WO2022153828A1 - Drive system of vehicle - Google Patents

Drive system of vehicle Download PDF

Info

Publication number
WO2022153828A1
WO2022153828A1 PCT/JP2021/047888 JP2021047888W WO2022153828A1 WO 2022153828 A1 WO2022153828 A1 WO 2022153828A1 JP 2021047888 W JP2021047888 W JP 2021047888W WO 2022153828 A1 WO2022153828 A1 WO 2022153828A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
abnormality
steering
command value
torque
Prior art date
Application number
PCT/JP2021/047888
Other languages
French (fr)
Japanese (ja)
Inventor
優 窪田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202180089964.6A priority Critical patent/CN116745185A/en
Publication of WO2022153828A1 publication Critical patent/WO2022153828A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/029Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • This disclosure relates to a vehicle drive system.
  • Patent Documents Conventionally, there are electric vehicles including drive motors that drive the left and right drive wheels on the rear side of the vehicle and steering mechanisms that steer the left and right steering wheels on the front side in the same direction via tie rods. 1).
  • the steering amount of the steering mechanism is changed so as to compensate for the change in the drive balance of the left and right drive wheels due to the abnormality of the drive motor.
  • the present disclosure has been made to solve the above problems, and the main purpose thereof is intended by the user even when an abnormality occurs in the drive motor of one of the left and right drive wheels.
  • the purpose is to make it easier to drive the vehicle in the running state.
  • the first means for solving the above problems is a vehicle drive system.
  • a pair of left and right drive motors that drive the left and right wheels of the vehicle independently of each other,
  • a pair of left and right steering mechanisms that independently steer the left and right wheels of the vehicle,
  • a command value calculation unit that calculates each torque command value of each drive motor based on the intended running state of the vehicle intended by the user.
  • a drive control unit that drives each drive motor based on each torque command value calculated by the command value calculation unit.
  • An abnormality detection unit that detects a drive abnormality in which one of the pair of left and right drive motors can output only an abnormal torque different from the corresponding torque command value calculated by the command value calculation unit.
  • each steering amount of each steering mechanism is calculated based on the torque command value calculated by the command value calculation unit and the intended running state.
  • the torque command value, the abnormality torque, and the intended running state corresponding to the drive motor excluding the abnormality motor which is a drive motor capable of outputting only the abnormality torque are obtained.
  • the steering amount of one of the pair of left and right steering mechanisms is calculated as the first steering amount, and the steering amount of the other is the second rotation whose absolute value is smaller than the absolute value of the first steering amount.
  • the steering amount calculation unit that calculates the steering amount and A steering control unit that steers each steering mechanism based on each steering amount calculated by the steering amount calculation unit. To be equipped.
  • the pair of left and right drive motors drive the left and right wheels of the vehicle independently of each other.
  • the pair of left and right steering mechanisms steer the left and right wheels of the vehicle independently of each other.
  • the left and right wheels of the vehicle driven by the pair of left and right drive motors may be the left and right front wheels of the vehicle, the left and right rear wheels, the left and right front wheels of the vehicle, and the left and right rear wheels. It may be.
  • the left and right wheels of the vehicle steered by the pair of left and right steering mechanisms may be the left and right front wheels of the vehicle, the left and right rear wheels, the left and right front wheels of the vehicle, and the left and right wheels. It may be the rear wheel.
  • the command value calculation unit calculates each torque command value of each drive motor based on the intended running state, which is the running state of the vehicle intended by the user.
  • the traveling state includes forward straight movement, front left turn, front right turn, rear straight movement, rear left turn, rear right turn, vehicle speed, and the like.
  • the intended driving state can be acquired based on the amount of operation of the steering wheel of the vehicle, the amount of depression of the accelerator pedal (accelerator operation unit) (operation amount), the amount of depression of the brake pedal (brake operation unit) (operation amount), and the like. ..
  • the intended driving state is the setting of constant-speed running control that causes the vehicle to run at a constant speed, the setting of follow-up running control that causes the vehicle to follow the vehicle in front, and the automatic driving (running) control that causes the vehicle to automatically run the set route. It can be obtained based on the settings of.
  • the constant speed running control, the following running control, and the automatic driving control the user may or may not be in the vehicle.
  • the drive control unit drives each drive motor based on the torque command values calculated by the command value calculation unit. Therefore, each drive motor can be driven so that the traveling state of the vehicle becomes the intended traveling state.
  • the abnormality detection unit detects a drive abnormality in which one of the pair of left and right drive motors can output only an abnormal torque different from the corresponding torque command value calculated by the command value calculation unit.
  • a drive abnormality when the current sensor that detects the current flowing through the drive motor is abnormal, the torque that the drive motor can output is limited to 1/2 of the torque command value, and only torque smaller than the torque command value is output. It may not be possible. Further, as a drive abnormality, the drive motor may output only an abnormal torque larger than the torque command value.
  • the steering amount calculation unit of each steering mechanism is based on the torque command value calculated by the command value calculation unit and the intended running state. Calculate each steering amount. Then, the steering control unit steers each steering mechanism based on each steering amount calculated by the steering amount calculation unit. Therefore, each steering mechanism can be steered so that the traveling state of the vehicle becomes the intended traveling state.
  • the steering amount is 0 when traveling straight, a positive value when steering to one of the left and right, and a negative value when steering to the other.
  • the steering amount calculation unit has the torque command value corresponding to the drive motor excluding the abnormality motor which is a drive motor capable of outputting only the abnormality torque, and the abnormality. Based on the torque and the intended running state, the steering amount of one of the pair of left and right steering mechanisms is calculated as the first steering amount, and the steering amount of the other is calculated from the absolute value of the first steering amount. Is calculated as the second steering amount with a small absolute value. Then, the steering control unit steers each steering mechanism based on each steering amount (first steering amount and second steering amount) calculated by the steering amount calculation unit.
  • each steering mechanism can be steered so as to approach the intended driving state.
  • the absolute value of the second steering amount is smaller than the absolute value of the first steering amount. Therefore, the influence of the second steering amount on the traveling state of the vehicle is suppressed, and the traveling state of the vehicle can be finely controlled by adjusting the first steering amount. Therefore, even if an abnormality occurs in the drive motor of one of the left and right drive wheels, it is possible to easily drive the vehicle in the traveling state intended by the user.
  • the abnormality detection unit detects the drive abnormality
  • the abnormality torque is a torque command value corresponding to the abnormality motor.
  • the steering amount of the steering mechanism on the same side as the abnormal motor is based on the torque command value, the abnormal torque, and the intended running state corresponding to the drive motor excluding the abnormal motor.
  • the first steering amount is set to the steering amount at which the wheels are directed to the left and right opposite sides of the abnormal motor
  • the second steering amount which is the steering amount of the steering mechanism on the left and right opposite sides of the abnormal motor, is set to 0. To.
  • abnormal motor When the user intends to drive the vehicle straight (including forward straight and backward straight), and one of the left and right drive motors (abnormal motor) can output an abnormal torque smaller than the torque command value. , The vehicle tries to turn to the same side as the abnormal motor. For example, if the anomalous motor is the drive motor for the right wheel, the vehicle will try to turn to the same right as the anomalous motor.
  • the intended traveling state is straight
  • the drive abnormality is detected by the abnormality detection unit
  • the abnormality torque corresponds to the abnormality motor.
  • the steering mechanism on the same side as the abnormal motor is turned based on the torque command value corresponding to the drive motor excluding the abnormal motor, the abnormal torque, and the intended running state.
  • the first steering amount which is the steering amount, is set to the steering amount at which the wheels are directed to the left and right opposite sides of the abnormal motor.
  • the abnormal motor is a drive motor for the right wheel
  • the first steering amount which is the same steering amount of the right steering mechanism as the abnormal motor, is directed to the left side opposite to the abnormal motor. Set the steering amount.
  • the abnormal motor and the left-right opposite side are the left-right opposite sides with respect to the traveling direction. If the right drive motor is an abnormal motor, turn the rear part of the wheel to the left.
  • the steering amount calculation unit sets the second steering amount, which is the steering amount of the steering mechanism on the left and right opposite sides of the abnormal motor, to 0. Therefore, the steering mechanism on the opposite side to the abnormal motor can be controlled in the same manner as when no driving abnormality is detected, and the influence of the second steering amount on the running state of the vehicle is suppressed.
  • the first steering amount it becomes easy to finely control the running state of the vehicle.
  • the intended traveling state is turning
  • the drive abnormality is detected by the abnormality detection unit
  • the abnormal torque is a torque command value corresponding to the abnormal motor.
  • the steering amount of the steering mechanism on the left and right opposite sides of the abnormal motor is based on the torque command value, the abnormal torque, and the intended running state corresponding to the drive motor excluding the abnormal motor.
  • the first steering amount is set to the steering amount corresponding to the turning
  • the second steering amount which is the steering amount of the steering mechanism on the same side as the abnormal motor, is set to 0.
  • one of the left and right drive motors has a torque command value. If only an abnormal torque smaller than that can be output, the vehicle deviates from the turning trajectory (traveling direction) of the vehicle intended by the user.
  • the steering amount calculation unit in the steering amount calculation unit, the intended traveling state is turning, the drive abnormality is detected by the abnormality detection unit, and the abnormality torque corresponds to the abnormality motor.
  • the steering mechanism on the left and right sides opposite to the abnormal motor is rotated based on the torque command value corresponding to the drive motor excluding the abnormal motor, the abnormal torque, and the intended running state.
  • the first steering amount which is the steering amount, is set to the steering amount corresponding to the turning. Therefore, the vehicle that is about to deviate from the turning track of the vehicle intended by the user can be brought closer to the turning track of the vehicle intended by the user.
  • the steering amount calculation unit sets the second steering amount, which is the steering amount of the steering mechanism on the same side as the abnormal motor, to 0. Therefore, the influence of the second steering amount on the traveling state of the vehicle is suppressed, and the traveling state of the vehicle can be finely controlled by adjusting the first steering amount.
  • the command value calculation unit calculates each torque command value of each drive motor based on the intended running state when the drive abnormality is not detected by the abnormality detection unit, and the abnormality is calculated.
  • each of the drive motors excluding the abnormal motor is based on the torque command value corresponding to the drive motor excluding the abnormal motor, the abnormal torque, and the intended running state. Calculate the torque command value.
  • the turning trajectory of the vehicle can be brought closer to the turning trajectory intended by the user by controlling the torque of the drive motor.
  • the fifth means is a vehicle drive system.
  • a pair of left and right drive motors that drive the left and right wheels of the vehicle independently of each other,
  • a pair of left and right steering mechanisms that independently steer the left and right wheels of the vehicle,
  • a command value calculation unit that calculates each torque command value of each drive motor based on the intended running state of the vehicle intended by the user.
  • a drive control unit that drives each drive motor based on each torque command value calculated by the command value calculation unit.
  • An abnormality detection unit that detects a drive abnormality in which one of the pair of left and right drive motors can output an abnormal torque smaller than the corresponding torque command value calculated by the command value calculation unit.
  • each steering amount of each steering mechanism is calculated based on the torque command value calculated by the command value calculation unit and the intended running state.
  • the intended running state is turning, the driving abnormality is detected by the abnormality detecting unit, and the intended running state is turning to the same side as the abnormal motor which is a drive motor capable of outputting only the abnormal torque.
  • a steering amount calculation unit that sets each steering amount of each steering mechanism to 0, and a steering amount calculation unit.
  • a steering control unit that steers each steering mechanism based on each steering amount calculated by the steering amount calculation unit. To be equipped.
  • the intended traveling state is turning
  • the driving abnormality is detected by the abnormality detecting unit
  • the intended traveling state is higher than the corresponding torque command value.
  • the steering amount of each steering mechanism is set to 0. Therefore, each steering mechanism tries to make the vehicle go straight with each wheel facing the front of the vehicle.
  • one of the pair of left and right drive motors can output an abnormal torque smaller than the corresponding torque command value calculated by the command value calculation unit, the vehicle tries to turn to the same side as the abnormal motor. Therefore, it is possible to turn the vehicle in the turning direction intended by the user by utilizing the difference in torque output by the left and right drive motors while suppressing the influence of each steering mechanism on the running state of the vehicle.
  • the command value calculation unit determines each torque of each drive motor based on the intended running state when the drive abnormality is not detected by the abnormality detection unit.
  • the command value is calculated and the intended running state is turning, the driving abnormality is detected by the abnormality detecting unit, and the intended running state is turning to the same side as the abnormal motor, the above.
  • Each torque command value of the drive motor excluding the abnormal motor is calculated based on the torque command value corresponding to the drive motor excluding the abnormal motor, the abnormal torque, and the intended running state.
  • each steering amount of each steering mechanism is set to 0 to suppress the influence of each steering mechanism on the running state of the vehicle, and the turning trajectory of the vehicle is also controlled by controlling the torque of the drive motor. It is possible to approach the turning trajectory intended by the user.
  • the seventh means includes a track calculation unit that calculates a target trajectory on which the vehicle travels based on the intended traveling state, and the command value calculation unit has not detected the drive abnormality by the abnormality detection unit.
  • each torque command value of each drive motor is calculated so that the track on which the vehicle travels becomes the target track, the intended traveling state is turning, and the abnormality detection unit detects the drive abnormality.
  • the track on which the vehicle travels is determined based on the torque command value, the abnormal torque, and the target track corresponding to the drive motor excluding the abnormal motor.
  • the torque command values of the drive motors other than the abnormal motor are calculated so as to gradually approach the target trajectory from the outside of the target trajectory, and the steering amount calculation unit detects the drive abnormality by the abnormality detection unit. If not, the steering amount of each steering mechanism is calculated so that the track on which the vehicle travels becomes the target trajectory, the intended traveling state is turning, and the driving abnormality is caused by the abnormality detecting unit. When the vehicle is detected and the speed of the vehicle is higher than the first speed, the vehicle travels based on the torque command value, the abnormal torque, and the target trajectory corresponding to the drive motors other than the abnormal motor. Each steering amount of each steering mechanism is calculated so that the trajectory to be driven gradually approaches the target trajectory from the outside of the target trajectory.
  • the track calculation unit calculates the target track on which the vehicle travels based on the intended traveling state.
  • the command value calculation unit calculates each torque command value of each drive motor so as to set the track on which the vehicle travels to the target track.
  • the steering amount calculation unit calculates each steering amount of each steering mechanism in order to set the track on which the vehicle travels to the target track when the driving abnormality is not detected by the abnormality detecting unit. Therefore, when a drive abnormality is not detected, the track on which the vehicle travels can be set as the target track.
  • the track on which the vehicle travels deviates from the target track.
  • an excessive centrifugal force may act on the driver of the vehicle.
  • the command value calculation unit performs the abnormal motor when the intended traveling state is turning, the driving abnormality is detected by the abnormality detecting unit, and the speed of the vehicle is higher than the first speed. Based on the torque command value, the abnormal torque, and the target track corresponding to the drive motor excluding the above, the abnormal motor so as to gradually bring the track on which the vehicle travels closer to the target track from outside the target track. Calculate each torque command value of the drive motor excluding. Further, the steering amount calculation unit determines the abnormality when the intended traveling state is turning, the driving abnormality is detected by the abnormality detecting unit, and the speed of the vehicle is higher than the first speed.
  • each of the above so as to gradually bring the track on which the vehicle travels closer to the target track from outside the target track. Calculate each steering amount of the steering mechanism. Therefore, it is possible to suppress the action of an excessive centrifugal force on the driver of the vehicle, and it is possible to suppress the deterioration of the riding comfort.
  • the eighth means in the command value calculation unit, the intended traveling state is turning, the drive abnormality is detected by the abnormality detection unit, and the speed of the vehicle is higher than the first speed.
  • the vehicle travels based on the torque command value, the abnormal torque, and the target track corresponding to the drive motors other than the abnormal motor.
  • Each torque command value of the drive motor excluding the abnormal motor is calculated so that the track on which the vehicle travels approaches the target track while allowing the track to be outside and inside the target track, and the steering is steered.
  • the abnormality detecting unit detects the driving abnormality, and the speed of the vehicle is lower than the first speed and higher than the second speed, the amount calculation unit is used. Based on the torque command value, the abnormal torque, and the target track corresponding to the drive motor excluding the abnormal motor, the track on which the vehicle travels is allowed to be outside and inside the target track.
  • Each steering amount of each steering mechanism is calculated so that the track on which the vehicle travels approaches the target trajectory. Therefore, when it is difficult for an excessive centrifugal force to act on the driver of the vehicle, the track on which the vehicle travels can be quickly brought closer to the target track.
  • the ninth means in the steering amount calculation unit, the intended traveling state is turning, the driving abnormality is detected by the abnormality detecting unit, and the speed of the vehicle is higher than the second speed.
  • the speed is low, each of the rudders is steered so as to bring the track on which the vehicle travels closer to the target track based on the torque command value corresponding to the drive motor excluding the abnormal motor, the abnormal torque, and the target track.
  • Calculate each steering amount of the mechanism Therefore, when it is less necessary to control the speed of the vehicle, it is not necessary to calculate each torque command value of the drive motor excluding the abnormal motor based on the target trajectory, and the control load of the drive system can be reduced. ..
  • limit detection is performed to detect a limited state in which an abnormality related to one of the pair of left and right drive motors occurs and the torque output by the one drive motor is limited so as not to exceed the upper limit value.
  • the abnormality detection unit includes a unit, and the torque command value corresponding to the drive motor in which the restriction state is detected by the restriction detection unit and the torque is restricted so as not to exceed the upper limit value is the upper limit value.
  • the steering amount calculation unit detects the restriction state by the restriction detection unit, and the drive motor is restricted so that the torque does not exceed the upper limit value.
  • each steering amount of each steering mechanism is calculated based on each torque command value calculated by the command value calculation unit and the intended traveling state. ..
  • the limit detection unit is in a limited state in which an abnormality related to one of the pair of left and right drive motors occurs and the torque output by the one drive motor is limited so as not to exceed the upper limit value. Is detected.
  • the limited state when the torque command value is larger than the upper limit value, the output torque is limited so as not to exceed the upper limit value. Therefore, in the abnormality detection unit, the torque command value corresponding to the drive motor in which the restriction state is detected by the restriction detection unit and the torque is restricted so as not to exceed the upper limit value is higher than the upper limit value. If it is large, the drive abnormality is detected.
  • the steering amount calculation unit determines the torque command value, the abnormality torque, and the abnormality torque corresponding to the drive motors other than the abnormality motor, as described above. Based on the intended running state, the steering amount of one of the pair of left and right steering mechanisms is calculated as the first steering amount, and the steering amount of the other is calculated as an absolute value rather than the absolute value of the first steering amount. Calculated as a small second steering amount.
  • the torque of the torque command value should be output even if the drive motor is restricted so that the torque does not exceed the upper limit value. Can be done.
  • the torque command value corresponding to the drive motor in which the restriction state is detected by the restriction detection unit and the torque is restricted so as not to exceed the upper limit value is the upper limit.
  • each steering amount of each steering mechanism is calculated based on each torque command value calculated by the command value calculation unit and the intended traveling state. Therefore, the vehicle can be driven in the intended traveling state.
  • both the left and right pair of drive motors can output only a common predetermined torque smaller than each torque command value. In this case, since the torques output by the pair of left and right drive motors do not differ significantly, it is less necessary to calculate the steering amounts of the pair of left and right steering mechanisms as different steering amounts.
  • the abnormality detection unit can output only a common predetermined torque smaller than the corresponding torque command value calculated by the command value calculation unit for both the left and right drive motors.
  • the steering amount calculation unit detects both drive abnormalities by the abnormality detection unit, and when the abnormality detection unit detects both drive abnormalities, the steering amount of each steering mechanism is based on the predetermined torque and the intended running state. Is calculated. Therefore, it is possible to reduce the processing load for the steering amount calculation unit to calculate each steering amount.
  • FIG. 1 is a block diagram of a vehicle drive system.
  • FIG. 2 is a schematic view showing the operation of the steering mechanism in a front-wheel drive vehicle under normal conditions.
  • FIG. 3 is a schematic view showing the operation of the steering mechanism at the time of abnormality.
  • FIG. 4 is a flowchart showing a procedure for controlling the drive system in the event of an abnormality.
  • FIG. 5 is a table showing the torque upper limit value at the time of abnormality.
  • FIG. 6 is a graph showing the relationship between the amount of steering wheel operation, the vehicle speed, and the target turning radius.
  • FIG. 7 is a schematic view showing an example of changing the operation of the steering mechanism at the time of abnormality.
  • FIG. 8 is a schematic view showing another example of changing the operation of the steering mechanism at the time of abnormality.
  • FIG. 9 is a schematic diagram showing an example of changing the control of the drive system in the event of an abnormality.
  • FIG. 10 is a schematic diagram showing another example of changing the control of the drive system in the event of an abnormality.
  • FIG. 11 is a schematic view showing the operation of the steering mechanism at the time of abnormality in reverse movement.
  • FIG. 12 is a schematic view showing an example of changing the operation of the steering mechanism at the time of abnormality in reverse movement.
  • FIG. 13 is a schematic view showing another example of modification of the operation of the steering mechanism at the time of abnormality in reverse movement.
  • FIG. 14 is a schematic view showing the operation of the steering mechanism in a normal state in a rear-wheel drive vehicle.
  • FIG. 15 is a schematic view showing the operation of the steering mechanism at the time of abnormality.
  • FIG. 16 is a schematic view showing an example of changing the operation of the steering mechanism at the time of abnormality.
  • FIG. 17 is a schematic view showing another example of changing the operation of the steering mechanism at the time of abnormality.
  • FIG. 18 is a schematic view showing the operation of the steering mechanism at the time of abnormality in a four-wheel drive vehicle.
  • FIG. 19 is a schematic view showing an example of changing the operation of the steering mechanism at the time of abnormality.
  • FIG. 20 is a schematic view showing another example of modification of the operation of the steering mechanism at the time of abnormality.
  • FIG. 21 is a schematic view showing another example of changing the operation of the steering mechanism at the time of abnormality.
  • FIG. 22 is a schematic view showing another example of changing the operation of the steering mechanism at the time of abnormality.
  • FIG. 23 is a schematic view showing another example of modification of the operation of the steering mechanism at the time of abnormality.
  • the electric vehicle 10 has wheels 11 to 14, drive units 21 and 22, steering units 31, 32, drive control unit 41, torque determination unit 42, abnormality detection unit 43, and abnormality determination. It includes a steering unit 44, a steering control unit 45, a steering amount determination unit 46, a vehicle control unit 50, a steering wheel operation amount detection unit 51, an accelerator operation amount detection unit 52, a vehicle speed detection unit 53, and the like.
  • the left wheel 11 and the right wheel 12 on the front side are driving wheels for driving the electric vehicle 10.
  • the wheels 11 and 12 are driven by the drive units 21 and 22.
  • the wheels 11 and 12 also serve as steering wheels that change the traveling direction of the electric vehicle 10 by changing the steering angle by the steering units 31 and 32 based on the steering wheel operation.
  • the left and right wheels 13 and 14 on the rear side are driven wheels that are driven as the electric vehicle 10 travels.
  • the wheels 11 to 14 are braked by a braking mechanism (not shown).
  • Each drive unit 21 and 22 may have a function of a braking mechanism for braking each of the wheels 11 and 12.
  • Each drive unit 21 and 22 is equipped with a drive MG (Motor Generator), an INV (Inverter), a current sensor, a temperature sensor, a rotation angle sensor, and the like.
  • the drive MG (drive motor) is a three-phase AC motor generator (AC motor).
  • Each drive MG has a function of driving the wheels 11 and 12 based on the electric power supplied from each INV and a function of generating electricity based on the rotation of the wheels 11 and 12.
  • Each drive MG (each drive unit 21 and 22) drives the wheels 11 and 12 independently of each other.
  • Each INV converts the DC power supplied from the battery (not shown) into AC power and supplies it to each drive MG.
  • Each INV is, for example, a circuit in which six switching elements are connected by a three-phase bridge. Further, each INV converts the AC power supplied by the power generation of each drive MG into DC power and supplies the AC power to the battery.
  • the drive state of each INV (each drive unit 21 and 22) is controlled by the drive control unit 41.
  • three-phase alternating current is described as an example, but the number of phases is not limited to three, and may be six phases, nine phases, or the like.
  • the steering units 31 and 32 steer the wheels 11 and 12 independently of each other.
  • Each of the steering units 31 and 32 (steering mechanism) includes a steering MG, an INV, and the like.
  • Each steering MG (each steering motor) generates a steering force which is a force for changing the steering angles (directions) of the wheels 11 and 12.
  • Each steering MG is connected to a battery via each INV.
  • Each INV converts DC power from the battery into AC power and supplies power to each steering motor.
  • the drive state of each INV (each steering unit 31, 32) is controlled by the steering control unit 45.
  • the abnormality detection unit 43 detects an abnormality in each drive unit 21 or 22. Specifically, the current of each drive MG detected by each current sensor, the coil temperature of each drive MG detected by each temperature sensor (hereinafter referred to as “coil temperature”), and each detected by each rotation angle sensor. Based on the rotation angle of the drive MG, the abnormality of each current sensor, each temperature sensor, and each rotation angle sensor is detected. The abnormality detection unit 43 may detect an abnormality in each drive MG, each INV, etc. of each drive unit 21 and 22.
  • the abnormality determination unit 44 identifies (determines) an abnormality wheel, which is a wheel corresponding to the drive unit in which the abnormality has occurred, based on the abnormality detected by the abnormality detection unit 43. Then, the abnormality determination unit 44 (abnormality detection unit) can output only an abnormal torque different from the corresponding torque command value calculated by the vehicle control unit 50 by one of the drive MGs of the pair of left and right drive units 21 and 22. Is detected.
  • the drive MG capable of outputting only abnormal torque is referred to as an abnormal drive MG (abnormal motor).
  • the abnormality determination unit 44 prevents an abnormality related to one of the drive MGs of the pair of left and right drive units 21 and 22 from occurring, and the torque output by one drive MG does not exceed the upper limit value. Detects restricted states that are restricted to.
  • the abnormality determination unit 44 detects a drive abnormality when the limited state is detected and the torque command value corresponding to the abnormal drive MG whose torque is restricted so as not to exceed the upper limit value is larger than the upper limit value. Further, the abnormality determination unit 44 determines a communication abnormality between the vehicle control unit 50 and the torque determination unit 42.
  • the abnormality determination unit 44 transmits the abnormality determination result to the vehicle control unit 50.
  • the abnormality detection unit 43 and the abnormality determination unit 44 constitute an abnormality detection unit.
  • the vehicle control unit 50 (upper control unit) controls the entire electric vehicle 10.
  • the vehicle control unit 50 is a microcomputer provided with, for example, a CPU, RAM, ROM, an input / output interface, and the like. Detection values of the steering wheel operation amount detection unit 51, the accelerator operation amount detection unit 52, the vehicle speed detection unit 53, and the like are input to the vehicle control unit 50.
  • the steering wheel operation amount detection unit 51 detects the steering angle (operation amount) of the steering wheel (steering unit).
  • the accelerator operation amount detection unit 52 detects the amount of depression (operation amount) of the accelerator pedal (accelerator operation unit).
  • the vehicle speed detection unit 53 detects the speed (vehicle speed) of the electric vehicle 10.
  • the vehicle control unit 50 executes various controls of the electric vehicle 10 based on the detected values of the detection units 51 to 53 and the like.
  • the vehicle control unit 50 (command value calculation unit) has a torque command value (basic torque value) of each drive unit 21 and 22 and a torque command value (basic torque value) of each drive unit 21 and 22 based on the detection values of the detection units 51 to 53 and the determination result of the abnormality determination unit 44.
  • the torque distribution, the steering amount command value (basic steering amount) and the steering amount distribution of each of the steering units 31 and 32 are calculated. That is, each torque command value of each drive MG of each drive unit 21 and 22 is calculated based on the intentional running state which is the running state of the electric vehicle 10 intended by the driver (user).
  • the torque distribution of the drive units 21 and 22 is equalized, and when the electric vehicle 10 turns to the left, the torque distribution of the drive unit 22 is made larger than the torque distribution of the drive unit 21.
  • the steering amount distribution of the steering units 31 and 32 is equalized, and when one of the drive units 21 and 22 is abnormal, the steering unit is described later. The steering amount distribution of 31 and 32 is changed from equal.
  • the torque determination unit 42 is, for example, a microcomputer provided with a CPU, RAM, ROM, an input / output interface, and the like.
  • the torque determination unit 42 determines the final torque command value based on the torque command value, the torque distribution, and the upper limit value.
  • the torque determination unit 42 has an upper limit value of the torque that can be generated by each drive MG of each drive unit 21 and 22 based on the coil temperature detected by each temperature sensor of each drive unit 21 and 22 (hereinafter, Limit the "torque upper limit"). Specifically, when the coil temperature is less than T1, the torque determination unit 42 sets the torque upper limit value to the upper limit value Tr1. When the coil temperature is T1 or higher (when the abnormality determination unit 44 detects the drive abnormality), the torque determination unit 42 reduces the torque upper limit value as the coil temperature increases. Then, when the coil temperature exceeds T2 (> T1) (when the abnormality determination unit 44 detects the drive abnormality), the torque determination unit 42 sets the torque upper limit value to 0. The torque determination unit 42 limits the torque command value to the torque upper limit value or less (upper limit guard), determines the final torque command value, and transmits the determined final torque command value to the drive control unit 41. The torque value here is assumed to be an absolute value.
  • Predetermined abnormalities include, for example, disconnection of wiring related to the current sensor, short circuit of the current sensor, gain abnormality of the current sensor, and the like. Therefore, when the torque determination unit 42 detects a predetermined abnormality of the current sensor (when the abnormality determination unit 44 detects the drive abnormality), the torque determination unit 42 torques in a predetermined period prior to the detection of the predetermined abnormality.
  • the final torque command value is determined by reducing the command value by a predetermined degree.
  • the final torque command value is, for example, a value obtained by halving the torque command value. It should be noted that a value obtained by reducing the torque command value to 1/3 or a value obtained by subtracting a predetermined value from the torque command value can also be adopted.
  • the torque command unit 42 gives a torque command in a predetermined period before the abnormality is detected.
  • the final torque command value is determined by reducing the value by a predetermined degree.
  • the final torque command value is, for example, a value obtained by halving the torque command value.
  • the torque command value can also be set to 0.
  • the drive control unit 41 controls the drive and power generation of each drive MG of each drive unit 21 and 22 by controlling the drive state of each INV of each drive unit 21 and 22 based on the final torque command value.
  • each drive control unit 41 is based on the current of each phase of each drive MG detected by each current sensor and the rotation angle of each drive MG detected by each rotation angle sensor.
  • the drive state of each INV is controlled so that the torque generated by the drive MG becomes the final torque command value. That is, each drive MG of each drive unit 21 and 22 is driven based on each torque command value calculated by the vehicle control unit 50 and each final torque command value determined by the torque determination unit 42.
  • the steering amount determination unit 46 is, for example, a microcomputer provided with a CPU, RAM, ROM, an input / output interface, and the like.
  • the steering amount determination unit 46 determines (calculates) the final steering amount command value based on the steering amount command value and the steering amount distribution. That is, when the driving abnormality is not detected by the abnormality determination unit 44, the steering amount determining unit 46 determines each steering unit 31 based on each torque command value calculated by the vehicle control unit 50 and the intended traveling state. , 32 each final steering amount command value (each steering amount) is determined. Specifically, as shown in FIG. 2, the steering amount determining unit 46 sets the final steering amount command values of the steering units 31 and 32, that is, the steering amounts of the wheels 11 and 12, to 0 when traveling straight ahead, for example. decide.
