the increase in the temperature of the motor is suppressed.
  • the rate at which the motor output is limited is expressed by the following equation. Formula: 1- ⁇ (signal value ⁇ reference value) / (limit value ⁇ reference value) ⁇
  • the value obtained by the above equation when the signal value that is the motor temperature is the same value as the reference value, the value obtained by the above equation is “1”, and the motor output is not limited at all.
  • the value obtained by the above formula becomes smaller, and when the signal value becomes the same value as the limit value, that is, when the motor temperature becomes the temperature represented by the limit value.
  • the value obtained by the above formula is “0”, and the motor output is completely “0”.
  • Patent Document 2 When the temperature difference between the left and right motors is equal to or greater than a predetermined value, left / right temperature difference reduction control is performed to adjust the oil supply amount in a direction to reduce the temperature difference.
  • An object of the present invention is a vehicle including left and right motors that individually drive left and right drive wheels, and a vehicle capable of suppressing a decrease in running stability caused by a temperature difference between the left and right motors and reducing costs.
  • the drive control device is provided.
  • the torques of the motors 6 and 6 are commanded according to a given command torque.
  • a vehicle drive control device having torque control means 30 controlled by current, Motor temperature detecting means Sc for detecting the temperatures of the left and right motors 6 and 6 respectively; Steering angle detection means Sa for detecting the steering angle of the vehicle;
  • the torque control means 30 Command current correction means 33 for correcting the command current so that the output torque output from the left and right motors 6 and 6 is the same as the command torque applied to It has.
  • the threshold value and the set value are determined based on results of tests and simulations, respectively.
  • the threshold value is set to about 10 degrees to several tens of degrees at which the driving force is determined to be in an unbalanced state due to the temperature difference between the left and right motors.
  • the set value is set to, for example, less than about 10 degrees (steering play angle) at which it is determined that the vehicle is traveling substantially straight.
  • the torque control means 30 controls the torque of each motor 6 with the command current according to the command torque given from the host control means or the like.
  • the motor temperature detecting means Sc detects the temperatures of the left and right motors 6 and 6, respectively.
  • the steering angle detection means Sa detects the steering angle of the vehicle. When turning the vehicle, the outer wheel on the turning side is higher in load and rotation than the inner wheel on the turning side, so the balance between the left and right wheels is lost. Execute. In order to determine whether or not the vehicle is traveling substantially straight, the steering angle detection means Sa detects the steering angle of the vehicle.
  • the command current correction means 33 determines, for example, whether or not the detected temperature difference between the left and right motors 6 and 6 is greater than or equal to a threshold value, and determines whether or not the steering angle detected in the determination that the temperature difference is equal to or greater than the threshold value judge.
  • the command current correction means 33 When it is determined that the steering angle is equal to or less than the set value, that is, when it is determined that the vehicle is traveling substantially straight, the command current correction means 33 outputs torque from the left and right motors 6 and 6 equal to the command torque.
  • the command current is corrected so that By the way, if there is no temperature difference between the left and right motors 6, 6, the relationship between the command current and the motor output torque is uniquely determined. If there is a temperature difference between the left and right motors, the relationship between the command current and the motor output torque differs for each temperature, that is, for each motor.
  • the command current correction means 33 instructs the motor 6 on the higher temperature side than the motor 6 on the lower temperature side of the left and right motors 6 and 6 to make the output torque from the left and right motors 6 and 6 the same torque. Control is performed so that the current becomes relatively large. Thus, by making the output torques output from the left and right motors 6 and 6 the same torque, it is possible to suppress a decrease in running stability of the vehicle due to the temperature difference between the left and right motors 6 and 6. Further, according to this control, the output torque of the left and right motors 6 and 6 can be made the same by correcting the command current without adding a new device. Cost reduction can be achieved compared with the conventional technology required.
  • the command current correction means 33 determines whether or not the temperature difference between the left and right motors 6 and 6 is equal to or greater than a threshold value, and whether the steering angle detected by the determination equal to or greater than the threshold value satisfies a condition that is less than or equal to a set value. It is good also as having the amendment execution judgment part 33a which judges whether or not.
  • the correction execution determination unit 33a determines whether or not the condition is satisfied at all times or intermittently. When the command current correction unit 33 corrects the command current, if the correction execution determination unit 33a determines that the condition is not satisfied, the command current correction unit 33 stops correcting the command current.
  • the control may be switched only to the control by the torque control means 30. By switching to only the control by the torque control means 30 in this way, it is possible to improve both the left and right motor efficiency and improve the power consumption.
  • a rotation speed detection means 36 for detecting the rotation speed of each motor 6 is provided, and the command current correction means 33 provides a corrected command current according to the rotation speed detected by the rotation speed detection means 36 and the command torque.
  • the command current correction map 33b has a recorded command current correction map 33b.
  • the command current correction map 33b uses the corrected command current recorded in the command current correction map 33b.
  • the motors 6 may be controlled.
  • the command current correction map 33b is determined by the results of tests and simulations.
  • the command current correction means 33 controls each motor 6 according to the corrected command current recorded in the command current correction map 33b, so that the output torques of the left and right motors 6 and 6 can be made equal. Therefore, it is possible to suppress a decrease in traveling stability of the vehicle due to a temperature difference between the left and right motors 6 and 6.
  • a relational approximate expression between the motor temperature and the actual output torque is obtained in advance by a test, simulation, or the like for the command torque. May be corrected.
  • the command current correction means 33 may correct the command current after performing a process of reducing the accelerator signal. By performing the process of reducing the accelerator signal before correcting the command current in this way, it is possible to suppress the temperature increase of the motor 6. Thereby, the load of the motor 6 can be reduced.
  • the motor 6 includes an in-wheel motor drive including the motor 6, a wheel bearing 4 that rotatably supports the drive wheel 2, and a speed reducer 7 that decelerates the rotation of the motor 6 and transmits the rotation to the wheel bearing 4.
  • the device 8 may be configured.
  • the motor 6 tends to rotate at a higher speed than the motor drive device that does not include the speed reducer 7, and the running stability of the vehicle due to the temperature difference between the left and right motors 6 and 6 is increased.
  • the output torque of the left and right motors 6 and 6 is set to the same torque, so that the vehicle caused by the temperature difference between the left and right motors 6 and 6 can be reduced.
  • a decrease in running stability can be suppressed.
  • the vehicle may be an on-board type vehicle in which the left and right motors 6 and 6 are respectively mounted on the vehicle body 1.
  • FIG. 1 is a block diagram of a conceptual configuration showing the electric vehicle as the vehicle in a plan view.
  • This electric vehicle is a four-wheeled vehicle in which the wheels 2 that are the left and right rear wheels of the vehicle body 1 are driving wheels, and the wheels 3 that are the left and right front wheels are steering wheels of driven wheels.
  • Each of the wheels 2 and 3 serving as the driving wheel and the driven wheel has a tire and is rotatably supported by the vehicle body 1 via wheel bearings 4 and 5, respectively.
  • the wheel bearings 4 and 5 are abbreviated as “H / B” in FIG.
  • the left and right wheels 2, 2 serving as driving wheels are driven by independent traveling motors 6, 6, respectively.
  • the rotation of the motor 6 is transmitted to the wheel 2 via the speed reducer 7 and the wheel bearing 4.
  • the motor 6, the speed reducer 7, and the wheel bearing 4 constitute an in-wheel motor drive device 8 that is one assembly part.
  • Each wheel 2, 3 is provided with an electric or hydraulic brake 9, 10.
  • the wheels 3 and 3 which are the steering wheels which are the left and right front wheels can be steered via the steering mechanism 11 and are steered by a steering means 12 such as a steering wheel.
  • FIG. 2 is a cross-sectional view of the in-wheel motor drive device.
  • Each in-wheel motor drive device 8 includes a motor 6, a speed reducer 7, and a wheel bearing 4, and a part or all of these are disposed in the wheel.
  • the rotation of the motor 6 is transmitted to the drive wheel 2 via the speed reducer 7 and the wheel bearing 4.
  • a brake rotor BR constituting the brake 9 is fixed to the flange portion of the hub wheel 4 a of the wheel bearing 4, and the brake rotor BR rotates integrally with the drive wheel 2.
  • the motor 6 is, for example, an embedded magnet type synchronous motor in which a permanent magnet is built in the core portion of the rotor 6a.
  • the motor 6 is a motor in which a radial gap is provided between a stator 6b fixed to the housing HS and a rotor 6a attached to the rotation output shaft KS.
  • FIG. 3 is a conceptual configuration diagram of the IPM motor of the electric vehicle.
  • the motor driving the wheel is an IPM motor, that is, an embedded magnet type synchronous motor
  • the magnetic resistance in the q-axis direction orthogonal to the d-axis direction, which is the magnet axis, is smaller.
  • a salient pole structure is formed, and the q-axis inductance Lq is larger than the d-axis inductance Ld. Due to this saliency, reluctance torque Tr can be used in addition to magnet torque Tm, and high torque and high efficiency can be achieved.
  • Magnet torque Tm Torque generated by attracting and repelling the magnetic field generated by the permanent magnet of the rotor and the rotor magnetic field generated by the winding.
  • Reluctance torque Tr A torque generated when a salient pole portion of a rotor is attracted to a rotating magnetic field by a winding.
  • Ld d-axis inductance of motor
  • Lq q-axis inductance of motor
  • Ke effective value of motor induced voltage constant
  • the three-phase motor currents Iu, Iv, Iw flowing in the respective phases of the three-phase coil of the permanent magnet motor are converted into actual currents Id, Iq flowing in the d-axis and the q-axis using the rotation angle sensor ⁇ .
  • FIG. 4 is a block diagram of a conceptual configuration of the inverter device and the like of this electric vehicle.
  • the electric vehicle includes an ECU 21 that is an electric control unit that controls the entire vehicle, and an inverter device 22 that controls the traveling motor 6 in accordance with an acceleration / deceleration command of the ECU 21.
  • the ECU 21 includes a computer, a program executed by the computer, various electronic circuits, and the like.
  • the ECU 21 is roughly divided into a general control unit 21a and a power running / regenerative control command unit 21b.
  • the power running / regeneration control command unit 21b outputs an acceleration command (drive) output from the accelerator operation unit 16, a deceleration command (regeneration) output from the brake operation unit 17, and a steering angle sensor Sa (steering angle detection means). From the turning command, an acceleration / deceleration command to be given to the traveling motors 6, 6 for the left and right wheels 2, 2 is generated as a command torque and output to the inverter device 22.
  • the power running / regenerative control command unit 21b outputs an acceleration / deceleration command to be output, for example, to the rotation sensors 4a provided on the wheel bearings 4, 5 (FIG. 1) of the wheels 2, 3 (FIG. 1).
  • 5a (FIG. 1) may have a function of correcting using information on the tire rotation speed obtained from 5a (FIG. 1) and information on each vehicle-mounted sensor.
  • the power running / regeneration control command unit 21 b gives a command flag for switching between power running and regeneration to the torque control means 30 of the motor control unit 29.
  • the accelerator operation unit 16 includes an accelerator pedal 16a and a sensor 16b that detects an amount of depression of the accelerator pedal 16a and outputs an acceleration command.
  • the brake operation unit 17 includes a brake pedal 17a and a sensor 17b that detects a depression amount of the brake pedal 17a and outputs a deceleration command.
  • the general control unit 21a outputs a deceleration command output from the brake operation unit 17 to the brake controller 23, a function to control various auxiliary machine systems 31 (FIG. 1), for example, an input command from a console operation panel or the like.
  • the auxiliary machine system 31 is, for example, an air conditioner, a light, a wiper, GPS, an air bag, or the like.
  • the inverter device 22 includes a power circuit unit 28 provided for each motor 6 and a motor control unit 29 that controls the power circuit unit 28. Although not shown, the inverter device 22 is provided for each motor 6.
  • the motor control unit 29 may be provided in common for each power circuit unit 28 or may be provided separately. Even when the motor control unit 29 is provided in common for each power circuit unit 28, the left and right motors 6 and 6 can be controlled independently so that the torques of the motors 6 and 6 are different from each other.
  • the motor control unit 29 has a function of outputting information such as detection values and control values related to the in-wheel motor drive device 8 included in the motor control unit 29 to the ECU 21.
  • the power circuit unit 28 includes an inverter 28a that converts the DC power of the battery 19 into three-phase AC power used for powering and regeneration of the motor 6, and a PWM driver 28b that controls the inverter 28a.
  • the motor 6 is a three-phase synchronous motor.
  • the motor 6 is provided with a rotation angle detecting means 36 for detecting a rotation angle as an electrical angle of the rotor 6a (FIG. 2) of the motor 6.
  • the inverter 28a is composed of a plurality of semiconductor switching elements, and the PWM driver 28b performs pulse width modulation on the input current command and gives an on / off command to each of the semiconductor switching elements.
  • the motor control unit 29 is configured by an electronic circuit such as a computer having a processor, a ROM having a program executed by the processor, and a RAM, and has a torque control means 30 as a basic control unit.
  • the torque control means 30 converts it into a current command in accordance with an acceleration (power running) / deceleration (regeneration) command based on a command torque given from the ECU 21 which is the host control means, and gives a current command to the PWM driver 28b of the power circuit unit 28. . Switching between acceleration and deceleration is performed by a command flag from the power running / regenerative control command unit 21b of the ECU 21.
  • the torque control means 30 has a power running control unit 30a and a regeneration control unit 30b, and either the power running control unit 30a or the regeneration control unit 30b is selected by the command flag.
  • the power running control unit 30a is selected by the command flag
  • the power running control unit 30a increases the power running command torque as the depression amount of the accelerator pedal 16a increases.
  • the regeneration control unit 30b is selected by the command flag
  • the regeneration control unit 30b increases the regeneration command torque as the amount of depression of the brake pedal 17a increases.
  • the torque control means 30 generates a command current to the motor 6 using a preset torque map based on the command torque and command flag given from the ECU 21.
  • the torque control means 30 controls the motor 6 by PI control so that the actual detection value obtained by the current detection means Sb for the drive current applied to the motor 6 matches the command current.
  • the drive control apparatus for an electric vehicle includes motor temperature detection means Sc, steering angle sensor Sa as steering angle detection means, and command current correction means 33.
  • the command current correction means 33 has a correction execution determination unit 33a and a command current correction map 33b described later.
  • the motor temperature detection means Sc is a means for detecting the temperatures of the left and right motors 6 and 6, respectively. As shown in FIG. 2, in the stator 6b of each motor 6, the motor temperature detection means Sc is provided in the motor coil, for example. As the motor temperature detection means Sc, for example, a thermistor is used. The temperature of the motor 6 can be detected by fixing the thermistor to the motor coil.
  • the steering angle sensor Sa detects a steering angle that is a rotation angle of, for example, a steering wheel of the electric vehicle.
  • a steering angle is detected by a steering angle sensor Sa.
  • the command current correction means 33 is provided in the motor control unit 29, and when the conditions described later are satisfied, the output torque output from the left and right motors 6 and 6 is the same as the command torque given to the torque control means 30. The command current is corrected so that the torque is obtained.
  • FIG. 5 is a block diagram showing a main configuration and the like of the motor control unit 29.
  • the motor control unit 29 is a means for controlling the motor drive current, and includes a torque command unit 34.
  • the torque command unit 34 is provided in the torque control unit 30 in the motor control unit 29.
  • the torque command unit 34 uses the torque map based on the detected value detected by the current detection means Sb for the drive current applied to the motor 6 and the command torque based on the acceleration / deceleration command generated by the power running / regenerative control command unit 21b of the ECU 21. Thus, a corresponding command current is generated.
  • the direction of the command current is switched by the command flag.
  • the torque control means 30 obtains the rotation angle of the rotor 6a (FIG. 2) of the motor 6 from the rotation angle sensor 36 and performs vector control.
  • the motors 6 and 6 provided on the left and right rear wheels 2 and 2 (FIG. 1) of the vehicle body have different torque generation directions during power running and during regeneration.
  • the left rear wheel driving motor 6 When the motor 6 is viewed from the direction of the output shaft, the left rear wheel driving motor 6 generates torque in the CW direction, and the right rear wheel driving motor 6 generates torque in the CCW direction (left The right side is determined by the direction seen from the rear of the vehicle). Torques generated by the left and right motors 6 and 6 are transmitted to the tire by reversing the torque direction via the speed reducer 7 and the wheel bearing 4. Further, the direction of torque generation during regeneration in the motor 6 for the left and right tires is different from the direction of torque generation during power running.
  • a corresponding command torque is calculated from the maximum torque control table according to the accelerator signal and the motor speed.
  • the torque command unit 34 generates a primary current (Ia) and a current advance angle ( ⁇ ) of the motor 6 based on the calculated command torque.
  • the torque command unit 34 generates two command currents, a d-axis current (field component) O_Id and a q-axis current O_Iq, based on the values of the primary current (Ia) and the current advance angle ( ⁇ ).
  • the current PI control unit 35 is a two-phase current calculated by the three-phase / two-phase conversion unit 37 from the values of the d-axis current O_Id and q-axis current O_Iq output from the torque command unit 34 and the motor current and the rotor angle. Control amounts Vd and Vq based on voltage values by PI control are calculated from Id and Iq.
  • a v-phase current (Iv) is calculated and converted from a three-phase current of Iu, Iv, and Iw to a two-phase current of Id and Iq.
  • the rotor angle of the motor 6 used for this conversion is acquired from the rotation angle sensor 36.
  • the two-phase / three-phase converter 38 converts the input two-phase control amounts Vd, Vq and the rotor angle into three-phase PWM duties Vu, Vv, Vw.
  • the power converter 39 performs PWM control of the inverter 28a (FIG. 4) according to the PWM duties Vu, Vv, and Vw, and drives the motor 6.
  • the command current correction means 33 is such that the temperature difference ⁇ T between the left and right motors 6 and 6 detected by the motor temperature detection means Sc is not less than a threshold value, and the steering angle detected by the steering angle sensor Sa (FIG. 4) is a set value. It is determined whether or not the following conditions are satisfied.
  • the command current correcting means 33 corrects the command current so that the output torques output from the left and right motors 6 and 6 are the same as the command torque given to the torque control means 30 when the above conditions are satisfied. To do.
  • FIG. 6 is a block diagram showing the command current correction means 33 and the like.
  • the command current correction unit 33 includes a correction execution determination unit 33a and a command current correction map 33b.
  • the correction execution determination unit 33a receives the temperatures T1 and T2 of the left and right motors 6 and 6 (FIG. 1) detected by the motor temperature detection means Sc (FIG. 4), and is detected by the steering angle sensor Sa (FIG. 4).
  • the steering angle ⁇ is input.
  • the correction execution determination unit 33a determines whether or not the temperature difference ⁇ T between the input temperatures T1 and T2 satisfies a condition that is equal to or greater than a threshold value and the steering angle ⁇ is equal to or less than a set value.
  • FIG. 7 is a diagram illustrating the relationship between the motor current and the motor output torque for each motor temperature. If there is a temperature difference between the left and right motors 6 and 6 (FIG. 1), the relationship between the command current and the motor output torque is different for each temperature, that is, for each motor. When the same command torque is applied to the left and right motors 6 and 6 (FIG. 1), the output torque decreases as the motor temperature increases.
  • each of the motors 6, 6 is determined based on the corrected command current recorded in the command current correction map 33 b. (FIG. 1) is controlled.
  • the command current correction map 33b includes temperature T1 and T2 of the left and right motors 6 and 6 (FIG. 1) detected by the motor temperature detection means Sc, command torque from the ECU 21 (FIG. 4), and rotation speed detection means.
  • the rotational speed ⁇ of each motor 6 detected by the rotation angle sensor 36 (FIG. 4) is input.
  • FIG. 8 is a diagram showing a command current correction map 33b.
  • this command current correction map 33b the command current corrected according to the motor rotation speeds ⁇ _0, ⁇ _1,..., ⁇ _m and the command torques Trq_0, Trq_1,.
  • a plurality of command current correction maps 33b are provided at regular intervals of the motor temperature (for example, 5 degrees, 10 degrees,... 180 degrees).
  • FIG. 9 is a flowchart showing step-by-step determination of command current correction control.
  • the correction execution determination unit 33a determines whether or not the absolute value of the value obtained by subtracting the temperature T2 of the right motor 6 from the temperature T1 of the left motor 6 is equal to or higher than the temperature threshold A (condition (1): step S1). If the determination is NO (step S1: NO), the correction execution determination unit 33a determines whether the absolute value of the value obtained by subtracting the temperature T2 from the temperature T1 is equal to or lower than the temperature threshold B (step S2).
  • the temperature threshold A> the temperature threshold B, and the temperature threshold A and the temperature threshold B have a difference of, for example, about 10 degrees or more.
  • FIG. 10 is a diagram showing the execution determination of the command current correction control.
  • step S ⁇ b> 2: YES when it is determined that the temperature difference is equal to or less than the temperature threshold B (step S ⁇ b> 2: YES), the command current correction control is stopped and switched to only the control by the torque control means 30. If it is determined that the temperature difference is greater than the temperature threshold B (step S2: NO), the process returns to step S1.
  • the correction execution determination unit 33a determines the execution of the command current correction control having the hysteresis characteristic of the temperature difference by setting the two temperature thresholds A and B.
  • step S1 Determination that the temperature difference ⁇ T is equal to or greater than the temperature threshold A, that is, satisfies the condition (1) for determining whether the driving force is in an unbalanced state due to the temperature difference between the left and right motors 6 and 6 (step S1: YES).
  • the correction execution determination unit 33a determines whether or not the steering angle ⁇ from the steering angle sensor Sa (FIG. 4) is equal to or smaller than the set value a, that is, whether the vehicle is traveling substantially straight (condition (2): Step S3). If this condition (2) is not satisfied (step S3: NO), the command current correction control is stopped and only the control by the torque control means 30 is switched.
  • the correction execution determination unit 33a permits execution of the command current correction (step S4) when the condition (1) and the condition (2) are satisfied (step S3: YES). Then, it returns to step 1. This follow is continued while the command current correction is performed, and only the control by the torque control 30 is performed when either the temperature difference ⁇ T condition (1) or the steering angle condition (2) is not satisfied. To.
  • FIG. 11 is a diagram schematically illustrating a method for correcting the command current of the left and right motors.
  • the command current correction means 33 includes the left and right motors 6 and 6 (FIG. 1).
  • Is determined to be equal to or less than the temperature threshold B and only the control by the torque control means 30 (FIG. 6) is performed.
  • the torque control means 30 (FIG. 6) outputs the command current to the left and right motors 6 and 6 (FIG. 1) without correction.
  • the command current correction means 33 (FIG. 6) The command current is corrected after processing to reduce the accelerator signal.
  • the command torque supplied from the ECU 21 is limited without changing the acceleration / deceleration command input to the ECU 21 (FIG. 4).
  • the command current correction means 33 (FIG. 4) corrects the command current after limiting the command torque to the left and right motors, respectively.
  • the command current correcting unit 33 determines that the correction execution determining unit 33a satisfies the conditions (1) and (2), and the left and right motors 6, 6 with respect to the command torque. To correct the command current so that the output torques respectively output from the motors become the same torque. For this reason, it is possible to suppress a decrease in running stability of the vehicle due to a temperature difference between the left and right motors 6 and 6. Further, according to this control, the output torque of the left and right motors 6 and 6 can be made the same by correcting the command current without adding a new device. Cost reduction can be achieved compared with the conventional technology required.
  • the command current correction unit 33 corrects the command current
  • the correction execution determination unit 33a determines that the condition is not satisfied
  • the command current correction unit 33 stops correcting the command current, and the torque control unit Only the control by 30 is switched.
  • the torque control means 30 By switching to only the control by the torque control means 30 in this way, it is possible to improve both the left and right motor efficiency and improve the power consumption.
  • the command current correcting means 33 corrects the command current after performing a process of reducing the accelerator signal. By performing the process of reducing the accelerator signal before correcting the command current in this way, it is possible to suppress the temperature increase of the motor 6. Thereby, the load of the motor 6 can be reduced.
  • the vehicle may be an on-board vehicle in which left and right motors 6 and 6 are mounted on the vehicle body 1, respectively.
  • the left and right motors 6, 6 mounted on the vehicle body 1 are connected to the wheel bearing 4 via the drive shaft DF, respectively, and transmit the rotation of the motor 6 to the drive wheel 2.
  • the drive shaft DF includes constant velocity joints at both ends thereof so that rotation can be transmitted to the drive wheels 2 at a constant velocity even when the vehicle body 1 is bound / rebound.
  • a two-wheel independent drive vehicle that independently drives the left and right front wheels may be applied.
  • a four-wheel independent drive vehicle that drives the left and right front wheels independently and drives the left and right rear wheels independently may be applied.
  • a cycloid reducer, a planetary reducer, a two-axis parallel reducer, and other reducers can be applied, and even a so-called direct motor type that does not employ a reducer. Good.

