WO2016031696A1 - Drive control device for independent wheel drive-type vehicle - Google Patents

Drive control device for independent wheel drive-type vehicle Download PDF

Info

Publication number
WO2016031696A1
WO2016031696A1 PCT/JP2015/073477 JP2015073477W WO2016031696A1 WO 2016031696 A1 WO2016031696 A1 WO 2016031696A1 JP 2015073477 W JP2015073477 W JP 2015073477W WO 2016031696 A1 WO2016031696 A1 WO 2016031696A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
wheel
motor
torque
output
Prior art date
Application number
PCT/JP2015/073477
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 神田
Original Assignee
Ntn株式会社
剛志 神田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 剛志 神田 filed Critical Ntn株式会社
Publication of WO2016031696A1 publication Critical patent/WO2016031696A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the drive control of the wheel independent drive type vehicle that enables retreat traveling to the road shoulder or the like when the output of one drive wheel is stopped. Relates to the device.
  • Patent Document 1 There has been proposed a technique for controlling the driving force as follows when the automobile is turning (Patent Document 1).
  • the driving source of the front wheel on the outer side in the turning direction becomes unable to drive
  • the driving force for the front wheel on the inner side in the turning direction is gradually reduced, and the supply of the driving force is stopped after a predetermined time has elapsed.
  • the drive source of the front wheel on the inner side in the turning direction becomes unable to drive
  • the supply of driving force to the front wheel on the outer side in the turning direction is immediately stopped.
  • the control of the prior art requires a steering angle sensor, which makes the control complicated and expensive. Further, when one drive source becomes incapable of being driven, the normal supply of the drive force to the other drive source is stopped, so that the retreat traveling to the road shoulder or the like cannot be performed. In a wheel independent drive type vehicle equipped with an in-wheel motor etc., for example, when turning at a high speed, if one wheel stops output due to overheating or abnormality of the motor or power device etc., the vehicle behavior will not become unstable Such consideration is necessary. In addition, even if an abnormality occurs in a single-wheel motor or the like, it is desired to be able to perform retreat traveling such as movement to a road shoulder or movement to a repair shop or the like.
  • An object of the present invention is a vehicle drive control device including left and right motors that individually drive left and right drive wheels, and enables retreat travel to a road shoulder or the like when one of the drive wheels is in an abnormal state. It is providing the drive control apparatus of a vehicle.
  • the drive control device for a wheel independent drive vehicle is a drive control device that controls the drive of a vehicle including two motors 6 and 6 that individually drive the left drive wheel 2 and the right drive wheel 2.
  • An abnormality detecting means 34 for detecting whether the left driving wheel 2 and the right driving wheel 2 are in an abnormal state; When the abnormality detection unit 34 determines that one of the left driving wheel 2 and the right driving wheel 2 is in the abnormal state, the one driving wheel determined to be in the abnormal state
  • a torque limiting means 36 for limiting the output torque of the other drive wheel 2 to a set ratio of output torque with respect to the maximum torque.
  • the abnormal state is a state incapable of being driven due to abnormality of the motor 6 of the driving wheel 2 or the inverter device 22 that drives the motor 6, overheating of the motor 6 or a power device of the inverter device 22 that drives the motor 6, and the like. .
  • the abnormality detection means 34 determines whether any one of the left and right drive wheels 2 and 2 is in the abnormal state.
  • the torque limiting unit 36 is in the abnormal state.
  • the output of a certain drive wheel 2 is stopped, and the output torque of the other drive wheel 2 in a normal state is limited to a set output torque (for example, 50% of the maximum torque) with respect to the maximum torque. This is because if the difference between the output torques of the left and right drive wheels 2 and 2 is too large, the behavior of the vehicle becomes unstable. In this way, when only one drive wheel 2 is in an abnormal state, the output torque of the normal drive wheel 2 on the opposite side is limited to stabilize the behavior of the vehicle, and then this normal drive wheel 2 makes it possible to evacuate to a road shoulder or a repair shop.
  • the torque limiting means 36 When the maximum torque that can be output from the motor 6 that drives the other driving wheel 2 changes depending on the number of rotations of the motor 6, the torque limiting means 36 outputs a set ratio of output torque to the changed maximum torque. You may restrict to. Generally, in a motor, when the rotation speed exceeds a certain level, the maximum torque of the motor decreases as the motor rotation speed increases. In the case of this configuration, the torque limiter 36 limits the output torque in response to the maximum torque that changes as described above in conjunction with the motor rotation speed that changes from moment to moment, so fine control can be performed. .
  • the motor 6 includes an in-wheel motor drive including the motor 6, a wheel bearing 4 that rotatably supports the drive wheel 2, and a speed reducer 7 that decelerates the rotation of the motor 6 and transmits the rotation to the wheel bearing 4.
  • the device IWM may be configured.
  • FIG. 1 is a block diagram of a conceptual configuration showing an electric vehicle equipped with a drive control apparatus according to an embodiment of the present invention in a plan view. It is sectional drawing of the in-wheel motor drive device in the same electric vehicle. It is a block diagram of a control system of the drive control device. It is a figure which shows the relationship between a motor rotation speed and output torque. It is a flowchart which shows the process of the drive control apparatus in steps. It is a block diagram of the control system of the drive control apparatus which concerns on other embodiment of this invention.
  • FIG. 1 is a block diagram of a conceptual configuration showing a plan view of an electric vehicle that is a vehicle equipped with a drive control device according to this embodiment.
  • This electric vehicle has four wheels in which the left and right rear wheels 2 and 2 of the vehicle body 1 are driving wheels, and the left and right front wheels 3 and 3 are driven wheels. Car.
  • the front wheels 3 and 3 are steering wheels.
  • the left and right wheels 2, 2 as drive wheels are individually driven by independent traveling motors 6, 6.
  • Each motor 6 constitutes an in-wheel motor drive device IWM described later.
  • Each wheel 2 and 3 is provided with a brake (not shown).
  • FIG. 2 is a cross-sectional view of the in-wheel motor drive device IWM in this electric vehicle.
  • Each in-wheel motor drive unit IWM has a motor 6, a speed reducer 7, and a wheel bearing 4, and a part or all of these are arranged in the wheel.
  • the rotation of the motor 6 is transmitted to the drive wheel 2 via the speed reducer 7 and the wheel bearing 4.
  • a brake rotor 5 constituting the brake is fixed to a flange portion of the hub wheel 4 a of the wheel bearing 4, and the brake rotor 5 rotates integrally with the drive wheel 2.
  • the motor 6 is, for example, an embedded magnet type synchronous motor in which a permanent magnet is built in the core portion of the rotor 6a.
  • the motor 6 includes a stator 6b that is a fixed side member and a rotor 6a that is a rotation side member.
  • the stator 6 b is fixed to the housing 8, and the rotor 6 a is attached to the rotation output shaft 9.
  • a radial gap is provided between the rotor 6a and the stator 6b.
  • the vehicle body 1 includes an accelerator operation unit 16, a brake operation unit 17, and a battery 19.
  • Each of the accelerator operation unit 16 and the brake operation unit 17 includes pedals such as an accelerator pedal and a brake pedal, and a sensor that detects an operation amount of the pedal.
  • the battery 19 is mounted on the vehicle body 1 and is used as a drive for the motor 6 and as a power source for the electrical system of the entire vehicle.
  • the vehicle body 1 is equipped with a drive control device 20 including an ECU 21 and a plurality (two in this example) of inverter devices 22.
  • the ECU 21 is a higher-level control unit that performs overall control of the entire vehicle and gives commands to the inverter devices 22.
  • Each inverter device 22 controls each traveling motor 6 according to a command from the ECU 21.
  • the ECU 21 includes a computer, a program executed by the computer, various electronic circuits, and the like.
  • the ECU21 has the command torque calculating part 47.
  • the command torque calculation unit 47 mainly uses the accelerator opening signal output from the accelerator operation unit 16 and the deceleration command output from the brake operation unit 17 to drive the motors 6 and 6 for the left and right wheels 2 and 2.
