WO2016072113A1 - アキシャルギャップ型回転電機及び絶縁部材 - Google Patents

アキシャルギャップ型回転電機及び絶縁部材 Download PDF

Info

Publication number
WO2016072113A1
WO2016072113A1 PCT/JP2015/069866 JP2015069866W WO2016072113A1 WO 2016072113 A1 WO2016072113 A1 WO 2016072113A1 JP 2015069866 W JP2015069866 W JP 2015069866W WO 2016072113 A1 WO2016072113 A1 WO 2016072113A1
Authority
WO
WIPO (PCT)
Prior art keywords
type rotating
gap type
insulating member
axial gap
electrical machine
Prior art date
Application number
PCT/JP2015/069866
Other languages
English (en)
French (fr)
Inventor
則久 岩崎
正木 良三
榎本 裕治
博洋 床井
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to JP2016557465A priority Critical patent/JP6462714B2/ja
Publication of WO2016072113A1 publication Critical patent/WO2016072113A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation

Definitions

  • the present invention relates to an axial gap type rotating electrical machine and an insulating member, and more particularly to an axial gap type rotating electrical machine and an insulating member that insulate a stator core.
  • Axial gap type rotating electrical machine can realize various combinations such as “one stator and one rotor”, “one stator and two rotors”, and “two stators and one rotor”. There is a feature that it is easy to meet the demands.
  • Patent Document 1 discloses an axial gap motor having an armature structure in which one stator is sandwiched between two rotors.
  • the motor disclosed in Patent Document 1 has a stator structure in which divided core members are arranged in an annular shape around a rotating shaft. In such a case, the configuration and materials of each divided core are various combinations.
  • patent document 1 also discloses using an amorphous metal for the material of the thin plate for cores.
  • Patent Document 2 discloses an axial gap type rotating electrical machine having an iron core of a divided core member in which one or a plurality of rectangular steel plates cut to a predetermined width are radially or stacked from a rotating shaft. In order to fix the laminated or wound iron core, the fixing jig is required. Furthermore, if electrical insulation is considered between the coil and the iron core, an insulating material such as insulating paper or a bobbin may be required. Patent Document 2 discloses a configuration in which insulating paper or a resin material is provided on the outer periphery of the iron core, and the iron core is inserted into a cylindrical resin material and the insertion is facilitated.
  • Patent Document 3 is an insulator that is provided with an insulator by performing resin insert molding on a laminated core installed in a mold in order to apply an insulating material to the outer peripheral side of the laminated iron core, or is an insulator that is divided in the rotation axis direction.
  • a configuration in which a laminated iron core is sandwiched from both sides in the rotational direction is disclosed.
  • the difficulty of inserting the iron core and the risk of disconnection are not limited to the laminated iron core, but are also common to configurations in which a solid iron core obtained by compaction, cutting, etc. is inserted into an insulating material with a predetermined shape. is there. Furthermore, there may be a problem due to individual differences in the solid insulating member itself having a predetermined shape. It is desired to eliminate the performance degradation caused by individual differences of members such as iron cores and insulating members and to improve the convenience of manufacturing.
  • an iron core composed of a substantially columnar body having a radial cross-sectional shape in which the rotational direction width increases from the axial center side toward the outer peripheral side, and an insulating member having an inner cylinder shape substantially the same as the outer peripheral shape of the iron core;
  • a stator having a core member formed of a coil wound around the outer cylindrical portion of the insulating member, and a plurality of the core members arranged in an annular shape around a rotation axis; and at least one end face of the stator core;
  • An axial gap type rotating electrical machine having at least one rotor facing the surface via a gap in the rotation axis direction, wherein the insulating member is in contact with an outer peripheral surface on the side where the width in the rotation direction is large.
  • An insulating member and a second insulating member that contacts an outer peripheral portion of the iron core excluding an outer peripheral surface with which the first insulating member contacts, both radial ends of the second insulating member, and the first insulating member Both ends of member rotation direction DOO in which is in contact.
  • the insulating member can be easily installed on the outer periphery of the iron core.
  • 1 is an exploded perspective view showing a schematic configuration of an axial gap type motor according to an embodiment to which the present invention is applied.
  • 1 is a partial cross-sectional view of an axial gap type motor according to an embodiment to which the present invention is applied.
  • It is a schematic diagram which shows the structure of the insulator by 1st Embodiment.
  • It is a schematic diagram which shows the assembly of the insulator by 1st Embodiment.
  • It is a schematic diagram which shows the structure of the insulator by the modification of 1st Embodiment.
  • It is a schematic diagram which shows the structure of the insulator by 2nd Embodiment.
  • It is a schematic diagram which shows the structure of the insulator by 3rd Embodiment.
  • FIG. 1 schematically shows an armature configuration of an axial gap motor (hereinafter referred to as “motor 1”) according to a first embodiment to which the present invention is applied.
  • the motor 1 has a “1 stator / 2 rotor” structure including a stator 2 and rotors 3 a, 3 b, and has a configuration in which the rotors 3 a, 3 b are sandwiched from a rotating shaft (not shown) with a predetermined gap.
  • the present invention is not limited to this structure, and the number of stators and rotors is arbitrary.
  • the stator 2 has a configuration in which a plurality (9 in the figure) of divided core members are annularly arranged around the rotation axis.
  • Each divided core member includes a laminated iron core 5, an insulator 6, and a coil 7.
  • the laminated iron core 5 is made of an amorphous metal material that is thinly formed into a tape shape (for example, about 25 ⁇ m), and tape pieces that become smaller in width toward the axis are sequentially laminated to have a substantially trapezoidal columnar shape.
  • the laminated iron core 5 may be laminated in the rotation direction, and the shape is not limited to a substantially trapezoidal shape, and is not limited to an amorphous magnetic material, but may be an electromagnetic steel plate, a dust core, or a permendur.
  • a soft magnetic material such as In addition, when applying an amorphous metal, an electromagnetic steel plate, a permendur, etc., in order to suppress an eddy current, it is preferable to laminate
  • the insulator 6 is made of a non-magnetic and non-conductive insulating material, and a resin is applied in this embodiment.
  • the insulator 6 has a cylindrical shape having an inner peripheral shape that substantially matches the outer peripheral shape of the laminated core 5 and is obtained by injection molding, optical modeling, or three-dimensional modeling.
  • a laminated core 5 is inserted into the insulator 6, and a coil 7 made of copper, aluminum, or the like is wound around the outer cylinder portion of the insulator 6, thereby forming one divided core member.
  • flanges 6 a are formed that extend with a predetermined width in the axial direction and in the rotational direction along the outer peripheral shape of the cylinder, that is, with respect to the axial direction. This is due to consideration of insulation of generated eddy currents and positioning of adjacent divided cores.
  • the magnetic flux for generating torque is mainly in the radial direction, and in order to reduce the eddy current in the iron core, the stator is generally configured by laminating thin plates in the axial direction.
  • the magnetic flux is mainly in the axial direction, and in order to reduce the eddy current in the in-plane direction, electrical insulation is performed in the direction perpendicular to the magnetic flux flow in the radial direction and the circumferential direction. Necessary. It is preferable to further provide a shielding member for insulation on the side of the flange portion 6a facing the rotors 3a and 3b.
  • this invention is not limited to the aspect which provides the insulator 6 with the collar part 6a.
  • the structure provided in one part may be sufficient, without providing the collar part 6a over the perimeter of a cylinder part outer periphery.
  • the stator 2 is configured such that the annularly arranged divided cores and the housing are integrally molded with resin. This is for securing the strength and insulation between the divided cores and fixing them to the housing.
  • the side surfaces in the rotational direction of the adjacent flange portions 6a are in contact with each other, positioning in the mold is facilitated when resin molding is performed. Accordingly, the width of the flange portion 6a toward the outer peripheral side in the radial direction is larger than the thickness of the coil 7 wound around the outer cylinder portion of the insulator 6.
  • the present invention is not limited to the resin mold, and a resin or metal connection piece is bonded or riveted between the flanges 6a of the adjacent insulators 6, or the radially outer side of the flange 6a and / or
  • positions an annular member to an axial center side, and adheres or rivets may be sufficient.
  • the rotor 3a includes a rotor magnet 8a, a rotor core 9a, and a rotor flange 10a. Since the rotor 3b has the same configuration, the description thereof is omitted.
  • the magnet 8a is made of a permanent magnet such as neodymium or ferrite. It has a ring shape in which approximately sector-shaped magnets having different magnetic poles equally divided in the radial direction are alternately arranged.
  • the rotor magnet 8a may be configured as a ring-shaped integral body in addition to the configuration in which the pole is divided in the circumferential direction for each pole.
  • the end surface of the rotor magnet 8a faces the stator core 2 in the axial direction, and therefore, similarly to the stator core 2, it receives a change in the magnetic flux directly.
  • a phenomenon occurs in which an eddy current flows as occurs.
  • Neodymium magnets have a large energy product and a large torque can be expected, but on the other hand, since the electrical resistance is low, eddy current tends to flow and the efficiency tends to decrease. Therefore, when a neodymium magnet is used, the magnet is divided in the direction perpendicular to the axis to be electrically insulated or embedded in the rotor core 5 described below to reduce the influence of magnetic flux changes. Also good.
  • ferrite magnets have a smaller energy product than neodymium magnets, but have high electrical resistance and eddy currents hardly flow. For this reason, it is not necessary to take a configuration such as magnet division or embedding in the rotor core 5.
  • the material is iron oxide, it is also resistant to rust.
  • the rotor core 9a is made of a soft magnetic material such as an electromagnetic steel plate, a powder magnetic core, an amorphous metal or permendur, or iron, like the laminated iron core 5, and has a donut shape with a hole through which the rotation shaft passes in the center. Have.
  • the rotor core 9a also changes in magnetic flux when the motor 1 is driven.
  • the rotor core 9a may be configured as an integral member of iron.
  • the above-described material may be configured to have a wound iron core in a balm Kuchen shape.
  • the rotor flange 10a is a member for fixing the rotor magnet 8a and the rotor core 9a, and has a donut shape provided with a hole through which the rotation shaft passes in the center.
  • an inner peripheral protrusion 11a extending to the stator core 2 side along the rotation axis and an outer peripheral protrusion 12a are provided.
  • the rotor magnet 8a and the rotor core 9a are disposed so that the end surfaces in the radial direction are bonded with an adhesive or the like, and are sandwiched between both circumferential side surfaces of the inner peripheral projection 11a and the outer peripheral projection 12a.
  • This arrangement is for obtaining stress against centrifugal force generated in the rotor magnet 8a and the rotor core 9a.
  • a configuration in which only the outer peripheral projection 12a is provided may be used.
  • the inner peripheral projection 11a is also provided to prevent turning from the inner peripheral side and ease of positioning during assembly. Etc. can be profited.
