JP2007125998A - Driving force distribution control device of four-wheel-drive vehicle - Google Patents

Driving force distribution control device of four-wheel-drive vehicle Download PDF

Info

Publication number
JP2007125998A
JP2007125998A JP2005320246A JP2005320246A JP2007125998A JP 2007125998 A JP2007125998 A JP 2007125998A JP 2005320246 A JP2005320246 A JP 2005320246A JP 2005320246 A JP2005320246 A JP 2005320246A JP 2007125998 A JP2007125998 A JP 2007125998A
Authority
JP
Japan
Prior art keywords
wheel
value
yaw rate
driving force
force distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005320246A
Other languages
Japanese (ja)
Inventor
Koichi Takayama
晃一 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005320246A priority Critical patent/JP2007125998A/en
Publication of JP2007125998A publication Critical patent/JP2007125998A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving force distribution control device of a four-wheel-drive vehicle capable of enhancing the steering stability by bringing the actual yaw rate of the vehicle close to the target yaw rate in a traveling situation in which the deviation of the yaw rate is increased while the difference in the rotational speed between front and rear wheels is hardly generated. <P>SOLUTION: The driving force distribution control device of the four-wheel-drive vehicle has a driving force distribution control means for performing the control of increasing the distribution of the driving force to a sub driving wheel as the difference in the rotational speed between front and rear wheels is large while one of the front and rear wheels is a main driving wheel, and the other is a sub driving wheel. A threshold setting means (Step S4) is provided, which sets the threshold C by a large value as the yaw rate deviation ΔΨ between the absolute value abs.(Ψ<SP>*</SP>) of the target yaw rate Ψ<SP>*</SP>and the absolute value abs.(Ψ) of the actual yaw rate Ψ is larger. The driving force distribution control means sets the value of the detected value ΔNfr of the difference in the rotational speed between front and rear wheels with the threshold C added thereto to be the controlled value of the difference in the rotational speed between front and rear wheels to be used in the control for the difference in the rotational speed between front and rear wheels. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、前後輪のうち一方を主駆動輪とし他方を副駆動輪とし、前後輪回転数差が大きいほど副駆動輪への駆動力配分を増大する制御を行う駆動力配分制御手段を備えた四輪駆動車の駆動力配分制御装置の技術分野に属する。   The present invention comprises driving force distribution control means for controlling one of the front and rear wheels to be a main driving wheel and the other to be a sub driving wheel, and to increase the driving force distribution to the sub driving wheel as the front-rear wheel rotational speed difference is larger. It belongs to the technical field of driving force distribution control devices for four-wheel drive vehicles.

従来、前後輪回転数差が大きいほど副駆動輪への駆動力配分を増大する制御を行う四輪駆動車において、目標ヨーレイトの絶対値と実ヨーレイトの絶対値との差であるヨーレイト偏差に応じて前後輪回転数差検出値の補正係数を決め、この補正係数と前後輪回転数差検出値とを掛け合わせた値により駆動力配分制御を行うようにしている(例えば、特許文献1参照)。
特開平5−278488号公報
Conventionally, according to the yaw rate deviation, which is the difference between the absolute value of the target yaw rate and the absolute value of the actual yaw rate, in a four-wheel drive vehicle that performs control to increase the distribution of driving force to the auxiliary driving wheels as the front and rear wheel rotational speed difference increases Then, a correction coefficient for the detected difference between the front and rear wheel rotation speeds is determined, and the driving force distribution control is performed by a value obtained by multiplying the correction coefficient and the detected difference between the front and rear wheel rotation speeds (for example, see Patent Document 1). .
JP-A-5-278488

しかしながら、従来の四輪駆動車の駆動力配分制御装置にあっては、路面μが低μ等により前後輪回転数差は発生しないが、左右輪の走行抵抗差によりドライバーが直進走行を意図しても車両が挙動が不安定となり、ヨーレイト偏差が大きく出るような場合、補正係数が如何に大きな値となっても前後輪回転数差検出値がゼロ、もしくは、極めて小さい値であることで、車両の実ヨーレイトを目標ヨーレイトに近づける前後輪駆動力配分制御を行うことができず、操縦安定性が低下する、という問題があった。   However, in the conventional driving force distribution control device for a four-wheel drive vehicle, there is no difference in the rotational speed of the front and rear wheels due to the road surface μ being low μ etc. However, when the behavior of the vehicle becomes unstable and the yaw rate deviation is large, no matter how large the correction coefficient is, the detected value of the front and rear wheel rotation speed difference is zero or extremely small. There was a problem that the front and rear wheel driving force distribution control that brings the actual yaw rate of the vehicle closer to the target yaw rate could not be performed, and the steering stability was lowered.

本発明は、上記問題に着目してなされたもので、前後輪回転数差は殆ど発生しないが、ヨーレイト偏差が大きく出るような走行状況において、車両の実ヨーレイトを目標ヨーレイトに近づけ、操縦安定性の向上に寄与することができる四輪駆動車の駆動力配分制御装置を提供することを目的とする。   The present invention has been made by paying attention to the above-mentioned problem, and in the driving situation in which the difference in the rotational speed of the front and rear wheels hardly occurs but the yaw rate deviation is large, the actual yaw rate of the vehicle is brought close to the target yaw rate, and the steering stability is improved. An object of the present invention is to provide a driving force distribution control device for a four-wheel drive vehicle that can contribute to the improvement of the above.

上記目的を達成するため、本発明では、前後輪のうち一方を主駆動輪とし他方を副駆動輪とし、前後輪回転数差が大きいほど副駆動輪への駆動力配分を増大する制御を行う駆動力配分制御手段を備えた四輪駆動車の駆動力配分制御装置において、
目標ヨーレイトの絶対値と実ヨーレイトの絶対値とのヨーレイト偏差が大きいほど大きな値による閾値を設定する閾値設定手段を設け、
前記駆動力配分制御手段は、前後輪回転数差検出値に前記閾値を加算した値を、前後輪回転数差対応制御で用いる前後輪回転数差制御値とすることを特徴とする。
In order to achieve the above object, in the present invention, one of the front and rear wheels is a main driving wheel and the other is a sub driving wheel, and control is performed to increase the distribution of driving force to the sub driving wheel as the front and rear wheel rotational speed difference increases. In a driving force distribution control device for a four-wheel drive vehicle equipped with a driving force distribution control means,
A threshold setting unit is provided for setting a threshold with a larger value as the yaw rate deviation between the absolute value of the target yaw rate and the absolute value of the actual yaw rate is larger,
The driving force distribution control means uses a value obtained by adding the threshold value to the front and rear wheel rotation speed difference detection value as a front and rear wheel rotation speed difference control value used in front and rear wheel rotation speed difference correspondence control.

