JP2021005967A - Driving control device - Google Patents

Driving control device Download PDF

Info

Publication number
JP2021005967A
JP2021005967A JP2019119354A JP2019119354A JP2021005967A JP 2021005967 A JP2021005967 A JP 2021005967A JP 2019119354 A JP2019119354 A JP 2019119354A JP 2019119354 A JP2019119354 A JP 2019119354A JP 2021005967 A JP2021005967 A JP 2021005967A
Authority
JP
Japan
Prior art keywords
motor
torque
temperature
control device
drive control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019119354A
Other languages
Japanese (ja)
Inventor
剛志 神田
Tsuyoshi Kanda
剛志 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2019119354A priority Critical patent/JP2021005967A/en
Priority to CN202010573605.5A priority patent/CN112140902A/en
Publication of JP2021005967A publication Critical patent/JP2021005967A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Gear Transmission (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

To provide a driving control device that can prevent a vehicle whose left and right driving wheels respectively can be driven independently by individual motors from behaving unstably by suppressing a difference in torque between the left and right driving wheels.SOLUTION: A overheating-time torque allocation change part 40, when a detected temperature at one motor side is equal to a first threshold or less, enables one motor 6 to output maximum torque; when the detected temperature at the one motor side is over the first threshold and equal to a second threshold or less, lowers the maximum torque that the one motor 6 can output as the detected temperature rises; and when the detected temperature at the one motor side is over the second threshold, brings torque of the one motor to zero. Even if a detected temperature at the other motor side is not over the first threshold, the part lowers the maximum torque that the other motor 6 can output, in accordance with a restriction on torque of the one motor 6; and when the detected temperature at the one motor side is over the second threshold, brings the torque to a restricted torque value set to a ratio α with respect to the maximum torque that the other motor 6 can output.SELECTED DRAWING: Figure 3

Description

この発明は、駆動制御装置に関し、例えば、インホイールモータ等の駆動輪用のモータを搭載した車輪独立駆動式車両において、駆動輪用のモータ、モータや減速機等の潤滑または冷却用の油、または駆動制御装置の半導体等が過熱してしまった場合に、安全な走行または暫定的な退避走行を行うことを可能とした技術に関する。 The present invention relates to a drive control device, for example, in a wheel-independent drive type vehicle equipped with a motor for drive wheels such as an in-wheel motor, a motor for drive wheels, an oil for lubrication or cooling of a motor, a speed reducer, or the like. Alternatively, the present invention relates to a technique that enables safe running or provisional evacuation running when a semiconductor or the like of a drive control device is overheated.

従来、インバータの温度がどの領域にあるかによって電流制限条件を設定してインバータに与える電流指令に制限を加える制御を行う技術が提案されている(特許文献1)。
その他の従来技術として、油温センサとモータステータに設けられた温度センサで検出される温度のうち、いずれか一方または両方の温度がそれぞれ定められた閾値を超えたときにモータの電流を制限する技術が提案されている(特許文献2)。
Conventionally, a technique has been proposed in which a current limiting condition is set according to the region in which the temperature of the inverter is located and control is performed to limit the current command given to the inverter (Patent Document 1).
As another conventional technique, the current of the motor is limited when one or both of the temperatures detected by the oil temperature sensor and the temperature sensor provided on the motor stator exceed a predetermined threshold value. A technique has been proposed (Patent Document 2).

特開2013−110926号公報JP 2013-110926 特開2015−142415号公報Japanese Unexamined Patent Publication No. 2015-142415

車輪独立駆動式車両において、例えば、高速旋回走行時等に片輪だけ過熱により制限がかかってしまった場合に左右の駆動輪で発生するトルクに意図しない大きな差が発生し、車両の挙動が不安定になってしまう可能性がある。 In a wheel-independent drive type vehicle, for example, when only one wheel is limited by overheating during high-speed turning, a large unintended difference occurs in the torque generated by the left and right drive wheels, resulting in poor vehicle behavior. It may become stable.

この発明の目的は、左右の駆動輪を個別のモータでそれぞれ独立して駆動可能な車両について、左右のトルク差を抑え車両の挙動が不安定になることを防止することができる駆動制御装置を提供することである。 An object of the present invention is to provide a drive control device capable of suppressing a torque difference between the left and right and preventing the behavior of the vehicle from becoming unstable in a vehicle in which the left and right drive wheels can be driven independently by individual motors. Is to provide.

この発明の駆動制御装置16は、左右の駆動輪2,2を個別のモータ6,6でそれぞれ独立して駆動可能な車両の前記モータ6,6を制御する駆動制御装置であって、
前記各モータ6のモータ温度またはこのモータ温度の変化に影響する部位の温度を検出する温度検出手段Ksと、
この温度検出手段Ksで検出される検出温度に基づいて前記各モータ6のトルクをそれぞれ制限するトルク制限手段40と、を備え、
このトルク制限手段40は、
前記温度検出手段Ksで検出される一方のモータ側の検出温度が第1の閾値以下のとき、前記一方のモータ6を最大トルクまで出力可能とし、
前記一方のモータ側の検出温度が第1の閾値を超えこの第1の閾値よりも大きい第2の閾値以下のとき、前記検出温度が上昇するに従って、前記一方のモータ6で出力可能な最大のトルクを下げるトルク制限を行い、
前記一方のモータ側の検出温度が前記第2の閾値を超えたとき、前記一方のモータ6のトルクを零に制限し、
他方のモータ側の検出温度が第1の閾値を超えていない場合でも、前記一方のモータ6のトルク制限に従って、前記他方のモータ6で出力可能な最大のトルクを下げるトルク制限を行い、前記一方のモータ側の検出温度が前記第2の閾値を超えたとき、前記他方のモータ6で出力可能な最大のトルクに対し定められた比率に設定されたトルク制限値に設定する。
前記定められた比率は、設計等によって任意に定める比率であって、例えば、構成される部品の耐熱温度と、試験およびシミュレーションのいずれか一方または両方等により適切な比率を求めて定められる。
The drive control device 16 of the present invention is a drive control device that controls the motors 6 and 6 of a vehicle in which the left and right drive wheels 2 and 2 can be driven independently by individual motors 6 and 6, respectively.
Temperature detecting means Ks for detecting the motor temperature of each of the motors 6 or the temperature of a portion affecting the change in the motor temperature, and
A torque limiting means 40 for limiting the torque of each of the motors 6 based on the detected temperature detected by the temperature detecting means Ks is provided.
The torque limiting means 40 is
When the detected temperature on one motor side detected by the temperature detecting means Ks is equal to or lower than the first threshold value, the one motor 6 can be output up to the maximum torque.
When the detection temperature on the one motor side exceeds the first threshold value and is equal to or lower than the second threshold value larger than the first threshold value, the maximum output possible by the one motor 6 as the detection temperature rises. Perform torque limit to lower the torque,
When the detection temperature on the one motor side exceeds the second threshold value, the torque of the one motor 6 is limited to zero.
Even if the detected temperature on the other motor side does not exceed the first threshold value, the torque limit that lowers the maximum torque that can be output by the other motor 6 is performed according to the torque limit of the one motor 6, and the one is said. When the detected temperature on the motor side of the motor exceeds the second threshold value, the torque limit value is set at a predetermined ratio to the maximum torque that can be output by the other motor 6.
The determined ratio is a ratio arbitrarily determined by design or the like, and is determined by obtaining an appropriate ratio by, for example, the heat resistant temperature of the component to be constructed and one or both of the test and the simulation.