  • the steering amount determining unit 46 determines, for example, the final steering amount command values of the steering units 31 and 32 to a common positive value when turning forward and left.
  • the steering amount determining unit 46 determines, for example, the final steering amount command values of the steering units 31 and 32 to a common negative value when turning forward and to the right.
  • the thin arrows indicate the torque acting on each wheel, the driving wheels are shown in black, and the driven wheels are shown in white (the same applies hereinafter).
  • the steering amount determination unit 46 and the vehicle control unit 50 constitute a steering amount calculation unit.
  • the drive MG abnormal drive MG
  • the electric vehicle 10 tries to turn to the same side as the abnormal drive MG.
  • the abnormal drive MG is a drive MG corresponding to the wheel 12 on the right side
  • the electric vehicle 10 tries to turn to the same right side as the abnormal drive MG.
  • the steering amount determining unit 46 determines the torque command value corresponding to the driving MG excluding the abnormal driving MG, the abnormal torque, and the above-mentioned abnormal torque. And, based on the intended running state, one of the pair of left and right steering units 31 and 32 is calculated as the first steering amount, and the other steering amount is larger than the absolute value of the first steering amount. It is calculated as the second steering amount with a small absolute value.
  • the length of the thin arrow indicates the magnitude of the torque acting on each wheel, and the abnormal wheel is shaded (the same applies hereinafter).
  • the abnormality determination unit 44 detects a drive abnormality, and the abnormality torque is smaller than the torque command value corresponding to the abnormality drive MG, the steering amount determination unit 46 has a steering amount determination unit 46. Based on the torque command value, abnormal torque, and intended driving state corresponding to the drive MG excluding the abnormal drive MG, the first steering amount, which is the steering amount of the steering unit on the same side as the abnormal drive MG, is abnormally driven. Set the steering amount so that the wheels are directed to the opposite side of the MG.
  • the abnormal drive MG is a drive MG corresponding to the right wheel 12
  • the first steering amount which is the same steering amount of the right steering unit 32 as the abnormal drive MG
  • the steering amount is opposite to that of the abnormal drive MG.
  • Set the steering amount to positive so that the wheel 12 is directed to the left side.
  • the electric vehicle 10 that is about to turn to the same side as the abnormal drive MG is brought closer to straight ahead. That is, the traveling state of the electric vehicle 10 is brought closer to the intended traveling state.
  • the abnormally driven MG and the left and right opposite sides are opposite to each other with respect to the traveling direction. For example, when the driving MG is straight ahead and the right driving MG is the abnormal driving MG, the front portion of the wheel 12 is turned to the left.
  • the steering amount determining unit 46 sets the second steering amount, which is the steering amount of the steering unit 31 on the opposite side to the abnormal drive MG, to 0. That is, the steering unit 31 on the opposite side to the abnormal drive MG is controlled in the same manner as when no drive abnormality is detected.
  • one of the left and right drive MGs (abnormal drive MG) has an abnormal torque smaller than the torque command value. If only the output is possible, the electric vehicle 10 deviates from the turning trajectory (traveling direction) of the electric vehicle 10 intended by the driver.
  • the steering amount determination unit 46 the intended traveling state is turning, the drive abnormality is detected by the abnormality determination unit 44, and the abnormal torque is the torque command value corresponding to the abnormal drive MG.
  • the steering amount of the steering unit on the left and right opposite sides of the abnormal drive MG based on the torque command value, the abnormal torque, and the intended running state corresponding to the drive MG excluding the abnormal drive MG.
  • the first steering amount which is the steering amount of the left steering unit 31 opposite to the abnormal drive MG
  • the first steering amount is set.
  • the amount of steering is set.
  • the steering amount determining unit 46 sets the second steering amount, which is the steering amount of the steering unit 32 on the same side as the abnormal drive MG, to 0 (the absolute value is smaller than the absolute value of the first steering amount). The amount of steering). As a result, the traveling state of the electric vehicle 10 is finely controlled by adjusting the first steering amount while suppressing the influence of the second steering amount on the traveling state of the electric vehicle 10.
  • the abnormal drive MG is the torque of the torque command value. Can be output. Therefore, in the steering amount determination unit 46, the torque command value corresponding to the abnormal drive MG in which the restricted state is detected by the abnormality determination unit 44 and the torque is restricted so as not to exceed the upper limit value is smaller than the upper limit value. In this case, the final steering amount command values of the steering units 31 and 32 are calculated based on the torque command values calculated by the vehicle control unit 50 and the intended traveling state. As a result, the electric vehicle 10 is driven in the intended traveling state.
  • the steering control unit 45 controls the driving state of each INV of each steering unit 31 and 32 so that the steering amount of each steering unit 31 and 32 becomes each final steering amount command value. That is, the steering control unit 45 steers the steering units 31 and 32 based on the final steering amount command value determined (calculated) by the steering amount determining unit 46.
  • FIG. 4 is a flowchart showing a procedure for controlling the drive system in the event of an abnormality.
  • the abnormality detection unit 43 determines whether or not an abnormality in each drive unit 21 or 22, specifically, an abnormality in each current sensor, each temperature sensor, and each rotation angle sensor of each drive unit 21, 22 is detected ( S10). In this determination, if it is determined that an abnormality in each of the drive units 21 and 22 has not been detected (S10: NO), the determination in S10 is executed again.
  • the abnormality determination unit 44 identifies the abnormality wheel (S11).
  • the torque determination unit 42 sets the upper limit value of the torque of the abnormal drive MG corresponding to the abnormal wheel (S12). As shown in FIG. 5, when an abnormality occurs in the current sensor, the upper limit value of the torque is set to 1/2 of the torque command value, and when an abnormality occurs in the rotation angle sensor, the upper limit value of the torque is set to the torque command value. If a communication error occurs, set the upper limit of torque to the immediately preceding torque command value.
  • the steering wheel operation amount detection unit 51 detects the steering angle (operation amount) of the steering wheel (S13).
  • the accelerator operation amount detection unit 52 detects the depression amount (operation amount) of the accelerator pedal (accelerator operation unit) (S14).
  • the vehicle speed detection unit 53 detects the speed (vehicle speed) of the electric vehicle 10 (S15).
  • the vehicle control unit 50 calculates the target track of the electric vehicle 10 (S16). Specifically, as shown in FIG. 6, the target turning radius (target trajectory) is calculated based on the graph showing the relationship between the detected steering wheel operation amount, the detected vehicle speed, and the target turning radius.
  • the graph of FIG. 6 can be set in advance according to the specifications of the electric vehicle 10.
  • the vehicle control unit 50 calculates each torque command value of each drive MG based on the calculated target trajectory and the detected accelerator operation amount (S17).
  • the steering amount determination unit 46 calculates each steering amount command value of each steering unit 31 and 32 based on the calculated target trajectory (S18). Specifically, the steering amount command values of the steering units 31 and 32 are calculated so that the trajectory of the electric vehicle 10 becomes the target trajectory.
  • the torque determination unit 42 determines whether or not the torque command value of any of the drive MGs is larger than the upper limit value (S19). In this determination, when it is determined that the torque command values of all the drive MGs are not larger than the upper limit value (S19: NO), the torque determination unit 42 sets each torque command value as each final torque command value (S20). The steering amount determining unit 46 sets each steering amount command value as each final steering amount command value (S21). After that, the process of S13 is executed again.
  • the drive control unit 41 controls each drive unit 21 and 22 based on each final torque command value, and the steering control unit 45 controls each steering unit 31 and 32 based on each final steering amount command value. do.
  • the torque determination unit 42 sets the upper limit value as the final torque command value (S22). That is, the value obtained by limiting the torque command value by the upper limit value is set as the final torque command value (upper limit guard).
  • the steering amount determining unit 46 sets the first steering amount and the second steering amount as the final steering amount command values (S23).
  • the drive control unit 41 controls each drive unit 21 and 22 based on each final torque command value
  • the steering control unit 45 controls each steering unit 31 and 32 based on each final steering amount command value. do.
  • the vehicle control unit 50 determines whether or not the vehicle speed is 0 (S24). In this determination, if it is determined that the vehicle speed is not 0 (S24: NO), the process of S13 is executed again. On the other hand, in this determination, when it is determined that the vehicle speed is 0 (S24: YES), this series of processes is terminated (END).
  • the abnormality determination unit 44 detects a drive abnormality in which one of the pair of left and right drive MGs can output only an abnormal torque different from the corresponding torque command value calculated by the vehicle control unit 50.
  • the steering amount determination unit 46 of the steering units 31 and 32 based on each torque command value calculated by the vehicle control unit 50 and the intended traveling state. Calculate each steering amount.
  • the steering control unit 45 steers the steering units 31 and 32 based on the steering amount calculated by the steering amount determining unit 46. Therefore, the steering units 31 and 32 can be steered so that the traveling state of the electric vehicle 10 becomes the intended traveling state.
  • the steering amount determination unit 46 has a torque command value, an abnormal torque, and a torque command value corresponding to a drive MG excluding the abnormal drive MG, which is a drive MG that can output only an abnormal torque when a drive abnormality is detected by the abnormality determination unit 44.
  • a drive MG excluding the abnormal drive MG
  • the other steering amount is an absolute value rather than the absolute value of the first steering amount. Is calculated as the second steering amount with a small value.
  • the steering control unit 45 steers the steering units 31 and 32 based on the steering amounts (first steering amount and second steering amount) calculated by the steering amount determination unit 46. Let me.
  • the electric vehicle 10 is intended based on the torque command value, the abnormal torque, and the intended running state corresponding to the drive MG excluding the abnormal drive MG.
  • the steering units 31 and 32 can be steered so as to approach the traveling state.
  • the absolute value of the second steering amount is smaller than the absolute value of the first steering amount. Therefore, the influence of the second steering amount on the traveling state of the electric vehicle 10 is suppressed, and the traveling state of the electric vehicle 10 can be easily controlled by adjusting the first steering amount. Therefore, even if an abnormality occurs in the drive MG of one of the left and right wheels 11 and 12 (driving wheels), it is possible to easily drive the electric vehicle 10 in the traveling state intended by the user. ..
  • the steering amount determination unit 46 drives abnormally when the intended traveling state is straight, a drive abnormality is detected by the abnormality determination unit 44, and the abnormal torque is smaller than the torque command value corresponding to the abnormal drive MG. Based on the torque command value, abnormal torque, and intended running state corresponding to the drive MG excluding the MG, as shown in the forward straight direction in FIG. 3, the steering amount of the steering unit 32 on the same side as the abnormal drive MG is used. A certain first steering amount is set to a steering amount in which the wheels 12 are directed to the left and right opposite sides of the abnormal drive MG. Therefore, the electric vehicle 10 that intends to turn to the same side as the abnormal drive MG can be brought closer to straight ahead.
  • the steering amount determining unit 46 sets the second steering amount, which is the steering amount of the steering unit 31 on the opposite side to the abnormal drive MG, to 0. Therefore, the steering unit 31 on the opposite side of the abnormal drive MG can be controlled in the same manner as when no drive abnormality is detected, and the influence of the second steering amount on the running state of the electric vehicle 10. By adjusting the first steering amount, it becomes easier to finely control the traveling state of the electric vehicle 10.
  • the steering amount determination unit 46 is in the intentional running state of turning, the abnormality determination unit 44 detects a drive abnormality, and the abnormality torque is abnormal.
  • the steering unit on the left and right opposite sides of the abnormal drive MG is based on the torque command value corresponding to the drive MG excluding the abnormal drive MG, the abnormal torque, and the intended running state.
  • the first steering amount, which is the steering amount of 31, is set to the steering amount corresponding to the turning. Therefore, the electric vehicle 10 that is about to deviate from the turning trajectory of the electric vehicle 10 intended by the user can be brought closer to the turning trajectory of the electric vehicle 10 intended by the user.
  • the steering amount determining unit 46 sets the second steering amount, which is the steering amount of the steering unit 32 on the same side as the abnormal drive MG, to 0. Therefore, the influence of the second steering amount on the traveling state of the electric vehicle 10 is suppressed, and the traveling state of the electric vehicle 10 can be easily controlled by adjusting the first steering amount.
  • the abnormality determination unit 44 detects a restricted state in which an abnormality related to one of the pair of left and right drive MGs occurs and the torque output by one of the drive MGs is restricted so as not to exceed the upper limit value.
  • the limited state when the torque command value is larger than the upper limit value, the output torque is limited so as not to exceed the upper limit value. Therefore, the abnormality determination unit 44 is driven when the restriction state is detected by the abnormality determination unit 44 and the torque command value corresponding to the drive MG whose torque is restricted so as not to exceed the upper limit value is larger than the upper limit value. Detect anomalies.
  • the steering amount determination unit 46 determines the torque command value, the abnormal torque, and the intended running state corresponding to the drive MG excluding the abnormal drive MG, as described above.
  • the steering amount of one of the pair of left and right steering units 31 and 32 is calculated as the first steering amount, and the steering amount of the other is smaller than the absolute value of the first steering amount. 2 Calculated as the amount of steering. Therefore, the traveling state of the electric vehicle 10 can be brought closer to the intended traveling state.
  • the torque command value if the torque command value is smaller than the upper limit value, the torque of the torque command value can be output even if the drive MG is restricted so that the torque does not exceed the upper limit value. can.
  • the torque command value corresponding to the drive MG whose restricted state is detected by the abnormality determination unit 44 and whose torque is restricted so as not to exceed the upper limit value is smaller than the upper limit value.
  • each steering amount of each steering unit 31 and 32 is calculated based on each torque command value calculated by the vehicle control unit 50 and the intended traveling state. Therefore, the electric vehicle 10 can be driven in the intended traveling state.
  • the steering amount determination unit 46 As shown in the forward straight direction of FIG. 7, in the steering amount determination unit 46, the intended traveling state is straight, the drive abnormality is detected by the abnormality determination unit 44, and the abnormal torque corresponds to the abnormal drive MG.
  • the steering amount of the steering unit 31 on the opposite side to the abnormal drive MG is based on the torque command value, the abnormal torque, and the intended running state corresponding to the drive MG excluding the abnormal drive MG.
  • a certain first steering amount may be a steering amount that directs the wheels 11 to the left and right opposite sides of the abnormal drive MG. As a result, the electric vehicle 10 that intends to turn to the same side as the abnormal drive MG can be brought closer to straight ahead.
  • the steering amount determining unit 46 sets the second steering amount, which is the steering amount of the steering unit 32 on the same side as the abnormal drive MG, to 0 (the absolute value is smaller than the absolute value of the first steering amount).
  • the amount of steering As a result, the steering unit 32 on the same side as the abnormal drive MG can be controlled in the same manner as when no drive abnormality is detected, and the influence of the second steering amount on the running state of the electric vehicle 10.
  • By adjusting the first steering amount it becomes easier to finely control the traveling state of the electric vehicle 10.
  • the steering amount determination unit 46 is in the intentional running state of turning, the abnormality determination unit 44 detects a drive abnormality, and the abnormality torque is abnormal.
  • the first steering amount which is the steering amount of 32, may be the steering amount corresponding to the turning.
  • the steering amount determining unit 46 outputs only an abnormal torque in the intended traveling state when the intended traveling state is turning, a drive abnormality is detected by the abnormality determination unit 44, and the intended traveling state is an abnormal torque.
  • the steering amount of each of the steering units 31 and 32 may be set to 0. According to such a configuration, the steering units 31 and 32 try to drive the electric vehicle 10 straight with the wheels 11 and 12 facing the front of the electric vehicle 10.
  • the electric vehicle 10 since one of the pair of left and right drive MGs can output only an abnormal torque smaller than the corresponding torque command value calculated by the vehicle control unit 50, the electric vehicle 10 is on the same side as the abnormal drive MG (right side in FIG. 8). ) Try to turn. Therefore, while suppressing the influence of each of the steering units 31 and 32 on the running state of the electric vehicle 10, the electric vehicle 10 uses the difference in torque output by the left and right drive MGs in the direction of turning intended by the user. Can be swiveled.
  • the vehicle control unit 50 is abnormally driven when the intended driving state is turning, the abnormality determining unit 44 detects a driving abnormality, and the intended driving state is turning to the same side as the abnormal driving MG. Even if each torque command value of the drive MG excluding the abnormal drive MG (the drive MG of the wheel 11 in FIG. 8) is calculated based on the torque command value corresponding to the drive MG excluding the MG, the abnormal torque, and the intended running state. good. Specifically, the torque command value of the drive MG of the wheel 11 is calculated so that the turning trajectory of the electric vehicle 10 approaches the turning trajectory intended by the user.
  • the torque of the drive MG is controlled while the steering amount of the steering units 31 and 32 is set to 0 to suppress the influence of the steering units 31 and 32 on the running state of the electric vehicle 10. Also, the turning trajectory of the electric vehicle 10 can be brought closer to the turning trajectory intended by the user.
  • the vehicle control unit 50 is in the case where the intended traveling state is turning, the abnormality determination unit 44 detects a drive abnormality, and the speed of the electric vehicle 10 is higher than the first speed. Based on the torque command value, abnormal torque, and target trajectory corresponding to the drive MG excluding the abnormal drive MG, the abnormal drive MG so that the track on which the electric vehicle 10 travels gradually approaches the target track from the outside of the target track. Each torque command value of the drive MG excluding the above may be calculated. Further, when the intentional running state is turning, the abnormality determination unit 44 detects a drive abnormality, and the speed of the electric vehicle 10 is higher than the first speed, the steering amount determination unit 46 performs the abnormal drive MG.
  • the steering units 31 and 32 of the steering units 31 and 32 so as to gradually bring the track on which the electric vehicle 10 travels closer to the target track from the outside of the target track.
  • Each steering amount may be calculated.
  • the track on which the electric vehicle 10 travels deviates from the target track.
  • the speed of the electric vehicle 10 is lower than the first speed and higher than the second speed (for example, 10 [km / h]) lower than the first speed, the track of the electric vehicle 10 is gradually brought closer to the target track. Even without it, it is difficult for an excessive centrifugal force to act on the driver of the electric vehicle 10.
  • the intended traveling state is turning
  • the drive abnormality is detected by the abnormality determination unit 44
  • the speed of the electric vehicle 10 is lower than the first speed and the first speed.
  • the speed is higher than the second speed, which is lower than the first speed
  • the track on which the electric vehicle 10 travels is outside the target track based on the torque command value, the abnormal torque, and the target track corresponding to the drive MG excluding the abnormal drive MG.
  • each torque command value of the drive MG excluding the abnormal drive MG may be calculated so as to bring the track on which the electric vehicle 10 travels closer to the target track while allowing the electric vehicle 10 to be inside.
  • the steering amount determining unit 46 the intended traveling state is turning, the driving abnormality is detected by the abnormality determining unit 44, and the speed of the electric vehicle 10 is lower than the first speed and higher than the second speed.
  • the electric vehicle 10 based on the torque command value, the abnormal torque, and the target trajectory corresponding to the drive MG excluding the abnormal drive MG, the electric vehicle 10 allows the track on which the electric vehicle 10 travels to be outside and inside the target track.
  • the steering amount of each of the steering units 31 and 32 may be calculated so that the track on which the vehicle 10 travels approaches the target track. As a result, when it is difficult for an excessive centrifugal force to act on the driver of the electric vehicle 10, the track on which the electric vehicle 10 travels can be quickly brought closer to the target track.
  • the same control as when the speed of the electric vehicle 10 described above is higher than the first speed can be executed. Further, when the speed of the electric vehicle 10 is higher than the first speed, the same control as when the speed of the electric vehicle 10 is lower than the first speed and higher than the second speed can be executed.
  • the abnormality determination unit 44 detects a drive abnormality, and the speed of the electric vehicle 10 is lower than the second speed, the steering amount determination unit 46 performs the abnormal drive MG.
  • the steering amounts of the steering units 31 and 32 are calculated so as to bring the trajectory on which the electric vehicle 10 travels closer to the target trajectory. May be good.
  • the speed of the electric vehicle 10 is lower than the second speed, the same control as when the speed of the electric vehicle 10 described above is lower than the first speed and higher than the second speed can be executed.
  • both the pair of left and right drive MGs can output only a common predetermined torque that is smaller than each torque command value.
  • the torques output by the pair of left and right drive MGs do not differ significantly, it is less necessary to calculate the steering amounts of the pair of left and right steering units 31 and 32 as different steering amounts.
  • the abnormality determination unit 44 detects both drive abnormalities in which both the left and right pair of drive MGs can output a common predetermined torque smaller than the corresponding torque command value calculated by the vehicle control unit 50, and the steering amount.
  • the determination unit 46 may calculate the steering amount of each of the steering units 31 and 32 based on the predetermined torque and the intended traveling state. As a result, the processing load on which the steering amount determining unit 46 calculates each steering amount can be reduced.
  • the same control as in the above embodiment may be executed.
  • the steering amount determination unit 46 the intended traveling state is straight backward, the drive abnormality is detected by the abnormality determination unit 44, and the abnormal torque is smaller than the torque command value corresponding to the abnormal drive MG.
  • the steering unit 32 on the same side as the abnormal drive MG on the left and right sides.
  • the first steering amount which is the steering amount of, is set to the steering amount at which the wheels 12 are directed to the left and right opposite sides of the abnormal drive MG.
  • the abnormal drive MG and the left-right opposite side are the left-right opposite sides with respect to the traveling direction.
  • the steering amount determining unit 46 sets the second steering amount, which is the steering amount of the steering unit 31 on the left and right opposite sides of the abnormal drive MG, to 0 (first steering), as shown in the rear straight direction of FIG.
  • the steering unit 31 on the opposite side of the abnormal drive MG can be controlled in the same manner as when no drive abnormality is detected, and the influence of the second steering amount on the running state of the electric vehicle 10.
  • By adjusting the first steering amount it becomes easier to finely control the traveling state of the electric vehicle 10.
  • the intended traveling state is the rear turn
  • the abnormality determination unit 44 detects a drive abnormality
  • the abnormality torque is abnormal.
  • the steering unit on the left and right opposite sides of the abnormal drive MG is based on the torque command value corresponding to the drive MG excluding the abnormal drive MG, the abnormal torque, and the intended running state.
  • the first steering amount which is the steering amount of 31, is set to the steering amount corresponding to the turning.
  • the steering amount determining unit 46 sets the second steering amount, which is the steering amount of the steering unit 32 on the same side as the abnormal drive MG, to 0 (the absolute value is smaller than the absolute value of the first steering amount). The amount of steering). Therefore, the influence of the second steering amount on the traveling state of the electric vehicle 10 is suppressed, and the traveling state of the electric vehicle 10 can be easily controlled by adjusting the first steering amount.
  • the steering amount determination unit 46 is in the intended running state of the rear straight movement, a drive abnormality is detected by the abnormality determination unit 44, and the abnormal torque corresponds to the abnormal drive MG.
  • the steering amount of the steering unit 31 on the opposite side to the abnormal drive MG is based on the torque command value, the abnormal torque, and the intended running state corresponding to the drive MG excluding the abnormal drive MG.
  • a certain first steering amount may be a steering amount in which the wheels 11 are directed to the same side as the abnormal drive MG on the left and right. As a result, the electric vehicle 10 that intends to turn backward to the same side as the abnormal drive MG can be brought closer to the backward straight direction.
  • the steering amount determining unit 46 sets the second steering amount, which is the steering amount of the steering unit 32 on the same side as the abnormal drive MG, to 0 (the absolute value is smaller than the absolute value of the first steering amount).
  • the amount of steering As a result, the steering unit 32 on the same side as the abnormal drive MG can be controlled in the same manner as when no drive abnormality is detected, and the influence of the second steering amount on the running state of the electric vehicle 10.
  • By adjusting the first steering amount it becomes easier to finely control the traveling state of the electric vehicle 10.
  • the steering amount determination unit 46 has an intentional running state of rear turn, an abnormality determination unit 44 detects a drive abnormality, and an abnormality torque is abnormal.
  • an abnormality determination unit 44 detects a drive abnormality, and an abnormality torque is abnormal.
  • the steering unit on the same side as the abnormal drive MG on the left and right sides based on the torque command value corresponding to the drive MG excluding the abnormal drive MG, the abnormal torque, and the intended running state.
  • the first steering amount which is the steering amount of 32, may be set to the steering amount corresponding to the rear turning.
  • the intended traveling state is the rear turning
  • the abnormality determination unit 44 detects a drive abnormality
  • the intended traveling state is only abnormal torque.
  • the steering amount of each of the steering units 31 and 32 may be set to 0. According to such a configuration, the steering units 31 and 32 try to direct the wheels 11 and 12 to the rear front of the electric vehicle 10 and to drive the electric vehicle 10 backward and straight.
  • one of the pair of left and right drive MGs can output only an abnormal torque smaller than the corresponding torque command value calculated by the vehicle control unit 50, the electric vehicle 10 is on the same side as the abnormal drive MG on the left and right sides (right side in FIG. 13). ) To turn backwards. Therefore, while suppressing the influence of the steering units 31 and 32 on the running state of the electric vehicle 10, the difference in torque output by the left and right drive MGs is used to drive the electric vehicle in the direction of the rear turn intended by the user. 10 can be turned.
  • FIGS. 14 to 17 it can be embodied in the drive system of the electric vehicle 10 in which the wheels 11 and 12 are the steering wheels and the driven wheels and the wheels 13 and 14 are the driving wheels.
  • FIG. 14 shows the operation of the steering mechanism in a normal state in a rear-wheel drive vehicle.
  • FIG. 15 shows the operation of the steering mechanism at the time of abnormality.
  • the wheels 11 and 12 on the front side are subjected to the same steering control as in the embodiment shown in FIG. That is, the drive wheels may be the front wheels or the rear wheels of the electric vehicle 10. Further, with respect to the wheels 13 and 14 on the rear side, the torque of the abnormal drive MG of the wheels 14 is limited by an upper limit value. Even with such a configuration, it is possible to obtain an action and effect according to the embodiment shown in FIG.
  • steering control is performed on the front wheels 11 and 12 in the same manner as in the embodiment shown in FIG. Even with such a configuration, it is possible to exert an action effect according to the embodiment shown in FIG.
  • steering control is performed on the front wheels 11 and 12 in the same manner as in the embodiment shown in FIG. Even with such a configuration, it is possible to exert an action effect according to the embodiment shown in FIG.
  • the wheels 11 and 12 are the driving wheels and the steering wheels
  • the wheels 13 and 14 are the driving wheels and the steering wheels, which can be embodied in the drive system of the electric vehicle 10.
  • an example in which the wheels 12 and 13 become abnormal wheels is shown.
  • FIG. 18 shows the operation of the steering mechanism at the time of abnormality.
  • the wheels 11 and 12 on the front side are subjected to the same steering control as in the embodiment shown in FIG. That is, the drive wheels may be the front wheels and the rear wheels of the electric vehicle 10. Further, the rear wheels 13 and 14 are controlled to bring the traveling state of the electric vehicle 10 closer to the intended traveling state by combining the steering control with respect to the front wheels 11 and 12.
  • steering control is performed on the front wheels 11 and 12 in the same manner as in the embodiment shown in FIG. Even with such a configuration, it is possible to exert an action effect according to the embodiment shown in FIG. Further, by combining the steering control with respect to the rear wheels 13 and 14, the rear wheels 13 and 14, and the steering control with respect to the front wheels 11 and 12, the traveling state of the electric vehicle 10 is changed to the intended traveling state. You are performing close control.
  • steering control is performed on the front wheels 11 and 12 in the same manner as in the embodiment shown in FIG. Even with such a configuration, it is possible to exert an action effect according to the embodiment shown in FIG. Further, by combining the steering control with respect to the rear wheels 13 and 14, the rear wheels 13 and 14, and the steering control with respect to the front wheels 11 and 12, the traveling state of the electric vehicle 10 is changed to the intended traveling state. You are performing close control.
  • FIGS. 21 to 23 it can be embodied in the drive system of the electric vehicle 10 in which the wheels 11 and 12 are the driving wheels and the steering wheels, and the wheels 13 and 14 are the driving wheels and the steering wheels.
  • the wheels 12 and 14 become abnormal wheels.
  • FIG. 21 shows the operation of the steering mechanism at the time of abnormality.
  • the wheels 11 and 12 on the front side are subjected to the same steering control as in the embodiment shown in FIG. That is, the drive wheels may be the front wheels and the rear wheels of the electric vehicle 10. Further, the rear wheels 13 and 14 are controlled to bring the traveling state of the electric vehicle 10 closer to the intended traveling state by combining the steering control with respect to the front wheels 11 and 12.
  • steering control is performed on the front wheels 11 and 12 in the same manner as in the embodiment shown in FIG. Even with such a configuration, it is possible to exert an action effect according to the embodiment shown in FIG. Further, by combining the steering control with respect to the rear wheels 13 and 14, the rear wheels 13 and 14, and the steering control with respect to the front wheels 11 and 12, the traveling state of the electric vehicle 10 is changed to the intended traveling state. You are performing close control.
  • each torque command value of the drive MG excluding the abnormal drive MG may be calculated based on the torque command value, the abnormal torque, and the intended running state corresponding to the drive MG excluding the abnormal drive MG. That is, in consideration of the torque generated by the drive MG excluding the abnormal drive MG and the abnormal torque generated by the abnormal drive MG, each torque of the drive MG excluding the abnormal drive MG so as to drive the electric vehicle 10 in the intended running state. Calculate the command value. According to such a configuration, the turning trajectory of the vehicle can be brought closer to the turning trajectory intended by the user by controlling the torque of the drive MG.
  • the vehicle control unit 50 may have the function of the abnormality determination unit 44.
  • the vehicle control unit 50 may have the function of the torque determination unit 42.
  • the vehicle control unit 50 may have the function of the steering amount determining unit 46.
  • the torque determination unit 42 may have a function of the vehicle control unit 50 to calculate the torque command value.
  • the steering amount determining unit 46 may have a function of the vehicle control unit 50 calculating the steering amount command value.
  • the drive MG may output only an abnormal torque larger than the torque command value.
  • the abnormality determination unit 44 outputs only an abnormal torque (torque larger than the torque command value) different from the corresponding torque command value calculated by the vehicle control unit 50 on one of the pair of left and right drive MGs. Detects a drive abnormality that cannot be performed.
  • the steering amount determination unit 46 has a torque command value, an abnormal torque, and an intention corresponding to a drive MG excluding the abnormal drive MG, which is a drive MG that can output only an abnormal torque when a drive abnormality is detected by the abnormality determination unit 44.
  • the steering amount of one of the pair of left and right steering units 31 and 32 is calculated as the first steering amount, and the other steering amount is an absolute value rather than the absolute value of the first steering amount. Calculated as a small second steering amount.
  • the electric vehicle is based on the torque command value, the abnormal torque, and the intended driving state corresponding to the drive MG excluding the abnormal drive MG.
  • the steering units 31 and 32 can be steered so as to bring the 10 closer to the intended traveling state.
  • the absolute value of the second steering amount is smaller than the absolute value of the first steering amount. Therefore, the influence of the second steering amount on the traveling state of the electric vehicle 10 is suppressed, and the traveling state of the electric vehicle 10 can be easily controlled by adjusting the first steering amount.
  • each of the above embodiments are executed not only when the driver (user) drives the electric vehicle 10 but also when the vehicle control unit 50 executes constant speed running control for driving the electric vehicle 10 at a constant speed. You can also do it. Further, each of the above embodiments can be executed when the vehicle control unit 50 is executing the follow-up travel control for causing the electric vehicle 10 to follow the preceding vehicle. Further, each of the above embodiments can be executed when the vehicle control unit 50 is executing the automatic driving (running) control for automatically traveling the set route to the electric vehicle 10. In these controls, the intended driving state can be acquired based on the constant speed driving control setting, the following driving control setting, the automatic driving (driving) control setting, and the like. In the constant speed running control, the following running control, and the automatic driving control, the user may or may not be on the electric vehicle 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A drive system of a vehicle (10) comprises drive motors (21, 22) that drive wheels (11, 12) independently of each other, and steering mechanisms (31, 32) that steer the wheels independently of each other. The drive system of the vehicle comprises: a command value calculation unit (50) that calculates a torque command value for each drive motor, on the basis of an intended traveling state of the vehicle which is intended by a user; abnormality detection units (43, 44) that detect a driving abnormality in which one of the drive motors can output only abnormal torque different from a corresponding torque command value; and steering amount calculation units (46, 50) that, when a driving abnormality is detected, calculates, on the basis of the torque command value corresponding to the drive motor excluding the drive motor having abnormality, the abnormal torque, and the intended traveling state, a steering amount of one of the steering mechanisms as a first steering amount, and a steering amount of the other as a second steering amount with an absolute value smaller than an absolute value of the first steering amount.