  • the acceleration / deceleration command to be given to is generated as a torque value.
  • the ECU 21 has a torque distribution means 48.
  • the torque distribution unit 48 distributes the acceleration / deceleration command calculated by the command torque calculation unit 47 to the traveling motors 6 and 6 for the left and right drive wheels 2 and 2 from the steering angle signal output from the steering unit 15. As shown in FIG.
  • the command torque calculation unit 47 uses a deceleration command value for causing the motor 6 to function as a regenerative brake and a braking torque command value (not shown) when a deceleration command output from the brake operation unit 17 is received. And has the function of distributing to The braking torque command value that causes the motor 6 to function as a regenerative brake is reflected in the torque command value of the acceleration / deceleration command that is given to the motors 6 and 6 for traveling.
  • FIG. 3 is a block diagram of a control system of the drive control device 20.
  • the inverter device 22 includes a power circuit unit 28 provided for each motor 6 and a motor control unit 29 that controls the power circuit unit 28.
  • the motor control unit 29 has a function of outputting each information related to the in-wheel motor drive device IWM that the motor control unit 29 has to the ECU 21.
  • Information output from the motor control unit 29 to the ECU 21 includes, for example, detection values and control values (status, motor rotation speed, control torque, motor temperature, inverter temperature described later, drive power supply voltage, control power supply voltage, abnormality information). Etc.).
  • the power circuit unit 28 includes an inverter 31 and a PWM driver 32 that drives the inverter 31.
  • the inverter 31 converts the DC power of the battery 19 (FIG. 1) into three-phase AC power used for driving the motor 6.
  • the inverter 31 is composed of a plurality of semiconductor switching elements (not shown).
  • the PWM driver 32 drives the inverter 31 based on the on / off command.
  • the semiconductor switching element of the inverter 31 includes, for example, an insulated gate bipolar transistor (IGBT).
  • the motor control unit 29 has a motor drive control unit 30 as a basic control unit.
  • the motor drive control unit 30 converts an acceleration / deceleration command by a torque command or the like given from the ECU 21 which is a host control unit into a current command, performs pulse width modulation, and gives an on / off command to the PWM driver 32 of the power circuit unit 28. .
  • the motor drive control unit 30 obtains a motor current value flowing from the inverter 31 to the motor 6 from the current detection unit 38 and performs current feedback control. Further, the motor drive control unit 30 obtains the rotation angle of the rotor 6a (FIG. 2) of the motor 6 from the rotation angle detection means 33 and performs vector control.
  • the abnormality detection means 34 is provided in the motor control unit 29 having the above configuration.
  • the abnormality detection unit 34 determines whether or not the drive wheel 2 driven by the motor 6 corresponding to the inverter device 22 including the abnormality detection unit 34 is in an abnormal state.
  • the abnormal state of the drive wheel 2 refers to the drive wheel due to an abnormality of the motor 6 of the drive wheel 2 or the inverter device 22 that drives the motor 6, overheating of the motor 6 or a power device of the inverter device 22 that drives the motor 6, and the like. This is a state in which driving of 2 is impossible.
  • the abnormality detecting means 34 determines that one of the left driving wheel 2 and the right driving wheel 2 is in the abnormal state, and the other driving wheel 2 is in the normal state. At the same time, the output of the drive wheel 2 in the abnormal state is stopped, and the output torque of the drive wheel 2 in the other normal state is limited to the output torque set to the maximum torque. This is because if the difference between the output torques of the left and right drive wheels 2 and 2 is too large, the behavior of the vehicle becomes unstable.
  • FIG. 4 is a diagram showing the relationship between the motor speed and the output torque.
  • the “rotational speed” of the motor means the rotational speed of the motor.
  • the torque limiting means 36 is a ratio in which the output torque of the other driving wheel 2 in the normal state is set with respect to the maximum torque when one driving wheel 2 is in the abnormal state. Output torque (for example, 50% of the maximum torque indicated by the dotted line in FIG. 4).
  • the command torque output from the torque distribution means 48 to the other drive wheel 2 is, for example, 75% of the maximum torque at the motor rotation speed N1 (FIG. 4 (P1)).
  • the command torque to the other drive wheel 2 is limited to 50% of the maximum torque (P2 in FIG. 4). To do.
  • the torque limiting means 36 takes the command torque as it is when the command torque given from the torque distribution means 48 is, for example, 40% of the maximum torque at the motor rotation speed N2 (P3 in FIG. 4). That is, even if abnormality occurrence information is given from the ECU 21 to the torque limiting means 36 of the other inverter device 22, the command torque given from the torque distribution means 48 to the other inverter device 22 is equal to or less than the set output torque. Does not limit the command torque.
  • the torque limiting means 36 controls to stop the output of both the drive wheels 2 and 2 and stop the vehicle.
  • the torque limiting means 36 limits the output torque when the temperature detected by the temperature sensor is equal to or higher than the first threshold, and the output torque when the temperature is higher than the second threshold larger than the first threshold. Set to zero to stop the output.
  • the first and second threshold values are determined based on, for example, results of tests and simulations.
  • FIG. 5 is a flowchart showing the processing of the drive control device 20 step by step. This will be described with reference to FIG. For example, this process starts under the condition that the vehicle is powered on, and the abnormality detection unit 34 determines whether each driving wheel 2 is in an abnormal state (step S1). If it is determined that there is no abnormality in both drive wheels (step S1: No), this process is terminated. If it is determined that at least one of the drive wheels 2 is in an abnormal state (step S1: Yes), the process proceeds to step S2.
  • the ECU 21 determines whether only one of the left and right drive wheels 2, 2 is in an abnormal state or whether both wheels are in an abnormal state (step S2), and only one of the left and right drive wheels 2, 2 is in an abnormal state.
  • the torque limiting means 36 stops the output of the driving wheel 2 in the abnormal state and limits the output torque of the driving wheel 2 in the normal state to a set value according to the motor rotation speed (step S3). Thereafter, this process is terminated. If it is determined in step S2 that both wheels are in an abnormal state, each torque limiting means 36 controls to stop the output of both drive wheels 2 and stop the vehicle (step S4). Thereafter, this process is terminated.
  • the torque limiting means 36 When the abnormality detection means 34 determines that only one drive wheel 2 is in the abnormal state and the other drive wheel 2 is in the normal state, the torque limiting means 36 The output of one drive wheel 2 in the abnormal state is stopped, and the output torque of the other drive wheel 2 in the normal state is limited to the output torque set to the maximum torque. Thus, when one drive wheel 2 becomes abnormal, the output torque of the other normal drive wheel 2 is limited to stabilize the behavior of the vehicle. You can evacuate to the shoulder or repair shop.
  • the torque limiting means 36 limits the output torque to a set ratio with respect to the changed maximum torque. Therefore, since the torque limiting means 36 limits the output torque in conjunction with the motor rotational speed that changes from moment to moment, fine control can be performed.
  • the two inverter devices are provided separately.
  • the inverter devices 22 that respectively control the motors 6 may be integrated.
  • the torque limiting means 36 is provided in the inverter device 22. According to the configuration shown in FIG. 6, it is possible to simplify the cables and connectors as compared with the configuration shown in FIG.
  • each inverter device 22 may be constituted by a common computer or an electronic circuit on a common substrate.
  • a two-wheel independent drive vehicle that independently drives the left and right front wheels may be applied.
  • a four-wheel independent drive vehicle that drives the left and right front wheels independently and drives the left and right rear wheels independently may be applied.
  • the in-wheel motor drive device IWM is a so-called direct motor type in which a cycloid reducer, a planetary reducer, a two-axis parallel reducer, and other reducers can be applied. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