  • the width in the rotation axis direction of both protrusions is up to the vicinity of the center of the circumferential side surface of the rotor magnet 8a. It takes into account the stress on centrifugal force and the effect on eddy currents.
  • the inner peripheral protrusion 11a and the outer peripheral protrusion 12a are configured as continuous wall portions along the periphery.
  • the inner peripheral protrusion 11a and the outer peripheral protrusion 12a may be configured discontinuously at regular intervals, or both or one of them. May be a nail portion.
  • FIG. 2 shows a configuration example of the housing and armature of the motor 1.
  • FIG. 2A shows the configuration of the first embodiment
  • FIG. 2B shows the configuration of the modification.
  • the stator 2 is integrally fixed by resin on the inner periphery of the housing 20.
  • the rotors 3a and 3b are fixed to the rotary shaft 4 at the center. Both end portions of the rotating shaft 4 are connected to a flange 21 through a bearing 22 so as to be rotatable, and the outer peripheral side of the flange 21 is connected to the vicinity of both side openings of the substantially cylindrical housing 20. .
  • a bearing holder 23 that is integrally formed is provided on the inner peripheral side of the stator 2, the bearings 22 are disposed in the vicinity of both ends of the bearing holder 23 in the rotation axis direction, and the rotors 3 a and 3 b. It is the structure connected with the rotating shaft 4 fixed to. Since the bearing holder 23 in FIG. 2B plays the same role as the brackets 21 and 20 in FIG. 2A, the housing 20 and the bracket 21 are not required in FIG. In the case of (b), it is the structure which can ensure the flatness of the motor 1 by ensuring the structure which hold
  • the split core member and the housing are integrally molded with resin
  • the split core member may be individually molded with resin, and then arranged in an annular shape within the mold and molded with the housing 20 integrally.
  • the individual divided core members may be metallic annular rings, and the inner peripheral side and / or outer peripheral side of the flange portion 6a may be fixed, or adjacent divided cores may be connected by a plate-like piece. You may make it carry out, and you may shape
  • the fixing of the stator 2 and the housing is not limited to the integral molding of the resin, but a continuous or discontinuous annular protrusion is provided on the inner periphery of the housing 20 to arrange the stator 2 or other bolting or the like. It may be configured.
  • FIG. 3 shows the configuration of the insulator 6.
  • FIG. 4A shows a cross section in the direction of the rotation axis, and FIG. 4B shows a partially enlarged view. In each case, the collar portion 6a is omitted.
  • the insulator 6 includes a main body 30 (second insulating member) and a lid 31 (first insulating member).
  • the main body 30 has an inner surface that approximately matches the shapes of the upper base and the oblique side surface of the laminated core 5 having a substantially trapezoidal columnar shape, and is formed integrally with the flange portion 6a.
  • the inner side surface and each surface of the laminated iron core are substantially in contact with each other.
  • the groove part 32 is formed in the rotation direction both ends of the inner surface of the main-body part 30. As shown in FIG. After the laminated core 5 is inserted into the main body 30, the lid end portion 31 a that is the side surface in the rotational direction of the lid portion 31 is fitted into the groove portion 32.
  • the groove inner wall 32a on the axial center side of the groove 32 is a gentle slope from the bottom of the groove 32 toward the inner wall of the insulator 6.
  • the groove inner wall 32b on the radially outer peripheral side of the groove portion 32 is parallel to the outer peripheral side surface of the lid portion 31 in order to ensure the locked state.
  • the lid portion 31 is rectangular and has a dimension in which the length in the rotational direction substantially matches the length between both bottom portions of the groove portion 32 of the main body portion 30.
  • the thickness of the lid end portion 31 a in the radial direction has a dimension that is slightly smaller than the distance between the inner walls 32 a and 32 b of the groove portion 32 of the main body portion 30. This is to ensure a frictional force between the inner peripheral surface of the insulator 6 and the laminated core 5 as will be described later.
  • the main body portion 30 is slightly R has a dimension larger than R ′. This is because the laminated iron core 5 is pressed against the inner cylinder side of the insulator 6 to ensure the frictional force between the insulator 6 and the laminated iron core 5 and to ensure the fixed state of both. Furthermore, even if this dimensional difference is caused when the length R is slightly smaller than planned due to the variation in the thickness of the laminated core 5, the insulator 6 and the laminated core 5 have a certain pressing force. It functions as a play to secure the fixed state of.
  • FIG. 4 schematically shows a locked state between the main body 30 and the lid 31.
  • (A) is a perspective view from the outer peripheral side of the motor 1
  • (b) is a perspective view from a rotating shaft direction ((b) abbreviate
  • the lid portion 31 is pressed and fitted in the axial direction so that the lid end portion 31a and the groove portion 32 are fitted. Since the laminated iron core 5 allows only the flange portion 6a having a small thickness in the rotation axis direction to pass therethrough, the laminated iron core 5 significantly contributes to prevention of turning up of the laminated piece during insertion and improvement of workability. In particular, in this embodiment, since the laminated piece uses a tape-like amorphous metal material that is thinner than the steel plate piece that is generally used in the laminated iron core, the rigidity in the rotation axis direction is low. The effect can be expected particularly in the case of the iron core using the laminated piece having low rigidity in the rotation axis direction.
  • the lid portion 31a since the axial center side of the side surface in the rotational direction of the lid end portion 31a has a gentle slope toward the inner peripheral side of the insulator 6 in the same manner as the groove inner wall 32a, the inclination is the outer peripheral side of the groove inner wall 31b. Is spread in the rotation direction, and the lid portion 31 is easily fitted into the main body portion 30. Furthermore, since the outer peripheral side surface of the lid end portion 31a and the groove inner wall portion 32b are perpendicular to the radial extension line from the shaft center, the lid portion 31 and the groove portion 32 are reliably locked and are difficult to come off.
  • the cross-sectional shape of the lid end portion 31 a slightly smaller than the cross-sectional shape of the groove portion 32, a pressing force toward the inner peripheral side of the insulator 6 is generated while absorbing the variation in the thickness of the laminated core 5. The fixed state of the main body 30 and the lid 31 can be ensured.
  • the stator core 2 and the housing 20 are integrally formed of a resin mold, but the coil 7 wound around the outer cylinder portion of the insulator 6 and the housing 20 need to be insulated from each other.
  • the resin is inserted between the housing 20 and the housing 20.
  • the laminated iron core 5 has a non-contact structure in the housing.
  • the laminated iron core 5 and the housing 20 are electrically connected by a conductive member.
  • a conductive band (plate piece) or wire is sandwiched between the outer peripheral surface of the laminated core 5 and the inner peripheral surface of the insulator 6 and connected to the inner peripheral surface of the housing.
  • the insulator 6 according to the modified example has a configuration in which a grounding groove 35 extending in the rotation axis direction is provided near the center of the lid 31. According to the insulator 6 of the modification, the grounding of the laminated iron core 5 and the installation of the ground can be easily and reliably performed.
  • the groove depth of the grounding groove portion 35 is substantially the same as the thickness of the conductive member.
  • the conductive member is inserted.
  • a part of the conductive member (preferably near the center in the rotational axis direction) is curved in the axial direction so that it is sufficiently in contact with the laminated core 5 by the spring effect, and the ground groove 35 is electrically conductive.
  • the thickness of the conductive member may be slightly larger than the thickness of the conductive member so that the conductive member can be easily inserted.
  • One feature of the motor 1 of the second embodiment is that a plurality of groove portions 32 provided in the main body portion 30 of the insulator 6 in the first embodiment are provided on the inner wall on the iron core side in the axial direction.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 6 shows a cross-sectional configuration of the insulator 206 in the second embodiment (the rib portion 6a is omitted).
  • the inner peripheral surface in the rotation direction of the main body 230 has a plurality of grooves 232 formed at equal intervals from the outer peripheral direction toward the axial center.
  • the groove portions 232 are arranged so as to be separated by a distance r on an extension line that is perpendicular to a radial extension line passing through the axis.
  • the structure of the groove inner walls 232a and 232b of each groove part 232 is the same as that of 1st Embodiment.
  • the lid portion 231 has a plate shape that is approximately the same size as the width between the groove portions 232 on the radially outermost circumferential side, and includes a lid end portion 231a and a step portion 231b.
  • the lid portion 231 can be fitted into any one of the groove portions 232 corresponding to the rotation direction. That is, when the variation in the thickness of each laminated iron core 5 becomes larger than r, the pressing force of the lid portion 231 to the inner peripheral side of the insulator 6 is changed by changing the set of the groove portions 232 to be fitted in the radial direction. Can be held. In addition, the distance between the groups of the groove portions 232 becomes shorter from the radially outer peripheral side toward the axial center side.
  • the laminated iron core 5 and the insulator 6 can be connected to each other without applying an excessive load in the rotational direction of the main body portion 231.
  • the holding state can be maintained, which is advantageous in terms of cost and work.
  • the step portion 231b has a configuration in which a thickness r is added to the outer peripheral side of the lid portion 31a of the first embodiment. For example, if the set of the groove portions 232 to be fitted is changed to a set on the outermost peripheral side and one axial center side due to variations in the thickness of the laminated iron core 5, the lid portion 231 is shifted to the axial center side by r.
  • the coil is wound around the outer cylinder portion of the insulator 6, there is a possibility that a gap is generated between the outer peripheral side surface of the lid portion 231 and the coil, or that the groove inner wall 232b of the groove portion 232 is deformed due to the coil tension. Since the stepped portion 231b sticks out to the outer peripheral side in the radial direction by r, the influence of the winding of the coil 7 can be reduced.
  • each groove part 232 is not limited to an equal interval, You may differ.
  • the portion that forms the groove portion 232 on the outer peripheral side of the groove portion 232 into which the lid portion 231 is fitted is cut off and used, when the stator core 2 has a different diameter and the same number of slots, for each diameter. It is not necessary to prepare the combined main body 230, and improvement in mass productivity can be expected.
  • the stress in the rotational direction of the main body portion 30 may be weakened.
  • the lid has a configuration for holding the main body from the outside in the rotational direction. Further, one of the features is that the radial end of the main body and the rotational end of the lid are engaged.
  • FIG. 7 shows the configuration of the insulator 6 of the third embodiment.
  • symbol is attached
  • FIG. 5A is an enlarged view of one end portion of the main body 330 and the lid 331 of the third embodiment. In the present embodiment, the collar portion 6a is not provided.
  • Locking portions 333a and 333b that are engaged in the radial direction are provided at the end of the main body 330 and the end of the lid 331, respectively.
