WO2015080021A1 - Control device for electric vehicle - Google Patents

Control device for electric vehicle Download PDF

Info

Publication number
WO2015080021A1
WO2015080021A1 PCT/JP2014/080750 JP2014080750W WO2015080021A1 WO 2015080021 A1 WO2015080021 A1 WO 2015080021A1 JP 2014080750 W JP2014080750 W JP 2014080750W WO 2015080021 A1 WO2015080021 A1 WO 2015080021A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
power running
regenerative
command
motor
Prior art date
Application number
PCT/JP2014/080750
Other languages
French (fr)
Japanese (ja)
Inventor
李国棟
Original Assignee
Ntn株式会社
李国棟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 李国棟 filed Critical Ntn株式会社
Publication of WO2015080021A1 publication Critical patent/WO2015080021A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control device for an electric vehicle capable of realizing a more comfortable riding comfort.
  • An object of the present invention is to provide a control device for an electric vehicle capable of reducing a shock at the time of switching between power running control and regenerative control and shortening a braking distance.
  • the control apparatus for an electric vehicle of the present invention includes an ECU 21 that is an electric control unit that controls the entire vehicle, a power circuit unit 28 that includes an inverter 31 that converts DC power into AC power used to drive the motor 6 for traveling, and An inverter device 22 having a motor control unit 29 for controlling the power circuit unit 28 in accordance with a torque command from the ECU 21;
  • the motor control unit 29 uses power running control means 33a for power running control of the motor 6, regenerative control means 33b for regenerative control of the motor 6, and which of the power running control means 33a and the regeneration control means 33b is used.
  • FIG. 1 is a block diagram of a conceptual configuration showing an electric vehicle according to an embodiment of the present invention in a plan view. It is a block diagram of conceptual composition, such as an inverter device of the electric vehicle. It is a figure which shows the increase rate of the regeneration command torque per time at the time of switching to regeneration control. It is a figure which shows the relationship between the depression amount of a brake pedal, and the regeneration command torque increase rate. It is a figure which shows the increase rate of the power running command torque per time at the time of switching to power running control. It is a figure which shows the relationship between the depression amount of an accelerator pedal, and a power running command torque increase rate. It is a conceptual block diagram of the IPM motor of the same electric vehicle.
  • the wheel bearings 4 and 5 are abbreviated as “H / B” in FIG.
  • the left and right wheels 2, 2 serving as driving wheels are driven by independent traveling motors 6, 6, respectively.
  • the rotation of the motor 6 is transmitted to the wheel 2 via the speed reducer 7 and the wheel bearing 4.
  • the motor 6, the speed reducer 7, and the wheel bearing 4 constitute an in-wheel motor driving device 8 that is one assembly part, and the in-wheel motor driving device 8 is partially or entirely inside the wheel 2. Placed in.
  • the motor 6 is a synchronous or induction type AC motor.
  • the speed reducer 7 is a cycloid speed reducer, for example.
  • Each wheel 2, 3 is provided with an electric brake 9, 10. Further, the wheels 3 and 3 which are the steering wheels as the left and right front wheels can be steered via the steering mechanism 11 and are steered by the steering means 12.
  • the torque rotation speed control command unit 21a determines the left and right wheels from the acceleration command (drive) output from the accelerator operation means 16, the deceleration command (regeneration) output from the brake operation means 17, and the turning command from the steering means 12.
  • Each acceleration / deceleration command given to the traveling motors 6, 6 is generated as a torque command value and is output to the inverter device 22 of each motor 6.
  • the torque rotation speed control command section 21a outputs an acceleration / deceleration command to be output from a rotation sensor (not shown) provided on the wheel bearings 4 and 5 of the wheels 2 and 3, respectively. You may have the function corrected using the information of number, and the information of each vehicle-mounted sensor.
  • the power running / regeneration control command unit 21b gives a command flag for switching between power running / regeneration to a motor power running / regeneration control unit 33 of the motor control unit 29 described later.
  • Each inverter device 22 has a power circuit unit 28 provided for each motor 6 and a motor control unit 29 for controlling the power circuit unit 28. Although not shown, the inverter device 22 is provided for each motor, and there are two inverter devices in this embodiment.
  • the power circuit unit 28 includes an inverter 31 that converts the DC power of the battery 19 into three-phase AC power used for powering and regeneration of the motor 6, and a PWM driver 32 that controls the inverter 31.
  • the power running / regenerative command torque increase rate changing means 34 depends on the vehicle speed detected by the vehicle speed detecting means 37, the depression amount of the accelerator pedal 16a, and the depression amount of the brake pedal 17a when switching between the power running control and the regeneration control. Thus, the power running per hour or the increase rate of the regenerative command torque is varied.
  • FIG. 3 is a diagram showing an increase rate of the regenerative command torque per time when switching from power running control to regenerative control.
  • the vertical axis represents the regenerative command torque value
  • the horizontal axis represents time.
  • the power running / regenerative command torque increase rate changing means 34 keeps the regenerative command torque constant according to the vehicle speed detected by the vehicle speed detecting means 37 and the depression amount of the brake pedal 17a when switching from power running control to regenerative control. It is divided into several stages within the time (two stages in this figure).
  • FIG. 5 is a diagram showing an increase rate of the power running command torque per time when switching from the regeneration control to the power running control.
  • the vertical axis is the power running command torque value
  • the horizontal axis is the time.
  • the power running / regenerative command torque increase rate changing means 34 keeps the power running command torque constant according to the vehicle speed detected by the vehicle speed detecting means 37 and the depression amount of the accelerator pedal 16a when switching from regenerative control to power running control. It is divided into several stages within the time (two stages in this figure).
  • the powering command torque is increased at an increase rate A, for example, between t 0 and t 1 .
  • increase rate B > increase rate A.
  • t 0 time immediately after switching from regenerative control to power running control
  • t 1 time after several milliseconds elapse from time t 0
  • step 1 the power running / regenerative command torque increase rate changing means 34 increases the power running command torque from time t 0 to time t 1 immediately after switching to power running control at a rate of increase A more slowly than in step 2.
  • the shock caused by the backlash between the gears of the speed reducer 7 can be reduced.
  • FIG. 6 is a diagram showing the relationship between the amount of depression of the accelerator pedal 16a (horizontal axis) and the power running command torque increase rate (vertical axis) when switching from regenerative control to power running control.
  • the vehicle speed 1 is lower than the vehicle speed 2.
  • the power running / regeneration command torque increase rate changing means 34 increases the power running command torque increase rate as the amount of depression of the accelerator pedal 16a increases and the vehicle speed decreases when switching from regeneration control to power running control. As a result, the vehicle can be accelerated without delay.
  • FIG. 7A is a conceptual configuration diagram of an IPM motor of the electric vehicle.
  • the motor for driving the wheel is an IPM motor, that is, an embedded magnet type synchronous motor
  • the magnetic resistance in the q-axis direction orthogonal to the d-axis direction, which is the magnet axis, is smaller.
  • the q-axis inductance Lq is larger than the d-axis inductance Ld. Due to this saliency, reluctance torque Tr can be used in addition to magnet torque Tm, and high torque and high efficiency can be achieved.
  • Magnet torque Tm Torque generated by attracting and repelling the magnetic field generated by the permanent magnet of the rotor and the rotor magnetic field generated by the winding.
  • Reluctance torque Tr A torque generated when a salient pole portion of a rotor is attracted to a rotating magnetic field by a winding.
  • Ld d-axis inductance of motor
  • Lq q-axis inductance of motor
  • Ke effective value of motor induced voltage constant
  • a vector control method is known in which a primary current Ia flowing through an IPM motor is separated into a torque generation current q-axis current Iq and a magnetic flux generation current d-axis current Id and can be controlled independently.
  • the three-phase motor currents Iu, Iv, Iw flowing in the respective phases of the three-phase coil of the permanent magnet motor are converted into actual currents Id, Iq flowing in the d-axis and the q-axis using the detection value ⁇ of the rotation angle sensor 36.
  • the motor angular speed ⁇ is calculated from the detected value ⁇ of the rotation angle sensor 36 by the speed calculator 46 shown in FIG.
  • FIG. 8 is a block diagram focusing on the torque / rotation speed control system in the power running control means 33a or the regeneration control means 33b (FIG. 2) of the motor control unit 29 (FIG. 2) of this electric vehicle.
  • the power running control means 33a or the regeneration control means 33b is a means for controlling the motor drive current, and includes the torque command section 40 of FIG. 8, and in addition, a current PI control section 41, a three-phase / two-phase conversion section 42, A two-phase / three-phase converter 44 and a speed calculator 46 are included.
  • the torque command unit 40 includes a detection value obtained by detecting the drive current applied to the motor 6 by the current detection unit 43, and a torque command value by an acceleration / deceleration command generated by the torque rotation speed control command unit 21a of the ECU 21. From the torque map, a corresponding command current is generated. The direction of the command current is switched by a command flag given from the power running / regenerative control command unit 21b of the ECU 21. A torque command value is output from the ECU 21 with a sign indicating the direction of the command current.
  • the motor power running / regeneration control unit 33 (FIG. 2) of the inverter device 22 obtains the rotation angle of the rotor of the motor 6 from the rotation angle sensor 36 and performs vector control.
  • the motors 6 provided on the left and right rear wheels of the vehicle body have different torque generation directions both during power running and during regeneration. That is, when the motor 6 is viewed from the direction of the output shaft, for example, when the left rear wheel driving motor 6 generates torque in the CW direction, the right rear wheel driving motor 6 is in the CCW direction. Torque is generated (left and right sides are determined by the direction seen from the rear of the vehicle). The torques generated by the left and right motors 6 are in opposite directions as described above, and are transmitted to the tires via the speed reducer 7 and the wheel bearings 4. Further, the direction of torque generation during regeneration in the motor 6 for the left and right tires is different from the direction of torque generation during power running.
  • a corresponding torque command value is calculated according to the accelerator signal (acceleration command) and the rotation speed of the motor 6.
  • the torque command unit 40 generates a primary current (Ia) and a current advance angle ( ⁇ ) of the motor 6 based on the calculated torque command value. Based on the values of the primary current (Ia) and the current advance angle ( ⁇ ), the torque command unit 40 has two commands: a command value O_Id for the d-axis current (field component) and a command value O_Iq for the q-axis current. Generate current.
  • the current PI control unit 41 is calculated by the three-phase / two-phase conversion unit 42 from the values of the d-axis command current O_Id and q-axis command current O_Iq output from the torque command unit 40 and the motor current and the rotor angle. From the phase currents Id and Iq, control amounts Vdc and Vqc based on voltage values by PI control are calculated.
  • Iv ⁇ (Iu + Iw)
  • a phase current (Iv) is calculated and converted from a three-phase current of Iu, Iv, and Iw to a two-phase current of Id and Iq.
  • the rotor angle ⁇ of the motor 6 used for this conversion is acquired from the rotation angle sensor 36.
  • the two-phase / three-phase converter 44 converts the input two-phase control amounts Vdc, Vqc and the rotor angle into three-phase PWM duties Vu, Vv, Vw.
  • the power conversion unit 45 performs PWM control of the inverter 31 according to the PWM duties Vu, Vv, and Vw, and drives the motor 6.
  • the two-phase / three-phase conversion unit 44 and the power conversion unit 45 exist in the power circuit unit 28 of FIG.
  • FIG. 9 is a flowchart showing a control method when switching from power running control to regenerative control.
  • the power running / regenerative control command unit 21b determines whether or not the amount of depression of the accelerator pedal 16a is zero (step S1). When the depression amount of the accelerator pedal 16a is not zero (step S1: NO), the process returns to step S1. When the amount of depression of the accelerator pedal 16a is zero (step S1: YES), when a certain time has elapsed (step S2: YES), the power running / regenerative control command unit 21b sets the command flag to “1” (step S4). The command flag “1” is given to the motor power running / regeneration control unit 33.
  • step S2 If the depressing amount of the accelerator pedal 16a is zero and a certain time has not elapsed (step S2: NO), when the depressing amount of the brake pedal 17a is larger than zero (step S3: YES), the process proceeds to step S4 and power running / regeneration is performed.
  • the control command unit 21b sets the command flag to “1”.
  • step S3: NO when the depression amount of the brake pedal 17a is zero (step S3: NO), the process returns to step S2.
  • step S4 the power running / regenerative control switching control unit 33c switches from power running control to regenerative control by the command flag “1” (step S5).
  • the power running / regenerative command torque increase rate changing means 34 depends on the vehicle speed detected by the vehicle speed detecting means 37 and the depression amount of the brake pedal 17a when switching from power running control to regenerative control.
  • the regeneration command torque is given in several stages within a certain time.
  • FIG. 10 is a flowchart showing a control method when switching from regenerative control to power running control.
  • the power running / regenerative command torque increase rate changing means 34 determines whether or not the vehicle speed detected by the vehicle speed detecting means 37 is smaller than the vehicle speed threshold 1 (for example, 10 km / h) (step a1).
  • the vehicle speed threshold 1 is determined by a test, simulation, or the like, and is stored in the ROM 35 so as to be rewritable.
  • the power running / regenerative control command unit 21b determines whether or not the depression amount of the brake pedal 17a is zero (step a2).
  • the depression amount of the brake pedal 17a is not zero (step a2: NO)
  • the process returns to step a1.
  • step a3 is repeated until a predetermined time elapses (step a3: NO), and after a predetermined time elapses (step a3: YES), the power running / regenerative control command unit 21b sets the command flag to “0” (step a5) when the depression amount of the accelerator pedal 16a is larger than zero (step a4: YES).
  • the power running / regeneration control command unit 21 b gives the command flag “0” to the motor power running / regeneration control unit 33.
  • step a1 even when the vehicle speed is not smaller than the vehicle speed threshold 1 (step a1: NO), the process proceeds to step a5, and the power running / regenerative control command unit 21b sets the command flag to “0”. Thereafter, the power running / regenerative control switching control unit 33c switches from the regenerative control to the power running control by the command flag “0” (step a6). Thereafter, as described above, the power running / regenerative command torque increase rate changing means 34 changes the power running command according to the vehicle speed detected by the vehicle speed detecting means 37 and the depression amount of the accelerator pedal 16a when switching to power running control. Torque is given in several stages within a certain time.
  • the power running control means 33a increases the power running command torque as the amount of depression of the accelerator pedal 16a increases.
  • the regeneration control means 33b increases the regeneration command torque as the depression amount of the brake pedal 17a increases.
  • the power running / regenerative command torque increase rate changing means 34 changes the vehicle speed and the regeneration rate when switching between the power running control and the regenerative control based on the command flag from the ECU 21. Depending on the amount of depression of the accelerator pedal 16a or the amount of depression of the brake pedal 17a, the rate of increase in power running or regeneration command torque per hour is varied.
  • the power running or regenerative command torque is increased at an increase rate A, and in the second stage, it is increased at an increase rate B (increase rate B> increase rate A).
  • increase rate B increase rate B> increase rate A
  • the increase rate B in the second stage is larger than the increase rate A in the first stage, for example, the braking time can be shortened during braking, and thus the braking distance can be shortened.
  • the vehicle speed detecting means 37 may calculate the vehicle speed by differentiating the rotation angle detected by, for example, the rotation angle sensor 36 that detects the rotation angle of the wheel.
  • the power running or regenerative command torque value or the rate of increase (FIGS. 3 to 6) may be increased along a quadratic curve, for example.
  • the left and right rear wheels are drive wheels, but the present invention is not limited to this example.
  • the left and right front wheels may be drive wheels, the drive wheels may be driven by individual motors, and the left and right rear wheels may be driven wheels.
  • the present invention can be applied not only to the in-wheel motor type but also to an electric vehicle driven by a motor outside the wheel such as an on-board type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Provided is a control device for an electric vehicle, said device capable of reducing shock during a switch between powering control and regenerative control, and shortening a braking distance. A motor controller (29) of the control device for an electric vehicle includes a powering control means (33a), a regenerative control means (33b), and a powering/regenerative control switching controller (33c) that switches between using the powering control means (33a) and the regenerative control means (33b) using a command flag from an ECU (21). A speed detection means (37) is further provided, and a means (34) for changing the increase ratio of powering/regenerative command torque is provided to the motor controller (29), and differentiates the increase ratio per time period of the powering or regenerative command torque in response to the speed detected by the speed detection means (37), the depression amount of an accelerator pedal (16a), and the depression amount of a brake pedal (17a) during a switch between powering control and regenerative control that is based on the command flag from the ECU (21).