Disclosed is a drive control device (20) that controls the drive of a vehicle including two motors (6, 6) each separately driving a left drive wheel (2) and a right drive wheel (2), the drive control device comprising: an abnormality detection means (34) that determines whether or not either the left drive wheel or the right drive wheel is in an abnormal state; and a torque limiting means (36) that, if the abnormality detection means (34) determines that either one of the left and right drive wheels (2) is in said abnormal state, stops the output of said one drive wheel (2) determined to be in said abnormal state, and limits the output torque of the other drive wheel (2) to an output torque at a rate set with respect to the maximum torque.

Description

車輪独立駆動式車両の駆動制御装置Drive control device for wheel independent drive type vehicle 関連出願Related applications
 本出願は、2014年8月29日出願の特願2014-175052の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2014-175052 filed on Aug. 29, 2014, which is incorporated herein by reference in its entirety.
 この発明は、例えば、インホイールモータ等を搭載した車輪独立駆動式車両において、一方の駆動輪が出力停止となったときに路肩等への退避走行を可能とした車輪独立駆動式車両の駆動制御装置に関する。 For example, in the wheel independent drive type vehicle equipped with an in-wheel motor or the like, the drive control of the wheel independent drive type vehicle that enables retreat traveling to the road shoulder or the like when the output of one drive wheel is stopped. Relates to the device.
 自動車の旋回時に次のように駆動力を制御する技術が提案されている(特許文献1)。
 ・旋回方向外輪側の前輪の駆動源が駆動不能に陥ると、旋回方向内輪側の前輪に対する駆動力を徐々に低下させていき、所定時間経過後に駆動力の供給を停止させる。
 ・旋回方向内輪側の前輪の駆動源が駆動不能に陥ると、旋回方向外輪側の前輪に対する駆動力の供給を直ちに停止させる。
There has been proposed a technique for controlling the driving force as follows when the automobile is turning (Patent Document 1).
When the driving source of the front wheel on the outer side in the turning direction becomes unable to drive, the driving force for the front wheel on the inner side in the turning direction is gradually reduced, and the supply of the driving force is stopped after a predetermined time has elapsed.
-When the drive source of the front wheel on the inner side in the turning direction becomes unable to drive, the supply of driving force to the front wheel on the outer side in the turning direction is immediately stopped.
特開平8-168112号公報JP-A-8-168112
 従来技術の制御では舵角センサが必要であり、制御が複雑かつコストが高くなる。また、一方の駆動源が駆動不能に陥ると、正常な他方の駆動源への駆動力の供給を停止させるため、路肩等への退避走行もできなくなる。
 インホイールモータ等を搭載した車輪独立駆動式車両において、例えば、高速で旋回するときにモータやパワーデバイス等の過熱または異常により片輪が出力停止となったときに、車両挙動が不安定にならないような配慮が必要である。また、片輪のモータ等に異常が発生した場合でも路肩等への移動や修理工場等への移動などの退避走行ができるようにしたい。
The control of the prior art requires a steering angle sensor, which makes the control complicated and expensive. Further, when one drive source becomes incapable of being driven, the normal supply of the drive force to the other drive source is stopped, so that the retreat traveling to the road shoulder or the like cannot be performed.
In a wheel independent drive type vehicle equipped with an in-wheel motor etc., for example, when turning at a high speed, if one wheel stops output due to overheating or abnormality of the motor or power device etc., the vehicle behavior will not become unstable Such consideration is necessary. In addition, even if an abnormality occurs in a single-wheel motor or the like, it is desired to be able to perform retreat traveling such as movement to a road shoulder or movement to a repair shop or the like.
 この発明の目的は、左右の駆動輪を個別に駆動する左右のモータを備えた車両の駆動制御装置において、一方の駆動輪が異常状態となったときに路肩等への退避走行を可能とした車両の駆動制御装置を提供することである。 An object of the present invention is a vehicle drive control device including left and right motors that individually drive left and right drive wheels, and enables retreat travel to a road shoulder or the like when one of the drive wheels is in an abnormal state. It is providing the drive control apparatus of a vehicle.
 この発明の車輪独立駆動式車両の駆動制御装置は、左側の駆動輪2と右側の駆動輪2とを個別に駆動する2つのモータ6,6を備えた車両の駆動を制御する駆動制御装置であって、
 前記左側の駆動輪2および右側の駆動輪2が異常状態であるかを検出する異常検出手段34と、
 前記異常検出手段34が前記左側の駆動輪2および右側の駆動輪2のいずれか一方の駆動輪2が前記異常状態にあると判定したとき、前記異常状態にあると判定された一方の駆動輪の出力を停止し、他方の駆動輪2の出力トルクを、最大トルクに対し設定した割合の出力トルクに制限するトルク制限手段36とを備えている。
 前記異常状態とは、前記駆動輪2のモータ6またはモータ6を駆動するインバータ装置22の異常、モータ6またはモータ6を駆動するインバータ装置22のパワーデバイス等の過熱などにより駆動不能な状態である。
The drive control device for a wheel independent drive vehicle according to the present invention is a drive control device that controls the drive of a vehicle including two motors 6 and 6 that individually drive the left drive wheel 2 and the right drive wheel 2. There,
An abnormality detecting means 34 for detecting whether the left driving wheel 2 and the right driving wheel 2 are in an abnormal state;
When the abnormality detection unit 34 determines that one of the left driving wheel 2 and the right driving wheel 2 is in the abnormal state, the one driving wheel determined to be in the abnormal state And a torque limiting means 36 for limiting the output torque of the other drive wheel 2 to a set ratio of output torque with respect to the maximum torque.
The abnormal state is a state incapable of being driven due to abnormality of the motor 6 of the driving wheel 2 or the inverter device 22 that drives the motor 6, overheating of the motor 6 or a power device of the inverter device 22 that drives the motor 6, and the like. .
 この構成によると、異常検出手段34は、左右の駆動輪2,2のいずれか一方の駆動輪2が前記異常状態であるか否かを判定する。 According to this configuration, the abnormality detection means 34 determines whether any one of the left and right drive wheels 2 and 2 is in the abnormal state.
 異常検出手段34が、一方の駆動輪2が前記異常状態にあり、他方の駆動輪2が前記異常状態ではない、すなわち正常状態であると判定したとき、トルク制限手段36は、その異常状態にある駆動輪2の出力を停止させ、他方の正常状態にある駆動輪2の出力トルクを、最大トルクに対し設定した割合の出力トルク(例えば、最大トルクの50%)に制限する。左右の駆動輪2,2の出力トルクの差が大き過ぎると、車両の挙動が不安定になるからである。このように一方の駆動輪2のみが異常状態となったときに、反対側の正常な駆動輪2の出力トルクに制限をかけて車両の挙動を安定化させたうえで、この正常な駆動輪2により路肩等や修理工場等へ退避走行することができる。 When the abnormality detection unit 34 determines that one drive wheel 2 is in the abnormal state and the other drive wheel 2 is not in the abnormal state, that is, is in a normal state, the torque limiting unit 36 is in the abnormal state. The output of a certain drive wheel 2 is stopped, and the output torque of the other drive wheel 2 in a normal state is limited to a set output torque (for example, 50% of the maximum torque) with respect to the maximum torque. This is because if the difference between the output torques of the left and right drive wheels 2 and 2 is too large, the behavior of the vehicle becomes unstable. In this way, when only one drive wheel 2 is in an abnormal state, the output torque of the normal drive wheel 2 on the opposite side is limited to stabilize the behavior of the vehicle, and then this normal drive wheel 2 makes it possible to evacuate to a road shoulder or a repair shop.
 前記トルク制限手段36は、前記他方の駆動輪2を駆動するモータ6の出力可能な最大トルクが、前記モータ6の回転数によって変化した場合、その変化した最大トルクに対し設定した割合の出力トルクに制限しても良い。一般的にモータでは、ある程度以上の回転数になると、モータ回転数が大きくなるに従ってモータの最大トルクが小さくなる。この構成の場合、トルク制限手段36は、時々刻々と変化するモータ回転数に連動して上記のように変わる最大トルクに対応して出力トルクを制限するため、木目細かな制御を行うことができる。 When the maximum torque that can be output from the motor 6 that drives the other driving wheel 2 changes depending on the number of rotations of the motor 6, the torque limiting means 36 outputs a set ratio of output torque to the changed maximum torque. You may restrict to. Generally, in a motor, when the rotation speed exceeds a certain level, the maximum torque of the motor decreases as the motor rotation speed increases. In the case of this configuration, the torque limiter 36 limits the output torque in response to the maximum torque that changes as described above in conjunction with the motor rotation speed that changes from moment to moment, so fine control can be performed. .
