JP2007124832A - Drive force controller of electric vehicle - Google Patents

Drive force controller of electric vehicle Download PDF

Info

Publication number
JP2007124832A
JP2007124832A JP2005315047A JP2005315047A JP2007124832A JP 2007124832 A JP2007124832 A JP 2007124832A JP 2005315047 A JP2005315047 A JP 2005315047A JP 2005315047 A JP2005315047 A JP 2005315047A JP 2007124832 A JP2007124832 A JP 2007124832A
Authority
JP
Japan
Prior art keywords
motor
temperature
wheel
force
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005315047A
Other languages
Japanese (ja)
Other versions
JP4765552B2 (en
Inventor
Kansuke Yoshisue
監介 吉末
Kazuya Okumura
和也 奥村
Yoshio Uragami
芳男 浦上
Yoshinori Maeda
義紀 前田
Mitsutaka Tsuchida
充孝 土田
Akihiko Yamamoto
暁彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005315047A priority Critical patent/JP4765552B2/en
Publication of JP2007124832A publication Critical patent/JP2007124832A/en
Application granted granted Critical
Publication of JP4765552B2 publication Critical patent/JP4765552B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance power efficiency of the entire electric vehicle, by controlling a motor such that the temperature of the motor approaches the ideal temperature, and that the power efficiency of the motor is improved. <P>SOLUTION: Target forward force Fxlt of left front and rear wheels and target forward force Fxrt of right front and rear wheels are calculated, based on an accelerator opening ψ, and the like, (S20-60). With regard to the motor generators 12FL and 12RL of the left front and rear wheels, target forward force Fxtfl of the left front wheel and target forward force Fxtrl of the left rear wheel are calculated, based on the larger one of target forward force Fxtl of the left front and rear wheels (S100), such that the actual temperature of the motor generator, having a larger difference between the actual temperature Tmfl, Tmrl and the ideal temperature Tmt of a motor generator, approaches the ideal temperature Tmt of that motor generator. Similarly, target forward force Fxtfr of the right front wheel and target forward force Fxtrr of the right rear wheel are calculated (S300), and the motor generators 12FL-12RR are controlled, based on the target forward force Fxti of each wheel (S500, 510). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車等の車輌の駆動力制御装置に係り、更に詳細には各輪毎に電動機が設けられ電動機の駆動力が対応する車輪に個別に付与される電動車輌の駆動力制御装置に係る。   The present invention relates to a driving force control device for a vehicle such as an automobile, and more specifically, to a driving force control device for an electric vehicle in which an electric motor is provided for each wheel and the driving force of the electric motor is individually applied to a corresponding wheel. Related.

各車輪にそれぞれ対応する電動機が設けられ、電動機の駆動力が対応する車輪に個別に付与される電動車輌は従来より種々の構成のものが提案されている。かかる電動車輌の一つとして、例えば本願出願人の出願にかかる下記の特許文献1に記載されている如く、アンチスキッド制御等の車輌安定化制御が良好に行われるよう各車輪の駆動力の配分制御を行う駆動力制御装置を備えた電動車輌が従来より知られている。
特開平10−295004号公報
Electric motors corresponding to the respective wheels are provided, and various types of electric vehicles have been proposed in the past in which the driving force of the electric motor is individually applied to the corresponding wheels. As one of such electric vehicles, for example, as described in the following Patent Document 1 filed by the applicant of the present application, the distribution of driving force of each wheel so that vehicle stabilization control such as anti-skid control is performed well. 2. Description of the Related Art Conventionally, an electric vehicle including a driving force control device that performs control is known.
Japanese Patent Laid-Open No. 10-295004

一般に、電動機の損失には種々の損失があり、特に電動機の効率(電力効率)に大きく影響する損失として、銅損(巻き線抵抗による発熱損失)及びベアリングの潤滑油や冷却用オイルの粘性による引きずり損失がある。図7に示されている如く、銅損は電動機の温度Tmの上昇につれて増大するのに対し、引きずり損失は電動機の温度Tmの上昇につれて減少する。従って図7の銅損の線と引きずり損失の線との交点に対応する電動機の温度を理想温度Tmtとすると、電動機の電力効率はその温度が理想温度である場合に最も高いので、電動機の損失を低減してその電力効率を高くするためには、理想温度との温度差が大きい電動機の温度Tmができるだけ理想温度Tmtに近づくよう電動機が制御されることが好ましい。   In general, there are various types of motor loss. Especially, loss that greatly affects the efficiency (power efficiency) of the motor depends on copper loss (heat loss due to winding resistance) and the viscosity of bearing lubricant and cooling oil. There is drag loss. As shown in FIG. 7, the copper loss increases as the motor temperature Tm increases, while the drag loss decreases as the motor temperature Tm increases. Therefore, if the temperature of the motor corresponding to the intersection of the copper loss line and the drag loss line in FIG. 7 is the ideal temperature Tmt, the power efficiency of the motor is highest when the temperature is the ideal temperature. In order to reduce power consumption and increase the power efficiency, it is preferable that the motor is controlled so that the temperature Tm of the motor having a large temperature difference from the ideal temperature is as close as possible to the ideal temperature Tmt.

しかるに上述の如き従来の電動車輌の駆動力制御装置に於いては、駆動力の配分を制御するに当り電動機の損失や電力効率、理想温度に対する電動機の温度の関係については全く考慮されておらず、そのため車輌が走行する際に於ける車輌全体としての電力効率を悪化させる虞れがあり、電動機の電力効率を向上させることにより電動車輌全体の電力効率を向上させる上で改善が必要とされている。   However, in the conventional driving force control apparatus for an electric vehicle as described above, the relationship between the motor loss, power efficiency, and ideal motor temperature is not considered at all in controlling the distribution of driving force. Therefore, there is a possibility that the power efficiency of the entire vehicle when the vehicle travels may be deteriorated, and improvement is required to improve the power efficiency of the entire electric vehicle by improving the power efficiency of the electric motor. Yes.

本発明は、各車輪にそれぞれ対応する電動機の駆動力が付与されるよう構成された従来の電動車輌に於ける上述の如き問題に鑑みてなされたものであり、本発明の主要な課題は、電動機の温度が理想温度よりも高くても低くても電動機の電力効率が低下し、電動機の温度が理想温度に近いほど電動機の電力効率が高くなることに着目し、電動機の温度に基づいて電動機の電力効率が向上するよう電動機を制御することにより、従来に比して電動車輌全体の電力効率を向上させることである。   The present invention has been made in view of the above-described problems in a conventional electric vehicle configured to be provided with a driving force of an electric motor corresponding to each wheel, and the main problem of the present invention is Focusing on the fact that the power efficiency of the motor decreases regardless of whether the motor temperature is higher or lower than the ideal temperature, and that the power efficiency of the motor increases as the motor temperature is closer to the ideal temperature. By controlling the electric motor so that the power efficiency of the vehicle is improved, the power efficiency of the entire electric vehicle is improved as compared with the conventional case.

上述の主要な課題は、本発明によれば、請求項1の構成、即ち車輪に駆動力を付与する少なくとも二つの電動機を有する電動車輌の駆動力制御装置であって、前記電動機の出力を制御する電動機制御手段と、前記電動機の実際の温度を検出する手段とを有し、前記電動機制御手段は各電動機の電力効率が最も高い温度を理想温度として実際の温度と前記理想温度との偏差の大きさが大きい電動機を決定する手段を有し、当該電動機の実際の温度が当該電動機の理想温度に近づくよう当該電動機の出力を制御することを特徴とする電動車輌の駆動力制御装置によって達成される。   According to the present invention, the main problem described above is the driving force control device for an electric vehicle having the configuration of claim 1, that is, the electric vehicle having at least two electric motors for applying driving force to the wheels, and controls the output of the electric motor. An electric motor control means for detecting the actual temperature of the electric motor, and the electric motor control means uses the temperature at which the electric power efficiency of each electric motor is the highest as an ideal temperature to determine a deviation between the actual temperature and the ideal temperature. It is achieved by a driving force control device for an electric vehicle characterized by having means for determining an electric motor having a large size and controlling the output of the electric motor so that the actual temperature of the electric motor approaches the ideal temperature of the electric motor. The

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1の構成に於いて、前記電動車輌は各車輪毎に対応する車輪に駆動力を付与する電動機を有し、車輌に要求される駆動力を車輌の走行状況に応じて少なくとも左右輪間に於いて配分し、左前後輪の二つの電動機について実際の温度と前記理想温度との偏差の大きさが大きい方の電動機の実際の温度が当該電動機の理想温度に近づくよう当該電動機の出力を制御すると共に、左前後輪の他方の車輪の電動機の出力が左前後輪に配分された駆動力に対応する出力より前記偏差の大きさが大きい方の電動機の出力を減算した値になるよう前記他方の車輪の電動機の出力を制御し、右前後輪の二つの電動機について実際の温度と前記理想温度との偏差の大きさが大きい方の電動機の実際の温度が当該電動機の理想温度に近づくよう当該電動機の出力を制御すると共に、右前後輪の他方の車輪の電動機の出力が右前後輪に配分された駆動力に対応する出力より前記偏差の大きさが大きい方の電動機の出力を減算した値になるよう前記他方の車輪の電動機の出力を制御するよう構成される(請求項2の構成)。   According to the present invention, in order to effectively achieve the main problems described above, in the configuration of claim 1, the electric vehicle has an electric motor that applies a driving force to a wheel corresponding to each wheel. However, the driving force required for the vehicle is distributed at least between the left and right wheels according to the running condition of the vehicle, and the deviation between the actual temperature and the ideal temperature is large for the two motors of the left front and rear wheels. The output of the other motor of the left front and rear wheels corresponds to the driving force distributed to the left front and rear wheels while controlling the output of the motor so that the actual temperature of the other motor approaches the ideal temperature of the motor The output of the motor of the other wheel is controlled so as to be a value obtained by subtracting the output of the motor with the larger deviation, and the deviation between the actual temperature and the ideal temperature for the two motors on the right front and rear wheels The larger one The output of the motor is controlled so that the actual temperature of the machine approaches the ideal temperature of the motor, and the output of the motor of the other wheel of the right front and rear wheels is more than the output corresponding to the driving force distributed to the right front and rear wheels. The output of the motor of the other wheel is controlled to be a value obtained by subtracting the output of the motor having the larger deviation (configuration of claim 2).

一般に、電動機の温度は作動に伴う発熱により上昇すると共に放熱により低下し、作動に伴う発熱の量は電動機の出力が高いほど大きいので、電動機の温度が理想温度よりも低いときには電動機の出力を高くすることにより電動機の出力を高くしない場合に比して電動機の温度を電動機の理想温度に近づけることができ、逆に電動機の温度が理想温度よりも高いときには電動機の出力を低くすることにより電動機の出力を低くしない場合に比して電動機の温度を電動機の理想温度に近づけることができる。   In general, the temperature of the motor rises due to heat generated by the operation and decreases due to heat dissipation, and the amount of heat generated by the operation increases as the output of the motor increases.Therefore, when the temperature of the motor is lower than the ideal temperature, the output of the motor is increased. As a result, the temperature of the motor can be brought closer to the ideal temperature of the motor than when the output of the motor is not increased. Conversely, when the temperature of the motor is higher than the ideal temperature, the output of the motor is decreased by lowering the output of the motor. Compared with the case where the output is not lowered, the temperature of the electric motor can be made closer to the ideal temperature of the electric motor.

上記請求項1の構成によれば、各電動機の電力効率が最も高い温度を理想温度として各電動機のうち実際の温度と理想温度との偏差の大きさが大きい電動機が決定され、当該電動機の実際の温度が当該電動機の理想温度に近づくよう当該電動機の出力が制御されるので、温度の偏差の大きさが大きい電動機の温度を確実に理想温度に近づけることができ、これにより当該電動機の電力効率を確実に向上させることができる。   According to the configuration of the first aspect, a motor having a large deviation between the actual temperature and the ideal temperature is determined from the motors, with the temperature having the highest power efficiency of each motor being an ideal temperature, and the actual motor Since the output of the motor is controlled so that the temperature of the motor approaches the ideal temperature of the motor, the temperature of the motor having a large temperature deviation can be reliably brought close to the ideal temperature, and thereby the power efficiency of the motor Can be reliably improved.

