JP2014093844A - Electric-vehicle control device - Google Patents

Electric-vehicle control device Download PDF

Info

Publication number
JP2014093844A
JP2014093844A JP2012242462A JP2012242462A JP2014093844A JP 2014093844 A JP2014093844 A JP 2014093844A JP 2012242462 A JP2012242462 A JP 2012242462A JP 2012242462 A JP2012242462 A JP 2012242462A JP 2014093844 A JP2014093844 A JP 2014093844A
Authority
JP
Japan
Prior art keywords
wheel
electric
motor
vehicle
drive system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012242462A
Other languages
Japanese (ja)
Inventor
Yui Masuda
唯 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2012242462A priority Critical patent/JP2014093844A/en
Publication of JP2014093844A publication Critical patent/JP2014093844A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PROBLEM TO BE SOLVED: To provide an electric-vehicle control device enabling an electric vehicle to self-travel to a destination in the case of abnormality occurring to a wheel-specific drive system.SOLUTION: An electric-vehicle control device A includes: basic drive instruction means 20 for issuing a motor-specific output instruction distributedly to electric motors 6 in response to an output instruction input from accelerator input means 16; individual drive system abnormality detection means 23 for detecting occurrence of abnormality in a wheel-specific drive system for each of individual drive wheels; at-abnormality other motor output limiting means 27 for limiting output of an electric motor 6 of another wheel-specific drive system when the individual drive system abnormality detection means 23 detects abnormality occurring to any one wheel drive system. The at-abnormality other motor output limiting means 27 calculates a load required for the electric vehicle to travel and limits an output of the electric motor 6 in accordance with a predetermined rule.

Description

この発明は、電動車両制御装置に関し、例えば、車輪を駆動する電動モータの異常時に、正常な車輪への負荷を低減して目的地まで自走することが可能な技術に関する。   The present invention relates to an electric vehicle control device, for example, to a technique capable of reducing the load on a normal wheel and making it self-run to a destination when an electric motor that drives the wheel is abnormal.

電動車両において、車輪を駆動する電動モータの異常時における制御法として以下の技術が提案されている。
1.車輪を駆動するインホイールモータに異常が発生したとき、正常な同軸対称上のモータ駆動力を、異常が発生したモータ駆動力に近づけることで車両の偏向を防止する技術が提案されている(特許文献1)。
2.車輪を駆動する電動モータ等の異常による駆動力のバランス変化時に、このバランス変化を転舵機構により補う技術が提案されている(特許文献2)。
In an electric vehicle, the following technique has been proposed as a control method when an electric motor driving a wheel is abnormal.
1. When an abnormality occurs in an in-wheel motor that drives a wheel, a technique for preventing vehicle deflection by bringing the normal coaxially symmetric motor driving force closer to the motor driving force in which the abnormality occurred (patent) Reference 1).
2. A technique has been proposed in which the balance change is compensated by a steering mechanism when the balance of the driving force changes due to an abnormality in an electric motor or the like that drives the wheels (Patent Document 2).

特許第4412476号公報Japanese Patent No. 4412476 特開2012−176643号公報JP 2012-176663 A

従来技術では、正常な車輪に摩擦負荷が集中し、正常な電動モータの負荷が過大となるおそれがある。このような場合に前記車輪の摩擦負荷に起因する不具合、または前記電動モータの負荷によりこの電動モータの永久磁石に減磁が生じると、例えば、修理工場等の目的地まで電動車両で自走できないおそれがある。   In the prior art, the friction load is concentrated on the normal wheel, and the load on the normal electric motor may be excessive. In such a case, if a demagnetization occurs in the permanent magnet of the electric motor due to a failure caused by the friction load of the wheel or the load of the electric motor, for example, the electric vehicle cannot self-propel to a destination such as a repair shop There is a fear.

この発明の目的は、車輪毎駆動系に異常が発生した場合に、目的地まで電動車両で自走することができる電動車両制御装置を提供することである。   An object of the present invention is to provide an electric vehicle control device capable of self-propelling by an electric vehicle to a destination when an abnormality occurs in the drive system for each wheel.

この発明の電動車両制御装置は、左右一対の駆動輪2,2をそれぞれ駆動する複数の電動モータ6,6と、これら各電動モータ6,6から前記各駆動輪2,2に駆動力を伝達する伝達機構7とを備えた電動車両を制御する電動車両制御装置において、アクセル入力手段16から入力された出力指令に応じて前記電動モータ6,6に分配してモータ別出力指令を与える基本駆動指令手段20と、前記各駆動輪毎の前記電動モータ6、前記伝達機構7、および前記駆動輪2からなる車輪毎駆動系に異常が発生したことを検出する個別駆動系異常検出手段23と、この個別駆動系異常検出手段23により前記いずれか一方の車輪駆動系に異常が発生したことが検出されると、他方の車輪毎駆動系の前記電動モータ6の出力に制限を加える異常時他モータ出力制限手段27とを備え、この異常時他モータ出力制限手段27は、前記電動車両の走行に必要な負荷を演算して、定められた規則に従い前記電動モータ6の出力を制限することを特徴とする。   The electric vehicle control apparatus according to the present invention includes a plurality of electric motors 6 and 6 that respectively drive a pair of left and right drive wheels 2 and 2, and a driving force is transmitted from the electric motors 6 and 6 to the drive wheels 2 and 2. In the electric vehicle control apparatus for controlling an electric vehicle provided with the transmission mechanism 7 that performs the basic drive, the motor-specific output command is distributed to the electric motors 6 and 6 in accordance with the output command input from the accelerator input means 16. Command means 20, individual drive system abnormality detection means 23 for detecting that an abnormality has occurred in the wheel-by-wheel drive system comprising the electric motor 6, the transmission mechanism 7 and the drive wheel 2 for each drive wheel; When it is detected by the individual drive system abnormality detection means 23 that an abnormality has occurred in any one of the wheel drive systems, the other mode at the time of abnormality that restricts the output of the electric motor 6 of the other wheel drive system. Output control means 27, and the abnormal motor output restriction means 27 calculates a load necessary for traveling of the electric vehicle and limits the output of the electric motor 6 according to a predetermined rule. Features.

この構成によると、基本駆動指令手段20は、アクセル入力手段16から入力された出力指令に応じて各電動モータ6,6に分配してモータ別出力指令を与える。個別駆動系異常検出手段23が、車輪毎駆動系に異常が発生したことを検出すると、異常時他モータ出力制限手段27は、基本駆動指令手段20により与えられる出力指令に対して、他方の車輪毎駆動系の電動モータ6の出力に制限を加える。この異常時他モータ出力制限手段27は、この電動車両の走行に必要な負荷を演算して、定められた規則に従い電動モータ6の出力を制限する。このように車輪毎駆動系に異常が発生した場合であっても、電動車両の走行に必要な負荷を演算することで、目的地まで電動車両をより確実に自走させることができる。   According to this configuration, the basic drive command means 20 distributes to each of the electric motors 6 and 6 according to the output command input from the accelerator input means 16 and gives a motor-specific output command. When the individual drive system abnormality detection means 23 detects that an abnormality has occurred in the drive system for each wheel, the other motor output restriction means 27 in response to the output command given by the basic drive command means 20 in response to the other wheel. Limit the output of the electric motor 6 of each drive system. The abnormal-time other motor output limiting means 27 calculates a load necessary for traveling of the electric vehicle, and limits the output of the electric motor 6 according to a predetermined rule. Thus, even if an abnormality occurs in the drive system for each wheel, the electric vehicle can be more reliably self-propelled to the destination by calculating the load necessary for traveling the electric vehicle.

路面の摩擦係数を推定する路面摩擦係数推定手段24と、転舵輪3における、車両の走行方向に対する転舵角であるスリップ角を推定するスリップ角推定手段25と、前記車両の走行方向に対する車体の曲がり量を検出する車体曲がり量検出手段26とを設け、前記異常時他モータ出力制限手段27は、前記路面摩擦係数推定手段24で推定される路面の摩擦係数と、前記スリップ角推定手段25で推定されるスリップ角と、前記車体曲がり量検出手段26で検出される車体1の曲がり量とから、前記転舵輪3の摩耗量を演算し、この摩耗量が定められた閾値以上のとき、他方の車輪毎駆動系の前記電動モータ6の出力を制限するものとしても良い。
この場合、異常時他モータ出力制限手段27は、電動車両の走行に必要な負荷として、転舵輪3の例えばタイヤの摩耗量を演算して閾値と比較することで、電動モータ6の出力をより精度良く制限することができる。試験やシミュレーション等により、車輪毎駆動系の異常時に、例えば、前記転舵輪3のタイヤが走行不可能な状態に陥る摩耗量を基準として前記閾値を定める。
Road surface friction coefficient estimating means 24 for estimating the friction coefficient of the road surface, slip angle estimating means 25 for estimating a slip angle, which is a turning angle with respect to the traveling direction of the vehicle, in the steered wheels 3, and the vehicle body with respect to the traveling direction of the vehicle A vehicle body bend amount detecting means 26 for detecting a bend amount is provided, and the abnormal other motor output restricting means 27 is configured so that the road surface friction coefficient estimating means 24 and the slip angle estimating means 25 estimate the road surface friction coefficient. The amount of wear of the steered wheel 3 is calculated from the estimated slip angle and the amount of bending of the vehicle body 1 detected by the vehicle body bending amount detection means 26, and when the amount of wear exceeds a predetermined threshold, The output of the electric motor 6 of each wheel drive system may be limited.
In this case, the abnormal motor output limiting means 27 calculates the output of the electric motor 6 by calculating, for example, the amount of tire wear of the steered wheels 3 as a load necessary for traveling of the electric vehicle and comparing it with a threshold value. It can be limited with high accuracy. The threshold value is determined based on, for example, the amount of wear that causes the tires of the steered wheels 3 to be unable to travel when an abnormality occurs in the drive system for each wheel by testing or simulation.

前記他方の車輪毎駆動系の電動モータ6に流す電流値を検出する電流検出手段35と、前記電動モータ6の温度を検出する温度検出手段49とを設け、前記異常時他モータ出力制限手段27は、前記温度検出手段49で検出される温度が定められた閾値以上のとき、前記電流検出手段35で検出される電流値が定められた電流値以下となるように、他方の車輪毎駆動系の前記電動モータ6の出力を制限するものとしても良い。このように電動モータ6の出力を制限することで、例えば、修理工場等の目的地までの走行途中に、電動モータ6の永久磁石に減磁が生じることにより電動車両が不所望に停止することを回避することが可能となる。試験やシミュレーション等により、車輪毎駆動系の異常時に、例えば、他方の車輪毎駆動系の電動モータ6の永久磁石に減磁が生じるときのモータ温度を基準として前記閾値を定める。   A current detection means 35 for detecting a current value flowing to the electric motor 6 of the other wheel-by-wheel drive system and a temperature detection means 49 for detecting the temperature of the electric motor 6 are provided, and the other motor output limiting means 27 for the abnormality is provided. Is the other wheel-by-wheel drive system so that when the temperature detected by the temperature detecting means 49 is equal to or higher than a predetermined threshold, the current value detected by the current detecting means 35 is less than or equal to the predetermined current value. The output of the electric motor 6 may be limited. By limiting the output of the electric motor 6 in this way, for example, the electric vehicle is undesirably stopped due to demagnetization of the permanent magnet of the electric motor 6 during traveling to a destination such as a repair shop. Can be avoided. The threshold is determined based on the motor temperature when demagnetization occurs in the permanent magnet of the electric motor 6 of the other wheel-by-wheel drive system, for example, when the wheel-by-wheel drive system is abnormal by testing or simulation.

前記伝達機構として減速機7を設け、前記車輪毎駆動系は、前記駆動輪2を支持する車輪用軸受4と、前記電動モータ6と、この電動モータ6の駆動を前記車輪用軸受4に伝達する前記減速機7とでインホイールモータ駆動装置8を構成するものとしても良い。   A reduction gear 7 is provided as the transmission mechanism, and the drive system for each wheel transmits the wheel bearing 4 that supports the drive wheel 2, the electric motor 6, and the drive of the electric motor 6 to the wheel bearing 4. The in-wheel motor drive device 8 may be configured with the reduction gear 7.

前記車両の挙動を推定する車両挙動推定手段を有し、前記個別駆動系異常検出手段23により前記いずれか一方の車輪駆動系に異常が発生したことが検出されると、異常が発生する前の前記車両挙動推定手段により推定される前記車両の挙動と、異常が発生した後の前記車両挙動推定手段により推定される前記車両の挙動とに変化が生じないように、前記電動車両の転舵輪3の転舵角を調整可能な転舵角調整手段30を設けても良い。   Vehicle behavior estimation means for estimating the behavior of the vehicle, and when the individual drive system abnormality detection means 23 detects that an abnormality has occurred in any one of the wheel drive systems, before the occurrence of the abnormality The steered wheels 3 of the electric vehicle so that there is no change between the behavior of the vehicle estimated by the vehicle behavior estimation means and the behavior of the vehicle estimated by the vehicle behavior estimation means after an abnormality has occurred. You may provide the turning angle adjustment means 30 which can adjust the turning angle of.

前記車両挙動推定手段は、前記車両の挙動として、前記車両の走行方向に対する車体の曲がり量(ヨーモーメント)を検出する車体曲がり量検出手段26であっても良い。一方の車輪駆動系に異常が発生したとき、電動車両の重心点周りにヨーモーメントが発生する。このため、転舵角調整手段30は、発生するヨーモーメントに対し逆向きのヨーモーメントで相殺させるように、転舵輪3の転舵角を調整する。これにより、異常が発生する前後で、車両の走行方向に変化がないように車両の走行状態を維持し得る。例えば、異常が発生する前に車両が直進状態であったならば、異常が発生した後も車両を直進状態に維持し得る。   The vehicle behavior estimation means may be a vehicle body bending amount detection means 26 for detecting a vehicle body bending amount (yaw moment) with respect to the traveling direction of the vehicle as the vehicle behavior. When an abnormality occurs in one wheel drive system, a yaw moment is generated around the center of gravity of the electric vehicle. For this reason, the turning angle adjusting means 30 adjusts the turning angle of the steered wheels 3 so as to cancel the generated yaw moment with a yaw moment in the opposite direction. Thereby, the traveling state of the vehicle can be maintained so that there is no change in the traveling direction of the vehicle before and after the occurrence of the abnormality. For example, if the vehicle is in a straight traveling state before the abnormality occurs, the vehicle can be maintained in a straight traveling state even after the abnormality has occurred.

この発明の電動車両制御装置は、左右一対の駆動輪をそれぞれ駆動する複数の電動モータと、これら各電動モータから前記各駆動輪に駆動力を伝達する伝達機構とを備えた電動車両を制御する電動車両制御装置において、アクセル入力手段から入力された出力指令に応じて前記電動モータに分配してモータ別出力指令を与える基本駆動指令手段と、前記各駆動輪毎の前記電動モータ、前記伝達機構、および前記駆動輪からなる車輪毎駆動系に異常が発生したことを検出する個別駆動系異常検出手段と、この個別駆動系異常検出手段により前記いずれか一方の車輪駆動系に異常が発生したことが検出されると、他方の車輪毎駆動系の前記電動モータの出力に制限を加える異常時他モータ出力制限手段とを備える。この異常時他モータ出力制限手段は、前記電動車両の走行に必要な負荷を演算して、定められた規則に従い前記電動モータの出力を制限する。このため、車輪毎駆動系に異常が発生した場合に、目的地まで電動車両で自走することができる。   An electric vehicle control device according to the present invention controls an electric vehicle including a plurality of electric motors that respectively drive a pair of left and right drive wheels, and a transmission mechanism that transmits a driving force from the electric motors to the drive wheels. In the electric vehicle control apparatus, basic drive command means that distributes to the electric motor in accordance with an output command input from an accelerator input means and gives a motor-specific output command, the electric motor for each drive wheel, and the transmission mechanism And an individual drive system abnormality detection means for detecting that an abnormality has occurred in the drive system for each wheel comprising the drive wheels, and an abnormality has occurred in either one of the wheel drive systems by the individual drive system abnormality detection means. Is detected, an abnormal-time other motor output limiting means for limiting the output of the electric motor of the other wheel-by-wheel drive system is provided. The abnormal-time other motor output limiting means calculates a load necessary for traveling of the electric vehicle and limits the output of the electric motor according to a predetermined rule. For this reason, when an abnormality occurs in the drive system for each wheel, the electric vehicle can self-propel to the destination.

この発明の第1の実施形態に係る電動車両制御装置を、電動車両の平面図で示す概念構成のブロック図である。1 is a block diagram of a conceptual configuration showing an electric vehicle control device according to a first embodiment of the present invention in a plan view of the electric vehicle. 同電動車両制御装置の要部のブロック図である。It is a block diagram of the principal part of the same electric vehicle control apparatus. 同電動車両のインホイールモータ駆動装置等の概念構成を示すブロック図である。It is a block diagram which shows conceptual composition, such as an in-wheel motor drive device of the same electric vehicle. (A)は、両方の車輪毎駆動系が正常時の電動車両の構成を概略示すブロック図、(B)は、一方の車輪毎駆動系が異常時の動作説明図である。(A) is a block diagram schematically showing the configuration of an electric vehicle when both wheel drive systems are normal, and (B) is an operation explanatory diagram when one wheel drive system is abnormal. 同電動車両制御装置の電動モータの出力を制限する例を示すフローチャートである。It is a flowchart which shows the example which restrict | limits the output of the electric motor of the same electric vehicle control apparatus. この発明の他の実施形態に係る電動車両制御装置の要部の概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the principal part of the electric vehicle control apparatus which concerns on other embodiment of this invention. 同電動車両制御装置の電動モータの出力を制限する例を示すフローチャートである。It is a flowchart which shows the example which restrict | limits the output of the electric motor of the same electric vehicle control apparatus.

この発明の第1の実施形態に係る電動車両制御装置を図1ないし図5と共に説明する。以下の説明は、電動車両の制御方法についての説明をも含む。
図1に示すように、電動車両は、車体1の左右の後輪と車輪が駆動輪2とされ、左右の前輪となる車輪が従動輪である転舵輪3とされた4輪の電気自動車である。駆動輪2および転舵輪3となる車輪は、いずれもタイヤを有し、それぞれ車輪用軸受4(図3),5を介して車体1に支持されている。車輪用軸受5は、図1ではハブベアリングの略称「H/B」を付してある。
An electric vehicle control apparatus according to a first embodiment of the present invention will be described with reference to FIGS. The following description also includes a description of a control method for the electric vehicle.
As shown in FIG. 1, the electric vehicle is a four-wheeled electric vehicle in which left and right rear wheels and wheels of a vehicle body 1 are drive wheels 2 and left and right front wheels are driven wheels 3 that are driven wheels. is there. The wheels that serve as the drive wheels 2 and the steered wheels 3 both have tires and are supported by the vehicle body 1 via wheel bearings 4 (FIG. 3) and 5, respectively. The wheel bearing 5 is abbreviated as “H / B” in FIG.

左右の駆動輪2,2は、それぞれ独立の走行用の電動モータ6,6により駆動される。図3に示すように、電動モータ6の回転は、伝達機構である減速機7、および車輪用軸受4を介して駆動輪2に伝達される。これら電動モータ6、減速機7、および車輪用軸受4は、互いに一つの組立部品であるインホイールモータ駆動装置8を構成している。インホイールモータ駆動装置8は、一部または全体が駆動輪2内に配置される。各駆動輪2および転舵輪3には、車両の減速または制動を行うためのブレーキ(図示せず)がそれぞれ設けられている。   The left and right drive wheels 2 and 2 are driven by independent electric motors 6 and 6 for traveling. As shown in FIG. 3, the rotation of the electric motor 6 is transmitted to the drive wheel 2 via the speed reducer 7 that is a transmission mechanism and the wheel bearing 4. The electric motor 6, the speed reducer 7, and the wheel bearing 4 constitute an in-wheel motor drive device 8 that is an assembly part. A part or the whole of the in-wheel motor drive device 8 is disposed in the drive wheel 2. Each driving wheel 2 and steered wheel 3 are each provided with a brake (not shown) for decelerating or braking the vehicle.

図1に示すように、左右の前輪となる転舵輪3,3は、転舵機構11を介して転舵可能であり、操舵機構12により操舵される。転舵機構11は、タイロッド11aを左右移動させることで、車輪用軸受5を保持した左右のナックルアーム11bの角度を変える機構である。タイロッド11aは、転舵用モータ13により、図示外の回転・直線運動変換機構を介して左右移動させられる。ナックルアーム11bとタイロッド11aとの間には、転舵角を検出する転舵角検出手段47が設けられている。操舵機構12は、ステアリングホイール14の操舵角を操舵角センサ15で検出し、その検出した操舵角である旋回指令により、操舵制御手段34を介して転舵用モータ13に駆動指令を与える電動パワーステアリングシステム(EPS)とされている。   As shown in FIG. 1, the steered wheels 3 and 3 serving as left and right front wheels can be steered via a steered mechanism 11 and are steered by a steering mechanism 12. The steered mechanism 11 is a mechanism that changes the angle of the left and right knuckle arms 11b that hold the wheel bearings 5 by moving the tie rods 11a left and right. The tie rod 11a is moved left and right by a steering motor 13 via a rotation / linear motion conversion mechanism (not shown). Between the knuckle arm 11b and the tie rod 11a, a turning angle detecting means 47 for detecting the turning angle is provided. The steering mechanism 12 detects the steering angle of the steering wheel 14 with the steering angle sensor 15, and gives a drive command to the steering motor 13 via the steering control means 34 by a turning command that is the detected steering angle. Steering system (EPS).

アクセル入力手段16は、アクセルペダルと、このアクセルペダルの踏み込み量を検出して加速指令(出力指令)を出力するセンサ16aとを有する。また図示外のブレーキ操作手段は、ブレーキペダルと、このブレーキペダルの踏み込み量を検出して減速指令を出力するセンサとを有する。   The accelerator input means 16 includes an accelerator pedal and a sensor 16a that detects an amount of depression of the accelerator pedal and outputs an acceleration command (output command). The brake operation means (not shown) includes a brake pedal and a sensor that detects a depression amount of the brake pedal and outputs a deceleration command.

制御系について説明する。
自動車全般の制御を行う統合制御用の電気制御ユニットであるメインのECU21と、このECU21の指令に従って各走行用の電動モータ6の制御を行うインバータ装置22と、ECU21から出力される制動指令に従って、各駆動輪2,各転舵輪3のブレーキに制動指令を与えるブレーキコントローラ(図示せず)とが、車体1に搭載されている。ECU21は、コンピュータとこれに実行されるプログラム、並びに各種の電子回路等で構成される。
The control system will be described.
In accordance with a main ECU 21 that is an electric control unit for integrated control that controls the entire vehicle, an inverter device 22 that controls the electric motor 6 for each traveling according to a command of the ECU 21, and a braking command output from the ECU 21 A brake controller (not shown) that gives a braking command to the brakes of each drive wheel 2 and each steered wheel 3 is mounted on the vehicle body 1. The ECU 21 includes a computer, a program executed by the computer, various electronic circuits, and the like.

ECU21は、機能別に大別すると、駆動および操舵に関する制御を行う駆動制御部21aと、その他の各種の補機システム(例えば、エアコン、ライト、ワイパー等)を制御したり、例えば表示装置に表示を行う制御を行う一般制御部21bとに分けられる。
図2に示すように、駆動制御部21aは基本駆動指令手段20を含み、この基本駆動指令手段20は、アクセル入力手段16、前記ブレーキ操作手段、および操舵角センサ15から入力された出力指令に応じて、各電動モータ6に分配してモータ別出力指令を与える。具体的には、基本駆動指令手段20は、アクセル入力手段16の出力する加速指令と、ブレーキ操作手段の出力する減速指令と、操舵角センサ15の出力する旋回指令とから、左右輪の電動モータ6,6に与える加速・減速指令をトルク指令値として生成し、トルク配分手段33を介して各インバータ装置22へ配分して出力する。
The ECU 21 is roughly classified by function, and controls the drive control unit 21a that performs control related to driving and steering, and other various auxiliary machine systems (for example, an air conditioner, a light, and a wiper), or displays on a display device, for example. It is divided into a general control unit 21b that performs control.
As shown in FIG. 2, the drive control unit 21 a includes basic drive command means 20, and the basic drive command means 20 receives output commands input from the accelerator input means 16, the brake operation means, and the steering angle sensor 15. Accordingly, the motor-specific output command is given to each electric motor 6. Specifically, the basic drive command means 20 is based on the acceleration command output from the accelerator input means 16, the deceleration command output from the brake operation means, and the turning command output from the steering angle sensor 15. The acceleration / deceleration commands given to 6 and 6 are generated as torque command values, distributed to each inverter device 22 via the torque distribution means 33, and output.

図3は、この電動車両のインホイールモータ駆動装置等の概念構成を示すブロック図である。同図に示すように、インバータ装置22は、各電動モータ6に対して設けられたパワー回路部28と、このパワー回路部28を制御するモータコントロール部29とを有する。モータコントロール部29は、このモータコントロール部29が持つインホイールモータ駆動装置8に関する各検出値や制御値等の各情報をECU21に出力する。   FIG. 3 is a block diagram showing a conceptual configuration of the in-wheel motor drive device and the like of this electric vehicle. As shown in the figure, the inverter device 22 includes a power circuit unit 28 provided for each electric motor 6 and a motor control unit 29 for controlling the power circuit unit 28. The motor control unit 29 outputs information such as detection values and control values regarding the in-wheel motor drive device 8 included in the motor control unit 29 to the ECU 21.

パワー回路部28は、車体1(図1)に搭載されたバッテリ19の直流電力を電動モータ6の駆動に用いる3相の交流電力に変換するインバータ31と、このインバータ31を制御するPWMドライバ32とを有する。電動モータ6は3相の同期モータ、例えばIPM型(埋込磁石型)同期モータ等からなる。インバータ31は、複数の半導体スイッチング素子(図示せず)で構成され、PWMドライバ32は、入力された電流指令をパルス幅変調し、前記各半導体スイッチング素子にオンオフ指令を与える。   The power circuit unit 28 includes an inverter 31 that converts DC power of a battery 19 mounted on the vehicle body 1 (FIG. 1) into three-phase AC power used to drive the electric motor 6, and a PWM driver 32 that controls the inverter 31. And have. The electric motor 6 is a three-phase synchronous motor, such as an IPM type (embedded magnet type) synchronous motor. The inverter 31 is composed of a plurality of semiconductor switching elements (not shown), and the PWM driver 32 performs pulse width modulation on the input current command and gives an on / off command to each of the semiconductor switching elements.

モータコントール部29は、コンピュータとこれに実行されるプログラム、および電子回路により構成される。モータコントロール部29は、上位制御手段であるECU21から与えられるトルク指令値等による加速・減速指令に従い、電流指令に変換して、パワー回路部28のPWMドライバ32に電流指令を与える。また、モータコントロール部29は、インバータ31から電動モータ6に流すモータ電流値を電流検出手段35である電流センサから得て、電流フィードバック制御を行う。この電流制御では、電動モータ6のロータの回転角を角度センサ36から得て、ベクトル制御等の回転角に応じた制御を行う。   The motor control unit 29 includes a computer, a program executed on the computer, and an electronic circuit. The motor control unit 29 converts it into a current command in accordance with an acceleration / deceleration command based on a torque command value or the like given from the ECU 21 which is the host control means, and gives a current command to the PWM driver 32 of the power circuit unit 28. Further, the motor control unit 29 obtains a motor current value flowing from the inverter 31 to the electric motor 6 from a current sensor that is the current detection means 35 and performs current feedback control. In this current control, the rotation angle of the rotor of the electric motor 6 is obtained from the angle sensor 36, and control according to the rotation angle such as vector control is performed.

図2に示すように、この実施形態に係る電動車両制御装置Aは、前記構成の電気自動車を制御する装置であり、前記基本駆動指令手段20と、個別駆動系異常検出手段23と、路面の摩擦係数を推定する路面摩擦係数推定手段24と、転舵輪3(図1)における、車両の走行方向に対する転舵角であるスリップ角を推定するスリップ角推定手段25と、車両の挙動を推定する車両挙動推定手段と、異常時他モータ出力制限手段27と、転舵角調整手段30と、前記操舵制御手段34とを有する。駆動制御部21aは、これら基本駆動指令手段20、個別駆動系異常検出手段23、路面摩擦係数推定手段24、スリップ角推定手段25、前記車両挙動推定手段、異常時他モータ出力制限手段27、転舵角調整手段30、および操舵制御手段34を有する。前記車両挙動推定手段は、前記車両の挙動として、車両の走行方向に対する車体1(図1)の曲がり量(ヨーレート)を検出する車体曲がり量検出手段26である。   As shown in FIG. 2, the electric vehicle control apparatus A according to this embodiment is an apparatus for controlling the electric vehicle having the above-described configuration, and includes the basic drive command means 20, individual drive system abnormality detection means 23, road surface A road surface friction coefficient estimating means 24 for estimating a friction coefficient, a slip angle estimating means 25 for estimating a slip angle that is a turning angle with respect to the traveling direction of the vehicle in the steered wheels 3 (FIG. 1), and a behavior of the vehicle are estimated. The vehicle behavior estimating means, the abnormal other motor output limiting means 27, the turning angle adjusting means 30, and the steering control means 34 are provided. The drive control unit 21a includes the basic drive command unit 20, the individual drive system abnormality detection unit 23, the road surface friction coefficient estimation unit 24, the slip angle estimation unit 25, the vehicle behavior estimation unit, the other-motor output limitation unit 27 at the time of an abnormality, A steering angle adjusting unit 30 and a steering control unit 34 are provided. The vehicle behavior estimation means is vehicle body bending amount detection means 26 that detects the amount of bending (yaw rate) of the vehicle body 1 (FIG. 1) with respect to the traveling direction of the vehicle as the behavior of the vehicle.

個別駆動系異常検出手段23は、各駆動輪2(図1)毎の電動モータ6、減速機7、および駆動輪2からなる車輪毎駆動系に異常が発生したことを検出する。個別駆動系異常検出手段23は、例えば、一輪の駆動輪2に発生するトルクが、駆動制御部21aの基本駆動指令手段20で生成するトルク指令値から乖離したとき、車輪毎駆動系に異常が発生したと判断する。個別駆動系異常検出手段23は、例えば、車輪毎駆動系において、モータ回転数に対応する、モータ印加電圧とモータ電流との関係が設定範囲から外れるとき、前記車輪毎駆動系に異常が発生したと検出しても良い。なお異常判断時の駆動トルクの乖離量、前記設定範囲は、実験等により適宜に設定される。   The individual drive system abnormality detection means 23 detects that an abnormality has occurred in the wheel-by-wheel drive system including the electric motor 6, the speed reducer 7, and the drive wheel 2 for each drive wheel 2 (FIG. 1). For example, when the torque generated in one drive wheel 2 deviates from the torque command value generated by the basic drive command unit 20 of the drive control unit 21a, the individual drive system abnormality detection unit 23 has an abnormality in the drive system for each wheel. Judge that it occurred. The individual drive system abnormality detection means 23, for example, in the wheel-by-wheel drive system, when the relationship between the motor applied voltage and the motor current corresponding to the motor rotation speed is out of the set range, an abnormality has occurred in the wheel-by-wheel drive system. May be detected. Note that the deviation amount of the drive torque at the time of abnormality determination and the setting range are appropriately set by experiments or the like.

路面摩擦係数推定手段24は、電動車両の走行速度と、正常な駆動輪2(図1)または従動輪の回転数とから、現在の路面の摩擦係数を演算する。ECU21には、例えばROM等の記憶手段17が設けられ、この記憶手段17に、路面状態に応じた走行速度と前記回転数との関係が記憶されている。前記路面状態とは、例えば、ドライまたはウェット、舗装路または非舗装路などである。路面摩擦係数推定手段24は、現在の電動車両の走行速度と正常な駆動輪または従動輪の回転数とを、記憶手段17に記憶された関係と照らし合わせて現在の路面の摩擦係数を推定し得る。スリップ角推定手段25は、転舵角検出手段47から異常発生直後のスリップ角を検出する。   The road surface friction coefficient estimating means 24 calculates the current road surface friction coefficient from the traveling speed of the electric vehicle and the normal driving wheel 2 (FIG. 1) or the rotational speed of the driven wheel. The ECU 21 is provided with a storage means 17 such as a ROM, for example, and the storage means 17 stores the relationship between the traveling speed corresponding to the road surface condition and the rotational speed. The road surface state is, for example, dry or wet, paved road or non-paved road. The road surface friction coefficient estimating means 24 estimates the current road surface friction coefficient by comparing the current traveling speed of the electric vehicle and the rotation speed of the normal drive wheel or driven wheel with the relationship stored in the storage means 17. obtain. The slip angle estimating means 25 detects the slip angle immediately after the occurrence of abnormality from the turning angle detecting means 47.

異常時他モータ出力制限手段27は、個別駆動系異常検出手段23によりいずれか一方の車輪駆動系に異常が発生したことが検出されると、他方の車輪駆動系の電動モータ6の出力に制限を加える。異常時他モータ出力制限手段27は、判定部27aと、制限部27bとを有する。判定部27aは、例えば、路面摩擦係数推定手段24で推定される路面の摩擦係数と、スリップ角推定手段25で推定されるスリップ角と、車体曲がり量検出手段26で検出される車体の曲がり量とから、転舵輪の摩耗量を演算し、この摩耗量が定められた閾値以上か否かを判定する。   When the abnormality is detected by the individual drive system abnormality detection means 23, the other motor output restriction means 27 at the time of abnormality is restricted to the output of the electric motor 6 of the other wheel drive system. Add The abnormal-time other motor output limiting means 27 includes a determination unit 27a and a limiting unit 27b. The determination unit 27a, for example, includes a road surface friction coefficient estimated by the road surface friction coefficient estimation unit 24, a slip angle estimated by the slip angle estimation unit 25, and a vehicle body bending amount detected by the vehicle body bending amount detection unit 26. From this, the wear amount of the steered wheels is calculated, and it is determined whether or not the wear amount is equal to or greater than a predetermined threshold value.

試験やシミュレーション等により、車輪毎駆動系の異常時に、例えば、転舵輪のタイヤが走行不可能な状態に陥る摩耗量を基準として前記閾値を定める。試験やシミュレーション等における、車輪毎駆動系の異常時とは、例えば、一方の車輪駆動系の電動モータ6に本来与えるべきトルク指令値を与えないようにすることで、異常状態を強制的に作り出す。なお転舵輪の摩耗量を演算するとき、この転舵輪のタイヤトレッドの深さが定められた使用限度を超えていない、つまりタイヤが使用限度を超えて摩耗していない前提とする。   The threshold value is determined based on, for example, the amount of wear that causes the tire of the steered wheels to run in a state in which the tire of the steered wheels cannot travel when an abnormality occurs in the drive system for each wheel by testing or simulation. For example, when an abnormality occurs in the drive system for each wheel in a test or simulation, for example, an abnormal state is forcibly created by not giving a torque command value that should be given to the electric motor 6 of one wheel drive system. . When calculating the wear amount of the steered wheels, it is assumed that the tire tread depth of the steered wheels does not exceed a predetermined use limit, that is, the tire is not worn beyond the use limit.

制限部27bは、異常と検出されていない電動モータ6の出力を制限するとき、出力の上限値および下限値のいずれか一方または両方について制限する。
電動モータ6の出力の下限値を制限した場合の効果について説明すると、例えばモータ固着等により、意図しない走行抵抗が発生する場合、正常なモータのトルク下限値を引き上げることで、僅かなアクセル操作に対しても車両が動き出すようにする、等の効果が得られる。
これらの場合において、制限する電動モータ6の出力はトルクである。制限部27bは、いずれか一方の車輪駆動系に異常が発生したとき、駆動力伝達に必要な構成要素の負荷として、例えば、各駆動輪2および各転舵輪3がバーストせずにこの電動車両が自走で走行し得る距離および車速を基準として、電動モータ6の出力を定められた制限値に一義的に制限しても良い。
When restricting the output of the electric motor 6 that is not detected as abnormal, the restricting unit 27b restricts either or both of an upper limit value and a lower limit value of the output.
The effect when the lower limit value of the output of the electric motor 6 is limited will be described. For example, when an unintended running resistance occurs due to, for example, the motor being fixed, the torque lower limit value of the normal motor is increased, so that a slight accelerator operation is performed. In contrast, effects such as allowing the vehicle to move can be obtained.
In these cases, the output of the electric motor 6 to be limited is torque. When the abnormality occurs in any one of the wheel drive systems, the restricting unit 27b is configured such that, for example, each drive wheel 2 and each steered wheel 3 do not burst as a load of a component necessary for driving force transmission. However, the output of the electric motor 6 may be uniquely limited to a predetermined limit value based on the distance and vehicle speed at which the vehicle can travel by itself.

その他、電動車両が、設定された目的地までの経路の案内および距離の計算を行うナビゲーションシステムを備えている場合に、制限部27bは、異常と検出されていない電動モータ6の出力を次のように制限しても良い。ナビゲーションシステムは、現在地または任意の地点から目的地までの推奨ルートである経路を設定する目的地設定手段を有する。制限部27bは、例えば、この目的地設定手段に設定された目的地までの経路に沿った距離に応じて電動モータ6の出力の制限値を決定しても良い。   In addition, when the electric vehicle includes a navigation system that guides the route to the set destination and calculates the distance, the limiting unit 27b outputs the output of the electric motor 6 that is not detected as abnormal as follows. It may be limited as follows. The navigation system has destination setting means for setting a route that is a recommended route from the current location or an arbitrary point to the destination. For example, the limiting unit 27b may determine a limit value of the output of the electric motor 6 according to the distance along the route to the destination set in the destination setting means.

ナビゲーションシステムに目的地までの経路が既に設定され、その経路に沿って電動車両を運転している場合、制限部27bは、一方の車輪駆動系に異常が発生した地点から目的地までの経路に沿った距離に応じて電動モータ6の出力の制限値を決定しても良い。ナビゲーションシステムに目的地までの経路が設定されていない場合に、いずれか一方の車輪駆動系に異常が発生したとき、例えば、一般制御部21bは前記表示装置に異常が発生した旨表示させ、電動車両の乗員に注意を喚起する。これにより乗員は、ナビゲーションシステムに、現在地から修理工場等の目的地までの経路を任意に設定し得る。その後、制限部27bは、現在地から目的地までの経路に沿った距離に応じて電動モータ6の出力の制限値を決定しても良い。   When the route to the destination is already set in the navigation system and the electric vehicle is driven along the route, the restricting unit 27b takes the route from the point where the abnormality occurs in one wheel drive system to the destination. The limit value of the output of the electric motor 6 may be determined according to the distance along. When the route to the destination is not set in the navigation system, when an abnormality occurs in one of the wheel drive systems, for example, the general control unit 21b displays that the abnormality has occurred on the display device, and Call attention to vehicle occupants. Thus, the occupant can arbitrarily set a route from the current location to a destination such as a repair shop in the navigation system. Thereafter, the limiter 27b may determine a limit value of the output of the electric motor 6 according to the distance along the route from the current location to the destination.

現在地または任意の地点から目的地へ到達するのにバッテリ19の電力量に応じて電動モータ6の出力の制限値を決定しても良い。
制限部27bは、目的地までの距離、駆動力伝達に必要な構成要素の負荷、および目的地へ到達するのに必要な電力量の少なくともいずれか一つにより電動モータ6の出力の制限値を決定しても良い。
The limit value of the output of the electric motor 6 may be determined according to the amount of power of the battery 19 to reach the destination from the current location or an arbitrary point.
The limiter 27b sets the limit value of the output of the electric motor 6 according to at least one of the distance to the destination, the load of the components necessary for transmitting the driving force, and the amount of electric power required to reach the destination. You may decide.

図4(A)は、両方の車輪毎駆動系が正常時の電動車両の構成を概略示すブロック図であり、図4(B)は、一方の車輪毎駆動系が異常時の動作説明図である。図2も参照しつつ説明する。
図2、図4(B)に示すように、転舵角調整手段30は、個別駆動系異常検出手段23によりいずれか一方の車輪駆動系に異常が発生したことが検出されると、異常が発生する前の車体曲がり量検出手段26により検出される車体の曲がり量と、異常が発生した後の車体曲がり量検出手段26により検出される車体の曲がり量とに変化が生じないように、転舵輪2,2の転舵角を調整可能な手段である。
FIG. 4A is a block diagram schematically showing the configuration of an electric vehicle when both the wheel drive systems are normal, and FIG. 4B is an operation explanatory diagram when one of the wheel drive systems is abnormal. is there. This will be described with reference to FIG.
As shown in FIGS. 2 and 4B, when the turning angle adjusting means 30 detects that an abnormality has occurred in one of the wheel drive systems by the individual drive system abnormality detection means 23, the abnormality is detected. The vehicle body bend amount detected by the vehicle body bend amount detecting means 26 before occurrence and the vehicle body bend amount detected by the vehicle body bend amount detecting means 26 after an abnormality has occurred are not changed. This means is capable of adjusting the turning angle of the steering wheels 2 and 2.

図4(A)では、両方の車輪毎駆動系が正常時に電動車両は例えば直進している。図4(B)に示すように、一方の車輪駆動系に異常が発生し、他方の車輪駆動系により電動車両を駆動するとき、この電動車両の重心点周りにヨーモーメント37が発生する。この場合、電動車両は不所望に旋回しようとするため、転舵角調整手段30は、転舵機構11により逆向きのヨーモーメント38を発生させる。転舵角調整手段30は、個別駆動系異常検出手段23による異常検出に応答して、操舵制御手段34を介してヨーモーメント37を打ち消す逆向きのヨーモーメント38を発生させる制御を行う。したがって、異常発生前後で車体の曲がり量に変化が生じずに電動車両は直進状態を維持し得る。なおこの例では電動車両が直進状態の例を示しているが、転舵角調整手段30は旋回状態であっても異常発生前後で所望の旋回状態を維持し得る。   In FIG. 4A, the electric vehicle is traveling straight, for example, when both the drive systems for each wheel are normal. As shown in FIG. 4B, when an abnormality occurs in one wheel drive system and the electric vehicle is driven by the other wheel drive system, a yaw moment 37 is generated around the center of gravity of the electric vehicle. In this case, since the electric vehicle tends to turn undesirably, the turning angle adjusting means 30 generates the yaw moment 38 in the reverse direction by the turning mechanism 11. The turning angle adjusting means 30 performs control to generate a reverse yaw moment 38 that cancels the yaw moment 37 via the steering control means 34 in response to the abnormality detection by the individual drive system abnormality detecting means 23. Therefore, the electric vehicle can maintain a straight traveling state without any change in the amount of vehicle body bending before and after the occurrence of an abnormality. In this example, the electric vehicle is in a straight traveling state, but the turning angle adjusting means 30 can maintain a desired turning state before and after the occurrence of an abnormality even in a turning state.

図5は、この電動車両制御装置の電動モータの出力を制限する例を示すフローチャートである。図2も参照しつつ説明する。前述の個別駆動系異常検出手段23が図5のステップS1の処理を行い、路面摩擦係数推定手段24およびスリップ角推定手段25がステップS2の処理を行い、異常時他モータ出力制限手段27の判定部27aがステップS3,S4の処理を行う。異常時他モータ出力制限手段27の制限部27bがステップS5の処理を行う。
例えば、車両のイグニッションスイッチ等をオンにすることで本処理が開始する。本処理開始後、個別駆動系異常検出手段23は、車輪毎駆動系に異常が発生したか否かを常時検出する(ステップS1)。いずれの車輪毎駆動系にも異常が発生していないとき(ステップS1:no)、基本駆動指令手段20は、アクセル入力手段16から入力された出力指令に応じて電動モータ6に分配してモータ別出力指令を与える。これにより電動車両は通常走行を行える。
FIG. 5 is a flowchart showing an example of limiting the output of the electric motor of the electric vehicle control device. This will be described with reference to FIG. The aforementioned individual drive system abnormality detection means 23 performs the process of step S1 in FIG. 5, and the road surface friction coefficient estimation means 24 and the slip angle estimation means 25 perform the process of step S2, and the determination of the other motor output restriction means 27 in the event of an abnormality. The unit 27a performs steps S3 and S4. The limiting unit 27b of the other motor output limiting means 27 at the time of abnormality performs the process of step S5.
For example, this processing is started by turning on an ignition switch or the like of the vehicle. After the start of this process, the individual drive system abnormality detection means 23 always detects whether or not an abnormality has occurred in the drive system for each wheel (step S1). When no abnormality has occurred in any of the drive systems for each wheel (step S1: no), the basic drive command means 20 distributes the motor to the electric motor 6 in accordance with the output command input from the accelerator input means 16. Give another output command. As a result, the electric vehicle can normally travel.

いずれか一方の車輪毎駆動系に異常が発生したと検出されると(ステップS1:yes)、路面摩擦係数推定手段24は路面の摩擦係数を推定し、スリップ角推定手段25はスリップ角を推定する(ステップS2)。次に、異常時他モータ出力制限手段27の判定部27aは、車輪負荷(この例では転舵輪の摩耗量)を演算し(ステップS3)、車輪負荷が閾値以上か否かを判定する(ステップS4)。車輪負荷が閾値未満のとき(ステップS4:no)、ステップS1に戻る。車輪負荷が閾値以上のとき(ステップS4:yes)、異常時他モータ出力制限手段27の制限部27bは、正常な車輪駆動系の電動モータ6の出力を制限する(ステップS5)。その後ステップS1に戻る。   When it is detected that an abnormality has occurred in any one of the drive systems for each wheel (step S1: yes), the road surface friction coefficient estimating means 24 estimates the friction coefficient of the road surface, and the slip angle estimating means 25 estimates the slip angle. (Step S2). Next, the determination unit 27a of the abnormal motor output limiting means 27 calculates the wheel load (the amount of wear of the steered wheels in this example) (step S3), and determines whether or not the wheel load is equal to or greater than a threshold value (step S3). S4). When the wheel load is less than the threshold value (step S4: no), the process returns to step S1. When the wheel load is equal to or greater than the threshold (step S4: yes), the limiting unit 27b of the other motor output limiting means 27 at the time of abnormality limits the output of the electric motor 6 of the normal wheel drive system (step S5). Thereafter, the process returns to step S1.

作用効果について説明する。
個別駆動系異常検出手段23が、車輪毎駆動系に異常が発生したことを検出すると、異常時他モータ出力制限手段27は、基本駆動指令手段20により与えられる出力指令に対して、正常な車輪毎駆動系の電動モータ6の出力に制限を加える。この異常時他モータ出力制限手段27は、この電動車両の走行に必要な負荷を演算して、定められた規則に従い電動モータ6の出力を制限する。このように車輪毎駆動系に異常が発生した場合であっても、電動車両に走行に必要な負荷を演算することで、所望の目的地まで電動車両をより確実に自走させることができる。
The effect will be described.
When the individual drive system abnormality detecting means 23 detects that an abnormality has occurred in the drive system for each wheel, the other motor output limiting means 27 at the time of abnormality is a normal wheel with respect to the output command given by the basic drive command means 20. Limit the output of the electric motor 6 of each drive system. The abnormal-time other motor output limiting means 27 calculates a load necessary for traveling of the electric vehicle, and limits the output of the electric motor 6 according to a predetermined rule. Thus, even when an abnormality occurs in the drive system for each wheel, by calculating the load necessary for traveling on the electric vehicle, the electric vehicle can be more reliably self-propelled to a desired destination.

異常時他モータ出力制限手段27は、路面摩擦係数推定手段24で推定される路面の摩擦係数と、スリップ角推定手段25で推定されるスリップ角と、車体曲がり量検出手段26で検出される車体の曲がり量とから、転舵輪3の摩耗量を演算し、この摩耗量が定められた閾値以上のとき、正常な車輪毎駆動系の電動モータ6の出力を制限する。このように、転舵輪3の摩耗量を演算して閾値と比較することで、電動モータ6の出力をより精度良く制限することができる。
転舵角調整手段30は、一方の車輪駆動系に異常時に発生するヨーモーメントに対し逆向きのヨーモーメントで相殺させるように、転舵輪3の転舵角を調整する。これにより、異常が発生する前後で、車両の走行方向に変化がないように車両の走行状態を維持し得る。
The abnormal-time other motor output limiting means 27 is a road surface friction coefficient estimated by the road surface friction coefficient estimating means 24, a slip angle estimated by the slip angle estimating means 25, and a vehicle body bending amount detecting means 26. The amount of wear of the steered wheels 3 is calculated from the amount of the bend, and when the amount of wear is equal to or greater than a predetermined threshold, the output of the electric motor 6 of the normal drive system for each wheel is limited. Thus, by calculating the amount of wear of the steered wheels 3 and comparing it with the threshold value, the output of the electric motor 6 can be more accurately limited.
The steered angle adjusting means 30 adjusts the steered angle of the steered wheels 3 so that the yaw moment in the opposite direction is offset with respect to the yaw moment generated when one of the wheel drive systems is abnormal. Thereby, the traveling state of the vehicle can be maintained so that there is no change in the traveling direction of the vehicle before and after the occurrence of the abnormality.

他の実施形態について説明する。
以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
Another embodiment will be described.
In the following description, the same reference numerals are given to the portions corresponding to the matters described in the preceding forms in each embodiment, and the overlapping description is omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in advance unless otherwise specified. The same effect is obtained from the same configuration. Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.

図6は、他の実施形態に係る電動車両制御装置の要部の概念構成を示すブロック図である。電動車両制御装置は、正常な車輪駆動系の電動モータ6に流す電流値を検出する電流検出手段35と、前記正常な電動モータ6の温度を検出する温度検出手段49とを有するものとしても良い。異常時他モータ出力制限手段27は、前記温度検出手段49で検出される温度が定められた閾値以上のとき、前記電流検出手段35で検出される電流値が定められた電流値以下となるように、正常な車輪駆動系の電動モータ6の出力を制限するようにしても良い。試験やシミュレーション等により、車輪毎駆動系の異常時に、例えば、正常な他方の車輪毎駆動系の電動モータ6の永久磁石に減磁が生じるときのモータ温度を基準として前記閾値を定める。   FIG. 6 is a block diagram illustrating a conceptual configuration of a main part of an electric vehicle control device according to another embodiment. The electric vehicle control device may include a current detection unit 35 that detects a current value that flows through the electric motor 6 of a normal wheel drive system, and a temperature detection unit 49 that detects the temperature of the normal electric motor 6. . When the temperature detected by the temperature detecting means 49 is equal to or greater than a predetermined threshold, the other motor output limiting means 27 at the time of abnormality is such that the current value detected by the current detecting means 35 is less than or equal to the predetermined current value. In addition, the output of the electric motor 6 of a normal wheel drive system may be limited. The threshold value is determined based on the motor temperature when demagnetization occurs in the permanent magnet of the electric motor 6 of the other wheel drive system that is normal, for example, when the wheel drive system is abnormal by testing or simulation.

図7は、この電動車両制御装置の電動モータの出力を制限する例を示すフローチャートである。図6も参照しつつ説明する。個別駆動系異常検出手段23が図7のステップa1の処理を行い、電流検出手段35および異常時他モータ出力制限手段27がステップa2の処理を行い、温度検出手段49および異常時他モータ出力制限手段27がステップa3の処理を行う。判定部27aがステップa4の処理を行い、制限部27bがステップa5の処理を行う。   FIG. 7 is a flowchart showing an example of limiting the output of the electric motor of the electric vehicle control device. This will be described with reference to FIG. The individual drive system abnormality detection means 23 performs the process of step a1 in FIG. 7, and the current detection means 35 and the abnormal other motor output restriction means 27 perform the process of step a2, and the temperature detection means 49 and the abnormal other motor output restriction. The means 27 performs step a3. The determination unit 27a performs the process of step a4, and the restriction unit 27b performs the process of step a5.

いずれか一方の車輪毎駆動系に異常が発生したと検出されると(ステップa1:yes)、異常時他モータ出力制限手段27は、正常な車輪駆動系の電動モータ6に流す電流値を電流検出手段35から得る。また異常時他モータ出力制限手段27は、前記正常な電動モータ6の温度を温度検出手段49から取得する。次に、判定部27aは、前記温度検出手段49で検出される温度が定められた閾値以上か否かを判定する(ステップa4)。温度が閾値未満のとき(ステップa4:no)、ステップa1に戻る。温度が閾値以上のとき(ステップa4:yes)、制限部27bは、正常な車輪駆動系の電動モータ6の出力を制限する(ステップa5)。その後ステップa1に戻る。
このように電動モータ6の出力を制限することで、例えば、修理工場等の目的地までの走行途中に、電動モータ6の永久磁石に減磁が生じることにより電動車両が不所望に停止することを回避することが可能となる。
When it is detected that an abnormality has occurred in any one of the drive systems for each wheel (step a1: yes), the other-motor output limiting means 27 at the time of abnormality outputs a current value to be supplied to the electric motor 6 of the normal wheel drive system. Obtained from the detection means 35. Further, the abnormal motor output limiting means 27 obtains the normal temperature of the electric motor 6 from the temperature detecting means 49. Next, the determination unit 27a determines whether or not the temperature detected by the temperature detection unit 49 is equal to or higher than a predetermined threshold (step a4). When the temperature is lower than the threshold value (step a4: no), the process returns to step a1. When the temperature is equal to or higher than the threshold (step a4: yes), the limiting unit 27b limits the output of the electric motor 6 of the normal wheel drive system (step a5). Thereafter, the process returns to step a1.
By limiting the output of the electric motor 6 in this way, for example, the electric vehicle is undesirably stopped due to demagnetization of the permanent magnet of the electric motor 6 during traveling to a destination such as a repair shop. Can be avoided.

電動モータ6の回転を、減速機7を介在させずに車輪用軸受4を介して車輪に伝達するようにしても良い。この場合、車輪用軸受に回転自在に支持される伝達軸(図示せず)が、本願の「伝達機構」に相当する。
電動車両制御装置は、例えば、前輪の2輪をそれぞれ個別にモータ駆動する電動車両、または前後輪の4輪をそれぞれ個別にモータ駆動する電動車両に適用することができる。電動車両制御装置をハイブリッド車に適用することも可能である。
You may make it transmit rotation of the electric motor 6 to a wheel via the wheel bearing 4 without interposing the reduction gear 7. In this case, a transmission shaft (not shown) rotatably supported by the wheel bearing corresponds to the “transmission mechanism” of the present application.
The electric vehicle control device can be applied to, for example, an electric vehicle in which two front wheels are individually motor-driven, or an electric vehicle in which four front and rear wheels are individually motor-driven. The electric vehicle control device can also be applied to a hybrid vehicle.

1…車体
2…駆動輪
4…車輪用軸受
6…電動モータ
7…減速機(伝達機構)
8…インホイールモータ駆動装置
16…アクセル入力手段
20…基本駆動指令手段
23…個別駆動系異常検出手段
24…路面摩擦係数推定手段
25…スリップ角推定手段
26…車体曲がり量検出手段
27…異常時他モータ出力制限手段
30…転舵角調整手段
35…電流検出手段
49…温度検出手段
DESCRIPTION OF SYMBOLS 1 ... Car body 2 ... Drive wheel 4 ... Wheel bearing 6 ... Electric motor 7 ... Reduction gear (transmission mechanism)
8 ... In-wheel motor drive device 16 ... Accelerator input means 20 ... Basic drive command means 23 ... Individual drive system abnormality detection means 24 ... Road surface friction coefficient estimation means 25 ... Slip angle estimation means 26 ... Car body bend amount detection means 27 ... Abnormality Other motor output limiting means 30 ... turning angle adjusting means 35 ... current detecting means 49 ... temperature detecting means

Claims (6)

左右一対の駆動輪をそれぞれ駆動する複数の電動モータと、これら各電動モータから前記各駆動輪に駆動力を伝達する伝達機構とを備えた電動車両を制御する電動車両制御装置において、
アクセル入力手段から入力された出力指令に応じて前記電動モータに分配してモータ別出力指令を与える基本駆動指令手段と、
前記各駆動輪毎の前記電動モータ、前記伝達機構、および前記駆動輪からなる車輪毎駆動系に異常が発生したことを検出する個別駆動系異常検出手段と、
この個別駆動系異常検出手段により前記いずれか一方の車輪駆動系に異常が発生したことが検出されると、他方の車輪毎駆動系の前記電動モータの出力に制限を加える異常時他モータ出力制限手段とを備え、
この異常時他モータ出力制限手段は、前記電動車両の走行に必要な負荷を演算して、定められた規則に従い前記電動モータの出力を制限することを特徴とする電動車両制御装置。
In an electric vehicle control device that controls an electric vehicle including a plurality of electric motors that respectively drive a pair of left and right driving wheels, and a transmission mechanism that transmits a driving force from the electric motors to the driving wheels.
Basic drive command means that distributes to the electric motor according to the output command input from the accelerator input means and gives an output command for each motor;
Individual drive system abnormality detection means for detecting that an abnormality has occurred in the wheel-by-wheel drive system comprising the electric motor for each drive wheel, the transmission mechanism, and the drive wheel;
When it is detected by the individual drive system abnormality detection means that an abnormality has occurred in one of the wheel drive systems, the other motor output limit is set to limit the output of the electric motor of the other wheel drive system. Means and
The abnormal-motor other-motor output limiting means calculates a load necessary for traveling of the electric vehicle and limits the output of the electric motor according to a predetermined rule.
請求項1記載の電動車両制御装置において、
路面の摩擦係数を推定する路面摩擦係数推定手段と、
転舵輪における、車両の走行方向に対する転舵角であるスリップ角を推定するスリップ角推定手段と、
前記車両の走行方向に対する車体の曲がり量を検出する車体曲がり量検出手段と、
を設け、
前記異常時他モータ出力制限手段は、前記路面摩擦係数推定手段で推定される路面の摩擦係数と、前記スリップ角推定手段で推定されるスリップ角と、前記車体曲がり量検出手段で検出される車体の曲がり量とから、前記転舵輪の摩耗量を演算し、この摩耗量が定められた閾値以上のとき、他方の車輪毎駆動系の前記電動モータの出力を制限する電動車両制御装置。
In the electric vehicle control device according to claim 1,
Road surface friction coefficient estimating means for estimating the friction coefficient of the road surface;
Slip angle estimating means for estimating a slip angle which is a steered angle with respect to the traveling direction of the vehicle in steered wheels;
Vehicle body bend amount detecting means for detecting the amount of bend of the vehicle body with respect to the traveling direction of the vehicle;
Provided,
The abnormal-time other motor output limiting means includes a road surface friction coefficient estimated by the road surface friction coefficient estimation means, a slip angle estimated by the slip angle estimation means, and a vehicle body detected by the vehicle body bending amount detection means. An electric vehicle control device that calculates the amount of wear of the steered wheels from the amount of bending and restricts the output of the electric motor of the other wheel-by-wheel drive system when the amount of wear is equal to or greater than a predetermined threshold.
請求項1または請求項2に記載の電動車両制御装置において、
前記他方の車輪毎駆動系の電動モータに流す電流値を検出する電流検出手段と、
前記電動モータの温度を検出する温度検出手段と、
を設け、
前記異常時他モータ出力制限手段は、前記温度検出手段で検出される温度が定められた閾値以上のとき、前記電流検出手段で検出される電流値が定められた電流値以下となるように、他方の車輪毎駆動系の前記電動モータの出力を制限する電動車両制御装置。
In the electric vehicle control device according to claim 1 or 2,
Current detection means for detecting a current value flowing to the electric motor of the other wheel-by-wheel drive system;
Temperature detecting means for detecting the temperature of the electric motor;
Provided,
When the temperature detected by the temperature detecting means is equal to or higher than a predetermined threshold, the other motor output limiting means at the time of abnormality is such that the current value detected by the current detecting means is not more than a predetermined current value. The electric vehicle control apparatus which restrict | limits the output of the said electric motor of the other wheel-by-wheel drive system.
請求項1ないし請求項3のいずれか1項に記載の電動車両制御装置において、前記伝達機構として減速機を設け、前記車輪毎駆動系は、前記駆動輪を支持する車輪用軸受と、前記電動モータと、この電動モータの駆動を前記車輪用軸受に伝達する前記減速機とでインホイールモータ駆動装置を構成する電動車両制御装置。   4. The electric vehicle control device according to claim 1, wherein a speed reducer is provided as the transmission mechanism, the wheel-by-wheel drive system includes a wheel bearing that supports the drive wheel, and the electric drive device. The electric vehicle control apparatus which comprises an in-wheel motor drive device with the motor and the said reduction gear which transmits the drive of this electric motor to the said wheel bearing. 請求項1ないし請求項4のいずれか1項に記載の電動車両制御装置において、前記車両の挙動を推定する車両挙動推定手段を有し、前記個別駆動系異常検出手段により前記いずれか一方の車輪駆動系に異常が発生したことが検出されると、異常が発生する前の前記車両挙動推定手段により推定される前記車両の挙動と、異常が発生した後の前記車両挙動推定手段により推定される前記車両の挙動とに変化が生じないように、前記電動車両の転舵輪の転舵角を調整可能な転舵角調整手段を設けた電動車両制御装置。   5. The electric vehicle control device according to claim 1, further comprising vehicle behavior estimation means for estimating the behavior of the vehicle, wherein the one of the wheels is detected by the individual drive system abnormality detection means. When it is detected that an abnormality has occurred in the drive system, the behavior of the vehicle estimated by the vehicle behavior estimation means before the occurrence of the abnormality and the vehicle behavior estimation means after the abnormality has occurred are estimated. An electric vehicle control device provided with a turning angle adjusting means capable of adjusting a turning angle of a turning wheel of the electric vehicle so that the behavior of the vehicle does not change. 請求項5に記載の電動車両制御装置において、前記車両挙動推定手段は、前記車両の挙動として、前記車両の走行方向に対する車体の曲がり量を検出する車体曲がり量検出手段である電動車両制御装置。   6. The electric vehicle control device according to claim 5, wherein the vehicle behavior estimating means is a vehicle body bending amount detecting means for detecting a vehicle body bending amount with respect to a traveling direction of the vehicle as the vehicle behavior.
JP2012242462A 2012-11-02 2012-11-02 Electric-vehicle control device Pending JP2014093844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242462A JP2014093844A (en) 2012-11-02 2012-11-02 Electric-vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242462A JP2014093844A (en) 2012-11-02 2012-11-02 Electric-vehicle control device

Publications (1)

Publication Number Publication Date
JP2014093844A true JP2014093844A (en) 2014-05-19

Family

ID=50937575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242462A Pending JP2014093844A (en) 2012-11-02 2012-11-02 Electric-vehicle control device

Country Status (1)

Country Link
JP (1) JP2014093844A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031696A1 (en) * 2014-08-29 2016-03-03 Ntn株式会社 Drive control device for independent wheel drive-type vehicle
WO2016043077A1 (en) * 2014-09-17 2016-03-24 Ntn株式会社 Vehicle drive control device
WO2016084160A1 (en) * 2014-11-26 2016-06-02 三菱電機株式会社 Vehicular control device and vehicle control method
JP2017153283A (en) * 2016-02-25 2017-08-31 株式会社Subaru Vehicle controller and vehicle control method
WO2022153828A1 (en) * 2021-01-12 2022-07-21 株式会社デンソー Drive system of vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031696A1 (en) * 2014-08-29 2016-03-03 Ntn株式会社 Drive control device for independent wheel drive-type vehicle
JP2016052164A (en) * 2014-08-29 2016-04-11 Ntn株式会社 Drive control device of wheel independent drive type vehicle
WO2016043077A1 (en) * 2014-09-17 2016-03-24 Ntn株式会社 Vehicle drive control device
WO2016084160A1 (en) * 2014-11-26 2016-06-02 三菱電機株式会社 Vehicular control device and vehicle control method
JPWO2016084160A1 (en) * 2014-11-26 2017-04-27 三菱電機株式会社 Vehicle control device and vehicle control method
US10322747B2 (en) 2014-11-26 2019-06-18 Mitsubishi Electric Corporation Control device for a vehicle and vehicle control method
JP2017153283A (en) * 2016-02-25 2017-08-31 株式会社Subaru Vehicle controller and vehicle control method
WO2022153828A1 (en) * 2021-01-12 2022-07-21 株式会社デンソー Drive system of vehicle
JP7435485B2 (en) 2021-01-12 2024-02-21 株式会社デンソー vehicle drive system

Similar Documents

Publication Publication Date Title
WO2013114969A1 (en) Electric vehicle
US9855858B2 (en) Control device for electric vehicle
JP6440971B2 (en) Drive control device with traction control function for left and right independent drive vehicles
JP5840464B2 (en) Electric car
JP2015100149A (en) Anti-loci brake controller
US10017075B2 (en) Device for controlling electric automobile
JP6396180B2 (en) Drive control device for wheel independent drive type vehicle
JP2016111834A (en) Braking/driving force control device of vehicle
JP2014093844A (en) Electric-vehicle control device
WO2016031696A1 (en) Drive control device for independent wheel drive-type vehicle
WO2015080021A1 (en) Control device for electric vehicle
JP6517089B2 (en) Drive control device for a wheel independent drive type vehicle
JP6795897B2 (en) Wheel independent drive type vehicle drive control device
JP5911482B2 (en) Method for electromechanically adjusting steering angle and motor vehicle with electromechanical steering
JP2016073061A (en) Control device for electric vehicle
WO2020184299A1 (en) Electric motor control device and electric motor control method
WO2016043077A1 (en) Vehicle drive control device
JP5908290B2 (en) Control device for electric vehicle
JP5661500B2 (en) Electric vehicle drive control device
JP6664885B2 (en) Vehicle braking / driving torque control device
WO2021125218A1 (en) Drive control apparatus and drive control method for vehicle having independently driven wheels
JP6679348B2 (en) Vehicle front-rear speed estimation device
JP2022110333A (en) Vehicle control device
JP6613172B2 (en) Vehicle control apparatus and vehicle control method
JP2015033872A (en) Rollover prevention device for vehicle