よって、本発明の四輪駆動車の駆動力配分制御装置にあっては、走行時、閾値設定手段において、目標ヨーレイトの絶対値と実ヨーレイトの絶対値とのヨーレイト偏差が大きいほど大きな値による閾値が設定され、駆動力配分制御手段において、前後輪回転数差検出値に設定された閾値を加算した値が、前後輪回転数差対応制御で用いる前後輪回転数差制御値とされる。
すなわち、前輪駆動ベースの四輪駆動車を例にとって説明すると、氷雪路等の低μ路走行時であって、前後輪回転数差は殆ど発生しないが、ヨーレイト偏差が大きく出るような走行状況において、従来の前後輪回転数差検出値に応じた駆動力配分制御を実行する場合、前後輪回転数差検出値がゼロ、もしくは、ゼロに近い値であることで、前輪駆動状態のままでの低μ路走行となり、ヨーレイト偏差が大きく出る車両挙動が不安定な走行状況が何ら改善されず、操縦安定性が著しく低下してしまう。
これに対し、氷雪路等の低μ路走行時であって、前後輪回転数差は殆ど発生しないが、ヨーレイト偏差が大きく出るような走行状況において、本願発明では、大きな値による閾値が設定され、前後輪回転数差検出値に設定された閾値を加算した値、つまり、前後輪回転数差検出値をゼロとすると閾値による値が、前後輪回転数差対応制御で用いる前後輪回転数差制御値とされ、後輪側へ駆動力を配分する制御が行われることになる。したがって、アンダーステア傾向が高い前輪駆動状態から、後輪へ駆動力が配分される4輪駆動状態に移行することで、アンダーステア傾向の低減(ニュートラルステア方向へのステア特性変化)が図られ、車両の実ヨーレイトが目標ヨーレイトに近づき車両挙動が安定する。
この結果、前後輪回転数差は殆ど発生しないが、ヨーレイト偏差が大きく出るような走行状況において、車両の実ヨーレイトを目標ヨーレイトに近づけ、操縦安定性の向上に寄与することができる。
Therefore, in the driving force distribution control device for a four-wheel drive vehicle according to the present invention, when the vehicle is running, the threshold value setting means increases the threshold value as the yaw rate deviation between the absolute value of the target yaw rate and the absolute value of the actual yaw rate increases. In the driving force distribution control means, the value obtained by adding the set threshold value to the front and rear wheel rotational speed difference detection value is the front and rear wheel rotational speed difference control value used in the front and rear wheel rotational speed difference correspondence control.
In other words, a front-wheel drive-based four-wheel drive vehicle will be described as an example when driving on a low μ road such as an icy and snowy road. When the driving force distribution control according to the conventional front / rear wheel rotational speed difference detection value is executed, the front / rear wheel rotational speed difference detection value is zero or close to zero, so that the front wheel drive state remains unchanged. The driving situation in which the vehicle behavior is unstable and the yaw rate deviation is large and the vehicle behavior is unstable is not improved at all, and the steering stability is significantly lowered.
On the other hand, when traveling on low μ roads such as icy and snowy roads, a difference in rotational speed between the front and rear wheels hardly occurs, but in a traveling situation where the yaw rate deviation is large, the present invention sets a threshold value with a large value. The value obtained by adding the threshold value set to the front and rear wheel rotational speed difference detection value, that is, if the front and rear wheel rotational speed difference detection value is zero, the threshold value is the front and rear wheel rotational speed difference used in the front and rear wheel rotational speed difference correspondence control. The control value is set, and control for distributing the driving force to the rear wheel side is performed. Therefore, by shifting from the front-wheel drive state where the understeer tendency is high to the four-wheel drive state where the driving force is distributed to the rear wheels, the understeer tendency is reduced (change in the steer characteristic in the neutral steer direction), and the vehicle The actual yaw rate approaches the target yaw rate and the vehicle behavior is stabilized.
As a result, although there is almost no difference between the front and rear wheel rotational speeds, it is possible to bring the actual yaw rate of the vehicle closer to the target yaw rate in a driving situation in which the yaw rate deviation is large, thereby contributing to improvement in steering stability.

以下、本発明の四輪駆動車の駆動力配分制御装置を実施するための最良の形態を、図面に示す実施例1に基づいて説明する。   Hereinafter, the best mode for carrying out a driving force distribution control device for a four-wheel drive vehicle of the present invention will be described based on a first embodiment shown in the drawings.

まず、構成を説明する。
図1は実施例1の駆動力配分制御装置が適用されたハイブリッド四輪駆動車(四輪駆動車の一例)を示す全体システム図である。
実施例1の前輪駆動ベースによるハイブリッド四輪駆動車は、図1に示すように、エンジン1(第1駆動源)と、フロントモータ2F(第1駆動源)と、リアモータ2R(第2駆動源)と、左前輪タイヤ3FL(主駆動輪)と、右前輪タイヤ3FR(主駆動輪)と、左後輪タイヤ3RL(副駆動輪)と、右後輪タイヤ3RR(副駆動輪)と、フロントディファレンシャル4Fと、リアディファレンシャル4Rと、フロントトランスミッション5Fと、リアトランスミッション5Rと、を備えている。
First, the configuration will be described.
FIG. 1 is an overall system diagram showing a hybrid four-wheel drive vehicle (an example of a four-wheel drive vehicle) to which the driving force distribution control device of the first embodiment is applied.
As shown in FIG. 1, the hybrid four-wheel drive vehicle with the front wheel drive base according to the first embodiment includes an engine 1 (first drive source), a front motor 2F (first drive source), and a rear motor 2R (second drive source). ), Left front wheel tire 3FL (main drive wheel), right front wheel tire 3FR (main drive wheel), left rear wheel tire 3RL (sub drive wheel), right rear wheel tire 3RR (sub drive wheel), front A differential 4F, a rear differential 4R, a front transmission 5F, and a rear transmission 5R are provided.

前記フロントモータ2Fとリアモータ2Rは、電動発電機として、力行と回生の両方を行う。   The front motor 2F and rear motor 2R perform both power running and regeneration as motor generators.

前記左右前輪タイヤ3FL,3FRは、エンジン1とフロントモータ2Fのうち少なくとも一方を駆動源とし、フロントトランスミッション5Fを経過した駆動力が、フロントディファレンシャル4Fにより左右等配分にして駆動される。   The left and right front wheel tires 3FL and 3FR are driven by at least one of the engine 1 and the front motor 2F as a drive source, and the driving force that has passed through the front transmission 5F is equally distributed by the front differential 4F.

前記左右後輪タイヤ3RL,3RRは、リアモータ2Rのみを駆動源とし、リアトランスミッション5Rを経過した駆動力が、リアディファレンシャル4Rにより左右等配分にして駆動される。なお、リアディファレンシャル4Rは、内部に設定された差動制限クラッチの締結力制御や、内部に設定された左クラッチと右クラッチに対する締結力制御により駆動力配分を制御可能としても良い。   The left and right rear wheel tires 3RL, 3RR are driven by using only the rear motor 2R as a drive source, and the driving force that has passed through the rear transmission 5R is equally distributed by the rear differential 4R. The rear differential 4R may be capable of controlling the driving force distribution by controlling the engaging force of the differential limiting clutch set inside or by controlling the engaging force for the left clutch and the right clutch set inside.

実施例1のハイブリッド四輪駆動車の駆動力配分制御系は、図1に示すように、車輪速センサ6と、舵角センサ7と、横加速度センサ8と、車速センサ9と、アクセル開度センサ10、ヨーレイトセンサ14と、コントローラ11と、強電バッテリ12と、フロントインバータ13Fと、リアインバータ13Rと、を備えている。   As shown in FIG. 1, the driving force distribution control system of the hybrid four-wheel drive vehicle of Embodiment 1 includes a wheel speed sensor 6, a steering angle sensor 7, a lateral acceleration sensor 8, a vehicle speed sensor 9, and an accelerator opening. A sensor 10, a yaw rate sensor 14, a controller 11, a high-power battery 12, a front inverter 13F, and a rear inverter 13R are provided.

前記車輪速センサ6は、左前輪速センサ6FL、右前輪速センサ6FR、左後輪速センサ6RL、右後輪速センサ6RRにより構成され、各輪のタイヤ回転数情報を得る。   The wheel speed sensor 6 includes a left front wheel speed sensor 6FL, a right front wheel speed sensor 6FR, a left rear wheel speed sensor 6RL, and a right rear wheel speed sensor 6RR, and obtains tire rotational speed information of each wheel.

前記舵角センサ7からは舵角情報を得る。前記横加速度センサ8からは横加速度情報を得る。前記車速センサ9からは車速情報を得る。前記アクセル開度センサ10からはアクセル開度情報を得る。前記ヨーレイト14からは実ヨーレイト情報を得る。   The steering angle information is obtained from the steering angle sensor 7. Lateral acceleration information is obtained from the lateral acceleration sensor 8. Vehicle speed information is obtained from the vehicle speed sensor 9. Accelerator opening information is obtained from the accelerator opening sensor 10. Actual yaw rate information is obtained from the yaw rate 14.

前記コントローラ11は、車輪速センサ6、舵角センサ7、横加速度センサ8、車速センサ9、アクセル開度センサ10、ヨーレイトセンサ14からの情報を読み込み、基本的に前後輪回転速度差Δfrが大きくなるほど、リアモータ2Rの駆動力を大きくする、つまり、左右の後輪タイヤ3RL,3RRへ伝達される駆動力を大きくするフィードバック制御を行う。   The controller 11 reads information from the wheel speed sensor 6, the steering angle sensor 7, the lateral acceleration sensor 8, the vehicle speed sensor 9, the accelerator opening sensor 10, and the yaw rate sensor 14, and basically the front and rear wheel rotational speed difference Δfr is large. The feedback control is performed to increase the driving force of the rear motor 2R, that is, to increase the driving force transmitted to the left and right rear tires 3RL and 3RR.

前記強電バッテリ12は、両インバータ13F,13Rを経由して電力を両モータ2F,2Rに供給すると共に、両モータ2F,2Rによる発電電力を回収する役目も果たす。   The high-power battery 12 supplies electric power to both motors 2F and 2R via both inverters 13F and 13R, and also serves to collect power generated by both motors 2F and 2R.