この構成によると、一方のモータ側の検出温度が第1の閾値を超えて一方のモータ6で出力可能な最大のトルクを下げるトルク制限が行われると、前記一方のモータ6のトルク制限に従って、他方のモータ6で出力可能な最大のトルクを下げるトルク制限が行われる。このため、左右の駆動輪のトルク差が大きくなり過ぎず、車両の挙動が不安定になることを防止することができる。一方のモータ側の検出温度が第2の閾値を超えたとき、他方のモータ6で出力可能な最大のトルクに対し定められた比率に設定したトルク制限値に設定するため、最低限の駆動力を確保することができる。これにより、暫定的な退避走行を行うことができる。このようにトルク制限を行うことで、モータ6の過負荷を抑えると共に車両の挙動の安定化を図れる。
前記「一方のモータ側」とは、左右の駆動輪におけるいずれか一方の駆動輪を駆動するモータである一方のモータ、および、この一方のモータのモータ温度の変化に影響する部位を意味する。
前記「モータ温度の変化に影響する部位」とは、モータの温度が上下するとモータの発熱の程度によって温度変化する部位、およびモータの温度を上下させるようなモータ電流が流れる部位であり、
前者は例えばモータの冷却を行う冷却液の循環流路、後者は例えばインバータ装置のスイッチング素子および前記インバータ装置を冷却する冷却液の循環流路である。
According to this configuration, when the detection temperature on one motor side exceeds the first threshold value and the torque limit is applied to lower the maximum torque that can be output by the one motor 6, the torque limit of the one motor 6 is followed. Torque limitation is performed to reduce the maximum torque that can be output by the other motor 6. Therefore, it is possible to prevent the torque difference between the left and right drive wheels from becoming too large and the behavior of the vehicle from becoming unstable. When the detected temperature on one motor side exceeds the second threshold value, the minimum driving force is set to the torque limit value set at a specified ratio to the maximum torque that can be output by the other motor 6. Can be secured. As a result, a provisional evacuation run can be performed. By limiting the torque in this way, it is possible to suppress the overload of the motor 6 and stabilize the behavior of the vehicle.
The "one motor side" means one of the left and right drive wheels, which is a motor for driving one of the drive wheels, and a portion that affects a change in the motor temperature of the one motor.
The "parts that affect the change in motor temperature" are parts that change in temperature depending on the degree of heat generation of the motor when the temperature of the motor rises and falls, and parts in which a motor current that raises and lowers the temperature of the motor flows.
The former is, for example, a circulation flow path of a coolant that cools a motor, and the latter is, for example, a circulation flow path of a coolant that cools a switching element of an inverter device and the inverter device.

複数のスイッチング素子の開閉により直流電力を前記モータ6の駆動に用いる交流電力に変換するインバータ31を備え、
前記温度検出手段Ksは、各モータ6のモータ温度をそれぞれ検出するモータ用の温度センサ42と、前記各インバータ31の温度をそれぞれ検出するインバータ用の温度センサ34と、潤滑または冷却滑用の油温センサのうち少なくとも2つを有し、
前記トルク制限手段40は、同一の前記駆動輪を駆動する前記モータ6、およびそのインバータ31、油のうちの少なくとも2つの温度をそれぞれ検出する複数の温度センサ42,34で検出される検出温度がそれぞれに対応する第1の閾値を超えたとき、温度センサ毎に求められるトルク制限値のうち最も小さい値で前記モータ6のトルク制限を行ってもよい。このようにモータ6のトルク制限を行うことで、モータ6の過負荷をより確実に抑えることができる。
The inverter 31 is provided with an inverter 31 that converts DC power into AC power used to drive the motor 6 by opening and closing a plurality of switching elements.
The temperature detecting means Ks includes a temperature sensor 42 for a motor that detects the motor temperature of each motor 6, a temperature sensor 34 for an inverter that detects the temperature of each of the inverters 31, and oil for lubrication or cooling. Have at least two of the temperature sensors
In the torque limiting means 40, the detected temperatures detected by a plurality of temperature sensors 42 and 34 that detect at least two temperatures of the motor 6 that drives the same driving wheel, its inverter 31, and oil are measured. When the first threshold value corresponding to each is exceeded, the torque limit value of the motor 6 may be limited by the smallest value among the torque limit values obtained for each temperature sensor. By limiting the torque of the motor 6 in this way, the overload of the motor 6 can be suppressed more reliably.

前記トルク制限手段40は、両方のモータ側の検出温度が共に第1の閾値を超えたとき、一方のモータ側の温度検出手段Ksの検出温度に従って求められる前記左右の駆動輪のトルク制限値と、他方のモータ側の温度検出手段Ksの検出温度に従って求められる前記左右の駆動輪のトルク制限値とのうち、低いトルク制限値で前記両方のモータ6,6のトルク制限を行ってもよい。このように低いトルク制限値を採用することで、左右の駆動輪を駆動する両方のモータ6,6が共に過熱した場合に、両方のモータ6,6の過負荷をより確実に抑えることができる。 The torque limiting means 40 has a torque limit value of the left and right drive wheels obtained according to the detection temperature of the temperature detecting means Ks on one motor side when the detected temperatures of both motors both exceed the first threshold value. Of the torque limit values of the left and right drive wheels obtained according to the detection temperature of the temperature detecting means Ks on the other motor side, the torque limit values of both motors 6 and 6 may be limited by a lower torque limit value. By adopting such a low torque limit value, when both motors 6 and 6 that drive the left and right drive wheels overheat, the overload of both motors 6 and 6 can be more reliably suppressed. ..

前記トルク制限手段40は、前記定められた比率を車速によって変更してもよい。
前記比率を車速により変更する発明において、前記トルク制限手段40は、前記車速が低速になる程前記定められた比率を大きく、前記車速が高速になる程前記定められた比率を小さく設定してもよい。この場合、例えば、左右の駆動輪のトルク差が大きくても影響の少ない低速走行時には、他方のモータ6のトルク制限値を大きいままとし、左右の駆動輪のトルク差が大きいと影響のある高速走行時には他方のモータ6のトルク制限値を小さくすることができる。
The torque limiting means 40 may change the predetermined ratio according to the vehicle speed.
In the invention of changing the ratio according to the vehicle speed, the torque limiting means 40 may set the predetermined ratio to be larger as the vehicle speed is lower and the predetermined ratio to be smaller as the vehicle speed is higher. Good. In this case, for example, during low-speed driving where a large torque difference between the left and right drive wheels has little effect, the torque limit value of the other motor 6 remains large, and a large torque difference between the left and right drive wheels has an effect on high speed. The torque limit value of the other motor 6 can be reduced during traveling.

前記トルク制限手段40は、前記定められた比率を車速によらず一定としてもよい。この場合、駆動制御装置16のソフトウェアの簡易化が可能となり、コスト低減を図れる。 The torque limiting means 40 may keep the predetermined ratio constant regardless of the vehicle speed. In this case, the software of the drive control device 16 can be simplified, and the cost can be reduced.

前記車両が旋回中であるか否かを判定する舵角検出手段Dkを有し、前記トルク制限手段40は、前記舵角検出手段Dkにより前記車両が旋回中であると判定されたときのみ前記各モータ6のトルクをそれぞれ制限してもよい。この場合、旋回中における車両の挙動を安定化することができる。 The torque limiting means 40 has a steering angle detecting means Dk for determining whether or not the vehicle is turning, and the torque limiting means 40 only when the steering angle detecting means Dk determines that the vehicle is turning. The torque of each motor 6 may be limited. In this case, the behavior of the vehicle during turning can be stabilized.

前記舵角検出手段Dkを有する発明において、前記トルク制限手段40は、前記車両の直進中、前記検出温度が第1の閾値を超えていない側の駆動輪は、このモータ6の最大トルクまで出力可能としてもよい。この場合、車両の直進中に車両の駆動力を高めることで、急峻な登坂路等において自力走行することができる。 In the invention having the steering angle detecting means Dk, the torque limiting means 40 outputs the driving wheels on the side where the detected temperature does not exceed the first threshold value up to the maximum torque of the motor 6 while the vehicle is traveling straight. It may be possible. In this case, by increasing the driving force of the vehicle while the vehicle is traveling straight, the vehicle can travel on its own on a steep uphill road or the like.

前記舵角検出手段Dkを有する発明において、前記トルク制限手段40は、前記車両の直進中前記定められた比率αを「1」とし、前記舵角検出手段Dkにより車両の旋回度合いが大きい程前記定められた比率αを小さくしてもよい。このように車両の旋回度合いに応じて比率αを変えることで、旋回中における車両の挙動をより確実に安定化することができる。 In the invention having the steering angle detecting means Dk, the torque limiting means 40 sets the predetermined ratio α to "1" while the vehicle is traveling straight, and the greater the degree of turning of the vehicle by the steering angle detecting means Dk, the more the said. The defined ratio α may be reduced. By changing the ratio α according to the degree of turning of the vehicle in this way, the behavior of the vehicle during turning can be more reliably stabilized.