 前記モータ6は、このモータ6と、前記駆動輪2を回転支持する車輪用軸受4と、前記モータ6の回転を減速して前記車輪用軸受4に伝える減速機7とを含むインホイールモータ駆動装置IWMを構成しても良い。 The motor 6 includes an in-wheel motor drive including the motor 6, a wheel bearing 4 that rotatably supports the drive wheel 2, and a speed reducer 7 that decelerates the rotation of the motor 6 and transmits the rotation to the wheel bearing 4. The device IWM may be configured.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の一実施形態に係る駆動制御装置を搭載した電気自動車を平面図で示す概念構成のブロック図である。 同電気自動車におけるインホイールモータ駆動装置の断面図である。 同駆動制御装置の制御系のブロック図である。 モータ回転数と出力トルクとの関係を示す図である。 同駆動制御装置の処理を段階的に示すフローチャートである。 この発明の他の実施形態に係る駆動制御装置の制御系のブロック図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
1 is a block diagram of a conceptual configuration showing an electric vehicle equipped with a drive control apparatus according to an embodiment of the present invention in a plan view. It is sectional drawing of the in-wheel motor drive device in the same electric vehicle. It is a block diagram of a control system of the drive control device. It is a figure which shows the relationship between a motor rotation speed and output torque. It is a flowchart which shows the process of the drive control apparatus in steps. It is a block diagram of the control system of the drive control apparatus which concerns on other embodiment of this invention.
 この発明の一実施形態を図1ないし図5と共に説明する。
 図1は、この実施形態に係る駆動制御装置を搭載した車両である電気自動車を平面図で示す概念構成のブロック図である。この電気自動車は、車体1の左側の後輪および右側の後輪となる車輪2,2が駆動輪とされ、左側の前輪および右側の前輪となる車輪3,3が従動輪とされた4輪の自動車である。前輪となる車輪3,3は操舵輪とされている。駆動輪となる左右の車輪2,2は、それぞれ独立の走行用のモータ6,6により個別に駆動される。各モータ6は、後述のインホイールモータ駆動装置IWMを構成する。各車輪2,3には、図示外のブレーキが設けられている。
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a block diagram of a conceptual configuration showing a plan view of an electric vehicle that is a vehicle equipped with a drive control device according to this embodiment. This electric vehicle has four wheels in which the left and right rear wheels 2 and 2 of the vehicle body 1 are driving wheels, and the left and right front wheels 3 and 3 are driven wheels. Car. The front wheels 3 and 3 are steering wheels. The left and right wheels 2, 2 as drive wheels are individually driven by independent traveling motors 6, 6. Each motor 6 constitutes an in-wheel motor drive device IWM described later. Each wheel 2 and 3 is provided with a brake (not shown).
 図2は、この電気自動車におけるインホイールモータ駆動装置IWMの断面図である。各インホイールモータ駆動装置IWMは、それぞれ、モータ6、減速機7、および車輪用軸受4を有し、これらの一部または全体が車輪内に配置される。モータ6の回転は、減速機7および車輪用軸受4を介して駆動輪2に伝達される。車輪用軸受4のハブ輪4aのフランジ部には前記ブレーキを構成するブレーキロータ5が固定され、同ブレーキロータ5は駆動輪2と一体に回転する。モータ6は、例えば、ロータ6aのコア部に永久磁石が内蔵された埋込磁石型同期モータである。このモータ6は、固定側部材であるステータ6bと、回転側部材であるロータ6aとを備える。ステータ6bはハウジング8に固定されており、ロータ6aは回転出力軸9に取り付けられている。ロータ6aとステータ6bとの間にラジアルギャップが設けられている。 FIG. 2 is a cross-sectional view of the in-wheel motor drive device IWM in this electric vehicle. Each in-wheel motor drive unit IWM has a motor 6, a speed reducer 7, and a wheel bearing 4, and a part or all of these are arranged in the wheel. The rotation of the motor 6 is transmitted to the drive wheel 2 via the speed reducer 7 and the wheel bearing 4. A brake rotor 5 constituting the brake is fixed to a flange portion of the hub wheel 4 a of the wheel bearing 4, and the brake rotor 5 rotates integrally with the drive wheel 2. The motor 6 is, for example, an embedded magnet type synchronous motor in which a permanent magnet is built in the core portion of the rotor 6a. The motor 6 includes a stator 6b that is a fixed side member and a rotor 6a that is a rotation side member. The stator 6 b is fixed to the housing 8, and the rotor 6 a is attached to the rotation output shaft 9. A radial gap is provided between the rotor 6a and the stator 6b.
 制御系を説明する。
 図1に示すように、車体1は、アクセル操作部16、ブレーキ操作部17およびバッテリ19を搭載している。アクセル操作部16およびブレーキ操作部17は、それぞれアクセルペダルおよびブレーキペダル等のペダルと、そのペダルの動作量を検出するセンサとを有する。バッテリ19は、車体1に搭載され、モータ6の駆動、および車両全体の電気系統の電源として用いられる。また、車体1には、ECU21と、複数(この例では2つ)のインバータ装置22とを含む駆動制御装置20が搭載されている。ECU21は、自動車全般の統括制御を行い、各インバータ装置22に指令を与える上位制御手段である。各インバータ装置22は、ECU21の指令に従って各走行用のモータ6の制御をそれぞれ行う。ECU21は、コンピュータとこれに実行されるプログラム、並びに各種の電子回路等で構成される。
The control system will be described.
As shown in FIG. 1, the vehicle body 1 includes an accelerator operation unit 16, a brake operation unit 17, and a battery 19. Each of the accelerator operation unit 16 and the brake operation unit 17 includes pedals such as an accelerator pedal and a brake pedal, and a sensor that detects an operation amount of the pedal. The battery 19 is mounted on the vehicle body 1 and is used as a drive for the motor 6 and as a power source for the electrical system of the entire vehicle. The vehicle body 1 is equipped with a drive control device 20 including an ECU 21 and a plurality (two in this example) of inverter devices 22. The ECU 21 is a higher-level control unit that performs overall control of the entire vehicle and gives commands to the inverter devices 22. Each inverter device 22 controls each traveling motor 6 according to a command from the ECU 21. The ECU 21 includes a computer, a program executed by the computer, various electronic circuits, and the like.
 ECU21は、指令トルク演算部47を有する。この指令トルク演算部47は、主に、アクセル操作部16の出力するアクセル開度の信号と、ブレーキ操作部17の出力する減速指令とから、左右輪2,2の走行用のモータ6,6に与える加速・減速指令をトルク値として生成する。また、ECU21は、トルク配分手段48を有する。トルク配分手段48は、指令トルク演算部47で演算された加速・減速指令を、操舵手段15の出力する操舵角の信号とから左右の駆動輪2,2の走行用のモータ6,6へ分配するように各インバータ装置22へ出力する。 ECU21 has the command torque calculating part 47. FIG. The command torque calculation unit 47 mainly uses the accelerator opening signal output from the accelerator operation unit 16 and the deceleration command output from the brake operation unit 17 to drive the motors 6 and 6 for the left and right wheels 2 and 2. The acceleration / deceleration command to be given to is generated as a torque value. Further, the ECU 21 has a torque distribution means 48. The torque distribution unit 48 distributes the acceleration / deceleration command calculated by the command torque calculation unit 47 to the traveling motors 6 and 6 for the left and right drive wheels 2 and 2 from the steering angle signal output from the steering unit 15. As shown in FIG.
 また、指令トルク演算部47は、ブレーキ操作部17の出力する減速指令があったときに、減速指令値を、モータ6を回生ブレーキとして機能させる制動トルク指令値と、図示外の制動トルク指令値とに配分する機能を有する。モータ6を回生ブレーキとして機能させる制動トルク指令値は、各走行用のモータ6,6に与える加速・減速指令のトルク指令値に反映させる。 Further, the command torque calculation unit 47 uses a deceleration command value for causing the motor 6 to function as a regenerative brake and a braking torque command value (not shown) when a deceleration command output from the brake operation unit 17 is received. And has the function of distributing to The braking torque command value that causes the motor 6 to function as a regenerative brake is reflected in the torque command value of the acceleration / deceleration command that is given to the motors 6 and 6 for traveling.