また上記請求項2の構成によれば、電動車輌は各車輪毎に対応する車輪に駆動力を付与する電動機を有し、車輌に要求される駆動力が車輌の走行状況に応じて少なくとも左右輪間に於いて配分され、左前後輪の二つの電動機について実際の温度と理想温度との偏差の大きさが大きい方の電動機の実際の温度が当該電動機の理想温度に近づくよう当該電動機の出力が制御されると共に、左前後輪の他方の車輪の電動機の出力が左前後輪に配分された駆動力に対応する出力より前記偏差の大きさが大きい方の電動機の出力を減算した値になるよう他方の車輪の電動機の出力が制御され、右前後輪の二つの電動機について実際の温度と理想温度との偏差の大きさが大きい方の電動機の実際の温度が当該電動機の理想温度に近づくよう当該電動機の出力が制御されると共に、右前後輪の他方の車輪の電動機の出力が右前後輪に配分された駆動力に対応する出力より前記偏差の大きさが大きい方の電動機の出力を減算した値になるよう他方の車輪の電動機の出力が制御されるので、左前後輪及び右前後輪の何れについても温度の偏差の大きさが大きい方の電動機の温度が理想温度に近づくようその電動機の出力を制御し、その電動機の電力効率を確実に向上させることができ、また電力効率を向上させるための電動機の出力の制御に起因して駆動力の左右配分が車輌の走行状況に応じた所定の配分以外の配分になることを確実に防止することができる。   Further, according to the configuration of the second aspect, the electric vehicle has an electric motor that applies a driving force to the corresponding wheel for each wheel, and the driving force required for the vehicle depends on the traveling state of the vehicle. The output of the motor is adjusted so that the actual temperature of the motor with the larger deviation between the actual temperature and the ideal temperature of the two left and right front motors approaches the ideal temperature of the motor. In addition to being controlled, the output of the motor of the other wheel of the left front and rear wheels is a value obtained by subtracting the output of the motor having the larger deviation from the output corresponding to the driving force allocated to the left front and rear wheels. The output of the motor on the other wheel is controlled so that the actual temperature of the motor with the larger deviation between the actual temperature and the ideal temperature for the two motors on the right front and rear wheels approaches the ideal temperature of the motor. Electric motor And the output of the motor of the other wheel of the right front and rear wheels is a value obtained by subtracting the output of the motor having the larger deviation from the output corresponding to the driving force allocated to the right front and rear wheels. Since the output of the motor of the other wheel is controlled, the output of the motor is controlled so that the temperature of the motor with the larger temperature deviation for both the left front wheel and the right front wheel approaches the ideal temperature. In addition, the power efficiency of the motor can be reliably improved, and the left / right distribution of the driving force due to the control of the output of the motor for improving the power efficiency is other than the predetermined distribution according to the traveling state of the vehicle. Can be reliably prevented.

[課題解決手段の好ましい態様]
本発明の一つの好ましい態様によれば、上記請求項1又は2の構成に於いて、電動機制御手段は実際の温度と理想温度との偏差の大きさが大きい電動機の温度が理想温度よりも低いときには電動機の出力を増大させ、電動機の温度が理想温度よりも高いときには電動機の出力を低下させることにより、当該電動機の実際の温度が当該電動機の理想温度に近づけるよう構成される(好ましい態様1)。
[Preferred embodiment of problem solving means]
According to one preferable aspect of the present invention, in the configuration according to claim 1 or 2, the motor control means is such that the temperature of the motor having a large deviation between the actual temperature and the ideal temperature is lower than the ideal temperature. Sometimes, the output of the motor is increased, and when the temperature of the motor is higher than the ideal temperature, the output of the motor is decreased so that the actual temperature of the motor approaches the ideal temperature of the motor (preferred aspect 1). .

本発明の他の一つの好ましい態様によれば、上記請求項1の構成に於いて、電動車輌は左右前輪及び左右後輪に対応する車輪に駆動力を付与する電動機を有するよう構成される(好ましい態様2)。   According to another preferred aspect of the present invention, in the configuration of claim 1, the electric vehicle includes an electric motor that applies driving force to the wheels corresponding to the left and right front wheels and the left and right rear wheels. Preferred embodiment 2).

本発明の他の一つの好ましい態様によれば、上記請求項1の構成に於いて、電動車輌は左右前輪に駆動力を付与する前輪用電動機と左右後輪に駆動力を付与する後輪用電動機とを有するよう構成される(好ましい態様3)。   According to another preferred aspect of the present invention, in the configuration of claim 1, the electric vehicle is a front wheel motor that applies driving force to the left and right front wheels and a rear wheel motor that applies driving force to the left and right rear wheels. It is comprised so that it may have an electric motor (the preferable aspect 3).

本発明の他の一つの好ましい態様によれば、上記請求項2の構成に於いて、左前後輪及び右前後輪の何れについても、電動機制御手段は前後二つの車輪の温度が理想温度よりも高いときには、温度が高い方の電動機の出力を低下させることにより、当該電動機の温度が理想温度に近づくよう、前後二つの車輪の電動機を制御するよう構成される(好ましい態様4)。   According to another preferred aspect of the present invention, in the configuration of claim 2, the motor control means is configured such that the temperature of the two front and rear wheels is lower than the ideal temperature for both the left front and rear wheels. When the temperature is high, the output of the motor having the higher temperature is decreased, so that the motors of the two front and rear wheels are controlled so that the temperature of the motor approaches the ideal temperature (preferred aspect 4).

本発明の他の一つの好ましい態様によれば、上記請求項2又は上記好ましい態様4の構成に於いて、左前後輪及び右前後輪の何れについても、電動機制御手段は前後二つの車輪の温度が理想温度よりも低いときには、温度が低い方の電動機の出力を増大させることにより、当該電動機の温度が理想温度に近づくよう、前後二つの車輪の電動機を制御するよう構成される(好ましい態様5)。   According to another preferred embodiment of the present invention, in the configuration of the above-mentioned claim 2 or the preferred embodiment 4, the motor control means is configured to control the temperature of the two front and rear wheels for both the left front and rear wheels. Is lower than the ideal temperature, by increasing the output of the motor with the lower temperature, the motors of the two front and rear wheels are controlled so that the temperature of the motor approaches the ideal temperature (preferred aspect 5). ).

本発明の他の一つの好ましい態様によれば、上記請求項2又は上記好ましい態様4及び5の構成に於いて、左前後輪及び右前後輪の何れについても、電動機制御手段は前後輪の一方の温度が理想温度よりも高く且つ前後輪の他方の温度が理想温度よりも低いときには、理想温度との偏差の大きさが大きい方の電動機の温度が理想温度に近づくよう、前後二つの車輪の電動機を制御するよう構成される(好ましい態様6)。   According to another preferred embodiment of the present invention, in the configuration of the above-mentioned claim 2 or the preferred embodiments 4 and 5, the motor control means is provided for either the left front wheel or the right front wheel. When the temperature of the two wheels is higher than the ideal temperature and the other temperature of the front and rear wheels is lower than the ideal temperature, the two wheels on the front and rear wheels are arranged so that the temperature of the motor with the larger deviation from the ideal temperature approaches the ideal temperature. It is comprised so that an electric motor may be controlled (preferred aspect 6).

本発明の他の一つの好ましい態様によれば、上記請求項2又は上記好ましい態様4乃至6の構成に於いて、左前後輪及び右前後輪の何れについても、電動機制御手段は前輪及び後輪の温度の偏差の大きさが基準値以下であるときには、電動機の温度を理想温度に近づけることなく電動機に要求される出力に基づいて電動機を制御するよう構成される(好ましい態様7)。   According to another preferred aspect of the present invention, in any of the left and right front wheels and the right front and rear wheels, the motor control means is the front wheel and the rear wheel. When the magnitude of the temperature deviation is less than or equal to the reference value, the motor is controlled based on the output required of the motor without bringing the temperature of the motor close to the ideal temperature (preferred aspect 7).

本発明の他の一つの好ましい態様によれば、上記請求項2又は上記好ましい態様4乃至7の構成に於いて、電動機制御手段は電動機の温度を理想温度に近づけるための電動機の出力が当該電動機の最高出力を越えるときには、当該電動機の出力を最高出力に制御し、他方の電動機の出力を二つの車輪の電動機の目標出力の和より前記最高出力を減算した値に制御するよう構成される(好ましい態様8)。   According to another preferred embodiment of the present invention, in the configuration of the above-mentioned claim 2 or the preferred embodiments 4 to 7, the motor control means has an output of the motor for bringing the temperature of the motor close to an ideal temperature. When the maximum output of the motor is exceeded, the output of the motor is controlled to the maximum output, and the output of the other motor is controlled to a value obtained by subtracting the maximum output from the sum of the target outputs of the motors of the two wheels ( Preferred embodiment 8).

本発明の他の一つの好ましい態様によれば、上記請求項1又は2又は上記好ましい態様1乃至8の構成に於いて、電動機制御手段は少なくとも電動機の温度と理想温度との偏差に基づいて電動機の出力の増減量を制御するよう構成される(好ましい態様9)。   According to another preferred aspect of the present invention, in the configuration of claim 1 or 2 or the preferred aspects 1 to 8, the motor control means is based on at least a deviation between the temperature of the motor and the ideal temperature. It is configured to control the increase / decrease amount of the output (preferred aspect 9).

本発明の他の一つの好ましい態様によれば、上記請求項1又は2又は上記好ましい態様1乃至9の構成に於いて、全ての電動機は同一の理想温度を有するよう構成される(好ましい態様10)。   According to another preferred embodiment of the present invention, in the configuration of claim 1 or 2 or the preferred embodiments 1 to 9, all the motors are configured to have the same ideal temperature (preferred embodiment 10). ).

本発明の他の一つの好ましい態様によれば、上記請求項1又は2又は上記好ましい態様1乃至10の構成に於いて、電動機は制動時に回生制動を行うよう構成される(好ましい態様11)。   According to another preferred aspect of the present invention, in the configuration of claim 1 or 2 or preferred modes 1 to 10, the electric motor is configured to perform regenerative braking during braking (preferred mode 11).

以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施例について詳細に説明する。   The present invention will now be described in detail with reference to a few preferred embodiments with reference to the accompanying drawings.

図1はインホイールモータ式の四輪駆動車に適用された本発明による電動車輌の駆動力制御装置の実施例1を示す概略構成図である。   FIG. 1 is a schematic diagram showing a first embodiment of a driving force control apparatus for an electric vehicle according to the present invention applied to an in-wheel motor type four-wheel drive vehicle.

図1に於いて、10FL及び10FRはそれぞれ操舵輪である左右の前輪を示し、10RL及び10RRはそれぞれ非操舵輪である左右の後輪を示している。左右の前輪10FL及び10FRにはそれぞれインホイールモータである電動発電機12FL及び12FRが組み込まれており、左右の前輪10FL及び10FRは電動発電機12FL及び12FRにより駆動される。電動発電機12FL及び12FRは制動時にはそれぞれ左右前輪の回生発電機としても機能し、回生制動力を発生する。   In FIG. 1, 10FL and 10FR respectively indicate left and right front wheels that are steering wheels, and 10RL and 10RR respectively indicate left and right rear wheels that are non-steering wheels. Motor generators 12FL and 12FR, which are in-wheel motors, are incorporated in the left and right front wheels 10FL and 10FR, respectively. The left and right front wheels 10FL and 10FR are driven by the motor generators 12FL and 12FR. The motor generators 12FL and 12FR also function as regenerative generators for the left and right front wheels during braking, respectively, and generate regenerative braking force.