Abstract

A vehicle drive control device of the present invention, in a vehicle provided with left and right motors (6, 6) that individually drive left and right drive wheels (2, 2), has a torque control means (30) that controls the torque of each motor (6) in accordance with a command torque through the use of a command current. The drive control device is provided with a motor temperature detection means (Sc) that respectively detects the temperatures of the left and right motors (6, 6) and a steering angle detection means (Sa) that detects the steering angle. The drive control device is further provided with a command current correction means (33) that, when the difference between the detected motor temperatures is at or above a threshold value and the steering angle is at or below a set value, corrects the command current so that output-torques output from the left and right motors (6, 6) will be the same torque with respect to the command torque applied to the torque control means (30).

Description

車両の駆動制御装置Vehicle drive control device 関連出願Related applications
 本願は、日本国で2014年9月17日に出願した特願2014-188489の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2014-188889 filed in Japan on September 17, 2014, and is incorporated herein by reference in its entirety.
 この発明は、車両の前輪2輪および後輪2輪のいずれか一方、またはその両方4輪を駆動する車両の駆動制御装置に関し、例えば、インホイール電気自動車、またはオンボード電気自動車に適用される技術に関する。 The present invention relates to a drive control device for a vehicle that drives one of two front wheels, two rear wheels, or both of them, and is applied to, for example, an in-wheel electric vehicle or an on-board electric vehicle. Regarding technology.
 電動モータにより車輪を駆動する電気自動車、他の原動機と電動モータとを組み合わせたハイブリッド型の電気自動車が実用に供されている。このような電気自動車では、車両駆動のためのモータの性能低下や異常が車両の走行安定性に大きく影響する。電気自動車において、モータの性能低下等に起因する車両の走行安定性の低下を抑制する技術が提案されている。 Electric vehicles that drive wheels with electric motors and hybrid electric vehicles that combine electric motors with other prime movers are in practical use. In such an electric vehicle, a decrease in performance or abnormality of the motor for driving the vehicle greatly affects the running stability of the vehicle. In an electric vehicle, a technique for suppressing a decrease in running stability of a vehicle due to a decrease in performance of a motor or the like has been proposed.
 従来技術1(特許文献1)
 電気自動車に利用されるモータの温度上昇を抑制する技術である。具体的には、モータのコイル温度の上昇を観察し、所定の温度を超えた場合にモータの出力を制限し始め、モータの温度の上昇を抑制する。モータの出力が制限される割合は以下の式で表される。
 式:1-{(信号値-基準値)/(限界値-基準値)}
Prior art 1 (Patent Document 1)
This technology suppresses the temperature rise of motors used in electric vehicles. Specifically, the increase in the coil temperature of the motor is observed, and when the temperature exceeds a predetermined temperature, the output of the motor starts to be limited, and the increase in the temperature of the motor is suppressed. The rate at which the motor output is limited is expressed by the following equation.
Formula: 1-{(signal value−reference value) / (limit value−reference value)}
 この式によると、モータ温度である信号値が基準値と同一の値である場合、上記式で求められる値は「1」であり、モータ出力は何ら制限されない。
 信号値が基準値よりも大きくなる程、上記式で求められる値は小さくなり、信号値が限界値と同一の値になった場合、すなわちモータ温度が限界値で表される温度となったときには、上記式で求められる値は「0」となり、モータ出力は完全に「0」になる。
According to this equation, when the signal value that is the motor temperature is the same value as the reference value, the value obtained by the above equation is “1”, and the motor output is not limited at all.
As the signal value becomes larger than the reference value, the value obtained by the above formula becomes smaller, and when the signal value becomes the same value as the limit value, that is, when the motor temperature becomes the temperature represented by the limit value. The value obtained by the above formula is “0”, and the motor output is completely “0”.
 従来技術2(特許文献2)
 左右のモータの温度差が所定値以上のとき、その温度差を小さくする方向にオイル供給量を調節する左右温度差低減制御を実施する。
Prior art 2 (Patent Document 2)
When the temperature difference between the left and right motors is equal to or greater than a predetermined value, left / right temperature difference reduction control is performed to adjust the oil supply amount in a direction to reduce the temperature difference.
特開2000-32602号公報JP 2000-32602 A 特開2008-195233号公報JP 2008-195233 A
 従来技術1では、左右モータの温度差が生じ、モータ温度が上記所定の温度に達していないとき、左右のモータの温度差による駆動トルク差が生じてしまう。これにより車両の走行安定性の低下が懸念される。
 例えば、車両の旋回時には、左右輪のうち旋回内側輪に比べて旋回外側輪の方が高負荷・高回転となるため、旋回外側輪のモータの発熱量が多くなる。モータ効率にも左右の差が生じる。したがって、旋回直後の直進走行時において、左右のモータに等しい電力を供給しても、駆動力には比較的大きな差が生じてバランスが崩れてしまい、走行安定性の低下が懸念される。
In the prior art 1, when the temperature difference between the left and right motors occurs and the motor temperature does not reach the predetermined temperature, a drive torque difference due to the temperature difference between the left and right motors occurs. As a result, the running stability of the vehicle may be reduced.
For example, when the vehicle is turning, the turning outer wheel of the left and right wheels has a higher load and higher rotation than the turning inner wheel, and therefore the amount of heat generated by the motor of the turning outer wheel increases. There is also a difference between the left and right motor efficiency. Therefore, even when the same power is supplied to the left and right motors during straight running immediately after turning, a relatively large difference is generated in the driving force, and the balance is lost.
 従来技術2では、オイル供給量を調節するための調節装置が必要となり、高コストとなる。 In the prior art 2, an adjustment device for adjusting the oil supply amount is required, which is expensive.
 この発明の目的は、左右の駆動輪を個別に駆動する左右のモータを備える車両において、左右のモータの温度差に起因する走行安定性の低下を抑制し、またコスト低減を図ることができる車両の駆動制御装置を提供することである。 An object of the present invention is a vehicle including left and right motors that individually drive left and right drive wheels, and a vehicle capable of suppressing a decrease in running stability caused by a temperature difference between the left and right motors and reducing costs. The drive control device is provided.
 この発明の車両の駆動制御装置は、左右の駆動輪2,2を個別に駆動する左右のモータ6,6を備える車両において、与えられる指令トルクに応じて前記各モータ6,6のトルクを指令電流により制御するトルク制御手段30を有する車両の駆動制御装置であって、
 左右のモータ6,6の温度をそれぞれ検出するモータ温度検出手段Scと、
 前記車両の操舵角を検出する操舵角検出手段Saと、
 前記モータ温度検出手段Scで検出される左右のモータ6,6の温度差が閾値以上で、且つ、前記操舵角検出手段Saで検出される操舵角が設定値以下のとき、前記トルク制御手段30に与えられる指令トルクに対し、左右のモータ6,6からそれぞれ出力される出力トルクが同一トルクとなるように前記指令電流を補正する指令電流補正手段33と、
を備えている。
 前記閾値、前記設定値は、それぞれ試験やシミュレーション等の結果により定められる。
 例えば、前記閾値は左右モータの温度差により駆動力がアンバランス状態と判定される約10度乃至数十度に定められる。前記設定値として車両が略直進走行時と判定される例えば約10度未満(操舵の遊び角)に定められる。
According to the vehicle drive control device of the present invention, in a vehicle including left and right motors 6 and 6 that individually drive the left and right drive wheels 2 and 2, the torques of the motors 6 and 6 are commanded according to a given command torque. A vehicle drive control device having torque control means 30 controlled by current,
Motor temperature detecting means Sc for detecting the temperatures of the left and right motors 6 and 6 respectively;
Steering angle detection means Sa for detecting the steering angle of the vehicle;
When the temperature difference between the left and right motors 6 and 6 detected by the motor temperature detecting means Sc is not less than a threshold value and the steering angle detected by the steering angle detecting means Sa is not more than a set value, the torque control means 30 Command current correction means 33 for correcting the command current so that the output torque output from the left and right motors 6 and 6 is the same as the command torque applied to
It has.
The threshold value and the set value are determined based on results of tests and simulations, respectively.
For example, the threshold value is set to about 10 degrees to several tens of degrees at which the driving force is determined to be in an unbalanced state due to the temperature difference between the left and right motors. The set value is set to, for example, less than about 10 degrees (steering play angle) at which it is determined that the vehicle is traveling substantially straight.
 この構成によると、トルク制御手段30は、上位制御手段等から与えられる指令トルクに応じて、各モータ6のトルクを指令電流により制御する。モータ温度検出手段Scは、左右のモータ6,6の温度をそれぞれ検出する。操舵角検出手段Saは、車両の操舵角を検出する。車両の旋回時には、旋回内側輪に比べて旋回外側輪の方が高負荷・高回転となるため左右輪のバランスが崩れてしまうので、このようなアンバランス状態で車両の略直進走行時に本制御を実行する。この車両が略直進走行時であるか否かを判定するために、操舵角検出手段Saにより車両の操舵角を検出する。指令電流補正手段33は、例えば、検出される左右のモータ6,6の温度差が閾値以上か否かを判定し、閾値以上との判定で検出される操舵角が設定値以下か否かを判定する。 According to this configuration, the torque control means 30 controls the torque of each motor 6 with the command current according to the command torque given from the host control means or the like. The motor temperature detecting means Sc detects the temperatures of the left and right motors 6 and 6, respectively. The steering angle detection means Sa detects the steering angle of the vehicle. When turning the vehicle, the outer wheel on the turning side is higher in load and rotation than the inner wheel on the turning side, so the balance between the left and right wheels is lost. Execute. In order to determine whether or not the vehicle is traveling substantially straight, the steering angle detection means Sa detects the steering angle of the vehicle. The command current correction means 33 determines, for example, whether or not the detected temperature difference between the left and right motors 6 and 6 is greater than or equal to a threshold value, and determines whether or not the steering angle detected in the determination that the temperature difference is equal to or greater than the threshold value judge.
 操舵角が設定値以下との判定で、つまり車両が略直進走行時と判定されたとき、指令電流補正手段33は、指令トルクに対し、左右のモータ6,6からの出力トルクが互いに同一トルクとなるように前記指令電流を補正する。ところで、左右のモータ6,6の温度差が無ければ、指令電流とモータの出力トルクとの関係は一義的に定められる。左右のモータの温度差があれば、指令電流とモータ出力トルクとの関係は温度毎つまりモータ毎に異なる。 When it is determined that the steering angle is equal to or less than the set value, that is, when it is determined that the vehicle is traveling substantially straight, the command current correction means 33 outputs torque from the left and right motors 6 and 6 equal to the command torque. The command current is corrected so that By the way, if there is no temperature difference between the left and right motors 6, 6, the relationship between the command current and the motor output torque is uniquely determined. If there is a temperature difference between the left and right motors, the relationship between the command current and the motor output torque differs for each temperature, that is, for each motor.
 そこで、指令電流補正手段33は、左右のモータ6,6からの出力トルクを同一トルクとするために、左右のモータ6,6のうち低温側のモータ6よりも高温側のモータ6への指令電流が相対的に大きくなるように制御する。このように左右のモータ6,6からそれぞれ出力される出力トルクを同一トルクとすることで、左右のモータ6,6の温度差に起因する車両の走行安定性の低下を抑制することができる。またこの制御によると、新たな装置を追加することなく、指令電流を補正するだけで左右のモータ6,6の出力トルクを同一にできるため、前述のオイル供給量を調節するための調節装置を必要とする従来技術等よりコスト低減を図ることができる。 Therefore, the command current correction means 33 instructs the motor 6 on the higher temperature side than the motor 6 on the lower temperature side of the left and right motors 6 and 6 to make the output torque from the left and right motors 6 and 6 the same torque. Control is performed so that the current becomes relatively large. Thus, by making the output torques output from the left and right motors 6 and 6 the same torque, it is possible to suppress a decrease in running stability of the vehicle due to the temperature difference between the left and right motors 6 and 6. Further, according to this control, the output torque of the left and right motors 6 and 6 can be made the same by correcting the command current without adding a new device. Cost reduction can be achieved compared with the conventional technology required.