 図3は、駆動制御装置20の制御系のブロック図である。以後、図1も適宜参照しつつ説明する。インバータ装置22は、各モータ6に対して設けられたパワー回路部28と、このパワー回路部28を制御するモータコントロール部29とを有する。モータコントロール部29は、このモータコントロール部29が持つインホイールモータ駆動装置IWMに関する各情報をECU21に出力する機能を有する。モータコントロール部29からECU21へ出力される情報は、例えば、各検出値や制御値(ステータス、モータ回転数、制御トルク、モータ温度、後述のインバータの温度、駆動電源電圧、制御電源電圧、異常情報等)である。 FIG. 3 is a block diagram of a control system of the drive control device 20. Hereinafter, description will be made with reference to FIG. 1 as appropriate. The inverter device 22 includes a power circuit unit 28 provided for each motor 6 and a motor control unit 29 that controls the power circuit unit 28. The motor control unit 29 has a function of outputting each information related to the in-wheel motor drive device IWM that the motor control unit 29 has to the ECU 21. Information output from the motor control unit 29 to the ECU 21 includes, for example, detection values and control values (status, motor rotation speed, control torque, motor temperature, inverter temperature described later, drive power supply voltage, control power supply voltage, abnormality information). Etc.).
 パワー回路部28は、インバータ31と、このインバータ31を駆動するPWMドライバ32とを有する。インバータ31は、バッテリ19(図1)の直流電力をモータ6の駆動に用いる3相の交流電力に変換する。インバータ31は、複数の半導体スイッチング素子(図示せず)で構成される。PWMドライバ32は、オンオフ指令に基づきインバータ31を駆動する。インバータ31の半導体スイッチング素子は、例えば、絶縁ゲートバイポーラトランジスタ(IGBT)等からなる。 The power circuit unit 28 includes an inverter 31 and a PWM driver 32 that drives the inverter 31. The inverter 31 converts the DC power of the battery 19 (FIG. 1) into three-phase AC power used for driving the motor 6. The inverter 31 is composed of a plurality of semiconductor switching elements (not shown). The PWM driver 32 drives the inverter 31 based on the on / off command. The semiconductor switching element of the inverter 31 includes, for example, an insulated gate bipolar transistor (IGBT).
 モータコントロール部29は、その基本となる制御部としてモータ駆動制御部30を有している。モータ駆動制御部30は、上位制御手段であるECU21から与えられるトルク指令等による加速・減速指令を、電流指令に変換してパルス幅変調し、パワー回路部28のPWMドライバ32にオンオフ指令を与える。モータ駆動制御部30は、インバータ31からモータ6に流すモータ電流値を電流検出手段38から得て、電流フィードバック制御を行う。また、モータ駆動制御部30は、モータ6のロータ6a(図2)の回転角を回転角度検出手段33から得て、ベクトル制御を行う。 The motor control unit 29 has a motor drive control unit 30 as a basic control unit. The motor drive control unit 30 converts an acceleration / deceleration command by a torque command or the like given from the ECU 21 which is a host control unit into a current command, performs pulse width modulation, and gives an on / off command to the PWM driver 32 of the power circuit unit 28. . The motor drive control unit 30 obtains a motor current value flowing from the inverter 31 to the motor 6 from the current detection unit 38 and performs current feedback control. Further, the motor drive control unit 30 obtains the rotation angle of the rotor 6a (FIG. 2) of the motor 6 from the rotation angle detection means 33 and performs vector control.
 この実施形態では、上記構成のモータコントロール部29に異常検出手段34を設けている。異常検出手段34は、この異常検出手段34を含むインバータ装置22に対応するモータ6により駆動される駆動輪2が、異常状態にあるか否かを判定する。駆動輪2の異常状態とは、前記駆動輪2のモータ6またはモータ6を駆動するインバータ装置22の異常、モータ6またはモータ6を駆動するインバータ装置22のパワーデバイス等の過熱などにより、駆動輪2の駆動が不能となる状態である。 In this embodiment, the abnormality detection means 34 is provided in the motor control unit 29 having the above configuration. The abnormality detection unit 34 determines whether or not the drive wheel 2 driven by the motor 6 corresponding to the inverter device 22 including the abnormality detection unit 34 is in an abnormal state. The abnormal state of the drive wheel 2 refers to the drive wheel due to an abnormality of the motor 6 of the drive wheel 2 or the inverter device 22 that drives the motor 6, overheating of the motor 6 or a power device of the inverter device 22 that drives the motor 6, and the like. This is a state in which driving of 2 is impossible.
 トルク制限手段36は、左側の駆動輪2および右側の駆動輪2のいずれか一方の駆動輪2が前記異常状態にあり、他方の駆動輪2が正常状態であると異常検出手段34が判断したとき、異常状態の駆動輪2を出力停止すると共に、他方の正常状態にある駆動輪2の出力トルクを、最大トルクに対し設定した割合の出力トルクに制限する。左右の駆動輪2,2の出力トルクの差が大き過ぎると、車両の挙動が不安定になるからである。 In the torque limiting means 36, the abnormality detecting means 34 determines that one of the left driving wheel 2 and the right driving wheel 2 is in the abnormal state, and the other driving wheel 2 is in the normal state. At the same time, the output of the drive wheel 2 in the abnormal state is stopped, and the output torque of the drive wheel 2 in the other normal state is limited to the output torque set to the maximum torque. This is because if the difference between the output torques of the left and right drive wheels 2 and 2 is too large, the behavior of the vehicle becomes unstable.
 図4は、モータ回転数と出力トルクとの関係を示す図である。なお、本明細書においてモータの「回転数」とは、モータの回転速度を意味する。一般的にモータでは、ある程度以上の回転数になると、モータ回転数が大きくなるに従ってモータの最大トルクが小さくなる。図3および図4に示すように、トルク制限手段36は、一方の駆動輪2が異常状態にある場合に、正常状態にある他方の駆動輪2の出力トルクを、最大トルクに対し設定した割合の出力トルク(例えば、同図4の点線で示す最大トルクの50%)に制限する。 FIG. 4 is a diagram showing the relationship between the motor speed and the output torque. In this specification, the “rotational speed” of the motor means the rotational speed of the motor. Generally, in a motor, when the rotation speed exceeds a certain level, the maximum torque of the motor decreases as the motor rotation speed increases. As shown in FIGS. 3 and 4, the torque limiting means 36 is a ratio in which the output torque of the other driving wheel 2 in the normal state is set with respect to the maximum torque when one driving wheel 2 is in the abnormal state. Output torque (for example, 50% of the maximum torque indicated by the dotted line in FIG. 4).
 具体的には、トルク制限手段36は、トルク配分手段48から前記他方の駆動輪2に出力される指令トルクが、例えば、モータ回転数N1で最大トルクの75%(同図4(P1))のとき、設定した割合の出力トルク(この例では最大トルクの50%)を超えているため、他方の駆動輪2への指令トルクを最大トルクの50%(同図4(P2))に制限する。 Specifically, in the torque limiting means 36, the command torque output from the torque distribution means 48 to the other drive wheel 2 is, for example, 75% of the maximum torque at the motor rotation speed N1 (FIG. 4 (P1)). In this case, since the output torque of the set ratio (50% of the maximum torque in this example) is exceeded, the command torque to the other drive wheel 2 is limited to 50% of the maximum torque (P2 in FIG. 4). To do.
 トルク制限手段36は、トルク配分手段48から与えられる指令トルクが、例えば、モータ回転数N2で最大トルクの40%(同図4(P3))のとき、そのままの指令トルクとする。つまりECU21から他方のインバータ装置22のトルク制限手段36に異常発生情報が与えられても、トルク配分手段48から他方のインバータ装置22に与えられる指令トルクが、設定した割合の出力トルク以下のため、指令トルクを制限しない。 The torque limiting means 36 takes the command torque as it is when the command torque given from the torque distribution means 48 is, for example, 40% of the maximum torque at the motor rotation speed N2 (P3 in FIG. 4). That is, even if abnormality occurrence information is given from the ECU 21 to the torque limiting means 36 of the other inverter device 22, the command torque given from the torque distribution means 48 to the other inverter device 22 is equal to or less than the set output torque. Does not limit the command torque.
 トルク制限手段36は、左右の駆動輪2,2共に前記異常状態にあると判断したとき、両駆動輪2,2の出力を停止させ車両を停止させるように制御する。 When the left and right drive wheels 2 and 2 are determined to be in the abnormal state, the torque limiting means 36 controls to stop the output of both the drive wheels 2 and 2 and stop the vehicle.