同様に、左右の後輪10RL及び10RRにはそれぞれインホイールモータである電動発電機12RL及び12RRが組み込まれており、左右の前輪10RL及び10RRは電動発電機12RL及び12RRにより駆動される。電動発電機12RL及び12RRは制動時にはそれぞれ左右後輪の発電機としても機能し、回生制動力を発生する。   Similarly, motor generators 12RL and 12RR, which are in-wheel motors, are incorporated in the left and right rear wheels 10RL and 10RR, respectively. The left and right front wheels 10RL and 10RR are driven by the motor generators 12RL and 12RR. The motor generators 12RL and 12RR also function as left and right rear wheel generators during braking to generate regenerative braking force.

電動発電機12FL〜12RRの駆動力はアクセル開度センサ14により検出される図1には示されていないアクセルペダルの踏み込み量としてのアクセル開度φに基づき駆動力制御用電子制御装置16により制御される。電動発電機12FL〜12RRの回生制動力も駆動力制御用電子制御装置16により制御される。   The driving force of the motor generators 12FL to 12RR is controlled by the driving force control electronic control device 16 based on the accelerator opening φ as the accelerator pedal depression amount not shown in FIG. Is done. The regenerative braking force of the motor generators 12FL to 12RR is also controlled by the driving force control electronic control unit 16.

尚図1には詳細に示されていないが、駆動力制御用電子制御装置16はマイクロコンピュータ、駆動回路、インバータ、バッテリを含み、マイクロコンピュータは例えばCPUと、ROMと、RAMと、入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続された一般的な構成のものであってよい。また通常走行時には図1には示されていないバッテリに充電された電力が駆動回路及びインバータを経て各電動発電機12FL〜12RRへ供給され、車輌の減速制動時には各電動発電機12FL〜12RRによる回生制動により発電された電力がインバータ及び駆動回路を経てバッテリに充電される。   Although not shown in detail in FIG. 1, the driving force control electronic control device 16 includes a microcomputer, a drive circuit, an inverter, and a battery. The microcomputer includes, for example, a CPU, a ROM, a RAM, and an input / output port. And a general configuration in which these are connected to each other by a bidirectional common bus. 1 is supplied to the motor generators 12FL to 12RR via a drive circuit and an inverter during normal driving, and regenerative by the motor generators 12FL to 12RR during deceleration braking of the vehicle. Electric power generated by braking is charged to the battery via the inverter and the drive circuit.

左右の前輪10FL、10FR及び左右の後輪10RL、10RRの摩擦制動力は摩擦制動装置18の油圧回路20により対応するホイールシリンダ22FL、22FR、22RL、22RRの制動圧が制御されることによって制御される。図には示されていないが、油圧回路20はリザーバ、オイルポンプ、種々の弁装置等を含み、各ホイールシリンダの制動圧力は通常時には運転者によるブレーキペダル24の踏み込み量及びブレーキペダル24の踏み込みに応じて駆動されるマスタシリンダ26の圧力に応じて制御され、また必要に応じてオイルポンプや種々の弁装置が制動力制御用電子制御装置28によって制御されることにより、運転者によるブレーキペダル24の踏み込み量に関係なく制御される。   The friction braking force of the left and right front wheels 10FL, 10FR and the left and right rear wheels 10RL, 10RR is controlled by controlling the braking pressure of the corresponding wheel cylinders 22FL, 22FR, 22RL, 22RR by the hydraulic circuit 20 of the friction braking device 18. The Although not shown in the drawing, the hydraulic circuit 20 includes a reservoir, an oil pump, various valve devices, etc., and the braking pressure of each wheel cylinder is normally determined by the amount of depression of the brake pedal 24 and depression of the brake pedal 24 by the driver. The brake pedal is controlled by the driver by controlling the oil pump and various valve devices by the electronic control device 28 for controlling the braking force as necessary. Control is performed regardless of the amount of depression of 24.

尚図1には詳細に示されていないが、制動力制御用電子制御装置28もマイクロコンピュータと駆動回路とよりなり、マイクロコンピュータは例えばCPUと、ROMと、RAMと、入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続された一般的な構成のものであってよい。   Although not shown in detail in FIG. 1, the electronic control device 28 for controlling the braking force also includes a microcomputer and a drive circuit. The microcomputer includes, for example, a CPU, a ROM, a RAM, and an input / output port device. And may have a general configuration in which they are connected to each other by a bidirectional common bus.

駆動力制御用電子制御装置16にはアクセル開度センサ14よりのアクセル開度φを示す信号に加えて、温度センサ30FL〜30RRより電動発電機12FL〜12RRの温度Tmi(i=fl、fr、rl、rr)を示す信号、操舵角センサ32より操舵角θを示す信号、車速センサ34より車速Vを示す信号が入力される。また制動力制御用電子制御装置28には圧力センサ36よりマスタシリンダ圧力Pmを示す信号、圧力センサ38FL〜38RRより対応する車輪の制動圧(ホイールシリンダ圧力)Pbi(i=fl、fr、rl、rr)を示す信号が入力される。駆動力制御用電子制御装置16及び制動力制御用電子制御装置28は必要に応じて相互に信号の授受を行う。尚操舵角センサ32は車輌の左旋回方向を正として操舵角θを検出する。   In addition to the signal indicating the accelerator opening φ from the accelerator opening sensor 14, the driving force control electronic control device 16 receives the temperature Tmi (i = fl, fr, fr) of the motor generators 12 FL to 12 RR from the temperature sensors 30 FL to 30 RR. rl, rr), a signal indicating the steering angle θ from the steering angle sensor 32, and a signal indicating the vehicle speed V from the vehicle speed sensor 34. Also, the braking force control electronic control unit 28 has a signal indicating the master cylinder pressure Pm from the pressure sensor 36, and a corresponding wheel braking pressure (wheel cylinder pressure) Pbi (i = fl, fr, rl,) from the pressure sensors 38FL to 38RR. rr) is input. The driving force control electronic control device 16 and the braking force control electronic control device 28 exchange signals with each other as necessary. The steering angle sensor 32 detects the steering angle θ with the left turning direction of the vehicle as positive.

駆動力制御用電子制御装置16は、運転者の加減速操作量であるアクセル開度φ及びマスタシリンダ圧力Pmに基づき車輌の目標前後力Fxtを演算し、目標前後力Fxtが負の値であり制動力であるときには、目標前後力Fxtを所定の配分比にて各車輪に配分して各車輪の目標駆動力Fxti(i=fl、fr、rl、rr)を演算する。そして目標駆動力Fxtiが電動発電機12FL〜12RRの最大回生制動力Fremax以下であるときには、電動発電機12FL〜12RRの目標回生制動力Freti(i=fl、fr、rl、rr)を目標駆動力Fxtiに設定して電動発電機12FL〜12RRの回生制動力がそれぞれ対応する目標回生制動力Fretiになるよう電動発電機12FL〜12RRを制御すると共に、各車輪の目標摩擦制動力Fwbti(i=fl、fr、rl、rr)が0であることを示す信号を制動力制御用電子制御装置28へ出力する。   The driving force control electronic control device 16 calculates the target longitudinal force Fxt of the vehicle based on the accelerator opening φ and the master cylinder pressure Pm, which are the acceleration / deceleration operation amount of the driver, and the target longitudinal force Fxt is a negative value. When it is a braking force, the target longitudinal force Fxt is distributed to each wheel at a predetermined distribution ratio, and the target driving force Fxti (i = fl, fr, rl, rr) of each wheel is calculated. When the target driving force Fxti is equal to or less than the maximum regenerative braking force Fremax of the motor generators 12FL to 12RR, the target regenerative braking force Freti (i = fl, fr, rl, rr) of the motor generators 12FL to 12RR is used as the target driving force. The motor generators 12FL to 12RR are controlled so that the regenerative braking force of the motor generators 12FL to 12RR becomes the corresponding target regenerative braking force Freti, and the target friction braking force Fwbti (i = fl) of each wheel is set. , Fr, rl, rr) is output to the braking force control electronic control device 28 as 0.

これに対し駆動力制御用電子制御装置16は、目標駆動力Fxtiが電動発電機12FL〜12RRの最大回生制動力Fremaxよりも高いときには、電動発電機12FL〜12RRの目標回生制動力Fretiを最大回生制動力Fremaxに設定して電動発電機12FL〜12RRの回生制動力が最大回生制動力Fremaxになるよう電動発電機12FL〜12RRを制御すると共に、各車輪の目標摩擦制動力Fwbti(=Fxti−Fremax)を演算して該目標摩擦制動力Fwbtiを示す信号を制動力制御用電子制御装置28へ出力する。   On the other hand, when the target driving force Fxti is higher than the maximum regenerative braking force Fremax of the motor generators 12FL to 12RR, the driving force control electronic control device 16 generates the maximum regenerative braking force Freti of the motor generators 12FL to 12RR. The motor generators 12FL-12RR are controlled so that the regenerative braking force of the motor generators 12FL-12RR becomes the maximum regenerative braking force Fremax by setting the braking force Fremax, and the target friction braking force Fwbti (= Fxti-Fremax of each wheel). ) And outputs a signal indicating the target friction braking force Fwbti to the braking force control electronic control unit 28.

また駆動力制御用電子制御装置16は、目標前後力Fxtが負の値ではなく駆動力であるときには、操舵角θ及び車速V等に基づき目標前後力Fxtの左輪配分比Rl(0<Rl<1)及び右輪配分比Rr(=1−Rl)を演算し、左輪配分比Rlに基づき左前後輪の目標前後力Fxtl(=RlFxt)及び右前後輪の目標前後力Fxtr(=RrFxt)を演算し、各車輪の目標摩擦制動力Fwbtiをそれぞれ0に設定して該目標摩擦制動力Fwbtiを示す信号を制動力制御用電子制御装置28へ出力する。   When the target longitudinal force Fxt is not a negative value but a driving force, the driving force control electronic control device 16 determines the left wheel distribution ratio Rl (0 <Rl <) of the target longitudinal force Fxt based on the steering angle θ, the vehicle speed V, and the like. 1) and the right wheel distribution ratio Rr (= 1-Rl) are calculated, and the left and right front wheel target longitudinal force Fxtl (= RlFxt) and the right front and rear wheel target longitudinal force Fxtr (= RrFxt) are calculated based on the left wheel distribution ratio Rl. Then, the target friction braking force Fwbti of each wheel is set to 0, and a signal indicating the target friction braking force Fwbti is output to the braking force control electronic control unit 28.

また駆動力制御用電子制御装置16は、左前後輪の二つの電動発電機12FL、12RLについて実際の温度Tmfl、Tmrlと電動発電機の理想温度Tmtとの二つの偏差のうち大きさが大きい方の電動発電機の実際の温度が当該電動発電機の理想温度Tmtに近づくよう、左前後輪の目標前後力Fxlt及び大きい方の温度偏差に基づいて当該電動発電機の出力を制御すると共に、目標前後力Fxltより前記温度偏差の大きさが大きい方の電動発電機の出力に対応する車輪前後力を減算した値になるよう左前後輪の他方の車輪の電動発電機の出力を制御する。   The electronic controller 16 for controlling the driving force has a larger one of two deviations between the actual temperatures Tmfl and Tmrl and the ideal temperature Tmt of the motor generator for the two motor generators 12FL and 12RL of the left front and rear wheels. The output of the motor generator is controlled based on the target longitudinal force Fxlt of the left front and rear wheels and the larger temperature deviation so that the actual temperature of the motor generator approaches the ideal temperature Tmt of the motor generator. The output of the motor generator of the other wheel of the left front / rear wheel is controlled so as to be a value obtained by subtracting the wheel front / rear force corresponding to the output of the motor generator having a larger temperature deviation than the front / rear force Fxlt.