 前記指令電流補正手段33は、左右のモータ6,6の温度差が閾値以上か否かを判定し、且つ、前記閾値以上の判定で検出される操舵角が設定値以下の条件を満足するか否かを判定する補正実施判定部33aを有するものとしても良い。補正実施判定部33aは、前記条件を満足するか否かを常時にまたは間欠的に判定する。
 前記指令電流補正手段33により前記指令電流を補正しているとき、前記補正実施判定部33aで前記条件を満足しないと判定されると、前記指令電流補正手段33による前記指令電流の補正を停止し、前記トルク制御手段30による制御のみに切り換えても良い。
 このようにトルク制御手段30による制御のみに切り換えると、左右のモータ効率を共に高めて電費の向上を図ることができる。
The command current correction means 33 determines whether or not the temperature difference between the left and right motors 6 and 6 is equal to or greater than a threshold value, and whether the steering angle detected by the determination equal to or greater than the threshold value satisfies a condition that is less than or equal to a set value. It is good also as having the amendment execution judgment part 33a which judges whether or not. The correction execution determination unit 33a determines whether or not the condition is satisfied at all times or intermittently.
When the command current correction unit 33 corrects the command current, if the correction execution determination unit 33a determines that the condition is not satisfied, the command current correction unit 33 stops correcting the command current. The control may be switched only to the control by the torque control means 30.
By switching to only the control by the torque control means 30 in this way, it is possible to improve both the left and right motor efficiency and improve the power consumption.
 各モータ6の回転速度を検出する回転速度検出手段36を設け、前記指令電流補正手段33は、前記回転速度検出手段36で検出される回転速度および前記指令トルクに応じて、補正した指令電流を記録した指令電流補正マップ33bを有し、前記指令電流補正手段33は、前記補正実施判定部33aで前記条件を満足すると判定したとき、前記指令電流補正マップ33bに記録された補正した指令電流により前記各モータ6を制御しても良い。
 前記指令電流補正マップ33bは、試験やシミュレーション等の結果により定められる。
A rotation speed detection means 36 for detecting the rotation speed of each motor 6 is provided, and the command current correction means 33 provides a corrected command current according to the rotation speed detected by the rotation speed detection means 36 and the command torque. The command current correction map 33b has a recorded command current correction map 33b. When the command current correction means 33 determines that the condition is satisfied by the correction execution determination unit 33a, the command current correction map 33b uses the corrected command current recorded in the command current correction map 33b. The motors 6 may be controlled.
The command current correction map 33b is determined by the results of tests and simulations.
 この場合、指令電流補正手段33は、指令電流補正マップ33bに記録された補正した指令電流に従って各モータ6を制御することで、確実に左右のモータ6,6の出力トルクを同一にできる。よって、左右のモータ6,6の温度差に起因する車両の走行安定性の低下を抑制し得る。
 前記指令電流補正マップ33bを用いた制御の代わりに、指令トルクに対し、モータ温度と実際の出力トルクの関係近似式を事前に試験やシミュレーション等により求め、補正時、前記関係近似式から指令電流を補正しても良い。
In this case, the command current correction means 33 controls each motor 6 according to the corrected command current recorded in the command current correction map 33b, so that the output torques of the left and right motors 6 and 6 can be made equal. Therefore, it is possible to suppress a decrease in traveling stability of the vehicle due to a temperature difference between the left and right motors 6 and 6.
Instead of the control using the command current correction map 33b, a relational approximate expression between the motor temperature and the actual output torque is obtained in advance by a test, simulation, or the like for the command torque. May be corrected.
 前記指令電流補正手段33は、アクセル信号を低減する処理をしてから前記指令電流を補正しても良い。このように指令電流を補正する前にアクセル信号を低減する処理を行うことで、モータ6が温度上昇することを抑制することができる。これによりモータ6の負荷を低減することができる。 The command current correction means 33 may correct the command current after performing a process of reducing the accelerator signal. By performing the process of reducing the accelerator signal before correcting the command current in this way, it is possible to suppress the temperature increase of the motor 6. Thereby, the load of the motor 6 can be reduced.
 前記モータ6は、このモータ6と、前記駆動輪2を回転支持する車輪用軸受4と、前記モータ6の回転を減速して前記車輪用軸受4に伝える減速機7とを含むインホイールモータ駆動装置8を構成しても良い。前記インホイールモータ駆動装置8の場合、例えば、減速機7を介在させないモータ駆動装置よりもモータ6を高速回転する傾向が高まり、左右のモータ6,6の温度差に起因する車両の走行安定性の低下が懸念されるが、このようなモータ6の高速回転時においても左右のモータ6,6の出力トルクを同一トルクとすることで、左右のモータ6,6の温度差に起因する車両の走行安定性の低下を抑制することができる。
 前記車両は、前記左右のモータ6,6がそれぞれ車体1に搭載されるオンボード式の車両であっても良い。
The motor 6 includes an in-wheel motor drive including the motor 6, a wheel bearing 4 that rotatably supports the drive wheel 2, and a speed reducer 7 that decelerates the rotation of the motor 6 and transmits the rotation to the wheel bearing 4. The device 8 may be configured. In the case of the in-wheel motor drive device 8, for example, the motor 6 tends to rotate at a higher speed than the motor drive device that does not include the speed reducer 7, and the running stability of the vehicle due to the temperature difference between the left and right motors 6 and 6 is increased. However, even when the motor 6 rotates at a high speed, the output torque of the left and right motors 6 and 6 is set to the same torque, so that the vehicle caused by the temperature difference between the left and right motors 6 and 6 can be reduced. A decrease in running stability can be suppressed.
The vehicle may be an on-board type vehicle in which the left and right motors 6 and 6 are respectively mounted on the vehicle body 1.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or the drawings is included in the present invention. In particular, any combination of two or more of each claim in a claim is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付のクレーム(請求の範囲)によって定まる。添付図面において、複数の図面における同一の部品符号は同一部分を示す。
この発明の実施形態に係る車両である電気自動車を平面図で示す概念構成のブロック図である。 同電気自動車のインホイールモータ駆動装置の断面図である。 (a)、(b)は、同電気自動車のIPMモータの概念構成図である。 同電気自動車のインバータ装置等の概念構成のブロック図である。 同電気自動車のモータコントロール部の主要構成等を示すブロック図である。 同モータコントロール部の主要構成等を示すブロック図である。 モータ電流とモータ出力トルクとの関係をモータ温度毎に示す図である。 指令電流補正マップを示す図である。 指令電流の補正制御の判定を段階的に示すフローチャートである。 指令電流の補正制御の実施判定を表す図である。 (a)、(b)は、左右モータの指令電流の補正方法を概略説明する図である。 この発明の他の実施形態に係る車両の駆動制御装置のシステム構成を平面視で概略示す図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the present invention is defined by the appended claims (claims). In the accompanying drawings, the same component symbols in a plurality of drawings indicate the same parts.
It is a block diagram of the conceptual composition which shows the electric vehicle which is a vehicle concerning this embodiment by a top view. It is sectional drawing of the in-wheel motor drive device of the same electric vehicle. (A), (b) is a conceptual block diagram of the IPM motor of the electric vehicle. It is a block diagram of conceptual composition, such as an inverter device of the electric vehicle. It is a block diagram which shows the main structures etc. of the motor control part of the same electric vehicle. It is a block diagram which shows the main structures etc. of the motor control part. It is a figure which shows the relationship between a motor current and a motor output torque for every motor temperature. It is a figure which shows a command current correction map. It is a flowchart which shows determination of correction control of command current in steps. It is a figure showing execution judgment of amendment control of command current. (A), (b) is a figure which illustrates roughly the correction method of the command current of a left-right motor. It is a figure which shows schematically the system configuration | structure of the drive control apparatus of the vehicle which concerns on other embodiment of this invention by planar view.
 この発明の実施形態に係る車両の駆動制御装置を図1ないし図11と共に説明する。図1は、前記車両である電気自動車を平面図で示す概念構成のブロック図である。この電気自動車は、車体1の左右の後輪となる車輪2が駆動輪とされ、左右の前輪となる車輪3が従動輪の操舵輪とされた4輪の自動車である。駆動輪および従動輪となる車輪2,3は、いずれもタイヤを有し、それぞれ車輪用軸受4,5を介して車体1に回転支持されている。 A vehicle drive control apparatus according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram of a conceptual configuration showing the electric vehicle as the vehicle in a plan view. This electric vehicle is a four-wheeled vehicle in which the wheels 2 that are the left and right rear wheels of the vehicle body 1 are driving wheels, and the wheels 3 that are the left and right front wheels are steering wheels of driven wheels. Each of the wheels 2 and 3 serving as the driving wheel and the driven wheel has a tire and is rotatably supported by the vehicle body 1 via wheel bearings 4 and 5, respectively.
 車輪用軸受4,5は、図1にてハブベアリングの略称「H/B」を付してある。駆動輪となる左右の車輪2,2は、それぞれ独立の走行用のモータ6,6により駆動される。モータ6の回転は、減速機7および車輪用軸受4を介して車輪2に伝達される。これらモータ6、減速機7、および車輪用軸受4は、互いに一つの組立部品であるインホイールモータ駆動装置8を構成している。各車輪2,3には、電動式または液圧式のブレーキ9,10が設けられている。また左右の前輪となる操舵輪である車輪3,3は、転舵機構11を介して転舵可能であり、ハンドル等の操舵手段12により操舵される。 The wheel bearings 4 and 5 are abbreviated as “H / B” in FIG. The left and right wheels 2, 2 serving as driving wheels are driven by independent traveling motors 6, 6, respectively. The rotation of the motor 6 is transmitted to the wheel 2 via the speed reducer 7 and the wheel bearing 4. The motor 6, the speed reducer 7, and the wheel bearing 4 constitute an in-wheel motor drive device 8 that is one assembly part. Each wheel 2, 3 is provided with an electric or hydraulic brake 9, 10. Further, the wheels 3 and 3 which are the steering wheels which are the left and right front wheels can be steered via the steering mechanism 11 and are steered by a steering means 12 such as a steering wheel.
 図2は、インホイールモータ駆動装置の断面図である。各インホイールモータ駆動装置8は、それぞれ、モータ6、減速機7、および車輪用軸受4を有し、これらの一部または全体が車輪内に配置される。モータ6の回転は、減速機7および車輪用軸受4を介して駆動輪2に伝達される。車輪用軸受4のハブ輪4aのフランジ部にはブレーキ9を構成するブレーキロータBRが固定され、同ブレーキロータBRは駆動輪2と一体に回転する。モータ6は、例えば、ロータ6aのコア部に永久磁石が内蔵された埋込磁石型同期モータである。このモータ6は、ハウジングHSに固定したステータ6bと、回転出力軸KSに取り付けたロータ6aとの間にラジアルギャップを設けたモータである。 FIG. 2 is a cross-sectional view of the in-wheel motor drive device. Each in-wheel motor drive device 8 includes a motor 6, a speed reducer 7, and a wheel bearing 4, and a part or all of these are disposed in the wheel. The rotation of the motor 6 is transmitted to the drive wheel 2 via the speed reducer 7 and the wheel bearing 4. A brake rotor BR constituting the brake 9 is fixed to the flange portion of the hub wheel 4 a of the wheel bearing 4, and the brake rotor BR rotates integrally with the drive wheel 2. The motor 6 is, for example, an embedded magnet type synchronous motor in which a permanent magnet is built in the core portion of the rotor 6a. The motor 6 is a motor in which a radial gap is provided between a stator 6b fixed to the housing HS and a rotor 6a attached to the rotation output shaft KS.
 図3は、この電気自動車のIPMモータの概念構成図である。
 図3(a)に示すように、車輪を駆動するモータがIPMモータつまり埋込磁石型同期モータの場合は、磁石軸であるd軸方向よりそれと直交するq軸方向の磁気抵抗が小さくなるため、突極構造となり、d軸インダクタンスLdよりq軸インダクタンスLqが大きくなる。
 この突極性により、磁石トルクTm以外にリラクタンストルクTrが併用でき、高トルクおよび高効率とすることもできる。
 磁石トルクTm:回転子の永久磁石による磁界と巻線による回転子磁界と吸引反発して発生するトルクである。
 リラクタンストルクTr:巻線による回転磁界に回転子の突極部が吸引されて発生するトルクである。
FIG. 3 is a conceptual configuration diagram of the IPM motor of the electric vehicle.