Description

電気自動車の制御装置Electric vehicle control device 関連出願Related applications
 本出願は、2013年11月28日出願の特願2013-245786の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2013-245786 filed on Nov. 28, 2013, which is incorporated herein by reference in its entirety.
 この発明は、例えば、車両の前輪2輪および後輪2輪のいずれか一方、もしくは4輪を駆動するインホイールモータ駆動装置を備えた電気自動車において、力行、回生の切換時のショックを低減し、より快適な乗り心地感を実現することができる電気自動車の制御装置に関する。 For example, in an electric vehicle including an in-wheel motor drive device that drives one of two front wheels and two rear wheels, or four wheels of a vehicle, the shock at the time of switching between power running and regeneration is reduced. The present invention relates to a control device for an electric vehicle capable of realizing a more comfortable riding comfort.
 従来、永久磁石モータの駆動をトルク電流および励磁電流に分けベクトル制御する電気自動車用永久磁石モータの制御装置が提案されている(特許文献1)。この制御装置は、力行と回生制動との切換時に、ベクトル制御におけるトルク電流の励磁電流に直交する成分の大きさを徐々に変更する。トルク電流の励磁電流に直交する成分の大きさを徐々に変更することで、モータ発生トルクが徐々に変化し、力行と回生制動の切換時におけるショックを軽減し得る。 Conventionally, there has been proposed a control device for a permanent magnet motor for an electric vehicle which performs vector control by dividing the drive of the permanent magnet motor into torque current and excitation current (Patent Document 1). This control device gradually changes the magnitude of the component orthogonal to the excitation current of the torque current in vector control when switching between power running and regenerative braking. By gradually changing the magnitude of the component of the torque current that is orthogonal to the excitation current, the motor-generated torque gradually changes, and the shock at the time of switching between power running and regenerative braking can be reduced.
特開2003-174702号公報JP 2003-174702 A
 従来技術では、トルク電流の励磁電流に直交する成分の大きさを徐々に変更するため、切換時間が延びると、制動距離が長くなる恐れがある。 In the prior art, since the magnitude of the component orthogonal to the excitation current of the torque current is gradually changed, if the switching time is extended, the braking distance may be increased.
 この発明の目的は、力行制御と回生制御との間の切換時のショックを低減すると共に、制動距離の短縮を図ることができる電気自動車の制御装置を提供することである。 An object of the present invention is to provide a control device for an electric vehicle capable of reducing a shock at the time of switching between power running control and regenerative control and shortening a braking distance.
 以下、この発明について、理解を容易にするために、便宜上実施形態の符号を参照して説明する。 Hereinafter, in order to facilitate understanding, the present invention will be described with reference to the reference numerals of the embodiments for convenience.
 この発明の電気自動車の制御装置は、車両全般を制御する電気制御ユニットであるECU21と、直流電力を走行用のモータ6の駆動に用いる交流電力に変換するインバータ31を含むパワー回路部28、および前記ECU21からのトルク指令に従って前記パワー回路部28を制御するモータコントロール部29を有するインバータ装置22とを備え、
 前記モータコントロール部29は、前記モータ6を力行制御する力行制御手段33aと、前記モータ6を回生制御する回生制御手段33bと、これら力行制御手段33aおよび前記回生制御手段33bのいずれを用いるかを前記ECU21からの指令フラグにより切換える力行・回生制御切換制御部33cとを有する電気自動車の制御装置であって、
 車速を検出する車速検出手段37と、
 前記モータコントロール部29に、前記ECU21からの指令フラグに基づく力行制御と回生制御との間の切換時に、前記車速検出手段37で検出される車速、および、アクセルペダル16aの踏込み量またはブレーキペダル17aの踏込み量に応じて、時間当たりの力行または回生指令トルクの増加率を異ならせる力行・回生指令トルク増加率変更手段34とを設けている。
The control apparatus for an electric vehicle of the present invention includes an ECU 21 that is an electric control unit that controls the entire vehicle, a power circuit unit 28 that includes an inverter 31 that converts DC power into AC power used to drive the motor 6 for traveling, and An inverter device 22 having a motor control unit 29 for controlling the power circuit unit 28 in accordance with a torque command from the ECU 21;
The motor control unit 29 uses power running control means 33a for power running control of the motor 6, regenerative control means 33b for regenerative control of the motor 6, and which of the power running control means 33a and the regeneration control means 33b is used. A control device for an electric vehicle having a power running / regenerative control switching control unit 33c that switches according to a command flag from the ECU 21,
Vehicle speed detecting means 37 for detecting the vehicle speed;
When the motor control unit 29 switches between power running control based on a command flag from the ECU 21 and regenerative control, the vehicle speed detected by the vehicle speed detecting means 37 and the depression amount of the accelerator pedal 16a or the brake pedal 17a Power running / regenerative command torque increase rate changing means 34 is provided for varying the power running per time or the increase rate of the regenerative command torque in accordance with the amount of stepping.
 この構成によると、力行制御手段33aは、アクセルペダル16aの踏込み量が大きくなる程、力行指令トルクを増加させる。回生制御手段33bは、ブレーキペダル17aの踏込み量が大きくなる程、回生指令トルクを増加させる。この力行または回生指令トルクを増加させるときの増加率につき、力行・回生指令トルク増加率変更手段34は、ECU21からの指令フラグに基づく力行制御と回生制御との間の切換時に、車速、アクセルペダル16aの踏込み量、およびブレーキペダル17aの踏込み量に応じて、時間当たりの力行または回生指令トルクの増加率を異ならせる。例えば、第1段階において、力行または回生指令トルクを増加率Aで増加させ、第2段階において、増加率Bで増加させる(増加率B>増加率A)。このように時間当たりの力行または回生指令トルクの増加率を異ならせることで、力行制御と回生制御との間の切換時のショックを低減することができる。第2段階における増加率Bを、第1段階における増加率Aよりも大きくすると、制動時間を縮めることができ、よって制動距離の短縮を図ることができる。 According to this configuration, the power running control means 33a increases the power running command torque as the amount of depression of the accelerator pedal 16a increases. The regeneration control means 33b increases the regeneration command torque as the depression amount of the brake pedal 17a increases. The power running / regeneration command torque increase rate changing means 34 changes the vehicle speed and the accelerator pedal when switching between the power running control and the regenerative control based on the command flag from the ECU 21 with respect to the increase rate when increasing the power running or the regenerative command torque. The rate of increase in power running or regenerative command torque per hour is varied according to the amount of depression of 16a and the amount of depression of brake pedal 17a. For example, in the first stage, the power running or regenerative command torque is increased at an increase rate A, and in the second stage, it is increased at an increase rate B (increase rate B> increase rate A). Thus, by changing the power running per time or the increase rate of the regeneration command torque, the shock at the time of switching between the power running control and the regeneration control can be reduced. If the increase rate B in the second stage is larger than the increase rate A in the first stage, the braking time can be shortened, and therefore the braking distance can be shortened.
 前記力行・回生指令トルク増加率変更手段34は、力行制御から回生制御へ切換時に、前記車速検出手段37で検出される車速、および、前記ブレーキペダル17aの踏込み量に応じて、回生指令トルクを一定時間内に数段階に分けて与えるものとしても良い。この場合、前記力行・回生指令トルク増加率変更手段34は、力行制御から回生制御へ切換時に、例えば、ブレーキペダル17aの踏込み量が大きくなる程、また、車速が高速になる程、回生指令トルクの増加率を大きくする。これにより、制動時間の短縮を図ることができる。 The power running / regenerative command torque increase rate changing means 34 changes the regeneration command torque according to the vehicle speed detected by the vehicle speed detecting means 37 and the depression amount of the brake pedal 17a when switching from power running control to regenerative control. It is good also as what gives in several steps within a fixed time. In this case, the power running / regenerative command torque increase rate changing means 34 changes the regenerative command torque as the amount of depression of the brake pedal 17a increases or the vehicle speed increases, for example, when switching from power running control to regenerative control. Increase the rate of increase. Thereby, shortening of braking time can be aimed at.
 前記力行・回生指令トルク増加率変更手段34は、回生制御から力行制御へ切換時に、前記車速検出手段37で検出される車速、および、前記アクセルペダル16aの踏込み量に応じて、力行指令トルクを一定時間内に数段階に分けて与えるものとしても良い。この場合、前記力行・回生指令トルク増加率変更手段34は、回生制御から力行制御へ切換時に、例えば、アクセルペダル16aの踏込み量が大きくなる程、また、車速が低速になる程、力行指令トルクの増加率を大きくする。これにより、車両を遅滞なく加速することができる。 The power running / regenerative command torque increase rate changing means 34 changes the power running command torque according to the vehicle speed detected by the vehicle speed detecting means 37 and the depression amount of the accelerator pedal 16a when switching from regenerative control to power running control. It is good also as what gives in several steps within a fixed time. In this case, the power running / regenerative command torque increase rate changing means 34 changes the power running command torque as the amount of depression of the accelerator pedal 16a increases or the vehicle speed decreases, for example, when switching from regenerative control to power running control. Increase the rate of increase. As a result, the vehicle can be accelerated without delay.
 前記モータ6は、車両の前輪3および後輪2のいずれか一方、または両方を駆動し、前記モータ6と車輪用軸受4と減速機7とを含むインホイールモータ駆動装置8を構成するものとしても良い。この場合、バネ下にインホイールモータ駆動装置を配置しているので、力行と回生制御の切換時におけるショックに対し敏感であるが、力行制御と回生制御との間の切換時に、減速機7の歯車間のバックラッシュなどに起因するショックを緩和することができる。 The motor 6 drives one or both of the front wheel 3 and the rear wheel 2 of the vehicle, and constitutes an in-wheel motor drive device 8 including the motor 6, the wheel bearing 4, and the speed reducer 7. Also good. In this case, since the in-wheel motor drive device is arranged under the spring, it is sensitive to a shock at the time of switching between the power running and the regenerative control, but at the time of switching between the power running control and the regenerative control, Shock caused by backlash between gears can be reduced.