前記フロントインバータ13Fとリアインバータ13Rは、強電バッテリ12の電気エネルギーを両モータ2F,2Rへ供給することと、両モータ2F,2Rにより回生した電気エネルギーを強電バッテリ12へ戻す役割を果たす。   The front inverter 13F and the rear inverter 13R serve to supply the electric energy of the high-power battery 12 to both the motors 2F and 2R and to return the electric energy regenerated by the motors 2F and 2R to the high-power battery 12.

図2は実施例1のコントローラ11にて実行される駆動力配分制御処理の流れを示すフローチャートで、以下、各ステップについて説明する(駆動力配分制御手段)。   FIG. 2 is a flowchart showing the flow of the driving force distribution control process executed by the controller 11 of the first embodiment. Each step will be described below (driving force distribution control means).

ステップS1では、車輪速センサ6(左前輪速センサ6FL、右前輪速センサ6FR、左後輪速センサ6RL、右後輪速センサ6RR)からの各輪のタイヤ回転数NFL,NFR,NRL,NRR、舵角センサ7からの舵角θ、車速センサ9からの車速V、ヨーレイトセンサ10からの実ヨーレイトψを読み込み、ステップS2へ移行する。   In step S1, the tire rotational speed NFL, NFR, NRL, NRR from each wheel speed sensor 6 (left front wheel speed sensor 6FL, right front wheel speed sensor 6FR, left rear wheel speed sensor 6RL, right rear wheel speed sensor 6RR). Then, the steering angle θ from the steering angle sensor 7, the vehicle speed V from the vehicle speed sensor 9, and the actual yaw rate ψ from the yaw rate sensor 10 are read, and the process proceeds to step S2.

ステップS2では、ステップS1での各輪のタイヤ回転数NFL,NFR,NRL,NRR、舵角θ、車速V、実ヨーレイトψの読み込みに続き、舵角θと車速Vにより目標ヨーレイトψ*を計算し、計算した目標ヨーレイトψ*の微分処理により目標ヨーレイト微分値dψ*/dtを計算し、ステップS3へ移行する(目標ヨーレイト微分値算出手段)。 In step S2, following the reading of the tire revolutions NFL, NFR, NRL, NRR, steering angle θ, vehicle speed V, and actual yaw rate ψ in step S1, the target yaw rate ψ * is calculated from the steering angle θ and the vehicle speed V. Then, the target yaw rate differential value dψ * / dt is calculated by the differential processing of the calculated target yaw rate ψ *, and the process proceeds to step S3 (target yaw rate differential value calculating means).

ステップS3では、ステップS2での目標ヨーレイトψ*及び目標ヨーレイト微分値dψ*/dtの計算に続き、目標ヨーレイトψ*の絶対値|ψ*|と実ヨーレイトψの絶対値|ψ|との差であるヨーレイト偏差Δψを算出し、ステップS4へ移行する。 In step S3, following the calculation of the target yaw rate ψ * and the target yaw rate differential value dψ * / dt in step S2, the difference between the absolute value | ψ * | of the target yaw rate ψ * and the absolute value | ψ | of the actual yaw rate ψ. Is calculated, and the process proceeds to step S4.

ステップS4では、ステップS3でのヨーレイト偏差Δψの算出に続き、ヨーレイト偏差Δψに応じて閾値Cを決定し、ステップS5へ移行する(閾値設定手段)。
ここで、閾値Cの設定は、図2の閾値設定マップMに示すように、ヨーレイト偏差Δψが大きいほど大きな値に設定される。また、この閾値Cは、左右後輪タイヤ3RL,3RRへの駆動力過配分を抑える最大値と最小値(C=0)とが設定される。
In step S4, following calculation of the yaw rate deviation Δψ in step S3, a threshold C is determined according to the yaw rate deviation Δψ, and the process proceeds to step S5 (threshold setting means).
Here, the threshold C is set to a larger value as the yaw rate deviation Δψ is larger, as shown in the threshold setting map M in FIG. Further, the threshold value C is set to a maximum value and a minimum value (C = 0) that suppress excessive driving force distribution to the left and right rear wheel tires 3RL and 3RR.

ステップS5では、ステップS4での閾値Cの決定に続き、ステップS2で計算された目標ヨーレイト微分値dψ*/dtの絶対値|dψ*/dt|が、急激なヨーレイト変化の判断値である設定値α以下であるか否かを判断し、YESの場合はステップS7へ移行し、NOの場合はステップS6へ移行する。 In step S5, following the determination of threshold C in step S4, the absolute value | dψ * / dt | of the target yaw rate differential value dψ * / dt calculated in step S2 is a judgment value for a sudden yaw rate change. It is determined whether or not it is equal to or less than the value α. If YES, the process proceeds to step S7, and if NO, the process proceeds to step S6.

ステップS6では、ステップS5での|dψ*/dt|>αとの判断に続き、閾値Cがゼロにセットされ、ステップS7へ移行する。 In step S6, following the determination of | dψ * / dt |> α in step S5, the threshold C is set to zero, and the process proceeds to step S7.

ステップS7では、ステップS5での|dψ*/dt|≦αとの判断、もしくは、ステップS6での閾値C=0の設定に続き、後輪指令トルクを計算し、ステップS8へ移行する。
ここで、後輪指令トルクの計算式は、
後輪指令トルク=K×{(前輪タイヤ回転数−後輪タイヤ回転数)+閾値C}
で与えられる。
尚、Kは制御ゲインであり、例えば、横加速度センサ10からの横加速度Ygの逆数に基づく値により与えられる。横加速度Ygは、車速Vと舵角θと路面μとを複合した情報であり、例えば、高μ路旋回時には、横加速度Ygが大きな値となることで、制御ゲインKは小さな値で与えられる。また、低μ路旋回時には、横加速度Ygが小さな値となることで、制御ゲインKは大きな値で与えられる。
また、(前輪タイヤ回転数−後輪タイヤ回転数)は、前後輪回転数差検出値に相当し、前輪タイヤ回転数は、例えば、各輪のタイヤ回転数のうち左右前輪タイヤ回転数平均値により与えられ、後輪タイヤ回転数は、各輪のタイヤ回転数のうち左後輪速タイヤ回転数平均値により与えられる。
In step S7, following the determination of | dψ * / dt | ≦ α in step S5 or setting of threshold value C = 0 in step S6, a rear wheel command torque is calculated, and the process proceeds to step S8.
Here, the formula for calculating the rear wheel command torque is:
Rear wheel command torque = K × {(front wheel tire rotational speed−rear wheel tire rotational speed) + threshold C}
Given in.
K is a control gain, and is given by a value based on the reciprocal of the lateral acceleration Yg from the lateral acceleration sensor 10, for example. The lateral acceleration Yg is information that combines the vehicle speed V, the steering angle θ, and the road surface μ. For example, when turning on a high μ road, the lateral acceleration Yg becomes a large value, and the control gain K is given by a small value. . Further, when turning on a low μ road, the lateral acceleration Yg becomes a small value, so that the control gain K is given a large value.
Further, (front wheel tire rotation speed−rear wheel tire rotation speed) corresponds to a detected difference between the front and rear wheel rotation speeds, and the front wheel tire rotation speed is, for example, an average value of left and right front wheel tire rotation speeds among tire rotation speeds of each wheel. The rear wheel tire rotational speed is given by the left rear wheel speed tire rotational speed average value among the tire rotational speeds of the respective wheels.

ステップS8では、ステップS7での後輪指令トルクの計算に続き、前輪駆動力指令値が、総駆動力から後輪駆動力指令値を差し引くことにより計算し、ステップS9へ移行する。
ここで、「総駆動力」は、アクセル開度センサ10からのアクセル開度情報に基づき、ドライバーの要求駆動力として計算され、また、「後輪駆動力指令値」は、演算される。
In step S8, following the calculation of the rear wheel command torque in step S7, the front wheel driving force command value is calculated by subtracting the rear wheel driving force command value from the total driving force, and the process proceeds to step S9.
Here, the “total driving force” is calculated as the driver's required driving force based on the accelerator opening information from the accelerator opening sensor 10, and the “rear wheel driving force command value” is calculated.