As shown in FIG. 3A, when the motor driving the wheel is an IPM motor, that is, an embedded magnet type synchronous motor, the magnetic resistance in the q-axis direction orthogonal to the d-axis direction, which is the magnet axis, is smaller. Thus, a salient pole structure is formed, and the q-axis inductance Lq is larger than the d-axis inductance Ld.
Due to this saliency, reluctance torque Tr can be used in addition to magnet torque Tm, and high torque and high efficiency can be achieved.
Magnet torque Tm: Torque generated by attracting and repelling the magnetic field generated by the permanent magnet of the rotor and the rotor magnetic field generated by the winding.
Reluctance torque Tr: A torque generated when a salient pole portion of a rotor is attracted to a rotating magnetic field by a winding.
 モータが発生する総トルクは下記のようになる。
 T=p×{Ke×Iq+(Ld-Lq)×Id×Iq}=Tm+Tr
  p:極対数
 Ld:モータのd軸インダクタンス
 Lq:モータのq軸インダクタンス
 Ke:モータ誘起電圧定数実効値
The total torque generated by the motor is as follows.
T = p × {Ke × Iq + (Ld−Lq) × Id × Iq} = Tm + Tr
p: number of pole pairs Ld: d-axis inductance of motor Lq: q-axis inductance of motor Ke: effective value of motor induced voltage constant
 図3(b)に示すように、IPMモータに流す1次電流Iaを、トルク生成電流q軸電流Iqと、磁束生成電流d軸電流Idとに分離し、それぞれ独立に制御できるベクトル制御手法が周知である。
 Id=-Ia×sinβ
 Iq=Ia×cosβ
 β:電流進角
 ここでモータ電圧方程式は、次のように表される。
As shown in FIG. 3 (b), there is a vector control method in which the primary current Ia flowing through the IPM motor is separated into a torque generation current q-axis current Iq and a magnetic flux generation current d-axis current Id and can be controlled independently. It is well known.
Id = −Ia × sin β
Iq = Ia × cos β
β: Current advance angle Here, the motor voltage equation is expressed as follows.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
  ω:モータ角速度
 Ke:誘起電圧定数
 Id:d軸電流
 Iq:q軸電流
 Ld:d軸インダクタンス
 Lq:q軸インダクタンス
  R:電機子抵抗
  p:微分演算子
ω: motor angular velocity Ke: induced voltage constant Id: d-axis current Iq: q-axis current Ld: d-axis inductance Lq: q-axis inductance R: armature resistance p: differential operator
 永久磁石モータの3相コイルの各相に流れる3相モータ電流Iu,Iv,Iwを回転角度センサΘを用いてd軸およびq軸に流れる実際電流Id,Iqに変換する。
Figure JPOXMLDOC01-appb-M000002
The three-phase motor currents Iu, Iv, Iw flowing in the respective phases of the three-phase coil of the permanent magnet motor are converted into actual currents Id, Iq flowing in the d-axis and the q-axis using the rotation angle sensor Θ.
Figure JPOXMLDOC01-appb-M000002
 図4は、この電気自動車のインバータ装置等の概念構成のブロック図である。以後、図1も適宜参照しつつ説明する。この電気自動車は、自動車全般の制御を行う電気制御ユニットであるECU21と、このECU21の加減速指令に従って走行用のモータ6の制御を行うインバータ装置22とを有する。ECU21は、コンピュータとこれに実行されるプログラム、並びに各種の電子回路等で構成される。 FIG. 4 is a block diagram of a conceptual configuration of the inverter device and the like of this electric vehicle. Hereinafter, description will be made with reference to FIG. 1 as appropriate. The electric vehicle includes an ECU 21 that is an electric control unit that controls the entire vehicle, and an inverter device 22 that controls the traveling motor 6 in accordance with an acceleration / deceleration command of the ECU 21. The ECU 21 includes a computer, a program executed by the computer, various electronic circuits, and the like.
 ECU21は、機能別に大別すると一般制御部21aと力行・回生制御指令部21bとに分けられる。力行・回生制御指令部21bは、アクセル操作部16の出力する加速指令(駆動)と、ブレーキ操作部17の出力する減速指令(回生)と、操舵角センサSa(操舵角検出手段)の出力する旋回指令とから、左右輪2,2の走行用のモータ6,6に与える加速・減速指令を指令トルクとして生成し、インバータ装置22へ出力する。 The ECU 21 is roughly divided into a general control unit 21a and a power running / regenerative control command unit 21b. The power running / regeneration control command unit 21b outputs an acceleration command (drive) output from the accelerator operation unit 16, a deceleration command (regeneration) output from the brake operation unit 17, and a steering angle sensor Sa (steering angle detection means). From the turning command, an acceleration / deceleration command to be given to the traveling motors 6, 6 for the left and right wheels 2, 2 is generated as a command torque and output to the inverter device 22.
 力行・回生制御指令部21bは、前記の他に、出力する加速・減速指令を、各車輪2,3(図1)の例えば車輪用軸受4,5(図1)に設けられた回転センサ4a、5a(図1)から得られるタイヤ回転数の情報や、車載の各センサの情報を用いて補正する機能を有していても良い。
 力行・回生制御指令部21bは、力行・回生の切換えを行うための指令フラグを、モータコントロール部29のトルク制御手段30に与える。
In addition to the above, the power running / regenerative control command unit 21b outputs an acceleration / deceleration command to be output, for example, to the rotation sensors 4a provided on the wheel bearings 4, 5 (FIG. 1) of the wheels 2, 3 (FIG. 1). 5a (FIG. 1) may have a function of correcting using information on the tire rotation speed obtained from 5a (FIG. 1) and information on each vehicle-mounted sensor.
The power running / regeneration control command unit 21 b gives a command flag for switching between power running and regeneration to the torque control means 30 of the motor control unit 29.
 アクセル操作部16は、アクセルペダル16aと、このアクセルペダル16aの踏込み量を検出して加速指令を出力するセンサ16bとを有する。ブレーキ操作部17は、ブレーキペダル17aと、このブレーキペダル17aの踏込み量を検出して減速指令を出力するセンサ17bとを有する。
 一般制御部21aは、ブレーキ操作部17の出力する減速指令をブレーキコントローラ23へ出力する機能、各種の補機システム31(図1)を制御する機能、例えばコンソールの操作パネル等からの入力指令を処理する機能、および表示手段32(図1)に表示を行わせる機能等を有する。前記補機システム31は、例えば、エアコン、ライト、ワイパー、GPS,エアバック等である。
The accelerator operation unit 16 includes an accelerator pedal 16a and a sensor 16b that detects an amount of depression of the accelerator pedal 16a and outputs an acceleration command. The brake operation unit 17 includes a brake pedal 17a and a sensor 17b that detects a depression amount of the brake pedal 17a and outputs a deceleration command.
The general control unit 21a outputs a deceleration command output from the brake operation unit 17 to the brake controller 23, a function to control various auxiliary machine systems 31 (FIG. 1), for example, an input command from a console operation panel or the like. A function of processing, a function of causing the display means 32 (FIG. 1) to perform display, and the like. The auxiliary machine system 31 is, for example, an air conditioner, a light, a wiper, GPS, an air bag, or the like.
 インバータ装置22は、各モータ6に対して設けられたパワー回路部28と、このパワー回路部28を制御するモータコントロール部29とを有する。インバータ装置22は、図示しないが、各モータ6毎にそれぞれ設けられている。モータコントロール部29は、各パワー回路部28に対して共通して設けられていても、別々に設けられていても良い。モータコントロール部29が各パワー回路部28に対して共通して設けられた場合であっても、左右のモータ6,6のトルクが互いに異なるように独立して制御可能なものとされる。モータコントロール部29は、このモータコントロール部29が持つインホイールモータ駆動装置8に関する各検出値や制御値等の各情報をECU21に出力する機能を有する。 The inverter device 22 includes a power circuit unit 28 provided for each motor 6 and a motor control unit 29 that controls the power circuit unit 28. Although not shown, the inverter device 22 is provided for each motor 6. The motor control unit 29 may be provided in common for each power circuit unit 28 or may be provided separately. Even when the motor control unit 29 is provided in common for each power circuit unit 28, the left and right motors 6 and 6 can be controlled independently so that the torques of the motors 6 and 6 are different from each other. The motor control unit 29 has a function of outputting information such as detection values and control values related to the in-wheel motor drive device 8 included in the motor control unit 29 to the ECU 21.
 パワー回路部28は、バッテリ19の直流電力をモータ6の力行および回生に用いる3相の交流電力に変換するインバータ28aと、このインバータ28aを制御するPWMドライバ28bとを有する。
 モータ6は、3相の同期モータである。このモータ6には、同モータ6のロータ6a(図2)の電気角としての回転角度を検出する回転角度検出手段36が設けられている。インバータ28aは、複数の半導体スイッチング素子で構成され、PWMドライバ28bは、入力された電流指令をパルス幅変調し、前記各半導体スイッチング素子にオンオフ指令を与える。
The power circuit unit 28 includes an inverter 28a that converts the DC power of the battery 19 into three-phase AC power used for powering and regeneration of the motor 6, and a PWM driver 28b that controls the inverter 28a.
The motor 6 is a three-phase synchronous motor. The motor 6 is provided with a rotation angle detecting means 36 for detecting a rotation angle as an electrical angle of the rotor 6a (FIG. 2) of the motor 6. The inverter 28a is composed of a plurality of semiconductor switching elements, and the PWM driver 28b performs pulse width modulation on the input current command and gives an on / off command to each of the semiconductor switching elements.
 モータコントロール部29は、プロセッサを有するコンピュータ、前記プロセッサで実行されるプログラムを有するROM、およびRAMなどの電子回路により構成され、その基本となる制御部としてトルク制御手段30を有している。トルク制御手段30は、上位制御手段であるECU21から与えられる指令トルクによる加速(力行)・減速(回生)指令に従い、電流指令に変換して、パワー回路部28のPWMドライバ28bに電流指令を与える。加速・減速の切換えは、ECU21の力行・回生制御指令部21bからの指令フラグにより行う。 The motor control unit 29 is configured by an electronic circuit such as a computer having a processor, a ROM having a program executed by the processor, and a RAM, and has a torque control means 30 as a basic control unit. The torque control means 30 converts it into a current command in accordance with an acceleration (power running) / deceleration (regeneration) command based on a command torque given from the ECU 21 which is the host control means, and gives a current command to the PWM driver 28b of the power circuit unit 28. . Switching between acceleration and deceleration is performed by a command flag from the power running / regenerative control command unit 21b of the ECU 21.
 トルク制御手段30は、力行制御部30aと回生制御部30bとを有し、前記指令フラグにより、力行制御部30aおよび回生制御部30bのいずれか一方が選択される。前記指令フラグにより、力行制御部30aが選択された場合、力行制御部30aは、アクセルペダル16aの踏込み量が大きくなる程、力行指令トルクを増加させる。前記指令フラグにより、回生制御部30bが選択された場合、回生制御部30bは、ブレーキペダル17aの踏込み量が大きくなる程、回生指令トルクを増加させる。 The torque control means 30 has a power running control unit 30a and a regeneration control unit 30b, and either the power running control unit 30a or the regeneration control unit 30b is selected by the command flag. When the power running control unit 30a is selected by the command flag, the power running control unit 30a increases the power running command torque as the depression amount of the accelerator pedal 16a increases. When the regeneration control unit 30b is selected by the command flag, the regeneration control unit 30b increases the regeneration command torque as the amount of depression of the brake pedal 17a increases.
 トルク制御手段30は、ECU21から与えられる指令トルクおよび指令フラグにより、予め設定したトルクマップを用いて、モータ6への指令電流を生成する。トルク制御手段30は、モータ6に印加する駆動電流を電流検出手段Sbで得た実際の検出値と、指令電流とを一致させるために、モータ6をPI制御で制御する。 The torque control means 30 generates a command current to the motor 6 using a preset torque map based on the command torque and command flag given from the ECU 21. The torque control means 30 controls the motor 6 by PI control so that the actual detection value obtained by the current detection means Sb for the drive current applied to the motor 6 matches the command current.
 この電気自動車の駆動制御装置は、モータ温度検出手段Scと、操舵角検出手段である操舵角センサSaと、指令電流補正手段33とを備えている。指令電流補正手段33は後述する補正実施判定部33aと指令電流補正マップ33bを有する。
 モータ温度検出手段Scは、左右のモータ6,6の温度をそれぞれ検出する手段である。図2に示すように、各モータ6のステータ6bにおける、例えば、モータコイルにモータ温度検出手段Scが設けられる。このモータ温度検出手段Scとして、例えば、サーミスタが用いられる。このサーミスタをモータコイルに接触固定することで、モータ6の温度を検出し得る。
The drive control apparatus for an electric vehicle includes motor temperature detection means Sc, steering angle sensor Sa as steering angle detection means, and command current correction means 33. The command current correction means 33 has a correction execution determination unit 33a and a command current correction map 33b described later.
The motor temperature detection means Sc is a means for detecting the temperatures of the left and right motors 6 and 6, respectively. As shown in FIG. 2, in the stator 6b of each motor 6, the motor temperature detection means Sc is provided in the motor coil, for example. As the motor temperature detection means Sc, for example, a thermistor is used. The temperature of the motor 6 can be detected by fixing the thermistor to the motor coil.