 前記車速検出手段は、車輪の回転角を検出する回転角度センサであってもよい。この場合、検出された車輪の回転角を微分することにより車両速度を算出でき、部品点数の削減および低コスト化を実現できる。 The vehicle speed detection means may be a rotation angle sensor that detects a rotation angle of a wheel. In this case, the vehicle speed can be calculated by differentiating the detected rotation angle of the wheel, and the number of parts can be reduced and the cost can be reduced.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or the drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。 The present invention will be understood more clearly from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
この発明の一実施形態に係る電気自動車を平面図で示す概念構成のブロック図である。1 is a block diagram of a conceptual configuration showing an electric vehicle according to an embodiment of the present invention in a plan view. 同電気自動車のインバータ装置等の概念構成のブロック図である。It is a block diagram of conceptual composition, such as an inverter device of the electric vehicle. 回生制御へ切換時の時間当たりの回生指令トルクの増加率を示す図である。It is a figure which shows the increase rate of the regeneration command torque per time at the time of switching to regeneration control. ブレーキペダルの踏込み量と回生指令トルク増加率との関係を示す図である。It is a figure which shows the relationship between the depression amount of a brake pedal, and the regeneration command torque increase rate. 力行制御へ切換時の時間当たりの力行指令トルクの増加率を示す図である。It is a figure which shows the increase rate of the power running command torque per time at the time of switching to power running control. アクセルペダルの踏込み量と力行指令トルク増加率との関係を示す図である。It is a figure which shows the relationship between the depression amount of an accelerator pedal, and a power running command torque increase rate. 同電気自動車のIPMモータの概念構成図である。It is a conceptual block diagram of the IPM motor of the same electric vehicle. 周知のベクトル制御手法を説明する図である。It is a figure explaining a well-known vector control method. 同電気自動車のモータコントロール部のトルク・回転数制御系のブロック図である。It is a block diagram of the torque and rotation speed control system of the motor control unit of the electric vehicle. 力行制御から回生制御へ切換時の制御方法を示すフローチャートである。It is a flowchart which shows the control method at the time of switching from power running control to regeneration control. 回生制御から力行制御へ切換時の制御方法を示すフローチャートである。It is a flowchart which shows the control method at the time of switching from regenerative control to power running control.
 この発明の一実施形態に係る電気自動車の制御装置を図1ないし図10と共に説明する。以下の説明は、電気自動車の制御方法についての説明も含む。図1は、この実施形態に係る電気自動車を平面図で示す概念構成のブロック図である。この電気自動車は、車体1の左右の後輪となる車輪2が駆動輪とされ、左右の前輪となる車輪3が従動輪の操舵輪とされた4輪の自動車である。駆動輪および従動輪となる車輪2,3は、いずれもタイヤを有し、それぞれ車輪用軸受4,5を介して車体1に回転支持されている。 An electric vehicle control apparatus according to an embodiment of the present invention will be described with reference to FIGS. The following description also includes a description of a control method for the electric vehicle. FIG. 1 is a block diagram of a conceptual configuration showing the electric vehicle according to this embodiment in a plan view. This electric vehicle is a four-wheeled vehicle in which the wheels 2 that are the left and right rear wheels of the vehicle body 1 are driving wheels, and the wheels 3 that are the left and right front wheels are steering wheels of driven wheels. Each of the wheels 2 and 3 serving as the driving wheel and the driven wheel has a tire and is rotatably supported by the vehicle body 1 via wheel bearings 4 and 5, respectively.
 車輪用軸受4,5は、図1にてハブベアリングの略称「H/B」を付してある。駆動輪となる左右の車輪2,2は、それぞれ独立の走行用のモータ6,6により駆動される。モータ6の回転は、減速機7および車輪用軸受4を介して車輪2に伝達される。これらモータ6、減速機7、および車輪用軸受4は、互いに一つの組立部品であるインホイールモータ駆動装置8を構成しており、インホイールモータ駆動装置8は、一部または全体が車輪2内に配置される。モータ6は、同期型または誘導型の交流モータである。減速機7は例えばサイクロイド減速機からなる。各車輪2,3には、電動式のブレーキ9,10が設けられている。また左右の前輪となる操舵輪である車輪3,3は、転舵機構11を介して転舵可能であり、操舵手段12により操舵される。 The wheel bearings 4 and 5 are abbreviated as “H / B” in FIG. The left and right wheels 2, 2 serving as driving wheels are driven by independent traveling motors 6, 6, respectively. The rotation of the motor 6 is transmitted to the wheel 2 via the speed reducer 7 and the wheel bearing 4. The motor 6, the speed reducer 7, and the wheel bearing 4 constitute an in-wheel motor driving device 8 that is one assembly part, and the in-wheel motor driving device 8 is partially or entirely inside the wheel 2. Placed in. The motor 6 is a synchronous or induction type AC motor. The speed reducer 7 is a cycloid speed reducer, for example. Each wheel 2, 3 is provided with an electric brake 9, 10. Further, the wheels 3 and 3 which are the steering wheels as the left and right front wheels can be steered via the steering mechanism 11 and are steered by the steering means 12.
 図2は、同電気自動車のインバータ装置等の概念構成のブロック図であり、主に本実施形態の力行、回生制御について説明する際に使用する図である。この電気自動車は、自動車全般の制御を行う電気制御ユニットであるECU21と、このECU21の指令に従って走行用のモータ6の制御を行うインバータ装置22とを有する。ECU21は、コンピュータとこれに実行されるプログラム、並びに各種の電子回路等で構成される。ECU21は、トルク回転数制御指令部21aと、力行・回生制御指令部21bとを有する。 FIG. 2 is a block diagram of a conceptual configuration of an inverter device and the like of the electric vehicle, and is a diagram mainly used for explaining power running and regenerative control of the present embodiment. The electric vehicle includes an ECU 21 that is an electric control unit that controls the entire vehicle, and an inverter device 22 that controls the motor 6 for traveling in accordance with a command from the ECU 21. The ECU 21 includes a computer, a program executed by the computer, various electronic circuits, and the like. The ECU 21 includes a torque rotation speed control command unit 21a and a power running / regeneration control command unit 21b.
 トルク回転数制御指令部21aは、アクセル操作手段16の出力する加速指令(駆動)と、ブレーキ操作手段17の出力する減速指令(回生)と、操舵手段12からの旋回指令とから、左右輪の走行用のモータ6,6に与える各加速・減速指令をトルク指令値として生成し、各モータ6のインバータ装置22へ出力する。トルク回転数制御指令部21aは、前記の他に、出力する加速・減速指令を、各車輪2,3の車輪用軸受4,5に設けられた回転センサ(図示せず)から得られるタイヤ回転数の情報や、車載の各センサの情報を用いて補正する機能を有していても良い。力行・回生制御指令部21bは、力行・回生の切換えを行うための指令フラグを、後述するモータコントロール部29のモータ力行・回生制御部33に与える。 The torque rotation speed control command unit 21a determines the left and right wheels from the acceleration command (drive) output from the accelerator operation means 16, the deceleration command (regeneration) output from the brake operation means 17, and the turning command from the steering means 12. Each acceleration / deceleration command given to the traveling motors 6, 6 is generated as a torque command value and is output to the inverter device 22 of each motor 6. In addition to the above, the torque rotation speed control command section 21a outputs an acceleration / deceleration command to be output from a rotation sensor (not shown) provided on the wheel bearings 4 and 5 of the wheels 2 and 3, respectively. You may have the function corrected using the information of number, and the information of each vehicle-mounted sensor. The power running / regeneration control command unit 21b gives a command flag for switching between power running / regeneration to a motor power running / regeneration control unit 33 of the motor control unit 29 described later.
 アクセル操作手段16は、アクセルペダル16aと、このアクセルペダル16aの踏込み量を検出して前記加速指令を出力するセンサ16bとを有する。ブレーキ操作手段17は、ブレーキペダル17aと、このブレーキペダル17aの踏込み量を検出して前記減速指令を出力するセンサ17bとを有する。 The accelerator operation means 16 has an accelerator pedal 16a and a sensor 16b that detects the amount of depression of the accelerator pedal 16a and outputs the acceleration command. The brake operating means 17 includes a brake pedal 17a and a sensor 17b that detects the depression amount of the brake pedal 17a and outputs the deceleration command.
 各インバータ装置22は、各モータ6に対して設けられたパワー回路部28と、このパワー回路部28を制御するモータコントロール部29とを有する。インバータ装置22は、図示しないが、各モータ毎にそれぞれ設けられており、本実施形態では2つ存在している。パワー回路部28は、バッテリ19の直流電力をモータ6の力行および回生に用いる3相の交流電力に変換するインバータ31と、このインバータ31を制御するPWMドライバ32とを有する。 Each inverter device 22 has a power circuit unit 28 provided for each motor 6 and a motor control unit 29 for controlling the power circuit unit 28. Although not shown, the inverter device 22 is provided for each motor, and there are two inverter devices in this embodiment. The power circuit unit 28 includes an inverter 31 that converts the DC power of the battery 19 into three-phase AC power used for powering and regeneration of the motor 6, and a PWM driver 32 that controls the inverter 31.
 モータ6は、3相の同期モータ等からなる。このモータ6には、同モータ6のローターの電気角としての回転角度を検出する回転角度センサ36が設けられている。インバータ31は、複数の半導体スイッチング素子で構成され、PWMドライバ32は、入力された電流指令をパルス幅変調し、前記各半導体スイッチング素子にオンオフ指令を与える。 The motor 6 is a three-phase synchronous motor or the like. The motor 6 is provided with a rotation angle sensor 36 that detects a rotation angle as an electrical angle of a rotor of the motor 6. The inverter 31 is composed of a plurality of semiconductor switching elements, and the PWM driver 32 performs pulse width modulation on the input current command and gives an on / off command to each of the semiconductor switching elements.
 モータコントロール部29は、コンピュータとこれに実行されるプログラム、および各種の電子回路により構成され、その基本となる制御部として、モータ力行(駆動)・回生制御部33と、力行・回生指令トルク増加率変更手段34とを有している。モータ力行・回生制御部33は、上位制御手段であるECU21から与えられるトルク指令または回転数指令等による加速(力行)・減速(回生)指令に従い、電流指令に変換して、パワー回路部28のPWMドライバ32に電流指令を与える手段である。 The motor control unit 29 is constituted by a computer, a program executed on the computer, and various electronic circuits. As a basic control unit, the motor control unit (drive) / regeneration control unit 33 and a power running / regeneration command torque increase. Rate changing means 34. The motor power running / regeneration control unit 33 converts the motor power running / regeneration control unit 33 into a current command in accordance with an acceleration (power running) / deceleration (regeneration) command based on a torque command or a rotational speed command given from the ECU 21 which is the higher-level control means. This is means for giving a current command to the PWM driver 32.