  • the locking portion 333a has a configuration in which the end portion is hung over in the axial direction so as to engage with the locking portion 333b located on the inner side from the outer side in the rotation direction.
  • locking part 333a has the hook-shaped part 334a which protrudes in the rotation direction at the front-end
  • the locking portion 333b has a hook-shaped portion 334b protruding outward in the rotation direction at the tip thereof, and has a shape that matches the shape of the internal space surrounded by the lid portion 331, the locking portion 333a, and the hook-shaped portion 334a. It has become.
  • the engaging portion 333a supports the engaging portion 333b from the outside in the rotational direction to the inside in the rotational direction by fitting the main body portion 330 and the lid portion 331. For this reason, the stress with respect to the expansion
  • the locking portions 333a and 333b and the like are continuously provided on all the ends in the rotation axis direction of the main body portion 330 and the lid portion 331 in order to ensure the fixing of the insulator 6 and the laminated core 5.
  • locking part 333a * 333b etc. discontinuously in a part of rotation direction may be sufficient.
  • a configuration in which a hole through which the locking portion 333 b of the main body portion 330 penetrates may be provided in the end portion of the lid portion 331.
  • locking part 333b may be sufficient.
  • the force is applied to the lid portion 31 and the like from the radially outer side toward the axial center side, thereby being fitted and engaged with the main body portion 31 and the like.
  • 4th Embodiment it is a structural example which installs a main-body part and a cover part by the slide of a rotating shaft direction.
  • FIG. 8 shows an enlarged view of a partial side surface in the radial direction between the main body 430 and the lid 431 of the fourth embodiment.
  • the main body 430 has a groove 432 extending in the direction of the rotation axis in the vicinity of the radially outer end.
  • the radial width of the groove portion 432 is substantially the same as or slightly larger than the radial thickness of the lid portion 431.
  • a protruding portion 433 constituting the radial inner wall of the groove portion 432 is formed at the distal end portion on the radially outer peripheral side of the main body portion 430.
  • the protrusion 433 has a shape that protrudes from the outer side in the rotation direction toward the laminated core.
  • the lid portion 431 has a flat plate shape in which the surface on the axial center side comes into contact with the radially outer side surface of the laminated core 5, and the length in the rotational axis direction is about 1 ⁇ 2 of the main body portion 430. It has a divided configuration. As shown in FIG. 4B, each of the lid portions 431a and 431b is inserted into the groove portion 433 from opposite sides in the rotation axis direction.
  • the lid portion 431 is a single flat plate that is not divided
  • the contact surface between the lid portion 431 and the laminated core 5 increases in proportion as the lid portion 431 is inserted from the groove portion 432, and thus the laminated core 5
  • the insertion of the lid portion 431 may be difficult or impossible due to an increase in the frictional force.
  • the lamination direction of the laminated iron core 5 is the radial direction
  • the steel plate piece on the outermost peripheral side surface is turned over.
  • the lamination direction is the rotation direction
  • the steel plate piece is partially in the radial direction. There is also a risk that a twist will occur.
  • the lid portion 431 is divided so that the length of each of the lid portions 431 is shortened in the rotation axis direction, so that when the one lid portion 431 is inserted, the friction area with the laminated iron core 5 is reduced.
  • the maximum value is 1 ⁇ 2 compared to the case where no division is performed.
  • the laminated core 5 can be prevented from being deformed in any rotation axis direction as a whole.
  • [Fifth Embodiment] 5th Embodiment is a structure which installs a cover part and a main-body part by a slide similarly to 4th Embodiment, However, The cover part has the structure which supports a main-body part to the laminated iron core 5 side from the rotation direction outer side. Is one of the features.
  • FIG. 9 shows an enlarged view of a partial radial side surface of the main body 530 and the lid 531 of the fifth embodiment.
  • locking portions 533a and 533b that are engaged in the radial direction are provided at the radial front end portion of the main body portion 531 and the rotational end portion of the lid portion 531.
  • the engaging portion 533a has a shape in which the end portion is hung over in the axial direction so as to engage with the engaging portion 533b located on the inner side from the outer side in the rotation direction.
  • the locking portion 533 a has a hook-shaped portion 534 a that protrudes in the rotation direction near the laminated core 5.
  • locking part 533b has the hook-shaped part 534b which protrudes to a rotation direction outer side at a radial direction front-end
  • the locking portion 533b has a shape that roughly matches the shape of the internal space surrounded by the lid portion 531, the locking portion 533a, and the hook-shaped portion 534a.
  • the lid portion 531 includes a lid portion 531a having a length that is 1 ⁇ 2 of the length in the rotation axis direction of the main body portion 530, and the lid portion, as in the fourth embodiment. 531b.
  • the lid portions 531a and 531b are arranged to be slid to the main body portion 530 from the opposite side in the rotation axis direction.
  • the lid portion 531 is slid in the rotational axis direction at a position where the locking portion 533b of the main body portion 530 and the locking portion 534a of the lid portion 531 are engaged with each other.
  • the lid 531 is configured to hold the main body 531 on the laminated core 5 side from the outer side in the rotation direction, the member that gives stress to the main body 531 in the rotation direction, for example, the flange 6. Even if there is no, there is no possibility that the main body 531 expands outward in the rotational direction.
  • hooked portions 534a and 534b engage with each other on the opposite sides in the rotation direction, so that the fixed state of the insulator 6 and the laminated core 5 can be sufficiently maintained.
  • the radially outer end portions of the main body and the both ends of the lid portion in the rotational direction are in contact with each other to constitute the tubular insulator 6.
  • it is not the structure which fits and engages both, but is characterized in that the fixed state of the insulator 6 and the laminated iron core 6 is maintained by using a tension around which the coil 7 is wound.
  • FIG. 10 the structure of the main-body part 630 of 6th Embodiment and the cover part 631 is shown.
  • the left side shows the front surface in the rotation axis direction of the main body 630 and the lid portion 631, and the right side in FIG.
  • the flange portion 6a of the insulator 6 is divided into a main body portion 630 and a lid portion 631, and is configured integrally with each other.
  • the surface where the main body portion 630 and the lid portion 631 come into contact is substantially flat.
  • a convex portion 631a is provided on the side surface of the lid portion 631 on the radial axis side.
  • the convex portion 631a extends in the direction of the rotation axis of the side surface, and is configured such that the width in the rotation direction is slightly smaller than the length between both ends on the radially outer side of the main body portion 631.
  • the lid 631 is installed with the convex portion 631a facing the laminated iron core 5 side.
  • the coil 7 is wound around the outer cylinder with a predetermined tension.
  • positioning the cover part 631 you may make it wind the coil 7, after temporarily fixing with the band 600, an adhesive agent, or an adhesive tape.
  • the sixth embodiment can simplify the configuration of the main body 630, the lid 631, and the vicinity of the contact surface. Moreover, since the collar part 6a is also divided
  • the insulator 6 has the configuration having the flange portion 6a. However, even if the configuration has no flange portion 6a, the effect of the present embodiment can be expected.
  • the insulator 6 made of an insulating resin is generally manufactured by injection molding in which a resin is sealed in a mold, but can also be manufactured by three-dimensional modeling or the like. When three-dimensional modeling is used, it can be used not only for manufacturing the insulator 6 itself but also for producing a mold for injection molding. As the three-dimensional modeling, for example, an additive manufacturing machine or a cutting RP device is used.
  • an optical modeling method As the layered modeling, an optical modeling method, a powder sintering layered modeling method, an ink jet method, a resin dissolution lamination method, a gypsum powder method, a sheet molding method, a film transfer image lamination method, a metal stereolithography combined processing method, and the like can be applied.
  • the data for additive manufacturing and cutting is generated by processing 3D data generated by CAD, CG software, or a 3D scanner into NC data by CAM. Three-dimensional modeling is performed by inputting the data to a three-dimensional modeling machine or a cutting RP device. Note that NC data may be directly generated from 3D data by CAD / CAM software.
  • a data provider or a servicer who created 3D data or NC data of the insulator 6 can distribute the data in a predetermined file format via a communication line such as the Internet, and the user can obtain the data in 3D.
  • a manufacturing method in which a modeling machine, a computer that controls the modeling machine, or the like is downloaded or accessed as a cloud-type service and molded and output by a three-dimensional modeling machine is also possible. It is also possible for the data provider to record 3D data or NC data on a non-volatile recording medium and provide it to the user.
  • mode of the insulator 6 by such a manufacturing method is shown, it will be substantially the same as the outer periphery shape of the iron core which consists of a substantially column body which has the shape of the radial cross section which becomes large in a rotation direction width
  • the inner cylinder part of the substantially same shape as the outer periphery shape of the iron core which consists of the substantially columnar body which has the shape of the radial direction cross section in which a rotation direction width
  • a method for transmitting and distributing data for a three-dimensional modeling machine of an insulating member having an outer tube portion around which a coil disposed on the outer peripheral side of the iron core is wound, the outer periphery of the iron core on the side where the width in the rotational direction is increased A first insulating member that is in contact with the surface, and a second insulating member that is in contact with an outer peripheral portion of the iron core excluding the outer peripheral surface of the iron core that is in contact with the first insulating member, and both radial ends of the second insulating member
  • the data for the three-dimensional modeling machine of the insulating member formed by contacting both ends of the first insulating member in the rotation direction via a communication line.
  • the method of transmitting and delivering the data for 3D modeling machines of the first insulating member and the second insulating member independently may be used.
  • the laminated iron core 5 and the insulator 6 having the inner cylinder corresponding to the outer peripheral shape thereof have been given examples in which the cross section is substantially trapezoidal, a part or all of them may be curved. That is, when the stator 2 has a plurality of divided core members arranged in an annular shape, it is conceivable that the surface on the radial axis side and / or the outer peripheral side of the iron core is substantially concentric with the other iron cores. . In this case, the radial outer peripheral side and / or inner peripheral side surface of each iron core or the like is a curved surface having a cross section of an arc.
  • a motor is used as an example of a rotating electrical machine, but a generator may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 軸心側から外周側に向かって回転方向幅が大となる径方向断面の形状を有する概略柱体からなる鉄心と、前記鉄心の外周形状と概略同一の内筒形状を有する絶縁部材と、前記絶縁部材の外筒部に巻き回されたコイルとからなるコアメンバを有し、回転軸を中心として複数の前記コアメンバを環状に配置してなる固定子と、前記固定子鉄心の少なくとも一方端面と回転軸方向にギャップを介して面対向する少なくとも1つの回転子とを有するアキシャルギャップ型回転電機であって、前記絶縁部材が、前記回転方向幅が大となる側の外周面と接触する第1絶縁部材と、前記第1絶縁部材が接触する外周面を除いた前記鉄心の外周部分と接触する第2絶縁部材とを有し、前記第2絶縁部材の径方向両端部と、前記第1絶縁部材の回転方向両端部とが接触するものである。