 操舵角センサSaは、この電気自動車の例えばステアリングホイールの回転角度である操舵角を検出する。この電気自動車の旋回時には、旋回内側輪に比べて旋回外側輪の方が高負荷・高回転となるため、電気自動車の略直進走行時に本制御を実行する。この電気自動車が略直進走行時であるか否かを判定するために、操舵角センサSaにより操舵角を検出する。
 指令電流補正手段33は、モータコントロール部29に設けられ、後述する条件を満足するとき、トルク制御手段30に与えられる指令トルクに対し、左右のモータ6,6からそれぞれ出力される出力トルクが同一トルクとなるように指令電流を補正する。
The steering angle sensor Sa detects a steering angle that is a rotation angle of, for example, a steering wheel of the electric vehicle. When the electric vehicle is turning, the outer turning wheel has a higher load and higher rotation than the inner turning wheel, so this control is executed when the electric vehicle is traveling substantially straight. In order to determine whether or not the electric vehicle is traveling substantially straight, a steering angle is detected by a steering angle sensor Sa.
The command current correction means 33 is provided in the motor control unit 29, and when the conditions described later are satisfied, the output torque output from the left and right motors 6 and 6 is the same as the command torque given to the torque control means 30. The command current is corrected so that the torque is obtained.
 図5はモータコントロール部29の主要構成等を示すブロック図である。
 モータコントロール部29は、モータ駆動電流を制御する手段であって、トルク指令部34を含む。このトルク指令部34は、モータコントロール部29におけるトルク制御手段30に設けられる。トルク指令部34は、モータ6に印加する駆動電流を電流検出手段Sbで検出した検出値と、ECU21の力行・回生制御指令部21bで生成した加速・減速指令による指令トルクを前記トルクマップを用いて、相応の指令電流を生成する。指令電流の方向は、前記指令フラグにより切換えられる。
FIG. 5 is a block diagram showing a main configuration and the like of the motor control unit 29.
The motor control unit 29 is a means for controlling the motor drive current, and includes a torque command unit 34. The torque command unit 34 is provided in the torque control unit 30 in the motor control unit 29. The torque command unit 34 uses the torque map based on the detected value detected by the current detection means Sb for the drive current applied to the motor 6 and the command torque based on the acceleration / deceleration command generated by the power running / regenerative control command unit 21b of the ECU 21. Thus, a corresponding command current is generated. The direction of the command current is switched by the command flag.
 トルク制御手段30は、モータ6のロータ6a(図2)の回転角を回転角度センサ36から得て、ベクトル制御を行う。ここで車体の左右の後輪2,2(図1)に設けられたモータ6,6は、力行時と回生時とでトルク発生方向が互いに異なる。このモータ6をこの出力軸の方向から見ると、左側の後輪駆動用のモータ6はCW方向のトルクを発生し、右側の後輪駆動用のモータ6はCCW方向のトルクが発生する(左、右側は車両後ろから見る方向で決定される)。左、右側のモータ6,6でそれぞれ発生したトルクは、減速機7および車輪用軸受4を介して、トルク方向を反転し、タイヤに伝達される。また、左、右タイヤのモータ6における回生時のトルク発生方向は、力行時のトルク発生方向と異なっている。 The torque control means 30 obtains the rotation angle of the rotor 6a (FIG. 2) of the motor 6 from the rotation angle sensor 36 and performs vector control. Here, the motors 6 and 6 provided on the left and right rear wheels 2 and 2 (FIG. 1) of the vehicle body have different torque generation directions during power running and during regeneration. When the motor 6 is viewed from the direction of the output shaft, the left rear wheel driving motor 6 generates torque in the CW direction, and the right rear wheel driving motor 6 generates torque in the CCW direction (left The right side is determined by the direction seen from the rear of the vehicle). Torques generated by the left and right motors 6 and 6 are transmitted to the tire by reversing the torque direction via the speed reducer 7 and the wheel bearing 4. Further, the direction of torque generation during regeneration in the motor 6 for the left and right tires is different from the direction of torque generation during power running.
 前記トルクマップに関しては、アクセル信号とモータ回転数とに応じて、最大トルク制御テーブルから、相応な指令トルクを算出する。トルク指令部34は、算出された前記指令トルクに基づき、モータ6の1次電流(Ia)と電流進角(β)を生成する。トルク指令部34は、これら1次電流(Ia)と電流進角(β)の値に基づき、d軸電流(界磁成分)O_Idと、q軸電流O_Iqの二つの指令電流を生成する。 For the torque map, a corresponding command torque is calculated from the maximum torque control table according to the accelerator signal and the motor speed. The torque command unit 34 generates a primary current (Ia) and a current advance angle (β) of the motor 6 based on the calculated command torque. The torque command unit 34 generates two command currents, a d-axis current (field component) O_Id and a q-axis current O_Iq, based on the values of the primary current (Ia) and the current advance angle (β).
 電流PI制御部35は、トルク指令部34から出力されたd軸電流O_Id、q軸電流O_Iqの値と、モータ電流および回転子角度から3相・2相変換部37で計算された2相電流Id,Iqとから、PI制御による電圧値による制御量Vd,Vqを算出する。3相・2相変換部37では、電流検出手段Sbで検出されたモータ6のu相電流(Iu)とw相電流(Iw)の検出値から、次式Iv=-(Iu+Iw)で求められるv相電流(Iv)を算出し、Iu,Iv,Iwの3相電流からId,Iqの2相電流に変換する。 The current PI control unit 35 is a two-phase current calculated by the three-phase / two-phase conversion unit 37 from the values of the d-axis current O_Id and q-axis current O_Iq output from the torque command unit 34 and the motor current and the rotor angle. Control amounts Vd and Vq based on voltage values by PI control are calculated from Id and Iq. The three-phase / two-phase conversion unit 37 obtains the following formula Iv = − (Iu + Iw) from the detected values of the u-phase current (Iu) and the w-phase current (Iw) of the motor 6 detected by the current detection means Sb. A v-phase current (Iv) is calculated and converted from a three-phase current of Iu, Iv, and Iw to a two-phase current of Id and Iq.
 この変換に使われるモータ6の回転子角度は、回転角度センサ36から取得する。2相・3相変換部38は、入力された2相の制御量Vd,Vqと、回転子角度とから、3相のPWMデューティーVu,Vv,Vwに変換する。電力変換部39は、PWMデューティーVu,Vv,Vwに従ってインバータ28a(図4)をPWM制御し、モータ6を駆動する。 The rotor angle of the motor 6 used for this conversion is acquired from the rotation angle sensor 36. The two-phase / three-phase converter 38 converts the input two-phase control amounts Vd, Vq and the rotor angle into three-phase PWM duties Vu, Vv, Vw. The power converter 39 performs PWM control of the inverter 28a (FIG. 4) according to the PWM duties Vu, Vv, and Vw, and drives the motor 6.
 指令電流補正手段33は、モータ温度検出手段Scで検出される左右のモータ6,6の温度差ΔTが閾値以上で、且つ、操舵角センサSa(図4)で検出される操舵角が設定値以下の条件を満足するか否かを判定する。指令電流補正手段33は、前記条件を満足するとき、トルク制御手段30に与えられる指令トルクに対し、左右のモータ6,6からそれぞれ出力される出力トルクが同一トルクとなるように指令電流を補正する。 The command current correction means 33 is such that the temperature difference ΔT between the left and right motors 6 and 6 detected by the motor temperature detection means Sc is not less than a threshold value, and the steering angle detected by the steering angle sensor Sa (FIG. 4) is a set value. It is determined whether or not the following conditions are satisfied. The command current correcting means 33 corrects the command current so that the output torques output from the left and right motors 6 and 6 are the same as the command torque given to the torque control means 30 when the above conditions are satisfied. To do.
 図6は、指令電流補正手段33等を示すブロック図である。指令電流補正手段33は、補正実施判定部33aと、指令電流補正マップ33bとを有する。補正実施判定部33aには、モータ温度検出手段Sc(図4)で検出される左右のモータ6,6(図1)の温度T1,T2が入力され、操舵角センサSa(図4)で検出される操舵角θが入力される。補正実施判定部33aは、入力される温度T1,T2の温度差ΔTが閾値以上で、且つ、操舵角θが設定値以下の条件を満足するか否かを判定する。 FIG. 6 is a block diagram showing the command current correction means 33 and the like. The command current correction unit 33 includes a correction execution determination unit 33a and a command current correction map 33b. The correction execution determination unit 33a receives the temperatures T1 and T2 of the left and right motors 6 and 6 (FIG. 1) detected by the motor temperature detection means Sc (FIG. 4), and is detected by the steering angle sensor Sa (FIG. 4). The steering angle θ is input. The correction execution determination unit 33a determines whether or not the temperature difference ΔT between the input temperatures T1 and T2 satisfies a condition that is equal to or greater than a threshold value and the steering angle θ is equal to or less than a set value.
 ところで、左右のモータ6,6(図1)の温度差が無ければ、指令電流とモータ6の出力トルクとの関係は一義的に定められる。図7は、モータ電流とモータ出力トルクとの関係をモータ温度毎に示す図である。左右のモータ6,6(図1)の温度差があれば、指令電流とモータ出力トルクとの関係は温度毎つまりモータ毎に異なる。左右のモータ6,6(図1)に同一の指令トルクを与えた場合、モータ温度が上がる程出力トルクが減少する。 By the way, if there is no temperature difference between the left and right motors 6 and 6 (FIG. 1), the relationship between the command current and the output torque of the motor 6 is uniquely determined. FIG. 7 is a diagram illustrating the relationship between the motor current and the motor output torque for each motor temperature. If there is a temperature difference between the left and right motors 6 and 6 (FIG. 1), the relationship between the command current and the motor output torque is different for each temperature, that is, for each motor. When the same command torque is applied to the left and right motors 6 and 6 (FIG. 1), the output torque decreases as the motor temperature increases.
 すなわちモータ温度が上昇すると、モータ効率が低下する。なぜならば、コイルに電流が流れることによりモータステータが発熱する。また抵抗が大きくなり、消費電力が上昇するためである。
 モータ温度が上昇すると、減速機効率が低下する。なぜならば、モータ温度が上昇すると、減速機損失が増加するため減速機伝達効率が低下し、車両の動力性能が低下するからである。
 以上の原因により、左右のモータ6,6(図1)に同一の指令トルクを与えた場合、モータ温度が上がる程出力トルクが減少する。
That is, when the motor temperature rises, the motor efficiency decreases. This is because the motor stator generates heat when a current flows through the coil. Further, the resistance increases and the power consumption increases.
When the motor temperature rises, the speed reducer efficiency decreases. This is because when the motor temperature rises, the reduction gear loss increases, the reduction gear transmission efficiency decreases, and the power performance of the vehicle decreases.
For the above reasons, when the same command torque is applied to the left and right motors 6 and 6 (FIG. 1), the output torque decreases as the motor temperature increases.
 そこで、図6に示すように、指令電流補正手段33は、補正実施判定部33aで前記条件を満足すると判定したとき、指令電流補正マップ33bに記録された補正した指令電流により各モータ6,6(図1)を制御する。指令電流補正マップ33bには、モータ温度検出手段Scで検出される左右のモータ6,6(図1)の温度T1,T2、ECU21(図4)からの指令トルク、および回転速度検出手段である回転角度センサ36(図4)で検出される各モータ6の回転速度ωがそれぞれ入力される。 Therefore, as shown in FIG. 6, when the command current correction unit 33 determines that the condition is satisfied by the correction execution determination unit 33 a, each of the motors 6, 6 is determined based on the corrected command current recorded in the command current correction map 33 b. (FIG. 1) is controlled. The command current correction map 33b includes temperature T1 and T2 of the left and right motors 6 and 6 (FIG. 1) detected by the motor temperature detection means Sc, command torque from the ECU 21 (FIG. 4), and rotation speed detection means. The rotational speed ω of each motor 6 detected by the rotation angle sensor 36 (FIG. 4) is input.
 図8は、指令電流補正マップ33bを示す図である。この指令電流補正マップ33bには、モータ回転速度ω_0,ω_1,…,ω_mおよび指令トルクTrq_0,Trq_1,…,Trq_nに応じて、補正した指令電流が記録されている。またモータ温度一定間隔毎(例えば、5度、10度、…180度)に複数の指令電流補正マップ33bを備えている。 FIG. 8 is a diagram showing a command current correction map 33b. In this command current correction map 33b, the command current corrected according to the motor rotation speeds ω_0, ω_1,..., Ω_m and the command torques Trq_0, Trq_1,. Further, a plurality of command current correction maps 33b are provided at regular intervals of the motor temperature (for example, 5 degrees, 10 degrees,... 180 degrees).