ステップS9では、ステップS8での前輪駆動力指令値の計算に続き、電気自動車走行モードの選択時には、前輪駆動力指令値をフロントモータ2Fに出力し、後輪駆動力指令値をリアモータ2Rに出力する。また、ハイブリッド車走行モードの場合、前輪駆動力指令値から推定エンジン駆動力を差し引いた駆動力指令値をフロントモータ2Fに出力し、後輪駆動力指令値をリアモータ2Rに出力し、リターンへ移行する。   In step S9, following the calculation of the front wheel driving force command value in step S8, when the electric vehicle traveling mode is selected, the front wheel driving force command value is output to the front motor 2F, and the rear wheel driving force command value is output to the rear motor 2R. To do. In the hybrid vehicle running mode, the driving force command value obtained by subtracting the estimated engine driving force from the front wheel driving force command value is output to the front motor 2F, the rear wheel driving force command value is output to the rear motor 2R, and the process proceeds to return. To do.

次に、作用を説明する。
[駆動力配分制御作用]
従来、前後輪回転数差が大きいほど副駆動輪への駆動力配分を増大する制御を行う四輪駆動車において、目標ヨーレイトの絶対値と実ヨーレイトの絶対値とのヨーレイト偏差に応じて前後輪回転数差検出値の補正係数を決め、この補正係数と前後輪回転数差検出値とを掛け合わせた値により駆動力配分制御を行うようにしている。
Next, the operation will be described.
[Driving force distribution control action]
Conventionally, in a four-wheel drive vehicle that performs control to increase the distribution of driving force to the sub-drive wheels as the front-rear wheel rotational speed difference is larger, the front and rear wheels depend on the yaw rate deviation between the absolute value of the target yaw rate and the absolute value of the actual yaw rate. A correction coefficient for the rotational speed difference detection value is determined, and driving force distribution control is performed by a value obtained by multiplying the correction coefficient by the front and rear wheel rotational speed difference detection value.

しかしながら、氷雪路等の低μ路走行時、前後輪回転数差は発生しないが、左右輪の走行抵抗差によりドライバーが直進走行を意図しても車両が挙動が不安定となり、ヨーレイト偏差が大きく出るような場合、補正係数が如何に大きな値となっても前後輪回転数差検出値がゼロ、もしくは、極めて小さい値であることで、車両の実ヨーレイトを目標ヨーレイトに近づける前後輪駆動力配分制御を行うことができず、操縦安定性が低下する。   However, when driving on low-μ roads such as icy and snowy roads, there is no difference between the front and rear wheel speeds, but even if the driver intends to drive straight due to the difference in driving resistance between the left and right wheels, the behavior of the vehicle becomes unstable and the yaw rate deviation is large. In such a case, the front / rear wheel driving force distribution will bring the vehicle's actual yaw rate closer to the target yaw rate by detecting that the detected value of the front / rear wheel rotation speed difference is zero or extremely small no matter how large the correction coefficient becomes. Control cannot be performed, and steering stability is reduced.

実施例1の駆動力配分制御装置では、前後輪回転数差検出値ΔNfrに、ヨーレイト偏差Δψが大きいほど大きな値による閾値Cを加算した値を、前後輪回転数差対応制御で用いる前後輪回転数差制御値とすることで、前後輪回転数差は殆ど発生しないが、ヨーレイト偏差Δψが大きく出るような走行状況において、車両の実ヨーレイトψを目標ヨーレイトψ*に近づけ、操縦安定性の向上に寄与することができるようにした。 In the driving force distribution control device according to the first embodiment, the front and rear wheel rotation used in the front and rear wheel rotation speed difference control is a value obtained by adding a threshold value C that is larger as the yaw rate deviation Δψ is larger to the front and rear wheel rotation speed difference detection value ΔNfr. By using the number difference control value, there is almost no difference between the front and rear wheel rotation speeds, but in a driving situation where the yaw rate deviation Δψ is large, the actual yaw rate ψ of the vehicle is brought closer to the target yaw rate ψ * , improving steering stability. To be able to contribute.

すなわち、前後輪回転数差は殆ど発生しないが、ヨーレイト偏差Δψが大きく出るような走行状況であって、目標ヨーレイト微分値dψ*/dtが設定値α以下のときは、図2のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS4→ステップS5→ステップS7→ステップS8→ステップS9という流れが繰り返される。ステップS4において、ヨーレイト偏差Δψが大きいほど閾値Cが大きな値に設定され、ステップS7において、前後輪回転数差検出値ΔNfr(ΔNfr=前輪タイヤ回転数−後輪タイヤ回転数)に設定された閾値Cを加算した値が、前後輪回転数差対応制御で用いる前後輪回転数差制御値とされ、図3に示すように、前後輪回転数差制御値(ΔNfr+C)に基づき後輪指令トルクが計算される。なお、図3に示す後輪指令トルクマップの横軸を、前後輪回転数差制御値(ΔNfr+C)に代えて、前後輪回転数差検出値ΔNfrとすると、図4の実線特性に示すように、図3の特性を後輪指令トルクを増大する方向にオフセット(オフセット量は閾値Cで決まる)した特性となる。 That is, there is almost no difference between the front and rear wheel rotation speeds, but the driving situation is such that the yaw rate deviation Δψ is large, and when the target yaw rate differential value dψ * / dt is equal to or less than the set value α, The flow of step S1, step S2, step S3, step S4, step S5, step S7, step S8, and step S9 is repeated. In step S4, the threshold value C is set to a larger value as the yaw rate deviation Δψ is larger. In step S7, the threshold value set to the front and rear wheel rotational speed difference detection value ΔNfr (ΔNfr = front wheel tire rotational speed−rear wheel tire rotational speed). The value obtained by adding C is the front and rear wheel rotational speed difference control value used in the front and rear wheel rotational speed difference control, and as shown in FIG. 3, the rear wheel command torque is calculated based on the front and rear wheel rotational speed difference control value (ΔNfr + C). Calculated. If the horizontal axis of the rear wheel command torque map shown in FIG. 3 is replaced with the front and rear wheel rotational speed difference control value (ΔNfr + C) instead of the front and rear wheel rotational speed difference detection value ΔNfr, the solid line characteristics in FIG. 3 is a characteristic obtained by offsetting the characteristic in FIG. 3 in the direction of increasing the rear wheel command torque (the offset amount is determined by the threshold value C).

一方、前後輪回転数差は殆ど発生しないが、ヨーレイト偏差Δψが大きく出るような走行状況であって、目標ヨーレイト微分値dψ*/dtが設定値αを越えるときは、図2のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS4→ステップS5→ステップS6→ステップS7→ステップS8→ステップS9という流れが繰り返される。ステップS4において、ヨーレイト偏差Δψが大きいほど閾値Cが大きな値に設定されるが、ステップS6において、設定された閾値Cがゼロとされる。そして、ステップS7において、前後輪回転数差検出値ΔNfrがそのまま前後輪回転数差対応制御で用いる前後輪回転数差制御値とされ、図3に示すように、前後輪回転数差制御値(=ΔNfr+0)に基づき後輪指令トルクが計算される。 On the other hand, in a driving situation in which the difference in rotational speed between the front and rear wheels hardly occurs but the yaw rate deviation Δψ is large, and the target yaw rate differential value dψ * / dt exceeds the set value α, in the flowchart of FIG. Step S1, step S2, step S3, step S4, step S5, step S6, step S7, step S8, and step S9 are repeated. In step S4, the threshold C is set to a larger value as the yaw rate deviation Δψ is larger. In step S6, the set threshold C is set to zero. In step S7, the front and rear wheel rotational speed difference detection value ΔNfr is directly used as the front and rear wheel rotational speed difference control value used in the front and rear wheel rotational speed difference control, and as shown in FIG. = ΔNfr + 0), the rear wheel command torque is calculated.

実施例1のような前輪駆動ベースのハイブリッド四輪駆動車の場合、氷雪路等の低μ路走行時であって、前後輪回転数差は殆ど発生しないが、ヨーレイト偏差が大きく出るような走行状況において、従来の前後輪回転数差検出値に応じた駆動力配分制御を実行する場合、前後輪回転数差検出値がゼロ、もしくは、ゼロに近い値であることで、前輪駆動状態のままでの低μ路走行となり、ヨーレイト偏差が大きく出る車両挙動が不安定な走行状況が何ら改善されず、操縦安定性が著しく低下してしまう。   In the case of a front four-wheel drive-based hybrid four-wheel drive vehicle such as that of the first embodiment, when traveling on a low μ road such as an icy and snowy road, there is almost no difference between the front and rear wheel rotational speeds, but the yaw rate deviation is large. In the situation, when the driving force distribution control according to the conventional front and rear wheel rotational speed difference detection value is executed, the front and rear wheel rotational speed difference detection value is zero or close to zero, so that the front wheel driving state remains unchanged. The driving situation in which the vehicle behavior in which the yaw rate deviation is large and the vehicle behavior is unstable is not improved at all, and the steering stability is remarkably lowered.