 加速(力行)・減速(回生)の切換は、ECU21の力行・回生制御指令部21bからの指令フラグにより行う。モータ力行・回生制御部33は、力行制御手段33aと、回生制御手段33bと、力行・回生制御切換制御部33cとを有する。力行制御手段33aは、アクセルペダル16aの踏込み量が大きくなる程、力行指令トルクを増加させる。回生制御手段33bは、ブレーキペダル17aの踏込み量が大きくなる程、回生指令トルクを増加させる。力行・回生制御切換制御部33cは、力行制御手段33aおよび回生制御手段33bのいずれを用いるかを、力行・回生制御指令部21bからの指令フラグにより選択し切換える。 Switching between acceleration (power running) and deceleration (regeneration) is performed by a command flag from the power running / regeneration control command unit 21b of the ECU 21. The motor power running / regeneration control unit 33 includes a power running control unit 33a, a regeneration control unit 33b, and a power running / regeneration control switching control unit 33c. The power running control means 33a increases the power running command torque as the depression amount of the accelerator pedal 16a increases. The regeneration control means 33b increases the regeneration command torque as the depression amount of the brake pedal 17a increases. The power running / regenerative control switching control unit 33c selects and switches which one of the power running control means 33a and the regeneration control means 33b is used by the command flag from the power running / regeneration control command section 21b.
 モータ力行・回生制御部33は、ECU21から与えられるトルク指令および前記指令フラグにより、インバータ内部の例えばROM35に予め設定したトルクマップを用い、モータ6に指令電流値を生成する。このときモータ6に実際に流れる電流を検出し、この電流を指令電流と一致させるために、モータ6をPI制御で制御する。 The motor power running / regenerative control unit 33 generates a command current value for the motor 6 by using a torque map preset in, for example, the ROM 35 inside the inverter, based on the torque command given from the ECU 21 and the command flag. At this time, the current actually flowing to the motor 6 is detected, and the motor 6 is controlled by PI control in order to make this current coincide with the command current.
 力行・回生指令トルク増加率変更手段34は、力行制御と回生制御との間の切換時に、車速検出手段37で検出される車速、アクセルペダル16aの踏込み量、およびブレーキペダル17aの踏込み量に応じて、時間当たりの力行または回生指令トルクの増加率を異ならせる。 The power running / regenerative command torque increase rate changing means 34 depends on the vehicle speed detected by the vehicle speed detecting means 37, the depression amount of the accelerator pedal 16a, and the depression amount of the brake pedal 17a when switching between the power running control and the regeneration control. Thus, the power running per hour or the increase rate of the regenerative command torque is varied.
 なおECU21、インバータ装置22、ブレーキコントローラ23、および操舵手段12の間の通信は、コントローラー・エリア・ネットワーク(CAN)通信で行われる。 In addition, communication among ECU21, the inverter apparatus 22, the brake controller 23, and the steering means 12 is performed by controller area network (CAN) communication.
 図3は、力行制御から回生制御へ切換する時の時間当たりの回生指令トルクの増加率を示す図である。縦軸は回生指令トルク値、横軸は時間である。以後、図2も適宜参照しつつ説明する。例えば、力行・回生指令トルク増加率変更手段34は、力行制御から回生制御へ切換時に、車速検出手段37で検出される車速、および、ブレーキペダル17aの踏込み量に応じて、回生指令トルクを一定時間内に数段階(この図では二段階)に分けて与える。 FIG. 3 is a diagram showing an increase rate of the regenerative command torque per time when switching from power running control to regenerative control. The vertical axis represents the regenerative command torque value, and the horizontal axis represents time. Hereinafter, description will be made with reference to FIG. 2 as appropriate. For example, the power running / regenerative command torque increase rate changing means 34 keeps the regenerative command torque constant according to the vehicle speed detected by the vehicle speed detecting means 37 and the depression amount of the brake pedal 17a when switching from power running control to regenerative control. It is divided into several stages within the time (two stages in this figure).
 (ステップ1)t→t間で、回生指令トルクを例えば増加率Aで増加させる。
 (ステップ2)t以後で、回生指令トルクを例えば増加率Bで増加させる。但し、増加率B>増加率Aとする。
 t:力行制御から回生制御への切換直後の時間
 t:時間tから例えば数m秒経過後の時間
(Step 1) The regeneration command torque is increased at an increase rate A, for example, between t 0 and t 1 .
(Step 2) in t 1 after increases the regeneration instruction torque for example, increase rate B. However, increase rate B> increase rate A.
t 0 : time immediately after switching from power running control to regenerative control t 1 : time after elapse of, for example, several milliseconds from time t 0
 力行・回生指令トルク増加率変更手段34は、ステップ1において、回生制御への切換直後の時間tから時間tまでの回生指令トルクを、増加率Aでステップ2よりも緩やかに増加させることで、回生制御へ切換時に、減速機7の歯車間のバックラッシュ等に起因するショックを緩和し得る。時間t以後、回生指令トルクを増加率Bでステップ1よりも急峻に増加させることで、制動時間が長くなることを防ぎ、制動時間の短縮を図れる。 Powering and regeneration instruction torque increase rate changing means 34, in step 1, to the regeneration instruction torque from the time t 0 after switching straight into regenerative control until the time t 1, is increased slowly than Step 2 at an increased rate A Thus, when switching to the regenerative control, a shock caused by a backlash between the gears of the speed reducer 7 can be reduced. After time t 1 , the regeneration command torque is increased more steeply than step 1 at an increase rate B, so that the braking time can be prevented from becoming longer and the braking time can be shortened.
 図4は、力行制御から回生制御への切換時のブレーキペダル17aの踏込み量(横軸)と回生指令トルク増加率(縦軸)との関係を示す図である。図4において、車速2は車速1よりも高速である。力行・回生指令トルク増加率変更手段34は、力行制御から回生制御へ切換時に、例えば、ブレーキペダル17aの踏込み量が大きくなる程、また車速が高速になる程、回生指令トルクの増加率を大きくする。これにより、制動時間の短縮を図ることができる。 FIG. 4 is a diagram showing the relationship between the depression amount (horizontal axis) of the brake pedal 17a and the regeneration command torque increase rate (vertical axis) when switching from power running control to regenerative control. In FIG. 4, the vehicle speed 2 is higher than the vehicle speed 1. The power running / regenerative command torque increase rate changing means 34 increases the regeneration command torque increase rate as the amount of depression of the brake pedal 17a increases and the vehicle speed increases, for example, when switching from power running control to regenerative control. To do. Thereby, shortening of braking time can be aimed at.
 図5は、回生制御から力行制御へ切換する時の時間当たりの力行指令トルクの増加率を示す図である。縦軸は力行指令トルク値、横軸は時間である。例えば、力行・回生指令トルク増加率変更手段34は、回生制御から力行制御へ切換時に、車速検出手段37で検出される車速、および、アクセルペダル16aの踏込み量に応じて、力行指令トルクを一定時間内に数段階(この図では二段階)に分けて与える。
 (ステップ1)t→t間で、力行指令トルクを例えば増加率Aで増加させる。
 (ステップ2)t以後で、力行指令トルクを例えば増加率Bで増加させる。但し、増加率B>増加率Aとする。
 t:回生制御から力行制御への切換直後の時間
 t:時間tから例えば数m秒経過後の時間
FIG. 5 is a diagram showing an increase rate of the power running command torque per time when switching from the regeneration control to the power running control. The vertical axis is the power running command torque value, and the horizontal axis is the time. For example, the power running / regenerative command torque increase rate changing means 34 keeps the power running command torque constant according to the vehicle speed detected by the vehicle speed detecting means 37 and the depression amount of the accelerator pedal 16a when switching from regenerative control to power running control. It is divided into several stages within the time (two stages in this figure).
(Step 1) The powering command torque is increased at an increase rate A, for example, between t 0 and t 1 .
(Step 2) in t 1 after increases the power running command torque for example, increase rate B. However, increase rate B> increase rate A.
t 0 : time immediately after switching from regenerative control to power running control t 1 : time after several milliseconds elapse from time t 0
 力行・回生指令トルク増加率変更手段34は、ステップ1において、力行制御への切換直後の時間tから時間tまでの力行指令トルクを、増加率Aでステップ2よりも緩やかに増加させることで、力行制御へ切換時に、減速機7の歯車間のバックラッシュ等に起因するショックを緩和し得る。時間t以後、力行指令トルクを増加率Bでステップ1よりも急峻に増加させることで、車両を遅滞なく加速し得、加速時間の短縮を図れる。 In step 1, the power running / regenerative command torque increase rate changing means 34 increases the power running command torque from time t 0 to time t 1 immediately after switching to power running control at a rate of increase A more slowly than in step 2. Thus, when switching to the power running control, the shock caused by the backlash between the gears of the speed reducer 7 can be reduced. Time t 1 after, by sharply increasing than Step 1 at an increased rate B powering command torque, resulting accelerated without delay vehicle, thereby shortening the acceleration time.
 図6は、回生制御から力行制御への切換時のアクセルペダル16aの踏込み量(横軸)と力行指令トルク増加率(縦軸)との関係を示す図である。図6において、車速1は車速2よりも低速である。力行・回生指令トルク増加率変更手段34は、回生制御から力行制御へ切換時に、アクセルペダル16aの踏込み量が大きくなる程、また車速が低速になる程、力行指令トルクの増加率を大きくする。これにより、車両を遅滞なく加速し得る。 FIG. 6 is a diagram showing the relationship between the amount of depression of the accelerator pedal 16a (horizontal axis) and the power running command torque increase rate (vertical axis) when switching from regenerative control to power running control. In FIG. 6, the vehicle speed 1 is lower than the vehicle speed 2. The power running / regeneration command torque increase rate changing means 34 increases the power running command torque increase rate as the amount of depression of the accelerator pedal 16a increases and the vehicle speed decreases when switching from regeneration control to power running control. As a result, the vehicle can be accelerated without delay.