Description

アキシャルギャップ型回転電機及び絶縁部材 参照による取り込み
 本出願は、2014年11月5日に出願された日本特許出願第2014-224849号の優先権を主張し、その内容を参照することにより本出願に取り込む。
 本発明は、アキシャルギャップ型回転電機及び絶縁部材に係り、固定子鉄心の絶縁を行うアキシャルギャップ型回転電機及び絶縁部材に関する。
 省エネルギ化や輸送機器分野等を始めとする種々の分野での電動化が進む中で、回転電機(例えば、モータ)の小型・高効率化が急務となっている。一般に小型と高効率は相反する要素であり、近年その両立に対するニーズが益々高まっている。こうした背景の中、小型・省スペースで高出力が期待できるアキシャルギャップ型回転電機への注目度が高まっている。
 アキシャルギャップ型回転電機は、径方向の断面が広い磁束面積を有する程トルクを出しやすい特性を有する。このことから、軸方向での扁平化が期待できる。アキシャルギャップ型回転電機は、「ステータとロータの夫々が1つ」、「1ステータ・2ロータ」又は「2ステータ・1ロータ」等様々な組み合わせが実現でき、回転電機適用先の負荷や構造等の要求に対応し易いという特徴がある。
 特許文献1は、2つのロータで1つのステータを挟む電機子構造のアキシャルギャップモータを開示する。特許文献1が開示するモータは、回転軸を中心に分割コアメンバを環状に配列するステータ構造を有する。このような場合、各分割コアの構成や材料も様々な組み合わせとなる。特許文献1では、個々の分割コアメンバの鉄心を巻鉄心としたり、コア用の薄板をロールした環状体を得、これを端面側から等角度で切断することで個々の鉄心を得たりする構成を開示する。また、特許文献1は、コア用の薄板の材料にアモルファス金属を使用することも開示する。
 また、特許文献2は、所定幅に1又は複数枚切断された長方形の鋼板片を、回転軸から径方向や積層した分割コアメンバの鉄心を有するアキシャルギャップ型回転電機を開示する。
 積層又は巻き回した鉄心を固定するためには、その固定冶具が必要となる。更には、コイルと鉄心の間には電気的絶縁を考慮すれば、絶縁紙やボビンなどの絶縁材が必要となることもある。特許文献2は、鉄心の外周に絶縁紙や樹脂材を設けることや、筒状の樹脂材に鉄心を挿入すること及び挿入を容易にする構成を開示する。
 また、特許文献3は、積層鉄心の外周側に絶縁材を施すために、金型に設置された積層鉄心に樹脂インサート成形を行うことでインシュレータを設けたり、回転軸方向に分割されたインシュレータで回転方向両側から積層鉄心を挟んだりする構成を開示する。
特開2009-284578号公報 特開2013-121226号公報 特開2011-193564号公報
 アキシャルギャップ型回転電機において、特許文献1や2に記載のように、アモルファス金属を用いた薄板を周方向または径方向に積層する構成は、ステータコアに発生する渦電流損を低減し、高効率なモータにすることができるという利点がある。
 このような鉄心構造において、鉄心外周に絶縁材を施す際、特許文献3が開示する樹脂のインシュレータ成形では、積層された鋼板を予め接着等によって形状を固定してから金型にセットしたり、当該金型内で積層鉄心を固定・位置決めしたりするための種々の構成や工程を必要とする。
 このような構成や工程を省略する為に、筒状に成形された絶縁部材に積層鉄心を挿入するような方法もある。この場合には、接着材等で積層鉄心を予め固定成形したり或いは冶具によって積層方向に鉄心を加圧しながら挿入する必要があるが、積層する薄板のばらつき等によって占積率に異同が生じたり、変形によって絶縁部材に挿入することが困難となったり、挿入後に鉄心が抜ける虞もある。
 鉄心挿入の困難性や抜けの虞は積層鉄心に限ったものではなく、圧粉や切削等によって得られた固形の鉄心を予め形状が決められた絶縁材に挿入する構成にも共通するものである。更には、予め形状が定められた固形の絶縁部材自体の個体差が問題となる虞もある。
  鉄心や絶縁部材といった部材の個体差に起因する性能低下を解消し又製造の利便性を向上することが望まれる。
 上記課題を解決するために、例えば、特許請求の範囲に記載の構成を適用する。即ち軸心側から外周側に向かって回転方向幅が大となる径方向断面の形状を有する概略柱体からなる鉄心と、前記鉄心の外周形状と概略同一の内筒形状を有する絶縁部材と、前記絶縁部材の外筒部に巻き回されたコイルとからなるコアメンバを有し、回転軸を中心として複数の前記コアメンバを環状に配置してなる固定子と、前記固定子鉄心の少なくとも一方端面と回転軸方向にギャップを介して面対向する少なくとも1つの回転子とを有するアキシャルギャップ型回転電機であって、前記絶縁部材が、前記回転方向幅が大となる側の外周面と接触する第1絶縁部材と、前記第1絶縁部材が接触する外周面を除いた前記鉄心の外周部分と接触する第2絶縁部材とを有し、前記第2絶縁部材の径方向両端部と、前記第1絶縁部材の回転方向両端部とが接触してなるものである。
 本発明によれば,絶縁部材を容易に鉄心の外周に設置することができる。本発明の他の課題・構成・効果は、以下の記載から明らかになる。
本発明を適用した一実施形態によるアキシャルギャップ型モータの概要構成を示す展開斜視図である。 本発明を適用した一実施形態によるアキシャルギャップ型モータの部分断面図を示す。 第1実施形態によるインシュレータの構成を示す模式図である。 第1実施形態によるインシュレータの組立の様を示す模式図である。 第1実施形態の変形例によるインシュレータの構成を示す模式図である。 第2実施形態によるインシュレータの構成を示す模式図である。 第3実施形態によるインシュレータの構成を示す模式図である。 第4実施形態によるインシュレータの構成を示す模式図である。 第5実施形態によるインシュレータの構成を示す模式図である。 第6実施形態によるインシュレータの構成を示す模式図である。
 以下、図面を用いて本発明を実施するための形態について詳述する。
 〔第1実施形態〕
 図1に、本発明を適用した第1実施形態によるアキシャルギャップ型モータ(以下、「モータ1」という。)の電機子構成を模式的に示す。
 モータ1は、ステータ2、ロータ3a・3bを備える「1ステータ・2ロータ」構造であり、ロータ3a・3bが所定のギャップをもって、回転軸(不図示)方向から挟む構成を有する。なお、本発明はこの構造に限定されるものではなく、ステータ及びロータの数は任意である。
 ステータ2は、複数(図では9個)の分割コアメンバが、回転軸を中心に環状に配列されてなる構成を有する。各分割コアメンバは、積層鉄心5、インシュレータ6及びコイル7から構成される。積層鉄心5は、テープ状に薄く(例えば、25μm程度)成形されたアモルファス金属材料からなり、軸心に向かうにつれて幅が小となるテープ片を順次積層し、概略台形柱体の形状を有する。なお、積層鉄心5は、回転方向に積層するものでもよいし、形状も概略台形に限定するものではなく又アモルファス磁性体材料に限定されるものではなく、電磁鋼板、圧粉磁心又はパーメンジュール等の軟磁性材料でもよい。なお、アモルファス金属、電磁鋼板又はパーメンジュール等を適用する場合は、渦電流を抑えるために,積層鉄心5は、周方向又は径方向に積層するのが好ましい。
 インシュレータ6は、非磁性且つ非導電性の絶縁材からなるものであり、本実施形態では樹脂を適用するものとする。インシュレータ6は、積層鉄心5の外周形状に概略一致する内周形状を有する筒形状を有するものであり、射出成形、光造形又は3次元造形によって得るものである。インシュレータ6に、積層鉄心5が挿入され、インシュレータ6の外筒部に銅やアルミ等からなるコイル7が巻き回されることで1つの分割コアメンバが構成されるようになっている。
 また、インシュレータ6の軸心方向の両縁部近傍には、筒の外周形状に沿って軸心方向や回転方向に所定幅で延伸する鍔部6aが形成されている、即ち軸方向に対して発生する渦電流の絶縁や隣接する分割コア同士の位置決め等を考慮したことによる。ラジアルギャップ型モータの場合、トルクを発生させるための磁束は径方向が主であり、鉄心の渦電流を低減させるために、そのステータは、薄板を軸方向に積層する構成が一般的である。これに対しモータ1の場合、磁束は軸方向が主となり、面内方向の渦電流を低減させるためには、径方向や周方向などの磁束の流れに対して垂直方向に電気的な絶縁が必要となる。鍔部6aの各ロータ3a・3bとの対向する面側に、絶縁用の遮蔽部材を更に設けるのが好ましい。なお、本発明は、インシュレータ6に鍔部6aを設ける態様に限定されるものではない。また、鍔部6aを筒部外周の全周に渡って設けずに、一部に設ける構成であってもよい。
 また、本実施形態では、ステータ2は、環状配列した分割コア同士及びハウジングを一体的に樹脂でモールドされるようになっている。各分割コア同士の強度並びに絶縁性確保と、ハウジングへの固定の為である。隣接する鍔部6aの回転方向側面同士が当接することで、樹脂モールド成形行う際に型枠内での位置決めを容易にする。したがって、鍔部6aの径方向外周側への幅は、インシュレータ6の外筒部に巻き回すコイル7の積厚よりも大となっている。なお、本発明は、樹脂モールドに限定されるものではなく、隣接するインシュレータ6の鍔部6a同士に樹脂或いは金属の接続片を接着又はリベット止めしたり、鍔部6aの径方向外側及び/又は軸心側に、環状部材を配置して接着又はリベット止めしたりする構成であってもよい。