前記モータ6は、このモータ6と、前記駆動輪を支持する車輪用軸受4と、前記モータ6の回転を減速して前記車輪用軸受4に伝える減速機7とを含むインホイールモータ駆動装置IWMを構成してもよい。インホイールモータ駆動装置IWMの場合、コンパクト化を図る結果、車輪用軸受4、減速機7およびモータ6は、材料使用量の削減、モータ6の高速回転化を伴うため、これらの信頼性を確保することが重要な課題となる。前記検出温度に基づいて各モータ6のトルク制限を行い各モータ6の過負荷を抑えることで、インホイールモータ駆動装置IWMの信頼性を確保し得る。 The motor 6 is an in-wheel motor drive device IWM including the motor 6, a wheel bearing 4 that supports the drive wheels, and a speed reducer 7 that reduces the rotation of the motor 6 and transmits it to the wheel bearing 4. May be configured. In the case of the in-wheel motor drive device IWM, as a result of compactness, the wheel bearing 4, the reduction gear 7 and the motor 6 are accompanied by a reduction in the amount of material used and a high-speed rotation of the motor 6, so their reliability is ensured. Is an important issue. The reliability of the in-wheel motor drive device IWM can be ensured by limiting the torque of each motor 6 based on the detected temperature and suppressing the overload of each motor 6.

この発明の駆動制御装置は、左右の駆動輪を個別のモータでそれぞれ独立して駆動可能な車両の前記モータを制御する駆動制御装置であって、前記各モータのモータ温度またはこのモータ温度の変化に影響する部位の温度を検出する温度検出手段と、この温度検出手段で検出される検出温度に基づいて前記各モータのトルクをそれぞれ制限するトルク制限手段と、を備え、このトルク制限手段は、前記温度検出手段で検出される一方のモータ側の検出温度が第1の閾値以下のとき、前記一方のモータを最大トルクまで出力可能とし、前記一方のモータ側の検出温度が第1の閾値を超えこの第1の閾値よりも大きい第2の閾値以下のとき、前記検出温度が上昇するに従って、前記一方のモータで出力可能な最大のトルクを下げるトルク制限を行い、前記一方のモータ側の検出温度が前記第2の閾値を超えたとき、前記一方のモータのトルクを零に制限し、他方のモータ側の検出温度が第1の閾値を超えていない場合でも、前記一方のモータのトルク制限に従って、前記他方のモータで出力可能な最大のトルクを下げるトルク制限を行い、前記一方のモータ側の検出温度が前記第2の閾値を超えたとき、前記他方のモータで出力可能な最大のトルクに対し定められた比率に設定されたトルク制限値に設定する。このため、左右の駆動輪を個別のモータでそれぞれ独立して駆動可能な車両について、左右のトルク差を抑え車両の挙動が不安定になることを防止することができる。 The drive control device of the present invention is a drive control device that controls the motor of a vehicle in which the left and right drive wheels can be driven independently by individual motors, and the motor temperature of each motor or a change in the motor temperature. The torque limiting means includes a temperature detecting means for detecting the temperature of a portion affecting the temperature and a torque limiting means for limiting the torque of each motor based on the detected temperature detected by the temperature detecting means. When the detection temperature on one motor side detected by the temperature detecting means is equal to or lower than the first threshold value, the one motor can be output up to the maximum torque, and the detection temperature on the one motor side sets the first threshold value. When the value exceeds the first threshold value and is equal to or lower than the second threshold value, as the detection temperature rises, torque limitation is performed to reduce the maximum torque that can be output by the one motor, and the detection on the one motor side is performed. When the temperature exceeds the second threshold value, the torque of the one motor is limited to zero, and even when the detected temperature on the other motor side does not exceed the first threshold value, the torque limit of the one motor is limited. According to this, torque is limited to reduce the maximum torque that can be output by the other motor, and when the detected temperature on the one motor side exceeds the second threshold value, the maximum torque that can be output by the other motor is applied. Set to the torque limit value set to the specified ratio. Therefore, for a vehicle in which the left and right drive wheels can be driven independently by individual motors, it is possible to suppress the torque difference between the left and right and prevent the behavior of the vehicle from becoming unstable.

この発明の実施形態に係る駆動制御装置を搭載した車両を平面図で示す概念構成のブロック図である。It is a block diagram of the conceptual structure which shows the vehicle which mounted the drive control device which concerns on embodiment of this invention in a plan view. 同車両におけるインホイールモータ駆動装置の断面図である。It is sectional drawing of the in-wheel motor drive device in the vehicle. 同駆動制御装置の制御系のブロック図である。It is a block diagram of the control system of the drive control device. 左輪側で過熱が発生した場合の例を示す図である。It is a figure which shows the example of the case where overheating occurs on the left wheel side. 左右両輪で過熱が発生した場合の例を示す図である。It is a figure which shows the example of the case where overheating occurs in both the left and right wheels. トルクを制限する比率の例を示す図である。It is a figure which shows the example of the ratio which limits the torque. モータの回転速度と出力トルクの特性を示す図である。It is a figure which shows the characteristic of the rotation speed and output torque of a motor. この発明の他の実施形態に係る駆動制御装置を搭載した車両を平面図で示す概念構成のブロック図である。It is a block diagram of the conceptual structure which shows the vehicle which mounted the drive control device which concerns on another Embodiment of this invention in the plan view.

[第1の実施形態]
この発明の実施形態を図1ないし図7と共に説明する。
<車両の概念構成について>
図1は、この実施形態に係る駆動制御装置を搭載した車両を平面図で示す概念構成のブロック図である。この車両は、車体1の左右の後輪となる車輪2が駆動輪とされ、左右の前輪となる車輪3が従動輪とされた四輪の電気自動車である。前輪となる車輪3は操舵輪とされている。駆動輪となる左右の車輪2,2は、それぞれ独立して駆動可能な走行用のモータ6により駆動される。各モータ6は、後述のインホイールモータ駆動装置IWMを構成する。各車輪2,3には、ブレーキが設けられている。また左右の前輪となる操舵輪である車輪3,3は、図示しない転舵機構を介して転舵可能であり、ハンドル等の操舵手段15により操舵される。
[First Embodiment]
An embodiment of the present invention will be described with reference to FIGS. 1 to 7.
<Conceptual composition of vehicle>
FIG. 1 is a block diagram having a conceptual configuration showing a vehicle equipped with the drive control device according to this embodiment in a plan view. This vehicle is a four-wheel electric vehicle in which wheels 2 serving as left and right rear wheels of the vehicle body 1 are used as driving wheels, and wheels 3 serving as left and right front wheels are used as driving wheels. The wheel 3 serving as the front wheel is a steering wheel. The left and right wheels 2 and 2, which are the driving wheels, are driven by a traveling motor 6 that can be driven independently. Each motor 6 constitutes an in-wheel motor drive device IWM, which will be described later. Brakes are provided on each of the wheels 2 and 3. The wheels 3 and 3, which are the steering wheels that are the left and right front wheels, can be steered via a steering mechanism (not shown), and are steered by a steering means 15 such as a steering wheel.

<インホイールモータ駆動装置IWMの概略構成について>
図2に示すように、左右のインホイールモータ駆動装置IWMは、それぞれ、モータ6と、車輪を支持する車輪用軸受4と、モータ6の回転を減速して車輪用軸受4に伝える減速機7とを有し、これらの一部または全体が車輪内に配置される。モータ6の回転は、減速機7および車輪用軸受4を介して駆動輪である車輪2に伝達される。車輪用軸受4のハブ輪4aのフランジ部には前記ブレーキを構成するブレーキロータ5が固定され、同ブレーキロータ5は、車輪2と一体に回転する。
<About the outline configuration of the in-wheel motor drive device IWM>
As shown in FIG. 2, the left and right in-wheel motor drive devices IWM each have a motor 6, a wheel bearing 4 that supports the wheels, and a speed reducer 7 that reduces the rotation of the motor 6 and transmits it to the wheel bearing 4. And some or all of these are placed in the wheel. The rotation of the motor 6 is transmitted to the wheels 2 which are the driving wheels via the speed reducer 7 and the wheel bearings 4. A brake rotor 5 constituting the brake is fixed to the flange portion of the hub wheel 4a of the wheel bearing 4, and the brake rotor 5 rotates integrally with the wheel 2.