 図9は、指令電流の補正制御の判定を段階的に示すフローチャートである。以後図5,6も適宜参照しつつ説明する。補正実施判定部33aは、左モータ6の温度T1から右モータ6の温度T2を減じた値の絶対値が、温度閾値A以上か否かを判定する(条件(1):ステップS1)。否との判定(ステップS1:NO)で、補正実施判定部33aは、温度T1から温度T2を減じた値の絶対値が、温度閾値B以下か否かを判定する(ステップS2)。但し、前記温度閾値A>前記温度閾値Bであり、さらに温度閾値Aと温度閾値Bとは、例えば約10度以上の差を有する。 FIG. 9 is a flowchart showing step-by-step determination of command current correction control. Hereinafter, description will be made with reference to FIGS. The correction execution determination unit 33a determines whether or not the absolute value of the value obtained by subtracting the temperature T2 of the right motor 6 from the temperature T1 of the left motor 6 is equal to or higher than the temperature threshold A (condition (1): step S1). If the determination is NO (step S1: NO), the correction execution determination unit 33a determines whether the absolute value of the value obtained by subtracting the temperature T2 from the temperature T1 is equal to or lower than the temperature threshold B (step S2). However, the temperature threshold A> the temperature threshold B, and the temperature threshold A and the temperature threshold B have a difference of, for example, about 10 degrees or more.
 図10は、指令電流の補正制御の実施判定を表す図である。図9,図10に示すように、温度差が温度閾値B以下との判定で(ステップS2:YES)、指令電流補正制御を停止し、トルク制御手段30による制御のみに切り換える。温度差が温度閾値Bより大との判定で(ステップS2:NO)、ステップS1に戻る。このように補正実施判定部33aは、二つの温度閾値A,Bを定めて温度差のヒステリシス特性を持つ指令電流補正制御の実施判定を行っている。 FIG. 10 is a diagram showing the execution determination of the command current correction control. As shown in FIGS. 9 and 10, when it is determined that the temperature difference is equal to or less than the temperature threshold B (step S <b> 2: YES), the command current correction control is stopped and switched to only the control by the torque control means 30. If it is determined that the temperature difference is greater than the temperature threshold B (step S2: NO), the process returns to step S1. As described above, the correction execution determination unit 33a determines the execution of the command current correction control having the hysteresis characteristic of the temperature difference by setting the two temperature thresholds A and B.
 温度差ΔTが温度閾値A以上である、つまり左右のモータ6,6の温度差により駆動力がアンバランス状態であるかが判定される条件(1)を満足するとの判定(ステップS1:YES)で、補正実施判定部33aは、操舵角センサSa(図4)からの操舵角θが設定値a以下か否か、つまり車両が略直進走行時であるかを判定する(条件(2):ステップS3)。この条件(2)に満足しなければ(ステップS3:NO)、指令電流補正制御を停止し、トルク制御手段30による制御のみに切り換える。補正実施判定部33aは、条件(1)および条件(2)を満たすと(ステップS3:YES)、指令電流補正実施を許可する(ステップS4)。その後、ステップ1に戻る。指令電流補正を実施している間、このフォローを継続しており、温度差ΔTの条件(1)または操舵角の条件(2)のいずれかが満たさなくなったらトルク制御30による制御のみを行うようにする。 Determination that the temperature difference ΔT is equal to or greater than the temperature threshold A, that is, satisfies the condition (1) for determining whether the driving force is in an unbalanced state due to the temperature difference between the left and right motors 6 and 6 (step S1: YES). Thus, the correction execution determination unit 33a determines whether or not the steering angle θ from the steering angle sensor Sa (FIG. 4) is equal to or smaller than the set value a, that is, whether the vehicle is traveling substantially straight (condition (2): Step S3). If this condition (2) is not satisfied (step S3: NO), the command current correction control is stopped and only the control by the torque control means 30 is switched. The correction execution determination unit 33a permits execution of the command current correction (step S4) when the condition (1) and the condition (2) are satisfied (step S3: YES). Then, it returns to step 1. This follow is continued while the command current correction is performed, and only the control by the torque control 30 is performed when either the temperature difference ΔT condition (1) or the steering angle condition (2) is not satisfied. To.
 図11は、左右モータの指令電流の補正方法を概略説明する図である。
 図11(a)に示すように、例えば、左モータの温度が50℃、右モータの温度が50℃のとき、指令電流補正手段33(図6)は、左右のモータ6,6(図1)の温度差が温度閾値B以下と判定し、トルク制御手段30(図6)による制御のみを行う。この場合、トルク制御手段30(図6)は、左右モータ6,6(図1)への指令電流を補正することなくそのまま出力する。
FIG. 11 is a diagram schematically illustrating a method for correcting the command current of the left and right motors.
As shown in FIG. 11 (a), for example, when the temperature of the left motor is 50 ° C. and the temperature of the right motor is 50 ° C., the command current correction means 33 (FIG. 6) includes the left and right motors 6 and 6 (FIG. 1). ) Is determined to be equal to or less than the temperature threshold B, and only the control by the torque control means 30 (FIG. 6) is performed. In this case, the torque control means 30 (FIG. 6) outputs the command current to the left and right motors 6 and 6 (FIG. 1) without correction.
 図11(b)に示すように、例えば、左モータの温度が60℃、右モータの温度が90のとき、さらに操舵角が設定値より小さいとき、指令電流補正手段33(図6)は、アクセル信号を低減する処理をしてから指令電流を補正する。前記アクセル信号を低減する処理は、ECU21(図4)に入力される加速・減速指令を変更しないで、ECU21から与えられる指令トルクに対して制限を加える。 As shown in FIG. 11B, for example, when the temperature of the left motor is 60 ° C. and the temperature of the right motor is 90, and when the steering angle is smaller than the set value, the command current correction means 33 (FIG. 6) The command current is corrected after processing to reduce the accelerator signal. In the process of reducing the accelerator signal, the command torque supplied from the ECU 21 is limited without changing the acceleration / deceleration command input to the ECU 21 (FIG. 4).
 補正方法としては、左右のモータからの出力トルクを同一トルクとするため、温度の高いモータへの指令電流を温度の低いモータへの指令電流よりも大きくする。但し、温度の高いモータのさらなる温度上昇を抑えるため、指令電流補正手段33(図4)は、左右のモータへの指令トルクにそれぞれ制限を加えた後、指令電流を補正する。 As a correction method, in order to make the output torque from the left and right motors the same torque, the command current to the motor with high temperature is made larger than the command current to the motor with low temperature. However, in order to suppress further temperature rise of the motor having a high temperature, the command current correction means 33 (FIG. 4) corrects the command current after limiting the command torque to the left and right motors, respectively.
 以上説明した駆動制御装置によると、指令電流補正手段33は、補正実施判定部33aで条件(1)および条件(2)を満たすと判定されると、指令トルクに対し、左右のモータ6,6からそれぞれ出力される出力トルクが同一トルクとなるように指令電流を補正する制御を行う。このため、左右のモータ6,6の温度差に起因する車両の走行安定性の低下を抑制することができる。
 またこの制御によると、新たな装置を追加することなく、指令電流を補正するだけで左右のモータ6,6の出力トルクを同一にできるため、前述のオイル供給量を調節するための調節装置を必要とする従来技術等よりコスト低減を図ることができる。
According to the drive control apparatus described above, the command current correcting unit 33 determines that the correction execution determining unit 33a satisfies the conditions (1) and (2), and the left and right motors 6, 6 with respect to the command torque. To correct the command current so that the output torques respectively output from the motors become the same torque. For this reason, it is possible to suppress a decrease in running stability of the vehicle due to a temperature difference between the left and right motors 6 and 6.
Further, according to this control, the output torque of the left and right motors 6 and 6 can be made the same by correcting the command current without adding a new device. Cost reduction can be achieved compared with the conventional technology required.
 指令電流補正手段33により指令電流を補正しているとき、補正実施判定部33aで前記条件を満足しないと判定されると、指令電流補正手段33による前記指令電流の補正を停止し、トルク制御手段30による制御のみに切り換える。このようにトルク制御手段30による制御のみに切り換えると、左右のモータ効率を共に高めて電費の向上を図ることができる。 When the command current correction unit 33 corrects the command current, if the correction execution determination unit 33a determines that the condition is not satisfied, the command current correction unit 33 stops correcting the command current, and the torque control unit Only the control by 30 is switched. By switching to only the control by the torque control means 30 in this way, it is possible to improve both the left and right motor efficiency and improve the power consumption.
 指令電流補正手段33は、アクセル信号を低減する処理をしてから指令電流を補正する。このように指令電流を補正する前にアクセル信号を低減する処理を行うことで、モータ6が温度上昇することを抑制することができる。これによりモータ6の負荷を低減することができる。 The command current correcting means 33 corrects the command current after performing a process of reducing the accelerator signal. By performing the process of reducing the accelerator signal before correcting the command current in this way, it is possible to suppress the temperature increase of the motor 6. Thereby, the load of the motor 6 can be reduced.
 他の実施形態について説明する。
 以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
 図12に示すように、車両は、左右のモータ6,6がそれぞれ車体1に搭載されるオンボード式の車両であっても良い。車体1に搭載された左右のモータ6、6はそれぞれドライブシャフトDFを介して車輪用軸受4に連結されて、モータ6の回転を駆動輪2に伝達する。ドライブシャフトDFは車体1がバウンド/リバウンドしても等速に回転を駆動輪2に伝達できるように、その両端に等速ジョイントを備えている。
Another embodiment will be described.
In the following description, the same reference numerals are given to the portions corresponding to the matters described in the preceding forms in each embodiment, and the overlapping description is omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in advance unless otherwise specified. The same effect is obtained from the same configuration. Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.
As shown in FIG. 12, the vehicle may be an on-board vehicle in which left and right motors 6 and 6 are mounted on the vehicle body 1, respectively. The left and right motors 6, 6 mounted on the vehicle body 1 are connected to the wheel bearing 4 via the drive shaft DF, respectively, and transmit the rotation of the motor 6 to the drive wheel 2. The drive shaft DF includes constant velocity joints at both ends thereof so that rotation can be transmitted to the drive wheels 2 at a constant velocity even when the vehicle body 1 is bound / rebound.
 車両として、左右の前輪2輪を独立して駆動する2輪独立駆動車を適用しても良い。また車両として、左右の前輪2輪を独立して駆動し、左右の後輪2輪を独立して駆動する4輪独立駆動車を適用しても良い。
 インホイールモータ駆動装置においては、サイクロイド式の減速機、遊星減速機、2軸並行減速機、その他の減速機を適用可能であり、また、減速機を採用しない、所謂ダイレクトモータタイプであってもよい。
As the vehicle, a two-wheel independent drive vehicle that independently drives the left and right front wheels may be applied. Further, as the vehicle, a four-wheel independent drive vehicle that drives the left and right front wheels independently and drives the left and right rear wheels independently may be applied.
In an in-wheel motor drive device, a cycloid reducer, a planetary reducer, a two-axis parallel reducer, and other reducers can be applied, and even a so-called direct motor type that does not employ a reducer. Good.
 以上のとおり図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、添付の請求の範囲から定まるこの発明の範囲内のものと解釈される。 As described above, the preferred embodiments have been described with reference to the drawings. However, those skilled in the art will readily consider various changes and modifications within the obvious range by looking at the present specification. Accordingly, such changes and modifications are to be construed as within the scope of the present invention as defined by the appended claims.
1…車体
2…車輪(駆動輪)
4…車輪用軸受
6…モータ
7…減速機
8…インホイールモータ駆動装置
30…トルク制御手段
33…指令電流補正手段
33a…補正実施判定部
33b…指令電流補正マップ
Sa…操舵角センサ(操舵角検出手段)
Sc…モータ温度検出手段 
1 ... car body 2 ... wheel (drive wheel)
DESCRIPTION OF SYMBOLS 4 ... Wheel bearing 6 ... Motor 7 ... Reducer 8 ... In-wheel motor drive device 30 ... Torque control means 33 ... Command current correction means 33a ... Correction execution determination part 33b ... Command current correction map Sa ... Steering angle sensor (steering angle) Detection means)
Sc: Motor temperature detection means