 ロータ3aは、ロータマグネット8a、ロータコア9a及びロータフランジ10aから構成される。なお、ロータ3bも同一構成であるため説明を省略する。
 マグネット8aは、ネオジウムやフェライト等の永久磁石からなる。径方向に等分割された磁極の異なる概略扇型の磁石を交互に配置されたリング形状を有する。なお、ロータマグネット8aは、1極毎に周方向に分割する構成の他に、リング形状の一体物として構成されていても良い。
 本実施形態において、ロータマグネット8aの端面は、ステータコア2と軸方向に対向することから、ステータコア2と同様に、磁束の変化を直に受けることとなり、その変化を妨げようとする向きに磁束が発生するように渦電流が流れる現象が起きる。
 ネオジウム磁石は、エネルギ積が大きく、大トルクが期待できるが、その反面,電気抵抗が低いために渦電流が流れやすく、効率低下を招きやすい。よって、ネオジム磁石を使用する場合、軸に対して垂直方向に磁石を分割して電気的絶縁を施すか又は次に説明するロータコア5に埋め込むようにし、磁束変化の影響を小さくする等の構成としてもよい。
 他方、フェライト磁石は、エネルギ積がネオジム磁石と比べると小さいが、電気抵抗が高く渦電流は流れ難い。このため、磁石の分割やロータコア5に埋め込む等の構成をとる必要はない。また,材質は酸化鉄であるため錆にも強いという特徴がある。
 ロータコア9aは、積層鉄心5と同様に、電磁鋼板、圧紛磁心、アモルファス金属或いはパーメンジュールなどの軟磁性材料又は鉄で構成され、中央に回転軸が貫通する穴が設けられたドーナツ形状を有する。ロータコア9aも、モータ1の駆動時に磁束の変化は生じるが、積層鉄心5よりも渦電流の影響が比較的小さいことから、鉄の一体部材として構成しても良い。少しでも渦電流損失を抑制したい場合は、圧紛磁心を適用するか若しくは電磁鋼板、アモルファス金属、パーメンジュール等の薄板材料を積層した構成にするのが好ましい。この場合、上記の材料をバームクーヘン状に巻鉄心とする構成でもよい。
 ロータフランジ10aは、ロータマグネット8a及びロータコア9aを固定するための部材であり、中央に回転軸が貫通する穴が設けられたドーナツ形状を有する。ロータフランジ10aの内周側及び外周側には、回転軸に沿ってステータコア2側に延伸する内周側突起11aと、外周側突起12aとが設けられる。ロータマグネット8a及びロータコア9aは、径方向端面が接着剤等で接着されると共に、内周側突起11aと外周側突起12aの周方向の両側面に挟持されるように配置される。
 この配置は、ロータマグネット8a及びロータコア9aに発生する遠心力に対する応力を得る為である。この点、外周側突起12aのみ設ける構成でもよいが、ロータコア9aが分割構成である場合には、内周側突起11aも設けることで、内周側からのめくれ防止や組立時の位置決めの簡便性等の利益を得ることができる。
 また、本実施形態では、両突起の回転軸方向幅は、ロータマグネット8aの周方向側面の中央付近までとなっている。遠心力に対する応力と、渦電流への影響とを考慮してのことである。なお、本実施形態では、内周側突起11a及び外周側突起12aを周に沿った連続する壁部として構成したが、一定の間隔をおいて不連続に構成してもよいし、両方又は一方を爪部とする等であってもよい。
 図2に、モータ1のハウジングと電機子の構成例を示す。図2の(a)は、第1実施形態の構成を示し、(b)は変形例の構成を示す。図2(a)において、上述のように、ステータ2はハウジング20の内周で樹脂によって一体的に固定される。ロータ3a・3bは、中央が回転軸4と固定される。回転軸4の両端部側は、軸受22を介して回転可能にフランジ21と接続され、フランジ21の外周側は、概略筒状のハウジング20の両側開口部付近と接続されるようになっている。
 図2(b)の構成では、ステータ2の内周側に一体的に構成された軸受ホルダ23を設け、軸受ホルダ23の回転軸方向両端部付近に軸受22を配設し、ロータ3a・3bに固定された回転軸4と接続する構成である。軸受ホルダ23は、図2(b)の軸受ホルダ23が、(a)のブラケット21及び20と同様の役割を果たすため、(b)では、ハウジング20及びブラケット21が不要となる。(b)の場合は、ステータ2を保持する構成を他に確保することで、モータ1の扁平性を確保できる構成である。
 なお、分割コアメンバとハウジングを一体的に樹脂モールド成形する場合、先ず、分割コアメンバ個々を樹脂モールドし、その後、型枠内で円環状に配置してハウジング20と一体に樹脂モールド成形してもよい。或いは、個々の分割コアメンバ同士は、金属性の環状リングで、鍔部6aの内周側及び/又は外周側を固定するようにしてもよいし、板状片で、隣接する分割コア同士を連結するようにしてもよいし、鍔部6aの一部同士が係合するように成形して連結してもよい。また、ステータ2と、ハウジングとの固定は樹脂によるモールド一体成形に限らず、ハウジング20の内周に連続或いは不連続の環状突起を設けて、ステータ2を配置する構成やボルト止め等の他の構成でもよい。
 次いで、本実施形態の特徴の一つであるインシュレータ6の構成を説明する。
 図3に、インシュレータ6の構成を示す。同図(a)は、回転軸方向の断面を示し、(b)は、部分拡大図を示す。なお、何れも鍔部6aは省略して表わす。
 インシュレータ6は、本体部30(第2絶縁部材)と、蓋部31(第1絶縁部材)とからなる。
 本体部30は、概略台形柱体の形状からなる積層鉄心5の上底及び斜辺側側面の形状と概略一致する内側面を有し、鍔部6aと一体に形成される。当該内側面と積層鉄心の夫々の面とは略接触するようになっている。そして、本体部30の内側面の回転方向両端部には、溝部32が形成される。積層鉄心5を本体部30に挿入した後、溝部32に蓋部31の回転方向側面である蓋端部31aを嵌め込むようになっている。
 ここで、溝部32の軸心側の溝内壁32aは、溝部32の底部からインシュレータ6の内壁に向かって緩やかな斜面となっている。反対に、溝部32の径方向外周側の溝内壁32bは、係止状態を確実にするために、蓋部31の外周側面と平行となっている。
 蓋部31は、方形であり、回転方向の長さが本体部30の溝部32の両底部間の長さと概略一致する寸法となっている。蓋端部31aの径方向の厚みは、本体部30の溝部32の内壁32aと32b間の距離よりも僅かに小となる寸法を有する。後述するように、インシュレータ6の内周面と積層鉄心5の間の摩擦力を確保するためである。
 本体部30は、溝部32の軸心側の溝縁部32cから上底側内側面までの垂直距離をR´とし、積層鉄心5の上底と下底の垂直距離をRとすると、僅かにRがR´よりも大となる寸法を有する。これは、積層鉄心5をインシュレータ6の内筒側に押圧することで、インシュレータ6と積層鉄心5の摩擦力を確保し、両者の固定状態を確実にする為である。更には、この寸法差が、積層鉄心5の積厚のばらつきによって、長さRが予定より僅かに小となった場合が生じても、有る程度の押圧力をもってインシュレータ6と、積層鉄心5との固定状態を確保する遊びとして機能する。
 図4に、本体部30と、蓋部31との係止状態を模式的に示す。(a)は、モータ1の外周側からの斜視図であり、(b)は、回転軸方向からの斜視図である((b)は、鍔部6aを省略して表わす。)。
 本体部30に、鍔部6aの一方を介して回転軸方向に積層鉄心5を挿入後、蓋端部31aと、溝部32とが勘合するように蓋部31を軸心方向に押し嵌める。積層鉄心5は、回転軸方向の厚さが薄い鍔部6aのみを通過させるので、挿入時の積層片のめくれ防止や作業性の向上に著しく資する。特に、本実施形態では、積層片が一般に積層鉄心で使用される鋼板片よりも薄いテープ状のアモルファス金属材を使用していることから、回転軸方向に対する剛性が低い。このような回転軸方向への剛性が低い積層片を用いた鉄心の場合には特に効果が期待できる。
 また、蓋端部31aの回転方向側面の軸心側が、溝内壁32aと同様に、インシュレータ6内周側に向かって緩やかな傾斜が形成されていることから、当該傾斜が溝内壁31bの外周側を回転方向に押し広げ、蓋部31を本体部30に嵌め易くなる。更に、蓋端部31aの外周側面と溝内壁部32bが、軸心からの径方向延長線に対して垂直となるため、蓋部31と溝部32との係止を確実にし、外れ難くなる。
 また、蓋端部31aの断面形状を、溝部32の断面形状よりも僅かに小とすることで、積層鉄心5の積厚のばらつきを吸収しつつインシュレータ6内周側への押圧力を発生し、本体部30と、蓋部31との固定状態を確実にすることができる。
 〔第1実施形態の変形例〕