モータ6は、三相のモータであり、例えば、ロータ6aのコア部に永久磁石が内蔵された埋込磁石型同期モータである。このモータ6は、ハウジング8に固定したステータ6bと、回転出力軸9に取り付けたロータ6aとの間にラジアルギャップを設けたモータである。モータ6は、減速機7の潤滑、冷却を兼ねる油(冷却液)により冷却される。前記油は循環流路Jrを流れる。 The motor 6 is a three-phase motor, for example, an embedded magnet type synchronous motor in which a permanent magnet is built in the core portion of the rotor 6a. The motor 6 is a motor provided with a radial gap between the stator 6b fixed to the housing 8 and the rotor 6a attached to the rotary output shaft 9. The motor 6 is cooled by oil (coolant) that also lubricates and cools the speed reducer 7. The oil flows through the circulation flow path Jr.

<制御系について>
図3は、この駆動制御装置16の制御系のブロック図である。駆動制御装置16は、車両全般の制御を行う電気制御ユニットである車両制御ECU14と、この車両制御ECU14の指令トルクに従って走行用の左右のモータ6,6の制御を行うインバータ装置13と、センサ類とを有する。車両が電気自動車の場合、車両制御ECUは、VCU(車両制御ユニット)とも称される。
<About control system>
FIG. 3 is a block diagram of the control system of the drive control device 16. The drive control device 16 includes a vehicle control ECU 14 which is an electric control unit that controls the entire vehicle, an inverter device 13 that controls the left and right motors 6 and 6 for traveling according to a command torque of the vehicle control ECU 14, and sensors. And have. When the vehicle is an electric vehicle, the vehicle control ECU is also referred to as a VCU (Vehicle Control Unit).

車両制御ECU14は、指令トルク演算部47と、トルク配分手段48とを有する。指令トルク演算部47は、アクセルセンサ51が出力する加速指令と、ブレーキセンサ53が出力する減速指令とから、左右のモータ6,6に与える加速・減速指令を指令トルクとして生成する。アクセルセンサ51は、アクセルペダル等のアクセル操作手段20の操作量を検出し、この検出した操作量に従って加速指令を出力する。ブレーキセンサ53は、ブレーキペダル等のブレーキ操作手段21の操作量を検出し、この検出した操作量に従って減速指令を出力する。トルク配分手段48は、指令トルク演算部47で演算された指令トルクを、左右のモータ6,6へ分配するようにインバータ装置13へ出力する。 The vehicle control ECU 14 has a command torque calculation unit 47 and a torque distribution means 48. The command torque calculation unit 47 generates acceleration / deceleration commands given to the left and right motors 6 and 6 as command torque from the acceleration command output by the accelerator sensor 51 and the deceleration command output by the brake sensor 53. The accelerator sensor 51 detects the amount of operation of the accelerator operating means 20 such as the accelerator pedal, and outputs an acceleration command according to the detected amount of operation. The brake sensor 53 detects the amount of operation of the brake operating means 21 such as the brake pedal, and outputs a deceleration command according to the detected amount of operation. The torque distribution means 48 outputs the command torque calculated by the command torque calculation unit 47 to the inverter device 13 so as to distribute the command torque to the left and right motors 6 and 6.

インバータ装置13は、各モータ6に対してそれぞれ設けられたパワー回路部28,28と、これらパワー回路部28,28を制御するモータコントロール部29とを有する。モータコントロール部29は、各モータ6に対応するモータ駆動制御部30,30、トルク制限手段である過熱時トルク配分変更部40、スイッチング素子温度検出部39,39、モータ温度検出部43,43、油温検出部45,45および速度検出手段41を備える。モータコントロール部29は、このモータコントロール部29が持つインホイールモータ駆動装置IWM(図1)に関する各検出値および制御値等の各情報を車両制御ECU14に出力する機能を有する。 The inverter device 13 has power circuit units 28, 28 provided for each motor 6, and a motor control unit 29 that controls these power circuit units 28, 28. The motor control unit 29 includes motor drive control units 30 and 30 corresponding to each motor 6, torque distribution changing unit 40 during overheating as a torque limiting means, switching element temperature detection units 39 and 39, and motor temperature detection units 43 and 43. The oil temperature detecting units 45 and 45 and the speed detecting means 41 are provided. The motor control unit 29 has a function of outputting each information such as detection values and control values of the in-wheel motor drive device IWM (FIG. 1) of the motor control unit 29 to the vehicle control ECU 14.

各パワー回路部28は、バッテリBt(図1)の直流電力を各モータ6の駆動に用いる三相の交流電力に変換するインバータ31と、このインバータ31を駆動するPWMドライバ32とを有する。各インバータ31は、複数のスイッチング素子を含むブリッジ回路で構成される。
モータコントロール部29は、コンピュータとこれに実行されるプログラム、および電子回路により構成され、その基本となる制御部としてモータ駆動制御部30,30を有する。各モータ駆動制御部30は、各系統を個別に制御する。
Each power circuit unit 28 has an inverter 31 that converts the DC power of the battery Bt (FIG. 1) into three-phase AC power used for driving each motor 6, and a PWM driver 32 that drives the inverter 31. Each inverter 31 is composed of a bridge circuit including a plurality of switching elements.
The motor control unit 29 is composed of a computer, a program executed by the computer, and an electronic circuit, and has motor drive control units 30 and 30 as a basic control unit thereof. Each motor drive control unit 30 controls each system individually.

各モータ駆動制御部30は、車両制御ECU14から過熱時トルク配分変更部40を介して与えられる指令トルクに対応する電流指令を演算しこの電流指令に対し、検出されるモータ電流を電流センサ38から得て追従させる電流フィードバック制御を行う。各モータ駆動制御部30は、電流フィードバック制御により電圧指令を算出し、パワー回路部28のPWMドライバ32に電圧指令を与える。また、モータ駆動制御部30は、モータ6のロータ6a(図2)の回転角を回転角検出手段33から得て、ベクトル制御を行う。 Each motor drive control unit 30 calculates a current command corresponding to a command torque given from the vehicle control ECU 14 via the torque distribution change unit 40 at the time of overheating, and in response to this current command, the detected motor current is transmitted from the current sensor 38. The current feedback control to obtain and follow is performed. Each motor drive control unit 30 calculates a voltage command by current feedback control, and gives a voltage command to the PWM driver 32 of the power circuit unit 28. Further, the motor drive control unit 30 obtains the rotation angle of the rotor 6a (FIG. 2) of the motor 6 from the rotation angle detecting means 33 and performs vector control.

トルク制限手段である過熱時トルク配分変更部40は、温度検出手段Ksで検出される検出温度に基づいて、各モータ6のトルクをそれぞれ制限する。
温度検出手段Ksは、各モータ6のモータ温度またはこのモータ温度の変化に影響する部位の温度を検出する。前記モータ温度の変化に影響する部位として、前記スイッチング素子および前記減速機の潤滑、冷却を行う油(冷却液)の循環流路等が挙げられる。この実施形態の温度検出手段Ksは、各モータ用の温度センサ42およびそのモータ温度検出部43と、各インバータ31用の温度センサ34およびそのスイッチング素子温度検出部39と、各減速機用の油温センサ44およびその油温検出部45とを有する。
The overheated torque distribution changing unit 40, which is a torque limiting means, limits the torque of each motor 6 based on the detected temperature detected by the temperature detecting means Ks.
The temperature detecting means Ks detects the motor temperature of each motor 6 or the temperature of a portion that affects the change in the motor temperature. Examples of the portion that affects the change in the motor temperature include a circulation flow path of oil (cooling liquid) that lubricates and cools the switching element and the speed reducer. The temperature detection means Ks of this embodiment includes a temperature sensor 42 for each motor, a motor temperature detection unit 43 thereof, a temperature sensor 34 for each inverter 31, a switching element temperature detection unit 39 thereof, and oil for each speed reducer. It has a temperature sensor 44 and an oil temperature detection unit 45 thereof.