Claims (7)

  1.  左右の駆動輪を個別に駆動する左右のモータを備える車両において、与えられる指令トルクに応じて前記各モータのトルクを指令電流により制御するトルク制御手段を有する車両の駆動制御装置であって、
     左右のモータの温度をそれぞれ検出するモータ温度検出手段と、
     前記車両の操舵角を検出する操舵角検出手段と、
     前記モータ温度検出手段で検出される左右のモータの温度差が閾値以上で、且つ、前記操舵角検出手段で検出される操舵角が設定値以下のとき、前記トルク制御手段に与えられる指令トルクに対し、左右のモータからそれぞれ出力される出力トルクが同一トルクとなるように前記指令電流を補正する指令電流補正手段と、
    を備えている車両の駆動制御装置。
    In a vehicle including left and right motors for individually driving left and right drive wheels, a vehicle drive control device having torque control means for controlling the torque of each motor with a command current in accordance with a given command torque,
    Motor temperature detection means for respectively detecting the temperature of the left and right motors;
    Steering angle detection means for detecting the steering angle of the vehicle;
    When the temperature difference between the left and right motors detected by the motor temperature detecting means is not less than a threshold value and the steering angle detected by the steering angle detecting means is not more than a set value, the command torque applied to the torque control means is On the other hand, command current correction means for correcting the command current so that the output torque output from the left and right motors is the same torque,
    A vehicle drive control device comprising:
  2.  請求項1記載の車両の駆動制御装置において、前記指令電流補正手段は、左右のモータの温度差が閾値以上か否かを判定し、且つ、前記閾値以上の判定で検出される操舵角が設定値以下の条件を満足するか否かを判定する補正実施判定部を有する車両の駆動制御装置。 2. The vehicle drive control device according to claim 1, wherein the command current correction means determines whether or not a temperature difference between left and right motors is equal to or greater than a threshold value, and sets a steering angle detected by the determination equal to or greater than the threshold value. A vehicle drive control device having a correction execution determination unit that determines whether or not a condition equal to or less than a value is satisfied.
  3.  請求項2記載の車両の駆動制御装置において、前記指令電流補正手段により前記指令電流を補正しているとき、前記補正実施判定部で前記条件を満足しないと判定されると、前記指令電流補正手段による前記指令電流の補正を停止し、前記トルク制御手段による制御のみに切り換える車両の駆動制御装置。 3. The vehicle drive control device according to claim 2, wherein when the command current is corrected by the command current correction unit, the command current correction unit is determined when the correction execution determination unit determines that the condition is not satisfied. A vehicle drive control device that stops the correction of the command current by and switches only to control by the torque control means.
  4.  請求項2または請求項3記載の車両の駆動制御装置において、各モータの回転速度を検出する回転速度検出手段を設け、前記指令電流補正手段は、前記回転速度検出手段で検出される回転速度および前記指令トルクに応じて、補正した指令電流を記録した指令電流補正マップを有し、前記指令電流補正手段は、前記補正実施判定部で前記条件を満足すると判定したとき、前記指令電流補正マップに記録された補正した指令電流により前記各モータを制御する車両の駆動制御装置。 4. The vehicle drive control device according to claim 2, further comprising: a rotation speed detection unit that detects a rotation speed of each motor, wherein the command current correction unit includes a rotation speed detected by the rotation speed detection unit, and A command current correction map that records a corrected command current according to the command torque is provided, and the command current correction unit includes the command current correction map when the correction execution determination unit determines that the condition is satisfied. A vehicle drive control device that controls each of the motors according to the corrected command current recorded.
  5.  請求項1ないし請求項4のいずれか1項に記載の車両の駆動制御装置において、前記指令電流補正手段は、アクセル信号を低減する処理をしてから前記指令電流を補正する車両の駆動制御装置。 5. The vehicle drive control apparatus according to claim 1, wherein the command current correction unit corrects the command current after performing a process of reducing an accelerator signal. 6. .
  6.  請求項1ないし請求項5のいずれか1項に記載の車両の駆動制御装置において、前記モータは、このモータと、前記駆動輪を回転支持する車輪用軸受と、前記モータの回転を減速して前記車輪用軸受に伝える減速機とを含むインホイールモータ駆動装置を構成する車両の駆動制御装置。 6. The vehicle drive control device according to claim 1, wherein the motor is configured to reduce the rotation of the motor, a wheel bearing that supports the drive wheel in rotation, and the motor. The vehicle drive control apparatus which comprises the in-wheel motor drive device containing the reduction gear transmitted to the said wheel bearing.
  7.  請求項1ないし請求項5のいずれか1項に記載の車両の駆動制御装置において、前記車両は、前記左右のモータがそれぞれ車体に搭載されるオンボード式の車両である車両の駆動制御装置。
     