 なお、例えば、回転角度検出手段33や電流検出手段38の断線、ショート故障の場合は、制御自体ができなくなるため、各トルク制限手段36は、それぞれ出力停止しモータ6が駆動不能な状態となるように制御する。モータ6やIGBTの過熱時には、トルク制限手段36は、温度センサで検出される温度が第1の閾値以上で出力トルクの制限を行い、第1の閾値よりも大きい第2の閾値以上で出力トルクを零にして出力停止させる。第1,第2の閾値は、例えば、試験やシミュレーション等の結果により定められる。ECU21とインバータ装置22との間、インバータ装置22,22同士がコントローラ・エリア・ネットワーク(Controller Area Network:略称:CAN)通信で電気的に接続されている場合に、CAN通信の異常(例えば、断線、ショート等)が発生すると指令が来ないため、各トルク制限手段36は両輪を出力停止させる。 For example, if the rotation angle detection means 33 or the current detection means 38 is disconnected or short-circuited, the control itself cannot be performed, so that each torque limiting means 36 stops outputting and the motor 6 cannot be driven. To control. When the motor 6 or the IGBT is overheated, the torque limiting means 36 limits the output torque when the temperature detected by the temperature sensor is equal to or higher than the first threshold, and the output torque when the temperature is higher than the second threshold larger than the first threshold. Set to zero to stop the output. The first and second threshold values are determined based on, for example, results of tests and simulations. When the inverter devices 22 and 22 are electrically connected with each other between the ECU 21 and the inverter device 22 by a controller area network (abbreviation: CAN) communication, an abnormality in CAN communication (for example, disconnection) When a short circuit occurs, the command does not come, so each torque limiting means 36 stops the output of both wheels.
 図5は、この駆動制御装置20の処理を段階的に示すフローチャートである。図3と共に説明する。例えば、車両の電源を投入する条件で本処理が開始し、異常検出手段34は、各駆動輪2が異常状態にあるかを判定する(ステップS1)。両駆動輪共に異常なしとの判定で(ステップS1:No)、本処理を終了する。少なくともいずれか一方の駆動輪2が異常状態であるとの判定で(ステップS1:Yes)、ステップS2に移行する。 FIG. 5 is a flowchart showing the processing of the drive control device 20 step by step. This will be described with reference to FIG. For example, this process starts under the condition that the vehicle is powered on, and the abnormality detection unit 34 determines whether each driving wheel 2 is in an abnormal state (step S1). If it is determined that there is no abnormality in both drive wheels (step S1: No), this process is terminated. If it is determined that at least one of the drive wheels 2 is in an abnormal state (step S1: Yes), the process proceeds to step S2.
 次に、ECU21は、左右の駆動輪2,2の一方のみが異常状態にあるか両輪共に異常状態にあるかを判断し(ステップS2)、左右の駆動輪2,2の一方のみ異常状態にあるとき、トルク制限手段36は、その異常状態の駆動輪2を出力停止すると共に、正常状態にある駆動輪2の出力トルクを、モータ回転数に応じた設定値に制限する(ステップS3)。その後本処理を終了する。
 ステップS2で両輪共に異常状態にあると判断されると、各トルク制限手段36は、両駆動輪2の出力をそれぞれ停止して車両を停止させるように制御する(ステップS4)。その後本処理を終了する。
Next, the ECU 21 determines whether only one of the left and right drive wheels 2, 2 is in an abnormal state or whether both wheels are in an abnormal state (step S2), and only one of the left and right drive wheels 2, 2 is in an abnormal state. At a certain time, the torque limiting means 36 stops the output of the driving wheel 2 in the abnormal state and limits the output torque of the driving wheel 2 in the normal state to a set value according to the motor rotation speed (step S3). Thereafter, this process is terminated.
If it is determined in step S2 that both wheels are in an abnormal state, each torque limiting means 36 controls to stop the output of both drive wheels 2 and stop the vehicle (step S4). Thereafter, this process is terminated.
 以上説明した車両の駆動制御装置によると、異常検出手段34により一方の駆動輪2のみが前記異常状態にあり、他方の駆動輪2が正常状態であると判定したとき、トルク制限手段36は、異常状態にある一方の駆動輪2を出力停止させ、正常状態にある他方の駆動輪2の出力トルクを、最大トルクに対し設定した割合の出力トルクに制限する。このように一方の駆動輪2が異常状態となったときに、他方の正常な駆動輪2の出力トルクに制限をかけて車両の挙動を安定化させたうえで、この正常な駆動輪2により路肩等や修理工場等へ退避走行することができる。 According to the vehicle drive control apparatus described above, when the abnormality detection means 34 determines that only one drive wheel 2 is in the abnormal state and the other drive wheel 2 is in the normal state, the torque limiting means 36 The output of one drive wheel 2 in the abnormal state is stopped, and the output torque of the other drive wheel 2 in the normal state is limited to the output torque set to the maximum torque. Thus, when one drive wheel 2 becomes abnormal, the output torque of the other normal drive wheel 2 is limited to stabilize the behavior of the vehicle. You can evacuate to the shoulder or repair shop.
 トルク制限手段36は、正常な駆動輪2を駆動するモータ6の出力可能な最大トルクが、モータ回転数によって変化した場合、その変化した最大トルクに対し設定した割合の出力トルクに制限する。したがって、トルク制限手段36は、時々刻々と変化するモータ回転数に連動して出力トルクを制限するため、木目細かな制御を行うことができる。 When the maximum torque that can be output from the motor 6 that drives the normal driving wheel 2 changes depending on the motor rotation speed, the torque limiting means 36 limits the output torque to a set ratio with respect to the changed maximum torque. Therefore, since the torque limiting means 36 limits the output torque in conjunction with the motor rotational speed that changes from moment to moment, fine control can be performed.
 他の実施形態について説明する。
 以下の説明において、前述の実施形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
Another embodiment will be described.
In the following description, portions corresponding to the matters described in the above-described embodiment are denoted by the same reference numerals, and overlapping descriptions are omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in advance unless otherwise specified. The same effect is obtained from the same configuration. Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.
 前記実施形態では、2つのインバータ装置が別体に設けられているが、図6に示すように、各モータ6の制御をそれぞれ行うインバータ装置22が一体の構成であっても良い。この場合、トルク制限手段36はインバータ装置22に設けられている。この図6の構成によると、図3の構成よりもケーブル類、コネクタ等の簡素化を図り、コスト低減を図ることができる。 In the above embodiment, the two inverter devices are provided separately. However, as shown in FIG. 6, the inverter devices 22 that respectively control the motors 6 may be integrated. In this case, the torque limiting means 36 is provided in the inverter device 22. According to the configuration shown in FIG. 6, it is possible to simplify the cables and connectors as compared with the configuration shown in FIG.
 各インバータ装置22の弱電系を、互いに共通のコンピュータや共通の基板上の電子回路で構成しても良い。
 車両として、左右の前輪2輪を独立して駆動する2輪独立駆動車を適用しても良い。また車両として、左右の前輪2輪を独立して駆動し、左右の後輪2輪を独立して駆動する4輪独立駆動車を適用しても良い。
 インホイールモータ駆動装置IWMにおいては、サイクロイド式の減速機、遊星減速機、2軸並行減速機、その他の減速機を適用可能であり、また、減速機を採用しない、所謂ダイレクトモータタイプであってもよい。
The weak electrical system of each inverter device 22 may be constituted by a common computer or an electronic circuit on a common substrate.
As the vehicle, a two-wheel independent drive vehicle that independently drives the left and right front wheels may be applied. Further, as the vehicle, a four-wheel independent drive vehicle that drives the left and right front wheels independently and drives the left and right rear wheels independently may be applied.
The in-wheel motor drive device IWM is a so-called direct motor type in which a cycloid reducer, a planetary reducer, a two-axis parallel reducer, and other reducers can be applied. Also good.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。 As described above, the preferred embodiments have been described with reference to the drawings. However, those skilled in the art will readily assume various changes and modifications within the obvious scope by looking at the present specification. Accordingly, such changes and modifications are to be construed as within the scope of the invention as defined by the appended claims.
2…車輪(駆動輪)
4…車輪用軸受
6…モータ
7…減速機
34…異常検出手段
36…トルク制限手段
IWM…インホイールモータ駆動装置
2 ... wheel (drive wheel)
DESCRIPTION OF SYMBOLS 4 ... Wheel bearing 6 ... Motor 7 ... Reduction gear 34 ... Abnormality detection means 36 ... Torque limitation means IWM ... In-wheel motor drive device