同様に、駆動力制御用電子制御装置16は、右前後輪の二つの電動発電機12FR、12RRについて実際の温度Tmfr、Tmrrと電動発電機の理想温度Tmtとの二つの偏差のうち大きさが大きい方の電動発電機の実際の温度が当該電動発電機の理想温度Tmtに近づくよう、右前後輪の目標前後力Fxrt及び大きい方の温度偏差に基づいて当該電動発電機の出力を制御すると共に、目標前後力Fxrtより前記温度偏差の大きさが大きい方の電動発電機の出力に対応する車輪前後力を減算した値になるよう右前後輪の他方の車輪の電動発電機の出力を制御する。   Similarly, the electronic controller 16 for controlling the driving force has a magnitude of two deviations between the actual temperatures Tmfr and Tmrr and the ideal temperature Tmt of the motor generator for the two motor generators 12FR and 12RR of the right front and rear wheels. The output of the motor generator is controlled based on the target longitudinal force Fxrt of the right front and rear wheels and the larger temperature deviation so that the actual temperature of the larger motor generator approaches the ideal temperature Tmt of the motor generator. The output of the motor generator on the other wheel of the right front wheel is controlled so as to be a value obtained by subtracting the wheel front / rear force corresponding to the output of the motor generator having a larger temperature deviation than the target longitudinal force Fxrt. .

更に制動力制御用電子制御装置28は、駆動力制御用電子制御装置16より入力される各車輪の目標摩擦制動力Fwbtiに基づき各車輪の目標制動圧Pbti(i=fl、fr、rl、rr)を演算し、各車輪の制動圧Pbiが目標制動圧Pbtiになるよう油圧回路20を制御することにより、各車輪の摩擦制動力Fwbi(i=fl、fr、rl、rr)が各車輪の目標摩擦制動力Fwbtiになるよう制御する。   Further, the braking force control electronic control unit 28 uses the target braking pressure Pbti (i = fl, fr, rl, rr) of each wheel based on the target friction braking force Fwbti of each wheel input from the electronic control unit 16 for driving force control. ) And the hydraulic circuit 20 is controlled so that the braking pressure Pbi of each wheel becomes the target braking pressure Pbti, so that the friction braking force Fwbi (i = fl, fr, rl, rr) of each wheel is The target friction braking force Fwbti is controlled.

次に図2乃至図4に示されたフローチャートを参照して図示の実施例1に於ける制駆動力制御について説明する。尚図2乃至図4に示されたフローチャートによる制御は駆動力制御用電子制御装置16が起動されることにより開始され、図には示されていないイグニッションスイッチがオフに切り換えられるまで所定の時間毎に繰返し実行される。   Next, the braking / driving force control in the illustrated embodiment 1 will be described with reference to the flowcharts shown in FIGS. The control according to the flowcharts shown in FIG. 2 to FIG. 4 is started when the driving force control electronic control device 16 is started, and every predetermined time until an ignition switch (not shown) is turned off. Will be executed repeatedly.

まずステップ10に於いてはアクセル開度センサ14により検出されたアクセル開度φを示す信号等の読み込みが行われ、ステップ20に於いてはアクセル開度φ及びマスタシリンダ圧力Pmに基づき当技術分野に於いて公知の要領にて車輌の目標前後力Fxtが演算される。   First, in step 10, a signal indicating the accelerator opening φ detected by the accelerator opening sensor 14 is read, and in step 20, the technical field is based on the accelerator opening φ and the master cylinder pressure Pm. Then, the target longitudinal force Fxt of the vehicle is calculated in a known manner.

ステップ30に於いては車輌の目標前後力Fxtが負の値であるか否かの判別、即ち車輌に要求される前後力が制動力であるか否かの判別が行われ、肯定判別が行われたときにはステップ40に於いて制動力制御用電子制御装置28へ車輌の目標前後力Fxtを示す信号及び制動力の制御指令信号が出力されることにより、制動力制御用電子制御装置28により当技術分野に於いて公知の要領にて目標前後力Fxtに基づいて各車輪の制動力が制御され、否定判別が行われたときにはステップ50へ進む。   In step 30, it is determined whether or not the target longitudinal force Fxt of the vehicle is a negative value, that is, whether or not the longitudinal force required for the vehicle is a braking force. In step 40, the braking force control electronic control unit 28 outputs a signal indicating the target longitudinal force Fxt and a braking force control command signal to the braking force control electronic control unit 28. If the braking force of each wheel is controlled based on the target longitudinal force Fxt in a manner known in the technical field, and a negative determination is made, the routine proceeds to step 50.

ステップ50に於いては操舵角θ及び車速V等に基づき目標前後力Fxtの左輪配分比Rl及び右輪配分比Rrが演算され、ステップ60に於いては左輪配分比Rlに基づき左前後輪の目標前後力Fxtl(=RlFxt)及び右前後輪の目標前後力Fxtr(=RrFxt)が演算される。   In step 50, the left wheel distribution ratio Rl and the right wheel distribution ratio Rr of the target longitudinal force Fxt are calculated based on the steering angle θ, the vehicle speed V, and the like. In step 60, the left front and rear wheels are calculated based on the left wheel distribution ratio Rl. A target longitudinal force Fxtl (= RlFxt) and a right longitudinal wheel target longitudinal force Fxtr (= RrFxt) are calculated.

ステップ100に於いては図3に示されたルーチンに従って左前後輪の二つの電動発電機12FL、12RLについて実際の温度Tmfl、Tmrlと電動発電機の理想温度Tmtとの二つの偏差のうち大きさが大きい方の電動発電機の実際の温度が当該電動発電機の理想温度Tmtに近づくよう、左前後輪の目標前後力Fxtl及び大きい方の温度偏差に基づいて左前輪の目標前後力Fxtfl及び左後輪の目標前後力Fxtrlが演算される。   In step 100, the magnitude of the two deviations between the actual temperatures Tmfl, Tmrl and the ideal temperature Tmt of the motor generator for the two left and right motor generators 12FL, 12RL in accordance with the routine shown in FIG. Based on the target front / rear force Fxtl of the left front / rear wheel and the larger temperature deviation, the front / rear target front / rear force Fxtfl and the left front wheel are adjusted so that the actual temperature of the motor generator with the larger The rear wheel target longitudinal force Fxtrl is calculated.

同様に、ステップ300に於いては図4に示されたルーチンに従って右前後輪の二つの電動発電機12FR、12RRについて実際の温度Tmfr、Tmrrと電動発電機の理想温度Tmtとの二つの偏差のうち大きさが大きい方の電動発電機の実際の温度が当該電動発電機の理想温度Tmtに近づくよう、左前後輪の目標前後力Fxtr及び大きい方の温度偏差に基づいて右前輪の目標前後力Fxtfr及び右後輪の目標前後力Fxtrrが演算される。   Similarly, in step 300, according to the routine shown in FIG. 4, two deviations between the actual temperatures Tmfr and Tmrr and the ideal motor generator temperature Tmt for the two motor generators 12FR and 12RR of the right front and rear wheels. The target longitudinal force of the right front wheel is based on the target longitudinal force Fxtr of the left front and rear wheels and the larger temperature deviation so that the actual temperature of the larger motor generator approaches the ideal temperature Tmt of the motor generator. Fxtfr and the right front wheel target longitudinal force Fxtrr are calculated.

ステップ500に於いてはステップ100及び300に於いて演算された各車輪の目標前後力Fxti(i=fl、fr、rl、rr)に基づき各車輪の目標駆動トルクTxti(i=fl、fr、rl、rr)が演算され、ステップ510に於いては各車輪の駆動トルクTxiがそれぞれ対応する目標駆動トルクTxtiになるよう電動発電機12FL〜12RRが制御される。   In step 500, based on the target longitudinal force Fxti (i = fl, fr, rl, rr) calculated in steps 100 and 300, the target drive torque Txti (i = fl, fr, rl, rr) is calculated, and in step 510, the motor generators 12FL to 12RR are controlled so that the driving torque Txi of each wheel becomes the corresponding target driving torque Txti.

次に図3に示されたフローチャートを参照して上記ステップ100に於いて実行される左前輪の目標前後力Fxtfl及び左後輪の目標前後力Fxtrlの演算ルーチンについて説明する。   Next, the routine for calculating the target front / rear force Fxtfl of the left front wheel and the target front / rear force Fxtrl of the left rear wheel executed in step 100 will be described with reference to the flowchart shown in FIG.

まずステップ110に於いては左前輪の電動発電機12FLの温度Tmflが理想温度Tmtよりも低く且つ左後輪の電動発電機12RLの温度Tmrlが理想温度Tmtよりも低いか否かの判別が行われ、否定判別が行われたときにはステップ160へ進み、肯定判別が行われたときにはステップ120へ進む。   First, at step 110, it is determined whether or not the temperature Tmfl of the motor generator 12FL for the left front wheel is lower than the ideal temperature Tmt and the temperature Tmrl of the motor generator 12RL for the left rear wheel is lower than the ideal temperature Tmt. If a negative determination is made, the process proceeds to step 160. If an affirmative determination is made, the process proceeds to step 120.

ステップ120に於いては理想温度Tmtと温度Tmfl及びTmrlのうちの低い方の温度との偏差ΔTmlminが演算され、ステップ130に於いては温度が低い方の電動発電機の温度が上昇して理想温度Tmtに近づくよう、左前後輪の目標前後力Fxlt及び温度偏差ΔTmlminに基づいて電動発電機の温度が低い方の車輪の目標前後力Fxltminが温度偏差ΔTmlminの比例項、積分項、微分項よりなるPID補償演算によって演算される。   In step 120, a deviation ΔTmlmin between the ideal temperature Tmt and the lower one of the temperatures Tmfl and Tmrl is calculated. In step 130, the temperature of the motor generator having the lower temperature rises and the ideal temperature increases. Based on the target longitudinal force Fxlt and temperature deviation ΔTmlmin of the left front and rear wheels, the target longitudinal force Fxltmin of the wheel with the lower motor generator temperature is based on the proportional, integral, and differential terms of the temperature deviation ΔTmlmin so as to approach the temperature Tmt. Is calculated by the PID compensation calculation.

ステップ140に於いては温度が高い方の車輪の目標前後力Fxtlmaxが左前後輪の目標前後力Fxtlより目標前後力Fxtlminを減算した値に演算され、ステップ150に於いてはTmfl<Tmrlであるときには左前輪の目標前後力Fxtflが目標前後力Fxtlminに設定されると共に、左後輪の目標前後力Fxtrlが目標前後力Fxtlmaxに設定され、逆にTmfl>Tmrlであるときには左前輪の目標前後力Fxtflが目標前後力Fxtlmaxに設定されると共に、左後輪の目標前後力Fxtrlが目標前後力Fxtlminに設定される。尚Tmfl=Tmrlであるときには左前輪の目標前後力Fxtfl及び左後輪の目標前後力Fxtrlは何れもFxtl/2に設定される。   In step 140, the target longitudinal force Fxtlmax of the wheel having the higher temperature is calculated by subtracting the target longitudinal force Fxtlmin from the target longitudinal force Fxtl of the left front and rear wheels. In step 150, Tmfl <Tmrl. Sometimes the target longitudinal force Fxtfl of the left front wheel is set to the target longitudinal force Fxtlmin, and the target longitudinal force Fxtrl of the left rear wheel is set to the target longitudinal force Fxtlmax. Conversely, when Tmfl> Tmrl, the target longitudinal force of the left front wheel Fxtfl is set to the target longitudinal force Fxtlmax, and the target longitudinal force Fxtrl of the left rear wheel is set to the target longitudinal force Fxtlmin. When Tmfl = Tmrl, the target front / rear force Fxtfl of the left front wheel and the target front / rear force Fxtrl of the left rear wheel are both set to Fxtl / 2.