     
    6. The vehicle drive control device according to claim 1, wherein the vehicle is an on-board type vehicle in which the left and right motors are mounted on a vehicle body.

PCT/JP2015/075305 2014-09-17 2015-09-07 Vehicle drive control device WO2016043077A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-188489 2014-09-17
JP2014188489A JP2016063587A (en) 2014-09-17 2014-09-17 Drive control device of vehicle

Publications (1)

Publication Number Publication Date
WO2016043077A1 true WO2016043077A1 (en) 2016-03-24

Family

ID=55533116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075305 WO2016043077A1 (en) 2014-09-17 2015-09-07 Vehicle drive control device

Country Status (2)

Country Link
JP (1) JP2016063587A (en)
WO (1) WO2016043077A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143978A1 (en) * 2019-01-08 2020-07-16 Bayerische Motoren Werke Aktiengesellschaft Device for calibrating two electric motors mounted on one axle in two-axle motor vehicles
WO2023223227A1 (en) * 2022-05-17 2023-11-23 Bsl Ch Ag Vehicle torque control mechanism

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151623A (en) * 2003-11-11 2005-06-09 Nissan Motor Co Ltd Behavior controller of electric vehicle
JP2007124832A (en) * 2005-10-28 2007-05-17 Toyota Motor Corp Drive force controller of electric vehicle
JP2009248689A (en) * 2008-04-03 2009-10-29 Toyota Motor Corp Driving force control device for vehicle
JP2012176643A (en) * 2011-02-25 2012-09-13 Ntn Corp Electric vehicle
JP2014093844A (en) * 2012-11-02 2014-05-19 Ntn Corp Electric-vehicle control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151623A (en) * 2003-11-11 2005-06-09 Nissan Motor Co Ltd Behavior controller of electric vehicle
JP2007124832A (en) * 2005-10-28 2007-05-17 Toyota Motor Corp Drive force controller of electric vehicle
JP2009248689A (en) * 2008-04-03 2009-10-29 Toyota Motor Corp Driving force control device for vehicle
JP2012176643A (en) * 2011-02-25 2012-09-13 Ntn Corp Electric vehicle
JP2014093844A (en) * 2012-11-02 2014-05-19 Ntn Corp Electric-vehicle control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143978A1 (en) * 2019-01-08 2020-07-16 Bayerische Motoren Werke Aktiengesellschaft Device for calibrating two electric motors mounted on one axle in two-axle motor vehicles
US11850949B2 (en) 2019-01-08 2023-12-26 Bayerische Motoren Werke Aktiengesellschaft Device for calibrating two electric motors mounted on one axle in two-axle motor vehicles
WO2023223227A1 (en) * 2022-05-17 2023-11-23 Bsl Ch Ag Vehicle torque control mechanism

Also Published As

Publication number Publication date
JP2016063587A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
JP4985956B2 (en) Electric motor control device
JP4879657B2 (en) Electric motor control device
US9855858B2 (en) Control device for electric vehicle
WO2015080021A1 (en) Control device for electric vehicle
US10017075B2 (en) Device for controlling electric automobile
WO2016052233A1 (en) Control device for electric vehicle
US9956890B2 (en) Device for controlling electric automobile
WO2016052234A1 (en) Control device for electric vehicle
WO2017018335A1 (en) Motor drive device
US9586484B2 (en) Electric-vehicle control device
JP2017017829A (en) Left-and-right wheel independent control device of electric automobile
WO2016043077A1 (en) Vehicle drive control device
JP2014093844A (en) Electric-vehicle control device
JP6772501B2 (en) Automobile
JP5259936B2 (en) Motor diagnostic device for electric vehicle
JP2016067147A (en) Electric car control device
JP2015154528A (en) Control device of electric automobile
JP6663724B2 (en) Electric motor device
JP2016220271A (en) Control device for electric vehicle
JP4702120B2 (en) Vehicle drive control device
JP2015035875A (en) Controller of electric vehicle
JP2014230384A (en) Control device of electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842188

Country of ref document: EP

Kind code of ref document: A1