Claims (3)

  1.  左側の駆動輪と右側の駆動輪とを個別に駆動する2つのモータを備えた車両の駆動を制御する駆動制御装置であって、
     前記左側の駆動輪および右側の駆動輪のいずれか一方が異常状態にあるか否かを判定する異常検出手段と、
     前記異常検出手段が前記左側の駆動輪および右側の駆動輪のいずれか一方の駆動輪が前記異常状態にあると判定したとき、前記異常状態にあると判定された一方の駆動輪の出力を停止し、他方の駆動輪の出力トルクを、最大トルクに対し設定した割合の出力トルクに制限するトルク制限手段と、
    を備えた車輪独立駆動式車両の駆動制御装置。
    A drive control device that controls driving of a vehicle including two motors that individually drive a left driving wheel and a right driving wheel,
    An abnormality detection means for determining whether one of the left driving wheel and the right driving wheel is in an abnormal state;
    When the abnormality detecting means determines that one of the left driving wheel and the right driving wheel is in the abnormal state, the output of the one driving wheel determined to be in the abnormal state is stopped. A torque limiting means for limiting the output torque of the other drive wheel to a set ratio of output torque with respect to the maximum torque;
    A wheel independent drive type vehicle drive control device.
  2.  請求項1記載の駆動制御装置において、前記トルク制限手段は、前記他方の駆動輪を駆動するモータの出力可能な最大トルクが、前記モータの回転数によって変化した場合、その変化した最大トルクに対し設定した割合の出力トルクに制限する車輪独立駆動式車両の駆動制御装置。 2. The drive control device according to claim 1, wherein when the maximum torque that can be output from the motor that drives the other drive wheel changes depending on the number of rotations of the motor, A drive control device for a wheel independent drive type vehicle that limits the output torque to a set ratio.
  3.  請求項1または2に記載の駆動制御装置において、前記モータは、このモータと、前記駆動輪を回転支持する車輪用軸受と、前記モータの回転を減速して前記車輪用軸受に伝える減速機とを含むインホイールモータ駆動装置を構成する車輪独立駆動式車両の駆動制御装置。 3. The drive control device according to claim 1, wherein the motor includes the motor, a wheel bearing that rotatably supports the driving wheel, and a speed reducer that decelerates the rotation of the motor and transmits the rotation to the wheel bearing. The wheel independent drive type vehicle drive control apparatus which comprises the in-wheel motor drive device containing this.
PCT/JP2015/073477 2014-08-29 2015-08-21 Drive control device for independent wheel drive-type vehicle WO2016031696A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-175052 2014-08-29
JP2014175052A JP6534509B2 (en) 2014-08-29 2014-08-29 Drive control device for a wheel independent drive type vehicle