モータ用の温度センサ42は、各モータ6における所定の箇所、例えばステータ6b(図2)に設けられ、モータ温度検出部43は、前記温度センサ42で測定された電圧等から成る測定値を温度に変換する。インバータ用の温度センサ34は、各インバータ31における複数のスイッチング素子のいずれか一つに設けられ、スイッチング素子温度検出部39は、前記温度センサ34で測定された電圧等から成る測定値を温度に変換する。油温センサ44は、減速機7(図2)の前記油の貯留部Tk(図2)に設けられ、油温検出部45は、油温センサ44で測定された電圧等から成る測定値を温度に変換する。 The temperature sensor 42 for the motor is provided at a predetermined position in each motor 6, for example, in the stator 6b (FIG. 2), and the motor temperature detection unit 43 measures a measured value including a voltage measured by the temperature sensor 42 as a temperature. Convert to. The temperature sensor 34 for the inverter is provided in any one of the plurality of switching elements in each inverter 31, and the switching element temperature detection unit 39 converts the measured value including the voltage measured by the temperature sensor 34 into the temperature. Convert. The oil temperature sensor 44 is provided in the oil storage unit Tk (FIG. 2) of the speed reducer 7 (FIG. 2), and the oil temperature detection unit 45 measures a measured value including a voltage measured by the oil temperature sensor 44. Convert to temperature.

温度センサ42,34、油温センサ44として、例えば、温度センシング用のダイオードまたはサーミスタ等を適用し得る。モータ温度検出部43、スイッチング素子温度検出部39、油温検出部45として、例えば、測定値をリニアライズ(直線化)する手段、高電圧と低電圧との絶縁体、電圧増幅用のアンプ、フィルタ回路およびADコンバータ等が含まれる。 As the temperature sensors 42 and 34 and the oil temperature sensor 44, for example, a diode for temperature sensing or a thermistor may be applied. As the motor temperature detection unit 43, the switching element temperature detection unit 39, and the oil temperature detection unit 45, for example, a means for linearizing the measured value, an insulator between high voltage and low voltage, an amplifier for voltage amplification, and the like. A filter circuit, an AD converter and the like are included.

過熱時トルク配分変更部40は、一方のモータ側の検出温度のうちモータ温度、スイッチング素子温度および油温のいずれかが第1の閾値以下のとき前記一方のモータ6を最大トルクまで出力可能とし、第1の閾値を超えこの第1の閾値よりも大きい第2の閾値以下のとき、検出温度が上昇するに従って前記一方のモータ6で出力可能な最大のトルク(トルク制限値)を下げるトルク制限を行う。過熱時トルク配分変更部40は、一方のモータ側の検出温度のうちモータ温度、スイッチング素子温度および油温のいずれかが第2の閾値を超えたとき、前記一方のモータ6のトルクを零に制限する。 The overheated torque distribution changing unit 40 enables the one motor 6 to be output to the maximum torque when any of the motor temperature, the switching element temperature and the oil temperature among the detected temperatures on the one motor side is equal to or less than the first threshold value. , When the value exceeds the first threshold value and is equal to or less than the second threshold value larger than the first threshold value, the maximum torque (torque limit value) that can be output by the one motor 6 is lowered as the detection temperature rises. I do. When any of the motor temperature, the switching element temperature, and the oil temperature of the detected temperatures on the one motor side exceeds the second threshold value, the overheated torque distribution changing unit 40 reduces the torque of the one motor 6 to zero. Restrict.

過熱時トルク配分変更部40は、他方のモータ側の検出温度が第1の閾値を超えていない場合でも、前記一方のモータ6のトルク制限に従って、前記他方のモータ6で出力可能な最大のトルク(トルク制限値)を下げるトルク制限を行い、前記一方のモータ側の検出温度が第2の閾値を超えたとき、前記他方のモータ6で出力可能な最大のトルクに対し定められた比率α(0〜1)に設定されたトルク制限値に設定する。 The overheated torque distribution changing unit 40 is the maximum torque that can be output by the other motor 6 according to the torque limit of the one motor 6 even when the detected temperature on the other motor side does not exceed the first threshold value. When torque is limited to lower (torque limit value) and the detected temperature on one motor side exceeds the second threshold value, the ratio α (determined to the maximum torque that can be output by the other motor 6) Set to the torque limit value set in 0 to 1).

ここで言う最大トルクとは、図7に示すような、モータの回転速度と出力トルクの特性であるいわゆるN‐Tカーブ曲線(最大出力曲線)から求めた最大トルクであってもよいし、モータ自体の最大トルクでもよい。図3に示すように、過熱時トルク配分変更部40は、最大トルクに比率αを掛けた値をトルク制限値にしている。 The maximum torque referred to here may be the maximum torque obtained from the so-called NT curve curve (maximum output curve), which is a characteristic of the rotation speed and output torque of the motor, as shown in FIG. 7, or the motor. It may be its own maximum torque. As shown in FIG. 3, the overheated torque distribution changing unit 40 sets the value obtained by multiplying the maximum torque by the ratio α as the torque limit value.

油温、モータ6のステータ、スイッチング素子の許容温度は異なるため、それぞれの温度に対して第1の閾値と第2の閾値を設定している。各検出対象における第1,第2の閾値は、例えば、構成される部品の耐熱温度と、試験およびシミュレーションのいずれか一方または両方等により定められる。但し、各検出対象において、第2の閾値は第1の閾値よりも大きく設定される。
また、同一の駆動輪を駆動するモータ6、インバータ31、および減速機の貯留部Tk(図2)で、モータ温度、スイッチング素子温度および油温のうち複数の温度が同時に第1の閾値を超えている場合、過熱時トルク配分変更部40は、最も低いトルク制限値を採用しこのトルク制限値で前記駆動輪のモータ6のトルク制限を行う。
Since the oil temperature, the stator of the motor 6, and the allowable temperature of the switching element are different, a first threshold value and a second threshold value are set for each temperature. The first and second threshold values in each detection target are determined by, for example, the heat-resistant temperature of the constituent parts and one or both of the test and the simulation. However, in each detection target, the second threshold value is set larger than the first threshold value.
Further, in the motor 6, the inverter 31, and the reduction unit Tk (FIG. 2) for driving the same drive wheels, a plurality of temperatures of the motor temperature, the switching element temperature, and the oil temperature simultaneously exceed the first threshold value. If so, the overheated torque distribution changing unit 40 adopts the lowest torque limit value and limits the torque of the drive wheel motor 6 at this torque limit value.

図4は、左輪側で過熱が発生した場合の例を示す図である。以後、図3も適宜参照しつつ説明する。左輪側のモータ6、インバータ31、前記貯留部のいずれかで過熱が発生した場合、過熱時トルク配分変更部40は、過熱した検出対象が第1の閾値を超えたところで左右輪のトルク制限値を下げていき、第2の閾値を超えたところで左輪側のトルク制限値を零とし、右輪側のトルク制限値を最大トルクに比率αを乗じた値とする。この方法によって、過熱により左右輪のトルク差が過大になることを防いでいる。 FIG. 4 is a diagram showing an example when overheating occurs on the left wheel side. Hereinafter, FIG. 3 will be described with reference to the appropriate reference. When overheating occurs in any of the motor 6, the inverter 31, and the storage section on the left wheel side, the overheating torque distribution changing section 40 determines the torque limit value of the left and right wheels when the overheated detection target exceeds the first threshold value. When the second threshold value is exceeded, the torque limit value on the left wheel side is set to zero, and the torque limit value on the right wheel side is set to the value obtained by multiplying the maximum torque by the ratio α. By this method, it is prevented that the torque difference between the left and right wheels becomes excessive due to overheating.