ステップ160に於いては左前輪の電動発電機12FLの温度Tmflが理想温度Tmtよりも高く且つ左後輪の電動発電機12RLの温度Tmrlが理想温度Tmtよりも高いか否かの判別が行われ、否定判別が行われたときにはステップ210へ進み、肯定判別が行われたときにはステップ170へ進む。   In step 160, it is determined whether the temperature Tmfl of the left front wheel motor generator 12FL is higher than the ideal temperature Tmt and whether the temperature Tmrl of the left rear wheel motor generator 12RL is higher than the ideal temperature Tmt. If a negative determination is made, the process proceeds to step 210. If an affirmative determination is made, the process proceeds to step 170.

ステップ170に於いては理想温度Tmtと温度Tmfl及びTmrlのうちの高い方の温度との偏差ΔTmlmaxが演算され、ステップ180に於いては温度が高い方の電動発電機の温度が低下して理想温度Tmtに近づくよう、左前後輪の目標前後力Fxtl及び温度偏差ΔTmlmaxに基づいて電動発電機の温度が高い方の車輪の目標前後力Fxtlmaxが温度偏差ΔTmlmaxの比例項、積分項、微分項よりなるPID補償演算によって演算される。   In step 170, a deviation ΔTmlmax between the ideal temperature Tmt and the higher one of the temperatures Tmfl and Tmrl is calculated, and in step 180, the temperature of the motor generator having the higher temperature is decreased and the ideal temperature is decreased. Based on the target longitudinal force Fxtl and temperature deviation ΔTmlmax of the left front and rear wheels, the target longitudinal force Fxtlmax of the wheel with the higher motor generator temperature is determined from the proportional, integral, and differential terms of the temperature deviation ΔTmlmax so as to approach the temperature Tmt. Is calculated by the PID compensation calculation.

ステップ190に於いては温度が低い方の車輪の目標前後力Fxtlminが左前後輪の目標前後力Fxtlより目標前後力Fxtlmaxを減算した値に演算され、ステップ200に於いてはTmfl>Tmrlであるときには左前輪の目標前後力Fxtflが目標前後力Fxtlmaxに設定されると共に、左後輪の目標前後力Fxtrlが目標前後力Fxtlminに設定され、逆にTmfl<Tmrlであるときには左前輪の目標前後力Fxtflが目標前後力Fxtlminに設定されると共に、左後輪の目標前後力Fxtrlが目標前後力Fxtlmaxに設定される。尚Tmfl=Tmrlであるときには左前輪の目標前後力Fxtfl及び左後輪の目標前後力Fxtrlは何れもFxlt/2に設定される。   In step 190, the target longitudinal force Fxtlmin of the lower temperature wheel is calculated by subtracting the target longitudinal force Fxtlmax from the target longitudinal force Fxtl of the left front and rear wheels. In step 200, Tmfl> Tmrl. Sometimes the target longitudinal force Fxtfl of the left front wheel is set to the target longitudinal force Fxtlmax, and the target longitudinal force Fxtrl of the left rear wheel is set to the target longitudinal force Fxtlmin. Conversely, when Tmfl <Tmrl, the target longitudinal force of the left front wheel Fxtfl is set to the target longitudinal force Fxtlmin, and the target longitudinal force Fxtrl of the left rear wheel is set to the target longitudinal force Fxtlmax. When Tmfl = Tmrl, the target front / rear force Fxtfl of the left front wheel and the target front / rear force Fxtrl of the left rear wheel are both set to Fxlt / 2.

ステップ210に於いては理想温度Tmtと温度Tmflとの偏差ΔTmfl及び理想温度Tmtと温度Tmrlとの偏差ΔTmrlが演算され、ステップ220に於いては偏差ΔTmf1及びΔTmrlのうち大きさが大きい方(ΔTmlb)の電動発電機の温度が理想温度Tmtに近づくよう、左前後輪の目標前後力Fxtl及び大きさが大きい方の温度偏差ΔTmlbに基づいて当該車輪の目標前後力Fxtllbが温度偏差ΔTmlbの比例項、積分項、微分項よりなるPID補償演算によって演算される。   In step 210, the deviation ΔTmfl between the ideal temperature Tmt and the temperature Tmfl and the deviation ΔTmrl between the ideal temperature Tmt and the temperature Tmrl are calculated. In step 220, the larger one of the deviations ΔTmf1 and ΔTmrl (ΔTmlb ), The target longitudinal force Fxtllb of the wheel is proportional to the temperature deviation ΔTmlb based on the target longitudinal force Fxtl of the left front and rear wheels and the larger temperature deviation ΔTmlb so that the motor generator temperature approaches the ideal temperature Tmt. , An integral term, and a differential term.

ステップ230に於いては温度偏差ΔTmfl及びΔTmrlのうち大きさが小さい方(ΔTmls)の車輪の目標前後力Fxtllsが左前後輪の目標前後力Fxtlより目標前後力Fxtllbを減算した値に演算され、ステップ240に於いてはΔTmflの大きさがΔTmrlの大きさよりも大きいときには左前輪の目標前後力Fxtflが目標前後力Fxtllbに設定されると共に、左後輪の目標前後力Fxtrlが目標前後力Fxtllsに設定され、逆にΔTmflの大きさがΔTmrlの大きさよりも小さいときには左前輪の目標前後力Fxtflが目標前後力Fxtllsに設定されると共に、左後輪の目標前後力Fxtrlが目標前後力Fxtllbに設定される。   In step 230, the target longitudinal force Fxtlls of the smaller one of the temperature deviations ΔTmfl and ΔTmrl (ΔTmls) is calculated as a value obtained by subtracting the target longitudinal force Fxtllb from the target longitudinal force Fxtl of the left longitudinal wheel. In step 240, when ΔTmfl is larger than ΔTmrl, the target front / rear force Fxtfl of the left front wheel is set to the target front / rear force Fxtllb, and the target front / rear force Fxtrl of the left rear wheel is set to the target front / rear force Fxtlls. Conversely, when ΔTmfl is smaller than ΔTmrl, the target longitudinal force Fxtfl of the left front wheel is set to the target longitudinal force Fxtlls, and the target longitudinal force Fxtrl of the left rear wheel is set to the target longitudinal force Fxtllb. Is done.

次に図4に示されたフローチャートを参照して上記ステップ300に於いて実行される右前輪の目標前後力Fxtfr及び右後輪の目標前後力Fxtrrの演算ルーチンについて説明する。尚ステップ310乃至440はそれぞれ上述のステップ110乃至240と同様に右前後輪について実行される。   Next, the routine for calculating the target front / rear force Fxtfr for the right front wheel and the target front / rear force Fxtrr for the right rear wheel, which is executed in step 300, will be described with reference to the flowchart shown in FIG. Steps 310 to 440 are executed for the right front and rear wheels in the same manner as steps 110 to 240 described above.

まずステップ310に於いては右前輪の電動発電機12FRの温度Tmfrが理想温度Tmtよりも低く且つ右後輪の電動発電機12RRの温度Tmrrが理想温度Tmtよりも低いか否かの判別が行われ、否定判別が行われたときにはステップ360へ進み、肯定判別が行われたときにはステップ320へ進む。   First, in step 310, it is determined whether or not the temperature Tmfr of the motor generator 12FR for the right front wheel is lower than the ideal temperature Tmt and the temperature Tmrr of the motor generator 12RR for the right rear wheel is lower than the ideal temperature Tmt. If a negative determination is made, the process proceeds to step 360. If an affirmative determination is made, the process proceeds to step 320.

ステップ320に於いては理想温度Tmtと温度Tmfr及びTmrrのうちの低い方の温度との偏差ΔTmrminが演算され、ステップ330に於いては温度が低い方の電動発電機の温度が上昇して理想温度Tmtに近づくよう、右前後輪の目標前後力Fxtr及び温度偏差ΔTmrminに基づいて電動発電機の温度が低い方の車輪の目標前後力Fxtrminが温度偏差ΔTmrminの比例項、積分項、微分項よりなるPID補償演算によって演算される。   In step 320, a deviation ΔTmrmin between the ideal temperature Tmt and the lower one of the temperatures Tmfr and Tmrr is calculated, and in step 330, the temperature of the motor generator having the lower temperature rises and becomes ideal. Based on the target longitudinal force Fxtr and temperature deviation ΔTmrmin of the right front wheel, the target longitudinal force Fxtrmin of the wheel with the lower motor generator temperature is based on the proportional, integral, and differential terms of the temperature deviation ΔTmrmin so as to approach the temperature Tmt. Is calculated by the PID compensation calculation.

ステップ340に於いては温度が高い方の車輪の目標前後力Fxtrmaxが右前後輪の目標前後力Fxtrより目標前後力Fxtrminを減算した値に演算され、ステップ350に於いてはTmfr<Tmrrであるときには右前輪の目標前後力Fxtfrが目標前後力Fxtrminに設定されると共に、右後輪の目標前後力Fxtrrが目標前後力Fxtrmaxに設定され、逆にTmfr>Tmrrであるときには右前輪の目標前後力Fxtfrが目標前後力Fxtrmaxに設定されると共に、右後輪の目標前後力Fxtrrが目標前後力Fxtrminに設定される。尚Tmfr=Tmrrであるときには右前輪の目標前後力Fxtfr及び右後輪の目標前後力Fxtrrは何れもFxrt/2に設定される。   In step 340, the target longitudinal force Fxtrmax of the wheel having the higher temperature is calculated by subtracting the target longitudinal force Fxtrmin from the target longitudinal force Fxtr of the right front / rear wheel, and in step 350, Tmfr <Tmrr. Sometimes the target longitudinal force Fxtfr of the right front wheel is set to the target longitudinal force Fxtrmin and the target longitudinal force Fxtrr of the right rear wheel is set to the target longitudinal force Fxtrmax. Conversely, when Tmfr> Tmrr, the target longitudinal force of the right front wheel Fxtfr is set to the target longitudinal force Fxtrmax, and the target longitudinal force Fxtrr of the right rear wheel is set to the target longitudinal force Fxtrmin. When Tmfr = Tmrr, the target longitudinal force Fxtfr for the right front wheel and the target longitudinal force Fxtrr for the right rear wheel are both set to Fxrt / 2.

ステップ360に於いては右前輪の電動発電機12FRの温度Tmfrが理想温度Tmtよりも高く且つ右後輪の電動発電機12RRの温度Tmrrが理想温度Tmtよりも高いか否かの判別が行われ、否定判別が行われたときにはステップ410へ進み、肯定判別が行われたときにはステップ370へ進む。   In step 360, it is determined whether or not the temperature Tmfr of the motor generator 12FR for the right front wheel is higher than the ideal temperature Tmt and the temperature Tmrr of the motor generator 12RR for the right rear wheel is higher than the ideal temperature Tmt. If a negative determination is made, the process proceeds to step 410. If an affirmative determination is made, the process proceeds to step 370.

ステップ370に於いては理想温度Tmtと温度Tmfr及びTmrrのうちの高い方の温度との偏差ΔTmrmaxが演算され、ステップ380に於いては温度が高い方の電動発電機の温度が低下して理想温度Tmtに近づくよう、右前後輪の目標前後力Fxtr及び温度偏差ΔTmrmaxに基づいて電動発電機の温度が高い方の車輪の目標前後力Fxtrmaxが温度偏差ΔTmrmaxの比例項、積分項、微分項よりなるPID補償演算によって演算される。   In step 370, the difference ΔTmrmax between the ideal temperature Tmt and the higher one of the temperatures Tmfr and Tmrr is calculated, and in step 380, the temperature of the motor generator with the higher temperature is decreased and the ideal temperature is decreased. Based on the target longitudinal force Fxtr and temperature deviation ΔTmrmax of the right front and rear wheels, the target longitudinal force Fxtrmax of the wheel with the higher motor generator temperature is determined from the proportional, integral, and differential terms of the temperature deviation ΔTmrmax so as to approach the temperature Tmt. Is calculated by the PID compensation calculation.