 第1実施形態におけるインシュレータ6の変形例を説明する。モータ1は、ステータコア2が電気的に浮動状態となっており、アースを設ける必要がある。ラジアルギャップ型モータは、例えば、ステータコアをハウジングに焼き嵌めや圧入していることから、電気的にはハウジングとステータコアが結合しており、ハウジングから容易にアースをとることができる。
 モータ1は、ステータコア2と、ハウジング20は樹脂モールドで一体的に構成されるが、インシュレータ6の外筒部に巻き回したコイル7と、ハウジング20とは絶縁する必要があることから、コイル7とハウジング20との間に樹脂を回し込むようになっている。この為、積層鉄心5は、ハウジング電気的に非接触な構造となる。このためモータ1では、積層鉄心5とハウジング20とを導電性の部材で電気的に接続するようになっている。
 アースとしては、積層鉄心5の外周面とインシュレータ6の内周面に導電性のバンド(板片)やワイヤを挟み、これをハウジング内周面に接続するようになっている。蓋部31を本体部30に勘合した後は、積層鉄心5と、インシュレータ6内周面は一定の押圧力をもって密着状態にあるため、その間に導電性部材を挿入するのは、積層片のヨレや損傷の虞や作業性が低下する虞がある。
 そこで、図5に示す様に、変形例のインシュレータ6は、蓋部31の中央付近に、回転軸方向に延伸するアース用溝部35を設ける構成となっている。変形例のインシュレータ6によれば、積層鉄心5のアースやアースの設置も簡便且つ確実に行うことができる。
 なお、本変形例では、アース用溝部35の溝の深さは、導電性部材の厚さと概略同じとするが、本体部30と蓋部31とを勘合した後に、導電性部材を挿入するようにする場合には、導電性部材の一部(回転軸方向中央寄りが好ましい)を軸心方向に湾曲させて、スプリング効果で積層鉄心5と十分に接触するようにし、アース用溝部35を導電性部材の厚さよりも僅かに大に構成して、導電性部材を挿入し易くするようにしてもよい。
 〔第2実施形態〕
 第2実施形態のモータ1は、第1実施形態におけるインシュレータ6の本体部30に設けた溝部32を、軸心方向に向かって鉄心側内壁に複数設けることを特徴の一つとする。なお、以下の説明で、第1実施形態と同構成の物は同一符号を付し、詳細な説明は省略する。
 図6に、第2実施形態におけるインシュレータ206の断面構成を示す(鍔部6aは省略する。)。同図(a)に示す様に、本体部230の回転方向内周面は、外周方向から軸心側に向かって等間隔で形成された複数の溝部232を有する。各溝部232は、軸心を通る径方向延長線に対して垂直となる延長線において、距離rずつ離間するよう配置する。なお、各溝部232の溝内壁232a及び232bの構成は第1実施形態と同様である。
 蓋部231は、第1実施形態と同様に、径方向最外周側の溝部232間の幅と概略同寸幅の板形状からなり、蓋端部231aと、段差部231bとを有する。第2実施形態では、蓋部231を、回転方向に対応する何れかの溝部232の組に嵌め込むことができようになっている。即ち各積層鉄心5の積厚のばらつきがrより大となってしまった場合に、嵌め込む溝部232の組を径方向で変更することで、蓋部231のインシュレータ6内周側への押圧力を保持することができる。なお、径方向外周側から軸心側に向かうにつれて、溝部232の組間の距離は短くなる。従って、回転方向の幅寸が夫々の溝部232の組用に調整された蓋部231を用意することで、本体部231の回転方向に過剰な負荷をかけることなく積層鉄心5とインシュレータ6との保持状態を維持することが可能となり、コスト面及び作業面で有利である。
 段差部231bは、第1実施形態の蓋部31aの外周側に、r分の厚みを加えた構成である。例えば、積層鉄心5の積厚のばらつきから、嵌め合わせる溝部232の組を最外周側1つ軸心側の組に変更すると、蓋部231が、r分軸心側にズレることになる。インシュレータ6の外筒部にコイルを巻き回す際、蓋部231の外周側面とコイルとの間に隙間が生じたり又溝部232の溝内壁232bがコイルテンションに負けて変形したりする虞もある。段差部231bがr分だけ径方向外周側に付き出ることで、コイル7の巻き回しによる影響を低減することができる。
 なお、各溝部232の軸心方向の溝幅は、等間隔に限定するものではなく、異なるものであってもよい。
 また、蓋部231を嵌め込む溝部232より外周側にある溝部232を形成する部分を切除して使用するようにすると、ステータコア2が異径且つ同一スロット数で有る場合に、夫々の径毎に合わせた本体部230を用意する必要がなく、量産性の向上が期待できる。
 〔第3実施形態〕
 第1及び第2実施形態では、インシュレータ6の本体部30等に鍔部6aが設けられている構成を前提とする例であった。この構成の場合、本体部30等の径方向外周側の鍔部6a部分によって、本体部の回転方向に対する応力を得ることができる。従って、本体部30等の鉄心側側面の溝部32等に、蓋部31等を嵌合するようにしても、本体部30が破損する虞が少ない。即ち第1及び第2実施形態は、回転方向外側から蓋部31等を保持する構成である。
 ここで、鍔部6aが無い場合には、本体部30等の回転方向応力も弱くなる虞もある。第3実施形態のモータ1では、蓋部が、回転方向外側から本体部を保持する構成を有することを特徴の一つとする。更に、本体部の径方向端部と、蓋部の回転方向端部とが係合するように構成することを特徴の一つとする。
 図7に、第3実施形態のインシュレータ6の構成を示す。なお、他の実施形態と同じ部材には同一符号を付し、説明を省略する。同図(a)は、第3実施形態の本体部330と蓋部331の一方端部部分の拡大図である。また、本実施形態において、鍔部6aは、設けない構成とする。
 本体部330の端部と蓋部331の端部に、径方向に係合する係止部333aと333bを夫々設ける。係止部333aは、回転方向外側から、内側に位置する係止部333bと係合するように、端部が軸心方向にハングオ―バとなる構成を有する。また、係止部333aは、その先端に、回転方向に突出する鈎状部334aを有する。係止部333bは、その先端に、回転方向外側に突出する鈎状部334bを有し、蓋部331、係止部333a及び鈎状部334aによって囲まれた内部空間の形状と一致する形状となっている。
 図7の(b)に示すように、本体部330と、蓋部331とを嵌めることで、係止部333aが回転方向外側から係止部333bを回転方向内側に支持する。このため本体部331の回転方向への展開に対する応力を生じさせる。また、鈎状部334a、334bによって、本体部330と蓋部331の径方向への抜けを防止し且つ両者と積層鉄心5との固定を確保することができる。
 なお、本実施形態では、インシュレータ6と積層鉄心5の固定を確実にするために、係止部333a・333b等は本体部330及び蓋部331の回転軸方向端部の全てに連続して設ける構成としたが、回転方向の一部に不連続で係止部333a・333b等を設ける構成であってもよい。
 また、蓋部331に係止部333a等を設ける代わりに、本体部330の係止部333bが貫通する穴を蓋部331の端部に設ける構成であってもよい。更に、係止部333bを本体部330の径方向外側端部から不連続に突出させ、個々の係止部333bに対応するように蓋部331に設けた穴にそれらを貫通させる構成でもよい。
 〔第4実施形態〕
 第1~第3実施形態では、蓋部31等に径方向外周側から軸心側にむかって力を加えることで、本体部31等と嵌合や係合する例であった。第4実施形態では、回転軸方向のスライドによって、本体部と蓋部とを設置する構成例である。
 図8、第4実施形態の本体部430と、蓋部431との径方向一部側面の拡大図を示す。同図(a)で、本体部430は、径方向外側の端部付近に、回転軸方向に延伸する溝部432を有する。溝部432の径方向幅は、蓋部431の径方向厚みと概略一致又は僅かに大になっている。また、本体部430の径方向外周側の先端部には、溝部432の径方向内壁を構成する突出部433が形成される。突出433は、回転方向外側から積層鉄心側に突出する形状を有する。
 蓋部431は、軸心側の面が積層鉄心5の径方向外周側側面と接触する平板形状を有し、回転軸方向の長さが本体部430の約1/2となるように中央で分割された構成を有する。
 同図(b)に示す様に、蓋部431aと431bの夫々は、互いに回転軸方向の反対側から溝部433に挿入するようになっている。
 例えば、蓋部431が分割していない1枚の平板で有った場合、溝部432から挿入するにつれて蓋部431と、積層鉄心5との接触面も比例して増加することから、積層鉄心5との摩擦力増加によって蓋部431の挿入が困難或いは不可となる虞もある。更には、積層鉄心5の積層方向が径方向で有る場合には、最外周側側面の鋼板片がめくれる虞があり、積層方向が回転方向で有る場合には、鋼板片が径方向に部分的にヨレが生ずる虞もある。
 この点、本実施形態では、蓋部431を分割し、夫々の長さが回転軸方向で短くなるようにすることで、一方の蓋部431を挿入する際、積層鉄心5との摩擦面積が分割しない場合と比して最大でも1/2となるようになっている。更に、一方の蓋部431aと、他方の蓋部431bとを夫々回転軸方向の反対側から挿入するため、積層鉄心5が、全体として何れかの回転軸方向に変形することを防止できる。
 〔第5実施形態〕
 第5実施形態は、第4実施形態と同様に、蓋部と本体部をスライドによって設置する構成であるが、蓋部が回転方向外側から本体部を積層鉄心5側に支持する構成を有する点を特徴の一つとする。
 図9に、第5実施形態の本体部530と、蓋部531との径方向一部側面の拡大図を示す。同図(a)に示す様に、本体部531の径方向先端部と蓋部531の回転方向端部には、径方向に係合する係止部533aと533bが設けられる。係止部533aは、回転方向外側から、内側に位置する係止部533bと係合するように、端部が軸心方向にハングオ―バとなる形状を有する。また、係止部533aは、その先端が、積層鉄心5寄りの回転方向に突出する鈎状部534aを有する。他方、係止部533bは、径方向先端に、回転方向外側に突出する鈎状部534bを有する。係止部533bは、蓋部531、係止部533a及び鈎状部534aによって囲まれた内部空間の形状と概略一致する形状となっている。
 また、同図(b)に示す様に、蓋部531は、第4実施形態と同様に、本体部530の回転軸方向長さの1/2の長さを有する蓋部531aと、蓋部531bとに分割された構成を有する。蓋部531aと531bは、夫々が回転軸方向の反対側から本体部530にスライドさせて配置するようになっている。具体的には、本体部530の係止部533bと、蓋部531の係止部534aとが互いに係合する位置で、蓋部531を回転軸方向にスライドするようになっている。
 本実施形態では、蓋部531が、回転方向外側から本体部531を積層鉄心5側に保持する構成であるため、本体部531に、例えば、鍔部6のような回転方向に応力を発する部材が無い場合であっても、本体部531が回転方向外側に展開する虞がない。
 また、鈎状部534a及び534bが互いに回転方向反対側に係合することにより、インシュレータ6と積層鉄心5の固定状態を十分に保持することができる。
 蓋部531の分割構成やスライドさせて配置する構成の効果は、第4実施形態と同様である。
 〔第6実施形態〕
 第6実施形態は、第1~第5実施形態と同様に、本体部の径方向外側両端部と、蓋部の回転方向両端部とが接触することで筒形状のインシュレータ6を構成する点は同じであるが、両者を嵌合や係合等させる構成ではなく、コイル7を巻き回すテンションを利用してインシュレータ6と積層鉄心6の固定状態を保持する点を特徴の一つとする。
 図10に、第6実施形態の本体部630と、蓋部631との構成を示す。同図(a)において、左側が本体部630と蓋部631の回転軸方向正面を示し、同図(b)右側が径方向正面を示す。
 インシュレータ6の鍔部6aは、本体部630と蓋部631の夫々に分割され、夫々と一体的に構成される。他の実施形態と異なり、本体部630と蓋部631が接触する面は、略平面となっている。なお、本体部630と蓋部631の接触面に、両者を組む際の位置決め用として凹凸部等を設けるようにしてもよい。
 また、蓋部631の径方向軸心側側面には、凸部631aが設けられる。凸部631aは、当該側面の回転軸方向に延伸し、回転方向幅が本体部631の径方向外側両端部間の長さよりも僅かに小となるように構成される。蓋部631と本体部630とが組まれた際、凸部631aが、積層鉄心5を軸心方向に押圧する。即ちインシュレータ6と積層鉄心5の固定を確保するように作用する。更に、凸部631aは、積層鉄心5の積厚にばらつきが有る場合のスペーサとしても機能することが期待できる。
 本体部630の内筒部に積層鉄心5を設置した後、凸部631aを積層鉄心5側に向けて蓋部631を設置する。次いで、同図(b)に示す様に、コイル7を所定のテンションで外筒に巻き回してゆく。なお、蓋部631を配置後に、バンド600、接着剤若しくは粘着テープ等で、仮止めしてからコイル7を巻き回すようにしてもよい。
 このように、第6実施形態は、本体部630と蓋部631と接触面付近の構成を簡易にできる。また、鍔部6aも分割されているため、両者を組む際に無理な負荷が係るような虞もない。更に、コイル7のテンションにより積層鉄心5側に加わる略360度の力に対して、凸部631による押圧力が積層鉄心5の応力を更に助長し、本体部630と蓋部631の固定を確実にする。
 なお、第6実施形態ではインシュレータ6が鍔部6aを有する構成を例としたが、鍔部6aが無い構成であっても、本実施形態の効果を期待することができる。
 〔製造方法〕
 最後に、第1~第6実施形態におけるインシュレータ6の製造方法について説明する。絶縁性の樹脂からなるインシュレータ6は、型枠に樹脂を封入する射出成形によって製造するのが一般的であるが、3次元造形等によって製造することも可能である。3次元造形を利用する場合、インシュレータ6そのもののみならず、射出成形用の型枠を製造することにも利用できる。3次元造形としては、例えば、積層造形機や切削RP装置等を利用する。
 積層造形としては、光造形方式、粉末焼結積層造形方式、インクジェット方式、樹脂溶解積層方式、石膏パウダー方式、シート成形方式、フィルム転写イメージ積層方式及び金属光造形複合加工方式等が適用できる。
 上記積層造形や切削加工用のデータは、CADやCGソフトウェア又は3Dスキャナで生成した3DデータをCAMによってNCデータに加工することで生成される。該データを3次元造形機又は切削RP装置に入力することで3次元造形が行われる。なお、CAD/CAMソフトウェアによって、3Dデータから直接NCデータを生成してもよい。
 また、インシュレータ6を得る方法として、インシュレータ6の3Dデータ又はNCデータを作成したデータ提供者やサービサが、インターネット等の通信線を介して所定のファイル形式で配信可能とし、ユーザが当該データを3D造形機やそれを制御するコンピュータ等にダウンロード又はクラウド型サービスとしてアクセスし、3次元造形機で成形出力する製造方法も可能である。なお、データ提供者が3DデータやNCデータを不揮発性の記録媒体に記録して、ユーザに提供する方法も可能である。
 このような製造方法によるインシュレータ6の一態様を示せば、軸心側から外周側に向かって回転方向幅が大となる径方向断面の形状を有する概略柱体からなる鉄心の外周形状と概略同一の形状の内筒部と、前記鉄心の外周側に配置するコイルを巻き回す外筒部とを有する絶縁部材を製造する方法であって、前記回転方向幅が大となる側の鉄心外周面と接触する第1絶縁部材と、前記第1絶縁部材が接触する鉄心外周面を除いた前記鉄心の外周部分と接触する第2絶縁部材とからなり、前記第2絶縁部材の径方向両端部と、前記第1絶縁部材の回転方向両端部とが接触してなる絶縁部材の3次元データに基づいて3次元造形機で製造する方法である。
 なお、第1絶縁部材と、第2絶縁部材とを独立して3次元造形機で製造する方法でもよい。
 更に、他の態様を示せば、軸心側から外周側に向かって回転方向幅が大となる径方向断面の形状を有する概略柱体からなる鉄心の外周形状と概略同一の形状の内筒部と、前記鉄心の外周側に配置するコイルを巻き回す外筒部とを有する絶縁部材の3次元造形機用データの伝送・配信方法であって、前記回転方向幅が大となる側の鉄心外周面と接触する第1絶縁部材と、前記第1絶縁部材が接触する鉄心外周面を除いた前記鉄心の外周部分と接触する第2絶縁部材とからなり、前記第2絶縁部材の径方向両端部と、前記第1絶縁部材の回転方向両端部とが接触してなる絶縁部材の3次元造形機用データを、通信線を介して伝送・配信する方法である。
 なお、第1絶縁部材と、第2絶縁部材の3次元造形機用データを独立して伝送・配信する方法でもよい。
 以上、本発明を実施するための形態について説明したが、本発明は上記態様に限定されるものではなく、その趣旨を逸脱することのない範囲で、種々の変更が可能である。
 例えば、積層鉄心5及びその外周形状に応じた内筒を有するインシュレータ6は、断面が概略台形となる例を上げたが、一部又は全部が曲面であってもよい。つまり、ステータ2を複数の分割コアメンバを環状に配置する場合には、鉄心の径方向軸心側及び/又は外周側の面が他の鉄心とともに概略同心円の周となるようにすることも考えられる。この場合、個々の鉄心等の径方向外周側及び/又は内周側の面は、断面が孤状の曲面となる。
 また、本実施形態では、回転電機としてモータを例としたが、発電機であってもよい。
 1 モータ、
 2 ステータ、
 3a・3b ロータ、
 5 積層鉄心 
 6 インシュレータ、
 6a 鍔部、
 7 コイル、
 8a・8b ロータマグネット、
 9a・9b ロータコア、
 10a・10b ロータフランジ、
 11a・11b 内周側突起、
 12a・12b 外側突起、
 20 ハウジング、
 21 フランジ、
 22 軸受、
 23 軸受ホルダ、
 30 本体部、
 31 蓋部、
 31a・31b 蓋端部、
 32 溝部、
 32a・32b 溝部内壁、
 35 アース用溝部、
 231b 段差部、
 333a・333b 係止部、
 334a・334b 鈎状部
 