図3に示すように、過熱時トルク配分変更部40は、両方のモータ側の検出温度が共に第1の閾値を超えたとき、一方のモータ側の温度検出手段Ksの検出温度に従って求められる左右の駆動輪のトルク制限値と、他方のモータ側の温度検出手段Ksの検出温度に従って求められる左右の駆動輪のトルク制限値とのうち、低いトルク制限値で両方のモータ6,6のトルク制限を行う。具体例として、図5は、左右両輪で過熱が発生した場合の例を示す。 As shown in FIG. 3, the overheated torque distribution changing unit 40 is obtained on the left and right according to the detection temperature of the temperature detecting means Ks on one motor side when the detected temperatures on both motor sides both exceed the first threshold value. Of the torque limit value of the drive wheels of 1 and the torque limit value of the left and right drive wheels obtained according to the detection temperature of the temperature detecting means Ks on the other motor side, the torque limit value of both motors 6 and 6 is the lower torque limit value. I do. As a specific example, FIG. 5 shows an example in which overheating occurs on both the left and right wheels.

図3および図5に示すように、左輪側のモータ6、インバータ31、前記貯留部のいずれか、および右輪側のモータ6、インバータ31、前記貯留部のいずれかで過熱が発生した場合、左輪側の検出温度に従って求められる左輪側のトルク制限値A(図5(a))が、右輪側の検出温度に従って求められる左輪側のトルク制限値A´(図5(b))よりも小さい(A<A´)ため、左輪側のトルク制限値としてAを採用する。これと共に、右輪側の検出温度に従って求められる右輪側のトルク制限値B´(図5(b))が、左輪側の検出温度に従って求められる右輪側のトルク制限値B(図5(a))よりも小さい(B>B´)ため、右輪側のトルク制限値としてB´を採用する。 As shown in FIGS. 3 and 5, when overheating occurs in any of the motor 6, the inverter 31, and the storage section on the left wheel side, and any of the motor 6, the inverter 31, and the storage section on the right wheel side. The torque limit value A on the left wheel side (FIG. 5 (a)) obtained according to the detected temperature on the left wheel side is larger than the torque limit value A'(FIG. 5 (b)) on the left wheel side obtained according to the detected temperature on the right wheel side. Since it is small (A <A'), A is adopted as the torque limit value on the left wheel side. At the same time, the torque limit value B'(FIG. 5 (b)) on the right wheel side obtained according to the detected temperature on the right wheel side is the torque limit value B'(FIG. 5 (b)) on the right wheel side obtained according to the detected temperature on the left wheel side. Since it is smaller than a)) (B> B'), B'is adopted as the torque limit value on the right wheel side.

<比率αの設定例>
図3および図6(a)に示すように、過熱時トルク配分変更部40は、比率αを車速によらず一定としてもよい。この場合、駆動制御装置16のソフトウェアの簡易化が可能となり、コスト低減を図れる。比率αを仮に「1」と設定した場合は、反対輪の過熱に影響を受けず最大トルクが出力可能となる。比率αを仮に「0」に設定した場合は、反対輪の過熱により、両輪で同じトルク制限値とすることもできる。
<Ratio α setting example>
As shown in FIGS. 3 and 6A, the torque distribution changing unit 40 at the time of overheating may keep the ratio α constant regardless of the vehicle speed. In this case, the software of the drive control device 16 can be simplified, and the cost can be reduced. If the ratio α is set to “1”, the maximum torque can be output without being affected by the overheating of the opposite wheel. If the ratio α is set to “0”, the same torque limit value can be set for both wheels due to overheating of the opposite wheels.

図3および図6(b)〜(d)に示すように、過熱時トルク配分変更部40は、比率αを車速によって変更してもよい。例えば、車速が低速になる程比率αを大きく、車速が高速になる程比率αを小さく設定してもよい。この駆動制御装置16において、例えば、駆動輪の回転速度を検出する速度センサ35と、この速度センサ35で検出された回転速度から定められた演算式またはマップ等に従って車速を求める車速検出手段41とを備え、車速検出手段41で求められる車速から比率αを変更し得る。この場合、異常が発生した駆動輪とは反対側の駆動輪では、低速時に最大出力またはそれに近い値を出力でき、高速時には出力を制限でき、左右輪に意図しない過大なトルク差が発生しない。なお四輪独立駆動車の場合、一つの駆動輪当たりに分配されるトルクは、総駆動力が同等の二輪駆動車と比べて小さくなるため、比率αを大きめに設定できる。 As shown in FIGS. 3 and 6 (b) to 6 (d), the overheated torque distribution changing unit 40 may change the ratio α depending on the vehicle speed. For example, the ratio α may be set to be larger as the vehicle speed is lower, and the ratio α may be set to be smaller as the vehicle speed is higher. In the drive control device 16, for example, a speed sensor 35 that detects the rotation speed of the drive wheels, and a vehicle speed detecting means 41 that obtains the vehicle speed according to a calculation formula or a map determined from the rotation speed detected by the speed sensor 35. The ratio α can be changed from the vehicle speed obtained by the vehicle speed detecting means 41. In this case, the drive wheel on the side opposite to the drive wheel in which the abnormality has occurred can output the maximum output or a value close to the maximum output at low speed, the output can be limited at high speed, and an unintended excessive torque difference does not occur between the left and right wheels. In the case of a four-wheel independent drive vehicle, the torque distributed to one drive wheel is smaller than that of a two-wheel drive vehicle having the same total driving force, so the ratio α can be set larger.

<作用効果>
以上説明した駆動制御装置16によれば、一方のモータ側の検出温度が第1の閾値を超えて一方のモータ6で出力可能な最大のトルクを下げるトルク制限が行われると、前記一方のモータ6のトルク制限に従って、他方のモータ6で出力可能な最大のトルクを下げるトルク制限が行われる。このため、左右の駆動輪のトルク差が大きくなり過ぎず、車両の挙動が不安定になることを防止することができる。一方のモータ側の検出温度が第2の閾値を超えたとき、他方のモータ6で出力可能な最大のトルクに対し定められた比率に設定したトルク制限値に設定するため、最低限の駆動力を確保することができる。これにより、暫定的な退避走行を行うことができる。このようにトルク制限を行うことで、モータ6の過負荷を抑えると共に車両の挙動の安定化を図れる。
<Effect>
According to the drive control device 16 described above, when the detection temperature on one motor side exceeds the first threshold value and the torque is limited to lower the maximum torque that can be output by the one motor 6, the one motor According to the torque limit of 6, the torque limit that lowers the maximum torque that can be output by the other motor 6 is performed. Therefore, it is possible to prevent the torque difference between the left and right drive wheels from becoming too large and the behavior of the vehicle from becoming unstable. When the detected temperature on one motor side exceeds the second threshold value, the minimum driving force is set to the torque limit value set at a specified ratio to the maximum torque that can be output by the other motor 6. Can be secured. As a result, a provisional evacuation run can be performed. By limiting the torque in this way, it is possible to suppress the overload of the motor 6 and stabilize the behavior of the vehicle.

<他の実施形態について>
以下の説明においては、各実施の形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
<About other embodiments>
In the following description, the same reference numerals will be given to the parts corresponding to the matters described in advance in each embodiment, and duplicate description will be omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described above unless otherwise specified. It has the same effect from the same configuration. In addition to the combination of the parts specifically described in each embodiment, it is also possible to partially combine the embodiments as long as the combination does not cause any trouble.

図3に示すように、駆動制御装置16において、車両が旋回中であるか否かを判定する舵角検出手段Dkを設け、過熱時トルク配分手段40は、舵角検出手段Dkにより車両が旋回中であると判定されたときのみ各モータ6のトルクをそれぞれ制限してもよい。舵角検出手段Dkとして、例えば、図示外のステアリングハンドル等の操舵角を取得する舵角センサを適用し得る。 As shown in FIG. 3, the drive control device 16 is provided with a steering angle detecting means Dk for determining whether or not the vehicle is turning, and the overheated torque distribution means 40 is used to turn the vehicle by the steering angle detecting means Dk. The torque of each motor 6 may be limited only when it is determined to be inside. As the steering angle detecting means Dk, for example, a steering angle sensor that acquires a steering angle of a steering wheel or the like (not shown) can be applied.