これに対し、氷雪路等の低μ路走行時であって、前後輪回転数差は殆ど発生しないが、ヨーレイト偏差Δψが大きく出るような走行状況において、実施例1では、図5に示すように、ヨーレイト偏差Δψが大きいほど大きな値による閾値Cに設定される。そして、前後輪回転数差検出値ΔNfrに設定された閾値Cを加算した値とされる。つまり、図4に示すように、前後輪回転数差検出値ΔNfrをゼロとすると閾値Cによる値が、前後輪回転数差対応制御で用いる前後輪回転数差制御値とされ、閾値Cにより後輪指令トルクTROが計算されるというように、後輪側へ駆動力を配分する制御が行われることになる。
したがって、アンダーステア傾向が高い前輪駆動状態から、後輪へ駆動力が配分される4輪駆動状態に移行することで、アンダーステア傾向の低減(ニュートラルステア方向へのステア特性変化)が図られ、車両の実ヨーレイトψが目標ヨーレイトψ*に近づき車両挙動が安定する。
On the other hand, when traveling on low μ roads such as icy and snowy roads, there is almost no difference between the front and rear wheel rotational speeds, but in a traveling situation in which the yaw rate deviation Δψ is large, in Example 1, as shown in FIG. Further, the threshold value C is set to a larger value as the yaw rate deviation Δψ is larger. And it is set as the value which added the threshold value C set to front-and-rear wheel rotation speed difference detection value (DELTA) Nfr. That is, as shown in FIG. 4, when the detected value ΔNfr of the front and rear wheels is set to zero, the value by the threshold C is set as the front and rear wheel rotational speed difference control value used in the front and rear wheel rotational speed difference corresponding control. Control to distribute the driving force to the rear wheel side is performed such that the wheel command torque TRO is calculated.
Therefore, by shifting from the front-wheel drive state where the understeer tendency is high to the four-wheel drive state where the driving force is distributed to the rear wheels, the understeer tendency is reduced (change in the steer characteristic in the neutral steer direction), and the vehicle The actual yaw rate ψ approaches the target yaw rate ψ *, and the vehicle behavior is stabilized.

この結果、前後輪回転数差は殆ど発生しないが、ヨーレイト偏差Δψが大きく出るような走行状況において、車両の実ヨーレイトψを目標ヨーレイトψ*に近づけ、操縦安定性の向上に寄与することができる。 As a result, although there is almost no difference between the front and rear wheel rotational speeds, the actual yaw rate ψ of the vehicle can be brought close to the target yaw rate ψ * in a driving situation in which the yaw rate deviation Δψ is large, thereby contributing to an improvement in steering stability. .

実施例1の駆動力配分制御装置において、前記閾値設定手段(ステップS4)は、ヨーレイト偏差Δψにより設定された閾値Cに、前後輪の一方への駆動力過配分を抑える最大値と最小値を設定する。
例えば、ヨーレイト偏差により設定された閾値に最大値と最小値による制限を設定しない場合、ヨーレイト偏差が大きいとき、回転数差制御の閾値が大きくなり過ぎ、前輪駆動ベースの場合には、後輪駆動力配分が過配分になり、後輪タイヤがスリップする。
これに対し、実施例1では、図6に示すように、ヨーレイト偏差Δψにより設定された閾値Cに、前後輪の一方への駆動力過配分を抑える最大値と最小値を設定することで、ヨーレイト偏差Δψが大きいとき、回転数差制御の閾値Cが大きくなり過ぎ、後輪駆動力配分が過配分になり、後輪タイヤ3RL,3RRがスリップするのを未然に防止することで、ヨーレイトとタイヤ挙動の両方を適切に制御することができる。
In the driving force distribution control apparatus according to the first embodiment, the threshold value setting means (step S4) sets the maximum value and the minimum value that suppress excessive driving force distribution to one of the front and rear wheels to the threshold value C set by the yaw rate deviation Δψ. Set.
For example, if the threshold set by the yaw rate deviation is not limited by the maximum and minimum values, the threshold for the rotational speed difference control becomes too large when the yaw rate deviation is large. The power distribution becomes over-distributed and the rear tires slip.
On the other hand, in the first embodiment, as shown in FIG. 6, by setting the maximum value and the minimum value for suppressing the excessive distribution of driving force to one of the front and rear wheels, the threshold value C set by the yaw rate deviation Δψ, When the yaw rate deviation Δψ is large, the threshold value C for the rotational speed difference control becomes too large, the rear wheel driving force distribution becomes excessively distributed, and the rear tires 3RL and 3RR are prevented from slipping in advance. Both tire behavior can be controlled appropriately.

実施例1の駆動力配分制御装置において、目標ヨーレイト微分値dψ*/dtを計算する目標ヨーレイト微分値算出手段(ステップS2)を設け、前記駆動力配分制御手段は、前記目標ヨーレイト微分値dψ*/dtが急激なヨーレイト変化の判断値である設定値αを越えている場合に前記閾値Cをゼロとし、前記目標ヨーレイト微分値dψ*/dtが設定値α以下の場合にのみ前後輪回転数差検出値ΔNfrに前記閾値Cを加算した値を、前後輪回転数差対応制御で用いる前後輪回転数差制御値とする。
例えば、図6の舵角特性に示すように、急激に右から左へ切り替えるハンドル操作が行われた場合等、急激なヨーレイト変化時のヨーレイト偏差に対して、フィードバック制御による前後輪回転数差対応の駆動力配分制御では、ヨーレイト偏差の変化に追いつかない可能性がある。その際、ヨーレイト偏差が大きくなったり小さくなったり正負となるため、実施例1の駆動力配分を適用すると、駆動力配分が急激に行われ、その時に乗員に違和感を与えたり、駆動系部品に過大な負荷を与える。
これに対し、実施例1では、目標ヨーレイト微分値dψ*/dtが設定値α以下の場合にのみ前後輪回転数差検出値ΔNfrに閾値Cを加算した値を、前後輪回転数差対応制御で用いる前後輪回転数差制御値とすることで、急激な駆動力配分が抑制され、駆動力配分による乗員への違和感や、駆動系部品への過大負荷を低減することができる。
In the driving force distribution control apparatus of the first embodiment, target yaw rate differential value calculating means (step S2) for calculating the target yaw rate differential value dψ * / dt is provided, and the driving force distribution control means is configured to provide the target yaw rate differential value dψ *. The threshold C is set to zero when / dt exceeds a set value α that is a judgment value of a rapid yaw rate change, and the front and rear wheel rotational speeds are set only when the target yaw rate differential value dψ * / dt is equal to or less than the set value α. A value obtained by adding the threshold C to the difference detection value ΔNfr is used as a front and rear wheel rotational speed difference control value used in front and rear wheel rotational speed difference correspondence control.
For example, as shown in the steering angle characteristics of FIG. 6, when the steering wheel operation is suddenly switched from right to left, the yaw rate deviation at the time of a sudden yaw rate change corresponds to the difference between the front and rear wheel speeds by feedback control. In this driving force distribution control, there is a possibility that the change in the yaw rate deviation cannot be caught up. At that time, the yaw rate deviation becomes larger, smaller, or positive / negative. Therefore, when the driving force distribution according to the first embodiment is applied, the driving force distribution is abruptly performed. Give excessive load.
On the other hand, in the first embodiment, the value obtained by adding the threshold value C to the front and rear wheel rotational speed difference detection value ΔNfr only when the target yaw rate differential value dψ * / dt is equal to or smaller than the set value α is used as the front and rear wheel rotational speed difference correspondence control. By using the front and rear wheel rotational speed difference control value used in the above, rapid driving force distribution is suppressed, and it is possible to reduce a sense of discomfort to the occupant due to the driving force distribution and an excessive load on driving system components.

実施例1の駆動力配分制御装置において、前記車両は、前輪を主駆動輪とし、後輪を副駆動輪とし、エンジン1とフロントモータ2Fにより前輪を駆動する第1駆動源と、リアモータ2Rにより後輪を駆動する第2駆動源と、を備えた前輪駆動ベースのハイブリッド四輪駆動車であり、前記駆動力配分制御手段は、前記第2駆動源であるリアモータ2Rの駆動力を制御することで左右後輪タイヤ3RL,3RRへ伝達される駆動力を制御する。
例えば、前輪駆動ベースの四輪駆動車としては、後輪駆動系に電磁多板クラッチや油圧クラッチ等によるトランスファクラッチを介装し、駆動力配分指令に基づき、クラッチ締結力を制御し、前輪側へ伝達される駆動力の一部を後輪側へ伝達する方式のものが知られているが、駆動力配分指令の出力時点から実駆動力が後輪に発生するまでには、クラッチ動作→クラッチトルク発生→駆動系部品間のトルク伝達という動作フローとなり、応答遅れが生じる。
これに対し、制御応答性の高いリアモータ2Rに対する駆動力指令により左右後輪タイヤ3RL,3RRへ伝達される駆動力を制御することで、副駆動輪への駆動力配分を増大することによるアンダーステア傾向の減少を、従来のトランスファクラッチを用いた駆動力配分制御に比べ、より早い応答性にて実現することができる。
In the driving force distribution control apparatus according to the first embodiment, the vehicle includes a front driving wheel as a main driving wheel, a rear wheel as a sub driving wheel, a first driving source for driving the front wheels by the engine 1 and the front motor 2F, and a rear motor 2R. A hybrid four-wheel drive vehicle based on a front wheel drive that includes a second drive source that drives a rear wheel, wherein the drive force distribution control means controls a drive force of a rear motor 2R that is the second drive source. To control the driving force transmitted to the left and right rear wheel tires 3RL, 3RR.
For example, a front wheel drive-based four-wheel drive vehicle has a transfer clutch such as an electromagnetic multi-plate clutch or a hydraulic clutch in the rear wheel drive system, and controls the clutch engagement force based on the drive force distribution command. There is known a system that transmits part of the driving force transmitted to the rear wheel side, but from the time when the driving force distribution command is output until the actual driving force is generated on the rear wheel → The operation flow of clutch torque generation → torque transmission between drive system components results in a response delay.
On the other hand, by controlling the driving force transmitted to the left and right rear wheel tires 3RL and 3RR by a driving force command for the rear motor 2R having high control response, an understeering tendency is caused by increasing the driving force distribution to the auxiliary driving wheels. This can be achieved with faster responsiveness compared to the driving force distribution control using the conventional transfer clutch.

次に、効果を説明する。
実施例1の四輪駆動車の駆動力配分制御装置にあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the driving force distribution control device for a four-wheel drive vehicle according to the first embodiment, the following effects can be obtained.

(1) 前後輪のうち一方を主駆動輪とし他方を副駆動輪とし、前後輪回転数差が大きいほど副駆動輪への駆動力配分を増大する制御を行う駆動力配分制御手段を備えた四輪駆動車の駆動力配分制御装置において、目標ヨーレイトψ*の絶対値|ψ*|と実ヨーレイトψの絶対値|ψ|とのヨーレイト偏差Δψが大きいほど大きな値による閾値Cを設定する閾値設定手段(ステップS4)を設け、前記駆動力配分制御手段は、前後輪回転数差検出値ΔNfrに前記閾値Cを加算した値を、前後輪回転数差対応制御で用いる前後輪回転数差制御値とするため、前後輪回転数差は殆ど発生しないが、ヨーレイト偏差Δψが大きく出るような走行状況において、車両の実ヨーレイトψを目標ヨーレイトψ*に近づけ、操縦安定性の向上に寄与することができる。 (1) One of the front and rear wheels is a main driving wheel and the other is a sub driving wheel, and driving force distribution control means is provided for performing control to increase the driving force distribution to the sub driving wheel as the front and rear wheel rotational speed difference increases. In a four-wheel drive vehicle driving force distribution control device, a threshold value for setting a threshold value C with a larger value as the yaw rate deviation Δψ between the absolute value | ψ * | of the target yaw rate ψ * and the absolute value | ψ | of the actual yaw rate ψ increases. Setting means (step S4) is provided, and the driving force distribution control means uses a value obtained by adding the threshold C to the front and rear wheel rotational speed difference detection value ΔNfr in front and rear wheel rotational speed difference control. Therefore, in the driving situation where the yaw rate deviation Δψ is large, the actual yaw rate ψ of the vehicle is brought close to the target yaw rate ψ * to contribute to the improvement of steering stability. Can do.

(2) 前記閾値設定手段(ステップS4)は、ヨーレイト偏差Δψにより設定された閾値Cに、前後輪の一方への駆動力過配分を抑える最大値と最小値を設定するため、ヨーレイト偏差Δψが大きいとき、回転数差制御の閾値Cが大きくなり過ぎ、後輪駆動力配分が過配分になり、後輪タイヤ3RL,3RRがスリップするのを未然に防止することで、ヨーレイトとタイヤ挙動の両方を適切に制御することができる。   (2) The threshold value setting means (step S4) sets the maximum value and the minimum value for suppressing the excessive distribution of driving force to one of the front and rear wheels to the threshold value C set by the yaw rate deviation Δψ. When it is large, the threshold value C of the rotational speed difference control becomes too large, the rear wheel driving force distribution becomes excessively distributed, and the rear wheel tires 3RL and 3RR are prevented from slipping, thereby preventing both yaw rate and tire behavior. Can be controlled appropriately.

(3) 目標ヨーレイト微分値dψ*/dtを計算する目標ヨーレイト微分値算出手段(ステップS2)を設け、前記駆動力配分制御手段は、前記目標ヨーレイト微分値dψ*/dtが急激なヨーレイト変化の判断値である設定値αを越えている場合に前記閾値Cをゼロとし、前記目標ヨーレイト微分値dψ*/dtが設定値α以下の場合にのみ前後輪回転数差検出値ΔNfrに前記閾値Cを加算した値を、前後輪回転数差対応制御で用いる前後輪回転数差制御値とするため、急激な駆動力配分が抑制され、駆動力配分による乗員への違和感や、駆動系部品への過大負荷を低減することができる。 (3) A target yaw rate differential value calculating means (step S2) for calculating the target yaw rate differential value dψ * / dt is provided, and the driving force distribution control means is configured to cause the target yaw rate differential value dψ * / dt to change rapidly. The threshold C is set to zero when the judgment value exceeds the set value α, and the threshold C is added to the front and rear wheel rotational speed difference detection value ΔNfr only when the target yaw rate differential value dψ * / dt is equal to or less than the set value α. Is used as the front and rear wheel rotational speed difference control value used in the front and rear wheel rotational speed difference control, so that abrupt driving force distribution is suppressed. Overload can be reduced.

(4) 前記車両は、前輪を主駆動輪とし、後輪を副駆動輪とし、エンジン1とフロントモータ2Fにより前輪を駆動する第1駆動源と、リアモータ2Rにより後輪を駆動する第2駆動源と、を備えた前輪駆動ベースのハイブリッド四輪駆動車であり、前記駆動力配分制御手段は、前記第2駆動源であるリアモータ2Rの駆動力を制御することで左右後輪タイヤ3RL,3RRへ伝達される駆動力を制御するため、副駆動輪への駆動力配分を増大することによるアンダーステア傾向の減少を、従来のトランスファクラッチを用いた駆動力配分制御に比べ、より早い応答性にて実現することができる。   (4) The vehicle uses a front wheel as a main drive wheel, a rear wheel as a sub drive wheel, a first drive source that drives the front wheel by the engine 1 and the front motor 2F, and a second drive that drives the rear wheel by the rear motor 2R. A front-wheel drive-based hybrid four-wheel drive vehicle, wherein the driving force distribution control means controls the driving force of the rear motor 2R that is the second driving source to control the left and right rear wheel tires 3RL, 3RR. In order to control the driving force transmitted to the vehicle, the decrease in the understeer tendency by increasing the driving force distribution to the auxiliary driving wheels is faster than the conventional driving force distribution control using a transfer clutch. Can be realized.

以上、本発明の四輪駆動車の駆動力配分制御装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。   As mentioned above, although the drive force distribution control apparatus of the four-wheel drive vehicle of this invention has been demonstrated based on Example 1, it is not restricted to this Example 1 about a concrete structure, Each of Claims Design changes and additions are permitted without departing from the scope of the claimed invention.

実施例1では、前輪駆動ベースの四輪駆動車に対する適用例を示したが、後輪駆動ベースの四輪駆動車にも適用することができるもので、後輪駆動ベースの四輪駆動車の場合、前後輪回転数差は殆ど発生しないが、ヨーレイト偏差Δψが大きく出るような走行状況において、前輪への駆動力配分によりオーバーステア傾向の低減を図ることができる。   In the first embodiment, an example of application to a four-wheel drive vehicle based on a front wheel drive is shown. However, the present invention can also be applied to a four-wheel drive vehicle based on a rear wheel drive. In this case, there is almost no difference between the front and rear wheel rotational speeds, but in a driving situation where the yaw rate deviation Δψ is large, it is possible to reduce the oversteer tendency by distributing the driving force to the front wheels.

実施例1では、閾値設定手段として、ヨーレイト偏差により設定された閾値に、前後輪の一方(後輪)への駆動力過配分を抑える最大値と最小値(=0)を設定する例を示したが、最小値として負の値(前後輪回転数差検出値が出ても負の閾値をゼロにするまでは駆動力配分しない値)を設定しても良い。   In the first embodiment, an example in which the maximum value and the minimum value (= 0) for suppressing excessive allocation of driving force to one of the front and rear wheels (rear wheel) is set as the threshold value setting means as the threshold value set by the yaw rate deviation. However, a negative value (a value in which the driving force is not distributed until the negative threshold value is set to zero even when the detected value of the front and rear wheel rotational speed difference is output) may be set as the minimum value.

実施例1では、前後輪にそれぞれモータを有するハイブリッド四輪駆動車への適用例を示したが、例えば、左右後輪にそれぞれモータを有するハイブリッド四輪駆動車等にも適用できるし、さらには、ハイブリッド四輪駆動車に限らず、主駆動源としてエンジンのみを搭載し、副駆動輪には、クラッチ等を介して駆動力を伝達するエンジン四輪駆動車や四輪駆動電気自動車等にも適用できる。実施例1では、駆動力配分制御手段として、主駆動輪と副駆動輪のそれぞれの駆動源の駆動力を直接制御する例を示したが、従来技術に記載されているように、駆動系にトランスファクラッチや差動制限クラッチ等を備え、クラッチ締結力制御により前後輪駆動力配分を制御するものにも適用できる。要するに、前後輪のうち一方を主駆動輪とし他方を副駆動輪とし、前後輪回転数差が大きいほど副駆動輪への駆動力配分を増大する制御を行う駆動力配分制御手段を備えた四輪駆動車には適用することができる。   In the first embodiment, an example of application to a hybrid four-wheel drive vehicle having motors on the front and rear wheels has been shown. However, for example, the present invention can also be applied to a hybrid four-wheel drive vehicle having motors on the left and right rear wheels. In addition to hybrid four-wheel drive vehicles, only engines are installed as the main drive source, and sub-drive wheels are also used in engine four-wheel drive vehicles and four-wheel drive electric vehicles that transmit driving force via clutches etc. Applicable. In the first embodiment, as an example of the driving force distribution control unit, the driving force of the driving source of each of the main driving wheel and the auxiliary driving wheel is directly controlled. However, as described in the related art, in the driving system, The present invention can also be applied to a device that includes a transfer clutch, a differential limiting clutch, and the like, and controls the front and rear wheel driving force distribution by clutch engagement force control. In short, one of the front and rear wheels is a main drive wheel and the other is a sub drive wheel, and four driving force distribution control means for performing control to increase the drive force distribution to the sub drive wheel as the front and rear wheel rotational speed difference is larger. It can be applied to a wheel drive vehicle.

実施例1の駆動力配分制御装置が適用されたハイブリッド四輪駆動車を示す全体システム図である。1 is an overall system diagram showing a hybrid four-wheel drive vehicle to which a driving force distribution control device of Embodiment 1 is applied. 実施例1のコントローラにて実行される駆動力配分制御処理の流れを示すフローチャートである。3 is a flowchart illustrating a flow of a driving force distribution control process executed by the controller according to the first embodiment. 実施例1の駆動力配分制御で用いられる前後輪回転数差制御値に対する後輪指令トルクマップを示す図である。It is a figure which shows the rear-wheel command torque map with respect to the front-and-rear wheel rotation speed difference control value used by the driving force distribution control of Example 1. FIG. 実施例1の駆動力配分制御で用いられる後輪指令トルクマップの横軸を前後輪回転数差制御値に代えて前後輪回転数差検出値とした場合の後輪指令トルクマップを示す図である。FIG. 6 is a diagram showing a rear wheel command torque map when the horizontal axis of the rear wheel command torque map used in the driving force distribution control of the first embodiment is replaced with front and rear wheel rotation speed difference control values instead of front and rear wheel rotation speed difference detection values. is there. 実施例1の駆動力配分制御においてヨーレイト偏差により閾値が変更される状況を説明する前後輪回転数差検出値に対する後輪駆動力特性図である。It is a rear-wheel driving force characteristic view with respect to the front-and-rear wheel rotational speed difference detection value explaining the situation where a threshold value is changed by the yaw rate deviation in the driving force distribution control of the first embodiment. 実施例1の駆動力配分制御においてヨーレイト偏差により決められた閾値に最大値と最小値とが設定される状況を説明する前後輪回転数差検出値に対する後輪駆動力特性図である。It is a rear-wheel driving force characteristic diagram with respect to the front-and-rear wheel rotation speed difference detection value explaining the situation where the maximum value and the minimum value are set to the threshold value determined by the yaw rate deviation in the driving force distribution control of the first embodiment. 実施例1の駆動力配分制御において切り返し操舵時であって目標ヨーレイト微分値が設定値以上である目標ヨーレイトの変動が大きいところでは駆動力配分を行わない状況を説明するタイムチャートである。6 is a time chart for explaining a situation in which driving force distribution is not performed when the fluctuation of the target yaw rate where the target yaw rate differential value is equal to or larger than the set value is large at the time of switching steering in the driving force distribution control of the first embodiment.

符号の説明Explanation of symbols

1 エンジン(第1駆動源)
2F フロントモータ(第1駆動源)
2R リアモータ(第2駆動源)
3FL 左前輪タイヤ(主駆動輪)
3FR 右前輪タイヤ(主駆動輪)
3RL 左後輪タイヤ(副駆動輪)
3RR 右後輪タイヤ(副駆動輪)
4F フロントディファレンシャル
4R リアディファレンシャル
5F フロントトランスミッション
5R リアトランスミッション
6 車輪速センサ
7 舵角センサ
8 横加速度センサ
9 車速センサ
10 アクセル開度センサ
11 コントローラ
12 強電バッテリ
13F フロントインバータ
13R リアインバータ
14 ヨーレイトセンサ
1 engine (first drive source)
2F front motor (first drive source)
2R rear motor (second drive source)
3FL left front wheel tire (main drive wheel)
3FR Right front wheel tire (main drive wheel)
3RL left rear wheel tire (sub-drive wheel)
3RR Right rear wheel tire (sub drive wheel)
4F front differential 4R rear differential 5F front transmission 5R rear transmission 6 wheel speed sensor 7 rudder angle sensor 8 lateral acceleration sensor 9 vehicle speed sensor 10 accelerator opening sensor 11 controller 12 high power battery 13F front inverter 13R rear inverter 14 yaw rate sensor

Claims (5)

前後輪のうち一方を主駆動輪とし他方を副駆動輪とし、前後輪回転数差が大きいほど副駆動輪への駆動力配分を増大する制御を行う駆動力配分制御手段を備えた四輪駆動車の駆動力配分制御装置において、
目標ヨーレイトの絶対値と実ヨーレイトの絶対値とのヨーレイト偏差が大きいほど大きな値による閾値を設定する閾値設定手段を設け、
前記駆動力配分制御手段は、前後輪回転数差検出値に前記閾値を加算した値を、前後輪回転数差対応制御で用いる前後輪回転数差制御値とすることを特徴とする四輪駆動車の駆動力配分制御装置。
Four-wheel drive equipped with driving force distribution control means for controlling one of the front and rear wheels to be the main driving wheel and the other to be the auxiliary driving wheel, and to increase the driving force distribution to the auxiliary driving wheel as the front-rear wheel rotational speed difference increases. In a driving force distribution control device for a car,
A threshold setting unit is provided for setting a threshold with a larger value as the yaw rate deviation between the absolute value of the target yaw rate and the absolute value of the actual yaw rate is larger,
The driving force distribution control means uses a value obtained by adding the threshold value to a front and rear wheel rotational speed difference detection value as a front and rear wheel rotational speed difference control value used in front and rear wheel rotational speed difference correspondence control. Driving force distribution control device for cars.
請求項1に記載された四輪駆動車の駆動力配分制御装置において、
前記閾値設定手段は、ヨーレイト偏差により設定された閾値に、前後輪の一方への駆動力過配分を抑える最大値と最小値を設定することを特徴とする四輪駆動車の駆動力配分制御装置。
In the drive force distribution control device for a four-wheel drive vehicle according to claim 1,
The threshold value setting means sets a maximum value and a minimum value for suppressing excessive distribution of driving force to one of the front and rear wheels to the threshold value set by the yaw rate deviation. .
請求項1または2に記載された四輪駆動車の駆動力配分制御装置において、
目標ヨーレイト微分値を計算する目標ヨーレイト微分値算出手段を設け、
前記駆動力配分制御手段は、前記目標ヨーレイト微分値が急激なヨーレイト変化の判断値である設定値を越えている場合に前記閾値をゼロとし、前記目標ヨーレイト微分値が設定値以下の場合にのみ前後輪回転数差検出値に前記閾値を加算した値を、前後輪回転数差対応制御で用いる前後輪回転数差制御値とすることを特徴とする四輪駆動車の駆動力配分制御装置。
In the drive force distribution control device for a four-wheel drive vehicle according to claim 1 or 2,
A target yaw rate differential value calculating means for calculating the target yaw rate differential value is provided,
The driving force distribution control means sets the threshold to zero when the target yaw rate differential value exceeds a set value that is a judgment value of a sudden yaw rate change, and only when the target yaw rate differential value is equal to or less than a set value. A driving force distribution control device for a four-wheel drive vehicle, wherein a value obtained by adding the threshold value to a detected value of difference in front and rear wheel speed difference is used as a front and rear wheel speed difference control value used in front and rear wheel speed difference correspondence control.
請求項1乃至3の何れか1項に記載された四輪駆動車の駆動力配分制御装置において、
前記車両は、前輪を主駆動輪とし、後輪を副駆動輪とし、エンジンとモータの少なくとも一方により前輪を駆動する第1駆動源と、モータにより後輪を駆動する第2駆動源と、を備えた前輪駆動ベースのハイブリッド四輪駆動車であり、
前記駆動力配分制御手段は、前記第2駆動源のモータ駆動力を制御することで副駆動輪である後輪へ伝達される駆動力を制御することを特徴とする四輪駆動車の駆動力配分制御装置。
In the drive force distribution control device for a four-wheel drive vehicle according to any one of claims 1 to 3,
The vehicle has a front drive wheel as a main drive wheel, a rear wheel as a sub drive wheel, a first drive source for driving the front wheel by at least one of an engine and a motor, and a second drive source for driving the rear wheel by a motor. It is a front-wheel drive based hybrid four-wheel drive vehicle equipped with,
The driving force distribution control means controls the driving force transmitted to the rear wheels, which are auxiliary driving wheels, by controlling the motor driving force of the second driving source. Distribution controller.
前後輪のうち一方を主駆動輪とし他方を副駆動輪とし、前後輪回転数差が大きいほど副駆動輪への駆動力配分を増大する制御を行う四輪駆動車の駆動力配分制御装置において、
目標ヨーレイトと実ヨーレイトとのヨーレイト偏差が大きいほど大きな値による閾値を設定し、前後輪回転数差検出値に前記閾値を加算した値を、前後輪回転数差対応制御で用いる前後輪回転数差制御値とすることを特徴とする四輪駆動車の駆動力配分制御装置。
In a driving force distribution control device for a four-wheel drive vehicle, one of the front and rear wheels is a main driving wheel and the other is a sub driving wheel, and the driving force distribution to the sub driving wheel is increased as the front-rear wheel rotational speed difference increases. ,
A larger threshold value is set as the yaw rate deviation between the target yaw rate and the actual yaw rate is larger, and the value obtained by adding the threshold value to the detected value of the front and rear wheel speed difference is used for front and rear wheel speed difference control. A drive force distribution control device for a four-wheel drive vehicle, characterized in that the control value is used.
JP2005320246A 2005-11-04 2005-11-04 Driving force distribution control device of four-wheel-drive vehicle Pending JP2007125998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005320246A JP2007125998A (en) 2005-11-04 2005-11-04 Driving force distribution control device of four-wheel-drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005320246A JP2007125998A (en) 2005-11-04 2005-11-04 Driving force distribution control device of four-wheel-drive vehicle

Publications (1)

Publication Number Publication Date
JP2007125998A true JP2007125998A (en) 2007-05-24

Family

ID=38149026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005320246A Pending JP2007125998A (en) 2005-11-04 2005-11-04 Driving force distribution control device of four-wheel-drive vehicle

Country Status (1)

Country Link
JP (1) JP2007125998A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214566A (en) * 2008-03-07 2009-09-24 Hitachi Ltd Device for controlling driving force of four-wheel drive vehicle
JP2011130629A (en) * 2009-12-21 2011-06-30 Mitsubishi Motors Corp Differential limit control device for electric vehicle
JP2013192446A (en) * 2013-04-11 2013-09-26 Mitsubishi Motors Corp Differential limit control device for electric vehicle
WO2018110346A1 (en) * 2016-12-13 2018-06-21 本田技研工業株式会社 Torque distributor control device
JP2022528178A (en) * 2019-04-08 2022-06-08 華為技術有限公司 Vehicle torque processing methods and equipment, vehicle controllers, and vehicles

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214566A (en) * 2008-03-07 2009-09-24 Hitachi Ltd Device for controlling driving force of four-wheel drive vehicle
JP2011130629A (en) * 2009-12-21 2011-06-30 Mitsubishi Motors Corp Differential limit control device for electric vehicle
JP2013192446A (en) * 2013-04-11 2013-09-26 Mitsubishi Motors Corp Differential limit control device for electric vehicle
WO2018110346A1 (en) * 2016-12-13 2018-06-21 本田技研工業株式会社 Torque distributor control device
CN110023127A (en) * 2016-12-13 2019-07-16 本田技研工业株式会社 The control device of torque distribution device
JPWO2018110346A1 (en) * 2016-12-13 2019-10-24 本田技研工業株式会社 Control device for torque distribution device
US10744875B2 (en) 2016-12-13 2020-08-18 Honda Motor Co., Ltd. Control device for torque distributor
CN110023127B (en) * 2016-12-13 2022-06-21 本田技研工业株式会社 Control device for torque distribution device
JP2022528178A (en) * 2019-04-08 2022-06-08 華為技術有限公司 Vehicle torque processing methods and equipment, vehicle controllers, and vehicles
JP7361791B2 (en) 2019-04-08 2023-10-16 華為技術有限公司 Vehicle torque processing method and device, vehicle controller, and vehicle

Similar Documents

Publication Publication Date Title
US7761215B2 (en) Device operable to control turning of vehicle using driving and braking force for understeering and oversteering
JP4481261B2 (en) Control device for hybrid four-wheel drive vehicle
KR20180066417A (en) Control system and method for distributing drive torque between front and rear wheels of four-wheel drive vehicle
JP6844500B2 (en) Vehicle behavior control device
US20090018742A1 (en) Device operable to control turning of vehicle
JP6464149B2 (en) VEHICLE DRIVELINE CONTROL SYSTEM, CONTROL METHOD, AND POWERED VEHICLE HAVING THE CONTROL SYSTEM
JP2002234355A (en) Control device for four-wheel drive vehicle
JP4797513B2 (en) Vehicle driving force distribution control device
JP4582031B2 (en) Driving force control device for four-wheel drive vehicle
JP2006327335A (en) Torque distribution controller for vehicle
JP2007125998A (en) Driving force distribution control device of four-wheel-drive vehicle
JP4765552B2 (en) Driving force control device for electric vehicle
JP4600126B2 (en) Vehicle attitude control device
JP2007276674A (en) Driving force distribution control device for hybrid four-wheel drive vehicle
JP2006240400A (en) Driving force distribution controlling device for vehicle
JP5488354B2 (en) Control device for differential limiting mechanism
JP4385992B2 (en) Control device for hybrid four-wheel drive vehicle
JP2006256456A (en) Driving force distribution controlling device for vehicle
JP2004529027A (en) How to improve control response and heat load tolerance of automotive control systems
JP4657594B2 (en) Vehicle motion control device
JP4905085B2 (en) Driving force distribution control device for four-wheel drive vehicles
JP5397294B2 (en) Vehicle control device
CN115257919A (en) Pure electric four-wheel drive vehicle type steering optimization control method
JP6803197B2 (en) Vehicle control device
JP2011161957A (en) Central controller