Publications (1)

Publication Number Publication Date
WO2016031696A1 true WO2016031696A1 (en) 2016-03-03

Family

ID=55399589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073477 WO2016031696A1 (en) 2014-08-29 2015-08-21 Drive control device for independent wheel drive-type vehicle

Country Status (2)

Country Link
JP (1) JP6534509B2 (en)
WO (1) WO2016031696A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106114286A (en) * 2016-06-23 2016-11-16 苏州汇川技术有限公司 The fault handling method of a kind of wheel motor driving and system
CN108674254A (en) * 2018-05-11 2018-10-19 吉林大学 A kind of multiaxis driving electric vehicle wheel torque distribution method based on driving energy on-line optimization
CN112622603A (en) * 2020-12-30 2021-04-09 徐工集团工程机械股份有限公司 Four-wheel independent drive wheel carrier posture-adjustable vehicle comprehensive drive system
US20210146786A1 (en) * 2019-10-10 2021-05-20 Texa S.P.A. Method and system to control at least two electric motors driving a vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6755763B2 (en) * 2016-09-23 2020-09-16 Ntn株式会社 2-axis inverter device
JP7251222B2 (en) * 2019-03-11 2023-04-04 株式会社デンソー Motor control device and motor control method
JP2021005967A (en) * 2019-06-27 2021-01-14 Ntn株式会社 Driving control device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333603A (en) * 2005-05-25 2006-12-07 Hiroshi Shimizu Drive control device of electric vehicle
JP2008062687A (en) * 2006-09-05 2008-03-21 Nissan Motor Co Ltd Driving force distribution controller for vehicle
JP2011036062A (en) * 2009-08-04 2011-02-17 Toyota Motor Corp Control device for four-wheel independent drive vehicle
JP2012176643A (en) * 2011-02-25 2012-09-13 Ntn Corp Electric vehicle
JP2012186929A (en) * 2011-03-07 2012-09-27 Ntn Corp Electric vehicle
JP2014093844A (en) * 2012-11-02 2014-05-19 Ntn Corp Electric-vehicle control device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2884942B2 (en) * 1992-09-17 1999-04-19 株式会社日立製作所 Electric car control device
JP4127314B1 (en) * 2007-02-13 2008-07-30 トヨタ自動車株式会社 Electric vehicle control device
JP2010104163A (en) * 2008-10-24 2010-05-06 Toyota Motor Corp Driving force controller
JP2010257363A (en) * 2009-04-28 2010-11-11 Toyota Industries Corp Control method in conveyance system
JP2013135501A (en) * 2011-12-26 2013-07-08 Aisin Seiki Co Ltd Device and method for controlling motor drive vehicle
JP2015116069A (en) * 2013-12-12 2015-06-22 日産自動車株式会社 Device for independently driving right and left wheel with motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333603A (en) * 2005-05-25 2006-12-07 Hiroshi Shimizu Drive control device of electric vehicle
JP2008062687A (en) * 2006-09-05 2008-03-21 Nissan Motor Co Ltd Driving force distribution controller for vehicle
JP2011036062A (en) * 2009-08-04 2011-02-17 Toyota Motor Corp Control device for four-wheel independent drive vehicle
JP2012176643A (en) * 2011-02-25 2012-09-13 Ntn Corp Electric vehicle
JP2012186929A (en) * 2011-03-07 2012-09-27 Ntn Corp Electric vehicle
JP2014093844A (en) * 2012-11-02 2014-05-19 Ntn Corp Electric-vehicle control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106114286A (en) * 2016-06-23 2016-11-16 苏州汇川技术有限公司 The fault handling method of a kind of wheel motor driving and system
CN108674254A (en) * 2018-05-11 2018-10-19 吉林大学 A kind of multiaxis driving electric vehicle wheel torque distribution method based on driving energy on-line optimization
CN108674254B (en) * 2018-05-11 2019-06-25 吉林大学 A kind of multiaxis driving electric vehicle wheel torque distribution method based on driving energy on-line optimization
US20210146786A1 (en) * 2019-10-10 2021-05-20 Texa S.P.A. Method and system to control at least two electric motors driving a vehicle
US11707990B2 (en) * 2019-10-10 2023-07-25 Texa S.P.A. Method and system to control at least two electric motors driving a vehicle
CN112622603A (en) * 2020-12-30 2021-04-09 徐工集团工程机械股份有限公司 Four-wheel independent drive wheel carrier posture-adjustable vehicle comprehensive drive system

Also Published As

Publication number Publication date
JP2016052164A (en) 2016-04-11
JP6534509B2 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
WO2016031696A1 (en) Drive control device for independent wheel drive-type vehicle
US9855858B2 (en) Control device for electric vehicle
JP6396180B2 (en) Drive control device for wheel independent drive type vehicle
JP7457701B2 (en) traction control system
JP6517089B2 (en) Drive control device for a wheel independent drive type vehicle
WO2016117433A1 (en) Abnormality-response control device for electric automobile
WO2016031663A1 (en) Drive control device for wheel independent driving vehicle
WO2016052234A1 (en) Control device for electric vehicle
US10889188B2 (en) Drive control device for vehicle with independently driven wheels
WO2017018335A1 (en) Motor drive device
JP2014093844A (en) Electric-vehicle control device
WO2020184299A1 (en) Electric motor control device and electric motor control method
JP5797983B2 (en) Electric vehicle capacitor discharge device
US9586484B2 (en) Electric-vehicle control device
WO2016125686A1 (en) Vehicle braking/driving torque control device
WO2016043077A1 (en) Vehicle drive control device
JP6671988B2 (en) Auxiliary control device such as turning of electric vehicle with independent control of left and right wheels
WO2021125218A1 (en) Drive control apparatus and drive control method for vehicle having independently driven wheels
JP5902041B2 (en) Electric vehicle speed control device
JP2014121226A (en) Motor Drive device
WO2021182428A1 (en) Drive control device for vehicle having independently driven wheels
JP2017041942A (en) Electric automobile
JP2016220271A (en) Control device for electric vehicle
CN112152543A (en) Inverter device and vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837023

Country of ref document: EP

Kind code of ref document: A1