舵角検出手段Dkを備えた構成において、過熱時トルク配分手段40は、舵角検出手段Dkにより車両が直進中と判定されたとき、検出温度が第1の閾値を超えていない側の駆動輪は、このモータ6の最大トルクまで出力可能としてもよい。この場合、車両の直進中に車両の駆動力を高めることで、急峻な登坂路等において自力走行することができる。 In the configuration provided with the steering angle detecting means Dk, the overheated torque distributing means 40 drives the drive wheels on the side where the detection temperature does not exceed the first threshold value when the steering angle detecting means Dk determines that the vehicle is traveling straight. May be able to output up to the maximum torque of the motor 6. In this case, by increasing the driving force of the vehicle while the vehicle is traveling straight, the vehicle can travel on its own on a steep uphill road or the like.

舵角検出手段Dkを備えた構成において、過熱時トルク配分手段40は、舵角検出手段Dkにより車両が直進中と判定されたとき比率αを最大の「1」とし、舵角検出手段Dkにより車両の旋回度合いが大きい程比率αを小さくしてもよい。このように車両の旋回度合いに応じて比率αを変えることで、旋回中における車両の挙動をより確実に安定化することができる。 In the configuration provided with the steering angle detecting means Dk, the overheated torque distributing means 40 sets the ratio α to the maximum “1” when the steering angle detecting means Dk determines that the vehicle is traveling straight, and the steering angle detecting means Dk The ratio α may be reduced as the degree of turning of the vehicle increases. By changing the ratio α according to the degree of turning of the vehicle in this way, the behavior of the vehicle during turning can be more reliably stabilized.

インホイールモータ駆動装置においては、サイクロイド式の減速機、遊星減速機、2軸並行減速機、その他の減速機を適用可能である。
前記の実施形態においては、インホイールモータ駆動装置を備えた電気自動車に駆動制御装置を適用した例を説明したが、図8に示すように、車体1に二台のモータ6,6および各モータ6に対応する減速機7,7を設け、これらモータ6,6により左右の駆動輪である車輪3,3を駆動する二モータオンボードタイプの車両に、駆動制御装置を備えても良い。
In the in-wheel motor drive device, a cycloid type speed reducer, a planetary speed reducer, a two-axis parallel speed reducer, and other speed reducers can be applied.
In the above-described embodiment, an example in which the drive control device is applied to an electric vehicle provided with an in-wheel motor drive device has been described. However, as shown in FIG. 8, two motors 6 and 6 and each motor are attached to the vehicle body 1. A drive control device may be provided in a two-motor on-board type vehicle in which speed reducers 7 and 7 corresponding to 6 are provided and the wheels 3 and 3 which are the left and right drive wheels are driven by these motors 6 and 6.

図1、図8において、モータ6で駆動する左右の駆動輪は前後輪のいずれであってもよい。また、四輪駆動としてもよい。モータ6は減速機を介在させずに駆動輪を駆動するダイレクトモータとしてもよい。 In FIGS. 1 and 8, the left and right drive wheels driven by the motor 6 may be either front or rear wheels. It may also be a four-wheel drive. The motor 6 may be a direct motor that drives the drive wheels without interposing a speed reducer.

以上、実施形態に基づいてこの発明を実施するための形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Although the embodiments for carrying out the present invention have been described above based on the embodiments, the embodiments disclosed this time are exemplary in all respects and are not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

2…車輪(駆動輪)、4…車輪用軸受、6…モータ、7…減速機、16…駆動制御装置、31…インバータ、40…過熱時トルク配分変更部(トルク制限手段)、34,42…温度センサ、Dk…舵角検出手段、Ks…温度検出手段、IWM…インホイールモータ駆動装置 2 ... Wheels (driving wheels), 4 ... Wheel bearings, 6 ... Motors, 7 ... Reducers, 16 ... Drive control devices, 31 ... Inverters, 40 ... Overheated torque distribution changing unit (torque limiting means), 34, 42 ... Temperature sensor, Dk ... Steering angle detecting means, Ks ... Temperature detecting means, IWM ... In-wheel motor drive device

Claims (10)

左右の駆動輪を個別のモータでそれぞれ独立して駆動可能な車両の前記モータを制御する駆動制御装置であって、
前記各モータのモータ温度またはこのモータ温度の変化に影響する部位の温度を検出する温度検出手段と、
この温度検出手段で検出される検出温度に基づいて前記各モータのトルクをそれぞれ制限するトルク制限手段と、を備え、
このトルク制限手段は、
前記温度検出手段で検出される一方のモータ側の検出温度が第1の閾値以下のとき、前記一方のモータを最大トルクまで出力可能とし、
前記一方のモータ側の検出温度が第1の閾値を超えこの第1の閾値よりも大きい第2の閾値以下のとき、前記検出温度が上昇するに従って、前記一方のモータで出力可能な最大のトルクを下げるトルク制限を行い、
前記一方のモータ側の検出温度が前記第2の閾値を超えたとき、前記一方のモータのトルクを零に制限し、
他方のモータ側の検出温度が第1の閾値を超えていない場合でも、前記一方のモータのトルク制限に従って、前記他方のモータで出力可能な最大のトルクを下げるトルク制限を行い、前記一方のモータ側の検出温度が前記第2の閾値を超えたとき、前記他方のモータで出力可能な最大のトルクに対し定められた比率に設定されたトルク制限値に設定する駆動制御装置。
A drive control device that controls the motors of a vehicle in which the left and right drive wheels can be driven independently by individual motors.
A temperature detecting means for detecting the motor temperature of each of the motors or the temperature of a portion that affects the change in the motor temperature, and
A torque limiting means for limiting the torque of each of the motors based on the detected temperature detected by the temperature detecting means is provided.
This torque limiting means
When the detection temperature on one motor side detected by the temperature detecting means is equal to or lower than the first threshold value, the one motor can be output up to the maximum torque.
When the detection temperature on the one motor side exceeds the first threshold value and is equal to or lower than the second threshold value larger than the first threshold value, the maximum torque that can be output by the one motor as the detection temperature rises. Perform torque limit to lower
When the detection temperature on the one motor side exceeds the second threshold value, the torque of the one motor is limited to zero.
Even if the detected temperature on the other motor side does not exceed the first threshold value, the torque limit that lowers the maximum torque that can be output by the other motor is performed according to the torque limit of the one motor, and the one motor A drive control device that sets a torque limit value set at a predetermined ratio to the maximum torque that can be output by the other motor when the detected temperature on the side exceeds the second threshold value.
請求項1に記載の駆動制御装置において、複数のスイッチング素子の開閉により直流電力を前記モータの駆動に用いる交流電力に変換するインバータを備え、
前記温度検出手段は、各モータのモータ温度をそれぞれ検出するモータ用の温度センサと、前記各インバータの温度をそれぞれ検出するインバータ用の温度センサと、潤滑または冷却用の油温センサのうちの少なくとも2つを有し、
前記トルク制限手段は、同一の前記駆動輪を駆動する前記モータ、およびそのインバータ、油のうちの少なくとも2つの温度をそれぞれ検出する複数の温度センサで検出される検出温度がそれぞれに対応する第1の閾値を超えたとき、温度センサ毎に求められるトルク制限値のうち最も小さい値で前記モータのトルク制限を行う駆動制御装置。
The drive control device according to claim 1 includes an inverter that converts DC power into AC power used to drive the motor by opening and closing a plurality of switching elements.
The temperature detecting means is at least one of a temperature sensor for a motor that detects the motor temperature of each motor, a temperature sensor for an inverter that detects the temperature of each inverter, and an oil temperature sensor for lubrication or cooling. Have two
In the torque limiting means, the first is that the detection temperature detected by a plurality of temperature sensors that detect at least two temperatures of the motor for driving the same drive wheel, its inverter, and oil corresponds to each other. A drive control device that limits the torque of the motor with the smallest torque limit value obtained for each temperature sensor when the threshold value of is exceeded.
請求項1または請求項2に記載の駆動制御装置において、前記トルク制限手段は、両方のモータ側の検出温度が共に第1の閾値を超えたとき、一方のモータ側の温度検出手段の検出温度に従って求められる前記左右の駆動輪のトルク制限値と、他方のモータ側の温度検出手段の検出温度に従って求められる前記左右の駆動輪のトルク制限値とのうち、低いトルク制限値で前記両方のモータのトルク制限を行う駆動制御装置。 In the drive control device according to claim 1 or 2, the torque limiting means means that when the detection temperatures of both motors both exceed the first threshold value, the detection temperature of the temperature detecting means on one motor side. Of the torque limit values of the left and right drive wheels obtained according to the above and the torque limit values of the left and right drive wheels obtained according to the detection temperature of the temperature detecting means on the other motor side, both motors have the lower torque limit value. Drive control device that limits the torque of. 請求項1ないし請求項3のいずれか1項に記載の駆動制御装置において、前記トルク制限手段は、前記定められた比率を車速によって変更する駆動制御装置。 In the drive control device according to any one of claims 1 to 3, the torque limiting means is a drive control device that changes the predetermined ratio according to the vehicle speed. 請求項4に記載の駆動制御装置において、前記トルク制限手段は、前記車速が低速になる程前記定められた比率を大きく、前記車速が高速になる程前記定められた比率を小さく設定する駆動制御装置。 In the drive control device according to claim 4, the torque limiting means sets the predetermined ratio to be larger as the vehicle speed is lower, and is set to be smaller as the vehicle speed is higher. apparatus. 請求項1ないし請求項3のいずれか1項に記載の駆動制御装置において、前記トルク制限手段は、前記定められた比率を車速によらず一定とする駆動制御装置。 In the drive control device according to any one of claims 1 to 3, the torque limiting means is a drive control device that keeps the predetermined ratio constant regardless of the vehicle speed. 請求項1ないし請求項3のいずれか1項に記載の駆動制御装置において、前記車両が旋回中であるか否かを判定する舵角検出手段を有し、前記トルク制限手段は、前記舵角検出手段により前記車両が旋回中であると判定されたときのみ前記各モータのトルクをそれぞれ制限する駆動制御装置。 The drive control device according to any one of claims 1 to 3, has a steering angle detecting means for determining whether or not the vehicle is turning, and the torque limiting means is the steering angle. A drive control device that limits the torque of each of the motors only when the detection means determines that the vehicle is turning. 請求項7に記載の駆動制御装置において、前記トルク制限手段は、前記車両の直進中、前記検出温度が第1の閾値を超えていない側の駆動輪は、このモータの最大トルクまで出力可能とする駆動制御装置。 In the drive control device according to claim 7, the torque limiting means enables the drive wheels on the side where the detected temperature does not exceed the first threshold value to output up to the maximum torque of the motor while the vehicle is traveling straight. Drive control device. 請求項1ないし請求項3のいずれか1項に記載の駆動制御装置において、前記トルク制限手段は、前記車両の直進中前記定められた比率αを「1」とし、前記舵角検出手段により車両の旋回度合いが大きい程前記定められた比率αを小さくしていく駆動制御装置。 In the drive control device according to any one of claims 1 to 3, the torque limiting means sets the predetermined ratio α to "1" while the vehicle is traveling straight, and the vehicle is driven by the steering angle detecting means. A drive control device that reduces the predetermined ratio α as the degree of turning of the vehicle increases. 請求項1ないし請求項9のいずれか1項に記載の駆動制御装置において、前記モータは、このモータと、前記駆動輪を支持する車輪用軸受と、前記モータの回転を減速して前記車輪用軸受に伝える減速機とを含むインホイールモータ駆動装置を構成する駆動制御装置。
In the drive control device according to any one of claims 1 to 9, the motor is a motor, a wheel bearing that supports the drive wheels, and a wheel bearing that reduces the rotation of the motor. A drive control device that constitutes an in-wheel motor drive device including a speed reducer that transmits to bearings.
JP2019119354A 2019-06-27 2019-06-27 Driving control device Pending JP2021005967A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019119354A JP2021005967A (en) 2019-06-27 2019-06-27 Driving control device
CN202010573605.5A CN112140902A (en) 2019-06-27 2020-06-22 Drive control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019119354A JP2021005967A (en) 2019-06-27 2019-06-27 Driving control device