ステップ390に於いては温度が低い方の車輪の目標前後力Fxtrminが右前後輪の目標前後力Fxtrより目標前後力Fxtrmaxを減算した値に演算され、ステップ400に於いてはTmfr>Tmrrであるときには右前輪の目標前後力Fxtfrが目標前後力Fxtrmaxに設定されると共に、右後輪の目標前後力Fxtrrが目標前後力Fxtrminに設定され、逆にTmfr<Tmrrであるときには右前輪の目標前後力Fxtfrが目標前後力Fxtrminに設定されると共に、右後輪の目標前後力Fxtrrが目標前後力Fxtrmaxに設定される。尚Tmfr=Tmrrであるときには右前輪の目標前後力Fxtfr及び右後輪の目標前後力Fxtrrは何れもFxrt/2に設定される。   In step 390, the target longitudinal force Fxtrmin of the lower temperature wheel is calculated by subtracting the target longitudinal force Fxtrmax from the target longitudinal force Fxtr of the right front wheel, and in step 400, Tmfr> Tmrr. Sometimes the target longitudinal force Fxtfr of the right front wheel is set to the target longitudinal force Fxtrmax and the target longitudinal force Fxtrr of the right rear wheel is set to the target longitudinal force Fxtrmin. Conversely, when Tmfr <Tmrr, the target longitudinal force of the right front wheel Fxtfr is set to the target longitudinal force Fxtrmin, and the target longitudinal force Fxtrr of the right rear wheel is set to the target longitudinal force Fxtrmax. When Tmfr = Tmrr, the target longitudinal force Fxtfr for the right front wheel and the target longitudinal force Fxtrr for the right rear wheel are both set to Fxrt / 2.

ステップ410に於いては理想温度Tmtと温度Tmfrとの偏差ΔTmfr及び理想温度Tmtと温度Tmrrとの偏差ΔTmrrが演算され、ステップ420に於いては偏差ΔTmfr及びΔTmrrのうち大きさが大きい方(ΔTmrb)の電動発電機の温度が理想温度Tmtに近づくよう、右前後輪の目標前後力Fxtr及び大きさが大きい方の温度偏差ΔTmrbに基づいて当該車輪の目標前後力Fxtrrbが温度偏差ΔTmrbの比例項、積分項、微分項よりなるPID補償演算によって演算される。   In step 410, the deviation ΔTmfr between the ideal temperature Tmt and the temperature Tmfr and the deviation ΔTmrr between the ideal temperature Tmt and the temperature Tmrr are calculated. In step 420, the larger one of the deviations ΔTmfr and ΔTmrr (ΔTmrb ), The target longitudinal force Fxtrrb of the wheel is a proportional term of the temperature deviation ΔTmrb based on the target longitudinal force Fxtr of the right front wheel and the larger temperature deviation ΔTmrb so that the motor generator temperature approaches the ideal temperature Tmt. , An integral term, and a differential term.

ステップ430に於いては温度偏差ΔTmfr及びΔTmrrのうち大きさが小さい方(ΔTmrs)の車輪の目標前後力Fxtrrsが右前後輪の目標前後力Fxtrより目標前後力Fxtrrbを減算した値に演算され、ステップ440に於いてはΔTmfrの大きさがΔTmrrの大きさよりも大きいときには右前輪の目標前後力Fxtfrが目標前後力Fxtrrbに設定されると共に、右後輪の目標前後力Fxtrrが目標前後力Fxtrrsに設定され、逆にΔTmfrの大きさがΔTmrrの大きさよりも小さいときには右前輪の目標前後力Fxtfrが目標前後力Fxtrrsに設定されると共に、右後輪の目標前後力Fxtrrが目標前後力Fxtrrbに設定される。   In step 430, the target longitudinal force Fxtrrs of the smaller one of the temperature deviations ΔTmfr and ΔTmrr (ΔTmrs) is calculated by subtracting the target longitudinal force Fxtrrb from the target longitudinal force Fxtr of the right front wheel. In step 440, when ΔTmfr is larger than ΔTmrr, the target front / rear force Fxtfr of the right front wheel is set to the target front / rear force Fxtrrb, and the target front / rear force Fxtrr of the right rear wheel is set to the target front / rear force Fxtrrs. Conversely, when ΔTmfr is smaller than ΔTmrr, the target front / rear force Fxtfr of the right front wheel is set as the target front / rear force Fxtrrs, and the target front / rear force Fxtrr of the right rear wheel is set as the target front / rear force Fxtrrb. Is done.

かくして図示の実施例1によれば、ステップ20に於いてアクセル開度φ及びマスタシリンダ圧力Pmに基づき車輌の目標前後力Fxtが演算され、ステップ30に於いて車輌の目標前後力Fxtが駆動力であると判定されると、ステップ50及び60に於いて操舵角θ及び車速V等に基づき左前後輪の目標前後力Fxtl及び右前後輪の目標前後力Fxtrが演算される。   Thus, according to the illustrated embodiment 1, the target longitudinal force Fxt of the vehicle is calculated based on the accelerator opening φ and the master cylinder pressure Pm in step 20, and the target longitudinal force Fxt of the vehicle is determined as the driving force in step 30. In Steps 50 and 60, the target front / rear force Fxtl of the left front / rear wheel and the target front / rear force Fxtr of the right front / rear wheel are calculated based on the steering angle θ, the vehicle speed V, and the like.

そしてステップ100に於いて左前後輪の二つの電動発電機12FL、12RLについて実際の温度Tmfl、Tmrlと電動発電機の理想温度Tmtとの偏差のうち大きさが大きい方の電動発電機の実際の温度が当該電動発電機の理想温度Tmtに近づくよう、左前後輪の目標前後力Fxtl及び大きい方の温度偏差に基づいて左前輪の目標前後力Fxtfl及び左後輪の目標前後力Fxtrlが演算される。   In step 100, the actual motor generator of the larger one of the deviations between the actual temperatures Tmfl and Tmrl and the ideal temperature Tmt of the motor generator for the two motor generators 12FL and 12RL for the left front and rear wheels is larger. Based on the target longitudinal force Fxtl of the left front and rear wheels and the larger temperature deviation, the target longitudinal force Fxtfl of the left front wheel and the target longitudinal force Fxtrl of the left rear wheel are calculated so that the temperature approaches the ideal temperature Tmt of the motor generator. The

またステップ300に於いて右前後輪の二つの電動発電機12FR、12RRについて実際の温度Tmfr、Tmrrと電動発電機の理想温度Tmtとの偏差のうち大きさが大きい方の電動発電機の実際の温度が当該電動発電機の理想温度Tmtに近づくよう、左前後輪の目標前後力Fxtr及び大きい方の温度偏差に基づいて右前輪の目標前後力Fxtfr及び右後輪の目標前後力Fxtrrが演算される。   In step 300, the actual motor of the motor generator having the larger one of the deviations between the actual temperatures Tmfr and Tmrr and the ideal temperature Tmt of the motor generator for the two motor generators 12FR and 12RR of the right front and rear wheels. Based on the target longitudinal force Fxtr of the left front and rear wheels and the larger temperature deviation, the target longitudinal force Fxtfr of the right front wheel and the target longitudinal force Fxtrr of the right rear wheel are calculated so that the temperature approaches the ideal temperature Tmt of the motor generator. The

更にステップ500に於いてステップ100及び300に於いて演算された各車輪の目標前後力Fxtiに基づき各車輪の目標駆動トルクTxtiが演算され、ステップ510に於いて各車輪の駆動トルクTxiがそれぞれ対応する目標駆動トルクTxtiになるよう電動発電機12FL〜12RRが制御される。   Further, in step 500, the target driving torque Txti of each wheel is calculated based on the target longitudinal force Fxti calculated in steps 100 and 300. In step 510, the driving torque Txi of each wheel corresponds. The motor generators 12FL to 12RR are controlled so as to achieve the target drive torque Txti.

従って図示の実施例1によれば、左前後輪の二つの電動発電機12FL、12RLについて実際の温度Tmfl、Tmrlと電動発電機の理想温度Tmtとの偏差のうち大きさが大きい方の電動発電機の実際の温度が当該電動発電機の理想温度Tmtに近づくよう、左前後輪の電動発電機12FL、12RLの出力を制御することができると共に、右前後輪の二つの電動発電機12FR、12RRについて実際の温度Tmfr、Tmrrと電動発電機の理想温度Tmtとの偏差のうち大きさが大きい方の電動発電機の実際の温度が当該電動発電機の理想温度Tmtに近づくよう、右前後輪の電動発電機12FR、12RRの出力を制御することができ、これにより車輌全体の制駆動力の大きさ及び制駆動力の左右配分に変更を来たすことなく車輌全体としての電力効率を確実に向上させることができる。   Therefore, according to Example 1 shown in the drawing, the motor generator having the larger one of the deviations between the actual temperatures Tmfl and Tmrl and the ideal temperature Tmt of the motor generator for the two motor generators 12FL and 12RL of the left front and rear wheels. The output of the motor generators 12FL and 12RL for the left front and rear wheels can be controlled so that the actual temperature of the motor approaches the ideal temperature Tmt of the motor generator, and the two motor generators 12FR and 12RR for the right front and rear wheels can be controlled. Of the right front and rear wheels so that the actual temperature of the motor generator having the larger of the deviations between the actual temperatures Tmfr and Tmrr and the ideal temperature Tmt of the motor generator approaches the ideal temperature Tmt of the motor generator. The output of the motor generators 12FR and 12RR can be controlled, thereby reliably improving the power efficiency of the entire vehicle without changing the magnitude of the braking / driving force of the entire vehicle and the left / right distribution of the braking / driving force. Can Kill.

例えば図6は四輪に同一の駆動力が付与されるべき状況に於いて、左前輪及び右後輪の電動発電機の温度Tmfl、Tmrrが理想温度Tmtよりも高い状況に於ける図示の実施例1の作動を示す説明図である。   For example, FIG. 6 shows the implementation in the situation where the temperatures Tmfl and Tmrr of the motor generators of the left front wheel and the right rear wheel are higher than the ideal temperature Tmt in the situation where the same driving force should be applied to the four wheels. FIG. 6 is an explanatory diagram showing an operation of Example 1.

車輌の目標前後力Fxtに基づく左右前輪及び左右後輪の目標前後力をそれぞれFxtafl、Fxtafr、Fxtarl、Fxtarrとし、駆動力の左右配分による左前後輪及び右前後輪の目標前後力をそれぞれFxtl、Fxtrとすると、図6に示されている如く、左前輪及び右後輪の目標前後力が低減され右前輪及び左後輪の目標前後力が増大されるので、実施例1に従って演算される左右前輪及び左右後輪の目標前後力Fxtiと他の目標前後力との間には下記の式1〜3が成立する。
Fxtfl+Fxtrl=Fxtafl+Fxtarl=Fxtl ……(1)
Fxtfr+Fxtrr=Fxtafr+Fxtarr=Fxtr ……(2)
Fxtfl+Fxtrl+Fxtfr+Fxtrr
=Fxtafl+Fxtarl+Fxtafr+Fxtarr
=Fxt ……(3)
Fxtafl, Fxtafr, Fxtarl, Fxtarr are the target longitudinal forces of the left and right front wheels and the left and right rear wheels, respectively, based on the target longitudinal force Fxt of the vehicle. As shown in FIG. 6, the target longitudinal force of the left front wheel and the right rear wheel is reduced and the target longitudinal force of the right front wheel and the left rear wheel is increased as shown in FIG. The following formulas 1 to 3 are established between the target longitudinal force Fxti of the front wheels and the left and right rear wheels and other target longitudinal forces.
Fxtfl + Fxtrl = Fxtafl + Fxtarl = Fxtl (1)
Fxtfr + Fxtrr = Fxtafr + Fxtarr = Fxtr (2)
Fxtfl + Fxtrl + Fxtfr + Fxtrr
= Fxtafl + Fxtarl + Fxtafr + Fxtarr
= Fxt (3)

図5は本発明による電動車輌の駆動力制御装置の実施例2に於ける制駆動力制御ルーチンを示すフローチャートである。尚図5に於いて図2に示されたステップと同一のステップには図2に於いて付されたステップ番号と同一のステップ番号が付されている。   FIG. 5 is a flowchart showing a braking / driving force control routine in Embodiment 2 of the driving force control apparatus for an electric vehicle according to the present invention. In FIG. 5, the same step number as that shown in FIG. 2 is assigned to the same step as that shown in FIG.