Description

車両の駆動システムVehicle drive system 関連出願の相互参照Cross-reference of related applications
 本出願は、2021年1月12日に出願された日本出願番号2021-003097号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2021-003097, which was filed on January 12, 2021, and the contents of the description are incorporated herein by reference.
 本開示は、車両の駆動システムに関する。 This disclosure relates to a vehicle drive system.
 従来、車両の後側左右の駆動輪をそれぞれ駆動する互いに独立した駆動モータと、前側左右の転舵輪をタイロッドを介して同方向へ転舵させる転舵機構とを備える電気自動車がある(特許文献1参照)。特許文献1に記載の電気自動車では、駆動モータの異常による左右の駆動輪の駆動バランスの変化量を補うように、転舵機構の転舵量を変更している。 Conventionally, there are electric vehicles including drive motors that drive the left and right drive wheels on the rear side of the vehicle and steering mechanisms that steer the left and right steering wheels on the front side in the same direction via tie rods (Patent Documents). 1). In the electric vehicle described in Patent Document 1, the steering amount of the steering mechanism is changed so as to compensate for the change in the drive balance of the left and right drive wheels due to the abnormality of the drive motor.
特許第5936306号公報Japanese Patent No. 5936306
 ところで、特許文献1に記載の電気自動車(車両)では、左右の駆動輪の駆動バランスの変化量を補うように転舵機構の転舵量を変更した場合に、転舵量の変更が車両の走行状態に与える影響が大きい。このため、転舵量の変更が過大又は過小となり、運転者(ユーザ)が意図した走行状態で車両を走行させることができないおそれがある。 By the way, in the electric vehicle (vehicle) described in Patent Document 1, when the steering amount of the steering mechanism is changed so as to compensate for the change in the drive balance of the left and right drive wheels, the change in the steering amount is changed in the vehicle. It has a large effect on the driving condition. Therefore, the change in the steering amount may be excessive or too small, and the vehicle may not be able to travel in the traveling state intended by the driver (user).
 本開示は、上記課題を解決するためになされたものであり、その主たる目的は、左右の駆動輪のうち一方の駆動輪の駆動モータに異常が生じた場合であっても、ユーザが意図した走行状態で車両を走行させ易くすることにある。 The present disclosure has been made to solve the above problems, and the main purpose thereof is intended by the user even when an abnormality occurs in the drive motor of one of the left and right drive wheels. The purpose is to make it easier to drive the vehicle in the running state.
 上記課題を解決するための第1手段は、車両の駆動システムであって、
 車両の左右の車輪を互いに独立して駆動する左右一対の駆動モータと、
 前記車両の左右の車輪を互いに独立して転舵する左右一対の転舵機構と、
 ユーザが意図した前記車両の走行状態である意図走行状態に基づいて、各駆動モータの各トルク指令値を算出する指令値算出部と、
 前記指令値算出部により算出された前記各トルク指令値に基づいて、前記各駆動モータを駆動させる駆動制御部と、
 前記左右一対の駆動モータの一方が、前記指令値算出部により算出された対応するトルク指令値と異なる異常トルクしか出力できない駆動異常を検知する異常検知部と、
 前記異常検知部により前記駆動異常が検知されていない場合に、前記指令値算出部により算出された前記各トルク指令値及び前記意図走行状態に基づいて各転舵機構の各転舵量を算出し、前記異常検知部により前記駆動異常が検知された場合に、前記異常トルクしか出力できない駆動モータである異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記意図走行状態に基づいて、前記左右一対の転舵機構の一方の転舵量を第1転舵量として算出し且つ他方の転舵量を前記第1転舵量の絶対値よりも絶対値が小さい第2転舵量として算出する転舵量算出部と、
 前記転舵量算出部により算出された各転舵量に基づいて、前記各転舵機構を転舵させる転舵制御部と、
を備える。
The first means for solving the above problems is a vehicle drive system.
A pair of left and right drive motors that drive the left and right wheels of the vehicle independently of each other,
A pair of left and right steering mechanisms that independently steer the left and right wheels of the vehicle,
A command value calculation unit that calculates each torque command value of each drive motor based on the intended running state of the vehicle intended by the user.
A drive control unit that drives each drive motor based on each torque command value calculated by the command value calculation unit.
An abnormality detection unit that detects a drive abnormality in which one of the pair of left and right drive motors can output only an abnormal torque different from the corresponding torque command value calculated by the command value calculation unit.
When the drive abnormality is not detected by the abnormality detection unit, each steering amount of each steering mechanism is calculated based on the torque command value calculated by the command value calculation unit and the intended running state. When the drive abnormality is detected by the abnormality detection unit, the torque command value, the abnormality torque, and the intended running state corresponding to the drive motor excluding the abnormality motor which is a drive motor capable of outputting only the abnormality torque are obtained. Based on this, the steering amount of one of the pair of left and right steering mechanisms is calculated as the first steering amount, and the steering amount of the other is the second rotation whose absolute value is smaller than the absolute value of the first steering amount. The steering amount calculation unit that calculates the steering amount and
A steering control unit that steers each steering mechanism based on each steering amount calculated by the steering amount calculation unit.
To be equipped.
 上記構成によれば、左右一対の駆動モータは、車両の左右の車輪を互いに独立して駆動する。左右一対の転舵機構は、前記車両の左右の車輪を互いに独立して転舵する。なお、左右一対の駆動モータが駆動する車両の左右の車輪は、車両の左右の前輪であってもよいし、左右の後輪であってもよいし、車両の左右の前輪及び左右の後輪であってもよい。また、左右一対の転舵機構が転舵する車両の左右の車輪は、車両の左右の前輪であってもよいし、左右の後輪であってもよいし、車両の左右の前輪及び左右の後輪であってもよい。 According to the above configuration, the pair of left and right drive motors drive the left and right wheels of the vehicle independently of each other. The pair of left and right steering mechanisms steer the left and right wheels of the vehicle independently of each other. The left and right wheels of the vehicle driven by the pair of left and right drive motors may be the left and right front wheels of the vehicle, the left and right rear wheels, the left and right front wheels of the vehicle, and the left and right rear wheels. It may be. Further, the left and right wheels of the vehicle steered by the pair of left and right steering mechanisms may be the left and right front wheels of the vehicle, the left and right rear wheels, the left and right front wheels of the vehicle, and the left and right wheels. It may be the rear wheel.
 指令値算出部は、ユーザが意図した前記車両の走行状態である意図走行状態に基づいて、各駆動モータの各トルク指令値を算出する。なお、走行状態は、前直進、前左旋回、前右旋回、後直進、後左旋回、後右旋回、車速等を含む。意図走行状態は、車両のハンドルの操作量、アクセルペダル(アクセル操作部)の踏込量(操作量)、ブレーキペダル(ブレーキ操作部)の踏込量(操作量)等に基づいて取得することができる。また、意図走行状態は、車両を一定速度で走行させる定速走行制御の設定、車両を前車に追従走行させる追従走行制御の設定、設定した経路を車両に自動走行させる自動運転(走行)制御の設定等に基づいて取得することができる。なお、定速走行制御、追従走行制御、及び自動運転制御では、車両にユーザが乗車していても、乗車していなくてもよい。 The command value calculation unit calculates each torque command value of each drive motor based on the intended running state, which is the running state of the vehicle intended by the user. The traveling state includes forward straight movement, front left turn, front right turn, rear straight movement, rear left turn, rear right turn, vehicle speed, and the like. The intended driving state can be acquired based on the amount of operation of the steering wheel of the vehicle, the amount of depression of the accelerator pedal (accelerator operation unit) (operation amount), the amount of depression of the brake pedal (brake operation unit) (operation amount), and the like. .. In addition, the intended driving state is the setting of constant-speed running control that causes the vehicle to run at a constant speed, the setting of follow-up running control that causes the vehicle to follow the vehicle in front, and the automatic driving (running) control that causes the vehicle to automatically run the set route. It can be obtained based on the settings of. In the constant speed running control, the following running control, and the automatic driving control, the user may or may not be in the vehicle.
 駆動制御部は、前記指令値算出部により算出された前記各トルク指令値に基づいて、前記各駆動モータを駆動させる。このため、車両の走行状態が意図走行状態になるように、各駆動モータを駆動させることができる。 The drive control unit drives each drive motor based on the torque command values calculated by the command value calculation unit. Therefore, each drive motor can be driven so that the traveling state of the vehicle becomes the intended traveling state.
 ここで、異常検知部は、前記左右一対の駆動モータの一方が、前記指令値算出部により算出された対応するトルク指令値と異なる異常トルクしか出力できない駆動異常を検知する。例えば、駆動異常として、駆動モータに流れる電流を検出する電流センサが異常である場合に、駆動モータが出力できるトルクがトルク指令値の1/2に制限され、トルク指令値よりも小さいトルクしか出力できない場合がある。また、駆動異常として、駆動モータがトルク指令値よりも大きい異常トルクしか出力できない場合もある。 Here, the abnormality detection unit detects a drive abnormality in which one of the pair of left and right drive motors can output only an abnormal torque different from the corresponding torque command value calculated by the command value calculation unit. For example, as a drive abnormality, when the current sensor that detects the current flowing through the drive motor is abnormal, the torque that the drive motor can output is limited to 1/2 of the torque command value, and only torque smaller than the torque command value is output. It may not be possible. Further, as a drive abnormality, the drive motor may output only an abnormal torque larger than the torque command value.
 転舵量算出部は、前記異常検知部により前記駆動異常が検知されていない場合に、前記指令値算出部により算出された前記各トルク指令値及び前記意図走行状態に基づいて各転舵機構の各転舵量を算出する。そして、転舵制御部は、前記転舵量算出部により算出された各転舵量に基づいて、前記各転舵機構を転舵させる。このため、車両の走行状態が意図走行状態になるように、各転舵機構を転舵させることができる。なお、転舵量は、直進の場合に0、左右の一方へ転舵する場合に正の値、他方へ転舵する場合に負の値となる。 When the drive abnormality is not detected by the abnormality detection unit, the steering amount calculation unit of each steering mechanism is based on the torque command value calculated by the command value calculation unit and the intended running state. Calculate each steering amount. Then, the steering control unit steers each steering mechanism based on each steering amount calculated by the steering amount calculation unit. Therefore, each steering mechanism can be steered so that the traveling state of the vehicle becomes the intended traveling state. The steering amount is 0 when traveling straight, a positive value when steering to one of the left and right, and a negative value when steering to the other.
 一方、転舵量算出部は、前記異常検知部により前記駆動異常が検知された場合に、前記異常トルクしか出力できない駆動モータである異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記意図走行状態に基づいて、前記左右一対の転舵機構の一方の転舵量を第1転舵量として算出し且つ他方の転舵量を前記第1転舵量の絶対値よりも絶対値が小さい第2転舵量として算出する。そして、転舵制御部は、前記転舵量算出部により算出された各転舵量(第1転舵量及び第2転舵量)に基づいて、前記各転舵機構を転舵させる。このため、前記異常検知部により前記駆動異常が検知された場合であっても、異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記意図走行状態に基づいて、車両を意図走行状態に近付けるように各転舵機構を転舵させることができる。 On the other hand, when the abnormality detection unit detects the drive abnormality, the steering amount calculation unit has the torque command value corresponding to the drive motor excluding the abnormality motor which is a drive motor capable of outputting only the abnormality torque, and the abnormality. Based on the torque and the intended running state, the steering amount of one of the pair of left and right steering mechanisms is calculated as the first steering amount, and the steering amount of the other is calculated from the absolute value of the first steering amount. Is calculated as the second steering amount with a small absolute value. Then, the steering control unit steers each steering mechanism based on each steering amount (first steering amount and second steering amount) calculated by the steering amount calculation unit. Therefore, even when the drive abnormality is detected by the abnormality detection unit, the vehicle is moved based on the torque command value, the abnormality torque, and the intentional running state corresponding to the drive motor excluding the abnormality motor. Each steering mechanism can be steered so as to approach the intended driving state.
 さらに、第2転舵量の絶対値は、第1転舵量の絶対値よりも小さい。このため、第2転舵量が車両の走行状態に与える影響を抑制して、第1転舵量の調節により車両の走行状態を細かく制御し易くなる。したがって、左右の駆動輪のうち一方の駆動輪の駆動モータに異常が生じた場合であっても、ユーザが意図した走行状態で車両を走行させ易くすることができる。 Furthermore, the absolute value of the second steering amount is smaller than the absolute value of the first steering amount. Therefore, the influence of the second steering amount on the traveling state of the vehicle is suppressed, and the traveling state of the vehicle can be finely controlled by adjusting the first steering amount. Therefore, even if an abnormality occurs in the drive motor of one of the left and right drive wheels, it is possible to easily drive the vehicle in the traveling state intended by the user.
 第2の手段では、前記転舵量算出部は、前記意図走行状態が直進であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記異常トルクが前記異常モータに対応するトルク指令値よりも小さい場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記意図走行状態に基づいて、前記異常モータと左右同じ側の転舵機構の転舵量である前記第1転舵量を前記異常モータと左右逆側へ車輪を向ける転舵量にし、且つ前記異常モータと左右逆側の転舵機構の転舵量である前記第2転舵量を0にする。 In the second means, in the steering amount calculation unit, the intended traveling state is straight, the abnormality detection unit detects the drive abnormality, and the abnormality torque is a torque command value corresponding to the abnormality motor. When it is smaller than, the steering amount of the steering mechanism on the same side as the abnormal motor is based on the torque command value, the abnormal torque, and the intended running state corresponding to the drive motor excluding the abnormal motor. The first steering amount is set to the steering amount at which the wheels are directed to the left and right opposite sides of the abnormal motor, and the second steering amount, which is the steering amount of the steering mechanism on the left and right opposite sides of the abnormal motor, is set to 0. To.
 ユーザが車両を直進(前直進及び後直進を含む)させることを意図している場合に、左右の一方の駆動モータ(異常モータ)がトルク指令値よりも小さい異常トルクしか出力できなくなった場合は、車両が異常モータと左右同じ側へ旋回しようとする。例えば、異常モータが右側の車輪の駆動モータである場合は、車両は異常モータと同じ右側へ旋回しようとする。 When the user intends to drive the vehicle straight (including forward straight and backward straight), and one of the left and right drive motors (abnormal motor) can output an abnormal torque smaller than the torque command value. , The vehicle tries to turn to the same side as the abnormal motor. For example, if the anomalous motor is the drive motor for the right wheel, the vehicle will try to turn to the same right as the anomalous motor.
 この点、上記構成によれば、前記転舵量算出部は、前記意図走行状態が直進であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記異常トルクが前記異常モータに対応するトルク指令値よりも小さい場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記意図走行状態に基づいて、前記異常モータと左右同じ側の転舵機構の転舵量である前記第1転舵量を前記異常モータと左右逆側へ車輪を向ける転舵量にする。例えば、異常モータが右側の車輪の駆動モータである場合は、異常モータと同じ右側の転舵機構の転舵量である前記第1転舵量を、前記異常モータと逆の左側へ車輪を向ける転舵量にする。このため、異常モータと左右同じ側へ旋回しようとする車両を、直進に近付けることができる。なお、異常モータと左右逆側とは、進行方向を基準にして左右逆側であり、例えば前直進且つ右の駆動モータが異常モータである場合は車輪の前部を左に向け、後直進且つ右の駆動モータが異常モータである場合は車輪の後部を左に向ける。 In this regard, according to the above configuration, in the steering amount calculation unit, the intended traveling state is straight, the drive abnormality is detected by the abnormality detection unit, and the abnormality torque corresponds to the abnormality motor. When it is smaller than the torque command value, the steering mechanism on the same side as the abnormal motor is turned based on the torque command value corresponding to the drive motor excluding the abnormal motor, the abnormal torque, and the intended running state. The first steering amount, which is the steering amount, is set to the steering amount at which the wheels are directed to the left and right opposite sides of the abnormal motor. For example, when the abnormal motor is a drive motor for the right wheel, the first steering amount, which is the same steering amount of the right steering mechanism as the abnormal motor, is directed to the left side opposite to the abnormal motor. Set the steering amount. Therefore, the vehicle that is about to turn to the same side as the abnormal motor can be brought closer to going straight. The abnormal motor and the left-right opposite side are the left-right opposite sides with respect to the traveling direction. If the right drive motor is an abnormal motor, turn the rear part of the wheel to the left.
 さらに、前記転舵量算出部は、前記異常モータと左右逆側の転舵機構の転舵量である前記第2転舵量を0にする。このため、異常モータと左右逆側の転舵機構を、駆動異常が検知されていない場合と同様に制御することができるとともに、第2転舵量が車両の走行状態に与える影響を抑制して、第1転舵量の調節により車両の走行状態を細かく制御し易くなる。 Further, the steering amount calculation unit sets the second steering amount, which is the steering amount of the steering mechanism on the left and right opposite sides of the abnormal motor, to 0. Therefore, the steering mechanism on the opposite side to the abnormal motor can be controlled in the same manner as when no driving abnormality is detected, and the influence of the second steering amount on the running state of the vehicle is suppressed. By adjusting the first steering amount, it becomes easy to finely control the running state of the vehicle.
 第3の手段では、前記転舵量算出部は、前記意図走行状態が旋回であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記異常トルクが前記異常モータに対応するトルク指令値よりも小さい場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記意図走行状態に基づいて、前記異常モータと左右逆側の転舵機構の転舵量である前記第1転舵量を前記旋回に対応する転舵量にし、且つ前記異常モータと左右同じ側の転舵機構の転舵量である前記第2転舵量を0にする。 In the third means, in the steering amount calculation unit, the intended traveling state is turning, the drive abnormality is detected by the abnormality detection unit, and the abnormal torque is a torque command value corresponding to the abnormal motor. When it is smaller than, the steering amount of the steering mechanism on the left and right opposite sides of the abnormal motor is based on the torque command value, the abnormal torque, and the intended running state corresponding to the drive motor excluding the abnormal motor. The first steering amount is set to the steering amount corresponding to the turning, and the second steering amount, which is the steering amount of the steering mechanism on the same side as the abnormal motor, is set to 0.
 ユーザが車両を旋回(前左旋回、前右旋回、後左旋回、後右旋回を含む)させることを意図している場合に、左右の一方の駆動モータ(異常モータ)がトルク指令値よりも小さい異常トルクしか出力できなくなった場合は、ユーザが意図した車両の旋回軌道(進行方向)から車両がずれる。 When the user intends to turn the vehicle (including front left turn, front right turn, rear left turn, rear right turn), one of the left and right drive motors (abnormal motor) has a torque command value. If only an abnormal torque smaller than that can be output, the vehicle deviates from the turning trajectory (traveling direction) of the vehicle intended by the user.
 この点、上記構成によれば、前記転舵量算出部は、前記意図走行状態が旋回であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記異常トルクが前記異常モータに対応するトルク指令値よりも小さい場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記意図走行状態に基づいて、前記異常モータと左右逆側の転舵機構の転舵量である前記第1転舵量を前記旋回に対応する転舵量にする。このため、ユーザが意図した車両の旋回軌道からずれようとする車両を、ユーザが意図した車両の旋回軌道に近付けることができる。 In this regard, according to the above configuration, in the steering amount calculation unit, the intended traveling state is turning, the drive abnormality is detected by the abnormality detection unit, and the abnormality torque corresponds to the abnormality motor. When it is smaller than the torque command value, the steering mechanism on the left and right sides opposite to the abnormal motor is rotated based on the torque command value corresponding to the drive motor excluding the abnormal motor, the abnormal torque, and the intended running state. The first steering amount, which is the steering amount, is set to the steering amount corresponding to the turning. Therefore, the vehicle that is about to deviate from the turning track of the vehicle intended by the user can be brought closer to the turning track of the vehicle intended by the user.
 さらに、前記転舵量算出部は、前記異常モータと左右同じ側の転舵機構の転舵量である前記第2転舵量を0にする。このため、第2転舵量が車両の走行状態に与える影響を抑制して、第1転舵量の調節により車両の走行状態を細かく制御し易くなる。 Further, the steering amount calculation unit sets the second steering amount, which is the steering amount of the steering mechanism on the same side as the abnormal motor, to 0. Therefore, the influence of the second steering amount on the traveling state of the vehicle is suppressed, and the traveling state of the vehicle can be finely controlled by adjusting the first steering amount.
 第4の手段では、前記指令値算出部は、前記異常検知部により前記駆動異常が検知されていない場合に、前記意図走行状態に基づいて各駆動モータの各トルク指令値を算出し、前記異常検知部により前記駆動異常が検知された場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記意図走行状態に基づいて、前記異常モータを除く駆動モータの各トルク指令値を算出する。こうした構成によれば、駆動モータのトルクの制御によっても、車両の旋回軌道をユーザが意図した旋回軌道に近付けることができる。 In the fourth means, the command value calculation unit calculates each torque command value of each drive motor based on the intended running state when the drive abnormality is not detected by the abnormality detection unit, and the abnormality is calculated. When the drive abnormality is detected by the detection unit, each of the drive motors excluding the abnormal motor is based on the torque command value corresponding to the drive motor excluding the abnormal motor, the abnormal torque, and the intended running state. Calculate the torque command value. According to such a configuration, the turning trajectory of the vehicle can be brought closer to the turning trajectory intended by the user by controlling the torque of the drive motor.
 第5の手段は、車両の駆動システムであって、
 車両の左右の車輪を互いに独立して駆動する左右一対の駆動モータと、
 前記車両の左右の車輪を互いに独立して転舵する左右一対の転舵機構と、
 ユーザが意図した前記車両の走行状態である意図走行状態に基づいて、各駆動モータの各トルク指令値を算出する指令値算出部と、
 前記指令値算出部により算出された前記各トルク指令値に基づいて、前記各駆動モータを駆動させる駆動制御部と、
 前記左右一対の駆動モータの一方が、前記指令値算出部により算出された対応するトルク指令値よりも小さい異常トルクしか出力できない駆動異常を検知する異常検知部と、
 前記異常検知部により前記駆動異常が検知されていない場合に、前記指令値算出部により算出された前記各トルク指令値及び前記意図走行状態に基づいて各転舵機構の各転舵量を算出し、前記意図走行状態が旋回であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記意図走行状態が前記異常トルクしか出力できない駆動モータである異常モータと左右同じ側への旋回である場合に、前記各転舵機構の各転舵量を0にする転舵量算出部と、
 前記転舵量算出部により算出された各転舵量に基づいて、前記各転舵機構を転舵させる転舵制御部と、
を備える。
The fifth means is a vehicle drive system.
A pair of left and right drive motors that drive the left and right wheels of the vehicle independently of each other,
A pair of left and right steering mechanisms that independently steer the left and right wheels of the vehicle,
A command value calculation unit that calculates each torque command value of each drive motor based on the intended running state of the vehicle intended by the user.
A drive control unit that drives each drive motor based on each torque command value calculated by the command value calculation unit.
An abnormality detection unit that detects a drive abnormality in which one of the pair of left and right drive motors can output an abnormal torque smaller than the corresponding torque command value calculated by the command value calculation unit.
When the drive abnormality is not detected by the abnormality detection unit, each steering amount of each steering mechanism is calculated based on the torque command value calculated by the command value calculation unit and the intended running state. The intended running state is turning, the driving abnormality is detected by the abnormality detecting unit, and the intended running state is turning to the same side as the abnormal motor which is a drive motor capable of outputting only the abnormal torque. In this case, a steering amount calculation unit that sets each steering amount of each steering mechanism to 0, and a steering amount calculation unit.
A steering control unit that steers each steering mechanism based on each steering amount calculated by the steering amount calculation unit.
To be equipped.
 上記構成によれば、前記転舵量算出部は、前記意図走行状態が旋回であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記意図走行状態が、対応するトルク指令値よりも小さい前記異常トルクしか出力できない異常モータと左右同じ側への旋回である場合に、前記各転舵機構の各転舵量を0にする。このため、各転舵機構は各車輪を車両の正面に向けて、車両を直進させようとする。しかし、前記左右一対の駆動モータの一方が、前記指令値算出部により算出された対応するトルク指令値よりも小さい異常トルクしか出力できないため、車両は異常モータと左右同じ側へ旋回しようとする。したがって、各転舵機構が車両の走行状態に与える影響を抑制しつつ、左右の駆動モータが出力するトルクの差を利用して、ユーザが意図した旋回の方向へ車両を旋回させることができる。 According to the above configuration, in the steering amount calculation unit, the intended traveling state is turning, the driving abnormality is detected by the abnormality detecting unit, and the intended traveling state is higher than the corresponding torque command value. When turning to the same side as the abnormal motor that can output only a small abnormal torque, the steering amount of each steering mechanism is set to 0. Therefore, each steering mechanism tries to make the vehicle go straight with each wheel facing the front of the vehicle. However, since one of the pair of left and right drive motors can output an abnormal torque smaller than the corresponding torque command value calculated by the command value calculation unit, the vehicle tries to turn to the same side as the abnormal motor. Therefore, it is possible to turn the vehicle in the turning direction intended by the user by utilizing the difference in torque output by the left and right drive motors while suppressing the influence of each steering mechanism on the running state of the vehicle.
 第6の手段では、第5の手段を前提として、前記指令値算出部は、前記異常検知部により前記駆動異常が検知されていない場合に、前記意図走行状態に基づいて各駆動モータの各トルク指令値を算出し、前記意図走行状態が旋回であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記意図走行状態が前記異常モータと左右同じ側への旋回である場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記意図走行状態に基づいて、前記異常モータを除く駆動モータの各トルク指令値を算出する。 In the sixth means, on the premise of the fifth means, the command value calculation unit determines each torque of each drive motor based on the intended running state when the drive abnormality is not detected by the abnormality detection unit. When the command value is calculated and the intended running state is turning, the driving abnormality is detected by the abnormality detecting unit, and the intended running state is turning to the same side as the abnormal motor, the above. Each torque command value of the drive motor excluding the abnormal motor is calculated based on the torque command value corresponding to the drive motor excluding the abnormal motor, the abnormal torque, and the intended running state.
 上記構成によれば、各転舵機構の各転舵量を0にして各転舵機構が車両の走行状態に与える影響を抑制しつつ、駆動モータのトルクの制御によっても、車両の旋回軌道をユーザが意図した旋回軌道に近付けることができる。 According to the above configuration, each steering amount of each steering mechanism is set to 0 to suppress the influence of each steering mechanism on the running state of the vehicle, and the turning trajectory of the vehicle is also controlled by controlling the torque of the drive motor. It is possible to approach the turning trajectory intended by the user.
 第7の手段では、前記意図走行状態に基づいて、前記車両が走行する目標軌道を算出する軌道算出部を備え、前記指令値算出部は、前記異常検知部により前記駆動異常が検知されていない場合に、前記車両が走行する軌道を前記目標軌道にすべく各駆動モータの各トルク指令値を算出し、前記意図走行状態が旋回であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記車両の速度が第1速度よりも高い場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記目標軌道に基づいて、前記車両が走行する軌道を前記目標軌道よりも外側から徐々に前記目標軌道に近付けるように前記異常モータを除く駆動モータの各トルク指令値を算出し、前記転舵量算出部は、前記異常検知部により前記駆動異常が検知されていない場合に、前記車両が走行する軌道を前記目標軌道にすべく各転舵機構の各転舵量を算出し、前記意図走行状態が旋回であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記車両の速度が前記第1速度よりも高い場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記目標軌道に基づいて、前記車両が走行する軌道を前記目標軌道よりも外側から徐々に前記目標軌道に近付けるように前記各転舵機構の各転舵量を算出する。 The seventh means includes a track calculation unit that calculates a target trajectory on which the vehicle travels based on the intended traveling state, and the command value calculation unit has not detected the drive abnormality by the abnormality detection unit. In this case, each torque command value of each drive motor is calculated so that the track on which the vehicle travels becomes the target track, the intended traveling state is turning, and the abnormality detection unit detects the drive abnormality. Moreover, when the speed of the vehicle is higher than the first speed, the track on which the vehicle travels is determined based on the torque command value, the abnormal torque, and the target track corresponding to the drive motor excluding the abnormal motor. The torque command values of the drive motors other than the abnormal motor are calculated so as to gradually approach the target trajectory from the outside of the target trajectory, and the steering amount calculation unit detects the drive abnormality by the abnormality detection unit. If not, the steering amount of each steering mechanism is calculated so that the track on which the vehicle travels becomes the target trajectory, the intended traveling state is turning, and the driving abnormality is caused by the abnormality detecting unit. When the vehicle is detected and the speed of the vehicle is higher than the first speed, the vehicle travels based on the torque command value, the abnormal torque, and the target trajectory corresponding to the drive motors other than the abnormal motor. Each steering amount of each steering mechanism is calculated so that the trajectory to be driven gradually approaches the target trajectory from the outside of the target trajectory.
 上記構成によれば、軌道算出部は、前記意図走行状態に基づいて、前記車両が走行する目標軌道を算出する。前記指令値算出部は、前記異常検知部により前記駆動異常が検知されていない場合に、前記車両が走行する軌道を前記目標軌道にすべく各駆動モータの各トルク指令値を算出する。前記転舵量算出部は、前記異常検知部により前記駆動異常が検知されていない場合に、前記車両が走行する軌道を前記目標軌道にすべく各転舵機構の各転舵量を算出する。このため、駆動異常が検知されていない場合は、車両が走行する軌道を目標軌道にすることができる。 According to the above configuration, the track calculation unit calculates the target track on which the vehicle travels based on the intended traveling state. When the drive abnormality is not detected by the abnormality detection unit, the command value calculation unit calculates each torque command value of each drive motor so as to set the track on which the vehicle travels to the target track. The steering amount calculation unit calculates each steering amount of each steering mechanism in order to set the track on which the vehicle travels to the target track when the driving abnormality is not detected by the abnormality detecting unit. Therefore, when a drive abnormality is not detected, the track on which the vehicle travels can be set as the target track.
 ここで、駆動異常が発生すると、車両が走行する軌道が目標軌道からずれる。車両が第1速度よりも高い速度で走行している場合に車両の軌道を目標軌道に急激に近付けると、車両の運転者に過大な遠心力が作用するおそれがある。 Here, if a drive abnormality occurs, the track on which the vehicle travels deviates from the target track. When the vehicle is traveling at a speed higher than the first speed and the track of the vehicle is suddenly brought close to the target track, an excessive centrifugal force may act on the driver of the vehicle.
 この点、前記指令値算出部は、前記意図走行状態が旋回であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記車両の速度が第1速度よりも高い場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記目標軌道に基づいて、前記車両が走行する軌道を前記目標軌道よりも外側から徐々に前記目標軌道に近付けるように前記異常モータを除く駆動モータの各トルク指令値を算出する。また、前記転舵量算出部は、前記意図走行状態が旋回であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記車両の速度が前記第1速度よりも高い場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記目標軌道に基づいて、前記車両が走行する軌道を前記目標軌道よりも外側から徐々に前記目標軌道に近付けるように前記各転舵機構の各転舵量を算出する。このため、車両の運転者に過大な遠心力が作用することを抑制することができ、乗り心地が低下することを抑制することができる。 In this regard, the command value calculation unit performs the abnormal motor when the intended traveling state is turning, the driving abnormality is detected by the abnormality detecting unit, and the speed of the vehicle is higher than the first speed. Based on the torque command value, the abnormal torque, and the target track corresponding to the drive motor excluding the above, the abnormal motor so as to gradually bring the track on which the vehicle travels closer to the target track from outside the target track. Calculate each torque command value of the drive motor excluding. Further, the steering amount calculation unit determines the abnormality when the intended traveling state is turning, the driving abnormality is detected by the abnormality detecting unit, and the speed of the vehicle is higher than the first speed. Based on the torque command value corresponding to the drive motor excluding the motor, the abnormal torque, and the target track, each of the above so as to gradually bring the track on which the vehicle travels closer to the target track from outside the target track. Calculate each steering amount of the steering mechanism. Therefore, it is possible to suppress the action of an excessive centrifugal force on the driver of the vehicle, and it is possible to suppress the deterioration of the riding comfort.
 駆動異常が発生すると、車両が走行する軌道が目標軌道からずれる。車両の速度が第1速度よりも低く且つ第1速度よりも低い第2速度よりも高い場合は、車両の軌道を徐々に目標軌道に近付けなくても、車両の運転者に過大な遠心力は作用しにくい。 When a drive abnormality occurs, the track on which the vehicle travels deviates from the target track. If the speed of the vehicle is lower than the first speed and higher than the second speed, which is lower than the first speed, excessive centrifugal force is applied to the driver of the vehicle even if the track of the vehicle is not gradually brought closer to the target track. Hard to work.
 この点、第8の手段では、前記指令値算出部は、前記意図走行状態が旋回であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記車両の速度が前記第1速度よりも低く且つ前記第1速度よりも低い第2速度よりも高い場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記目標軌道に基づいて、前記車両が走行する軌道が前記目標軌道の外側及び内側になることを許容しつつ、前記車両が走行する軌道を前記目標軌道に近付けるように前記異常モータを除く駆動モータの各トルク指令値を算出し、前記転舵量算出部は、前記意図走行状態が旋回であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記車両の速度が前記第1速度よりも低く且つ前記第2速度よりも高い場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記目標軌道に基づいて、前記車両が走行する軌道が前記目標軌道の外側及び内側になることを許容しつつ、前記車両が走行する軌道を前記目標軌道に近付けるように前記各転舵機構の各転舵量を算出する。このため、車両の運転者に過大な遠心力が作用しにくい場合は、車両が走行する軌道を目標軌道に迅速に近付けることができる。 In this regard, in the eighth means, in the command value calculation unit, the intended traveling state is turning, the drive abnormality is detected by the abnormality detection unit, and the speed of the vehicle is higher than the first speed. When it is low and higher than the second speed, which is lower than the first speed, the vehicle travels based on the torque command value, the abnormal torque, and the target track corresponding to the drive motors other than the abnormal motor. Each torque command value of the drive motor excluding the abnormal motor is calculated so that the track on which the vehicle travels approaches the target track while allowing the track to be outside and inside the target track, and the steering is steered. When the intended traveling state is turning, the abnormality detecting unit detects the driving abnormality, and the speed of the vehicle is lower than the first speed and higher than the second speed, the amount calculation unit is used. Based on the torque command value, the abnormal torque, and the target track corresponding to the drive motor excluding the abnormal motor, the track on which the vehicle travels is allowed to be outside and inside the target track. Each steering amount of each steering mechanism is calculated so that the track on which the vehicle travels approaches the target trajectory. Therefore, when it is difficult for an excessive centrifugal force to act on the driver of the vehicle, the track on which the vehicle travels can be quickly brought closer to the target track.
 駆動異常が発生すると、車両が走行する軌道が目標軌道からずれる。車両の速度が第2速度よりも低い場合は、車両の運転者に作用する遠心力が小さいため、車両の速度を制御する必要性が低い。 When a drive abnormality occurs, the track on which the vehicle travels deviates from the target track. When the speed of the vehicle is lower than the second speed, the centrifugal force acting on the driver of the vehicle is small, so that it is not necessary to control the speed of the vehicle.
 この点、第9の手段では、前記転舵量算出部は、前記意図走行状態が旋回であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記車両の速度が前記第2速度よりも低い場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記目標軌道に基づいて、前記車両が走行する軌道を前記目標軌道に近付けるように前記各転舵機構の各転舵量を算出する。このため、車両の速度を制御する必要性が低い場合は、目標軌道に基づいて異常モータを除く駆動モータの各トルク指令値を算出する必要がなく、駆動システムの制御負荷を軽減することができる。 In this regard, in the ninth means, in the steering amount calculation unit, the intended traveling state is turning, the driving abnormality is detected by the abnormality detecting unit, and the speed of the vehicle is higher than the second speed. When the speed is low, each of the rudders is steered so as to bring the track on which the vehicle travels closer to the target track based on the torque command value corresponding to the drive motor excluding the abnormal motor, the abnormal torque, and the target track. Calculate each steering amount of the mechanism. Therefore, when it is less necessary to control the speed of the vehicle, it is not necessary to calculate each torque command value of the drive motor excluding the abnormal motor based on the target trajectory, and the control load of the drive system can be reduced. ..
 第10の手段では、前記左右一対の駆動モータの一方に関連する異常が生じて、前記一方の駆動モータが出力するトルクが上限値を超えないように制限されている制限状態を検知する制限検知部を備え、前記異常検知部は、前記制限検知部により前記制限状態が検知され、且つトルクが前記上限値を超えないように制限されている駆動モータに対応する前記トルク指令値が前記上限値よりも大きい場合に前記駆動異常を検知し、前記転舵量算出部は、前記制限検知部により前記制限状態が検知され、且つトルクが前記上限値を超えないように制限されている駆動モータに対応する前記トルク指令値が前記上限値よりも小さい場合に、前記指令値算出部により算出された前記各トルク指令値及び前記意図走行状態に基づいて各転舵機構の各転舵量を算出する。 In the tenth means, limit detection is performed to detect a limited state in which an abnormality related to one of the pair of left and right drive motors occurs and the torque output by the one drive motor is limited so as not to exceed the upper limit value. The abnormality detection unit includes a unit, and the torque command value corresponding to the drive motor in which the restriction state is detected by the restriction detection unit and the torque is restricted so as not to exceed the upper limit value is the upper limit value. When it is larger than, the drive abnormality is detected, and the steering amount calculation unit detects the restriction state by the restriction detection unit, and the drive motor is restricted so that the torque does not exceed the upper limit value. When the corresponding torque command value is smaller than the upper limit value, each steering amount of each steering mechanism is calculated based on each torque command value calculated by the command value calculation unit and the intended traveling state. ..
 上記構成によれば、制限検知部は、前記左右一対の駆動モータの一方に関連する異常が生じて、前記一方の駆動モータが出力するトルクが上限値を超えないように制限されている制限状態を検知する。制限状態では、トルク指令値が上限値よりも大きい場合に、出力するトルクが上限値を超えないように制限される。そこで、前記異常検知部は、前記制限検知部により前記制限状態が検知され、且つトルクが前記上限値を超えないように制限されている駆動モータに対応する前記トルク指令値が前記上限値よりも大きい場合に前記駆動異常を検知する。そして、転舵量算出部は、前記異常検知部により前記駆動異常が検知された場合に、上述したように、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記意図走行状態に基づいて、前記左右一対の転舵機構の一方の転舵量を第1転舵量として算出し且つ他方の転舵量を前記第1転舵量の絶対値よりも絶対値が小さい第2転舵量として算出する。 According to the above configuration, the limit detection unit is in a limited state in which an abnormality related to one of the pair of left and right drive motors occurs and the torque output by the one drive motor is limited so as not to exceed the upper limit value. Is detected. In the limited state, when the torque command value is larger than the upper limit value, the output torque is limited so as not to exceed the upper limit value. Therefore, in the abnormality detection unit, the torque command value corresponding to the drive motor in which the restriction state is detected by the restriction detection unit and the torque is restricted so as not to exceed the upper limit value is higher than the upper limit value. If it is large, the drive abnormality is detected. Then, when the drive abnormality is detected by the abnormality detection unit, the steering amount calculation unit determines the torque command value, the abnormality torque, and the abnormality torque corresponding to the drive motors other than the abnormality motor, as described above. Based on the intended running state, the steering amount of one of the pair of left and right steering mechanisms is calculated as the first steering amount, and the steering amount of the other is calculated as an absolute value rather than the absolute value of the first steering amount. Calculated as a small second steering amount.
 一方、制限状態であっても、トルク指令値が上限値よりも小さい場合は、トルクが上限値を超えないように制限されている駆動モータであっても、トルク指令値のトルクを出力することができる。この点、前記転舵量算出部は、前記制限検知部により前記制限状態が検知され、且つトルクが前記上限値を超えないように制限されている駆動モータに対応する前記トルク指令値が前記上限値よりも小さい場合に、前記指令値算出部により算出された前記各トルク指令値及び前記意図走行状態に基づいて各転舵機構の各転舵量を算出する。したがって、車両を意図走行状態で走行させることができる。 On the other hand, even in the limited state, if the torque command value is smaller than the upper limit value, the torque of the torque command value should be output even if the drive motor is restricted so that the torque does not exceed the upper limit value. Can be done. In this regard, in the steering amount calculation unit, the torque command value corresponding to the drive motor in which the restriction state is detected by the restriction detection unit and the torque is restricted so as not to exceed the upper limit value is the upper limit. When it is smaller than the value, each steering amount of each steering mechanism is calculated based on each torque command value calculated by the command value calculation unit and the intended traveling state. Therefore, the vehicle can be driven in the intended traveling state.
 左右一対の駆動モータの双方が、各トルク指令値よりも小さい共通の所定トルクしか出力できない状態になることも考えられる。この場合は、左右一対の駆動モータが出力するトルクが大きく異ならないため、左右一対の転舵機構の転舵量を互いに異なる転舵量として算出する必要性が低い。 It is conceivable that both the left and right pair of drive motors can output only a common predetermined torque smaller than each torque command value. In this case, since the torques output by the pair of left and right drive motors do not differ significantly, it is less necessary to calculate the steering amounts of the pair of left and right steering mechanisms as different steering amounts.
 この点、第11の手段では、前記異常検知部は、前記左右一対の駆動モータの双方が、前記指令値算出部により算出された対応するトルク指令値よりも小さい共通の所定トルクしか出力できない両駆動異常を検知し、前記転舵量算出部は、前記異常検知部により前記両駆動異常が検知された場合に、前記所定トルク及び前記意図走行状態に基づいて各転舵機構の各転舵量を算出する。したがって、転舵量算出部が各転舵量を算出する処理負荷を軽減することができる。 In this regard, in the eleventh means, the abnormality detection unit can output only a common predetermined torque smaller than the corresponding torque command value calculated by the command value calculation unit for both the left and right drive motors. When a drive abnormality is detected, the steering amount calculation unit detects both drive abnormalities by the abnormality detection unit, and when the abnormality detection unit detects both drive abnormalities, the steering amount of each steering mechanism is based on the predetermined torque and the intended running state. Is calculated. Therefore, it is possible to reduce the processing load for the steering amount calculation unit to calculate each steering amount.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、車両の駆動システムのブロック図であり、 図2は、前輪駆動車両における正常時の転舵機構の動作を示す模式図であり、 図3は、異常時の転舵機構の動作を示す模式図であり、 図4は、異常時における駆動システムの制御の手順を示すフローチャートであり、 図5は、異常時のトルク上限値を示す表であり、 図6は、ハンドル操作量と車速と目標旋回半径との関係を示すグラフであり、 図7は、異常時における転舵機構の動作の変更例を示す模式図であり、 図8は、異常時における転舵機構の動作の他の変更例を示す模式図であり、 図9は、異常時における駆動システムの制御の変更例を示す模式図であり、 図10は、異常時における駆動システムの制御の他の変更例を示す模式図であり、 図11は、後進における異常時の転舵機構の動作を示す模式図であり、 図12は、後進における異常時の転舵機構の動作の変更例を示す模式図であり、 図13は、後進における異常時の転舵機構の動作の他の変更例を示す模式図であり、 図14は、後輪駆動車両における正常時の転舵機構の動作を示す模式図であり、 図15は、異常時の転舵機構の動作を示す模式図であり、 図16は、異常時における転舵機構の動作の変更例を示す模式図であり、 図17は、異常時における転舵機構の動作の他の変更例を示す模式図であり、 図18は、4輪駆動車両における異常時の転舵機構の動作を示す模式図であり、 図19は、異常時における転舵機構の動作の変更例を示す模式図であり、 図20は、異常時における転舵機構の動作の他の変更例を示す模式図であり、 図21は、異常時における転舵機構の動作の他の変更例を示す模式図であり、 図22は、異常時における転舵機構の動作の他の変更例を示す模式図であり、 図23は、異常時における転舵機構の動作の他の変更例を示す模式図である。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a block diagram of a vehicle drive system. FIG. 2 is a schematic view showing the operation of the steering mechanism in a front-wheel drive vehicle under normal conditions. FIG. 3 is a schematic view showing the operation of the steering mechanism at the time of abnormality. FIG. 4 is a flowchart showing a procedure for controlling the drive system in the event of an abnormality. FIG. 5 is a table showing the torque upper limit value at the time of abnormality. FIG. 6 is a graph showing the relationship between the amount of steering wheel operation, the vehicle speed, and the target turning radius. FIG. 7 is a schematic view showing an example of changing the operation of the steering mechanism at the time of abnormality. FIG. 8 is a schematic view showing another example of changing the operation of the steering mechanism at the time of abnormality. FIG. 9 is a schematic diagram showing an example of changing the control of the drive system in the event of an abnormality. FIG. 10 is a schematic diagram showing another example of changing the control of the drive system in the event of an abnormality. FIG. 11 is a schematic view showing the operation of the steering mechanism at the time of abnormality in reverse movement. FIG. 12 is a schematic view showing an example of changing the operation of the steering mechanism at the time of abnormality in reverse movement. FIG. 13 is a schematic view showing another example of modification of the operation of the steering mechanism at the time of abnormality in reverse movement. FIG. 14 is a schematic view showing the operation of the steering mechanism in a normal state in a rear-wheel drive vehicle. FIG. 15 is a schematic view showing the operation of the steering mechanism at the time of abnormality. FIG. 16 is a schematic view showing an example of changing the operation of the steering mechanism at the time of abnormality. FIG. 17 is a schematic view showing another example of changing the operation of the steering mechanism at the time of abnormality. FIG. 18 is a schematic view showing the operation of the steering mechanism at the time of abnormality in a four-wheel drive vehicle. FIG. 19 is a schematic view showing an example of changing the operation of the steering mechanism at the time of abnormality. FIG. 20 is a schematic view showing another example of modification of the operation of the steering mechanism at the time of abnormality. FIG. 21 is a schematic view showing another example of changing the operation of the steering mechanism at the time of abnormality. FIG. 22 is a schematic view showing another example of changing the operation of the steering mechanism at the time of abnormality. FIG. 23 is a schematic view showing another example of modification of the operation of the steering mechanism at the time of abnormality.
 以下、電気自動車の駆動システムに具現化した一実施形態について、図面を参照しつつ説明する。 Hereinafter, an embodiment embodied in the drive system of an electric vehicle will be described with reference to the drawings.
 図1に示すように、電気自動車10(車両)は、車輪11~14、駆動ユニット21,22、転舵ユニット31,32、駆動制御部41、トルク決定部42、異常検出部43、異常判定部44、転舵制御部45、転舵量決定部46、車両制御部50、ハンドル操作量検出部51、アクセル操作量検出部52、車速検出部53等を備えている。 As shown in FIG. 1, the electric vehicle 10 (vehicle) has wheels 11 to 14, drive units 21 and 22, steering units 31, 32, drive control unit 41, torque determination unit 42, abnormality detection unit 43, and abnormality determination. It includes a steering unit 44, a steering control unit 45, a steering amount determination unit 46, a vehicle control unit 50, a steering wheel operation amount detection unit 51, an accelerator operation amount detection unit 52, a vehicle speed detection unit 53, and the like.
 前側の左の車輪11,右の車輪12は、電気自動車10を駆動する駆動輪である。各車輪11,12は、各駆動ユニット21,22により駆動される。各車輪11,12は、ハンドル操作に基づいて各転舵ユニット31,32により各転舵角が変更され、電気自動車10の進行方向を変更する転舵輪を兼ねている。後側の左右の車輪13,14は、電気自動車10の走行に伴って従動する従動輪である。なお、車輪11~14は、ブレーキ機構(図示略)により制動される。各駆動ユニット21,22が各車輪11,12を制動するブレーキ機構の機能を備えていてもよい。 The left wheel 11 and the right wheel 12 on the front side are driving wheels for driving the electric vehicle 10. The wheels 11 and 12 are driven by the drive units 21 and 22. The wheels 11 and 12 also serve as steering wheels that change the traveling direction of the electric vehicle 10 by changing the steering angle by the steering units 31 and 32 based on the steering wheel operation. The left and right wheels 13 and 14 on the rear side are driven wheels that are driven as the electric vehicle 10 travels. The wheels 11 to 14 are braked by a braking mechanism (not shown). Each drive unit 21 and 22 may have a function of a braking mechanism for braking each of the wheels 11 and 12.
 各駆動ユニット21,22は、駆動MG(Motor Generator)、INV(Inverter)、電流センサ、温度センサ、回転角センサ等を備えている。駆動MG(駆動モータ)は、3相交流の電動発電機(交流モータ)である。各駆動MGは、各INVから供給される電力に基づいて各車輪11,12を駆動する機能と、各車輪11,12の回転に基づいて発電する機能とを有している。各駆動MG(各駆動ユニット21,22)は、車輪11,12を互いに独立して駆動する。各INVは、バッテリ(図示略)から供給された直流電力を交流電力に変換して各駆動MGへ供給する。各INVは、例えば6つのスイッチング素子が三相ブリッジ接続された回路である。また、各INVは、各駆動MGの発電により供給された交流電力を、それぞれ直流電力に変換してバッテリへ供給する。各INV(各駆動ユニット21,22)の駆動状態は、駆動制御部41により制御される。ここでは、3相交流を一例として記載したが、相の数は3相に限らず、6相や9相等でもよい。 Each drive unit 21 and 22 is equipped with a drive MG (Motor Generator), an INV (Inverter), a current sensor, a temperature sensor, a rotation angle sensor, and the like. The drive MG (drive motor) is a three-phase AC motor generator (AC motor). Each drive MG has a function of driving the wheels 11 and 12 based on the electric power supplied from each INV and a function of generating electricity based on the rotation of the wheels 11 and 12. Each drive MG (each drive unit 21 and 22) drives the wheels 11 and 12 independently of each other. Each INV converts the DC power supplied from the battery (not shown) into AC power and supplies it to each drive MG. Each INV is, for example, a circuit in which six switching elements are connected by a three-phase bridge. Further, each INV converts the AC power supplied by the power generation of each drive MG into DC power and supplies the AC power to the battery. The drive state of each INV (each drive unit 21 and 22) is controlled by the drive control unit 41. Here, three-phase alternating current is described as an example, but the number of phases is not limited to three, and may be six phases, nine phases, or the like.
 各転舵ユニット31,32は、車輪11,12を互いに独立して転舵する。各転舵ユニット31,32(転舵機構)は、転舵MG、INV等を備えている。各転舵MG(各転舵モータ)は、各車輪11,12の転舵角(向き)を変化させる力である転舵力を発生する。各転舵MGは、各INVを介してバッテリに接続されている。各INVは、バッテリからの直流電力を交流電力に変換し、各転舵モータへ給電する。各INV(各転舵ユニット31,32)の駆動状態は、転舵制御部45により制御される。 The steering units 31 and 32 steer the wheels 11 and 12 independently of each other. Each of the steering units 31 and 32 (steering mechanism) includes a steering MG, an INV, and the like. Each steering MG (each steering motor) generates a steering force which is a force for changing the steering angles (directions) of the wheels 11 and 12. Each steering MG is connected to a battery via each INV. Each INV converts DC power from the battery into AC power and supplies power to each steering motor. The drive state of each INV (each steering unit 31, 32) is controlled by the steering control unit 45.
 異常検出部43は、各駆動ユニット21,22の異常を検出する。詳しくは、各電流センサにより検出された各駆動MGの電流、各温度センサにより検出された各駆動MGのコイルの温度(以下、「コイル温度」という)、及び各回転角センサにより検出された各駆動MGの回転角に基づいて、各電流センサ、各温度センサ、及び各回転角センサの異常を検出する。なお、異常検出部43は、各駆動ユニット21,22の各駆動MG、各INV等の異常を検出してもよい。 The abnormality detection unit 43 detects an abnormality in each drive unit 21 or 22. Specifically, the current of each drive MG detected by each current sensor, the coil temperature of each drive MG detected by each temperature sensor (hereinafter referred to as “coil temperature”), and each detected by each rotation angle sensor. Based on the rotation angle of the drive MG, the abnormality of each current sensor, each temperature sensor, and each rotation angle sensor is detected. The abnormality detection unit 43 may detect an abnormality in each drive MG, each INV, etc. of each drive unit 21 and 22.
 異常判定部44は、異常検出部43により検出された異常に基づいて、異常が生じている駆動ユニットに対応する車輪である異常輪を特定(判定)する。そして、異常判定部44(異常検知部)は、左右一対の駆動ユニット21,22の駆動MGの一方が、車両制御部50により算出された対応するトルク指令値と異なる異常トルクしか出力できない駆動異常を検知する。以後、異常トルクしか出力できない駆動MGを異常駆動MG(異常モータ)という。詳しくは、異常判定部44(制限検知部)は、左右一対の駆動ユニット21,22の駆動MGの一方に関連する異常が生じて、一方の駆動MGが出力するトルクが上限値を超えないように制限されている制限状態を検知する。異常判定部44は、制限状態が検知され、且つトルクが上限値を超えないように制限されている異常駆動MGに対応するトルク指令値が上限値よりも大きい場合に駆動異常を検知する。また、異常判定部44は、車両制御部50とトルク決定部42との通信異常を判定する。異常判定部44は、異常の判定結果を、車両制御部50へ送信する。なお、異常検出部43及び異常判定部44により、異常検知部が構成されている。 The abnormality determination unit 44 identifies (determines) an abnormality wheel, which is a wheel corresponding to the drive unit in which the abnormality has occurred, based on the abnormality detected by the abnormality detection unit 43. Then, the abnormality determination unit 44 (abnormality detection unit) can output only an abnormal torque different from the corresponding torque command value calculated by the vehicle control unit 50 by one of the drive MGs of the pair of left and right drive units 21 and 22. Is detected. Hereinafter, the drive MG capable of outputting only abnormal torque is referred to as an abnormal drive MG (abnormal motor). Specifically, the abnormality determination unit 44 (limit detection unit) prevents an abnormality related to one of the drive MGs of the pair of left and right drive units 21 and 22 from occurring, and the torque output by one drive MG does not exceed the upper limit value. Detects restricted states that are restricted to. The abnormality determination unit 44 detects a drive abnormality when the limited state is detected and the torque command value corresponding to the abnormal drive MG whose torque is restricted so as not to exceed the upper limit value is larger than the upper limit value. Further, the abnormality determination unit 44 determines a communication abnormality between the vehicle control unit 50 and the torque determination unit 42. The abnormality determination unit 44 transmits the abnormality determination result to the vehicle control unit 50. The abnormality detection unit 43 and the abnormality determination unit 44 constitute an abnormality detection unit.
 車両制御部50(上位制御部)は、電気自動車10の全般を制御する。車両制御部50は、例えばCPU、RAM、ROM、入出力インターフェース等を備えるマイクロコンピュータである。車両制御部50には、ハンドル操作量検出部51、アクセル操作量検出部52、車速検出部53等の検出値が入力される。 The vehicle control unit 50 (upper control unit) controls the entire electric vehicle 10. The vehicle control unit 50 is a microcomputer provided with, for example, a CPU, RAM, ROM, an input / output interface, and the like. Detection values of the steering wheel operation amount detection unit 51, the accelerator operation amount detection unit 52, the vehicle speed detection unit 53, and the like are input to the vehicle control unit 50.
 ハンドル操作量検出部51は、ハンドル(操舵部)の操舵角(操作量)を検出する。アクセル操作量検出部52は、アクセルペダル(アクセル操作部)の踏み込み量(操作量)を検出する。車速検出部53は、電気自動車10の速度(車速)を検出する。 The steering wheel operation amount detection unit 51 detects the steering angle (operation amount) of the steering wheel (steering unit). The accelerator operation amount detection unit 52 detects the amount of depression (operation amount) of the accelerator pedal (accelerator operation unit). The vehicle speed detection unit 53 detects the speed (vehicle speed) of the electric vehicle 10.
 車両制御部50は、検出部51~53の検出値等に基づいて、電気自動車10の各種制御を実行する。車両制御部50(指令値算出部)は、検出部51~53の検出値、及び異常判定部44の判定結果等に基づいて、各駆動ユニット21,22のトルク指令値(基本トルク値)及びトルク配分、及び各転舵ユニット31,32の転舵量指令値(基本転舵量)及び転舵量配分を算出する。すなわち、運転者(ユーザ)が意図した電気自動車10の走行状態である意図走行状態に基づいて、各駆動ユニット21,22の各駆動MGの各トルク指令値を算出する。例えば、電気自動車10が直進する場合は、駆動ユニット21,22のトルク配分を均等にし、左旋回する場合は駆動ユニット22のトルク配分を駆動ユニット21のトルク配分よりも大きくする。例えば、駆動ユニット21,22が正常である場合は、転舵ユニット31,32の転舵量配分を均等にし、駆動ユニット21,22の一方が異常である場合は、後述するように転舵ユニット31,32の転舵量配分を均等から変更する。 The vehicle control unit 50 executes various controls of the electric vehicle 10 based on the detected values of the detection units 51 to 53 and the like. The vehicle control unit 50 (command value calculation unit) has a torque command value (basic torque value) of each drive unit 21 and 22 and a torque command value (basic torque value) of each drive unit 21 and 22 based on the detection values of the detection units 51 to 53 and the determination result of the abnormality determination unit 44. The torque distribution, the steering amount command value (basic steering amount) and the steering amount distribution of each of the steering units 31 and 32 are calculated. That is, each torque command value of each drive MG of each drive unit 21 and 22 is calculated based on the intentional running state which is the running state of the electric vehicle 10 intended by the driver (user). For example, when the electric vehicle 10 goes straight, the torque distribution of the drive units 21 and 22 is equalized, and when the electric vehicle 10 turns to the left, the torque distribution of the drive unit 22 is made larger than the torque distribution of the drive unit 21. For example, when the drive units 21 and 22 are normal, the steering amount distribution of the steering units 31 and 32 is equalized, and when one of the drive units 21 and 22 is abnormal, the steering unit is described later. The steering amount distribution of 31 and 32 is changed from equal.
 トルク決定部42は、例えばCPU、RAM、ROM、入出力インターフェース等を備えるマイクロコンピュータである。トルク決定部42は、トルク指令値、トルク配分、及び上限値に基づいて最終トルク指令値を決定する。 The torque determination unit 42 is, for example, a microcomputer provided with a CPU, RAM, ROM, an input / output interface, and the like. The torque determination unit 42 determines the final torque command value based on the torque command value, the torque distribution, and the upper limit value.
 詳しくは、トルク決定部42は、各駆動ユニット21,22の各温度センサにより検出されたコイル温度に基づいて、各駆動ユニット21,22の各駆動MGが発生可能なトルクの上限値(以下、「トルク上限値」という)を制限する。詳しくは、トルク決定部42は、コイル温度がT1未満の場合には、トルク上限値を上限値Tr1とする。トルク決定部42は、コイル温度がT1以上の場合(異常判定部44により上記駆動異常が検知された場合)には、コイル温度が高くなるほどトルク上限値を小さくする。そして、トルク決定部42は、コイル温度がT2(>T1)を超えた場合(異常判定部44により上記駆動異常が検知された場合)には、トルク上限値を0とする。トルク決定部42は、トルク指令値をトルク上限値以下に制限(上限ガード)して最終トルク指令値を決定し、決定した最終トルク指令値を駆動制御部41へ送信する。なお、ここでのトルク値は絶対値を想定している。 Specifically, the torque determination unit 42 has an upper limit value of the torque that can be generated by each drive MG of each drive unit 21 and 22 based on the coil temperature detected by each temperature sensor of each drive unit 21 and 22 (hereinafter, Limit the "torque upper limit"). Specifically, when the coil temperature is less than T1, the torque determination unit 42 sets the torque upper limit value to the upper limit value Tr1. When the coil temperature is T1 or higher (when the abnormality determination unit 44 detects the drive abnormality), the torque determination unit 42 reduces the torque upper limit value as the coil temperature increases. Then, when the coil temperature exceeds T2 (> T1) (when the abnormality determination unit 44 detects the drive abnormality), the torque determination unit 42 sets the torque upper limit value to 0. The torque determination unit 42 limits the torque command value to the torque upper limit value or less (upper limit guard), determines the final torque command value, and transmits the determined final torque command value to the drive control unit 41. The torque value here is assumed to be an absolute value.
 また、電流センサの所定異常が生じた場合は、電流が誤って検出されて駆動MGが発生するトルクが急変するおそれがある。所定異常としては、例えば電流センサに関する配線の断線や、電流センサの短絡、電流センサのゲイン異常等がある。そこで、トルク決定部42は、電流センサの所定異常が検知された場合(異常判定部44により上記駆動異常が検知された場合)に、所定異常が検知された場合よりも前の所定期間におけるトルク指令値を所定度合小さくした最終トルク指令値に決定する。最終トルク指令値は、例えばトルク指令値を1/2にした値とする。なお、トルク指令値を1/3にした値や、トルク指令値から所定値を引いた値を採用することもできる。 In addition, if a predetermined abnormality occurs in the current sensor, the current may be erroneously detected and the torque generated by the drive MG may change suddenly. Predetermined abnormalities include, for example, disconnection of wiring related to the current sensor, short circuit of the current sensor, gain abnormality of the current sensor, and the like. Therefore, when the torque determination unit 42 detects a predetermined abnormality of the current sensor (when the abnormality determination unit 44 detects the drive abnormality), the torque determination unit 42 torques in a predetermined period prior to the detection of the predetermined abnormality. The final torque command value is determined by reducing the command value by a predetermined degree. The final torque command value is, for example, a value obtained by halving the torque command value. It should be noted that a value obtained by reducing the torque command value to 1/3 or a value obtained by subtracting a predetermined value from the torque command value can also be adopted.
 また、回転角センサに異常が生じた場合は、駆動MGを回転角に応じて適切に制御することができなくなり、駆動MGが発生するトルクが急変するおそれがある。そこで、トルク決定部42は、回転角センサの異常が検知された場合(異常判定部44により上記駆動異常が検知された場合)に、異常が検知された場合よりも前の所定期間におけるトルク指令値を所定度合小さくした最終トルク指令値に決定する。最終トルク指令値は、例えばトルク指令値を1/4にした値とする。なお、トルク指令値を0にすることもできる。 Further, if an abnormality occurs in the rotation angle sensor, the drive MG cannot be appropriately controlled according to the rotation angle, and the torque generated by the drive MG may change suddenly. Therefore, when the torque determination unit 42 detects an abnormality in the rotation angle sensor (when the abnormality determination unit 44 detects the drive abnormality), the torque command unit 42 gives a torque command in a predetermined period before the abnormality is detected. The final torque command value is determined by reducing the value by a predetermined degree. The final torque command value is, for example, a value obtained by halving the torque command value. The torque command value can also be set to 0.
 駆動制御部41は、最終トルク指令値に基づいて各駆動ユニット21,22の各INVの駆動状態を制御することにより、各駆動ユニット21,22の各駆動MGの駆動及び発電を制御する。駆動制御部41は、各駆動ユニット21,22において、各電流センサにより検出された各駆動MGの各相の電流、及び各回転角センサにより検出された各駆動MGの回転角に基づいて、各駆動MGが発生するトルクが最終トルク指令値になるように、各INVの駆動状態を制御する。すなわち、車両制御部50により算出された各トルク指令値、及びトルク決定部42により決定された各最終トルク指令値に基づいて、各駆動ユニット21,22の各駆動MGを駆動させる。 The drive control unit 41 controls the drive and power generation of each drive MG of each drive unit 21 and 22 by controlling the drive state of each INV of each drive unit 21 and 22 based on the final torque command value. In each drive unit 21 and 22, each drive control unit 41 is based on the current of each phase of each drive MG detected by each current sensor and the rotation angle of each drive MG detected by each rotation angle sensor. The drive state of each INV is controlled so that the torque generated by the drive MG becomes the final torque command value. That is, each drive MG of each drive unit 21 and 22 is driven based on each torque command value calculated by the vehicle control unit 50 and each final torque command value determined by the torque determination unit 42.
 転舵量決定部46は、例えばCPU、RAM、ROM、入出力インターフェース等を備えるマイクロコンピュータである。 The steering amount determination unit 46 is, for example, a microcomputer provided with a CPU, RAM, ROM, an input / output interface, and the like.
 転舵量決定部46は、異常判定部44により上記駆動異常が検知されていない場合に、転舵量指令値及び転舵量配分に基づいて最終転舵量指令値を決定(算出)する。すなわち、転舵量決定部46は、異常判定部44により上記駆動異常が検知されていない場合に、車両制御部50により算出された各トルク指令値及び意図走行状態に基づいて各転舵ユニット31,32の各最終転舵量指令値(各転舵量)を決定する。詳しくは、図2に示すように、転舵量決定部46は、例えば前直進時に転舵ユニット31,32の各最終転舵量指令値、すなわち車輪11,12の各転舵量を0に決定する。転舵量決定部46は、例えば前左旋回時に転舵ユニット31,32の各最終転舵量指令値を共通の正の値に決定する。転舵量決定部46は、例えば前右旋回時に転舵ユニット31,32の各最終転舵量指令値を共通の負の値に決定する。なお、細い矢印は、各車輪に作用するトルクを示し、駆動輪を黒塗りで示し、従動輪を白抜きで示している(以降においても同様)。転舵量決定部46及び車両制御部50により、転舵量算出部が構成されている。 When the drive abnormality is not detected by the abnormality determination unit 44, the steering amount determination unit 46 determines (calculates) the final steering amount command value based on the steering amount command value and the steering amount distribution. That is, when the driving abnormality is not detected by the abnormality determination unit 44, the steering amount determining unit 46 determines each steering unit 31 based on each torque command value calculated by the vehicle control unit 50 and the intended traveling state. , 32 each final steering amount command value (each steering amount) is determined. Specifically, as shown in FIG. 2, the steering amount determining unit 46 sets the final steering amount command values of the steering units 31 and 32, that is, the steering amounts of the wheels 11 and 12, to 0 when traveling straight ahead, for example. decide. The steering amount determining unit 46 determines, for example, the final steering amount command values of the steering units 31 and 32 to a common positive value when turning forward and left. The steering amount determining unit 46 determines, for example, the final steering amount command values of the steering units 31 and 32 to a common negative value when turning forward and to the right. The thin arrows indicate the torque acting on each wheel, the driving wheels are shown in black, and the driven wheels are shown in white (the same applies hereinafter). The steering amount determination unit 46 and the vehicle control unit 50 constitute a steering amount calculation unit.
 ここで、運転者が電気自動車10を前直進(直進)させることを意図している場合に、例えば車輪12に対応する駆動MG(異常駆動MG)がトルク指令値よりも小さい異常トルクしか出力できなくなった場合は、電気自動車10が異常駆動MGと左右同じ側へ旋回しようとする。例えば、異常駆動MGが右側の車輪12に対応する駆動MGである場合は、電気自動車10は異常駆動MGと同じ右側へ旋回しようとする。 Here, when the driver intends to make the electric vehicle 10 go straight forward (straight ahead), for example, the drive MG (abnormal drive MG) corresponding to the wheel 12 can output only an abnormal torque smaller than the torque command value. When it disappears, the electric vehicle 10 tries to turn to the same side as the abnormal drive MG. For example, when the abnormal drive MG is a drive MG corresponding to the wheel 12 on the right side, the electric vehicle 10 tries to turn to the same right side as the abnormal drive MG.
 そこで、図3に示すように、転舵量決定部46は、異常判定部44により上記駆動異常が検知された場合に、異常駆動MGを除く駆動MGに対応するトルク指令値、上記異常トルク、及び意図走行状態に基づいて、左右一対の転舵ユニット31,32の一方の転舵量を第1転舵量として算出し、且つ他方の転舵量を第1転舵量の絶対値よりも絶対値が小さい第2転舵量として算出する。なお、細い矢印の長さは各車輪に作用するトルクの大きさを示し、異常輪を網掛けで示している(以降においても同様)。 Therefore, as shown in FIG. 3, when the abnormality determining unit 44 detects the driving abnormality, the steering amount determining unit 46 determines the torque command value corresponding to the driving MG excluding the abnormal driving MG, the abnormal torque, and the above-mentioned abnormal torque. And, based on the intended running state, one of the pair of left and right steering units 31 and 32 is calculated as the first steering amount, and the other steering amount is larger than the absolute value of the first steering amount. It is calculated as the second steering amount with a small absolute value. The length of the thin arrow indicates the magnitude of the torque acting on each wheel, and the abnormal wheel is shaded (the same applies hereinafter).
 詳しくは、転舵量決定部46は、意図走行状態が直進であり、且つ異常判定部44により駆動異常が検知され、且つ異常トルクが異常駆動MGに対応するトルク指令値よりも小さい場合に、異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び意図走行状態に基づいて、異常駆動MGと左右同じ側の転舵ユニットの転舵量である第1転舵量を異常駆動MGと左右逆側へ車輪を向ける転舵量にする。例えば、異常駆動MGが右側の車輪12に対応する駆動MGである場合は、異常駆動MGと同じ右側の転舵ユニット32の転舵量である第1転舵量を、異常駆動MGと逆の左側へ車輪12を向ける正の転舵量にする。これにより、異常駆動MGと左右同じ側へ旋回しようとする電気自動車10を、直進に近付ける。すなわち、電気自動車10の走行状態を意図走行状態に近付ける。なお、異常駆動MGと左右逆側とは、進行方向を基準にして左右逆側であり、例えば前直進且つ右の駆動MGが異常駆動MGである場合は車輪12の前部を左に向ける。さらに、転舵量決定部46は、異常駆動MGと左右逆側の転舵ユニット31の転舵量である第2転舵量を0にする。すなわち、異常駆動MGと左右逆側の転舵ユニット31を、駆動異常が検知されていない場合と同様に制御する。 Specifically, when the intentional running state is straight, the abnormality determination unit 44 detects a drive abnormality, and the abnormality torque is smaller than the torque command value corresponding to the abnormality drive MG, the steering amount determination unit 46 has a steering amount determination unit 46. Based on the torque command value, abnormal torque, and intended driving state corresponding to the drive MG excluding the abnormal drive MG, the first steering amount, which is the steering amount of the steering unit on the same side as the abnormal drive MG, is abnormally driven. Set the steering amount so that the wheels are directed to the opposite side of the MG. For example, when the abnormal drive MG is a drive MG corresponding to the right wheel 12, the first steering amount, which is the same steering amount of the right steering unit 32 as the abnormal drive MG, is opposite to that of the abnormal drive MG. Set the steering amount to positive so that the wheel 12 is directed to the left side. As a result, the electric vehicle 10 that is about to turn to the same side as the abnormal drive MG is brought closer to straight ahead. That is, the traveling state of the electric vehicle 10 is brought closer to the intended traveling state. The abnormally driven MG and the left and right opposite sides are opposite to each other with respect to the traveling direction. For example, when the driving MG is straight ahead and the right driving MG is the abnormal driving MG, the front portion of the wheel 12 is turned to the left. Further, the steering amount determining unit 46 sets the second steering amount, which is the steering amount of the steering unit 31 on the opposite side to the abnormal drive MG, to 0. That is, the steering unit 31 on the opposite side to the abnormal drive MG is controlled in the same manner as when no drive abnormality is detected.
 また、運転者が電気自動車10を旋回(前左旋回、前右旋回)させることを意図している場合に、左右の一方の駆動MG(異常駆動MG)がトルク指令値よりも小さい異常トルクしか出力できなくなった場合は、運転者が意図した電気自動車10の旋回軌道(進行方向)から電気自動車10がずれる。 Further, when the driver intends to turn the electric vehicle 10 (front left turn, front right turn), one of the left and right drive MGs (abnormal drive MG) has an abnormal torque smaller than the torque command value. If only the output is possible, the electric vehicle 10 deviates from the turning trajectory (traveling direction) of the electric vehicle 10 intended by the driver.
 そこで、図3に示すように、転舵量決定部46は、意図走行状態が旋回であり、且つ異常判定部44により駆動異常が検知され、且つ異常トルクが異常駆動MGに対応するトルク指令値よりも小さい場合に、異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び意図走行状態に基づいて、異常駆動MGと左右逆側の転舵ユニットの転舵量である第1転舵量を旋回に対応する転舵量にする。すなわち、電気自動車10の走行状態を意図走行状態に近付ける。例えば、前左旋回時に異常駆動MGが右側の車輪12に対応する駆動MGである場合は、異常駆動MGと逆の左側の転舵ユニット31の転舵量である第1転舵量を、左旋回に対応する正の転舵量にする。また、前右旋回時に異常駆動MGが右側の車輪12に対応する駆動MGである場合は、異常駆動MGと逆の左側の転舵ユニット31の転舵量である第1転舵量を、右旋回に対応する負の転舵量にする。さらに、転舵量決定部46は、異常駆動MGと左右同じ側の転舵ユニット32の転舵量である第2転舵量を0(第1転舵量の絶対値よりも絶対値が小さい転舵量)にする。これにより、第2転舵量が電気自動車10の走行状態に与える影響を抑制しつつ、第1転舵量の調節により電気自動車10の走行状態を細かく制御する。 Therefore, as shown in FIG. 3, in the steering amount determination unit 46, the intended traveling state is turning, the drive abnormality is detected by the abnormality determination unit 44, and the abnormal torque is the torque command value corresponding to the abnormal drive MG. When it is smaller than, it is the steering amount of the steering unit on the left and right opposite sides of the abnormal drive MG based on the torque command value, the abnormal torque, and the intended running state corresponding to the drive MG excluding the abnormal drive MG. Set the steering amount to the steering amount corresponding to turning. That is, the traveling state of the electric vehicle 10 is brought closer to the intended traveling state. For example, when the abnormal drive MG is the drive MG corresponding to the right wheel 12 when turning forward and left, the first steering amount, which is the steering amount of the left steering unit 31 opposite to the abnormal drive MG, is turned left. Set the amount of steering to be positive corresponding to the number of times. When the abnormal drive MG is the drive MG corresponding to the right wheel 12 when turning forward and right, the first steering amount, which is the steering amount of the left steering unit 31 opposite to the abnormal drive MG, is set. Set the amount of steering to a negative value corresponding to a right turn. Further, the steering amount determining unit 46 sets the second steering amount, which is the steering amount of the steering unit 32 on the same side as the abnormal drive MG, to 0 (the absolute value is smaller than the absolute value of the first steering amount). The amount of steering). As a result, the traveling state of the electric vehicle 10 is finely controlled by adjusting the first steering amount while suppressing the influence of the second steering amount on the traveling state of the electric vehicle 10.
 また、一方の駆動MGが出力するトルクが上限値を超えないように制限されている制限状態であっても、トルク指令値が上限値よりも小さい場合は、異常駆動MGはトルク指令値のトルクを出力することができる。そこで、転舵量決定部46は、異常判定部44により制限状態が検知され、且つトルクが上限値を超えないように制限されている異常駆動MGに対応するトルク指令値が上限値よりも小さい場合に、車両制御部50により算出された各トルク指令値及び意図走行状態に基づいて、各転舵ユニット31,32の各最終転舵量指令値を算出する。これにより、電気自動車10を意図走行状態で走行させる。 Further, even in the limited state in which the torque output by one of the drive MGs is restricted so as not to exceed the upper limit value, if the torque command value is smaller than the upper limit value, the abnormal drive MG is the torque of the torque command value. Can be output. Therefore, in the steering amount determination unit 46, the torque command value corresponding to the abnormal drive MG in which the restricted state is detected by the abnormality determination unit 44 and the torque is restricted so as not to exceed the upper limit value is smaller than the upper limit value. In this case, the final steering amount command values of the steering units 31 and 32 are calculated based on the torque command values calculated by the vehicle control unit 50 and the intended traveling state. As a result, the electric vehicle 10 is driven in the intended traveling state.
 そして、転舵制御部45は、各転舵ユニット31,32の転舵量が各最終転舵量指令値になるように、各転舵ユニット31,32の各INVの駆動状態を制御する。すなわち、転舵制御部45は、転舵量決定部46により決定(算出)された各最終転舵量指令値に基づいて、各転舵ユニット31,32を転舵させる。 Then, the steering control unit 45 controls the driving state of each INV of each steering unit 31 and 32 so that the steering amount of each steering unit 31 and 32 becomes each final steering amount command value. That is, the steering control unit 45 steers the steering units 31 and 32 based on the final steering amount command value determined (calculated) by the steering amount determining unit 46.
 図4は、異常時における駆動システムの制御の手順を示すフローチャートである。 FIG. 4 is a flowchart showing a procedure for controlling the drive system in the event of an abnormality.
 まず、異常検出部43は、各駆動ユニット21,22の異常、詳しくは各駆動ユニット21,22各電流センサ、各温度センサ、及び各回転角センサの異常を検出しているか否か判定する(S10)。この判定において、各駆動ユニット21,22の異常を検出していないと判定した場合(S10:NO)、S10の判定を再度実行する。 First, the abnormality detection unit 43 determines whether or not an abnormality in each drive unit 21 or 22, specifically, an abnormality in each current sensor, each temperature sensor, and each rotation angle sensor of each drive unit 21, 22 is detected ( S10). In this determination, if it is determined that an abnormality in each of the drive units 21 and 22 has not been detected (S10: NO), the determination in S10 is executed again.
 一方、S10の判定において、各駆動ユニット21,22の異常を検出していると判定した場合(S10:YES)、異常判定部44は異常輪を特定する(S11)。 On the other hand, when it is determined in the determination of S10 that an abnormality of each drive unit 21 or 22 is detected (S10: YES), the abnormality determination unit 44 identifies the abnormality wheel (S11).
 続いて、トルク決定部42は、異常輪に対応する異常駆動MGのトルクの上限値を設定する(S12)。図5に示すように、電流センサに異常が生じた場合はトルクの上限値をトルク指令値の1/2に設定し、回転角センサに異常が生じた場合はトルクの上限値をトルク指令値の1/4に設定し、通信異常が生じた場合はトルクの上限値を直前のトルク指令値に設定する。 Subsequently, the torque determination unit 42 sets the upper limit value of the torque of the abnormal drive MG corresponding to the abnormal wheel (S12). As shown in FIG. 5, when an abnormality occurs in the current sensor, the upper limit value of the torque is set to 1/2 of the torque command value, and when an abnormality occurs in the rotation angle sensor, the upper limit value of the torque is set to the torque command value. If a communication error occurs, set the upper limit of torque to the immediately preceding torque command value.
 続いて、ハンドル操作量検出部51はハンドルの操舵角(操作量)を検出する(S13)。アクセル操作量検出部52は、アクセルペダル(アクセル操作部)の踏み込み量(操作量)を検出する(S14)。車速検出部53は、電気自動車10の速度(車速)を検出する(S15)。 Subsequently, the steering wheel operation amount detection unit 51 detects the steering angle (operation amount) of the steering wheel (S13). The accelerator operation amount detection unit 52 detects the depression amount (operation amount) of the accelerator pedal (accelerator operation unit) (S14). The vehicle speed detection unit 53 detects the speed (vehicle speed) of the electric vehicle 10 (S15).
 続いて、車両制御部50(軌道算出部)は、電気自動車10の目標軌道を算出する(S16)。詳しくは、図6に示すように、検出したハンドル操作量と検出した車速と目標旋回半径との関係を示すグラフに基づいて、目標旋回半径(目標軌道)を算出する。なお、図6のグラフは、予め電気自動車10の仕様等に応じて設定しておくことができる。 Subsequently, the vehicle control unit 50 (track calculation unit) calculates the target track of the electric vehicle 10 (S16). Specifically, as shown in FIG. 6, the target turning radius (target trajectory) is calculated based on the graph showing the relationship between the detected steering wheel operation amount, the detected vehicle speed, and the target turning radius. The graph of FIG. 6 can be set in advance according to the specifications of the electric vehicle 10.
 続いて、車両制御部50は、算出した目標軌道及び検出したアクセル操作量に基づいて、各駆動MGの各トルク指令値を算出する(S17)。 Subsequently, the vehicle control unit 50 calculates each torque command value of each drive MG based on the calculated target trajectory and the detected accelerator operation amount (S17).
 続いて、転舵量決定部46は、算出した目標軌道に基づいて各転舵ユニット31,32の各転舵量指令値を算出する(S18)。詳しくは、電気自動車10の軌道が目標軌道になるように、各転舵ユニット31,32の各転舵量指令値を算出する。 Subsequently, the steering amount determination unit 46 calculates each steering amount command value of each steering unit 31 and 32 based on the calculated target trajectory (S18). Specifically, the steering amount command values of the steering units 31 and 32 are calculated so that the trajectory of the electric vehicle 10 becomes the target trajectory.
 続いて、トルク決定部42は、いずれかの駆動MGのトルク指令値が上限値よりも大きいか否か判定する(S19)。この判定において、全ての駆動MGのトルク指令値が上限値よりも大きくないと判定した場合(S19:NO)、トルク決定部42は各トルク指令値を各最終トルク指令値とする(S20)。転舵量決定部46は、各転舵量指令値を各最終転舵量指令値とする(S21)。その後、S13の処理から再度実行する。なお、駆動制御部41は各最終トルク指令値に基づいて各駆動ユニット21,22を制御し、転舵制御部45は各最終転舵量指令値に基づいて各転舵ユニット31,32を制御する。 Subsequently, the torque determination unit 42 determines whether or not the torque command value of any of the drive MGs is larger than the upper limit value (S19). In this determination, when it is determined that the torque command values of all the drive MGs are not larger than the upper limit value (S19: NO), the torque determination unit 42 sets each torque command value as each final torque command value (S20). The steering amount determining unit 46 sets each steering amount command value as each final steering amount command value (S21). After that, the process of S13 is executed again. The drive control unit 41 controls each drive unit 21 and 22 based on each final torque command value, and the steering control unit 45 controls each steering unit 31 and 32 based on each final steering amount command value. do.
 一方、S19の判定において、いずれかの駆動MGのトルク指令値が上限値よりも大きいと判定した場合(S19:YES)、トルク決定部42は上限値を最終トルク指令値とする(S22)。すなわち、トルク指令値を上限値で制限した値を最終トルク指令値とする(上限ガード)。 On the other hand, when it is determined in the determination of S19 that the torque command value of any of the drive MGs is larger than the upper limit value (S19: YES), the torque determination unit 42 sets the upper limit value as the final torque command value (S22). That is, the value obtained by limiting the torque command value by the upper limit value is set as the final torque command value (upper limit guard).
 続いて、転舵量決定部46は、上述したように、第1転舵量及び第2転舵量を各最終転舵量指令値とする(S23)。なお、駆動制御部41は各最終トルク指令値に基づいて各駆動ユニット21,22を制御し、転舵制御部45は各最終転舵量指令値に基づいて各転舵ユニット31,32を制御する。 Subsequently, as described above, the steering amount determining unit 46 sets the first steering amount and the second steering amount as the final steering amount command values (S23). The drive control unit 41 controls each drive unit 21 and 22 based on each final torque command value, and the steering control unit 45 controls each steering unit 31 and 32 based on each final steering amount command value. do.
 続いて、車両制御部50は、車速が0であるか否か判定する(S24)。この判定において、車速が0でないと判定した場合(S24:NO)、S13の処理から再度実行する。一方、この判定において、車速が0であると判定した場合(S24:YES)、この一連の処理を終了する(END)。 Subsequently, the vehicle control unit 50 determines whether or not the vehicle speed is 0 (S24). In this determination, if it is determined that the vehicle speed is not 0 (S24: NO), the process of S13 is executed again. On the other hand, in this determination, when it is determined that the vehicle speed is 0 (S24: YES), this series of processes is terminated (END).
 以上詳述した本実施形態は、以下の利点を有する。 The present embodiment described in detail above has the following advantages.
 ・異常判定部44は、左右一対の駆動MGの一方が、車両制御部50により算出された対応するトルク指令値と異なる異常トルクしか出力できない駆動異常を検知する。転舵量決定部46は、異常判定部44により駆動異常が検知されていない場合に、車両制御部50により算出された各トルク指令値及び意図走行状態に基づいて各転舵ユニット31,32の各転舵量を算出する。そして、転舵制御部45は、転舵量決定部46により算出された各転舵量に基づいて、各転舵ユニット31,32を転舵させる。このため、電気自動車10の走行状態が意図走行状態になるように、各転舵ユニット31,32を転舵させることができる。 The abnormality determination unit 44 detects a drive abnormality in which one of the pair of left and right drive MGs can output only an abnormal torque different from the corresponding torque command value calculated by the vehicle control unit 50. When a drive abnormality is not detected by the abnormality determination unit 44, the steering amount determination unit 46 of the steering units 31 and 32 based on each torque command value calculated by the vehicle control unit 50 and the intended traveling state. Calculate each steering amount. Then, the steering control unit 45 steers the steering units 31 and 32 based on the steering amount calculated by the steering amount determining unit 46. Therefore, the steering units 31 and 32 can be steered so that the traveling state of the electric vehicle 10 becomes the intended traveling state.
 ・転舵量決定部46は、異常判定部44により駆動異常が検知された場合に、異常トルクしか出力できない駆動MGである異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び意図走行状態に基づいて、左右一対の転舵ユニット31,32の一方の転舵量を第1転舵量として算出し且つ他方の転舵量を第1転舵量の絶対値よりも絶対値が小さい第2転舵量として算出する。そして、転舵制御部45は、転舵量決定部46により算出された各転舵量(第1転舵量及び第2転舵量)に基づいて、各転舵ユニット31,32を転舵させる。このため、異常判定部44により駆動異常が検知された場合であっても、異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び意図走行状態に基づいて、電気自動車10を意図走行状態に近付けるように各転舵ユニット31,32を転舵させることができる。 The steering amount determination unit 46 has a torque command value, an abnormal torque, and a torque command value corresponding to a drive MG excluding the abnormal drive MG, which is a drive MG that can output only an abnormal torque when a drive abnormality is detected by the abnormality determination unit 44. Based on the intended driving state, one of the pair of left and right steering units 31 and 32 is calculated as the first steering amount, and the other steering amount is an absolute value rather than the absolute value of the first steering amount. Is calculated as the second steering amount with a small value. Then, the steering control unit 45 steers the steering units 31 and 32 based on the steering amounts (first steering amount and second steering amount) calculated by the steering amount determination unit 46. Let me. Therefore, even when a drive abnormality is detected by the abnormality determination unit 44, the electric vehicle 10 is intended based on the torque command value, the abnormal torque, and the intended running state corresponding to the drive MG excluding the abnormal drive MG. The steering units 31 and 32 can be steered so as to approach the traveling state.
 さらに、第2転舵量の絶対値は、第1転舵量の絶対値よりも小さい。このため、第2転舵量が電気自動車10の走行状態に与える影響を抑制して、第1転舵量の調節により電気自動車10の走行状態を細かく制御し易くなる。したがって、左右の車輪11,12(駆動輪)のうち一方の駆動輪の駆動MGに異常が生じた場合であっても、ユーザが意図した走行状態で電気自動車10を走行させ易くすることができる。 Furthermore, the absolute value of the second steering amount is smaller than the absolute value of the first steering amount. Therefore, the influence of the second steering amount on the traveling state of the electric vehicle 10 is suppressed, and the traveling state of the electric vehicle 10 can be easily controlled by adjusting the first steering amount. Therefore, even if an abnormality occurs in the drive MG of one of the left and right wheels 11 and 12 (driving wheels), it is possible to easily drive the electric vehicle 10 in the traveling state intended by the user. ..
 ・転舵量決定部46は、意図走行状態が直進であり、且つ異常判定部44により駆動異常が検知され、且つ異常トルクが異常駆動MGに対応するトルク指令値よりも小さい場合に、異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び意図走行状態に基づいて、図3の前直進に示すように、異常駆動MGと左右同じ側の転舵ユニット32の転舵量である第1転舵量を異常駆動MGと左右逆側へ車輪12を向ける転舵量にする。このため、異常駆動MGと左右同じ側へ旋回しようとする電気自動車10を、直進に近付けることができる。 The steering amount determination unit 46 drives abnormally when the intended traveling state is straight, a drive abnormality is detected by the abnormality determination unit 44, and the abnormal torque is smaller than the torque command value corresponding to the abnormal drive MG. Based on the torque command value, abnormal torque, and intended running state corresponding to the drive MG excluding the MG, as shown in the forward straight direction in FIG. 3, the steering amount of the steering unit 32 on the same side as the abnormal drive MG is used. A certain first steering amount is set to a steering amount in which the wheels 12 are directed to the left and right opposite sides of the abnormal drive MG. Therefore, the electric vehicle 10 that intends to turn to the same side as the abnormal drive MG can be brought closer to straight ahead.
 ・転舵量決定部46は、図3の前直進に示すように、異常駆動MGと左右逆側の転舵ユニット31の転舵量である第2転舵量を0にする。このため、異常駆動MGと左右逆側の転舵ユニット31を、駆動異常が検知されていない場合と同様に制御することができるとともに、第2転舵量が電気自動車10の走行状態に与える影響を抑制して、第1転舵量の調節により電気自動車10の走行状態を細かく制御し易くなる。 -As shown in the forward straight movement in FIG. 3, the steering amount determining unit 46 sets the second steering amount, which is the steering amount of the steering unit 31 on the opposite side to the abnormal drive MG, to 0. Therefore, the steering unit 31 on the opposite side of the abnormal drive MG can be controlled in the same manner as when no drive abnormality is detected, and the influence of the second steering amount on the running state of the electric vehicle 10. By adjusting the first steering amount, it becomes easier to finely control the traveling state of the electric vehicle 10.
 ・図3の前左旋回及び前右旋回に示すように、転舵量決定部46は、意図走行状態が旋回であり、且つ異常判定部44により駆動異常が検知され、且つ異常トルクが異常駆動MGに対応するトルク指令値よりも小さい場合に、異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び意図走行状態に基づいて、異常駆動MGと左右逆側の転舵ユニット31の転舵量である第1転舵量を旋回に対応する転舵量にする。このため、ユーザが意図した電気自動車10の旋回軌道からずれようとする電気自動車10を、ユーザが意図した電気自動車10の旋回軌道に近付けることができる。 As shown in the front left turn and the front right turn in FIG. 3, the steering amount determination unit 46 is in the intentional running state of turning, the abnormality determination unit 44 detects a drive abnormality, and the abnormality torque is abnormal. When it is smaller than the torque command value corresponding to the drive MG, the steering unit on the left and right opposite sides of the abnormal drive MG is based on the torque command value corresponding to the drive MG excluding the abnormal drive MG, the abnormal torque, and the intended running state. The first steering amount, which is the steering amount of 31, is set to the steering amount corresponding to the turning. Therefore, the electric vehicle 10 that is about to deviate from the turning trajectory of the electric vehicle 10 intended by the user can be brought closer to the turning trajectory of the electric vehicle 10 intended by the user.
 さらに、転舵量決定部46は、異常駆動MGと左右同じ側の転舵ユニット32の転舵量である第2転舵量を0にする。このため、第2転舵量が電気自動車10の走行状態に与える影響を抑制して、第1転舵量の調節により電気自動車10の走行状態を細かく制御し易くなる。 Further, the steering amount determining unit 46 sets the second steering amount, which is the steering amount of the steering unit 32 on the same side as the abnormal drive MG, to 0. Therefore, the influence of the second steering amount on the traveling state of the electric vehicle 10 is suppressed, and the traveling state of the electric vehicle 10 can be easily controlled by adjusting the first steering amount.
 ・異常判定部44は、左右一対の駆動MGの一方に関連する異常が生じて、一方の駆動MGが出力するトルクが上限値を超えないように制限されている制限状態を検知する。制限状態では、トルク指令値が上限値よりも大きい場合に、出力するトルクが上限値を超えないように制限される。そこで、異常判定部44は、異常判定部44により制限状態が検知され、且つトルクが上限値を超えないように制限されている駆動MGに対応するトルク指令値が上限値よりも大きい場合に駆動異常を検知する。そして、転舵量決定部46は、異常判定部44により駆動異常が検知された場合に、上述したように、異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び意図走行状態に基づいて、左右一対の転舵ユニット31,32の一方の転舵量を第1転舵量として算出し且つ他方の転舵量を第1転舵量の絶対値よりも絶対値が小さい第2転舵量として算出する。したがって、電気自動車10の走行状態を意図走行状態に近付けることができる。 The abnormality determination unit 44 detects a restricted state in which an abnormality related to one of the pair of left and right drive MGs occurs and the torque output by one of the drive MGs is restricted so as not to exceed the upper limit value. In the limited state, when the torque command value is larger than the upper limit value, the output torque is limited so as not to exceed the upper limit value. Therefore, the abnormality determination unit 44 is driven when the restriction state is detected by the abnormality determination unit 44 and the torque command value corresponding to the drive MG whose torque is restricted so as not to exceed the upper limit value is larger than the upper limit value. Detect anomalies. Then, when a drive abnormality is detected by the abnormality determination unit 44, the steering amount determination unit 46 determines the torque command value, the abnormal torque, and the intended running state corresponding to the drive MG excluding the abnormal drive MG, as described above. The steering amount of one of the pair of left and right steering units 31 and 32 is calculated as the first steering amount, and the steering amount of the other is smaller than the absolute value of the first steering amount. 2 Calculated as the amount of steering. Therefore, the traveling state of the electric vehicle 10 can be brought closer to the intended traveling state.
 ・制限状態であっても、トルク指令値が上限値よりも小さい場合は、トルクが上限値を超えないように制限されている駆動MGであっても、トルク指令値のトルクを出力することができる。この点、転舵量決定部46は、異常判定部44により制限状態が検知され、且つトルクが上限値を超えないように制限されている駆動MGに対応するトルク指令値が上限値よりも小さい場合に、車両制御部50により算出された各トルク指令値及び意図走行状態に基づいて各転舵ユニット31,32の各転舵量を算出する。したがって、電気自動車10を意図走行状態で走行させることができる。 -Even in the limited state, if the torque command value is smaller than the upper limit value, the torque of the torque command value can be output even if the drive MG is restricted so that the torque does not exceed the upper limit value. can. In this regard, in the steering amount determination unit 46, the torque command value corresponding to the drive MG whose restricted state is detected by the abnormality determination unit 44 and whose torque is restricted so as not to exceed the upper limit value is smaller than the upper limit value. In this case, each steering amount of each steering unit 31 and 32 is calculated based on each torque command value calculated by the vehicle control unit 50 and the intended traveling state. Therefore, the electric vehicle 10 can be driven in the intended traveling state.
 なお、上記の実施形態を、以下のように変更して実施することもできる。上記実施形態と同一の部分については、同一の符号を付すことにより説明を省略する。 Note that the above embodiment can be modified and implemented as follows. The same parts as those in the above embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 ・図7の前直進に示すように、転舵量決定部46は、意図走行状態が直進であり、且つ異常判定部44により駆動異常が検知され、且つ異常トルクが異常駆動MGに対応するトルク指令値よりも小さい場合に、異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び意図走行状態に基づいて、異常駆動MGと左右逆側の転舵ユニット31の転舵量である第1転舵量を異常駆動MGと左右逆側へ車輪11を向ける転舵量にしてもよい。これにより、異常駆動MGと左右同じ側へ旋回しようとする電気自動車10を、直進に近付けることができる。そして、転舵量決定部46は、異常駆動MGと左右同じ側の転舵ユニット32の転舵量である第2転舵量を0(第1転舵量の絶対値よりも絶対値が小さい転舵量)にする。これにより、異常駆動MGと左右同じ側の転舵ユニット32を、駆動異常が検知されていない場合と同様に制御することができるとともに、第2転舵量が電気自動車10の走行状態に与える影響を抑制して、第1転舵量の調節により電気自動車10の走行状態を細かく制御し易くなる。 As shown in the forward straight direction of FIG. 7, in the steering amount determination unit 46, the intended traveling state is straight, the drive abnormality is detected by the abnormality determination unit 44, and the abnormal torque corresponds to the abnormal drive MG. When it is smaller than the command value, the steering amount of the steering unit 31 on the opposite side to the abnormal drive MG is based on the torque command value, the abnormal torque, and the intended running state corresponding to the drive MG excluding the abnormal drive MG. A certain first steering amount may be a steering amount that directs the wheels 11 to the left and right opposite sides of the abnormal drive MG. As a result, the electric vehicle 10 that intends to turn to the same side as the abnormal drive MG can be brought closer to straight ahead. Then, the steering amount determining unit 46 sets the second steering amount, which is the steering amount of the steering unit 32 on the same side as the abnormal drive MG, to 0 (the absolute value is smaller than the absolute value of the first steering amount). The amount of steering). As a result, the steering unit 32 on the same side as the abnormal drive MG can be controlled in the same manner as when no drive abnormality is detected, and the influence of the second steering amount on the running state of the electric vehicle 10. By adjusting the first steering amount, it becomes easier to finely control the traveling state of the electric vehicle 10.
 ・図7の前左旋回及び前右旋回に示すように、転舵量決定部46は、意図走行状態が旋回であり、且つ異常判定部44により駆動異常が検知され、且つ異常トルクが異常駆動MGに対応するトルク指令値よりも小さい場合に、異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び意図走行状態に基づいて、異常駆動MGと左右同じ側の転舵ユニット32の転舵量である第1転舵量を旋回に対応する転舵量にしてもよい。これにより、ユーザが意図した電気自動車10の旋回軌道からずれようとする電気自動車10を、ユーザが意図した電気自動車10の旋回軌道に近付けることができる。 As shown in the front left turn and the front right turn in FIG. 7, the steering amount determination unit 46 is in the intentional running state of turning, the abnormality determination unit 44 detects a drive abnormality, and the abnormality torque is abnormal. When it is smaller than the torque command value corresponding to the drive MG, the steering unit on the same side as the abnormal drive MG on the left and right sides based on the torque command value corresponding to the drive MG excluding the abnormal drive MG, the abnormal torque, and the intended running state. The first steering amount, which is the steering amount of 32, may be the steering amount corresponding to the turning. As a result, the electric vehicle 10 that is about to deviate from the turning trajectory of the electric vehicle 10 intended by the user can be brought closer to the turning trajectory of the electric vehicle 10 intended by the user.
 ・図8の前右旋回に示すように、転舵量決定部46は、意図走行状態が旋回であり、且つ異常判定部44により駆動異常が検知され、且つ意図走行状態が異常トルクしか出力できない駆動MGである異常駆動MGと左右同じ側への旋回である場合に、各転舵ユニット31,32の各転舵量を0にしてもよい。こうした構成によれば、各転舵ユニット31,32は各車輪11,12を電気自動車10の正面に向けて、電気自動車10を直進させようとする。しかし、左右一対の駆動MGの一方が、車両制御部50により算出された対応するトルク指令値よりも小さい異常トルクしか出力できないため、電気自動車10は異常駆動MGと左右同じ側(図8では右側)へ旋回しようとする。したがって、各転舵ユニット31,32が電気自動車10の走行状態に与える影響を抑制しつつ、左右の駆動MGが出力するトルクの差を利用して、ユーザが意図した旋回の方向へ電気自動車10を旋回させることができる。 As shown in the front right turn in FIG. 8, the steering amount determining unit 46 outputs only an abnormal torque in the intended traveling state when the intended traveling state is turning, a drive abnormality is detected by the abnormality determination unit 44, and the intended traveling state is an abnormal torque. When turning to the same side as the abnormal drive MG, which is a drive MG that cannot be performed, the steering amount of each of the steering units 31 and 32 may be set to 0. According to such a configuration, the steering units 31 and 32 try to drive the electric vehicle 10 straight with the wheels 11 and 12 facing the front of the electric vehicle 10. However, since one of the pair of left and right drive MGs can output only an abnormal torque smaller than the corresponding torque command value calculated by the vehicle control unit 50, the electric vehicle 10 is on the same side as the abnormal drive MG (right side in FIG. 8). ) Try to turn. Therefore, while suppressing the influence of each of the steering units 31 and 32 on the running state of the electric vehicle 10, the electric vehicle 10 uses the difference in torque output by the left and right drive MGs in the direction of turning intended by the user. Can be swiveled.
 さらに、車両制御部50は、意図走行状態が旋回であり、且つ異常判定部44により駆動異常が検知され、且つ意図走行状態が異常駆動MGと左右同じ側への旋回である場合に、異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び意図走行状態に基づいて、異常駆動MGを除く駆動MG(図8では車輪11の駆動MG)の各トルク指令値を算出してもよい。詳しくは、電気自動車10の旋回軌道をユーザが意図した旋回軌道に近付けるように、車輪11の駆動MGのトルク指令値を算出する。こうした構成によれば、各転舵ユニット31,32の各転舵量を0にして各転舵ユニット31,32が電気自動車10の走行状態に与える影響を抑制しつつ、駆動MGのトルクの制御によっても、電気自動車10の旋回軌道をユーザが意図した旋回軌道に近付けることができる。 Further, the vehicle control unit 50 is abnormally driven when the intended driving state is turning, the abnormality determining unit 44 detects a driving abnormality, and the intended driving state is turning to the same side as the abnormal driving MG. Even if each torque command value of the drive MG excluding the abnormal drive MG (the drive MG of the wheel 11 in FIG. 8) is calculated based on the torque command value corresponding to the drive MG excluding the MG, the abnormal torque, and the intended running state. good. Specifically, the torque command value of the drive MG of the wheel 11 is calculated so that the turning trajectory of the electric vehicle 10 approaches the turning trajectory intended by the user. According to such a configuration, the torque of the drive MG is controlled while the steering amount of the steering units 31 and 32 is set to 0 to suppress the influence of the steering units 31 and 32 on the running state of the electric vehicle 10. Also, the turning trajectory of the electric vehicle 10 can be brought closer to the turning trajectory intended by the user.
 ・駆動異常が発生すると、電気自動車10が走行する軌道が目標軌道からずれる。電気自動車10が第1速度(例えば40[km/h])よりも高い速度で走行している場合に電気自動車10の軌道を目標軌道に急激に近付けると、電気自動車10の運転者に過大な遠心力が作用するおそれがある。 ・ When a drive abnormality occurs, the track on which the electric vehicle 10 travels deviates from the target track. When the electric vehicle 10 is traveling at a speed higher than the first speed (for example, 40 [km / h]), if the track of the electric vehicle 10 is suddenly brought close to the target track, it is excessive for the driver of the electric vehicle 10. Centrifugal force may act.
 そこで、図9に示すように、車両制御部50は、意図走行状態が旋回であり、且つ異常判定部44により駆動異常が検知され、且つ電気自動車10の速度が第1速度よりも高い場合に、異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び目標軌道に基づいて、電気自動車10が走行する軌道を目標軌道よりも外側から徐々に目標軌道に近付けるように異常駆動MGを除く駆動MGの各トルク指令値を算出してもよい。また、転舵量決定部46は、意図走行状態が旋回であり、且つ異常判定部44により駆動異常が検知され、且つ電気自動車10の速度が第1速度よりも高い場合に、異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び目標軌道に基づいて、電気自動車10が走行する軌道を目標軌道よりも外側から徐々に目標軌道に近付けるように各転舵ユニット31,32の各転舵量を算出してもよい。これにより、電気自動車10の運転者に過大な遠心力が作用することを抑制することができ、乗り心地が低下することを抑制することができる。 Therefore, as shown in FIG. 9, the vehicle control unit 50 is in the case where the intended traveling state is turning, the abnormality determination unit 44 detects a drive abnormality, and the speed of the electric vehicle 10 is higher than the first speed. Based on the torque command value, abnormal torque, and target trajectory corresponding to the drive MG excluding the abnormal drive MG, the abnormal drive MG so that the track on which the electric vehicle 10 travels gradually approaches the target track from the outside of the target track. Each torque command value of the drive MG excluding the above may be calculated. Further, when the intentional running state is turning, the abnormality determination unit 44 detects a drive abnormality, and the speed of the electric vehicle 10 is higher than the first speed, the steering amount determination unit 46 performs the abnormal drive MG. Based on the torque command value, abnormal torque, and target trajectory corresponding to the drive MG to be excluded, the steering units 31 and 32 of the steering units 31 and 32 so as to gradually bring the track on which the electric vehicle 10 travels closer to the target track from the outside of the target track. Each steering amount may be calculated. As a result, it is possible to suppress the action of an excessive centrifugal force on the driver of the electric vehicle 10, and it is possible to suppress a decrease in riding comfort.
 ・駆動異常が発生すると、電気自動車10が走行する軌道が目標軌道からずれる。電気自動車10の速度が上記第1速度よりも低く且つ第1速度よりも低い第2速度(例えば10[km/h])よりも高い場合は、電気自動車10の軌道を徐々に目標軌道に近付けなくても、電気自動車10の運転者に過大な遠心力は作用しにくい。 ・ When a drive abnormality occurs, the track on which the electric vehicle 10 travels deviates from the target track. When the speed of the electric vehicle 10 is lower than the first speed and higher than the second speed (for example, 10 [km / h]) lower than the first speed, the track of the electric vehicle 10 is gradually brought closer to the target track. Even without it, it is difficult for an excessive centrifugal force to act on the driver of the electric vehicle 10.
 そこで、図10に示すように、車両制御部50は、意図走行状態が旋回であり、且つ異常判定部44により駆動異常が検知され、且つ電気自動車10の速度が第1速度よりも低く且つ第1速度よりも低い第2速度よりも高い場合に、異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び目標軌道に基づいて、電気自動車10が走行する軌道が目標軌道の外側及び内側になることを許容しつつ、電気自動車10が走行する軌道を目標軌道に近付けるように異常駆動MGを除く駆動MGの各トルク指令値を算出してもよい。また、転舵量決定部46は、意図走行状態が旋回であり、且つ異常判定部44により駆動異常が検知され、且つ電気自動車10の速度が第1速度よりも低く且つ第2速度よりも高い場合に、異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び目標軌道に基づいて、電気自動車10が走行する軌道が目標軌道の外側及び内側になることを許容しつつ、電気自動車10が走行する軌道を目標軌道に近付けるように各転舵ユニット31,32の各転舵量を算出してもよい。これにより、電気自動車10の運転者に過大な遠心力が作用しにくい場合は、電気自動車10が走行する軌道を目標軌道に迅速に近付けることができる。 Therefore, as shown in FIG. 10, in the vehicle control unit 50, the intended traveling state is turning, the drive abnormality is detected by the abnormality determination unit 44, and the speed of the electric vehicle 10 is lower than the first speed and the first speed. When the speed is higher than the second speed, which is lower than the first speed, the track on which the electric vehicle 10 travels is outside the target track based on the torque command value, the abnormal torque, and the target track corresponding to the drive MG excluding the abnormal drive MG. And each torque command value of the drive MG excluding the abnormal drive MG may be calculated so as to bring the track on which the electric vehicle 10 travels closer to the target track while allowing the electric vehicle 10 to be inside. Further, in the steering amount determining unit 46, the intended traveling state is turning, the driving abnormality is detected by the abnormality determining unit 44, and the speed of the electric vehicle 10 is lower than the first speed and higher than the second speed. In this case, based on the torque command value, the abnormal torque, and the target trajectory corresponding to the drive MG excluding the abnormal drive MG, the electric vehicle 10 allows the track on which the electric vehicle 10 travels to be outside and inside the target track. The steering amount of each of the steering units 31 and 32 may be calculated so that the track on which the vehicle 10 travels approaches the target track. As a result, when it is difficult for an excessive centrifugal force to act on the driver of the electric vehicle 10, the track on which the electric vehicle 10 travels can be quickly brought closer to the target track.
 なお、電気自動車10の速度が第1速度よりも低く且つ第2速度よりも高い場合に、上述した電気自動車10の速度が第1速度よりも高い場合と同様の制御を実行することもできる。また、電気自動車10の速度が第1速度よりも高い場合に、電気自動車10の速度が第1速度よりも低く且つ第2速度よりも高い場合と同様の制御を実行することもできる。 When the speed of the electric vehicle 10 is lower than the first speed and higher than the second speed, the same control as when the speed of the electric vehicle 10 described above is higher than the first speed can be executed. Further, when the speed of the electric vehicle 10 is higher than the first speed, the same control as when the speed of the electric vehicle 10 is lower than the first speed and higher than the second speed can be executed.
 ・駆動異常が発生すると、電気自動車10が走行する軌道が目標軌道からずれる。電気自動車10の速度が上記第2速度よりも低い場合は、電気自動車10の運転者に作用する遠心力が小さいため、電気自動車10の速度を制御する必要性が低い。 ・ When a drive abnormality occurs, the track on which the electric vehicle 10 travels deviates from the target track. When the speed of the electric vehicle 10 is lower than the second speed, the centrifugal force acting on the driver of the electric vehicle 10 is small, so that it is not necessary to control the speed of the electric vehicle 10.
 そこで、転舵量決定部46は、意図走行状態が旋回であり、且つ異常判定部44により駆動異常が検知され、且つ電気自動車10の速度が第2速度よりも低い場合に、異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び目標軌道に基づいて、電気自動車10が走行する軌道を目標軌道に近付けるように各転舵ユニット31,32の各転舵量を算出してもよい。これにより、電気自動車10の速度を制御する必要性が低い場合は、目標軌道に基づいて異常駆動MGを除く駆動MGの各トルク指令値を算出する必要がなく、駆動システムの制御負荷を軽減することができる。なお、電気自動車10の速度が第2速度よりも低い場合に、上述した電気自動車10の速度が第1速度よりも低く且つ第2速度よりも高い場合と同様の制御を実行することもできる。 Therefore, when the intentional running state is turning, the abnormality determination unit 44 detects a drive abnormality, and the speed of the electric vehicle 10 is lower than the second speed, the steering amount determination unit 46 performs the abnormal drive MG. Based on the torque command value, abnormal torque, and target trajectory corresponding to the drive MG to be excluded, the steering amounts of the steering units 31 and 32 are calculated so as to bring the trajectory on which the electric vehicle 10 travels closer to the target trajectory. May be good. As a result, when the need to control the speed of the electric vehicle 10 is low, it is not necessary to calculate each torque command value of the drive MG excluding the abnormal drive MG based on the target trajectory, and the control load of the drive system is reduced. be able to. When the speed of the electric vehicle 10 is lower than the second speed, the same control as when the speed of the electric vehicle 10 described above is lower than the first speed and higher than the second speed can be executed.
 ・左右一対の駆動MGの双方が、各トルク指令値よりも小さい共通の所定トルクしか出力できない状態になることも考えられる。この場合は、左右一対の駆動MGが出力するトルクが大きく異ならないため、左右一対の転舵ユニット31,32の転舵量を互いに異なる転舵量として算出する必要性が低い。 -It is possible that both the pair of left and right drive MGs can output only a common predetermined torque that is smaller than each torque command value. In this case, since the torques output by the pair of left and right drive MGs do not differ significantly, it is less necessary to calculate the steering amounts of the pair of left and right steering units 31 and 32 as different steering amounts.
 そこで、異常判定部44は、左右一対の駆動MGの双方が、車両制御部50により算出された対応するトルク指令値よりも小さい共通の所定トルクしか出力できない両駆動異常を検知し、転舵量決定部46は、異常判定部44により両駆動異常が検知された場合に、上記所定トルク及び意図走行状態に基づいて各転舵ユニット31,32の各転舵量を算出してもよい。これにより、転舵量決定部46が各転舵量を算出する処理負荷を軽減することができる。 Therefore, the abnormality determination unit 44 detects both drive abnormalities in which both the left and right pair of drive MGs can output a common predetermined torque smaller than the corresponding torque command value calculated by the vehicle control unit 50, and the steering amount. When both drive abnormalities are detected by the abnormality determination unit 44, the determination unit 46 may calculate the steering amount of each of the steering units 31 and 32 based on the predetermined torque and the intended traveling state. As a result, the processing load on which the steering amount determining unit 46 calculates each steering amount can be reduced.
 ・図11に示すように、電気自動車10が後進する場合に、上記実施形態と同様の制御を実行してもよい。具体的には、転舵量決定部46は、意図走行状態が後直進であり、且つ異常判定部44により駆動異常が検知され、且つ異常トルクが異常駆動MGに対応するトルク指令値よりも小さい場合に、異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び意図走行状態に基づいて、図11の後直進に示すように、異常駆動MGと左右同じ側の転舵ユニット32の転舵量である第1転舵量を異常駆動MGと左右逆側へ車輪12を向ける転舵量にする。これにより、異常駆動MGと左右同じ側へ旋回しようとする電気自動車10を、直進に近付けることができる。なお、異常駆動MGと左右逆側とは、進行方向を基準にして左右逆側であり、例えば前直進且つ右の駆動MGが異常駆動MGである場合は車輪の前部を左に向け、後直進且つ右の駆動MGが異常駆動MGである場合は車輪の後部を左に向ける。さらに、転舵量決定部46は、図11の後直進に示すように、異常駆動MGと左右逆側の転舵ユニット31の転舵量である第2転舵量を0(第1転舵量の絶対値よりも絶対値が小さい転舵量)にする。これにより、異常駆動MGと左右逆側の転舵ユニット31を、駆動異常が検知されていない場合と同様に制御することができるとともに、第2転舵量が電気自動車10の走行状態に与える影響を抑制して、第1転舵量の調節により電気自動車10の走行状態を細かく制御し易くなる。 -As shown in FIG. 11, when the electric vehicle 10 moves backward, the same control as in the above embodiment may be executed. Specifically, in the steering amount determination unit 46, the intended traveling state is straight backward, the drive abnormality is detected by the abnormality determination unit 44, and the abnormal torque is smaller than the torque command value corresponding to the abnormal drive MG. In this case, based on the torque command value, the abnormal torque, and the intended running state corresponding to the drive MG excluding the abnormal drive MG, as shown in the backward straight direction of FIG. 11, the steering unit 32 on the same side as the abnormal drive MG on the left and right sides. The first steering amount, which is the steering amount of, is set to the steering amount at which the wheels 12 are directed to the left and right opposite sides of the abnormal drive MG. As a result, the electric vehicle 10 that intends to turn to the same side as the abnormal drive MG can be brought closer to straight ahead. The abnormal drive MG and the left-right opposite side are the left-right opposite sides with respect to the traveling direction. For example, when the forward straight and the right drive MG is the abnormal drive MG, the front part of the wheel is turned to the left and the rear If the drive MG that goes straight and is on the right is an abnormal drive MG, turn the rear part of the wheel to the left. Further, the steering amount determining unit 46 sets the second steering amount, which is the steering amount of the steering unit 31 on the left and right opposite sides of the abnormal drive MG, to 0 (first steering), as shown in the rear straight direction of FIG. The amount of steering whose absolute value is smaller than the absolute value of the amount). As a result, the steering unit 31 on the opposite side of the abnormal drive MG can be controlled in the same manner as when no drive abnormality is detected, and the influence of the second steering amount on the running state of the electric vehicle 10. By adjusting the first steering amount, it becomes easier to finely control the traveling state of the electric vehicle 10.
 図11の後左旋回及び後右旋回に示すように、転舵量決定部46は、意図走行状態が後旋回であり、且つ異常判定部44により駆動異常が検知され、且つ異常トルクが異常駆動MGに対応するトルク指令値よりも小さい場合に、異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び意図走行状態に基づいて、異常駆動MGと左右逆側の転舵ユニット31の転舵量である第1転舵量を旋回に対応する転舵量にする。これにより、ユーザが意図した電気自動車10の旋回軌道からずれようとする電気自動車10を、ユーザが意図した電気自動車10の旋回軌道に近付けることができる。さらに、転舵量決定部46は、異常駆動MGと左右同じ側の転舵ユニット32の転舵量である第2転舵量を0(第1転舵量の絶対値よりも絶対値が小さい転舵量)にする。このため、第2転舵量が電気自動車10の走行状態に与える影響を抑制して、第1転舵量の調節により電気自動車10の走行状態を細かく制御し易くなる。 As shown in the rear left turn and the rear right turn in FIG. 11, in the steering amount determination unit 46, the intended traveling state is the rear turn, the abnormality determination unit 44 detects a drive abnormality, and the abnormality torque is abnormal. When it is smaller than the torque command value corresponding to the drive MG, the steering unit on the left and right opposite sides of the abnormal drive MG is based on the torque command value corresponding to the drive MG excluding the abnormal drive MG, the abnormal torque, and the intended running state. The first steering amount, which is the steering amount of 31, is set to the steering amount corresponding to the turning. As a result, the electric vehicle 10 that is about to deviate from the turning trajectory of the electric vehicle 10 intended by the user can be brought closer to the turning trajectory of the electric vehicle 10 intended by the user. Further, the steering amount determining unit 46 sets the second steering amount, which is the steering amount of the steering unit 32 on the same side as the abnormal drive MG, to 0 (the absolute value is smaller than the absolute value of the first steering amount). The amount of steering). Therefore, the influence of the second steering amount on the traveling state of the electric vehicle 10 is suppressed, and the traveling state of the electric vehicle 10 can be easily controlled by adjusting the first steering amount.
 図12の後直進に示すように、転舵量決定部46は、意図走行状態が後直進であり、且つ異常判定部44により駆動異常が検知され、且つ異常トルクが異常駆動MGに対応するトルク指令値よりも小さい場合に、異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び意図走行状態に基づいて、異常駆動MGと左右逆側の転舵ユニット31の転舵量である第1転舵量を異常駆動MGと左右同じ側へ車輪11を向ける転舵量にしてもよい。これにより、異常駆動MGと左右同じ側へ後旋回しようとする電気自動車10を、後直進に近付けることができる。そして、転舵量決定部46は、異常駆動MGと左右同じ側の転舵ユニット32の転舵量である第2転舵量を0(第1転舵量の絶対値よりも絶対値が小さい転舵量)にする。これにより、異常駆動MGと左右同じ側の転舵ユニット32を、駆動異常が検知されていない場合と同様に制御することができるとともに、第2転舵量が電気自動車10の走行状態に与える影響を抑制して、第1転舵量の調節により電気自動車10の走行状態を細かく制御し易くなる。 As shown in the backward straight movement of FIG. 12, the steering amount determination unit 46 is in the intended running state of the rear straight movement, a drive abnormality is detected by the abnormality determination unit 44, and the abnormal torque corresponds to the abnormal drive MG. When it is smaller than the command value, the steering amount of the steering unit 31 on the opposite side to the abnormal drive MG is based on the torque command value, the abnormal torque, and the intended running state corresponding to the drive MG excluding the abnormal drive MG. A certain first steering amount may be a steering amount in which the wheels 11 are directed to the same side as the abnormal drive MG on the left and right. As a result, the electric vehicle 10 that intends to turn backward to the same side as the abnormal drive MG can be brought closer to the backward straight direction. Then, the steering amount determining unit 46 sets the second steering amount, which is the steering amount of the steering unit 32 on the same side as the abnormal drive MG, to 0 (the absolute value is smaller than the absolute value of the first steering amount). The amount of steering). As a result, the steering unit 32 on the same side as the abnormal drive MG can be controlled in the same manner as when no drive abnormality is detected, and the influence of the second steering amount on the running state of the electric vehicle 10. By adjusting the first steering amount, it becomes easier to finely control the traveling state of the electric vehicle 10.
 図12の後左旋回及び後右旋回に示すように、転舵量決定部46は、意図走行状態が後旋回であり、且つ異常判定部44により駆動異常が検知され、且つ異常トルクが異常駆動MGに対応するトルク指令値よりも小さい場合に、異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び意図走行状態に基づいて、異常駆動MGと左右同じ側の転舵ユニット32の転舵量である第1転舵量を後旋回に対応する転舵量にしてもよい。これにより、ユーザが意図した電気自動車10の旋回軌道からずれようとする電気自動車10を、ユーザが意図した電気自動車10の旋回軌道に近付けることができる。 As shown in the rear left turn and the rear right turn in FIG. 12, the steering amount determination unit 46 has an intentional running state of rear turn, an abnormality determination unit 44 detects a drive abnormality, and an abnormality torque is abnormal. When it is smaller than the torque command value corresponding to the drive MG, the steering unit on the same side as the abnormal drive MG on the left and right sides based on the torque command value corresponding to the drive MG excluding the abnormal drive MG, the abnormal torque, and the intended running state. The first steering amount, which is the steering amount of 32, may be set to the steering amount corresponding to the rear turning. As a result, the electric vehicle 10 that is about to deviate from the turning trajectory of the electric vehicle 10 intended by the user can be brought closer to the turning trajectory of the electric vehicle 10 intended by the user.
 ・図13の後右旋回に示すように、転舵量決定部46は、意図走行状態が後旋回であり、且つ異常判定部44により駆動異常が検知され、且つ意図走行状態が異常トルクしか出力できない駆動MGである異常駆動MGと左右同じ側への後旋回である場合に、各転舵ユニット31,32の各転舵量を0にしてもよい。こうした構成によれば、各転舵ユニット31,32は各車輪11,12を電気自動車10の後正面に向けて、電気自動車10を後直進させようとする。しかし、左右一対の駆動MGの一方が、車両制御部50により算出された対応するトルク指令値よりも小さい異常トルクしか出力できないため、電気自動車10は異常駆動MGと左右同じ側(図13では右側)へ後旋回しようとする。したがって、各転舵ユニット31,32が電気自動車10の走行状態に与える影響を抑制しつつ、左右の駆動MGが出力するトルクの差を利用して、ユーザが意図した後旋回の方向へ電気自動車10を旋回させることができる。 As shown in the rear right turn of FIG. 13, in the steering amount determination unit 46, the intended traveling state is the rear turning, the abnormality determination unit 44 detects a drive abnormality, and the intended traveling state is only abnormal torque. When the rear turn is to the same side as the abnormal drive MG, which is a drive MG that cannot be output, the steering amount of each of the steering units 31 and 32 may be set to 0. According to such a configuration, the steering units 31 and 32 try to direct the wheels 11 and 12 to the rear front of the electric vehicle 10 and to drive the electric vehicle 10 backward and straight. However, since one of the pair of left and right drive MGs can output only an abnormal torque smaller than the corresponding torque command value calculated by the vehicle control unit 50, the electric vehicle 10 is on the same side as the abnormal drive MG on the left and right sides (right side in FIG. 13). ) To turn backwards. Therefore, while suppressing the influence of the steering units 31 and 32 on the running state of the electric vehicle 10, the difference in torque output by the left and right drive MGs is used to drive the electric vehicle in the direction of the rear turn intended by the user. 10 can be turned.
 ・図14~17に示すように、車輪11,12が転舵輪且つ従動輪であり、車輪13,14が駆動輪である電気自動車10の駆動システムに具現化することもできる。図14は、後輪駆動車両における正常時の転舵機構の動作を示している。 As shown in FIGS. 14 to 17, it can be embodied in the drive system of the electric vehicle 10 in which the wheels 11 and 12 are the steering wheels and the driven wheels and the wheels 13 and 14 are the driving wheels. FIG. 14 shows the operation of the steering mechanism in a normal state in a rear-wheel drive vehicle.
 図15は、異常時の転舵機構の動作を示している。この場合、前側の車輪11,12に対して、図3で示した実施形態と同様の転舵制御を行っている。すなわち、駆動輪は、電気自動車10の前輪であっても後輪であってもよい。また、後側の車輪13,14に対しては、車輪14の異常駆動MGのトルクを上限値で制限している。こうした構成によっても、図3で示した実施形態に準じた作用効果を奏することができる。 FIG. 15 shows the operation of the steering mechanism at the time of abnormality. In this case, the wheels 11 and 12 on the front side are subjected to the same steering control as in the embodiment shown in FIG. That is, the drive wheels may be the front wheels or the rear wheels of the electric vehicle 10. Further, with respect to the wheels 13 and 14 on the rear side, the torque of the abnormal drive MG of the wheels 14 is limited by an upper limit value. Even with such a configuration, it is possible to obtain an action and effect according to the embodiment shown in FIG.
 図16では、前側の車輪11,12に対して、図7で示した実施形態と同様の転舵制御を行っている。こうした構成によっても、図7で示した実施形態に準じた作用効果を奏することができる。 In FIG. 16, steering control is performed on the front wheels 11 and 12 in the same manner as in the embodiment shown in FIG. Even with such a configuration, it is possible to exert an action effect according to the embodiment shown in FIG.
 図17では、前側の車輪11,12に対して、図8で示した実施形態と同様の転舵制御を行っている。こうした構成によっても、図8で示した実施形態に準じた作用効果を奏することができる。 In FIG. 17, steering control is performed on the front wheels 11 and 12 in the same manner as in the embodiment shown in FIG. Even with such a configuration, it is possible to exert an action effect according to the embodiment shown in FIG.
 ・図18~20に示すように、車輪11,12が駆動輪且つ転舵輪であり、車輪13,14が駆動輪且つ転舵輪である電気自動車10の駆動システムに具現化することもできる。ここでは、車輪12,13が異常輪になった例を示している。 As shown in FIGS. 18 to 20, the wheels 11 and 12 are the driving wheels and the steering wheels, and the wheels 13 and 14 are the driving wheels and the steering wheels, which can be embodied in the drive system of the electric vehicle 10. Here, an example in which the wheels 12 and 13 become abnormal wheels is shown.
 図18は、異常時の転舵機構の動作を示している。この場合、前側の車輪11,12に対して、図3で示した実施形態と同様の転舵制御を行っている。すなわち、駆動輪は、電気自動車10の前輪及び後輪であってもよい。また、後側の車輪13,14に対して、前側の車輪11,12に対する転舵制御との組み合わせにより、電気自動車10の走行状態を意図走行状態に近付ける制御を実行している。 FIG. 18 shows the operation of the steering mechanism at the time of abnormality. In this case, the wheels 11 and 12 on the front side are subjected to the same steering control as in the embodiment shown in FIG. That is, the drive wheels may be the front wheels and the rear wheels of the electric vehicle 10. Further, the rear wheels 13 and 14 are controlled to bring the traveling state of the electric vehicle 10 closer to the intended traveling state by combining the steering control with respect to the front wheels 11 and 12.
 図19では、前側の車輪11,12に対して、図7で示した実施形態と同様の転舵制御を行っている。こうした構成によっても、図7で示した実施形態に準じた作用効果を奏することができる。また、後側の車輪13,14に対して、後側の車輪13,14に対して、前側の車輪11,12に対する転舵制御との組み合わせにより、電気自動車10の走行状態を意図走行状態に近付ける制御を実行している。 In FIG. 19, steering control is performed on the front wheels 11 and 12 in the same manner as in the embodiment shown in FIG. Even with such a configuration, it is possible to exert an action effect according to the embodiment shown in FIG. Further, by combining the steering control with respect to the rear wheels 13 and 14, the rear wheels 13 and 14, and the steering control with respect to the front wheels 11 and 12, the traveling state of the electric vehicle 10 is changed to the intended traveling state. You are performing close control.
 図20では、前側の車輪11,12に対して、図8で示した実施形態と同様の転舵制御を行っている。こうした構成によっても、図8で示した実施形態に準じた作用効果を奏することができる。また、後側の車輪13,14に対して、後側の車輪13,14に対して、前側の車輪11,12に対する転舵制御との組み合わせにより、電気自動車10の走行状態を意図走行状態に近付ける制御を実行している。 In FIG. 20, steering control is performed on the front wheels 11 and 12 in the same manner as in the embodiment shown in FIG. Even with such a configuration, it is possible to exert an action effect according to the embodiment shown in FIG. Further, by combining the steering control with respect to the rear wheels 13 and 14, the rear wheels 13 and 14, and the steering control with respect to the front wheels 11 and 12, the traveling state of the electric vehicle 10 is changed to the intended traveling state. You are performing close control.
 ・図21~23に示すように、車輪11,12が駆動輪且つ転舵輪であり、車輪13,14が駆動輪且つ転舵輪である電気自動車10の駆動システムに具現化することもできる。ここでは、車輪12,14が異常輪になった例を示している。 As shown in FIGS. 21 to 23, it can be embodied in the drive system of the electric vehicle 10 in which the wheels 11 and 12 are the driving wheels and the steering wheels, and the wheels 13 and 14 are the driving wheels and the steering wheels. Here, an example is shown in which the wheels 12 and 14 become abnormal wheels.
 図21は、異常時の転舵機構の動作を示している。この場合、前側の車輪11,12に対して、図3で示した実施形態と同様の転舵制御を行っている。すなわち、駆動輪は、電気自動車10の前輪及び後輪であってもよい。また、後側の車輪13,14に対して、前側の車輪11,12に対する転舵制御との組み合わせにより、電気自動車10の走行状態を意図走行状態に近付ける制御を実行している。 FIG. 21 shows the operation of the steering mechanism at the time of abnormality. In this case, the wheels 11 and 12 on the front side are subjected to the same steering control as in the embodiment shown in FIG. That is, the drive wheels may be the front wheels and the rear wheels of the electric vehicle 10. Further, the rear wheels 13 and 14 are controlled to bring the traveling state of the electric vehicle 10 closer to the intended traveling state by combining the steering control with respect to the front wheels 11 and 12.
 図22では、前側の車輪11,12に対して、図7で示した実施形態と同様の転舵制御を行っている。こうした構成によっても、図7で示した実施形態に準じた作用効果を奏することができる。また、後側の車輪13,14に対して、後側の車輪13,14に対して、前側の車輪11,12に対する転舵制御との組み合わせにより、電気自動車10の走行状態を意図走行状態に近付ける制御を実行している。 In FIG. 22, steering control is performed on the front wheels 11 and 12 in the same manner as in the embodiment shown in FIG. Even with such a configuration, it is possible to exert an action effect according to the embodiment shown in FIG. Further, by combining the steering control with respect to the rear wheels 13 and 14, the rear wheels 13 and 14, and the steering control with respect to the front wheels 11 and 12, the traveling state of the electric vehicle 10 is changed to the intended traveling state. You are performing close control.
 図23では、前側の車輪11,12及び後側の車輪13,14に対して、図8で示した実施形態と同様の転舵制御を行っている。こうした構成によっても、図8で示した実施形態に準じた作用効果を奏することができる。 In FIG. 23, the steering control of the front wheels 11 and 12 and the rear wheels 13 and 14 is performed in the same manner as in the embodiment shown in FIG. Even with such a configuration, it is possible to exert an action effect according to the embodiment shown in FIG.
 ・車両制御部50は、異常判定部44により駆動異常が検知されていない場合に、意図走行状態に基づいて各駆動MGの各トルク指令値を算出し、異常判定部44により駆動異常が検知された場合に、異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び意図走行状態に基づいて、異常駆動MGを除く駆動MGの各トルク指令値を算出してもよい。すなわち、異常駆動MGを除く駆動MGが発生するトルク及び異常駆動MGが発生する異常トルクを考慮して、電気自動車10を意図走行状態で走行させるように、異常駆動MGを除く駆動MGの各トルク指令値を算出する。こうした構成によれば、駆動MGのトルクの制御によっても、車両の旋回軌道をユーザが意図した旋回軌道に近付けることができる。 When the abnormality determination unit 44 has not detected a drive abnormality, the vehicle control unit 50 calculates each torque command value of each drive MG based on the intended driving state, and the abnormality determination unit 44 detects the drive abnormality. In this case, each torque command value of the drive MG excluding the abnormal drive MG may be calculated based on the torque command value, the abnormal torque, and the intended running state corresponding to the drive MG excluding the abnormal drive MG. That is, in consideration of the torque generated by the drive MG excluding the abnormal drive MG and the abnormal torque generated by the abnormal drive MG, each torque of the drive MG excluding the abnormal drive MG so as to drive the electric vehicle 10 in the intended running state. Calculate the command value. According to such a configuration, the turning trajectory of the vehicle can be brought closer to the turning trajectory intended by the user by controlling the torque of the drive MG.
 ・異常判定部44の機能を車両制御部50が備えていてもよい。トルク決定部42の機能を車両制御部50が備えていてもよい。転舵量決定部46の機能を車両制御部50が備えていてもよい。また、車両制御部50がトルク指令値を算出する機能を、トルク決定部42が備えていてもよい。車両制御部50が転舵量指令値を算出する機能を、転舵量決定部46が備えていてもよい。 -The vehicle control unit 50 may have the function of the abnormality determination unit 44. The vehicle control unit 50 may have the function of the torque determination unit 42. The vehicle control unit 50 may have the function of the steering amount determining unit 46. Further, the torque determination unit 42 may have a function of the vehicle control unit 50 to calculate the torque command value. The steering amount determining unit 46 may have a function of the vehicle control unit 50 calculating the steering amount command value.
 ・駆動異常として、駆動MGがトルク指令値よりも大きい異常トルクしか出力できない場合もある。この場合であっても、異常判定部44は、左右一対の駆動MGの一方が、車両制御部50により算出された対応するトルク指令値と異なる異常トルク(トルク指令値よりも大きいトルク)しか出力できない駆動異常を検知する。転舵量決定部46は、異常判定部44により駆動異常が検知された場合に、異常トルクしか出力できない駆動MGである異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び意図走行状態に基づいて、左右一対の転舵ユニット31,32の一方の転舵量を第1転舵量として算出し且つ他方の転舵量を第1転舵量の絶対値よりも絶対値が小さい第2転舵量として算出する。こうした構成によれば、異常判定部44により駆動異常が検知された場合であっても、異常駆動MGを除く駆動MGに対応するトルク指令値、異常トルク、及び意図走行状態に基づいて、電気自動車10を意図走行状態に近付けるように各転舵ユニット31,32を転舵させることができる。さらに、第2転舵量の絶対値は、第1転舵量の絶対値よりも小さい。このため、第2転舵量が電気自動車10の走行状態に与える影響を抑制して、第1転舵量の調節により電気自動車10の走行状態を細かく制御し易くなる。 ・ As a drive abnormality, the drive MG may output only an abnormal torque larger than the torque command value. Even in this case, the abnormality determination unit 44 outputs only an abnormal torque (torque larger than the torque command value) different from the corresponding torque command value calculated by the vehicle control unit 50 on one of the pair of left and right drive MGs. Detects a drive abnormality that cannot be performed. The steering amount determination unit 46 has a torque command value, an abnormal torque, and an intention corresponding to a drive MG excluding the abnormal drive MG, which is a drive MG that can output only an abnormal torque when a drive abnormality is detected by the abnormality determination unit 44. Based on the traveling state, the steering amount of one of the pair of left and right steering units 31 and 32 is calculated as the first steering amount, and the other steering amount is an absolute value rather than the absolute value of the first steering amount. Calculated as a small second steering amount. According to such a configuration, even when a drive abnormality is detected by the abnormality determination unit 44, the electric vehicle is based on the torque command value, the abnormal torque, and the intended driving state corresponding to the drive MG excluding the abnormal drive MG. The steering units 31 and 32 can be steered so as to bring the 10 closer to the intended traveling state. Further, the absolute value of the second steering amount is smaller than the absolute value of the first steering amount. Therefore, the influence of the second steering amount on the traveling state of the electric vehicle 10 is suppressed, and the traveling state of the electric vehicle 10 can be easily controlled by adjusting the first steering amount.
 ・電気自動車10を運転者(ユーザ)が運転する場合に限らず、電気自動車10を一定速度で走行させる定速走行制御を車両制御部50が実行している時に、上記の各実施形態を実行することもできる。また、電気自動車10を前車に追従走行させる追従走行制御を車両制御部50が実行している時に、上記の各実施形態を実行することもできる。また、設定した経路を電気自動車10に自動走行させる自動運転(走行)制御を車両制御部50が実行している時に、上記の各実施形態を実行することもできる。これらの制御においては、定速走行制御の設定、追従走行制御の設定、自動運転(走行)制御の設定等に基づいて、意図走行状態を取得することができる。なお、定速走行制御、追従走行制御、及び自動運転制御では、電気自動車10にユーザが乗車していても、乗車していなくてもよい。 The above embodiments are executed not only when the driver (user) drives the electric vehicle 10 but also when the vehicle control unit 50 executes constant speed running control for driving the electric vehicle 10 at a constant speed. You can also do it. Further, each of the above embodiments can be executed when the vehicle control unit 50 is executing the follow-up travel control for causing the electric vehicle 10 to follow the preceding vehicle. Further, each of the above embodiments can be executed when the vehicle control unit 50 is executing the automatic driving (running) control for automatically traveling the set route to the electric vehicle 10. In these controls, the intended driving state can be acquired based on the constant speed driving control setting, the following driving control setting, the automatic driving (driving) control setting, and the like. In the constant speed running control, the following running control, and the automatic driving control, the user may or may not be on the electric vehicle 10.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described in accordance with the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and modifications within a uniform range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are also within the scope of the present disclosure.

Claims (11)

  1.  車両(10)の左右の車輪(11~14)を互いに独立して駆動する左右一対の駆動モータ(21,22)と、
     前記車両の左右の車輪を互いに独立して転舵する左右一対の転舵機構(31,32)と、
     ユーザが意図した前記車両の走行状態である意図走行状態に基づいて、各駆動モータの各トルク指令値を算出する指令値算出部(50)と、
     前記指令値算出部により算出された前記各トルク指令値に基づいて、前記各駆動モータを駆動させる駆動制御部(41)と、
     前記左右一対の駆動モータの一方が、前記指令値算出部により算出された対応するトルク指令値と異なる異常トルクしか出力できない駆動異常を検知する異常検知部(43,44)と、
     前記異常検知部により前記駆動異常が検知されていない場合に、前記指令値算出部により算出された前記各トルク指令値及び前記意図走行状態に基づいて各転舵機構の各転舵量を算出し、前記異常検知部により前記駆動異常が検知された場合に、前記異常トルクしか出力できない駆動モータである異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記意図走行状態に基づいて、前記左右一対の転舵機構の一方の転舵量を第1転舵量として算出し且つ他方の転舵量を前記第1転舵量の絶対値よりも絶対値が小さい第2転舵量として算出する転舵量算出部(46,50)と、
     前記転舵量算出部により算出された各転舵量に基づいて、前記各転舵機構を転舵させる転舵制御部(45)と、
    を備える車両の駆動システム。
    A pair of left and right drive motors (21, 22) that drive the left and right wheels (11 to 14) of the vehicle (10) independently of each other.
    A pair of left and right steering mechanisms (31, 32) that steer the left and right wheels of the vehicle independently of each other.
    A command value calculation unit (50) that calculates each torque command value of each drive motor based on the intended running state of the vehicle intended by the user.
    A drive control unit (41) that drives each drive motor based on each torque command value calculated by the command value calculation unit, and a drive control unit (41).
    An abnormality detection unit (43, 44) that detects a drive abnormality in which one of the pair of left and right drive motors can output only an abnormal torque different from the corresponding torque command value calculated by the command value calculation unit.
    When the drive abnormality is not detected by the abnormality detection unit, each steering amount of each steering mechanism is calculated based on the torque command value calculated by the command value calculation unit and the intended running state. When the drive abnormality is detected by the abnormality detection unit, the torque command value, the abnormality torque, and the intended running state corresponding to the drive motor excluding the abnormality motor which is a drive motor capable of outputting only the abnormality torque are obtained. Based on this, the steering amount of one of the pair of left and right steering mechanisms is calculated as the first steering amount, and the steering amount of the other is the second rotation whose absolute value is smaller than the absolute value of the first steering amount. The steering amount calculation unit (46, 50) that calculates the steering amount, and
    A steering control unit (45) that steers each steering mechanism based on each steering amount calculated by the steering amount calculation unit.
    Vehicle drive system.
  2.  前記転舵量算出部は、前記意図走行状態が直進であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記異常トルクが前記異常モータに対応するトルク指令値よりも小さい場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記意図走行状態に基づいて、前記異常モータと左右同じ側の転舵機構の転舵量である前記第1転舵量を前記異常モータと左右逆側へ車輪を向ける転舵量にし、且つ前記異常モータと左右逆側の転舵機構の転舵量である前記第2転舵量を0にする、請求項1に記載の車両の駆動システム。 The steering amount calculation unit is used when the intended traveling state is straight, the abnormality detection unit detects the drive abnormality, and the abnormality torque is smaller than the torque command value corresponding to the abnormality motor. The first steering, which is the steering amount of the steering mechanism on the same side as the abnormal motor, based on the torque command value corresponding to the drive motor excluding the abnormal motor, the abnormal torque, and the intended running state. Claim 1 in which the amount is set to the amount of steering that directs the wheels to the left and right opposite sides of the abnormal motor, and the second steering amount, which is the amount of steering of the steering mechanism on the left and right opposite sides of the abnormal motor, is set to 0. The vehicle drive system described in.
  3.  前記転舵量算出部は、前記意図走行状態が旋回であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記異常トルクが前記異常モータに対応するトルク指令値よりも小さい場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記意図走行状態に基づいて、前記異常モータと左右逆側の転舵機構の転舵量である前記第1転舵量を前記旋回に対応する転舵量にし、且つ前記異常モータと左右同じ側の転舵機構の転舵量である前記第2転舵量を0にする、請求項1又は2に記載の車両の駆動システム。 The steering amount calculation unit is used when the intended traveling state is turning, the abnormality detection unit detects the drive abnormality, and the abnormality torque is smaller than the torque command value corresponding to the abnormality motor. The first steering, which is the steering amount of the steering mechanism on the left and right opposite sides of the abnormal motor, based on the torque command value corresponding to the drive motor excluding the abnormal motor, the abnormal torque, and the intended running state. The vehicle according to claim 1 or 2, wherein the amount is set to a steering amount corresponding to the turning, and the second steering amount, which is the steering amount of the steering mechanism on the same side as the abnormal motor, is set to 0. Drive system.
  4.  前記指令値算出部は、前記異常検知部により前記駆動異常が検知されていない場合に、前記意図走行状態に基づいて各駆動モータの各トルク指令値を算出し、前記異常検知部により前記駆動異常が検知された場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記意図走行状態に基づいて、前記異常モータを除く駆動モータの各トルク指令値を算出する、請求項1~3のいずれか1項に記載の車両の駆動システム。 When the drive abnormality is not detected by the abnormality detection unit, the command value calculation unit calculates each torque command value of each drive motor based on the intended running state, and the abnormality detection unit calculates the drive abnormality. Is detected, each torque command value of the drive motor excluding the abnormal motor is calculated based on the torque command value corresponding to the drive motor excluding the abnormal motor, the abnormal torque, and the intended running state. , The vehicle drive system according to any one of claims 1 to 3.
  5.  車両(10)の左右の車輪(11~14)を互いに独立して駆動する左右一対の駆動モータ(21,22)と、
     前記車両の左右の車輪を互いに独立して転舵する左右一対の転舵機構(31,32)と、
     ユーザが意図した前記車両の走行状態である意図走行状態に基づいて、各駆動モータの各トルク指令値を算出する指令値算出部(50)と、
     前記指令値算出部により算出された前記各トルク指令値に基づいて、前記各駆動モータを駆動させる駆動制御部(41)と、
     前記左右一対の駆動モータの一方が、前記指令値算出部により算出された対応するトルク指令値よりも小さい異常トルクしか出力できない駆動異常を検知する異常検知部(43,44)と、
     前記異常検知部により前記駆動異常が検知されていない場合に、前記指令値算出部により算出された前記各トルク指令値及び前記意図走行状態に基づいて各転舵機構の各転舵量を算出し、前記意図走行状態が旋回であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記意図走行状態が前記異常トルクしか出力できない駆動モータである異常モータと左右同じ側への旋回である場合に、前記各転舵機構の各転舵量を0にする転舵量算出部(46,50)と、
     前記転舵量算出部により算出された各転舵量に基づいて、前記各転舵機構を転舵させる転舵制御部(45)と、
    を備える車両の駆動システム。
    A pair of left and right drive motors (21, 22) that drive the left and right wheels (11 to 14) of the vehicle (10) independently of each other.
    A pair of left and right steering mechanisms (31, 32) that steer the left and right wheels of the vehicle independently of each other.
    A command value calculation unit (50) that calculates each torque command value of each drive motor based on the intended running state of the vehicle intended by the user.
    A drive control unit (41) that drives each drive motor based on each torque command value calculated by the command value calculation unit, and a drive control unit (41).
    An abnormality detection unit (43, 44) for detecting a drive abnormality in which one of the pair of left and right drive motors can output an abnormal torque smaller than the corresponding torque command value calculated by the command value calculation unit.
    When the drive abnormality is not detected by the abnormality detection unit, each steering amount of each steering mechanism is calculated based on the torque command value calculated by the command value calculation unit and the intended running state. The intended running state is turning, the driving abnormality is detected by the abnormality detecting unit, and the intended running state is turning to the same side as the abnormal motor which is a drive motor capable of outputting only the abnormal torque. In this case, the steering amount calculation unit (46, 50) that sets each steering amount of each steering mechanism to 0, and
    A steering control unit (45) that steers each steering mechanism based on each steering amount calculated by the steering amount calculation unit.
    Vehicle drive system.
  6.  前記指令値算出部は、前記異常検知部により前記駆動異常が検知されていない場合に、前記意図走行状態に基づいて各駆動モータの各トルク指令値を算出し、前記意図走行状態が旋回であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記意図走行状態が前記異常モータと左右同じ側への旋回である場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記意図走行状態に基づいて、前記異常モータを除く駆動モータの各トルク指令値を算出する、請求項5に記載の車両の駆動システム。 When the drive abnormality is not detected by the abnormality detection unit, the command value calculation unit calculates each torque command value of each drive motor based on the intention running state, and the intention running state is turning. When the drive abnormality is detected by the abnormality detection unit and the intended running state is turning to the same side as the abnormality motor, the torque command value corresponding to the drive motor excluding the abnormality motor, The vehicle drive system according to claim 5, wherein each torque command value of a drive motor other than the abnormal motor is calculated based on the abnormal torque and the intended running state.
  7.  前記意図走行状態に基づいて、前記車両が走行する目標軌道を算出する軌道算出部(50)を備え、
     前記指令値算出部は、前記異常検知部により前記駆動異常が検知されていない場合に、前記車両が走行する軌道を前記目標軌道にすべく各駆動モータの各トルク指令値を算出し、前記意図走行状態が旋回であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記車両の速度が第1速度よりも高い場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記目標軌道に基づいて、前記車両が走行する軌道を前記目標軌道よりも外側から徐々に前記目標軌道に近付けるように前記異常モータを除く駆動モータの各トルク指令値を算出し、
     前記転舵量算出部は、前記異常検知部により前記駆動異常が検知されていない場合に、前記車両が走行する軌道を前記目標軌道にすべく各転舵機構の各転舵量を算出し、前記意図走行状態が旋回であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記車両の速度が前記第1速度よりも高い場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記目標軌道に基づいて、前記車両が走行する軌道を前記目標軌道よりも外側から徐々に前記目標軌道に近付けるように前記各転舵機構の各転舵量を算出する、請求項1~6のいずれか1項に記載の車両の駆動システム。
    A track calculation unit (50) for calculating a target track on which the vehicle travels based on the intended traveling state is provided.
    When the drive abnormality is not detected by the abnormality detection unit, the command value calculation unit calculates each torque command value of each drive motor so as to set the track on which the vehicle travels to the target track, and the intention When the traveling state is turning, the drive abnormality is detected by the abnormality detection unit, and the speed of the vehicle is higher than the first speed, the torque command value corresponding to the drive motor excluding the abnormality motor, Based on the abnormal torque and the target track, each torque command value of the drive motor excluding the abnormal motor is calculated so that the track on which the vehicle travels gradually approaches the target track from the outside of the target track. ,
    When the drive abnormality is not detected by the abnormality detection unit, the steering amount calculation unit calculates each steering amount of each steering mechanism so as to set the track on which the vehicle travels to the target track. When the intended running state is turning, the drive abnormality is detected by the abnormality detection unit, and the speed of the vehicle is higher than the first speed, the torque corresponding to the drive motor excluding the abnormality motor. Based on the command value, the abnormal torque, and the target track, each steering amount of each steering mechanism is calculated so that the track on which the vehicle travels gradually approaches the target track from the outside of the target track. The vehicle drive system according to any one of claims 1 to 6.
  8.  前記指令値算出部は、前記意図走行状態が旋回であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記車両の速度が前記第1速度よりも低く且つ前記第1速度よりも低い第2速度よりも高い場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記目標軌道に基づいて、前記車両が走行する軌道が前記目標軌道の外側及び内側になることを許容しつつ、前記車両が走行する軌道を前記目標軌道に近付けるように前記異常モータを除く駆動モータの各トルク指令値を算出し、
     前記転舵量算出部は、前記意図走行状態が旋回であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記車両の速度が前記第1速度よりも低く且つ前記第2速度よりも高い場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記目標軌道に基づいて、前記車両が走行する軌道が前記目標軌道の外側及び内側になることを許容しつつ、前記車両が走行する軌道を前記目標軌道に近付けるように前記各転舵機構の各転舵量を算出する、請求項7に記載の車両の駆動システム。
    In the command value calculation unit, the intended traveling state is turning, the abnormality detection unit detects the drive abnormality, and the speed of the vehicle is lower than the first speed and lower than the first speed. When the speed is higher than the second speed, the track on which the vehicle travels is outside and inside the target track based on the torque command value, the abnormal torque, and the target track corresponding to the drive motor excluding the abnormal motor. The torque command values of the drive motors excluding the abnormal motor are calculated so as to bring the track on which the vehicle travels closer to the target track.
    In the steering amount calculation unit, the intended traveling state is turning, the abnormality detection unit detects the drive abnormality, and the speed of the vehicle is lower than the first speed and higher than the second speed. When it is high, it is allowed that the track on which the vehicle travels is outside and inside the target track based on the torque command value corresponding to the drive motor excluding the abnormal motor, the abnormal torque, and the target track. The vehicle drive system according to claim 7, wherein each steering amount of each steering mechanism is calculated so that the track on which the vehicle travels is brought closer to the target trajectory.
  9.  前記転舵量算出部は、前記意図走行状態が旋回であり、且つ前記異常検知部により前記駆動異常が検知され、且つ前記車両の速度が前記第2速度よりも低い場合に、前記異常モータを除く駆動モータに対応する前記トルク指令値、前記異常トルク、及び前記目標軌道に基づいて、前記車両が走行する軌道を前記目標軌道に近付けるように前記各転舵機構の各転舵量を算出する、請求項8に記載の車両の駆動システム。 The steering amount calculation unit uses the abnormal motor when the intended traveling state is turning, the abnormality detecting unit detects the driving abnormality, and the speed of the vehicle is lower than the second speed. Based on the torque command value, the abnormal torque, and the target track corresponding to the drive motors to be excluded, each steering amount of each steering mechanism is calculated so as to bring the track on which the vehicle travels closer to the target track. The vehicle drive system according to claim 8.
  10.  前記左右一対の駆動モータの一方に関連する異常が生じて、前記一方の駆動モータが出力するトルクが上限値を超えないように制限されている制限状態を検知する制限検知部(44)を備え、
     前記異常検知部は、前記制限検知部により前記制限状態が検知され、且つトルクが前記上限値を超えないように制限されている駆動モータに対応する前記トルク指令値が前記上限値よりも大きい場合に前記駆動異常を検知し、
     前記転舵量算出部は、前記制限検知部により前記制限状態が検知され、且つトルクが前記上限値を超えないように制限されている駆動モータに対応する前記トルク指令値が前記上限値よりも小さい場合に、前記指令値算出部により算出された前記各トルク指令値及び前記意図走行状態に基づいて各転舵機構の各転舵量を算出する、請求項1~9のいずれか1項に記載の車両の駆動システム。
    A limitation detection unit (44) for detecting a limited state in which an abnormality related to one of the pair of left and right drive motors occurs and the torque output by the one drive motor is restricted so as not to exceed the upper limit value is provided. ,
    In the abnormality detection unit, when the limited state is detected by the limited detection unit and the torque command value corresponding to the drive motor whose torque is restricted so as not to exceed the upper limit value is larger than the upper limit value. Detects the drive abnormality and
    In the steering amount calculation unit, the torque command value corresponding to the drive motor whose limited state is detected by the limited detection unit and the torque is restricted so as not to exceed the upper limit value is higher than the upper limit value. In any one of claims 1 to 9, the steering amount of each steering mechanism is calculated based on the torque command value calculated by the command value calculation unit and the intended running state when the value is small. The vehicle drive system described.
  11.  前記異常検知部は、前記左右一対の駆動モータの双方が、前記指令値算出部により算出された対応するトルク指令値よりも小さい共通の所定トルクしか出力できない両駆動異常を検知し、
     前記転舵量算出部は、前記異常検知部により前記両駆動異常が検知された場合に、前記所定トルク及び前記意図走行状態に基づいて各転舵機構の各転舵量を算出する、請求項1~10のいずれか1項に記載の車両の駆動システム。
    The abnormality detection unit detects both drive abnormalities in which both the left and right drive motors can output a common predetermined torque smaller than the corresponding torque command value calculated by the command value calculation unit.
    The steering amount calculation unit calculates each steering amount of each steering mechanism based on the predetermined torque and the intended running state when both drive abnormalities are detected by the abnormality detecting unit. The vehicle drive system according to any one of 1 to 10.
PCT/JP2021/047888 2021-01-12 2021-12-23 Drive system of vehicle WO2022153828A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180089964.6A CN116745185A (en) 2021-01-12 2021-12-23 Driving system for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-003097 2021-01-12
JP2021003097A JP7435485B2 (en) 2021-01-12 2021-01-12 vehicle drive system

Publications (1)

Publication Number Publication Date
WO2022153828A1 true WO2022153828A1 (en) 2022-07-21

Family

ID=82448443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047888 WO2022153828A1 (en) 2021-01-12 2021-12-23 Drive system of vehicle

Country Status (3)

Country Link
JP (1) JP7435485B2 (en)
CN (1) CN116745185A (en)
WO (1) WO2022153828A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061326A (en) * 2006-08-30 2008-03-13 Equos Research Co Ltd Drive control unit for vehicle
JP2010166740A (en) * 2009-01-17 2010-07-29 Nissan Motor Co Ltd Control device for electric vehicle
JP2012176643A (en) * 2011-02-25 2012-09-13 Ntn Corp Electric vehicle
JP2014093844A (en) * 2012-11-02 2014-05-19 Ntn Corp Electric-vehicle control device
JP2017005958A (en) * 2015-06-16 2017-01-05 三菱自動車工業株式会社 Electric-vehicular drive force control apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061326A (en) * 2006-08-30 2008-03-13 Equos Research Co Ltd Drive control unit for vehicle
JP2010166740A (en) * 2009-01-17 2010-07-29 Nissan Motor Co Ltd Control device for electric vehicle
JP2012176643A (en) * 2011-02-25 2012-09-13 Ntn Corp Electric vehicle
JP2014093844A (en) * 2012-11-02 2014-05-19 Ntn Corp Electric-vehicle control device
JP2017005958A (en) * 2015-06-16 2017-01-05 三菱自動車工業株式会社 Electric-vehicular drive force control apparatus

Also Published As

Publication number Publication date
JP7435485B2 (en) 2024-02-21
JP2022108201A (en) 2022-07-25
CN116745185A (en) 2023-09-12

Similar Documents

Publication Publication Date Title
JPH0549106A (en) Motor controller
US20080294313A1 (en) Electric power steering apparatus
JPH05176418A (en) Controller for electric automobile
CN101172488B (en) Electric power steering apparatus
US8978815B2 (en) Electric power steering apparatus
JP2010052640A (en) Electric power steering device
JP2011125150A (en) Device and method for controlling electric vehicle
JP2020142596A (en) Steering control device
WO2014188962A1 (en) Device for controlling electric automobile
JP2021154894A (en) Steering control device
US11485404B2 (en) Controller for steering device
JP4348783B2 (en) Vehicle motor control device
JP2002120743A (en) Motor-driven power steering device
JPS63306969A (en) Motor control device of motor-operated power steering system
WO2022153828A1 (en) Drive system of vehicle
JP4266164B2 (en) Tricycle control device
US20120041649A1 (en) Rear wheel toe angle control system
JP2006187047A (en) Driving force controller for four-wheel independent drive vehicle
JP4687233B2 (en) Vehicle steering control device and vehicle steering control method
JP4687234B2 (en) Vehicle steering control device and vehicle steering control method
WO2021250877A1 (en) Automatic steering control device for vehicle and automatic steering control system
JP2003170844A (en) Control device for electric power steering device
JP2011105082A (en) Control device of electric power steering device
JP5092763B2 (en) Electric power steering device
JP2001177906A (en) Controller for electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919715

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180089964.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919715

Country of ref document: EP

Kind code of ref document: A1