 図7Aは、この電気自動車のIPMモータの概念構成図である。図7Aに示すように、車輪を駆動するモータがIPMモータつまり埋込磁石型同期モータの場合は、磁石軸であるd軸方向よりそれと直交するq軸方向の磁気抵抗が小さくなるため、突極構造となり、d軸インダクタンスLdよりq軸インダクタンスLqが大きくなる。この突極性により、磁石トルクTm以外にリラクタンストルクTrが併用でき、高トルクおよび高効率とすることもできる。
 磁石トルクTm:回転子の永久磁石による磁界と巻線による回転子磁界と吸引反発して発生するトルクである。
 リラクタンストルクTr:巻線による回転磁界に回転子の突極部が吸引されて発生するトルクである。
FIG. 7A is a conceptual configuration diagram of an IPM motor of the electric vehicle. As shown in FIG. 7A, when the motor for driving the wheel is an IPM motor, that is, an embedded magnet type synchronous motor, the magnetic resistance in the q-axis direction orthogonal to the d-axis direction, which is the magnet axis, is smaller. The q-axis inductance Lq is larger than the d-axis inductance Ld. Due to this saliency, reluctance torque Tr can be used in addition to magnet torque Tm, and high torque and high efficiency can be achieved.
Magnet torque Tm: Torque generated by attracting and repelling the magnetic field generated by the permanent magnet of the rotor and the rotor magnetic field generated by the winding.
Reluctance torque Tr: A torque generated when a salient pole portion of a rotor is attracted to a rotating magnetic field by a winding.
 モータが発生する総トルクは下記のようになる。
 T=p×{Ke×Iq+(Ld-Lq)×Id×Iq}=Tm+Tr
  p:極対数
 Ld:モータのd軸インダクタンス
 Lq:モータのq軸インダクタンス
 Ke:モータ誘起電圧定数実効値
The total torque generated by the motor is as follows.
T = p × {Ke × Iq + (Ld−Lq) × Id × Iq} = Tm + Tr
p: number of pole pairs Ld: d-axis inductance of motor Lq: q-axis inductance of motor Ke: effective value of motor induced voltage constant
 図7Bに示すように、IPMモータに流す1次電流Iaを、トルク生成電流q軸電流Iqと、磁束生成電流d軸電流Idとに分離し、それぞれ独立に制御できるベクトル制御手法が周知である。
 Id=-Ia×sinβ
 Iq=Ia×cosβ
 β:電流進角
As shown in FIG. 7B, a vector control method is known in which a primary current Ia flowing through an IPM motor is separated into a torque generation current q-axis current Iq and a magnetic flux generation current d-axis current Id and can be controlled independently. .
Id = −Ia × sin β
Iq = Ia × cosβ
β: Current advance angle
 ここでモータ電圧方程式は、次のように表される。
Figure JPOXMLDOC01-appb-M000001
Here, the motor voltage equation is expressed as follows.
Figure JPOXMLDOC01-appb-M000001
Vd:d軸電圧
Vq:q軸電圧
ω:モータ角速度
Ke:誘起電圧定数
Id:d軸電流
Iq:q軸電流
Ld:d軸インダクタンス
Lq:q軸インダクタンス
R:電機子抵抗
p:微分演算子
Vd: d-axis voltage Vq: q-axis voltage ω: motor angular speed Ke: induced voltage constant Id: d-axis current Iq: q-axis current Ld: d-axis inductance Lq: q-axis inductance R: armature resistance p: differential operator
 永久磁石モータの3相コイルの各相に流れる3相モータ電流Iu,Iv,Iwを回転角度センサ36の検出値Θを用いてd軸およびq軸に流れる実際電流Id,Iqに変換する。上記モータ角速度ωは、図8の速度計算部46にて、回転角度センサ36の検出値Θから算出される。
Figure JPOXMLDOC01-appb-M000002
The three-phase motor currents Iu, Iv, Iw flowing in the respective phases of the three-phase coil of the permanent magnet motor are converted into actual currents Id, Iq flowing in the d-axis and the q-axis using the detection value Θ of the rotation angle sensor 36. The motor angular speed ω is calculated from the detected value Θ of the rotation angle sensor 36 by the speed calculator 46 shown in FIG.
Figure JPOXMLDOC01-appb-M000002
 図8は、この電気自動車のモータコントロール部29(図2)の力行制御手段33aまたは回生制御手段33b(図2)における、トルク・回転数制御系に注目したブロック図である。力行制御手段33aまたは回生制御手段33bは、モータ駆動電流を制御する手段であって、図8のトルク指令部40を含み、他に、電流PI制御部41、3相・2相変換部42、2相・3相変換部44、速度計算部46とを含む。このトルク指令部40は、モータ6に印加する駆動電流を電流検出手段43で検出して得た検出値と、ECU21のトルク回転数制御指令部21aで生成した加速・減速指令によるトルク指令値とから前記トルクマップを用い、相応の指令電流を生成する。指令電流の方向は、ECU21の力行・回生制御指令部21bから与えられる指令フラグにより切換えられる。ECU21からは、指令電流の方向を示す符号付きで、トルク指令値が出力される。 FIG. 8 is a block diagram focusing on the torque / rotation speed control system in the power running control means 33a or the regeneration control means 33b (FIG. 2) of the motor control unit 29 (FIG. 2) of this electric vehicle. The power running control means 33a or the regeneration control means 33b is a means for controlling the motor drive current, and includes the torque command section 40 of FIG. 8, and in addition, a current PI control section 41, a three-phase / two-phase conversion section 42, A two-phase / three-phase converter 44 and a speed calculator 46 are included. The torque command unit 40 includes a detection value obtained by detecting the drive current applied to the motor 6 by the current detection unit 43, and a torque command value by an acceleration / deceleration command generated by the torque rotation speed control command unit 21a of the ECU 21. From the torque map, a corresponding command current is generated. The direction of the command current is switched by a command flag given from the power running / regenerative control command unit 21b of the ECU 21. A torque command value is output from the ECU 21 with a sign indicating the direction of the command current.
 インバータ装置22のモータ力行・回生制御部33(図2)は、モータ6のローターの回転角を回転角度センサ36から得て、ベクトル制御を行う。ここで車体の左右の後輪に設けられた各モータ6は、力行時と回生時との両方において、トルク発生方向が互いに異なる。つまり前記モータ6をこの出力軸の方向から見るとき、例えば左側の後輪駆動用のモータ6がCW方向のトルクを発生している場合は、右側の後輪駆動用のモータ6はCCW方向のトルクが発生する(左、右側は車両後ろから見る方向で決定される)。左、右側のモータ6でそれぞれ発生したトルクは、トルク発生方向が前記のように互いに反対の方向であり、減速機7および車輪用軸受4を介して、タイヤに伝達される。また、左、右タイヤのモータ6における回生時のトルク発生方向は、力行時のトルク発生方向と異なっている。 The motor power running / regeneration control unit 33 (FIG. 2) of the inverter device 22 obtains the rotation angle of the rotor of the motor 6 from the rotation angle sensor 36 and performs vector control. Here, the motors 6 provided on the left and right rear wheels of the vehicle body have different torque generation directions both during power running and during regeneration. That is, when the motor 6 is viewed from the direction of the output shaft, for example, when the left rear wheel driving motor 6 generates torque in the CW direction, the right rear wheel driving motor 6 is in the CCW direction. Torque is generated (left and right sides are determined by the direction seen from the rear of the vehicle). The torques generated by the left and right motors 6 are in opposite directions as described above, and are transmitted to the tires via the speed reducer 7 and the wheel bearings 4. Further, the direction of torque generation during regeneration in the motor 6 for the left and right tires is different from the direction of torque generation during power running.
 前記トルクマップに含まれる最大トルク制御テーブルからは、アクセル信号(加速指令)とモータ6の回転数とに応じて、相応なトルク指令値が算出される。トルク指令部40は、算出された前記トルク指令値に基づき、モータ6の1次電流(Ia)と電流進角(β)を生成する。トルク指令部40は、これら1次電流(Ia)と電流進角(β)の値に基づき、d軸電流(界磁成分)の指令値O_Idと、q軸電流の指令値O_Iqの二つの指令電流を生成する。 From the maximum torque control table included in the torque map, a corresponding torque command value is calculated according to the accelerator signal (acceleration command) and the rotation speed of the motor 6. The torque command unit 40 generates a primary current (Ia) and a current advance angle (β) of the motor 6 based on the calculated torque command value. Based on the values of the primary current (Ia) and the current advance angle (β), the torque command unit 40 has two commands: a command value O_Id for the d-axis current (field component) and a command value O_Iq for the q-axis current. Generate current.
 電流PI制御部41は、トルク指令部40から出力されたd軸指令電流O_Id、q軸指令電流O_Iqの値と、モータ電流および回転子角度から3相・2相変換部42で計算された2相電流Id,Iqとから、PI制御による電圧値による制御量Vdc,Vqcを算出する。3相・2相変換部42では、電流センサ43で検出されたモータ6のu相電流(Iu)とw相電流(Iw)の検出値から、次式Iv=-(Iu+Iw)で求められるv相電流(Iv)を算出し、Iu,Iv,Iwの3相電流からId,Iqの2相電流に変換する。 The current PI control unit 41 is calculated by the three-phase / two-phase conversion unit 42 from the values of the d-axis command current O_Id and q-axis command current O_Iq output from the torque command unit 40 and the motor current and the rotor angle. From the phase currents Id and Iq, control amounts Vdc and Vqc based on voltage values by PI control are calculated. In the three-phase / two-phase converter 42, v obtained from the detected value of the u-phase current (Iu) and the w-phase current (Iw) of the motor 6 detected by the current sensor 43 by the following formula Iv = − (Iu + Iw) A phase current (Iv) is calculated and converted from a three-phase current of Iu, Iv, and Iw to a two-phase current of Id and Iq.
 この変換に使われるモータ6の回転子角度Θは、回転角度センサ36から取得する。2相・3相変換部44は、入力された2相の制御量Vdc,Vqcと、回転子角度とから、3相のPWMデューティーVu,Vv,Vwに変換する。電力変換部45は、PWMデューティーVu,Vv,Vwに従ってインバータ31をPWM制御し、モータ6を駆動する。これら2相・3相変換部44、電力変換部45は、図2のパワー回路部28内に存在する。 The rotor angle Θ of the motor 6 used for this conversion is acquired from the rotation angle sensor 36. The two-phase / three-phase converter 44 converts the input two-phase control amounts Vdc, Vqc and the rotor angle into three-phase PWM duties Vu, Vv, Vw. The power conversion unit 45 performs PWM control of the inverter 31 according to the PWM duties Vu, Vv, and Vw, and drives the motor 6. The two-phase / three-phase conversion unit 44 and the power conversion unit 45 exist in the power circuit unit 28 of FIG.
 図9は、力行制御から回生制御へ切換時の制御方法を示すフローチャートである。本処理開始後、力行・回生制御指令部21bは、アクセルペダル16aの踏込み量がゼロか否かを判断する(ステップS1)。アクセルペダル16aの踏込み量がゼロでないとき(ステップS1:NO)、ステップS1に戻る。アクセルペダル16aの踏込み量がゼロのとき(ステップS1:YES)、一定時間経過すると(ステップS2:YES)、力行・回生制御指令部21bは、指令フラグを「1」とし(ステップS4)、この指令フラグ「1」をモータ力行・回生制御部33に与える。 FIG. 9 is a flowchart showing a control method when switching from power running control to regenerative control. After starting this process, the power running / regenerative control command unit 21b determines whether or not the amount of depression of the accelerator pedal 16a is zero (step S1). When the depression amount of the accelerator pedal 16a is not zero (step S1: NO), the process returns to step S1. When the amount of depression of the accelerator pedal 16a is zero (step S1: YES), when a certain time has elapsed (step S2: YES), the power running / regenerative control command unit 21b sets the command flag to “1” (step S4). The command flag “1” is given to the motor power running / regeneration control unit 33.