Publications (1)

Publication Number Publication Date
JP2021005967A true JP2021005967A (en) 2021-01-14

Family

ID=73891915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019119354A Pending JP2021005967A (en) 2019-06-27 2019-06-27 Driving control device

Country Status (2)

Country Link
JP (1) JP2021005967A (en)
CN (1) CN112140902A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117200647A (en) * 2023-11-01 2023-12-08 浙江万里扬新能源驱动有限公司杭州分公司 Method for inhibiting working overheat of gear selecting and shifting motor of automobile transmission and vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328542A (en) * 1991-04-01 1993-12-10 Aisin Aw Co Ltd Driving force control method for electric vehicle
JP2011083048A (en) * 2009-10-02 2011-04-21 Toyota Motor Corp Device for controlling electric motor for running
WO2013137189A1 (en) * 2012-03-12 2013-09-19 日産自動車株式会社 Electric vehicle driving force control device and electric vehicle driving force control method
JP2016052164A (en) * 2014-08-29 2016-04-11 Ntn株式会社 Drive control device of wheel independent drive type vehicle
JP2018152949A (en) * 2017-03-10 2018-09-27 Ntn株式会社 Driving control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341701A (en) * 2004-05-26 2005-12-08 Toyota Motor Corp Temperature detector and control device of in-wheel motor
JP5093022B2 (en) * 2008-09-19 2012-12-05 トヨタ自動車株式会社 In-wheel motor control device
CN106573541B (en) * 2014-07-23 2019-03-22 日产自动车株式会社 Controller for motor and motor control method
JP6396180B2 (en) * 2014-11-12 2018-09-26 Ntn株式会社 Drive control device for wheel independent drive type vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328542A (en) * 1991-04-01 1993-12-10 Aisin Aw Co Ltd Driving force control method for electric vehicle
JP2011083048A (en) * 2009-10-02 2011-04-21 Toyota Motor Corp Device for controlling electric motor for running
WO2013137189A1 (en) * 2012-03-12 2013-09-19 日産自動車株式会社 Electric vehicle driving force control device and electric vehicle driving force control method
JP2016052164A (en) * 2014-08-29 2016-04-11 Ntn株式会社 Drive control device of wheel independent drive type vehicle
JP2018152949A (en) * 2017-03-10 2018-09-27 Ntn株式会社 Driving control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117200647A (en) * 2023-11-01 2023-12-08 浙江万里扬新能源驱动有限公司杭州分公司 Method for inhibiting working overheat of gear selecting and shifting motor of automobile transmission and vehicle
CN117200647B (en) * 2023-11-01 2024-03-19 浙江万里扬新能源驱动有限公司杭州分公司 Method for inhibiting working overheat of gear selecting and shifting motor of automobile transmission and vehicle

Also Published As

Publication number Publication date
CN112140902A (en) 2020-12-29

Similar Documents

Publication Publication Date Title
JP5985178B2 (en) Motor control device
JP5893361B2 (en) Motor control device
WO2012114902A1 (en) Electric automobile
WO2013153997A1 (en) Cooling structure for inverter device
JP6534509B2 (en) Drive control device for a wheel independent drive type vehicle
JP6396180B2 (en) Drive control device for wheel independent drive type vehicle
JP6355927B2 (en) Drive control device for motor-equipped automobiles
JP2013207957A (en) Motor cooling device
JP6411132B2 (en) Drive control device for wheel independent drive type vehicle
JP6517089B2 (en) Drive control device for a wheel independent drive type vehicle
US20210016659A1 (en) Vehicle
US10889188B2 (en) Drive control device for vehicle with independently driven wheels
JP2013247768A (en) Heating control device for motor-mounted vehicle
WO2018164268A1 (en) Drive control device
JP2021005967A (en) Driving control device
JP6199454B2 (en) Motor control device
JP5731234B2 (en) Electric car
JP2018159625A (en) Abnormality diagnostic device
JP2013252051A (en) Electric vehicle
JP6614088B2 (en) Power system controller
JP2018088768A (en) Drive control device of motor-mounted automobile
JP5731594B2 (en) Electric car
WO2021125218A1 (en) Drive control apparatus and drive control method for vehicle having independently driven wheels
JP6422752B2 (en) Vehicle braking force control device
CN112152543A (en) Inverter device and vehicle control device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231031