Claims (16)

  1.  軸心側から外周側に向かって回転方向幅が大となる径方向断面の形状を有する概略柱体からなる鉄心と、前記鉄心の外周形状と概略同一の内筒形状を有する絶縁部材と、前記絶縁部材の外筒部に巻き回されたコイルとからなるコアメンバを有し、回転軸を中心として複数の前記コアメンバを環状に配置してなる固定子と、前記固定子鉄心の少なくとも一方端面と回転軸方向にギャップを介して面対向する少なくとも1つの回転子とを有するアキシャルギャップ型回転電機であって、
     前記絶縁部材が、
     前記回転方向幅が大となる側の外周面と接触する第1絶縁部材と、
     前記第1絶縁部材が接触する外周面を除いた前記鉄心の外周部分と接触する第2絶縁部材とを有し、
     前記第2絶縁部材の径方向両端部と、前記第1絶縁部材の回転方向両端部とが接触してなるものであるアキシャルギャップ型回転電機。
  2.  請求項1に記載のアキシャルギャップ型回転電機であって、
     前記第2絶縁部材が、径方向両端部近傍の前記鉄心側の面に溝部を有するものであり、
     該溝部と、前記第1絶縁部材の回転方向両端部とが嵌合するものであるアキシャルギャップ型回転電機。
  3.  請求項2に記載のアキシャルギャップ型回転電機であって、
     前記溝部の径方向幅が、前記第1絶縁部材の回転方向両端部の径方向厚みよりも大或いは概略同じであるアキシャルギャップ型回転電機。
  4.  請求項2に記載のアキシャルギャップ型回転電機であって、
     前記第2絶縁部材が、前記溝部を軸心方向に複数有するものであるアキシャルギャップ型回転電機。
  5.  請求項4に記載のアキシャルギャップ型回転電機であって、
     前記第1絶縁部材が、径方向外周側の面に回転軸方向に延伸する凸部を有するものであるアキシャルギャップ型回転電機。
  6.  請求項2に記載のアキシャルギャップ型回転電機であって、
     前記溝部が、回転軸方向に延伸するものであるアキシャルギャップ型回転電機。
  7.  請求項2に記載のアキシャルギャップ型回転電機であって、
     前記第1絶縁部材が、径方向外周側から軸心側に押圧されることで、前記第1及び第2絶縁部材が嵌合するものであるアキシャルギャップ型回転電機。
  8.  請求項2に記載のアキシャルギャップ型回転電機であって、
     前記第1絶縁部材が、径方向に分割された複数の部材からなるものであるアキシャルギャップ型回転電機。
  9.  請求項2又は8に記載のアキシャルギャップ型回転電機であって、
     前記第1絶縁部材が、回転軸方向から挿入されることで、前記第1及び第2絶縁部材が嵌合するものであるアキシャルギャップ型回転電機。
  10.  請求項1に記載のアキシャルギャップ型回転電機であって、
     前記第1絶縁部材の径方向両端部と、前記第2絶縁部材の径方向両端部との夫々が、互いに係合する係止部を有するものであるアキシャルギャップ型回転電機。
  11.  請求項1に記載のアキシャルギャップ型回転電機であって、
     前記第1絶電部材が、前記回転方向幅が大となる側の外周面と接触する面に、回転軸方向に延伸する溝を有するものであるアキシャルギャップ型回転電機。
  12.  請求項1、2又は10の何れか一項に記載のアキシャルギャップ型回転電機であって、
     前記鉄心の前記径方向断面が概略矩形形状であるアキシャルギャップ型回転電機。
  13.  請求項1、2又は10の何れか一項に記載のアキシャルギャップ型回転電機であって、
     前記鉄心の前記径方向断面が、概略台形形状であるアキシャルギャップ型回転電機。
  14.  請求項1、2又は10の何れか一項に記載のアキシャルギャップ型回転電機であって、
     前記鉄心が、積層鉄心であるアキシャルギャップ型回転電機。
  15.  請求項1、2又は10の何れか一項に記載のアキシャルギャップ型回転電機であって、
     前記鉄心が、径方向に鋼板片を積層した積層鉄心であるアキシャルギャップ型回転電機。
  16.  軸心側から外周側に向かって回転方向幅が大となる径方向断面の形状を有する概略柱体からなる鉄心の外周形状と概略同一の形状の内筒部と、前記鉄心の外周側に配置するコイルを巻き回す該筒部とを有する絶縁部材であって、
     前記回転方向幅が大となる側の外周面と接触する第1絶縁部材と、
     前記第1絶縁部材が接触する外周面を除いた前記鉄心の外周部分と接触する第2絶縁部材とを有し、
     前記第2絶縁部材の径方向両端部と、前記第1絶縁部材の回転方向両端部とが接触してなるものである絶縁部材。
     
PCT/JP2015/069866 2014-11-05 2015-07-10 アキシャルギャップ型回転電機及び絶縁部材 WO2016072113A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016557465A JP6462714B2 (ja) 2014-11-05 2015-07-10 アキシャルギャップ型回転電機及び絶縁部材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014224849 2014-11-05
JP2014-224849 2014-11-05

Publications (1)

Publication Number Publication Date
WO2016072113A1 true WO2016072113A1 (ja) 2016-05-12

Family

ID=55908846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069866 WO2016072113A1 (ja) 2014-11-05 2015-07-10 アキシャルギャップ型回転電機及び絶縁部材

Country Status (3)

Country Link
JP (1) JP6462714B2 (ja)
TW (1) TWI591935B (ja)
WO (1) WO2016072113A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230275476A1 (en) * 2022-02-28 2023-08-31 GM Global Technology Operations LLC Axial flux electric machine including hybrid stator core with soft magnetic composite (smc) components and laminate component having locking mechanism to secure the smc components

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6852799B2 (ja) * 2017-09-29 2021-03-31 日立金属株式会社 ラジアルギャップ型回転電機及びその製造方法、回転電機用ティース片の製造装置、回転電機用ティース部材の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005348547A (ja) * 2004-06-04 2005-12-15 Nissan Motor Co Ltd アキシャルギャップ型回転電機のインシュレータ
JP2010088142A (ja) * 2008-09-29 2010-04-15 Daikin Ind Ltd インシュレータ及び電機子コア
JP2011055626A (ja) * 2009-09-01 2011-03-17 Nissan Motor Co Ltd 回転電機及びステータ
JP2013176216A (ja) * 2012-02-24 2013-09-05 Nissan Motor Co Ltd ステーター

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005348547A (ja) * 2004-06-04 2005-12-15 Nissan Motor Co Ltd アキシャルギャップ型回転電機のインシュレータ
JP2010088142A (ja) * 2008-09-29 2010-04-15 Daikin Ind Ltd インシュレータ及び電機子コア
JP2011055626A (ja) * 2009-09-01 2011-03-17 Nissan Motor Co Ltd 回転電機及びステータ
JP2013176216A (ja) * 2012-02-24 2013-09-05 Nissan Motor Co Ltd ステーター

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230275476A1 (en) * 2022-02-28 2023-08-31 GM Global Technology Operations LLC Axial flux electric machine including hybrid stator core with soft magnetic composite (smc) components and laminate component having locking mechanism to secure the smc components

Also Published As

Publication number Publication date
TWI591935B (zh) 2017-07-11
JP6462714B2 (ja) 2019-01-30
JPWO2016072113A1 (ja) 2017-10-19
TW201618428A (zh) 2016-05-16

Similar Documents

Publication Publication Date Title
JP6294469B2 (ja) アキシャルエアギャップ型回転電機
JP6294471B2 (ja) アキシャルエアギャップ型回転電機及び回転電機用ボビン
US10424982B2 (en) Inner rotor type electric motor
EP1865587B1 (en) Magnetic powder metal composite core for electrical machines
WO2017159858A1 (ja) 電動機用ロータ、およびブラシレスモータ
JP5656719B2 (ja) 永久磁石型回転電機及び永久磁石型回転電機の製造方法
CN211790971U (zh) 用于永磁电机的永磁体模块、永磁电机及风力涡轮机
WO2019077983A1 (ja) アキシャルギャップ型回転電機
JP2020103039A (ja) アキシャルエアギャップ型電動機
JP2011147200A (ja) モータの電機子
JP6462714B2 (ja) アキシャルギャップ型回転電機及び絶縁部材
EP3425773A1 (en) Axial gap type rotating electric machine and rotating electric machine stator bobbin
JP6325291B2 (ja) Srモータのステータ、及びこのステータを備えたsrモータ
JP6375370B2 (ja) アキシャルエアギャップ型回転電機
WO2018207897A1 (ja) 多相クローポールモータと該多相クローポールモータを構成する固定子
JP2008022593A (ja) 電動モータ
JP6285019B2 (ja) アキシャルギャップ型回転電機
JP2014068473A (ja) 回転電機
JP2017189019A (ja) アキシャルギャップ型回転電機
JP5968258B2 (ja) 電機子鉄心、電機子、回転電機、及び電機子の製造方法
JP2011045197A (ja) 永久磁石型回転電機及び永久磁石型回転電機の製造方法
CN113812063A (zh) 同步电动机
JP5476699B2 (ja) 発電機用固定子
WO2015162825A1 (ja) アキシャルエアギャップ型回転電機及び回転電機用ボビン
JP2019004552A (ja) 回転電気機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856706

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557465

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856706

Country of ref document: EP

Kind code of ref document: A1