 アクセルペダル16aの踏込み量がゼロで一定時間経過していなければ(ステップS2:NO)、ブレーキペダル17aの踏込み量がゼロより大きいとき(ステップS3:YES)、ステップS4に移行して力行・回生制御指令部21bが指令フラグを「1」とする。ここで、ブレーキペダル17aの踏込み量がゼロのときは(ステップS3:NO)、ステップS2へ戻る。ステップS4の後、力行・回生制御切換制御部33cは、前記指令フラグ「1」により力行制御から回生制御へ切換える(ステップS5)。その後、前述のように、力行・回生指令トルク増加率変更手段34は、力行制御から回生制御への切換時に、車速検出手段37で検出される車速、および、ブレーキペダル17aの踏込み量に応じて、回生指令トルクを一定時間内に数段階に分けて与える。 If the depressing amount of the accelerator pedal 16a is zero and a certain time has not elapsed (step S2: NO), when the depressing amount of the brake pedal 17a is larger than zero (step S3: YES), the process proceeds to step S4 and power running / regeneration is performed. The control command unit 21b sets the command flag to “1”. Here, when the depression amount of the brake pedal 17a is zero (step S3: NO), the process returns to step S2. After step S4, the power running / regenerative control switching control unit 33c switches from power running control to regenerative control by the command flag “1” (step S5). After that, as described above, the power running / regenerative command torque increase rate changing means 34 depends on the vehicle speed detected by the vehicle speed detecting means 37 and the depression amount of the brake pedal 17a when switching from power running control to regenerative control. The regeneration command torque is given in several stages within a certain time.
 図10は、回生制御から力行制御へ切換時の制御方法を示すフローチャートである。本処理開始後、力行・回生指令トルク増加率変更手段34は、車速検出手段37で検出される車速が車速閾値1(例えば10km/h)より小さいか否かを判断する(ステップa1)。前記車速閾値1は、試験やシミュレーション等により定められ、前記ROM35に書き換え可能に格納される。車速が車速閾値1より小さいとき(ステップa1:YES)、力行・回生制御指令部21bは、ブレーキペダル17aの踏込み量がゼロか否かを判断する(ステップa2)。ブレーキペダル17aの踏込み量がゼロでないとき(ステップa2:NO)、ステップa1に戻る。 FIG. 10 is a flowchart showing a control method when switching from regenerative control to power running control. After the start of this process, the power running / regenerative command torque increase rate changing means 34 determines whether or not the vehicle speed detected by the vehicle speed detecting means 37 is smaller than the vehicle speed threshold 1 (for example, 10 km / h) (step a1). The vehicle speed threshold 1 is determined by a test, simulation, or the like, and is stored in the ROM 35 so as to be rewritable. When the vehicle speed is smaller than the vehicle speed threshold 1 (step a1: YES), the power running / regenerative control command unit 21b determines whether or not the depression amount of the brake pedal 17a is zero (step a2). When the depression amount of the brake pedal 17a is not zero (step a2: NO), the process returns to step a1.
 ブレーキペダル17aの踏込み量がゼロのとき(ステップa2:YES)、一定時間経過するまでステップa3を繰り返し(ステップa3:NO)、一定時間経過すると(ステップa3:YES)、力行・回生制御指令部21bは、アクセルペダル16aの踏込み量がゼロより大きいとき(ステップa4:YES)、指令フラグを「0」とする(ステップa5)。力行・回生制御指令部21bは、この指令フラグ「0」をモータ力行・回生制御部33に与える。アクセルペダル16aの踏込み量がゼロのとき(ステップa4:NO)、ステップa1へ戻る。 When the amount of depression of the brake pedal 17a is zero (step a2: YES), step a3 is repeated until a predetermined time elapses (step a3: NO), and after a predetermined time elapses (step a3: YES), the power running / regenerative control command unit 21b sets the command flag to “0” (step a5) when the depression amount of the accelerator pedal 16a is larger than zero (step a4: YES). The power running / regeneration control command unit 21 b gives the command flag “0” to the motor power running / regeneration control unit 33. When the depression amount of the accelerator pedal 16a is zero (step a4: NO), the process returns to step a1.
 ステップa1において、車速が車速閾値1より小さくないときも(ステップa1:NO)、ステップa5に移行し、力行・回生制御指令部21bが指令フラグを「0」とする。その後、力行・回生制御切換制御部33cは、前記指令フラグ「0」により回生制御から力行制御へ切換える(ステップa6)。その後、前述のように、力行・回生指令トルク増加率変更手段34は、力行制御への切換時に、車速検出手段37で検出される車速、および、アクセルペダル16aの踏込み量に応じて、力行指令トルクを一定時間内に数段階に分けて与える。 In step a1, even when the vehicle speed is not smaller than the vehicle speed threshold 1 (step a1: NO), the process proceeds to step a5, and the power running / regenerative control command unit 21b sets the command flag to “0”. Thereafter, the power running / regenerative control switching control unit 33c switches from the regenerative control to the power running control by the command flag “0” (step a6). Thereafter, as described above, the power running / regenerative command torque increase rate changing means 34 changes the power running command according to the vehicle speed detected by the vehicle speed detecting means 37 and the depression amount of the accelerator pedal 16a when switching to power running control. Torque is given in several stages within a certain time.
 以上説明した電気自動車の制御装置によると、力行制御手段33aは、アクセルペダル16aの踏込み量が大きくなる程、力行指令トルクを増加させる。回生制御手段33bは、ブレーキペダル17aの踏込み量が大きくなる程、回生指令トルクを増加させる。この力行または回生指令トルクを増加させるときの増加率につき、力行・回生指令トルク増加率変更手段34は、ECU21からの指令フラグに基づく力行制御と回生制御との間の切換時に、車速、および、アクセルペダル16aの踏込み量またはブレーキペダル17aの踏込み量に応じて、時間当たりの力行または回生指令トルクの増加率を異ならせる。例えば、第1段階において、力行または回生指令トルクを増加率Aで増加させ、第2段階において、増加率Bで増加させる(増加率B>増加率A)。このように時間当たりの力行または回生指令トルクの増加率を異ならせることで、力行制御と回生制御との間の切換時に、減速機7の歯車間のバックラッシュ等に起因するショックを低減することができる。また第2段階における増加率Bを、第1段階における増加率Aよりも大きくすると、例えば制動時において制動時間を縮めることができ、よって制動距離の短縮を図ることができる。 According to the electric vehicle control apparatus described above, the power running control means 33a increases the power running command torque as the amount of depression of the accelerator pedal 16a increases. The regeneration control means 33b increases the regeneration command torque as the depression amount of the brake pedal 17a increases. The power running / regenerative command torque increase rate changing means 34 changes the vehicle speed and the regeneration rate when switching between the power running control and the regenerative control based on the command flag from the ECU 21. Depending on the amount of depression of the accelerator pedal 16a or the amount of depression of the brake pedal 17a, the rate of increase in power running or regeneration command torque per hour is varied. For example, in the first stage, the power running or regenerative command torque is increased at an increase rate A, and in the second stage, it is increased at an increase rate B (increase rate B> increase rate A). In this way, by varying the rate of increase of power running or regenerative command torque per hour, it is possible to reduce shocks caused by backlash between gears of the speed reducer 7 when switching between power running control and regenerative control. Can do. Further, if the increase rate B in the second stage is larger than the increase rate A in the first stage, for example, the braking time can be shortened during braking, and thus the braking distance can be shortened.
 車速検出手段37は、例えば、車輪の回転角を検出する回転角度センサ36等で検出された回転角度を微分することにより車両速度を計算しても良い。力行または回生指令トルク値や増加率(図3~図6)を、例えば、二次曲線上に沿って増加させるようにしても良い。上記実施形態では、左右の後輪を駆動輪としているが、この例に限定されるものではない。例えば、左右の前輪を駆動輪として、これら駆動輪を個別のモータで駆動し、左右の後輪を従動輪とする形式としても良い。インホイールモータ形式に限らず、オンボート形式等の車輪外のモータで駆動される電気自動車にも適用することができる。 The vehicle speed detecting means 37 may calculate the vehicle speed by differentiating the rotation angle detected by, for example, the rotation angle sensor 36 that detects the rotation angle of the wheel. The power running or regenerative command torque value or the rate of increase (FIGS. 3 to 6) may be increased along a quadratic curve, for example. In the above embodiment, the left and right rear wheels are drive wheels, but the present invention is not limited to this example. For example, the left and right front wheels may be drive wheels, the drive wheels may be driven by individual motors, and the left and right rear wheels may be driven wheels. The present invention can be applied not only to the in-wheel motor type but also to an electric vehicle driven by a motor outside the wheel such as an on-board type.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。 As described above, the preferred embodiments have been described with reference to the drawings. However, those skilled in the art will readily assume various changes and modifications within the obvious scope by looking at the present specification. Accordingly, such changes and modifications are to be construed as within the scope of the invention as defined by the appended claims.
2…車輪
4…車輪用軸受
6…モータ
7…減速機
8…インホイールモータ駆動装置
16a…アクセルペダル
17a…ブレーキペダル
21…ECU
22…インバータ装置
28…パワー回路部
29…モータコントロール部
31…インバータ
33a…力行制御手段
33b…回生制御手段
33c…力行・回生制御切換制御部
34…力行・回生指令トルク増加率変更手段
36…回転角度センサ
37…車速検出手段
DESCRIPTION OF SYMBOLS 2 ... Wheel 4 ... Wheel bearing 6 ... Motor 7 ... Reduction gear 8 ... In-wheel motor drive device 16a ... Accelerator pedal 17a ... Brake pedal 21 ... ECU
DESCRIPTION OF SYMBOLS 22 ... Inverter apparatus 28 ... Power circuit part 29 ... Motor control part 31 ... Inverter 33a ... Power running control means 33b ... Regeneration control means 33c ... Power running / regenerative control switching control part 34 ... Power running / regenerative command torque increase rate change means 36 ... Rotation Angle sensor 37: vehicle speed detection means

Claims (5)

  1.  車両全般を制御する電気制御ユニットであるECUと、直流電力を走行用のモータの駆動に用いる交流電力に変換するインバータを含むパワー回路部、および前記ECUからのトルク指令に従って前記パワー回路部を制御するモータコントロール部を有するインバータ装置とを備え、
     前記モータコントロール部は、前記モータを力行制御する力行制御手段と、前記モータを回生制御する回生制御手段と、これら力行制御手段および前記回生制御手段のいずれを用いるかを前記ECUからの指令フラグにより切換える力行・回生制御切換制御部とを有する電気自動車の制御装置であって、
     車速を検出する車速検出手段と、
     前記モータコントロール部に、前記ECUからの指令フラグに基づく力行制御と回生制御との間の切換時に、前記車速検出手段で検出される車速、および、アクセルペダルの踏込み量またはブレーキペダルの踏込み量に応じて、時間当たりの力行または回生指令トルクの増加率を異ならせる力行・回生指令トルク増加率変更手段とを設けた電気自動車の制御装置。
    ECU that is an electric control unit that controls the entire vehicle, a power circuit unit that includes an inverter that converts DC power into AC power used to drive a driving motor, and controls the power circuit unit in accordance with a torque command from the ECU An inverter device having a motor control unit,
    The motor control unit is a power running control unit that performs power running control of the motor, a regeneration control unit that performs regenerative control of the motor, and which of the power running control unit and the regeneration control unit is used according to a command flag from the ECU A control device for an electric vehicle having a power running / regenerative control switching control unit for switching,
    Vehicle speed detection means for detecting the vehicle speed;
    When the motor control unit switches between power running control based on a command flag from the ECU and regenerative control, the vehicle speed detected by the vehicle speed detecting means, and the accelerator pedal depression amount or the brake pedal depression amount A control device for an electric vehicle provided with power running / regenerative command torque increase rate changing means for varying the power running per time or the increase rate of the regenerative command torque in response.
  2.  請求項1記載の電気自動車の制御装置において、前記力行・回生指令トルク増加率変更手段は、力行制御から回生制御へ切換時に、前記車速検出手段で検出される車速、および、前記ブレーキペダルの踏込み量に応じて、回生指令トルクを一定時間内に数段階に分けて与える電気自動車の制御装置。 2. The electric vehicle control device according to claim 1, wherein the power running / regenerative command torque increase rate changing means changes the vehicle speed detected by the vehicle speed detecting means when the power running control is switched to the regenerative control, and the depression of the brake pedal. A control device for an electric vehicle that gives a regenerative command torque in several stages within a certain time according to the amount.
  3.  請求項1または請求項2記載の電気自動車の制御装置において、前記力行・回生指令トルク増加率変更手段は、回生制御から力行制御へ切換時に、前記車速検出手段で検出される車速、および、前記アクセルペダルの踏込み量に応じて、力行指令トルクを一定時間内に数段階に分けて与える電気自動車の制御装置。 3. The electric vehicle control device according to claim 1, wherein the power running / regenerative command torque increase rate changing means is a vehicle speed detected by the vehicle speed detecting means when switching from regeneration control to power running control, and A control device for an electric vehicle that gives a power running command torque in several stages within a predetermined time according to the amount of depression of an accelerator pedal.
  4.  請求項1から請求項3のいずれか1項に記載の電気自動車の制御装置において、前記モータは、車両の前輪および後輪のいずれか一方、または両方を駆動し、前記モータと車輪用軸受と減速機とを含むインホイールモータ駆動装置を構成する電気自動車の制御装置。 4. The electric vehicle control device according to claim 1, wherein the motor drives one or both of a front wheel and a rear wheel of the vehicle, and the motor, a wheel bearing, An electric vehicle control device constituting an in-wheel motor drive device including a reduction gear.
  5.  請求項1から請求項4のいずれか1項に記載の電気自動車の制御装置において、前記車速検出手段は、車輪の回転角を検出する回転角度センサである電気自動車の制御装置。 5. The electric vehicle control device according to claim 1, wherein the vehicle speed detecting means is a rotation angle sensor that detects a rotation angle of a wheel.
PCT/JP2014/080750 2013-11-28 2014-11-20 Control device for electric vehicle WO2015080021A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-245786 2013-11-28
JP2013245786A JP2015104295A (en) 2013-11-28 2013-11-28 Control device for electric automobile

Publications (1)

Publication Number Publication Date
WO2015080021A1 true WO2015080021A1 (en) 2015-06-04

Family

ID=53198965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080750 WO2015080021A1 (en) 2013-11-28 2014-11-20 Control device for electric vehicle

Country Status (2)

Country Link
JP (1) JP2015104295A (en)
WO (1) WO2015080021A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109733210A (en) * 2019-02-26 2019-05-10 浙江吉利汽车研究院有限公司 A kind of entire car controller and the electric car with it
CN112172521A (en) * 2020-09-02 2021-01-05 宝能(广州)汽车研究院有限公司 Drive control method, computer-readable storage medium, and vehicle
WO2022095132A1 (en) * 2020-11-06 2022-05-12 广东高标电子科技有限公司 Braking energy recovery method for electric vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6641784B2 (en) * 2015-08-24 2020-02-05 日産自動車株式会社 Control method and control device for electric vehicle
JP6641787B2 (en) * 2015-08-25 2020-02-05 日産自動車株式会社 Control method and control device for electric vehicle
CN111098717B (en) * 2019-12-20 2021-07-30 中国第一汽车股份有限公司 Single-pedal control method, device and system for electric automobile
US11745600B2 (en) 2020-02-04 2023-09-05 Subaru Corporation Driving force controller for vehicle
CN112428829B (en) * 2020-11-30 2022-04-01 合肥巨一动力系统有限公司 Braking energy feedback control method for electric automobile

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10304509A (en) * 1997-04-23 1998-11-13 Honda Motor Co Ltd Controller for electric vehicle
JPH10304508A (en) * 1997-04-25 1998-11-13 Toyota Motor Corp Motor controller for electric vehicle
JP2003174702A (en) * 2001-12-04 2003-06-20 Fuji Heavy Ind Ltd Electric vehicle controlling device
JP2012105461A (en) * 2010-11-10 2012-05-31 Honda Motor Co Ltd Controller for electric vehicle
JP2013155656A (en) * 2012-01-30 2013-08-15 Mitsubishi Motors Corp Regeneration control device
JP2013219942A (en) * 2012-04-10 2013-10-24 Ntn Corp Electric vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10304509A (en) * 1997-04-23 1998-11-13 Honda Motor Co Ltd Controller for electric vehicle
JPH10304508A (en) * 1997-04-25 1998-11-13 Toyota Motor Corp Motor controller for electric vehicle
JP2003174702A (en) * 2001-12-04 2003-06-20 Fuji Heavy Ind Ltd Electric vehicle controlling device
JP2012105461A (en) * 2010-11-10 2012-05-31 Honda Motor Co Ltd Controller for electric vehicle
JP2013155656A (en) * 2012-01-30 2013-08-15 Mitsubishi Motors Corp Regeneration control device
JP2013219942A (en) * 2012-04-10 2013-10-24 Ntn Corp Electric vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109733210A (en) * 2019-02-26 2019-05-10 浙江吉利汽车研究院有限公司 A kind of entire car controller and the electric car with it
CN112172521A (en) * 2020-09-02 2021-01-05 宝能(广州)汽车研究院有限公司 Drive control method, computer-readable storage medium, and vehicle
WO2022095132A1 (en) * 2020-11-06 2022-05-12 广东高标电子科技有限公司 Braking energy recovery method for electric vehicle

Also Published As

Publication number Publication date
JP2015104295A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
WO2015080021A1 (en) Control device for electric vehicle
US9855858B2 (en) Control device for electric vehicle
JP4985956B2 (en) Electric motor control device
JP2008259302A (en) Controller of electric motor
US9956890B2 (en) Device for controlling electric automobile
WO2016052234A1 (en) Control device for electric vehicle
WO2016052233A1 (en) Control device for electric vehicle
JP4163226B2 (en) Motor control device
WO2017018335A1 (en) Motor drive device
US9586484B2 (en) Electric-vehicle control device
WO2016043077A1 (en) Vehicle drive control device
JP6772501B2 (en) Automobile
JP2016067147A (en) Electric car control device
EP3490137B1 (en) Controller for switched reluctance motor
JP6663724B2 (en) Electric motor device
JP2015154528A (en) Control device of electric automobile
JP2016220271A (en) Control device for electric vehicle
JP2015035875A (en) Controller of electric vehicle
JP2021061699A (en) Motor control device, motor control method, and electric power steering device
JP2014230384A (en) Control device of electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865997

Country of ref document: EP

Kind code of ref document: A1