この実施例2に於いては、ステップ10、100、300、500、510は上述の実施例1の場合と同様に実行され、ステップ10の次に実行されるステップ70に於いてはアクセル開度φ及びマスタシリンダ圧力Pmに基づいて当技術分野に於いて公知の要領にて車輌の目標前後力Fxtが演算されると共に、目標前後力Fxt、操舵角θ、車速V等に基づいて当技術分野に於いて公知の要領にて左輪の目標前後力Fxtl及び右輪の目標前後力Fxtrが演算される。尚目標前後力Fxtl又はFxtrは操舵角θ、車速V等によっては車輌の目標前後力Fxtが駆動力(正の値)であっても制動力(負の値)として演算される場合がある。   In this second embodiment, steps 10, 100, 300, 500 and 510 are executed in the same manner as in the first embodiment described above. The target longitudinal force Fxt of the vehicle is calculated based on φ and the master cylinder pressure Pm in a manner known in the art, and based on the target longitudinal force Fxt, the steering angle θ, the vehicle speed V, and the like. Then, the target longitudinal force Fxtl of the left wheel and the target longitudinal force Fxtr of the right wheel are calculated in a known manner. The target longitudinal force Fxtl or Fxtr may be calculated as a braking force (negative value) depending on the steering angle θ, the vehicle speed V, etc., even if the target longitudinal force Fxt of the vehicle is a driving force (positive value).

ステップ80に於いては左輪の目標前後力Fxtlが負の値であり制動力である否かの判別が行われ、否定判別が行われたときにはステップ100へ進み、肯定判別が行われたときにはステップ90に於いて制動力制御用電子制御装置28へ左輪の目標前後力Fxtlを示す信号及び制動力の制御指令信号が出力されることにより、制動力制御用電子制御装置28により当技術分野に於いて公知の要領にて目標前後力Fxtlに基づいて左前後輪の制動力が制御される。   In step 80, it is determined whether or not the target longitudinal force Fxtl of the left wheel is a negative value and is a braking force. If a negative determination is made, the process proceeds to step 100. At 90, a signal indicating the target front / rear force Fxtl of the left wheel and a control command signal for the braking force are output to the braking force control electronic control device 28. The braking force of the left front and rear wheels is controlled based on the target front / rear force Fxtl in a known manner.

またステップ100が完了すると、ステップ250に於いて右輪の目標前後力Fxtrが負の値であり制動力である否かの判別が行われ、否定判別が行われたときにはステップ300へ進み、肯定判別が行われたときにはステップ260に於いて制動力制御用電子制御装置28へ右輪の目標前後力Fxtrを示す信号及び制動力の制御指令信号が出力されることにより、制動力制御用電子制御装置28により当技術分野に於いて公知の要領にて目標前後力Fxtrに基づいて右前後輪の制動力が制御される。   When step 100 is completed, it is determined in step 250 whether the target front / rear force Fxtr of the right wheel is a negative value and is a braking force. If a negative determination is made, the process proceeds to step 300, where affirmative When the determination is made, in step 260, a signal indicating the target front / rear force Fxtr of the right wheel and a control command signal for the braking force are output to the braking force control electronic control unit 28, whereby the braking force control electronic control is performed. The device 28 controls the braking force of the right front and rear wheels based on the target longitudinal force Fxtr in a manner known in the art.

かくして図示の実施例2によれば、上述の実施例1の場合と同様、左前後輪及び右前後輪の何れの前後二輪についても、電動発電機の実際の温度と理想温度Tmtとの偏差のうち大きさが大きい方の電動発電機の実際の温度が当該電動発電機の理想温度Tmtに近づくよう、温度偏差の大きさが大きい方の電動発電機の出力を制御することができ、これにより車輌全体の制駆動力の大きさ及び制駆動力の左右配分に変更を来たすことなく車輌全体としての電力効率を確実に向上させることができる。   Thus, according to the illustrated second embodiment, as in the first embodiment, the deviation between the actual temperature of the motor generator and the ideal temperature Tmt is determined for both the front left and right wheels and the front left and right wheels. The output of the motor generator with the larger temperature deviation can be controlled so that the actual temperature of the motor generator with the larger one approaches the ideal temperature Tmt of the motor generator. The power efficiency of the entire vehicle can be reliably improved without changing the magnitude of the braking / driving force of the entire vehicle and the left / right distribution of the braking / driving force.

特に図示の実施例2によれば、ステップ70に於いてアクセル開度φ及びマスタシリンダ圧力Pmに基づいて車輌の目標前後力Fxtが演算されると共に、目標前後力Fxt、操舵角θ、車速V等に基づいて左輪の目標前後力Fxtl及び右輪の目標前後力Fxtrが演算され、それぞれステップ80、250に於いて左輪の目標前後力Fxtl及び右輪の目標前後力Fxtrが駆動力であると判定されると、ステップ100、300が実行されるので、車輌全体の目標前後力Fxtが駆動力であっても左輪の目標前後力Fxtl又は右輪の目標前後力Fxtrが制動力に演算される車輌の場合にも、左輪の目標前後力Fxtl又は右輪の目標前後力Fxtrが駆動力である場合に上述の作用効果を得ることができる。   In particular, according to the illustrated embodiment 2, in step 70, the target longitudinal force Fxt of the vehicle is calculated based on the accelerator opening φ and the master cylinder pressure Pm, and the target longitudinal force Fxt, steering angle θ, vehicle speed V is calculated. Based on the above, the left and right target longitudinal force Fxtl and the right and right target longitudinal force Fxtr are calculated. In steps 80 and 250, the left and right wheel target longitudinal and forward force Fxtl and Fxtr are the driving forces, respectively. When the determination is made, since steps 100 and 300 are executed, even if the target longitudinal force Fxt of the entire vehicle is a driving force, the target longitudinal force Fxtl of the left wheel or the target longitudinal force Fxtr of the right wheel is calculated as a braking force. Also in the case of a vehicle, the above-described effects can be obtained when the target longitudinal force Fxtl for the left wheel or the target longitudinal force Fxtr for the right wheel is a driving force.

尚、上述の実施例1及び2によれば、ステップ110及び160若しくはステップ310及び360に於いて否定判別が行われたときには、即ち前後輪の一方の電動発電機の温度が理想温度よりも高く且つ前後輪の他方の電動発電機の温度が理想温度よりも低いときには、温度偏差の大きさが大きい方の電動発電機の温度が理想温度Tmtに近づくよう、前後輪の電動発電機の出力を制御することができ、従って前後輪の一方の電動発電機の温度が理想温度よりも高く且つ前後輪の他方の電動発電機の温度が理想温度よりも低いときには電動発電機の出力の補正制御が行われない場合に比して、確実に車輌全体としての電力効率を向上させることができる。   According to the first and second embodiments described above, when a negative determination is made in steps 110 and 160 or steps 310 and 360, that is, the temperature of one of the front and rear motor generators is higher than the ideal temperature. When the temperature of the other motor generator of the front and rear wheels is lower than the ideal temperature, the output of the motor generator of the front and rear wheels is adjusted so that the temperature of the motor generator with the larger temperature deviation approaches the ideal temperature Tmt. Therefore, when the temperature of one motor generator of the front and rear wheels is higher than the ideal temperature and the temperature of the other motor generator of the front and rear wheels is lower than the ideal temperature, the correction control of the output of the motor generator is performed. Compared with the case where it is not performed, the power efficiency of the entire vehicle can be improved with certainty.

以上に於いては本発明を特定の実施例について詳細に説明したが、本発明は上述の実施例に限定されるものではなく、本発明の範囲内にて他の種々の実施例が可能であることは当業者にとって明らかであろう。   Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art.

例えば上述の実施例1及び2に於いては、電動発電機12FL〜12RRはインホイールモータであるが、電動発電機は車体側に設けられてもよく、各車輪の駆動源としての電動発電機は回生制動を行わないものであってもよい。   For example, in the first and second embodiments described above, the motor generators 12FL to 12RR are in-wheel motors. However, the motor generator may be provided on the vehicle body side, and the motor generator as a drive source of each wheel. May not perform regenerative braking.

また上述の実施例1及び2に於いては、各車輪に電動発電機12FL〜12RRが設けられ、各車輪にはそれぞれ対応する電動発電機の駆動力が個別に付与されるようになっているが、本発明は左右前輪に駆動力を付与する前輪用電動発電機と左右後輪に駆動力を付与する後輪用電動発電機とを有する車輌に適用されてもよく、その場合には前輪用電動発電機及び後輪用電動発電機の一方の温度が理想温度に近づくよう制御される際に車輌に要求される前後力を変更しないよう前輪用電動発電機及び後輪用電動発電機の他方の出力が制御される。   In the first and second embodiments described above, motor generators 12FL to 12RR are provided on each wheel, and the driving force of the corresponding motor generator is individually applied to each wheel. However, the present invention may be applied to a vehicle having a front-wheel motor generator that applies driving force to the left and right front wheels and a rear-wheel motor generator that applies driving force to the left and right rear wheels. Of the front-wheel motor generator and the rear-wheel motor generator so as not to change the longitudinal force required for the vehicle when the temperature of one of the motor-generator and the rear-wheel motor generator is controlled to approach the ideal temperature. The other output is controlled.

また上述の実施例1及び2に於いては、電動機の温度と理想温度との偏差の大きさが大きい方の電動機の温度が理想温度に近づくよう電動機の出力が制御されるようになっているが、前後輪の何れの温度偏差の大きさも基準値以下であるときには、電動機の温度を理想温度に近づけるための電動機の出力の制御が行われないよう修正されてもよい。   In the first and second embodiments described above, the output of the motor is controlled so that the temperature of the motor having the larger deviation between the motor temperature and the ideal temperature approaches the ideal temperature. However, when the magnitude of the temperature deviation of any of the front and rear wheels is equal to or less than the reference value, the motor output may be corrected so as not to be controlled to bring the motor temperature close to the ideal temperature.

また上述の実施例1及び2に於いては言及されていないが、電動機の温度を理想温度に近づけるための電動機の出力が当該電動機の最高出力を越えるときには、当該電動機の出力が最高出力に制御され、他方の電動機の出力が二つの車輪の電動機の目標出力の和より前記最高出力を減算した値に制御されるよう修正されてよい。   Although not mentioned in the first and second embodiments, when the output of the motor for bringing the temperature of the motor closer to the ideal temperature exceeds the maximum output of the motor, the output of the motor is controlled to the maximum output. The output of the other motor may be modified to be controlled to a value obtained by subtracting the maximum output from the sum of the target outputs of the motors of the two wheels.

また上述の実施例1及び2に於いては言及されていないが、何れかの車輪についてトラクション制御又はアンチスキッド制御が行われているときには、少なくとも当該車輪を含む前後輪について電動機の温度を理想温度に近づけるための電動機の出力の制御が行われないよう修正されてもよい。     Although not mentioned in the first and second embodiments, when traction control or anti-skid control is performed for any of the wheels, the motor temperature is set to the ideal temperature for at least the front and rear wheels including the wheel. It may be modified so that the control of the output of the electric motor for approaching to is not performed.

ホイールインモータ式の四輪駆動車に適用された本発明による駆動力制御装置の実施例1を示す概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram which shows Example 1 of the driving force control apparatus by this invention applied to the wheel-in-motor type four-wheel drive vehicle. 本発明による駆動力制御装置の実施例1に於ける制駆動力制御のメインルーチンを示すフローチャートである。It is a flowchart which shows the main routine of the braking / driving force control in Example 1 of the driving force control apparatus by this invention. 実施例1に於ける左前輪の目標前後力Fxtfl及び左後輪の目標前後力Fxtrlの演算のサブルーチンを示すフローチャートである。6 is a flowchart illustrating a subroutine for calculating a target front / rear force Fxtfl for the left front wheel and a target front / rear force Fxtrl for the left rear wheel in the first embodiment. 実施例1に於ける右前輪の目標前後力Fxtfr及び右後輪の目標前後力Fxtrrの演算のサブルーチンを示すフローチャートである。7 is a flowchart illustrating a subroutine for calculating a target front / rear force Fxtfr for the right front wheel and a target front / rear force Fxtrr for the right rear wheel in the first embodiment. 本発明による駆動力制御装置の実施例2に於ける制駆動力制御のメインルーチンを示すフローチャートである。It is a flowchart which shows the main routine of the braking / driving force control in Example 2 of the driving force control apparatus by this invention. 四輪に同一の駆動力が付与されるべき状況に於いて、左前輪及び右後輪の電動発電機の温度が理想温度Tmtよりも高い状況に於ける実施例1の作動を示す説明図である。FIG. 4 is an explanatory diagram showing the operation of the first embodiment in a situation where the same driving force is to be applied to the four wheels and the temperature of the motor generators of the left front wheel and the right rear wheel is higher than the ideal temperature Tmt. is there. 電動機の温度Tmと銅損及び引きずり損の関係及び電動機の理想温度Tmtを示す説明図である。It is explanatory drawing which shows the relationship between the temperature Tm of an electric motor, copper loss, and dragging loss, and the ideal temperature Tmt of an electric motor.

符号の説明Explanation of symbols

12FL〜12RR 電動発電機
14 アクセル開度センサ
16 駆動力制御用電子制御装置
18 摩擦制動装置
24 ブレーキペダル
28 制動力制御用電子制御装置
30FL〜30RR 温度センサ
32 操舵角センサ
34 車速センサ
36、38FL〜38RR 圧力センサ
12FL to 12RR Motor generator 14 Accelerator opening sensor 16 Electronic control device for driving force control 18 Friction braking device 24 Brake pedal 28 Electronic control device for braking force control 30FL to 30RR Temperature sensor 32 Steering angle sensor 34 Vehicle speed sensor 36, 38FL 38RR Pressure sensor

Claims (2)

車輪に駆動力を付与する少なくとも二つの電動機を有する電動車輌の駆動力制御装置であって、前記電動機の出力を制御する電動機制御手段と、前記電動機の実際の温度を検出する手段とを有し、前記電動機制御手段は各電動機の電力効率が最も高い温度を理想温度として前記電動機のうち実際の温度と前記理想温度との偏差が大きい電動機を決定する手段を有し、当該電動機の実際の温度が当該電動機の理想温度に近づくよう当該電動機の出力を制御することを特徴とする電動車輌の駆動力制御装置。   A driving force control device for an electric vehicle having at least two electric motors for applying driving force to wheels, comprising: electric motor control means for controlling the output of the electric motor; and means for detecting an actual temperature of the electric motor. The motor control means has means for determining a motor having a large deviation between the actual temperature and the ideal temperature from among the motors, with the temperature having the highest power efficiency of each motor as an ideal temperature, and the actual temperature of the motor. Is a driving force control device for an electric vehicle, which controls the output of the electric motor so as to approach the ideal temperature of the electric motor. 前記電動車輌は各車輪毎に対応する車輪に駆動力を付与する電動機を有し、車輌に要求される駆動力を車輌の走行状況に応じて少なくとも左右輪間に於いて配分し、左前後輪の二つの電動機について実際の温度と前記理想温度との偏差が大きい方の電動機の実際の温度が当該電動機の理想温度に近づくよう当該電動機の出力を制御すると共に、左前後輪の他方の車輪の電動機の出力が左前後輪に配分された駆動力に対応する出力より前記偏差が大きい方の電動機の出力を減算した値になるよう前記他方の車輪の電動機の出力を制御し、右前後輪の二つの電動機について実際の温度と前記理想温度との偏差が大きい方の電動機の実際の温度が当該電動機の理想温度に近づくよう当該電動機の出力を制御すると共に、右前後輪の他方の車輪の電動機の出力が右前後輪に配分された駆動力に対応する出力より前記偏差が大きい方の電動機の出力を減算した値になるよう前記他方の車輪の電動機の出力を制御することを特徴とする請求項1に記載の電動車輌の駆動力制御装置。
The electric vehicle has an electric motor for applying a driving force to the corresponding wheel for each wheel, and the driving force required for the vehicle is distributed at least between the left and right wheels according to the traveling state of the vehicle, The output of the motor is controlled so that the actual temperature of the motor with the larger deviation between the actual temperature and the ideal temperature approaches the ideal temperature of the motor, and the other wheel of the left front and rear wheels The output of the motor of the other wheel is controlled so that the output of the motor has a value obtained by subtracting the output of the motor having the larger deviation from the output corresponding to the driving force distributed to the left front and rear wheels. For the two motors, the output of the motor is controlled so that the actual temperature of the motor having the larger deviation between the actual temperature and the ideal temperature approaches the ideal temperature of the motor, and the electric power of the other wheel of the right front and rear wheels is controlled. The output of the motor of the other wheel is controlled such that the output of the other wheel is a value obtained by subtracting the output of the motor with the larger deviation from the output corresponding to the driving force distributed to the right front and rear wheels. Item 2. A driving force control apparatus for an electric vehicle according to Item 1.
JP2005315047A 2005-10-28 2005-10-28 Driving force control device for electric vehicle Expired - Fee Related JP4765552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005315047A JP4765552B2 (en) 2005-10-28 2005-10-28 Driving force control device for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005315047A JP4765552B2 (en) 2005-10-28 2005-10-28 Driving force control device for electric vehicle

Publications (2)

Publication Number Publication Date
JP2007124832A true JP2007124832A (en) 2007-05-17
JP4765552B2 JP4765552B2 (en) 2011-09-07

Family

ID=38148051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005315047A Expired - Fee Related JP4765552B2 (en) 2005-10-28 2005-10-28 Driving force control device for electric vehicle

Country Status (1)

Country Link
JP (1) JP4765552B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101434198A (en) * 2008-09-17 2009-05-20 天津市松正电动科技有限公司 Electric vehicle controller of adaptive accelerator and debug method thereof
JP2011235802A (en) * 2010-05-12 2011-11-24 Nippon Soken Inc System and method for control of hybrid vehicle
WO2013069092A1 (en) * 2011-11-08 2013-05-16 トヨタ自動車株式会社 Vehicle braking/driving force control device
WO2016043077A1 (en) * 2014-09-17 2016-03-24 Ntn株式会社 Vehicle drive control device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6326469B2 (en) 2016-09-21 2018-05-16 株式会社Subaru Vehicle driving force control device
JP6379148B2 (en) 2016-09-21 2018-08-22 株式会社Subaru Vehicle driving force control device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195033A (en) * 1987-02-06 1988-08-12 Aisin Warner Ltd Drive force controller for vehicle with electric motor
JPH0576106A (en) * 1991-02-08 1993-03-26 Nissan Motor Co Ltd Driver for electric automobile
JPH05328542A (en) * 1991-04-01 1993-12-10 Aisin Aw Co Ltd Driving force control method for electric vehicle
JPH09275664A (en) * 1996-04-02 1997-10-21 Toyota Autom Loom Works Ltd Motor controlling system
JPH1054263A (en) * 1996-08-09 1998-02-24 Aqueous Res:Kk Hybrid vehicle
JP2000059913A (en) * 1998-08-10 2000-02-25 Toyota Motor Corp Device and method for controlling motor
JP2005204436A (en) * 2004-01-16 2005-07-28 Nissan Motor Co Ltd Drive force control device of wheel independently driven type electric vehicle
JP2005278317A (en) * 2004-03-25 2005-10-06 Toyo Electric Mfg Co Ltd Torque controller of electric vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195033A (en) * 1987-02-06 1988-08-12 Aisin Warner Ltd Drive force controller for vehicle with electric motor
JPH0576106A (en) * 1991-02-08 1993-03-26 Nissan Motor Co Ltd Driver for electric automobile
JPH05328542A (en) * 1991-04-01 1993-12-10 Aisin Aw Co Ltd Driving force control method for electric vehicle
JPH09275664A (en) * 1996-04-02 1997-10-21 Toyota Autom Loom Works Ltd Motor controlling system
JPH1054263A (en) * 1996-08-09 1998-02-24 Aqueous Res:Kk Hybrid vehicle
JP2000059913A (en) * 1998-08-10 2000-02-25 Toyota Motor Corp Device and method for controlling motor
JP2005204436A (en) * 2004-01-16 2005-07-28 Nissan Motor Co Ltd Drive force control device of wheel independently driven type electric vehicle
JP2005278317A (en) * 2004-03-25 2005-10-06 Toyo Electric Mfg Co Ltd Torque controller of electric vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101434198A (en) * 2008-09-17 2009-05-20 天津市松正电动科技有限公司 Electric vehicle controller of adaptive accelerator and debug method thereof
JP2011235802A (en) * 2010-05-12 2011-11-24 Nippon Soken Inc System and method for control of hybrid vehicle
WO2013069092A1 (en) * 2011-11-08 2013-05-16 トヨタ自動車株式会社 Vehicle braking/driving force control device
CN103917402A (en) * 2011-11-08 2014-07-09 丰田自动车株式会社 Vehicle braking/driving force control device
JPWO2013069092A1 (en) * 2011-11-08 2015-04-02 トヨタ自動車株式会社 Vehicle braking / driving force control device
US9090232B2 (en) 2011-11-08 2015-07-28 Toyota Jidosha Kabushiki Kaisha Vehicle braking/driving force control device
WO2016043077A1 (en) * 2014-09-17 2016-03-24 Ntn株式会社 Vehicle drive control device

Also Published As

Publication number Publication date
JP4765552B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP4186081B2 (en) Vehicle braking / driving force control device
JP4131268B2 (en) Vehicle braking / driving force control device
US7974761B2 (en) Braking-driving force control device of vehicle
EP1876077A1 (en) Braking-driving force control device of vehicle
JP2006335171A (en) Driving/braking force control device for vehicle
JP4193706B2 (en) Road surface friction coefficient detector
JP4765552B2 (en) Driving force control device for electric vehicle
JP2006264628A (en) Vehicular braking/driving force control system
JP2006240395A (en) Driving/braking force controller for vehicle
JP4582031B2 (en) Driving force control device for four-wheel drive vehicle
JP4797513B2 (en) Vehicle driving force distribution control device
EP3529113B1 (en) Lateral dynamic control for regenerative and friction brake blending
JP4114065B2 (en) Four-wheel drive vehicle behavior control device
JP4412476B2 (en) Travel control device for a four-wheel independent drive vehicle
JP2018016169A (en) Braking force control device of vehicle
JP2007125998A (en) Driving force distribution control device of four-wheel-drive vehicle
JP3832499B2 (en) Vehicle driving force control device
JP4239861B2 (en) Vehicle behavior control device
JP6788424B2 (en) Vehicle braking force control device
JP4661450B2 (en) Vehicle drive torque control device
JP4238707B2 (en) Driving force control device for electric motor driven vehicle
JP5125669B2 (en) Vehicle speed estimation device for four-wheel drive vehicles
JP2018069913A (en) Controller of vehicle
JP4259300B2 (en) Anti-skid control device for vehicle
JP3856041B2 (en) Vehicle driving force control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R151 Written notification of patent or utility model registration

Ref document number: 4765552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees