WO2016071648A2 - Dispositif de production et de traitement d'un flux gazeux a travers un volume de liquide, installation et procédé mettant en oeuvre ce dispositif - Google Patents

Dispositif de production et de traitement d'un flux gazeux a travers un volume de liquide, installation et procédé mettant en oeuvre ce dispositif Download PDF

Info

Publication number
WO2016071648A2
WO2016071648A2 PCT/FR2015/053001 FR2015053001W WO2016071648A2 WO 2016071648 A2 WO2016071648 A2 WO 2016071648A2 FR 2015053001 W FR2015053001 W FR 2015053001W WO 2016071648 A2 WO2016071648 A2 WO 2016071648A2
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
enclosure
volume
flow
gas stream
Prior art date
Application number
PCT/FR2015/053001
Other languages
English (en)
Other versions
WO2016071648A3 (fr
Inventor
Jaouad Zemmouri
Original Assignee
Starklab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1460750A external-priority patent/FR3028304B1/fr
Priority claimed from FR1460748A external-priority patent/FR3028189B1/fr
Priority to EP15801897.8A priority Critical patent/EP3215794B1/fr
Priority to SG11201703703SA priority patent/SG11201703703SA/en
Priority to US15/524,862 priority patent/US10946326B2/en
Priority to CN201580070244.XA priority patent/CN107106971B/zh
Priority to JP2017524340A priority patent/JP2017534832A/ja
Priority to CA2966093A priority patent/CA2966093C/fr
Application filed by Starklab filed Critical Starklab
Priority to KR1020177014901A priority patent/KR20170084132A/ko
Priority to BR112017009345-6A priority patent/BR112017009345B1/pt
Priority to RU2017118195A priority patent/RU2707462C2/ru
Priority to AU2015341607A priority patent/AU2015341607A1/en
Publication of WO2016071648A2 publication Critical patent/WO2016071648A2/fr
Publication of WO2016071648A3 publication Critical patent/WO2016071648A3/fr
Priority to ZA2017/03113A priority patent/ZA201703113B/en
Priority to US17/181,028 priority patent/US11452965B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/02Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour over or through a liquid bath
    • B01D47/021Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour over or through a liquid bath by bubbling the gas through a liquid bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/02Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour over or through a liquid bath
    • B01D47/024Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour over or through a liquid bath by impinging the gas to be cleaned essentially in a perpendicular direction onto the liquid surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/263Drying gases or vapours by absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/117Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using wet filtering
    • F24F8/133Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using wet filtering by direct contact with liquid, e.g. with sprayed liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/107Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/06Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/117Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using wet filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/06Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour
    • F28C3/08Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour with change of state, e.g. absorption, evaporation, condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to the production and treatment of an air flow through a volume of liquid. It finds its application in various fields such as, for example, and non-exhaustively, the recovery of calories in a gas stream, and in particular in a flow of hot air or in industrial fumes, the production of a gas stream which is heated or cooled by passing through said volume of liquid, producing a gaseous flow whose temperature is controlled and / or whose absolute humidity is controlled, humidifying or dehumidifying a gaseous flow, depollution or filtering a gas flow, heating or air conditioning a local or industrial buildings, tertiary, or domestic, controlling the humidity of a local or industrial buildings, tertiary, or domestic.
  • the gas stream produced can also be used to cool, heat, humidify or dehumidify any type of object or surface.
  • a liquid such as for example water
  • the use of a liquid, such as for example water, for treating, and especially for heating or cooling a gas flow by heat exchange between the liquid and the gas stream, with a direct contact of the gas stream and liquid, is an old technique, which has the advantage of being environmentally friendly, because it avoids including the use of refrigerants coolants type fluids.
  • the heating or cooling of the gas flow, and in particular of an air flow may for example have the purpose of producing a gaseous flow having a controlled temperature and / or having the objective of producing a gaseous flow having a controlled absolute humidity.
  • a first known solution to implement this technique is to pass the gas stream through a curtain of fines droplets of the liquid or through a gas-permeable exchange surface containing this liquid, such as for example a textile material soaked in water or to circulate the gas flow in contact with humidified plates.
  • the main drawback of this type of solution lies in the very low energy efficiency of the heat exchange between the liquid and the gas flow, and in the low air flow rates that can be obtained.
  • a second known solution is to pass the gas stream, and in particular the air flow directly through a volume of liquid contained in an enclosure, by injecting the air flow into the liquid volume, below the surface. said volume of liquid.
  • This type of solution is described, for example, in the international patent application WO 2006/138287, in the US Pat. No. 4,697,735 (FIG. 3), and in the German patent application DE 101 53 452.
  • This second technical solution presents the advantage of making it possible to achieve an energy efficiency of the thermal exchanges between the liquid and the gas flow higher than the first technical solution.
  • the solutions described in these publications do not make it possible to work with large gas flow rates, and do not allow fast processing of large gas volumes, and the energy efficiency of heat exchanges between the liquid and the gas flow remain low. More particularly, the solutions described in these publications are not suitable, for example, for efficiently and quickly cooling high temperature gas flows, such as, for example, industrial fumes, or for efficiently and quickly recovering calories in a gas stream.
  • An object of the invention is to propose a new technical solution that makes it possible to improve the production and the treatment of a gas flow through a volume of liquid contained in an enclosure, and in particular that makes it possible to effectively treat a gas flow with large flows.
  • the invention thus has for its first object a device for producing and treating a gas flow, said device comprising an enclosure, on the one hand, the lower part of which is immersed in a reserve of liquid open at the top and comprises at least a liquid inlet opening, which makes it possible to communicate the lower part of the chamber with the liquid reserve, so that the submerged lower part of the chamber contains a volume of this liquid, and secondly which comprises at least one discharge opening of a gas flow, positioned above the surface of the liquid volume contained in the enclosure; the device further comprises means for producing and injecting a gaseous flow comprising at least one injection conduit, a lower part of which is immersed in the volume of liquid contained in the submerged lower part of the enclosure, and extends in the upper part inside the enclosure outside said volume of liquid; said injection pipe comprises, in its submerged lower part, at least one discharge opening positioned below the surface of said volume of liquid; said means for producing and injecting a gaseous stream comprise a compressor connected to the non-submerged part of the injection duct or to the evacuation opening
  • the invention also has for its second object a device for producing and treating a gas flow, said device comprising an enclosure, on the one hand, the lower part of which is immersed in a reserve of liquid and comprises at least one opening of liquid inlet, which makes it possible to communicate the lower part of the chamber with the liquid reserve, so that the submerged lower part of the chamber contains a volume of this liquid, and secondly which comprises at least an evacuation opening of a gas flow, positioned above the surface of the liquid volume contained in the enclosure; the device further comprises means for producing and injecting a gaseous flow comprising at least one injection conduit, a lower part of which is immersed in the volume of liquid contained in the submerged lower part of the enclosure, and extends in the upper part inside the enclosure outside said volume of liquid; said injection pipe comprises, in its submerged lower part, at least one discharge opening positioned below the surface of said volume of liquid; said means for producing and injecting a gas stream comprise a compressor connected to the non-submerged portion of the injection duct, and in operation to create and introduce an incoming
  • the third object of the invention is also a device for producing and treating a gas flow, said device comprising an enclosure, on the one hand, the lower part of which is immersed in a reserve of liquid and comprises at least one opening of liquid inlet, which makes it possible to communicate the lower part of the chamber with the liquid reserve, so that the submerged lower part of the chamber contains a volume of this liquid, and secondly which comprises at least an evacuation opening of a gas flow, positioned above the surface of the liquid volume contained in the enclosure; the device further comprises means for producing and injecting a gaseous flow comprising at least one injection conduit, a lower part of which is immersed in the volume of liquid contained in the submerged lower part of the enclosure, and extends in the upper part inside the enclosure outside said volume of liquid; said injection pipe comprises, in its submerged lower part, at least one discharge opening positioned below the surface of said volume of liquid; said means for producing and injecting a gaseous flow make it possible in operation to create and introduce a gaseous flow entering, coming from outside the chamber, into the non
  • Another object of the invention is an installation allowing the recovery of calories in an incoming gas flow, said installation comprising one or other of the above-mentioned devices in which the temperature of the liquid is lower than the temperature of the gas stream entering the atmosphere. enclosure and an energy recovery system for recovering at least a portion of the calories captured in the liquid of the reserve of said device.
  • the invention also relates to an installation comprising at least two upstream and downstream heat recovery plants in a gaseous flow described above, which are cascaded so that the gaseous flow leaving the device of the upstream installation is at least in part, and preferably in its entirety, used as the incoming gas stream of the device of the downstream installation.
  • Another subject of the invention is a method for heating and / or cooling and / or humidifying and / or dehumidifying a room, by means of at least one of the above-mentioned devices, which is arranged in such a way that the Incoming gas stream that is introduced into the chamber of the device is an air flow, and the air flow leaving the device is introduced inside the room.
  • Another subject of the invention is a method for producing a gas stream, and in particular an air stream, from an incoming gas stream, and in particular an incoming air stream, in which one uses a plant above, and is used for heating at least a portion of the calories captured in the liquid pool.
  • Another subject of the invention is a method of recovering calories from the air of a room or dehumidifying a room with recovery of calories, by means of a plant mentioned above, in which the incoming gas stream which is introduced into the enclosure of the device of the installation is a flow of air coming at least partly from inside the premises.
  • Another subject of the invention is a method of creating a buffer zone inside a room in which the humidity and / or the dust content is controlled, characterized in that a device referred to above is used which is arranged in such a way that the flow of gas entering the enclosure of the device is a flow of air coming at least partly from the outside of the room, and in which the airflow leaving the chamber of the device is introduced at least partly in the room.
  • Another subject of the invention is a process for filtering and / or depolluting a gas flow, and in particular an air flow, by means of at least one of the above-mentioned devices, or of an installation referred to above, of such such that an incoming gas stream containing particles and / or pollutants is introduced into the chamber of the device and at least a part of these particles and / or pollutants is captured in the liquid of the device reserve.
  • the incoming gas stream contains industrial fumes, including high temperature industrial fumes.
  • the invention aims to propose a new technical solution for efficiently recovering calories in a gas stream and implementing large gas flow rates.
  • the invention thus has for another object an installation for recovering calories in an incoming gas stream and comprising a device for producing and treating said incoming gas stream (F) and a system for recovering energy;
  • said device comprises an enclosure, which contains a volume of liquid whose temperature is lower than the temperature of the gaseous flow entering the enclosure, and which comprises at least one discharge opening of a gaseous flow positioned above the surface of said liquid volume;
  • said device further comprises means for producing and injecting a gaseous flow which, in operation, make it possible to create and introduce the incoming gaseous flow from the outside of the chamber into said volume of contained liquid in the enclosure, below the surface of said volume of liquid, and in such a way that an outgoing gaseous flow treated by direct contact with said volume of liquid rises inside the enclosure and is evacuated out said enclosure passing through the evacuation opening of the enclosure;
  • said energy recovery system makes it possible to recover at least a portion of the calories captured in the liquid;
  • the means for producing and injecting a gas flow comprise at least one injection duct,
  • the invention also has for another object an installation for recovering calories in an incoming gas stream and comprising a device for producing and treating said incoming gas stream and an energy recovery system;
  • said device comprises an enclosure, which contains a volume of liquid whose temperature is lower than the temperature of the gaseous flow entering the chamber, and which comprises at least one discharge opening of a gaseous flow positioned above the surface of said liquid volume;
  • said device further comprises means for producing and injecting a gaseous flow which, in operation, make it possible to create and introduce the incoming gaseous flow from the outside of the chamber into said volume of contained liquid in the enclosure, below the surface of said volume of liquid, and such that an outgoing gas stream, treated by direct contact with said volume of liquid rises inside the enclosure and is discharged outside said chamber through the opening of evacuation of the enclosure;
  • the enclosure comprises one or more baffles, which make it possible to circulate the gaseous flow leaving the volume of liquid to the discharge opening, by making it undergo one
  • the invention also relates to: an installation comprising at least two upstream and downstream gas recovery plants in a gas stream which have been described above, and which are cascaded, so that the gas flow leaving the device of the upstream installation is at least partly, and preferably in its entirety, used as the incoming gas stream of the device of the downstream installation.
  • a method of creating a buffer zone inside a room in which the humidity and / or the dust content is controlled characterized in that a plant referred to above is used, the device of the installation being arranged in such a way that the flow of gas entering the enclosure of the device is a flow of air from at least part of the outside of the room, and the air flow out of the enclosure of the device is introduced at least partly in the room.
  • FIG. 1 schematically shows a first embodiment of a device of the invention for the production and treatment of a gas flow through a volume of liquid.
  • FIG. 2 schematically shows a second embodiment of a device of the invention for the production and treatment of a gas flow through a volume of liquid.
  • FIG. 3 schematically shows a third embodiment of a part of a device of the invention for the production and treatment of a gas stream through a volume of liquid.
  • FIG. 4 schematically represents a fourth variant embodiment of a part of a device of the invention allowing the production and the treatment of a gas flow through a volume of liquid.
  • FIG. 5 schematically shows a first variant of an installation implementing the device of Figure 1, and for recovering calories in a gas stream.
  • FIG. 6 schematically shows a second variant of an installation implementing the device of Figure 1, and for recovering calories in a gas stream.
  • FIG. 7 schematically represents a third variant of an installation implementing the device of FIG.
  • FIG. 8 schematically shows a fourth variant of an installation implementing two devices of Figure 1 in cascade, and for recovering calories in a gas stream.
  • FIG. 9 schematically shows a fifth variant of an installation implementing the device of Figure 1, and for recovering calories in a gas stream.
  • FIG. 10 schematically shows a variant of an installation implementing the device of Figure 1, and to create a buffer zone whose humidity or dust content is controlled.
  • the device 1 for producing and treating a gas stream comprises an enclosure 10, a reserve 1 1 of liquid L open at the top, and for example a reserve of water, and means 12 for producing and injecting a gas flow F entering a volume V of liquid contained in the chamber 10.
  • the invention is not limited to the use of water as liquid L, but extends to any other type of liquid.
  • a liquid L whose solidification temperature at atmospheric pressure is less than 0 ° C, such as for example water containing additives, such as salts, carbohydrates, glycol .
  • additives such as salts, carbohydrates, glycol .
  • oil can also be interesting to use oil as liquid L.
  • the enclosure 10 comprises an upper wall 10a and a side wall 10b defining an internal chamber 10c, and has at its lower end a liquid inlet opening 10d of large section.
  • this opening 10d of large section could be replaced by several liquid inlet openings of smaller section.
  • the lower part 10e of the chamber 10 is immersed in the volume of liquid L contained in the reserve 1 1, without touching the bottom 1 1a of the liquid reserve 1 1.
  • the liquid inlet opening 10d makes it possible to communicate the lower part 10e of the enclosure 10 with the liquid reserve 11, so that the submerged lower part 10e of the enclosure contains a part of this liquid L in the form of a volume V of liquid.
  • the enclosure 10 also comprises at least one discharge opening 10g of a gaseous flow, which is positioned above the surface S of the volume V of liquid contained in the enclosure 10, and which in the illustrated example is arranged near the upper wall 10a of the enclosure 10.
  • the means 12 for producing and injecting a gas flow F comprise at least one injection duct 120, of which a lower part
  • this injection duct 120 is constituted by a vertical rectilinear tube, which passes through the upper wall 10a of the enclosure 10, and which is open at its two upper ends and lower.
  • This injection duct 120 thus has in its submerged lower part 120a at least one discharge opening 120c positioned below the surface S of said liquid volume V, and above the level of the inlet opening of the liquid 10d of the submerged lower part 10e of the enclosure 10.
  • the immersion depth H1 of the injection conduit 120 in the liquid is less than the immersion depth H2 of the chamber in the reserve 1 1 of liquid, that is to say the height H2 of the volume V of liquid in the chamber 10.
  • the means 12 for producing and injecting a gas flow F further comprise aeraulic means 121, which in operation make it possible to create and introduce an incoming gas flow F coming from outside the enclosure 10 in the upper non-submerged portion 120b of the injection duct.
  • these ventilation means 121 more particularly comprise a gas compressor 121a, the output of which is connected to the upper inlet opening 120d of the injection duct 120 via a duct 121b, and whose input is connected to an intake manifold 121c communicating with the outside of the enclosure 10.
  • This compressor 121a makes it possible to create by suction a gas flow F, and to introduce this gaseous flow F under pressure into the injection duct 120 through the upper 120d amission opening of the injection duct 120.
  • the compressor 121 may be any known type of gas compressor for creating a gas flow (centrifugal fan, axial fan, pump, ).
  • the invention advantageously makes it possible to work with a gas flow rate at the outlet of the compressor 121a which can be large and in particular greater than 100m 3 / h, more particularly greater than 1000m 3 / h, and more particularly still in certain applications greater than 10000m 3 / h.
  • the gas flow F created by the compressor 121a is introduced under pressure into the injection pipe 120 through the upper inlet opening 120d of this pipe, passes through the discharge opening 120c of the submerged lower part of the injection conduit 120, and is introduced into said volume V of liquid contained in the submerged lower part 10e of the enclosure 10, below the surface S of said volume V of liquid, without modifying the external pressure above the liquid L of the reserve 1 1 outside the enclosure 10.
  • the external pressure above the liquid L of the reserve 1 1 outside the enclosure 10 is not modified and remains equal to the atmospheric pressure.
  • the gas flow F is introduced into said liquid volume V while being directed downwards.
  • the compressor 121a is selected so as to create a gas flow F with a pressure in the injection pipe 120, above the liquid, which is greater than the liquid column H1 in the submerged portion 120a of the injection pipe. 120, so that the gas can be discharged into the volume V of liquid outside the injection conduit 120.
  • the gas which is introduced into the volume of liquid V passes through the volume V of liquid up to the surface S of said liquid volume V, under the effect of the gas velocity and the pressure of Archimedes, and spring inside the enclosure 10 and outside the injection conduit 120 forming an outgoing gas stream F ', which has been treated by direct contact with said volume V of liquid.
  • This outgoing gas flow F ' goes up inside the enclosure 10, outside the injection conduit 120, and is discharged outside said enclosure 10 by passing through the evacuation opening 10g of the enclosure 10.
  • the immersion depths H1 and H2 are dimensioned, in particular with respect to the pressure of the gas in the injection pipe 120 above the liquid, so that all the gas, which is introduced into the volume V of liquid contained in the submerged lower part 10e of the chamber 10, back into the liquid volume V and spring in the chamber 10 above the liquid and outside the injection pipe 120, without that part of this gas passes through the lower inlet opening 10d of the enclosure 10, in the volume of liquid located outside the enclosure 10.
  • the temperature of the liquid volume V in the enclosure 10 is different from the temperature of the gas stream F before its introduction into the volume V of liquid, there occurs between the gas and the liquid heat exchange by sensible heat and latent heat.
  • the gas flow F ' is cooled. More particularly, the temperature of the outgoing gas flow F 'is substantially equal to the Tuquide temperature of the volume of liquid. It follows at the same time that the gas flow F 'leaving the device 1 has been dehumidified with respect to the incoming gas flow F, the absolute humidity (weight of water per volume of air) in the gas flow F 'leaving being lower than the absolute humidity of the incoming gas flow F.
  • the outgoing gas flow F ' is heated. It follows at the same time that the flow of gas F 'leaving the device 1 has been humidified with respect to the incoming gas flow F, the absolute humidity (weight of water per volume of air) in the outgoing gas flow F' being greater than the absolute humidity of the incoming gas flow F.
  • the immersion depth H1 of the injection duct 120 must be large enough for the treatment of the gas flow by passage through the liquid volume V, and more particularly for the possible heat transfer between the liquid and the liquid.
  • gas injected into the liquid volume V is effective and sufficient, and allows if necessary the flow of gas F 'cooled or heated by the liquid to be at a temperature close to and preferably substantially identical to that of the liquid.
  • this immersion depth H1 should not be too great to avoid over-sizing the compressor 121 a.
  • the depth H1 is thus preferably between 20 mm and 200 mm, and is preferably between 30 mm and 50 mm. The invention is however not limited to these particular values.
  • the height H2 of the liquid volume V should preferably not be too great, and will preferably be less than 500 mm, and more particularly between 40 mm and 500 mm.
  • the invention is however not limited to these particular values.
  • the device 1 of the invention can be used to filter or clean the incoming gas flow F by passing through a volume of liquid V.
  • the temperature of the liquid volume can be higher or lower at the temperature of the incoming gas flow F, or be substantially equal to the temperature of the incoming gas flow F.
  • the device is outputted. 1 a stream of filtered out gas or filtered out, which has not been heated or cooled, but which is substantially at the same temperature as the incoming gas flow F.
  • FIG. 2 shows another variant embodiment of a device Y of the invention in which the injection conduit 120 is delimited between a vertical wall P internal to the enclosure 10 and by a part of the wall 10c side of the enclosure 10.
  • FIG. 3 shows another alternative embodiment of a device 1 "of the invention, only the enclosure 10 and the compressor 121a being shown in this figure, the liquid reserve 1 1 not being
  • the side wall 10c of the enclosure 10 is of tubular shape, but could in the context of the invention have a completely different geometry.
  • the enclosure 10 comprises in its upper part 10f which is not intended to be immersed in a liquid, a plurality of baffle-function plates 14, 14 ', 14 "These plates 14, 14', 14" are fixed inside the enclosure 10 , one above the other, with a space between plates 14, so as to form several superimposed chambers E1, E2, E3 and E4.
  • the first chamber E1 is delimited by the surface of the volume of liquid V contained inside the enclosure and the bottom plate 14.
  • the second chamber E2 is delimited by the lower plate 14 and the intermediate plate 14 '
  • the third chamber E3 is delimited by the intermediate plate 14 'and the upper plate 14 ".
  • the fourth chamber E4 is delimited by the upper plate 14 "and the upper wall 10a of the enclosure 10.
  • the device 1 may comprise a single plate 14 defining two or more chambers of three plates defining more than four chambers.
  • Each plate 14, 14, 14 " has a through opening 140 having substantially the same section as the injection conduit 120. These through openings 140 are aligned vertically, and the injection conduit 120 is passed through these openings 140, the conduit 120 being in sealing contact over its entire outer periphery with each plate 14, 14 ', 14 "at each opening 140 for passage of the tube.
  • Each plate 14, 14 ', 14 also comprises at least one through opening 141 making it possible to communicate two adjacent chambers with one another, and thus allowing the passage of a gas flow F' leaving the volume of liquid V from a chamber to the other from the lower chamber E1 to the discharge opening 101.
  • openings 141 are offset vertically, some by relative to the others and are not aligned with the air evacuation opening 101 of the enclosure 10, so as to make several changes of direction to said air flow F '.
  • the air flow F 'leaving the volume of liquid V rises inside the enclosure 10 by circulating through the baffles 14, 14 ', 14 ", and undergoing several changes in successive directions, then is evacuated outside the chamber 10 through the discharge opening 10g.
  • FIG. 4 shows another variant that differs from that of FIG. 3 in that the air compressor 121a is connected to the air evacuation opening 10g of the enclosure 10, and creates the incoming flow of gas F by suction through the inlet opening 120d of the injection conduit 120, and no longer by blowing.
  • FIG. 5 shows an installation for recovering calories in a gas flow F, which implements the device 1 of FIG.
  • the reserve 1 1 of liquid L is for example a water reserve, and is optionally equipped with a water treatment unit 1 10 which allows, for example, to maintain the pH water to a controlled value, and for example a neutral pH and / or filter water L to remove impurities or pollutants.
  • the installation is also equipped with a system 2, of the heat pump type, which allows the recovery of a portion of the calories of the liquid L of the reserve 1 1.
  • This calorific recovery system 2 comprises more particularly a heat transfer fluid circulating in a closed circuit 20.
  • Said closed circuit 20 comprises an evaporator 21 immersed in the liquid L of the reserve 1 1, a condenser 22 positioned outside the reserve 1 1 of liquid, a compressor 23 interposed between the outlet of the evaporator 21 and the inlet of the condenser 22, an expander 24 interposed between the outlet of the condenser 22 and the inlet of the evaporator 21.
  • a hot and / or wet gas stream F is created by the compressor 121a by suction through the intake manifold 120c.
  • This gas flow F is created by suction for example from the surrounding air inside or outside a building, or so as to capture hot and / or humid fumes produced by a chimney or apparatus , and in particular by an industrial chimney.
  • the temperature T ii of the liquid L, and for example water, in the reserve 1 1 is lower than the initial temperature of the flow of gas F.
  • the gas As it passes through the volume of liquid V contained in the enclosure 10 of the device, the gas is cooled and dehumidified, the gas F 'leaving the device 1 being at a temperature lower than that of the incoming gas flow F and the absolute humidity (weight of water per volume of air) in the flow outgoing gas F 'being lower than the absolute humidity of the incoming gas flow F.
  • This outgoing gas flow F ' is for example redirected to the outside of a building or to an area (indoor or outdoor) where cold and less moisture are needed.
  • the gas yields calories to the volume of liquid V, thanks firstly to the sensible heat related to the temperature difference of the gas F and the liquid 1 1, and secondly to the latent heat related to the water vapor which is contained in the gas F and which condenses in the liquid 1 1.
  • the greater the temperature difference between the liquid 1 1 and the incoming gas flow F is important, and the more calories are recovered in the liquid 1 1.
  • These calories are captured by and are distributed in the reserve 1 1 of liquid of greater volume.
  • the increase in temperature of the liquid L of the resulting reserve 1 1 makes it possible to heat the coolant which circulates in the vapor state in the evaporator 21.
  • All or part of the calories supplied to the liquid L of the reserve 1 1 by the incoming gas flow F are recovered by heating the coolant in the evaporator 21, which contributes to lowering the temperature of the reserve 1 1 of liquid, and are transferred to the condenser 22 at which the heat transfer fluid condenses in the liquid state and returns heat.
  • the reserve 1 1 of liquid L advantageously makes it possible to capture at least a portion of these pollutants or particles, and to produce an outgoing flow F 'cleaner.
  • FIG. 5 can more particularly be used to treat high temperature industrial fumes (for example at 1000.degree. C.) by cooling them below 100.degree. C., and by depolluting them, and recovering a large part of the calories. of these industrial fumes via the reserve 1 1 of liquid and the energy recovery system 2.
  • high temperature industrial fumes for example at 1000.degree. C.
  • FIG. 6 shows an energy recovery installation, which differs from FIG. 5, in that the energy recovery system 2 'directly uses the liquid L of the reserve 1 1 as a heat transfer fluid, and allows supplying in closed loop a storage tank 25 (for example an additional liquid reserve) or a device 25 (for example heat pump or equivalent) for recovering by heat exchange the calories stored in the liquid 1 1.
  • the energy recovery system 2 'thus comprises a closed circuit in which circulates a portion of the liquid L of the coolant function reserve.
  • FIG. 7 shows an energy recovery installation, which differs from FIG. 5 by the implementation in the energy recovery system 2 "of an intermediate exchanger 26 in which a closed loop circulates A part 26a of the intermediate exchanger 26 is immersed in the liquid 1 1, and a portion 26b is located outside the liquid L and allows a heat transfer with the heat transfer fluid in the evaporator 21 outside of the the reserve 1 1 of liquid L.
  • Example 1 Recycling outside the stale air inside a dwelling or a room with energy recovery
  • the air inside the house or room contains about 60% relative humidity and is at a temperature of about 20 ° C.
  • the reserve 1 1 contains water at a temperature of about 3 ° C.
  • the energy recovered in water by m 3 of air is:
  • Sensitive heat about 20KJ / m 3
  • Example 2 Energy recovery in air containing about 80% relative humidity and at a temperature of about 50 ° C.
  • the reserve 11 contains water at a temperature of about 6 ° C.
  • the energy recovered in water by m 3 of air is:
  • Sensitive heat about 54KJ / m 3
  • FIG. 8 shows a multi-stage installation which comprises two installations 11, 12 which are similar to the installation of FIG. 5 and which are cascaded, the gas flow F 'coming out of the upstream installation 11 being used as the incoming gas flow F of the downstream installation 12.
  • This multi-stage installation of FIG. 8 is particularly suitable for cooling and recovering energy in several successive stages in high temperature gas flows, such as, for example, industrial fumes.
  • FIG. 9 shows an energy recovery installation and, where appropriate, the dehumidification of the air inside a room or a dwelling 3, which operates in a closed circuit, the flow of outgoing air F 'cooled, and if necessary dehumidified, being reinjected into said room 3.
  • the air that is reintroduced into the room is preheated by heat exchange with the condenser 22 of the energy recovery system 2
  • Another part of the energy transferred to the condenser 22 can be recovered elsewhere (arrow A).
  • the room 3 may for example be an indoor pool.
  • the room 3 can also be any type of premises containing men or animals, the installation thus allowing the recovery of energy from human or animal activities.
  • FIG. 10 shows an energy recovery installation which makes it possible to create an inner buffer zone 4 in which the humidity or the concentration of dust in the air is controlled.
  • the outgoing air flow F ' which has been dehumidified and / or filtered by passing through the volume V of water is heated by a heat treatment unit 5 before its introduction into the inner buffer zone 4.
  • the energy recovery system 2 is optional.
  • the discharge opening 120c of the injection conduit 120 is positioned above the level of the liquid inlet opening 10d of the submerged lower portion 10e of the enclosure .
  • the discharge opening 120c of the injection conduit 120 may be positioned at or below the level of the opening liquid inlet 10d of the submerged lower part 10e of the enclosure 10.
  • the liquid level L in the chamber 10 is the same in the injection pipe 120 or outside the injection pipe 120.
  • the discharge opening 120c of the injection conduit 120 can be positioned at the same level or below the level of the liquid inlet opening 10d of the submerged lower portion 10e of the enclosure 10.
  • the reserve 1 1 is formed by an open tank in the upper part.
  • the tank or equivalent forming the reserve 1 1 can be closed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Gas Separation By Absorption (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

Le dispositif comporte une enceinte (10), d'une part dont la partie inférieure (10e) est plongée dans une réserve (11) de liquide (L)ouverte en partie supérieure, de telle sorte que la partie inférieure immergée (10e) de l'enceinte contient un volume (V) de ce liquide, et d'autre part qui comporte au moins une ouverture d'évacuation (10g) d'un flux gazeux, positionnée au-dessus de la surface (S) du volume liquide (V) contenu dans l'enceinte. Le dispositif comporte en outre des moyens de production et d'injection d'un flux gazeux (F) comportant au moins un conduit d'injection (120), dont une partie inférieure (120a)est plongée dans le volume (V) de liquide et se prolonge en partie supérieure à l'intérieur de l'enceinte (10) en dehors dudit volume (V) de liquide, ledit conduit d'injection (120) comportant, dans sa partie inférieure immergée, au moins une ouverture d'évacuation (120c)positionnée au-dessous de la surface (S) dudit volume (V) de liquide. Lesdits moyens de production et d'injection d'un flux gazeux (F) comportent un compresseur (121a) raccordé à la partie (120b) non immergée du conduit d'injection (120) ou à l'ouverture d'évacuation (10g) de l'enceinte (10), et permettent en fonctionnement de créer et d'introduire un flux gazeux (F) entrant, en provenance de l'extérieur de l'enceinte(10), dans la partie (120b)non immergée du conduit d'injection (120), avec un débit d'au moins 100m3/h, et de telle sorte que ledit flux gazeux (F) entrant passe à travers l'ouverture d'évacuation (120c)de la partie inférieure immergée du conduit d'injection (120), et est introduit dans ledit volume (V) de liquide contenu dans la partie inférieure immergée de l'enceinte, au-dessous de la surface (S) dudit volume (V) de liquide, etqu'un flux gazeux (F') sortant, traité par contact direct avec ledit volume de liquide(V) remonte à l'intérieur de l'enceinte (10) en dehors du conduit d'injection (120) et est évacué en dehors de ladite enceinte (10) en passant à travers l'ouverture d'évacuation (10g) de l'enceinte.

Description

DISPOSITIF DE PRODUCTION ET DE TRAITEMENT D'UN FLUX GAZEUX A TRAVERS UN VOLUME DE LIQUIDE, INSTALLATION ET
PROCEDE METTANT EN OEUVRE CE DISPOSITIF
Domaine technique
La présente invention concerne la production et le traitement d'un flux d'air à travers un volume de liquide. Elle trouve son application dans des domaines variés tels que par exemple, et de manière non exhaustive, la récupération de calories dans un flux gazeux, et notamment dans un flux d'air chaud ou dans des fumées industrielles, la production d'un flux gazeux qui est chauffé ou refroidi en traversant ledit volume de liquide, la production d'un flux gazeux dont la température est contrôlée et/ou dont l'humidité absolue est contrôlée, l'humidification ou la déshumidification d'un flux gazeux, la dépollution ou le filtrage d'un flux gazeux, le chauffage ou la climatisation d'un local ou de bâtiments industriels, tertiaires, ou domestiques, le contrôle de l'hygrométrie d'un local ou de bâtiments industriels, tertiaires, ou domestiques. Le flux gazeux produit peut également être utilisé pour refroidir, chauffer, humidifier ou déshumidifier tout type d'objet ou de surface.
Art antérieur
L'utilisation d'un liquide, tel que par exemple de l'eau, pour traiter, et notamment pour chauffer ou refroidir un flux gazeux par échange thermique entre le liquide et le flux gazeux, avec une mise en contact direct du flux gazeux et du liquide, est une technique ancienne, qui présente l'avantage d'être écologique, car elle évite notamment la mise en œuvre de fluides caloporteurs de type fluides frigorigènes. Le chauffage ou refroidissement du flux gazeux, et notamment d'un flux d'air peut par exemple avoir pour objectif de produire un flux gazeux ayant une température contrôlée et/ou avoir pour objectif de produire un flux gazeux ayant une humidité absolue contrôlée.
Une première solution connue pour mettre en œuvre cette technique consiste à faire passer le flux gazeux à travers un rideau de fines gouttelettes du liquide ou à travers une surface d'échange perméable au gaz et contenant ce liquide, tel que par exemple un matériau textile imbibé d'eau ou à faire circuler le flux gazeux au contact de plaques humidifiées. Le principal inconvénient de ce type de solution réside dans le très faible rendement énergétique de l'échange thermique entre le liquide et le flux gazeux, et dans les faibles débits d'air pouvant être obtenus.
Une deuxième solution connue consiste à faire passer le flux gazeux, et notamment le flux d'air directement à travers un volume de liquide contenu dans une enceinte, en injectant le flux d'air dans le volume de liquide, au-dessous de la surface dudit volume de liquide. Ce type de solution est décrit par exemple dans la demande de brevet internationale WO 2006/138287, dans le brevet américain US 4 697 735 (figure 3), et dans la demande de brevet allemand DE 101 53 452. Cette deuxième solution technique présente l'avantage de permettre d'atteindre un rendement énergétique des échanges thermiques entre le liquide et le flux gazeux plus élevé que la première solution technique. Néanmoins les solutions décrites dans ces publications ne permettent de travailler avec des débits de gaz importants, et ne permettent pas de traiter rapidement des volumes de gaz importants, et le rendement énergétique des échanges thermiques entre le liquide et le flux gazeux restent faibles. Plus particulièrement les solutions décrites dans ces publications ne sont par exemple pas adaptées pour refroidir efficacement et rapidement des flux gazeux à haute température, tels que par exemple des fumées industrielles, ou pour récupérer efficacement et rapidement des calories dans un flux gazeux.
On a également proposé dans le brevet Américain US 5 908 491 un dispositif permettant de nettoyer l'air en le faisant passer dans un volume d'eau de manière à filtrer les poussières contenues dans l'air. Ce dispositif comporte une enceinte fermée, qui contient ledit volume d'eau, et qui est mise en dépression de manière à aspirer de l'air à l'extérieur et à créer par aspiration un flux d'air passant à travers le volume d'eau contenu dans l'enceinte. Cette solution ne permet pas de travailler avec des débits d'air importants. De plus, elle n'est pas utilisée, et n'est d'ailleurs pas adaptée, pour réaliser de manière efficace un transfert de calorie entre le flux d'air et le volume d'eau avec des débits d'air importants.
Objectif de l'invention
Un objectif de l'invention est de proposer une nouvelle solution technique qui permet d'améliorer la production et le traitement d'un flux gazeux à travers un volume de liquide contenu dans une enceinte, et notamment qui permet de traiter efficacement un flux gazeux avec des débits importants.
Résumé de l'invention
L'invention a ainsi pour premier objet un dispositif de production et de traitement d'un flux gazeux, ledit dispositif comportant une enceinte, d'une part dont la partie inférieure est plongée dans une réserve de liquide ouverte en partie supérieure et comporte au moins une ouverture d'admission de liquide, qui permet de faire communiquer la partie inférieure de l'enceinte avec la réserve de liquide, de telle sorte que la partie inférieure immergée de l'enceinte contient un volume de ce liquide, et d'autre part qui comporte au moins une ouverture d'évacuation d'un flux gazeux, positionnée au-dessus de la surface du volume liquide contenu dans l'enceinte ; le dispositif comporte en outre des moyens de production et d'injection d'un flux gazeux comportant au moins un conduit d'injection, dont une partie inférieure est plongée dans le volume de liquide contenu dans la partie inférieure immergée de l'enceinte, et se prolonge en partie supérieure à l'intérieur de l'enceinte en dehors dudit volume de liquide ; ledit conduit d'injection comporte, dans sa partie inférieure immergée, au moins une ouverture d'évacuation positionnée au-dessous de la surface dudit volume de liquide ; lesdits moyens de production et d'injection d'un flux gazeux comportent un compresseur raccordé à la partie non immergée du conduit d'injection ou à l'ouverture d'évacuation de l'enceinte, et permettent en fonctionnement de créer et d'introduire un flux gazeux entrant, en provenance de l'extérieur de l'enceinte, dans la partie non immergée du conduit d'injection, avec un débit d'au moins 100m3/h, et de telle sorte que ledit flux gazeux entrant passe à travers l'ouverture d'évacuation de la partie inférieure immergée du conduit d'injection, et est introduit dans ledit volume de liquide contenu dans la partie inférieure immergée de l'enceinte, au-dessous de la surface dudit volume de liquide, et qu'un flux gazeux sortant, traité par contact direct avec ledit volume de liquide remonte à l'intérieur de l'enceinte en dehors du conduit d'injection et est évacué en dehors de ladite enceinte en passant à travers l'ouverture d'évacuation de l'enceinte.
L'invention a également pour deuxième objet un dispositif de production et de traitement d'un flux gazeux, ledit dispositif comportant une enceinte, d'une part dont la partie inférieure est plongée dans une réserve de liquide et comporte au moins une ouverture d'admission de liquide, qui permet de faire communiquer la partie inférieure de l'enceinte avec la réserve de liquide, de telle sorte que la partie inférieure immergée de l'enceinte contient un volume de ce liquide, et d'autre part qui comporte au moins une ouverture d'évacuation d'un flux gazeux, positionnée au- dessus de la surface du volume liquide contenu dans l'enceinte ; le dispositif comporte en outre des moyens de production et d'injection d'un flux gazeux comportant au moins un conduit d'injection, dont une partie inférieure est plongée dans le volume de liquide contenu dans la partie inférieure immergée de l'enceinte, et se prolonge en partie supérieure à l'intérieur de l'enceinte en dehors dudit volume de liquide ; ledit conduit d'injection comporte, dans sa partie inférieure immergée, au moins une ouverture d'évacuation positionnée au-dessous de la surface dudit volume de liquide ; lesdits moyens de production et d'injection d'un flux gazeux comportent un compresseur raccordé à la partie non immergée du conduit d'injection, et permettent en fonctionnement de créer et d'introduire un flux gazeux entrant, en provenance de l'extérieur de l'enceinte, dans la partie non immergée du conduit d'injection, avec un débit d'au moins
100m3/h, et de telle sorte que ledit flux gazeux entrant passe à travers l'ouverture d'évacuation de la partie inférieure immergée du conduit d'injection, et est introduit dans ledit volume de liquide contenu dans la partie inférieure immergée de l'enceinte, au-dessous de la surface dudit volume de liquide, et qu'un flux gazeux sortant, traité par contact direct avec ledit volume de liquide remonte à l'intérieur de l'enceinte en dehors du conduit d'injection et est évacué en dehors de ladite enceinte en passant à travers l'ouverture d'évacuation de l'enceinte.
L'invention a également pour troisième objet un dispositif de production et de traitement d'un flux gazeux, ledit dispositif comportant une enceinte, d'une part dont la partie inférieure est plongée dans une réserve de liquide et comporte au moins une ouverture d'admission de liquide, qui permet de faire communiquer la partie inférieure de l'enceinte avec la réserve de liquide, de telle sorte que la partie inférieure immergée de l'enceinte contient un volume de ce liquide, et d'autre part qui comporte au moins une ouverture d'évacuation d'un flux gazeux, positionnée au- dessus de la surface du volume liquide contenu dans l'enceinte ; le dispositif comporte en outre des moyens de production et d'injection d'un flux gazeux comportant au moins un conduit d'injection, dont une partie inférieure est plongée dans le volume de liquide contenu dans la partie inférieure immergée de l'enceinte, et se prolonge en partie supérieure à l'intérieur de l'enceinte en dehors dudit volume de liquide ; ledit conduit d'injection comporte, dans sa partie inférieure immergée, au moins une ouverture d'évacuation positionnée au-dessous de la surface dudit volume de liquide ; lesdits moyens de production et d'injection d'un flux gazeux permettent en fonctionnement de créer et d'introduire un flux gazeux entrant, en provenance de l'extérieur de l'enceinte, dans la partie non immergée du conduit d'injection, avec un débit d'au moins 100m3/h et sans modifier la pression extérieure au-dessus du liquide de la réserve à l'extérieur de l'enceinte, et de telle sorte que ledit flux gazeux entrant passe à travers l'ouverture d'évacuation de la partie inférieure immergée du conduit d'injection, et est introduit dans ledit volume de liquide contenu dans la partie inférieure immergée de l'enceinte, au-dessous de la surface dudit volume de liquide, et qu'un flux gazeux sortant, traité par contact direct avec ledit volume de liquide remonte à l'intérieur de l'enceinte en dehors du conduit d'injection et est évacué en dehors de ladite enceinte en passant à travers l'ouverture d'évacuation de l'enceinte.
L'invention a pour autre objet une installation permettant la récupération de calories dans un flux gazeux entrant, ladite installation comportant l'un ou l'autre des dispositifs susvisés dans lequel la température du liquide est inférieure à la température du flux gazeux entrant dans l'enceinte et un système de récupération d'énergie permettant de récupérer une partie au moins des calories captées dans le liquide de la réserve dudit dispositif.
L'invention a également pour objet une installation comportant au moins deux installations amont et aval de récupération de calories dans un flux gazeux décrites précédemment, qui sont montées en cascade, de telle sorte que le flux gazeux sortant du dispositif de l'installation amont est au moins en partie, et de préférence dans sa totalité, utilisé comme flux gazeux entrant du dispositif de l'installation aval.
L'invention a pour autre objet un procédé de chauffage et/ou de refroidissement et/ou d'humidification et/ou de déshumidification d'un local, au moyen d'au moins un dispositif susvisé, qui est agencé de telle sorte que le flux gazeux entrant qui est introduit dans l'enceinte du dispositif est un flux d'air, et le flux d'air sortant du dispositif est introduit à l'intérieur du local.
L'invention a pour autre objet un procédé de production d'un flux gazeux, et notamment d'un flux d'air, à partir d'un flux gazeux entrant, et notamment d'un flux d'air entrant, dans lequel on utilise une installation susvisé, et on utilise pour le chauffage une partie au moins des calories captées dans la réserve de liquide.
L'invention a pour autre objet un procédé de récupération de calories dans l'air d'un local ou de déshumidification d'un local avec récupération de calories, au moyen d'une installation susvisée, dans lequel le flux gazeux entrant qui est introduit dans l'enceinte du dispositif de l'installation est un flux d'air provenant au moins en partie de l'intérieur du local.
L'invention a pour autre objet un procédé de création d'une zone tampon à l'intérieur d'un local dans laquelle l'humidité et/ou la teneur en poussières est contrôlée, caractérisé en ce qu'on utilise un dispositif susvisé qui est agencé de telle sorte que le flux de gaz entrant dans l'enceinte du dispositif est un flux d'air provenant au moins en partie de l'extérieur du local, et dans lequel le flux d'air sortant de l'enceinte du dispositif est introduit au moins en partie dans le local.
L'invention a pour autre objet un procédé de filtrage et/ou dépollution d'un flux gazeux, et notamment d'un flux d'air, au moyen d'au moins un dispositif susvisé, ou d'une installation susvisée, de telle sorte qu'un flux gazeux entrant contenant des particules et/ou des polluants est introduit dans l'enceinte du dispositif et qu'une partie au moins de ces particules et/ou polluants est captée dans le liquide de la réserve du dispositif.
Plus particulièrement, le flux gazeux entrant contient des fumées industrielles, et notamment des fumées industrielles à haute température.
Selon un deuxième aspect, l'invention a pour objectif de proposer une nouvelle solution technique permettant de récupérer efficacement des calories dans un flux gazeux et en mettant en œuvre des débits de flux gazeux importants.
L'invention a ainsi pour autre objet une installation permettant la récupération de calories dans un flux gazeux entrant et comportant un dispositif de production et de traitement dudit flux gazeux (F) entrant et un système de récupération d'énergie ; ledit dispositif comporte une enceinte, qui contient un volume de liquide dont la température est inférieure à la température du flux gazeux entrant dans l'enceinte, et qui comporte au moins une ouverture d'évacuation d'un flux gazeux positionnée au-dessus de la surface dudit volume liquide ; ledit dispositif comporte en outre des moyens de production et d'injection d'un flux gazeux qui permettent en fonctionnement de créer et d'introduire le flux gazeux entrant, en provenance de l'extérieur de l'enceinte, dans ledit volume de liquide contenu dans l'enceinte, au-dessous de la surface dudit volume de liquide, et de telle sorte qu'un flux gazeux sortant, traité par contact direct avec ledit volume de liquide remonte à l'intérieur de l'enceinte et est évacué en dehors de ladite enceinte en passant à travers l'ouverture d'évacuation de l'enceinte ; ledit système de récupération d'énergie permet de récupérer une partie au moins des calories captées dans le liquide ; les moyens de production et d'injection d'un flux gazeux comportent au moins un conduit d'injection, dont une partie inférieure est plongée dans le volume de liquide contenu dans l'enceinte, et se prolonge en partie supérieure à l'intérieur de l'enceinte en dehors dudit volume de liquide ; ledit conduit d'injection comporte, dans sa partie inférieure immergée, au moins une ouverture d'évacuation positionnée au-dessous de la surface dudit volume de liquide ; les moyens de production et d'injection d'un flux gazeux comportent un compresseur et permettent de créer et d'introduire dans la partie non immergée dudit tube d'injection ledit flux gazeux (F) entrant avec un débit d'au moins 100m3/h.
L'invention a également pour autre objet une installation permettant la récupération de calories dans un flux gazeux entrant et comportant un dispositif de production et de traitement dudit flux gazeux entrant et un système de récupération d'énergie ; ledit dispositif comporte une enceinte, qui contient un volume de liquide dont la température est inférieure à la température du flux gazeux entrant dans l'enceinte, et qui comporte au moins une ouverture d'évacuation d'un flux gazeux positionnée au-dessus de la surface dudit volume liquide ; ledit dispositif comporte en outre des moyens de production et d'injection d'un flux gazeux qui permettent en fonctionnement de créer et d'introduire le flux gazeux entrant, en provenance de l'extérieur de l'enceinte, dans ledit volume de liquide contenu dans l'enceinte, au-dessous de la surface dudit volume de liquide, et de telle sorte qu'un flux gazeux sortant, traité par contact direct avec ledit volume de liquide remonte à l'intérieur de l'enceinte et est évacué en dehors de ladite enceinte en passant à travers l'ouverture d'évacuation de l'enceinte ; ledit système permettant de récupérer une partie au moins des calories captées dans le liquide ; l'enceinte comporte une ou plusieurs chicanes, qui permettent de faire circuler le flux gazeux sortant du volume de liquide jusqu'à l'ouverture d'évacuation, en lui faisant subir un ou plusieurs changements de direction, de manière à empêcher la projection de liquide par l'ouverture d'évacuation.
Selon ce deuxième aspect, l'invention a également pour objets : une installation comportant au moins deux installations amont et aval de récupération de calories dans un flux gazeux qui ont été décrites ci-dessus, et qui sont montées en cascade, de telle sorte que le flux gazeux sortant du dispositif de l'installation amont est au moins en partie, et de préférence dans sa totalité, utilisé comme flux gazeux entrant du dispositif de l'installation aval.
- un procédé de production d'un flux gazeux, et notamment d'un flux d'air, à partir d'un flux gazeux entrant, et notamment d'un flux d'air entrant, dans lequel on utilise une installation susvisée, et on utilise pour le chauffage une partie au moins des calories captées dans le liquide.
- un procédé de récupération de calories dans l'air d'un local ou de déshumidification d'un local avec récupération de calories, au moyen d'une installation susvisée, et dans lequel le flux gazeux entrant qui est introduit dans l'enceinte du dispositif de l'installation est un flux d'air provenant au moins en partie de l'intérieur du local.
- un procédé de création d'une zone tampon à l'intérieur d'un local dans laquelle l'humidité et/ou la teneur en poussières est contrôlée, caractérisé en ce qu'on utilise une installation susvisée, le dispositif de l'installation étant agencé de telle sorte que le flux de gaz entrant dans l'enceinte du dispositif est un flux d'air provenant au moins en partie de l'extérieur du local, et le flux d'air sortant de l'enceinte du dispositif est introduit au moins en partie dans le local.
- un procédé de filtrage et/ou dépollution d'un flux gazeux, et notamment d'un flux d'air, au moyen d'une installation susvisée, et dans lequel un flux gazeux entrant contenant des particules et/ou des polluants est introduit dans l'enceinte du dispositif de l'installation et une partie au moins de ces particules et/ou polluants est captée dans le liquide du dispositif.
Brève description des figures
Les caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description détaillée ci-après de plusieurs variantes particulières de réalisation de l'invention, lesquelles variantes particulières de réalisation sont décrites à titre d'exemples non limitatifs et non exhaustifs de l'invention, et en référence aux dessins annexés sur lesquels :
- La figure 1 représente de manière schématique une première variante de réalisation d'un dispositif de l'invention permettant la production et le traitement d'un flux gazeux à travers un volume de liquide.
- La figure 2 représente de manière schématique une deuxième variante de réalisation d'un dispositif de l'invention permettant la production et le traitement d'un flux gazeux à travers un volume de liquide.
- La figure 3 représente de manière schématique une troisième variante de réalisation d'une partie d'un dispositif de l'invention permettant la production et le traitement d'un flux gazeux à travers un volume de liquide.
- La figure 4 représente de manière schématique une quatrième variante de réalisation d'une partie d'un dispositif de l'invention permettant la production et le traitement d'un flux gazeux à travers un volume de liquide.
- La figure 5 représente de manière schématique une première variante d'une installation mettant en œuvre le dispositif de la figure 1 , et permettant de récupérer des calories dans un flux gazeux.
- La figure 6 représente de manière schématique une deuxième variante d'une installation mettant en œuvre le dispositif de la figure 1 , et permettant de récupérer des calories dans un flux gazeux.
- La figure 7 représente de manière schématique une troisième variante d'une installation mettant en œuvre le dispositif de la figure
1 , et permettant de récupérer des calories dans un flux gazeux.
- La figure 8 représente de manière schématique une quatrième variante d'une installation mettant en œuvre deux dispositifs de la figure 1 en cascade, et permettant de récupérer des calories dans un flux gazeux.
- La figure 9 représente de manière schématique une cinquième variante d'une installation mettant en œuvre le dispositif de la figure 1 , et permettant de récupérer des calories dans un flux gazeux.
- La figure 10 représente de manière schématique une variante d'une installation mettant en œuvre le dispositif de la figure 1 , et permettant de créer une zone tampon dont l'humidité ou la teneur en poussières est contrôlée.
Description détaillée
En référence à la variante particulière de réalisation de la figure 1 , le dispositif 1 de production et de traitement d'un flux gazeux comporte une enceinte 10, une réserve 1 1 de liquide L ouverte en partie supérieure, et par exemple une réserve d'eau, et des moyens 12 de production et d'injection d'un flux gazeux F entrant dans un volume V de liquide contenu dans l'enceinte 10.
L'invention n'est pas limitée à la mise en œuvre d'eau comme liquide L, mais s'étend à tout autre type de liquide. A titre d'exemples non limitatifs et non exhaustifs, il peut être intéressant d'utiliser un liquide L dont la température de solidification à la pression atmosphérique est inférieure à 0°C, tel que par exemple de l'eau contenant des additifs, de type sels, glucides, glycol. Il peut également être intéressant d'utiliser de l'huile comme liquide L.
L'enceinte 10 comprend une paroi supérieure 10a et une paroi latérale 10b délimitant une chambre interne 10c, et comporte à son extrémité inférieure une ouverture d'admission de liquide 10d, de grande section. Dans une autre variante, cette ouverture 10d de grande section pourrait être remplacée par plusieurs ouvertures d'admission de liquide de plus petite section.
La partie inférieure 10e de l'enceinte 10 est plongée dans le volume de liquide L contenu dans la réserve 1 1 , sans toucher le fond 1 1 a de la réserve de liquide 1 1 .
L'ouverture d'admission de liquide 10d permet de faire communiquer la partie inférieure 10e de l'enceinte 10 avec la réserve de liquide 1 1 , de telle sorte que la partie inférieure immergée 10e de l'enceinte contient une partie de ce liquide L, sous la forme d'un volume V de liquide.
L'enceinte 10 comprend également au moins une ouverture d'évacuation 10g d'un flux gazeux, qui est positionnée au-dessus de la surface S du volume V de liquide contenu dans l'enceinte 10, et qui dans l'exemple illustré est ménagée à proximité de la paroi supérieure 10a de l'enceinte 10.
Les moyens 12 de production et d'injection d'un flux gazeux F comportent au moins un conduit d'injection 120, dont une partie inférieure
120a est plongée dans le volume V de liquide contenu dans la partie inférieure immergée 10e de l'enceinte 10, et se prolonge en partie supérieure à l'intérieur de l'enceinte 10 en dehors dudit volume V de liquide.
Dans cet exemple particulier, ce conduit d'injection 120 est constitué par un tube rectiligne vertical, qui traverse la paroi supérieure 10a de l'enceinte 10, et qui est ouvert à ses deux extrémités supérieure et inférieure.
Ce conduit d'injection 120 comporte ainsi dans sa partie inférieure immergée 120a au moins une ouverture d'évacuation 120c positionnée au- dessous de la surface S dudit volume V de liquide, et au-dessus du niveau de l'ouverture d'admission de liquide 10d de la partie inférieure immergée 10e de l'enceinte 10.
La profondeur d'immersion H1 du conduit d'injection 120 dans le liquide, c'est-à-dire la distance H1 entre l'ouverture 120c et la surface S du volume V de liquide, est inférieure à la profondeur d'immersion H2 de l'enceinte dans la réserve 1 1 de liquide, c'est-à-dire la hauteur H2 du volume V de liquide dans l'enceinte 10.
Les moyens 12 de production et d'injection d'un flux gazeux F comportent en outre des moyens aérauliques 121 , qui en fonctionnement permettent de créer et d'introduire un flux gazeux F entrant, en provenance de l'extérieur de l'enceinte 10, dans la partie supérieure non immergée 120b du conduit d'injection. Dans la variante particulière de la figure 1 , ces moyens aérauliques 121 comportent plus particulièrement un compresseur de gaz 121 a, dont la sortie est raccordée à l'ouverture d'admission 120d supérieure du conduit d'injection 120 par une canalisation 121 b, et dont l'entrée est raccordée à une tubulure d'admission 121 c communiquant avec l'extérieur de l'enceinte 10. Ce compresseur 121 a permet de créer par aspiration un flux gazeux F, et d'introduire ce flux gazeux F sous pression dans le conduit d'injection 120 à travers l'ouverture d'amission 120d supérieure du conduit d'injection 120.
Le compresseur 121 a peut être tout type connu de compresseur de gaz permettant de créer un flux gazeux (ventilateur centrifuge, ventilateur axial, pompe, ...).
L'invention permet avantageusement de travailler avec un débit de gaz en sortie du compresseur 121 a qui peut être important et notamment supérieur à 100m3/h, plus particulièrement supérieur à 1000m3/h, et plus particulièrement encore dans certaines applications supérieur à 10000m3/h. Lorsque le compresseur 121 a fonctionne, le flux gazeux F créé par le compresseur 121 a est introduit sous pression dans le conduit d'injection 120 par l'ouverture d'admission 120d supérieure de ce conduit, passe à travers l'ouverture d'évacuation 120c de la partie inférieure immergée du conduit d'injection 120, et est introduit dans ledit volume V de liquide contenu dans la partie inférieure immergée 10e de l'enceinte 10, au-dessous de la surface S dudit volume V de liquide, sans modifier la pression extérieure au-dessus du liquide L de la réserve 1 1 à l'extérieur de l'enceinte 10. Ainsi, dans le cas particulier illustré, lorsque le compresseur 121 a fonctionne, la pression extérieure au-dessus du liquide L de la réserve 1 1 à l'extérieur de l'enceinte 10 n'est pas modifiée et reste égale à la pression atmosphérique.
Plus particulièrement le flux gazeux F est introduit dans ledit volume de liquide V en étant dirigé vers le bas.
Le compresseur 121 a est sélectionné de manière à créer un flux gazeux F avec une pression dans le conduit d'injection 120, au-dessus du liquide, qui est supérieure à la colonne de liquide H1 dans la partie immergée 120a du conduit d'injection 120, de sorte que le gaz puisse être évacué dans le volume V de liquide en dehors du conduit d'injection 120.
Le gaz qui est introduit dans le volume de liquide V passe à travers le volume V de liquide en remontant vers la surface S dudit volume de liquide V, sous l'effet de la vitesse du gaz et de la poussée d'Archimède, et ressort à l'intérieur de l'enceinte 10 et à l'extérieur du conduit d'injection 120 en formant un flux gazeux F' sortant, qui a été traité par contact direct avec ledit volume V de liquide. Ce flux gazeux F' sortant remonte à l'intérieur de l'enceinte 10, en dehors du conduit d'injection 120, et est évacué en dehors de ladite enceinte 10 en passant à travers l'ouverture d'évacuation 10g de l'enceinte 10.
Plus particulièrement, les profondeurs d'immersion H1 et H2 sont dimensionnées, notamment par rapport à la pression du gaz dans le conduit d'injection 120 au-dessus du liquide, de telle sorte que tout le gaz, qui est introduit dans le volume V de liquide contenu dans la partie inférieure immergée 10e de l'enceinte 10, remonte dans le volume de liquide V et ressort dans l'enceinte 10 au-dessus du liquide et en dehors du conduit d'injection 120, sans qu'une partie de ce gaz ne passe par l'ouverture d'admission inférieure 10d de l'enceinte 10, dans le volume de liquide situé en dehors de l'enceinte 10. Lorsque la température du volume de liquide V dans l'enceinte 10 est différente de la température du flux gazeux F avant son introduction dans le volume V de liquide, il se produit entre le gaz et le liquide des échanges thermiques par chaleur sensible et chaleur latente.
Lorsque la température Tuquide du volume de liquide est inférieure à la température initiale Tinisaie du flux de gaz F avant introduction dans le volume de liquide, le flux de gaz F' est refroidi. Plus particulièrement, la température du flux de gaz F' sortant est sensiblement égale à la température Tuquide du volume de liquide. Il en résulte concomitamment que le flux d'air de gaz F' sortant du dispositif 1 a été déshumidifié par rapport aux flux de gaz entrant F, l'humidité absolue (poids d'eau par volume d'air) dans le flux de gaz F' sortant étant inférieure à l'humidité absolue du flux de gaz F entrant.
A l'inverse, lorsque la température du Tuquide du volume de liquide est supérieure à la température initiale Tinitiaie , le flux de gaz F' sortant est chauffé. Il en résulte concomitamment que le flux de gaz F' sortant du dispositif 1 a été humidifié par rapport au flux de gaz entrant F, l'humidité absolue (poids d'eau par volume d'air) dans le flux de gaz F' sortant étant supérieure à l'humidité absolue du flux de gaz F entrant.
La profondeur d'immersion H1 du conduit d'injection 120 doit être suffisamment importante pour que le traitement du flux de gaz par passage à travers le volume de liquide V, et plus particulièrement pour que le cas échéant le transfert thermique entre le liquide et le gaz injecté dans le volume de liquide V, soit efficace et suffisant, et permette le cas échéant au flux de gaz F' refroidi ou chauffé par le liquide d'être à une température proche et de préférence sensiblement identique à celle du liquide. A l'inverse, cette profondeur d'immersion H1 ne doit pas être trop importante pour éviter un surdimensionnement du compresseur 121 a. La profondeur H1 est ainsi de préférence comprise entre 20mm et 200mm, et est de préférence comprise entre 30mm et 50mm. L'invention n'est toutefois fois pas limitée à ces valeurs particulières.
De même pour une meilleure efficacité, la hauteur H2 du volume V de liquide doit de préférence ne pas être trop importante, et sera préférentiellement inférieure à 500mm, et plus particulièrement comprise entre 40mm et 500mm. L'invention n'est toutefois fois pas limitée à ces valeurs particulières.
Dans une autre application, le dispositif 1 de l'invention peut être utilisé pour filtrer ou dépolluer le flux de gaz entrant F par passage à travers un volume de liquide V. Dans cette application, la température du volume de liquide peut être supérieure ou inférieure à la température du flux de gaz entrant F, ou être sensiblement égale à la température du flux de gaz entrant F. Lorsque la température du volume de liquide est sensiblement égale à la température du flux de gaz entrant F, on produit en sortie du dispositif 1 un flux de gaz sortant F' filtré ou dépollué, qui n'a pas été chauffé ou refroidi, mais qui est sensiblement à la même température que le flux de gaz entrant F.
On a représenté sur la figure 2, une autre variante de réalisation d'un dispositif Y de l'invention dans laquelle le conduit d'injection 120 est délimité entre une paroi verticale P interne à l'enceinte 10 et par une partie de la paroi latérale 10c de l'enceinte 10.
On a représenté sur la figure 3, une autre variante de réalisation d'un dispositif 1 " de l'invention, seuls l'enceinte 10 et le compresseur 121 a étant représentés sur cette figure, la réserve de liquide 1 1 n'étant pas représentée. Dans cette variante la paroi latérale 10c de l'enceinte 10 est de forme tubulaire, mais pourrait dans le cadre de l'invention avoir une toute autre géométrie.
Dans cette variante de la figure 3, l'enceinte 10 comporte dans sa partie supérieure 10f qui n'est pas destinée être immergée dans un liquide, plusieurs plaques 14, 14', 14" à fonction de chicanes. Ces plaques 14, 14', 14" sont fixées à l'intérieur de l'enceinte 10, l'une au-dessus de l'autre, avec un espace entre plaques 14, de manière à former plusieurs chambres superposées E1 , E2, E3 et E4. Chaque plaque 14, 14', 14" est en contact étanche sur toute sa périphérie avec la paroi latérale 10c de l'enceinte 10. En fonctionnement, lorsque la partie inférieure de l'enceinte est immergée dans une réserve de liquide, la première chambre E1 est délimitée par la surface du volume de liquide V contenu à l'intérieur de l'enceinte et la plaque inférieure 14. La deuxième chambre E2 est délimitée par la plaque inférieure 14 et la plaque intermédiaire 14'. La troisième chambre E3 est délimitée par la plaque intermédiaire 14' et la plaque supérieure 14". La quatrième chambre E4 est délimitée par la plaque supérieure 14" et la paroi supérieure 10a de l'enceinte 10.
Le nombre de plaques 14, 14', 14" et de chambres E1 , E2, E3 et
E4 ne sont pas limitatifs de l'invention, le dispositif 1 pouvant comporter une seule plaque 14 délimitant deux chambres ou plus de trois plaques délimitant plus de quatre chambres.
Chaque plaque 14, 14, 14" comporte une ouverture traversante 140 ayant sensiblement la même section que le conduit d'injection 120. Ces ouvertures traversantes 140 sont alignées verticalement, et le conduit d'injection 120 est passé à travers ces ouvertures 140, le conduit 120 étant en contact étanche sur toute sa périphérie extérieure avec chaque plaque 14, 14', 14" au niveau de chaque ouverture 140 de passage du tube.
Chaque plaque 14, 14', 14" comporte également au moins une ouverture traversante 141 permettant de faire communiquer entre elles deux chambres voisines, et permettant ainsi le passage d'un flux gazeux F' sortant du volume de liquide V d'une chambre à l'autre depuis la chambre inférieure E1 jusqu'à l'ouverture d'évacuation 101 .
Ces ouvertures 141 sont décalées verticalement les unes par rapport aux autres et ne sont pas alignées avec l'ouverture d'évacuation d'air 101 de l'enceinte 10, de manière à faire subir plusieurs changements de direction audit flux d'air F'.
En fonctionnement, la partie inférieure 10e de l'enceinte 10 étant immergée dans une réserve 1 1 de liquide, le flux d'air F' sortant du volume de liquide V remonte à l'intérieur de l'enceinte 10 en circulant à travers les chicanes 14, 14', 14", et en subissant plusieurs changements de directions successifs, puis est évacué en dehors de l'enceinte 10 à travers l'ouverture d'évacuation 10g.
On a représenté sur la figure 4, une autre variante qui se différencie de celle de la figure 3 en ce que le compresseur d'air 121 a est raccordé à l'ouverture d'évacuation d'air 10g de l'enceinte 10, et crée le flux de gaz F entrant par aspiration à travers l'ouverture d'admission 120d du conduit d'injection 120, et non plus par soufflage.
Dans les deux variantes des figures 3 et 4, lorsqu'il se produit dans le volume de liquide V des turbulences qui peuvent être importantes, et qui sont susceptibles de provoquer des projections de gouttes de liquides, qui sont entraînées par le flux de gaz sortant F', les chicanes 14, 14', 14" forment un obstacle sur le parcours de ces gouttes et permettent, grâce aux changements de direction successifs de l'air imposés par les chicanes, d'éviter que du liquide ne soit projeté par l'ouverture d'évacuation 10g en dehors de l'enceinte en même temps le flux d'air F' sortant. Grâce aux chicanes 14, 14', 14', aucune goutte de liquide n'est projetée en dehors de l'enceinte. Il en résulte avantageusement que les débits des flux d'air F et F' peuvent être très importants et/ou que le volume de l'enceinte peut être faible, ce qui réduit l'encombrement du dispositif, tout en évitant la projection de gouttes de liquide en dehors de l'enceinte du dispositif.
On a représenté sur la figure 5, une installation pour la récupération de calories dans un flux gazeux F, qui met en œuvre le dispositif 1 de la figure 1 . Bien entendu, il est également possible pour réaliser cette installation d'utiliser les dispositifs des figures 2 à 4. Dans cette installation de la figure 5, la réserve 1 1 de liquide L est par exemple une réserve d'eau, et est équipée de manière optionnelle d'une unité de traitement de l'eau 1 10 qui permet par exemple de maintenir le pH de l'eau à une valeur contrôlée, et par exemple un pH neutre et/ou de filtrer l'eau L pour retirer les impuretés ou polluants. L'installation est en outre équipée d'un système 2, de type pompe à chaleur, qui permet la récupération d'une partie des calories du liquide L de la réserve 1 1 .
Ce système 2 de récupération des calories comporte plus particulièrement un fluide caloporteur circulant dans un circuit fermé 20. Ledit circuit fermé 20 comprend un évaporateur 21 plongé dans le liquide L de la réserve 1 1 , un condenseur 22 positionné à l'extérieur de la réserve 1 1 de liquide, un compresseur 23 interposé entre la sortie de l'évaporateur 21 et l'entrée du condenseur 22, un détendeur 24 interposé entre la sortie du condenseur 22 et l'entrée de l'évaporateur 21 .
En fonctionnement, un flux gazeux F chaud et/ou humide est créé par le compresseur 121 a par aspiration à travers la tubulure d'admission 120c. Ce flux gazeux F est créé par aspiration par exemple à partir de l'air environnant à l'intérieur ou à l'extérieur d'un bâtiment, ou de manière à capter des fumées chaudes et/ou humides produites par une cheminée ou un appareil, et notamment par une cheminée industrielle.
La température TiiqUide du liquide L, et par exemple de l'eau, dans la réserve 1 1 est inférieure à la température initiale du flux de gaz F. Lors de son passage dans le volume de liquide V contenu dans l'enceinte 10 du dispositif, le gaz est refroidi et déshumidifié, le gaz F' sortant du dispositif 1 étant à une température inférieure à celle du flux de gaz entrant F et l'humidité absolue (poids d'eau par volume d'air) dans le flux de gaz F' sortant étant inférieure à l'humidité absolue du flux de gaz F entrant. Ce flux gazeux sortant F' est par exemple redirigé vers l'extérieur d'un bâtiment ou vers une zone (intérieure ou extérieure) où l'on a besoin de froid et de moins d'humidité.
Lors de son passage dans le volume de liquide V, le gaz cède des calories au volume de liquide V, grâce d'une part à la chaleur sensible liée à l'écart de température du gaz F et du liquide 1 1 , et d'autre part à la chaleur latente liée à la vapeur d'eau qui est contenue dans le gaz F et qui se condense dans le liquide 1 1 . Plus la différence de température entre le liquide 1 1 et le flux de gaz F entrant est importante, et plus on récupère de calories dans le liquide 1 1 . Ces calories sont captées par et se répartissent dans la réserve 1 1 de liquide de plus grand volume. L'augmentation de température du liquide L de la réserve 1 1 qui en résulte permet de chauffer le fluide caloporteur qui circule à l'état de vapeur dans l'évaporateur 21 . Tout ou partie des calories apportées au liquide L de la réserve 1 1 par le flux gazeux entrant F sont donc récupérées par chauffage du fluide caloporteur dans l'évaporateur 21 , ce qui contribue à abaisser la température de la réserve 1 1 de liquide, et sont transférées jusqu' au condenseur 22 au niveau duquel le fluide caloporteur se condense à l'état liquide et restitue de la chaleur.
Lorsque le flux gazeux F contient des polluants solubles dans le liquide de la réserve 1 1 ou des particules (par exemple flux gazeux F formé à partir de fumées industrielles polluantes), la réserve 1 1 de liquide L permet avantageusement de capter au moins une partie de ces polluants ou particules, et de produire un flux sortant F' plus propre.
L'installation de la figure 5 peut plus particulièrement être utilisée pour traiter des fumées industrielles haute température (par exemple à 1000°C) en les refroidissant en dessous de 100°C, et en les dépolluant, et en récupérant une partie importante des calories de ces fumées industrielles via la réserve 1 1 de liquide et le système de récupération énergie 2.
On a représenté sur la figure 6 une installation de récupération d'énergie, qui se différencie de la figure 5, en ce que système de récupération d'énergie 2' utilise directement le liquide L de la réserve 1 1 comme liquide caloporteur, et permet d'alimenter en boucle fermée un réservoir 25 de stockage d'énergie (par exemple une réserve de liquide supplémentaire) ou un dispositif 25 (par exemple pompe à chaleur ou équivalent) permettant de récupérer par échange thermique les calories stockées dans le liquide 1 1 . Le système de récupération d'énergie 2' comporte ainsi un circuit fermé dans lequel circule une partie du liquide L de la réserve à fonction de fluide caloporteur.
On a représenté sur la figure 7 une installation de récupération d'énergie, qui se différencie de la figure 5 par la mise en œuvre dans le système de récupération d'énergie 2" d'un échangeur intermédiaire 26 dans lequel circule en boucle fermée un fluide caloporteur. Une partie 26a de l'échangeur intermédiaire 26 est plongée dans le liquide 1 1 , et une partie 26b est située en dehors du liquide L et permet un transfert thermique avec le fluide caloporteur dans l'évaporateur 21 à l'extérieur de la réserve 1 1 de liquide L.
Exemples d'applications non limitatifs de l'invention des installations des figures 5 à 7
Exemple 1 : Recyclage vers l'extérieur de l'air vicié à l'intérieur d'une habitation ou d'un local avec récupération d'énergie
L'air à l'intérieur de l'habitation ou du local contient environ 60% d'humidité relative et est à une température d'environ 20°C. La réserve 1 1 contient de l'eau à une température d'environ 3°C. L'énergie récupérée dans l'eau par m3 d'air est :
Chaleur sensible : environ 20KJ/m3
Chaleur latente : environ 10KJ/m3
Exemple 2 : Récupération d'énergie dans de l'air contenant environ 80% d'humidité relative et à une température d'environ 50°C.
La réserve 1 1 contient de l'eau à une température d'environ 6°C. L'énergie récupérée dans l'eau par m3 d'air est :
Chaleur sensible : environ 54KJ/m3
Chaleur latente : environ 152KJ/m3
On a représenté sur la figure 8 une installation multi-étages qui comporte deux installation 11 , 12 qui sont similaires à l'installation de la figure 5 et qui sont montées en cascade, le flux gazeux F' sortant de l'installation amont 11 étant utilisé comme flux gazeux entrant F de l'installation aval 12.
Cette installation multi-étages de la figure 8 est particulièrement adaptée pour refroidir et récupérer de l'énergie en plusieurs étapes successives dans des flux gazeux haute température, comme par exemple des fumées industrielles.
On a représenté sur la figure 9, une installation de récupération d'énergie et le cas échéant de déshumidification de l'air à l'intérieur d'un local ou d'une habitation 3, qui fonctionne en circuit fermé, le flux d'air sortant F' refroidi, et le cas échéant déshumidifié, étant réinjecté dans ledit local 3. Dans cette installation, l'air qui est réintroduit dans le local est préalablement réchauffé par échange thermique avec le condenseur 22 du système de récupération d'énergie 2. Une autre partie de l'énergie transférée au condenseur 22 peut être récupérée par ailleurs (flèche A).
De manière non exhaustive et non limitative, le local 3 peut par exemple être une piscine couverte. Le local 3 peut également être tout type de local contenant des hommes ou des animaux, l'installation permettant ainsi la récupération d'énergie des activités humaines ou animales.
On a représenté sur la figure 10, une installation de récupération d'énergie qui permet de créer une zone intérieure tampon 4, dans laquelle l'humidité ou la concentration de poussières dans l'air est contrôlée. Dans cette installation, le flux d'air sortant F' qui a été déshumidifié et/ou filtré par passage dans le volume V d'eau est chauffé par une unité de traitement thermique 5 avant son introduction dans la zone intérieure tampon 4. Dans cette installation, le système de récupération d'énergie 2 est facultatif.
Dans les variantes de réalisation illustrées sur les figures annexées, l'ouverture d'évacuation 120c du conduit d'injection 120 est positionnée au-dessus niveau de l'ouverture d'admission de liquide 10d de la partie inférieure immergée 10e de l'enceinte. Dans une autre variante, l'ouverture d'évacuation 120c du conduit d'injection 120 peut être positionnée au niveau ou au-dessous du niveau de l'ouverture d'admission de liquide 10d de la partie inférieure immergée 10e de l'enceinte 10.
Dans les variantes de réalisation illustrées sur les figures annexées, le niveau de liquide L dans l'enceinte 10 est le même dans le conduit d'injection 120 ou à l'extérieur du conduit d'injection 120. Dans une autre variante, il est possible de mettre en œuvre une pompe hydraulique pour pomper du liquide dans la réserve 1 1 et pour introduire ce liquide pompée dans l'enceinte 10, à l'extérieur du conduit d'injection 120 de telle sorte que la profondeur d'immersion H1 du conduit d'injection 120 ( c'est-à-dire la hauteur H1 de liquide dans le conduit d'injection 120) est constamment inférieure à la hauteur H2 de liquide dans l'enceinte 10 et à l'extérieur du conduit d'injection 120. Dans ce cas l'ouverture d'évacuation 120c du conduit d'injection 120 peut être positionnée au même niveau ou au- dessous du niveau de l'ouverture d'admission de liquide 10d de la partie inférieure immergée 10e de l'enceinte 10.
Dans les variantes de réalisation illustrées sur les figures annexées, la réserve 1 1 est formée par un bac ouvert en partie supérieure. Dans une autre variante, le bac ou équivalent formant la réserve 1 1 peut être fermé.

Claims

REVENDICATIONS
Dispositif de production et de traitement d'un flux gazeux (F), ledit dispositif comportant une enceinte (10), d'une part dont la partie inférieure (10e) est plongée dans une réserve (1 1 ) de liquide (L) ouverte en partie supérieure et comporte au moins une ouverture d'admission de liquide (10d), qui permet de faire communiquer la partie inférieure de l'enceinte avec la réserve de liquide, de telle sorte que la partie inférieure immergée (10e) de l'enceinte contient un volume (V) de ce liquide, et d'autre part qui comporte au moins une ouverture d'évacuation (10g) d'un flux gazeux, positionnée au- dessus de la surface (S) du volume liquide (V) contenu dans l'enceinte, le dispositif comportant en outre des moyens de production et d'injection d'un flux gazeux (F) comportant au moins un conduit d'injection (120), dont une partie inférieure (120a) est plongée dans le volume (V) de liquide contenu dans la partie inférieure immergée de l'enceinte, et se prolonge en partie supérieure à l'intérieur de l'enceinte (10) en dehors dudit volume (V) de liquide, ledit conduit d'injection (120) comportant, dans sa partie inférieure immergée, au moins une ouverture d'évacuation (120c) positionnée au-dessous de la surface (S) dudit volume (V) de liquide, lesdits moyens de production et d'injection d'un flux gazeux (F) comportent un compresseur (121 a) raccordé à la partie (120b) non immergée du conduit d'injection (120) ou à l'ouverture d'évacuation (10g) de l'enceinte (10), et permettent en fonctionnement de créer et d'introduire un flux gazeux (F) entrant, en provenance de l'extérieur de l'enceinte (10), dans la partie (120b) non immergée du conduit d'injection (120), avec un débit d'au moins 100m3/h, et de telle sorte que ledit flux gazeux (F) entrant passe à travers l'ouverture d'évacuation (120c) de la partie inférieure immergée du conduit d'injection (120), et est introduit dans ledit volume (V) de liquide contenu dans la partie inférieure immergée de l'enceinte, au-dessous de la surface (S) dudit volume (V) de liquide, et qu'un flux gazeux (F') sortant, traité par contact direct avec ledit volume de liquide (V) remonte à l'intérieur de l'enceinte (10) en dehors du conduit d'injection (120) et est évacué en dehors de ladite enceinte (10) en passant à travers l'ouverture d'évacuation (10g) de l'enceinte.
Dispositif de production et de traitement d'un flux gazeux (F), ledit dispositif comportant une enceinte (10), d'une part dont la partie inférieure (10e) est plongée dans une réserve (1 1 ) de liquide (L) et comporte au moins une ouverture d'admission de liquide (10d), qui permet de faire communiquer la partie inférieure de l'enceinte avec la réserve de liquide, de telle sorte que la partie inférieure immergée (10e) de l'enceinte contient un volume (V) de ce liquide, et d'autre part qui comporte au moins une ouverture d'évacuation (10g) d'un flux gazeux, positionnée au-dessus de la surface (S) du volume liquide (V) contenu dans l'enceinte, le dispositif comportant en outre des moyens de production et d'injection d'un flux gazeux (F) comportant au moins un conduit d'injection (120), dont une partie inférieure (120a) est plongée dans le volume (V) de liquide contenu dans la partie inférieure immergée de l'enceinte, et se prolonge en partie supérieure à l'intérieur de l'enceinte (10) en dehors dudit volume (V) de liquide, ledit conduit d'injection (120) comportant, dans sa partie inférieure immergée, au moins une ouverture d'évacuation (120c) positionnée au-dessous de la surface (S) dudit volume (V) de liquide, lesdits moyens de production et d'injection d'un flux gazeux (F) comportent un compresseur (121 a) raccordé à la partie (120b) non immergée du conduit d'injection (120), et permettent en fonctionnement de créer et d'introduire un flux gazeux (F) entrant, en provenance de l'extérieur de l'enceinte (10), dans la partie (120b) non immergée du conduit d'injection (120), avec un débit d'au moins 100m3/h, et de telle sorte que ledit flux gazeux (F) entrant passe à travers l'ouverture d'évacuation (120c) de la partie inférieure immergée du conduit d'injection (120), et est introduit dans ledit volume (V) de liquide contenu dans la partie inférieure immergée de l'enceinte, au-dessous de la surface (S) dudit volume (V) de liquide, et qu'un flux gazeux (F') sortant, traité par contact direct avec ledit volume de liquide (V) remonte à l'intérieur de l'enceinte (10) en dehors du conduit d'injection (120) et est évacué en dehors de ladite enceinte (10) en passant à travers l'ouverture d'évacuation (10g) de l'enceinte.
Dispositif selon l'une quelconque des revendications précédentes, dans lequel lesdits moyens de production et d'injection d'un flux gazeux (F) permettent en fonctionnement de créer et d'introduire ledit flux gazeux (F) entrant, en provenance de l'extérieur de l'enceinte (10), dans la partie (120b) non immergée du conduit d'injection (120), sans modifier la pression extérieure au-dessus du liquide (L) de la réserve (1 1 ) à l'extérieur de l'enceinte (10).
Dispositif de production et de traitement d'un flux gazeux (F), ledit dispositif comportant une enceinte (10), d'une part dont la partie inférieure (10e) est plongée dans une réserve (1 1 ) de liquide (L) et comporte au moins une ouverture d'admission de liquide (10d), qui permet de faire communiquer la partie inférieure de l'enceinte avec la réserve de liquide, de telle sorte que la partie inférieure immergée (10e) de l'enceinte contient un volume (V) de ce liquide, et d'autre part qui comporte au moins une ouverture d'évacuation (10g) d'un flux gazeux, positionnée au-dessus de la surface (S) du volume liquide (V) contenu dans l'enceinte, le dispositif comportant en outre des moyens de production et d'injection d'un flux gazeux (F) comportant au moins un conduit d'injection (120), dont une partie inférieure (120a) est plongée dans le volume (V) de liquide contenu dans la partie inférieure immergée de l'enceinte, et se prolonge en partie supérieure à l'intérieur de l'enceinte (10) en dehors dudit volume (V) de liquide, ledit conduit d'injection (120) comportant, dans sa partie inférieure immergée, au moins une ouverture d'évacuation (120c) positionnée au-dessous de la surface (S) dudit volume (V) de liquide, lesdits moyens de production et d'injection d'un flux gazeux (F) permettent en fonctionnement de créer et d'introduire un flux gazeux (F) entrant, en provenance de l'extérieur de l'enceinte (10), dans la partie (120b) non immergée du conduit d'injection (120), avec un débit d'au moins 100m3/h et sans modifier la pression extérieure au-dessus du liquide (L) de la réserve (1 1 ) à l'extérieur de l'enceinte (10), et de telle sorte que ledit flux gazeux (F) entrant passe à travers l'ouverture d'évacuation (120c) de la partie inférieure immergée du conduit d'injection (120), et est introduit dans ledit volume (V) de liquide contenu dans la partie inférieure immergée de l'enceinte, au-dessous de la surface (S) dudit volume (V) de liquide, et qu'un flux gazeux (F') sortant, traité par contact direct avec ledit volume de liquide (V) remonte à l'intérieur de l'enceinte (10) en dehors du conduit d'injection (120) et est évacué en dehors de ladite enceinte (10) en passant à travers l'ouverture d'évacuation (10g) de l'enceinte.
Dispositif selon la revendication 4, dans lequel les moyens de production et d'injection d'un flux gazeux (F) comportent un compresseur (121 a) qui est raccordé à la partie (120b) non immergée du conduit d'injection (120).
Dispositif selon la revendication 4, dans lequel les moyens de production et d'injection d'un flux gazeux (F) comportent un compresseur (121 a) qui est raccordé à à l'ouverture d'évacuation (10g) de l'enceinte (10).
Dispositif selon l'une quelconque des revendications précédentes, dans lequel la réserve (1 1 ) de liquide est ouverte en partie supérieure, et plus particulièrement comporte un bac ouvert en partie supérieure.
8. Dispositif selon l'une quelconque des revendications précédentes, dans lequel la réserve (1 1 ) de liquide, à l'extérieur de l'enceinte (10), est à la pression atmosphérique, y compris pendant le fonctionnement des moyens de production et d'injection du flux gazeux (F) entrant.
9. Dispositif selon l'une quelconque des revendications précédentes dans lequel l'ouverture d'évacuation (120c) du conduit d'injection (120) est positionnée au même niveau que l'ouverture d'admission de liquide (10d) de la partie inférieure immergée (10e) de l'enceinte (10) ou au au-dessus du niveau de l'ouverture d'admission de liquide (10d) de la partie inférieure immergée (10e) de l'enceinte (10).
10. Dispositif selon l'une quelconque des revendications précédentes, dans lequel le conduit d'injection (120) permet d'introduire le flux gazeux (F) dans ledit volume (V) de liquide en le dirigeant vers le bas.
1 1 . Dispositif selon l'une quelconque des revendications précédentes, dans lequel l'enceinte (10) comporte une ou plusieurs chicanes (14 ; 14' ; 14"), qui permettent de faire circuler le flux gazeux (F') sortant du volume (V) de liquide jusqu'à l'ouverture d'évacuation
(10g), en lui faisant subir un ou plusieurs changements de direction, de manière à empêcher la projection de liquide par l'ouverture d'évacuation (10g).
12. Dispositif selon la revendication 1 1 , dans lequel chaque chicane (14, 14', 14") est une plaque qui est fixée à l'intérieur de l'enceinte en étant en contact étanche sur toute sa périphérie avec l'enceinte (10), et qui comporte au moins une ouverture traversante (141 ) pour le passage du flux gazeux (F') sortant à travers la plaque.
13. Dispositif selon la revendication 12, comportant plusieurs chicanes (14, 14', 14") dont les ouvertures traversantes (141 ) ne sont pas alignées avec l'ouverture d'évacuation d'air (101 ) de l'enceinte (10).
14. Dispositif selon l'une quelconque des revendications 1 1 ou 12, dans lequel chaque chicane (14, 14', 14") comporte une ouverture traversante (140) pour le passage du conduit d'injection (120), et le conduit d'injection (120) est passé à travers ladite ouverture traversante (140) de chaque chicane (14, 14', 14"), en étant en contact étanche sur toute sa périphérie extérieure avec la chicane au niveau de chaque ouverture traversante.
15. Dispositif selon l'une quelconque des revendications précédentes, dans lequel la profondeur d'immersion (H1 ) du conduit d'injection est inférieure à la hauteur (H2) du volume (V) de liquide dans l'enceinte (10) en dehors du conduit d'injection (120).
16. Dispositif selon l'une quelconque des revendications précédentes, dans lequel la profondeur d'immersion (H1 ) du conduit d'injection est comprise entre 20mm et 200mm, et de préférence comprise entre 30mm et 50mm.
17. Dispositif selon l'une quelconque des revendications précédentes, dans lequel la hauteur (H2) du volume (V) de liquide dans l'enceinte (10) en dehors du conduit d'injection (120) est inférieure à 500mm, et de préférence supérieure à 40mm.
18. Dispositif selon l'une quelconque des revendications précédentes, dans lequel les moyens de production et d'injection (121 ) d'un flux gazeux permettent de créer et d'introduire ledit flux gazeux (F) entrant avec un débit d'au moins 1000m3/h, et plus particulièrement avec un débit d'au moins 10000m3/h.
19. Dispositif selon l'une quelconque des revendications précédentes, dans lequel le ratio entre le débit du flux gazeux (F) entrant dans l'enceinte (10) et le volume (V) de liquide contenu dans l'enceinte (10) est supérieur à 104 h"1.
20. Dispositif selon l'une quelconque des revendications précédentes, dans lequel la température du liquide (TiiqUide ) est inférieure à la température (Tinitiaie) du flux gazeux (F) entrant dans l'enceinte (10).
21 . Dispositif selon l'une quelconque des revendications 1 à 19, dans lequel la température (TiiqUide) du liquide (L) est supérieure à la température (Tinitiaie) du flux gazeux (F) entrant dans l'enceinte (10).
22. Dispositif selon l'une quelconque des revendications précédentes, dans lequel le liquide (L) est de l'eau.
23. Dispositif selon l'une quelconque des revendications 1 à 21 , dans lequel le liquide (L) est un liquide dont la température de solidification à la pression atmosphérique est inférieure à 0°C.
24. Installation permettant la récupération de calories dans un flux gazeux (F) entrant, ladite installation comportant le dispositif visé à la revendication 20 et un système (2 ; 2' ; 2") de récupération d'énergie permettant de récupérer une partie au moins des calories captées dans le liquide (L) de la réserve (1 1 ) dudit dispositif.
25. Installation selon la revendication 24, dans laquelle le système (2 ;
2") de récupération d'énergie comporte un circuit fermé (20) dans lequel circule un fluide caloporteur, et qui comprend un évaporateur (21 ou 26a) permettant un échange thermique avec le liquide (L) de la réserve (1 1 ).
26. Installation selon la revendication 25, dans laquelle l'évaporateur (21 ou 26a) est plongé dans le liquide (L) de la réserve (1 1 ).
27. Installation selon la revendication 24, dans laquelle le système de récupération d'énergie (2') comporte un circuit fermé dans lequel circule une partie du liquide (L) de la réserve à fonction de fluide caloporteur.
28. Installation comportant au moins deux installations amont (11 ) et aval (12) de récupération de calories dans un flux gazeux (F) qui sont conformes à l'une quelconque des revendications 24 à 27, et qui sont montées en cascade, de telle sorte que le flux gazeux (F') sortant du dispositif de l'installation amont (11 ) est au moins en partie, et de préférence dans sa totalité, utilisé comme flux gazeux
(F) entrant du dispositif de l'installation aval (12).
29. Procédé de chauffage et/ou de refroidissement et/ou d'humidification et/ou de déshumidification d'un local, au moyen d'au moins un dispositif, qui est visé à l'une quelconque des revendications 1 à 23, et qui est agencé de telle sorte que le flux gazeux (F) entrant qui est introduit dans l'enceinte (10) du dispositif est un flux d'air et le flux d'air (F') sortant du dispositif est introduit à l'intérieur du local.
30. Procédé selon la revendication 29, dans lequel le flux d'air (F) entrant qui est introduit dans l'enceinte (10) provient au moins en partie de l'extérieur du local.
31 . Procédé selon l'une quelconque des revendications 29 ou 30, dans lequel le flux d'air (F) entrant qui est introduit dans l'enceinte (10) provient au moins en partie de l'intérieur du local.
32. Procédé de production d'un flux gazeux (F'), et notamment d'un flux d'air, à partir d'un flux gazeux (F) entrant, et notamment d'un flux d'air entrant, dans lequel on utilise une installation visée à l'une quelconque des revendications 24 à 28, et on utilise pour le chauffage une partie au moins des calories captées dans la réserve (1 1 ) de liquide.
33. Procédé de récupération de calories dans l'air d'un local ou de déshumidification d'un local avec récupération de calories, au moyen d'une installation visée à l'une quelconque des revendications 24 à 28, dans lequel le flux gazeux (F) entrant qui est introduit dans l'enceinte (10) du dispositif de l'installation est un flux d'air provenant au moins en partie de l'intérieur du local.
34. Procédé selon la revendication 33, dans lequel le flux d'air (F') sortant du dispositif est au moins en partie introduit à l'intérieur du local, après éventuellement avoir été chauffé.
35. Procédé selon la revendication 33, dans lequel flux d'air (F') sortant du dispositif est au moins en partie introduit à l'intérieur du local, après avoir été chauffé au moyen du système de récupération d'énergie (2") de l'installation.
36. Procédé de création d'une zone tampon à l'intérieur d'un local dans laquelle l'humidité et/ou la teneur en poussières est contrôlée, caractérisé en ce qu'on utilise un dispositif visé l'une quelconque des revendication 1 à 23 qui est agencé de telle sorte que le flux de gaz (F') entrant dans l'enceinte (10) du dispositif est un flux d'air provenant au moins en partie de l'extérieur du local, et dans lequel le flux d'air (F') sortant de l'enceinte (10) du dispositif est introduit au moins en partie dans le local.
37. Procédé selon la revendication 36, dans lequel le flux d'air (F') sortant de l'enceinte (10) du dispositif est chauffé avant son introduction dans le local.
38. Procédé de filtrage et/ou dépollution d'un flux gazeux, et notamment d'un flux d'air, au moyen d'au moins un dispositif, qui est visé à l'une quelconque des revendications 1 à 23, ou d'une installation visée à l'une quelconque des revendications 24 à 28, de telle sorte qu'un flux gazeux (F) entrant contenant des particules et/ou des polluants est introduit dans l'enceinte (10) du dispositif et qu'une partie au moins de ces particules et/ou polluants est captée dans le liquide (L) de la réserve (1 1 ) du dispositif.
39. Procédé selon la revendication 38, dans lequel le flux gazeux (F) entrant contient des fumées industrielles, et notamment des fumées industrielles à haute température.
40. Installation permettant la récupération de calories dans un flux gazeux (F) entrant et comportant un dispositif de production et de traitement dudit flux gazeux (F) entrant et un système (2 ; 2' ; 2") de récupération d'énergie, ledit dispositif comportant une enceinte (10), qui contient un volume (V) de liquide dont la température (Tiiquide ) est inférieure à la température (Tinmaie) du flux gazeux (F) entrant dans l'enceinte (10), et qui comporte au moins une ouverture d'évacuation (10g) d'un flux gazeux positionnée au- dessus de la surface (S) dudit volume liquide (V), ledit dispositif comportant en outre des moyens (121 ) de production et d'injection d'un flux gazeux qui permettent en fonctionnement de créer et d'introduire le flux gazeux (F) entrant, en provenance de l'extérieur de l'enceinte (10), dans ledit volume (V) de liquide contenu dans l'enceinte, au-dessous de la surface (S) dudit volume (V) de liquide, et de telle sorte qu'un flux gazeux (F') sortant, traité par contact direct avec ledit volume de liquide (V) remonte à l'intérieur de l'enceinte (10) et est évacué en dehors de ladite enceinte (10) en passant à travers l'ouverture d'évacuation (10g) de l'enceinte, ledit système (2 ; 2' ; 2") de récupération d'énergie permettant de récupérer une partie au moins des calories captées dans le liquide (L), caractérisée en ce que les moyens (121 ) de production et d'injection d'un flux gazeux comportent au moins un conduit d'injection (120), dont une partie inférieure (120a) est plongée dans le volume (V) de liquide contenu dans l'enceinte, et se prolonge en partie supérieure à l'intérieur de l'enceinte (10) en dehors dudit volume (V) de liquide, ledit conduit d'injection (120) comportant, dans sa partie inférieure immergée, au moins une ouverture d'évacuation (120c) positionnée au-dessous de la surface (S) dudit volume (V) de liquide, et en ce que les moyens (121 ) de production et d'injection d'un flux gazeux comportent un compresseur (121 a) et permettent de créer et d'introduire dans la partie non immergée dudit tube d'injection ledit flux gazeux (F) entrant avec un débit d'au moins 100m3/h.
Installation selon la revendication 40, dans laquelle la partie inférieure (10e) de l'enceinte (10) est plongée dans une réserve (1 1 ) de liquide (L) et comporte au moins une ouverture d'admission de liquide (10d), qui permet de faire communiquer la partie inférieure de l'enceinte avec la réserve de liquide, de telle sorte que la partie inférieure immergée (10e) de l'enceinte contient ledit volume (V) de liquide.
42. Installation selon la revendication 41 , dans laquelle le compresseur (121 a) est raccordé à la partie (120b) non immergée du conduit d'injection (120) ou à l'ouverture d'évacuation (10g) de l'enceinte (10).
43. Installation selon l'une quelconque des revendications 41 ou 42, dans laquelle la réserve (1 1 ) de liquide (L) est ouverte en partie supérieure.
44. Installation selon l'une quelconque des revendications 41 ou 42, dans laquelle la réserve (1 1 ) de liquide (L) comporte un bac ouvert en partie supérieur.
45. Installation selon l'une quelconque des revendications 41 à 44, dans laquelle lesdits moyens de production et d'injection d'un flux gazeux (F) permettent en fonctionnement de créer et d'introduire ledit flux gazeux (F) entrant, en provenance de l'extérieur de l'enceinte (10), dans la partie (120b) non immergée du conduit d'injection (120), sans modifier la pression extérieure au-dessus du liquide (L) de la réserve (1 1 ) à l'extérieur de l'enceinte (10).
46. Installation selon l'une quelconque des revendications 41 à 45, dans laquelle la réserve (1 1 ) de liquide, à l'extérieur de l'enceinte
(10), est à la pression atmosphérique, y compris pendant le fonctionnement des moyens de production et d'injection du flux gazeux (F) entrant.
47. Installation selon l'une quelconque des revendications 41 à 46 dans laquelle l'ouverture d'évacuation (120c) du conduit d'injection (120) est positionnée au même niveau que l'ouverture d'admission de liquide (10d) de la partie inférieure immergée (10e) de l'enceinte (10) ou au au-dessus du niveau de l'ouverture d'admission de liquide (10d) de la partie inférieure immergée (10e) de l'enceinte (10).
48. Installation selon l'une quelconque des revendications 40 à 47, dans laquelle le flux gazeux (F) est introduit dans ledit volume (V) de liquide en étant dirigé vers le bas.
49. Installation selon l'une quelconque des revendications 40 à 48, dans laquelle le système (2 ; 2") de récupération d'énergie comporte un circuit fermé (20) dans lequel circule un fluide caloporteur, et qui comprend un évaporateur (21 ou 26a) permettant un échange thermique avec le liquide (L).
50. Installation selon la revendication 49, dans laquelle l'évaporateur (21 ou 26a) est plongé dans le liquide (L).
51 . Installation selon l'une quelconque des revendications 40 à 50, dans laquelle le système de récupération d'énergie (2') comporte un circuit fermé dans lequel circule une partie du liquide (L) à fonction de fluide caloporteur.
52. Installation selon l'une quelconque des revendications 40 à 51 , dans laquelle l'enceinte (10) comporte une ou plusieurs chicanes
(14 ; 14' ; 14"), qui permettent de faire circuler le flux gazeux (F') sortant du volume (V) de liquide jusqu'à l'ouverture d'évacuation (10g), en lui faisant subir un ou plusieurs changements de direction, de manière à empêcher la projection de liquide par l'ouverture d'évacuation (10g).
53. Installation selon la revendication 52, dans laquelle chaque chicane (14, 14', 14") est une plaque qui est fixée à l'intérieur de l'enceinte en étant en contact étanche sur toute sa périphérie avec l'enceinte (10), et qui comporte au moins une ouverture traversante (141 ) pour le passage du flux gazeux (F') sortant à travers la plaque.
54. Installation selon la revendication 53, comportant plusieurs chicanes (14, 14', 14") dont les ouvertures traversantes (141 ) ne sont pas alignées avec l'ouverture d'évacuation d'air (101 ) de l'enceinte (10).
55. Installation selon l'une quelconque des revendications 53 ou 54, dans laquelle chaque chicane (14, 14', 14") comporte une ouverture traversante (140) pour le passage du conduit d'injection (120), et le conduit d'injection (120) est passé à travers ladite ouverture traversante (140) de chaque chicane (14, 14', 14"), en étant en contact étanche sur toute sa périphérie extérieure avec la chicane au niveau de chaque ouverture traversante.
56. Installation selon l'une quelconque des revendications 40 à 55, dans laquelle la profondeur d'immersion (H1 ) du conduit d'injection (120) est inférieure à la hauteur (H2) du volume (V) de liquide dans l'enceinte (10) en dehors du conduit d'injection (120).
57. Installation selon l'une quelconque des revendications 40 à 56, dans laquelle la profondeur d'injection (H1 ) du flux gazeux (F) entrant dans le volume (V) de liquide est comprise entre 20mm et 200mm, et de préférence entre 30mm et 50mm.
58. Installation selon l'une quelconque des revendications 40 à 57, dans laquelle la hauteur (H2) du volume (V) de liquide dans l'enceinte (10), en dehors du conduit d'injection (120), est inférieure à 500mm, et de préférence supérieure à 40mm.
59. Installation selon l'une quelconque des revendications 40 à 58, dans laquelle les moyens de production et d'injection (121 ) d'un flux gazeux permettent de créer et d'introduire ledit flux gazeux (F) entrant avec un débit d'au moins 1000m3/h, et plus particulièrement avec un débit d'au moins 10000 m3/h.
60. Installation selon l'une quelconque des revendications 40 à 59, dans laquelle le ratio entre le débit du flux gazeux (F) entrant dans l'enceinte (10) et le volume (V) de liquide contenu dans l'enceinte
(10) est supérieur à 104 lr1.
61 . Installation selon l'une quelconque des revendications 40 à 60, dans lequel le liquide (L) est de l'eau.
62. Installation selon l'une quelconque des revendications 40 à 61 , dans lequel le liquide (L) est un liquide dont la température de solidification à la pression atmosphérique est inférieure à 0°C.
63. Installation comportant au moins deux installations amont (11 ) et aval (12) de récupération de calories dans un flux gazeux (F) qui sont conformes à l'une quelconque des revendications 40 à 62, et qui sont montées en cascade, de telle sorte que le flux gazeux (F') sortant du dispositif de l'installation amont (11 ) est au moins en partie, et de préférence dans sa totalité, utilisé comme flux gazeux (F) entrant du dispositif de l'installation aval (12).
64. Procédé de production d'un flux gazeux (F'), et notamment d'un flux d'air, à partir d'un flux gazeux (F) entrant, et notamment d'un flux d'air entrant, dans lequel on utilise une installation visée à l'une quelconque des revendications 40 à 63, et on utilise pour le chauffage une partie au moins des calories captées dans le liquide
C-J- Gô. Procédé de récupération de calories dans l'air d'un local ou de déshumidification d'un local avec récupération de calories, au moyen d'une installation visée à l'une quelconque des revendications 40 à 63, dans lequel le flux gazeux (F) entrant qui est introduit dans l'enceinte (10) du dispositif de l'installation est un flux d'air provenant au moins en partie de l'intérieur du local.
66. Procédé selon la revendication 65, dans lequel le flux d'air (F') sortant du dispositif est au moins en partie introduit à l'intérieur du local, après éventuellement avoir été chauffé.
67. Procédé selon la revendication 65, dans lequel le flux d'air (F') sortant du dispositif est au moins en partie introduit à l'intérieur du local, après avoir été chauffé au moyen du système de récupération d'énergie (2") de l'installation.
68. Procédé de création d'une zone tampon à l'intérieur d'un local dans laquelle l'humidité et/ou la teneur en poussières est contrôlée, caractérisé en ce qu'on utilise une installation visée l'une quelconque des revendications 40 à 63, le dispositif de l'installation étant agencé de telle sorte que le flux de gaz (F') entrant dans l'enceinte (10) du dispositif est un flux d'air provenant au moins en partie de l'extérieur du local, et le flux d'air (F') sortant de l'enceinte (10) du dispositif est introduit au moins en partie dans le local.
69. Procédé selon la revendication 68, dans lequel le flux d'air (F') sortant de l'enceinte (10) du dispositif est chauffé avant son introduction dans le local.
70. Procédé de filtrage et/ou dépollution d'un flux gazeux, et notamment d'un flux d'air, au moyen d'une installation visée à l'une quelconque des revendications 40 à 63, et dans lequel un flux gazeux (F) entrant contenant des particules et/ou des polluants est introduit dans l'enceinte (10) du dispositif de l'installation et une partie au moins de ces particules et/ou polluants est captée dans le liquide (L) du dispositif.
71 . Procédé selon la revendication 70, dans lequel le flux gazeux (F) entrant contient des fumées industrielles, et notamment des fumées industrielles à haute température.
72. Installation permettant la récupération de calories dans un flux gazeux (F) entrant et comportant un dispositif de production et de traitement dudit flux gazeux (F) entrant et un système (2 ; 2' ; 2") de récupération d'énergie, ledit dispositif comportant une enceinte
(10), qui contient un volume (V) de liquide dont la température (Tiiquide ) est inférieure à la température (Tinmaie) du flux gazeux (F) entrant dans l'enceinte (10), et qui comporte au moins une ouverture d'évacuation (10g) d'un flux gazeux positionnée au- dessus de la surface (S) dudit volume liquide (V), ledit dispositif comportant en outre des moyens (121 ) de production et d'injection d'un flux gazeux qui permettent en fonctionnement de créer et d'introduire le flux gazeux (F) entrant, en provenance de l'extérieur de l'enceinte (10), dans ledit volume (V) de liquide contenu dans l'enceinte, au-dessous de la surface (S) dudit volume (V) de liquide, et de telle sorte qu'un flux gazeux (F') sortant, traité par contact direct avec ledit volume de liquide (V) remonte à l'intérieur de l'enceinte (10) et est évacué en dehors de ladite enceinte (10) en passant à travers l'ouverture d'évacuation (10g) de l'enceinte, et ledit système (2 ; 2' ; 2") permettant de récupérer une partie au moins des calories captées dans le liquide (L), caractérisée en ce que l'enceinte (10) comporte une ou plusieurs chicanes (14 ; 14' ; 14"), qui permettent de faire circuler le flux gazeux (F') sortant du volume (V) de liquide jusqu'à l'ouverture d'évacuation (10g), en lui faisant subir un ou plusieurs changements de direction, de manière à empêcher la projection de liquide par l'ouverture d'évacuation (10g).
73. Installation selon la revendication 72, dans laquelle chaque chicane (14, 14', 14") est une plaque qui est fixée à l'intérieur de l'enceinte en étant en contact étanche sur toute sa périphérie avec l'enceinte (10), et qui comporte au moins une ouverture traversante (141 ) pour le passage du flux gazeux (F') sortant à travers la plaque.
74. Installation selon la revendication 73, comportant plusieurs chicanes (14, 14', 14") dont les ouvertures traversantes (141 ) ne sont pas alignées avec l'ouverture d'évacuation d'air (101 ) de l'enceinte (10).
75. Installation selon l'une quelconque des revendications 72 à 74, dans laquelle les moyens (121 ) de production et d'injection d'un flux gazeux comportent au moins un conduit d'injection (120), dont une partie inférieure (120a) est plongée dans le volume (V) de liquide contenu dans l'enceinte, et se prolonge en partie supérieure à l'intérieur de l'enceinte (10) en dehors dudit volume (V) de liquide, ledit conduit d'injection (120) comportant, dans sa partie inférieure immergée, au moins une ouverture d'évacuation (120c) positionnée au-dessous de la surface (S) dudit volume (V) de liquide.
76. Installation selon la revendication 75, dans laquelle chaque chicane (14, 14', 14") comporte une ouverture traversante (140) pour le passage du conduit d'injection (120), et le conduit d'injection (120) est passé à travers ladite ouverture traversante (140) de chaque chicane (14, 14', 14"), en étant en contact étanche sur toute sa périphérie extérieure avec la chicane au niveau de chaque ouverture traversante.
77. Installation selon l'une quelconque des revendications 72 à 76, dans laquelle la partie inférieure (10e) de l'enceinte (10) est plongée dans une réserve (1 1 ) de liquide (L) et comporte au moins une ouverture d'admission de liquide (10d), qui permet de faire communiquer la partie inférieure de l'enceinte avec la réserve de liquide, de telle sorte que la partie inférieure immergée (10e) de l'enceinte contient ledit volume (V) de liquide.
78. Installation selon la revendication 77, dans laquelle les moyens (121 ) de production et d'injection d'un flux gazeux comportent un compresseur (121 a) qui est raccordé à la partie (120b) non immergée du conduit d'injection (120) ou à l'ouverture d'évacuation (10g) de l'enceinte (10).
79. Installation selon l'une quelconque des revendications 77 ou 78, dans laquelle la réserve (1 1 ) de liquide (L) est ouverte en partie supérieure.
80. Installation selon l'une quelconque des revendications 77 ou 78, dans laquelle la réserve (1 1 ) de liquide (L) comporte un bac ouvert en partie supérieur.
81 . Installation selon l'une quelconque des revendications 77 à 80, dans laquelle lesdits moyens de production et d'injection d'un flux gazeux (F) permettent en fonctionnement de créer et d'introduire ledit flux gazeux (F) entrant, en provenance de l'extérieur de l'enceinte (10) sans modifier la pression extérieure au-dessus du liquide (L) de la réserve (1 1 ) à l'extérieur de l'enceinte (10).
82. Installation selon l'une quelconque des revendications 77 à 81 , dans laquelle la réserve (1 1 ) de liquide, à l'extérieur de l'enceinte (10), est à la pression atmosphérique, y compris pendant le fonctionnement des moyens de production et d'injection du flux gazeux (F) entrant.
83. Installation selon l'une quelconque des revendications 77 à 82, dans laquelle l'ouverture d'évacuation (120c) du conduit d'injection
(120) est positionnée au même niveau que l'ouverture d'admission de liquide (10d) de la partie inférieure immergée (10e) de l'enceinte (10) ou au au-dessus du niveau de l'ouverture d'admission de liquide (10d) de la partie inférieure immergée (10e) de l'enceinte (10).
84. Installation selon l'une quelconque des revendications 72 à 83, dans laquelle le flux gazeux (F) est introduit dans ledit volume (V) de liquide en étant dirigé vers le bas.
85. Installation selon l'une quelconque des revendications 72 à 84, dans laquelle le système (2 ; 2") de récupération d'énergie comporte un circuit fermé (20) dans lequel circule un fluide caloporteur, et qui comprend un évaporateur (21 ou 26a) permettant un échange thermique avec le liquide (L).
86. Installation selon la revendication 85, dans laquelle l'évaporateur (21 ou 26a) est plongé dans le liquide (L).
87. Installation selon l'une quelconque des revendications 72 à 86, dans laquelle le système de récupération d'énergie (2') comporte un circuit fermé dans lequel circule une partie du liquide (L) à fonction de fluide caloporteur.
88. Installation selon la revendication 75, dans laquelle la profondeur d'immersion (H1 ) du conduit d'injection (120) est inférieure à la hauteur (H2) du volume (V) de liquide dans l'enceinte (10) en dehors du conduit d'injection (120).
89. Installation selon l'une quelconque des revendications 72 à 88, dans laquelle la profondeur d'injection (H1 ) du flux gazeux (F) entrant dans le volume (V) de liquide est comprise entre 20mm et 200mnn, et de préférence entre 30mnn et 50mnn.
90. Installation selon l'une quelconque des revendications 72 à 89, dans laquelle la hauteur (H2) du volume (V) de liquide dans l'enceinte (10), en dehors du conduit d'injection (120), est inférieure à 500mm, et de préférence supérieure à 40mm.
91 . Installation selon l'une quelconque des revendications 72 à 90, dans laquelle les moyens de production et d'injection (121 ) d'un flux gazeux permettent de créer et d'introduire ledit flux gazeux (F) entrant avec un débit d'au moins 100m3/h, plus particulièrement avec un débit d'au moins 1000m3/h, et plus particulièrement encore avec un débit d'au moins 10000 m3/h.
92. Installation selon l'une quelconque des revendications 72 à 91 , dans laquelle le ratio entre le débit du flux gazeux (F) entrant dans l'enceinte (10) et le volume (V) de liquide contenu dans l'enceinte (10) est supérieur à 104 lr1.
93. Installation selon l'une quelconque des revendications 72 à 92, dans lequel le liquide (L) est de l'eau.
94. Installation selon l'une quelconque des revendications 72 à 93, dans lequel le liquide (L) est un liquide dont la température de solidification à la pression atmosphérique est inférieure à 0°C.
95. Installation comportant au moins deux installations amont (11 ) et aval (12) de récupération de calories dans un flux gazeux (F) qui sont conformes à l'une quelconque des revendications 72 à 94, et qui sont montées en cascade, de telle sorte que le flux gazeux (F') sortant du dispositif de l'installation amont (11 ) est au moins en partie, et de préférence dans sa totalité, utilisé comme flux gazeux (F) entrant du dispositif de l'installation aval (12).
96. Procédé de production d'un flux gazeux (F'), et notamment d'un flux d'air, à partir d'un flux gazeux (F) entrant, et notamment d'un flux d'air entrant, dans lequel on utilise une installation visée à l'une quelconque des revendications 72 à 94, et on utilise pour le chauffage une partie au moins des calories captées dans le liquide (L).
97. Procédé de récupération de calories dans l'air d'un local ou de déshumidification d'un local avec récupération de calories, au moyen d'une installation visée à l'une quelconque des revendications 72 à 94, dans lequel le flux gazeux (F) entrant qui est introduit dans l'enceinte (10) du dispositif de l'installation est un flux d'air provenant au moins en partie de l'intérieur du local.
98. Procédé selon la revendication 97, dans lequel le flux d'air (F') sortant du dispositif est au moins en partie introduit à l'intérieur du local, après éventuellement avoir été chauffé.
99. Procédé selon la revendication 97, dans lequel le flux d'air (F') sortant du dispositif est au moins en partie introduit à l'intérieur du local, après avoir été chauffé au moyen du système de récupération d'énergie (2") de l'installation.
100. Procédé de création d'une zone tampon à l'intérieur d'un local dans laquelle l'humidité et/ou la teneur en poussières est contrôlée, caractérisé en ce qu'on utilise une installation visée l'une quelconque des revendications 72 à 94, le dispositif de l'installation étant agencé de telle sorte que le flux de gaz (F') entrant dans l'enceinte (10) du dispositif est un flux d'air provenant au moins en partie de l'extérieur du local, et le flux d'air (F') sortant de l'enceinte (10) du dispositif est introduit au moins en partie dans le local.
101 . Procédé selon la revendication 100, dans lequel le flux d'air (F') sortant de l'enceinte (10) du dispositif est chauffé avant son introduction dans le local.
102. Procédé de filtrage et/ou dépollution d'un flux gazeux, et notamment d'un flux d'air, au moyen d'une installation visée à l'une quelconque des revendications 72 à 94, et dans lequel un flux gazeux (F) entrant contenant des particules et/ou des polluants est introduit dans l'enceinte (10) du dispositif de l'installation et une partie au moins de ces particules et/ou polluants est captée dans le liquide (L) du dispositif.
103. Procédé selon la revendication 102, dans lequel le flux gazeux (F) entrant contient des fumées industrielles, et notamment des fumées industrielles à haute température.
PCT/FR2015/053001 2014-11-06 2015-11-06 Dispositif de production et de traitement d'un flux gazeux a travers un volume de liquide, installation et procédé mettant en oeuvre ce dispositif WO2016071648A2 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
RU2017118195A RU2707462C2 (ru) 2014-11-06 2015-11-06 Устройство для производства и обработки газового потока посредством объема жидкости, установка и способ осуществления этого устройства
AU2015341607A AU2015341607A1 (en) 2014-11-06 2015-11-06 Device for producing and treating a gas stream through a volume of liquid, and facility and method implementing said device
KR1020177014901A KR20170084132A (ko) 2014-11-06 2015-11-06 액체의 체적을 통해 가스 흐름을 생성 및 처리하는 장치와, 상기 장치를 실행하는 설비 및 방법
US15/524,862 US10946326B2 (en) 2014-11-06 2015-11-06 Device for producing and treating a gas stream through a volume of liquid, and facility and method implementing said device
CN201580070244.XA CN107106971B (zh) 2014-11-06 2015-11-06 通过液量产生和处理气体流的装置及使用该装置的设备和方法
JP2017524340A JP2017534832A (ja) 2014-11-06 2015-11-06 一定の体積の液体を通して気体流を生成して処理するための装置並びに前記装置を実行するための設備及び方法
CA2966093A CA2966093C (fr) 2014-11-06 2015-11-06 Dispositif de production et de traitement d'un flux gazeux a travers un volume de liquide, installation et procede mettant en oeuvre ce dispositif
EP15801897.8A EP3215794B1 (fr) 2014-11-06 2015-11-06 Dispositif de production et de traitement d'un flux gazeux à travers un volume de liquide, installation et procédé mettant en oeuvre ce dispositif
SG11201703703SA SG11201703703SA (en) 2014-11-06 2015-11-06 Device for producing and treating a gas stream through a volume of liquid, and facility and method implementing said device
BR112017009345-6A BR112017009345B1 (pt) 2014-11-06 2015-11-06 Dispositivo de produção e de tratamento de um fluxo de gás, instalação, processo de aquecimento ou de resfriamento ou de umidificação ou de desumidificação de um local, processo de produção de um fluxo de gás, processo de recuperação de calorias no ar de um local ou de desumidificação de um local com recuperação de calorias, processo de criação de uma zona tampão no interior de um local e processo de filtragem ou despoluição de um fluxo de gás
ZA2017/03113A ZA201703113B (en) 2014-11-06 2017-05-05 Device for producing and treating a gas stream through a volume of liquid, and facility and method implementing said device
US17/181,028 US11452965B2 (en) 2014-11-06 2021-02-22 Device for producing and treating a gas stream through a volume of liquid, and facility and method implementing said device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1460750A FR3028304B1 (fr) 2014-11-06 2014-11-06 Installation et procede de recuperation de calories dans flux gazeux
FR1460750 2014-11-06
FR1460748 2014-11-06
FR1460748A FR3028189B1 (fr) 2014-11-06 2014-11-06 Dispositif de production et de traitement d'un flux gazeux a travers un volume de liquide, installation et procede mettant en oeuvre ce dispositif

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/524,862 A-371-Of-International US10946326B2 (en) 2014-11-06 2015-11-06 Device for producing and treating a gas stream through a volume of liquid, and facility and method implementing said device
US17/181,028 Continuation US11452965B2 (en) 2014-11-06 2021-02-22 Device for producing and treating a gas stream through a volume of liquid, and facility and method implementing said device

Publications (2)

Publication Number Publication Date
WO2016071648A2 true WO2016071648A2 (fr) 2016-05-12
WO2016071648A3 WO2016071648A3 (fr) 2016-11-17

Family

ID=54708065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/053001 WO2016071648A2 (fr) 2014-11-06 2015-11-06 Dispositif de production et de traitement d'un flux gazeux a travers un volume de liquide, installation et procédé mettant en oeuvre ce dispositif

Country Status (12)

Country Link
US (2) US10946326B2 (fr)
EP (1) EP3215794B1 (fr)
JP (2) JP2017534832A (fr)
KR (1) KR20170084132A (fr)
CN (2) CN107106971B (fr)
AU (1) AU2015341607A1 (fr)
CA (1) CA2966093C (fr)
MA (1) MA40912A (fr)
RU (1) RU2707462C2 (fr)
SG (1) SG11201703703SA (fr)
WO (1) WO2016071648A2 (fr)
ZA (1) ZA201703113B (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018019659A1 (fr) * 2016-07-29 2018-02-01 Algowinn Installation pour la culture en bassin de microorganismes photosynthetiques et notamment de micro-algues
FR3054562A1 (fr) * 2016-07-29 2018-02-02 Algowinn Instalation pour la culture en bassin de microorganismes photosynthetiques et notamment de micro-algues
WO2018122027A1 (fr) 2016-12-27 2018-07-05 Starklab Installation pour la production et le traitement de flux gazeux a travers un volume de liquide
WO2018146123A1 (fr) 2017-02-10 2018-08-16 Starklab Dispositif pour la production et le traitement de flux gazeux a travers un volume de liquide regule automatiquement
WO2019105888A1 (fr) 2017-11-28 2019-06-06 Etex Building Performance International Sas Procédé et agencement de séchage de feuille
WO2020030419A1 (fr) 2018-08-10 2020-02-13 Starklab Dispositif de mise en contact d'un flux gazeux et d'un flux de liquide
WO2022214421A1 (fr) 2021-04-07 2022-10-13 Starklab Systeme de combustion utilisant comme comburant un melange de dioxygene et d'un gaz deshumidifie obtenu a partir des fumees de combustion
WO2023237496A1 (fr) 2022-06-09 2023-12-14 Carbodown Systeme de combustion apte a fonctionner avec un recyclage du gaz de combustion
FR3136518A1 (fr) 2022-06-09 2023-12-15 Starklab Systeme de combustion apte a fonctionner en oxycombustion avec recyclage du gaz de combustion et en combustion classique avec de l’air comme comburant
WO2024141436A1 (fr) 2022-12-29 2024-07-04 Carbodown Systeme de combustion apte a fonctionner avec un recyclage des fumees de combustion

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MA40912A (fr) * 2014-11-06 2017-09-12 Starklab Dispositif de production et de traitement d'un flux gazeux à travers un volume de liquide, installation et procédé mettant en oeuvre ce dispositif

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2138153A (en) * 1936-05-16 1938-11-29 Republic Flow Meters Co Gas-purifying device
US2209775A (en) * 1937-10-12 1940-07-30 Gustav H Karlsteen Air conditioning method and apparatus
US2303757A (en) 1940-08-02 1942-12-01 Fred W Pierson Aerating and cooling device
US2405494A (en) * 1944-03-29 1946-08-06 Cedar Corp N O Air treating apparatus
US2551890A (en) 1950-08-18 1951-05-08 Packaged Gas Equipment Corp Gas scrubber
US2703228A (en) * 1953-12-21 1955-03-01 Air & Refrigeration Corp Household air conditioning unit
US2818326A (en) * 1956-08-07 1957-12-31 Texas Co Method of shutting down the gas generator
US2896927A (en) * 1956-09-26 1959-07-28 Texaco Inc Gas and liquid contacting apparatus
GB905048A (en) * 1959-06-22 1962-09-05 Garrett Corp Improvements relating to cooling devices
FR1397491A (fr) * 1964-03-21 1965-04-30 Kestner App Evaporateurs Procédé de refroidissement de liquides et solides
US3504481A (en) * 1967-12-11 1970-04-07 Agop G Zakarian Air filtering system
US3716045A (en) * 1969-05-03 1973-02-13 Siegener Ag Heat exchanger
JPS523766B2 (fr) * 1972-05-29 1977-01-29
FR2298359A1 (fr) * 1975-01-23 1976-08-20 Bertin & Cie Procede et appareil de mise en contact d'un gaz et d'un liquide
JPS523766A (en) * 1975-06-28 1977-01-12 Ondo Kinzoku Kk Paint recovery and air purification apparatus
US4274845A (en) * 1978-07-12 1981-06-23 Howard Arthur G Air-cleaning, heat-exchange apparatus
US4432777A (en) * 1980-05-02 1984-02-21 The United States Of America As Represented By The United States Department Of Energy Method for removing particulate matter from a gas stream
JPS6242725A (ja) * 1985-08-14 1987-02-24 Iwata Tosouki Kogyo Kk 空気除湿装置
US4771611A (en) * 1985-08-30 1988-09-20 Dricon Air Pty Limited Air conditioning means and method
JPS6269033A (ja) * 1985-09-19 1987-03-30 Fuji Electric Co Ltd 気体の除塵・除菌装置
JPS62106819A (ja) * 1985-11-01 1987-05-18 Tokyo Copal Kagaku Kk エア−クリ−ン法及びその装置
US4697735A (en) 1986-06-27 1987-10-06 John Temple Humidifying hot water heater
US4784216A (en) * 1986-09-08 1988-11-15 Paul E. Bracegirdle Heating and/or drying apparatus
JPH0240202A (ja) * 1988-07-22 1990-02-09 Guenter Krogmann Hans 溶剤蒸気又はその他の凝縮可能な蒸気を扱う設備のための溶剤及び凝縮可能な蒸気の回収方法及び回収装置
JPH03225130A (ja) * 1990-01-31 1991-10-04 Toyoda Gosei Co Ltd 空気調和装置
ATE116272T1 (de) * 1990-02-14 1995-01-15 Tauw Milieu Bv Verfahren zur reinigung von verunreinigtem wasser und vorrichtung zu dessen durchführung.
US5078759A (en) * 1990-10-15 1992-01-07 Kira Alan K Apparatus and method for precipitating particles from a gaseous stream
US5215560A (en) * 1992-02-10 1993-06-01 Lee Nam H Air filtering system
US5308385A (en) * 1992-06-10 1994-05-03 Dennis Winn Pollution abatement apparatus and method
DE4220850C1 (de) 1992-06-25 1993-10-07 Alexander Lerch Verfahren und Vorrichtung zum Entfernen von im wesentlichen festen Bestandteilen aus einem Abgasstrom
DE4314788C1 (de) * 1993-05-05 1994-08-18 Petersen Hugo Verfahrenstech Verfahren zur Herstellung einer Venturibaueinheit für einen Venturiwäscher, Venturibaueinheit sowie Verwendung einer Verturibaueinheit in einem Verturiwäscher
DE4338177C2 (de) * 1993-11-09 1996-12-19 Schnick Hans Juergen Vorrichtung zum Abtrennen von Feststoffen aus Gasströmen und ihre Verwendung
FR2723433A1 (fr) * 1994-08-03 1996-02-09 Syriex Robert Daniel Dispositif destine a filtrer, traiter et refroidir l'air ambiant
DE29518530U1 (de) * 1995-05-03 1996-01-18 Scheel, Arnold, Dipl.-Ing. Univ., 86161 Augsburg Vorrichtung zur Behandlung von Abluft
DE19526980A1 (de) * 1995-07-25 1997-01-30 York Int Gmbh Verfahren und eine Vorrichtung zur Reinigung von Luft
FR2746666A1 (fr) * 1996-03-26 1997-10-03 Durris Andre Dispositif de filtration destine a l'elimination de particules solides en suspension dans l'air
FR2751401B1 (fr) * 1996-07-19 1998-08-28 Commissariat Energie Atomique Systeme de decharge de vapeur a condenseur interne
FR2758612B1 (fr) * 1997-01-21 1999-05-21 Marc Trancart Systeme compact et polyvalent de traitement d'air, par voie humide, pour la climatisation d'habitacles
US5873930A (en) * 1997-08-29 1999-02-23 Sanchez; Angelo Water-air baffle filter
US5908491A (en) * 1997-12-08 1999-06-01 Hobbs; Roy Air cleaner
EP0940172A1 (fr) * 1998-02-25 1999-09-08 Ammonia Casale S.A. Procédé pour réaliser le transfert de matière entre une phase liquide et une phase gazeuse
GB9825812D0 (en) * 1998-11-25 1999-01-20 Univ Dundee Method and apparatus for removing particles
US6322763B1 (en) * 1998-12-15 2001-11-27 Teco, Inc. Method and apparatus for removing carbonyl sulfide from a gas stream via wet scrubbing
WO2001024909A1 (fr) * 1999-10-07 2001-04-12 Peletex, Inc. Procede et dispositif de filtrage d'un flux d'air a l'aide d'une ecume aqueuse
US6391093B1 (en) * 2000-01-24 2002-05-21 Delphi Technologies, Inc. Welding filtration system
EP1299310A4 (fr) * 2000-05-19 2006-07-05 Watermaid Pty Ltd Entretien d'une tour de refroidissement
DE50010871D1 (de) * 2000-05-31 2005-09-08 Schilling Heinz Kg Oberflächen-Verdunstungsbefeuchter
US6572689B2 (en) * 2001-09-27 2003-06-03 American Standard International Inc. Vapor/liquid separator for an absorption chiller
DE10153452B4 (de) 2001-11-04 2006-11-30 Fritz Curtius Wärmetauscher für Kühlanlagen
US6761756B1 (en) * 2002-04-23 2004-07-13 Sandy Gomez Air purification system for a central air conditioning unit
US7077892B2 (en) * 2003-11-26 2006-07-18 Lee David B Air purification system and method
US7156895B2 (en) * 2004-01-07 2007-01-02 David Rubin Air cleaning system
US20050274257A1 (en) * 2004-06-10 2005-12-15 David Reznik Air purification
EP1894074A4 (fr) 2005-06-13 2010-05-19 Sigma Systems Corp Procedes et appareil permettant d'optimiser l'humidite de l'environnement
JP4925613B2 (ja) 2005-06-22 2012-05-09 株式会社ニコテック 湿式集塵装置
WO2008005080A2 (fr) * 2006-03-28 2008-01-10 Peletex, Inc. procédé et moyen de générer simultanément une mousse aqueuse et de nombreuses microgouttelettes pour utilisation dans le filtrage d'un courant d'air contaminé
DE102006037718A1 (de) * 2006-08-03 2008-02-07 Erwin Hölle Anlage zum Waschen und Kühlen von Rohgas
WO2008062845A1 (fr) * 2006-11-22 2008-05-29 Kaisui Chemical Industry Co., Ltd. Procédé de refroidissement / refroidissement à l'air destiné à une structure
US20120318009A1 (en) * 2007-01-19 2012-12-20 Heartland Technology Partners Llc Cooling tower
US20080271603A1 (en) * 2007-05-04 2008-11-06 The Dial Corporation Air purification system and method of purifying air
US7549418B1 (en) * 2008-03-23 2009-06-23 Moorman William E Method and device for capture, storage and recirculation of heat energy
FI121409B (fi) * 2008-06-19 2010-11-15 Outotec Oyj Menetelmä ja laitteisto prosessikaasussa olevan veden tiivistämiseksi ja kaasun pesemiseksi
US8066947B2 (en) * 2009-06-16 2011-11-29 Niazi Sarfaraz K Air scrubbing system
US8206495B2 (en) * 2009-06-23 2012-06-26 Sam Yung Kwack Gas filtration system
US20100325956A1 (en) * 2009-06-30 2010-12-30 General Electric Company Cooling chamber assembly for a gasifier
US9028569B2 (en) * 2009-06-30 2015-05-12 General Electric Company Gasification quench chamber and scrubber assembly
US8986403B2 (en) 2009-06-30 2015-03-24 General Electric Company Gasification system flow damping
JP4659912B2 (ja) * 2009-07-03 2011-03-30 有限会社イトートーヨーサービス 湿式集塵装置
US7988909B1 (en) * 2010-05-20 2011-08-02 Ying Gang Ruan Method and apparatus for conditioning room air
KR20130086925A (ko) * 2010-06-21 2013-08-05 에드워즈 가부시키가이샤 가스 처리 시스템
EP2436402A1 (fr) * 2010-09-29 2012-04-04 Iwao Hishida Méthode et dispositif pour la purification d'air
WO2012068588A1 (fr) * 2010-11-19 2012-05-24 Brigham Young University Systèmes et procédés de séparation de vapeurs condensables provenant de gaz par échange de chaleur par contact direct
CN103380274B (zh) * 2010-11-23 2016-08-24 梁紫华 一种节能防止滥喷污水的气体净化装置和方法
CN103502741B (zh) * 2011-09-14 2015-12-09 韩国食品研究院 利用纳米蒸汽的强制蒸发式加湿器
US9638417B2 (en) * 2014-01-13 2017-05-02 Umm Al-Qura University Apparatus and method for reducing air pollution from exhaust
MA40912A (fr) * 2014-11-06 2017-09-12 Starklab Dispositif de production et de traitement d'un flux gazeux à travers un volume de liquide, installation et procédé mettant en oeuvre ce dispositif
US10456736B2 (en) * 2015-10-19 2019-10-29 Paloza Llc Method and apparatus for purification and treatment of air

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3054562A1 (fr) * 2016-07-29 2018-02-02 Algowinn Instalation pour la culture en bassin de microorganismes photosynthetiques et notamment de micro-algues
WO2018019659A1 (fr) * 2016-07-29 2018-02-01 Algowinn Installation pour la culture en bassin de microorganismes photosynthetiques et notamment de micro-algues
JP2020503487A (ja) * 2016-12-27 2020-01-30 スタルクラブ 液体に通して気体流を生成して処理するための設備
WO2018122027A1 (fr) 2016-12-27 2018-07-05 Starklab Installation pour la production et le traitement de flux gazeux a travers un volume de liquide
KR102511423B1 (ko) 2016-12-27 2023-03-17 스탈크랩 액체 부피를 통한 기체 스트림의 제조 및 처리를 위한 설비
US11353223B2 (en) 2016-12-27 2022-06-07 Starklab Facility for producing and treating a gas stream through a volume of liquid
JP7057362B2 (ja) 2016-12-27 2022-04-19 スタルクラブ 液体に通して気体流を生成して処理するための設備
KR20190102193A (ko) * 2016-12-27 2019-09-03 스탈크랩 액체 부피를 통한 기체 스트림의 제조 및 처리를 위한 설비
CN110300873A (zh) * 2016-12-27 2019-10-01 斯塔克拉博公司 通过液体量来产生和处理气体流的设备
RU2741950C2 (ru) * 2016-12-27 2021-02-01 Старклаб Установка для получения и обработки потока газа посредством объема жидкости
CN110267737A (zh) * 2017-02-10 2019-09-20 斯塔克拉博公司 用于通过自动调节的液体体积制备和处理气流的设备
KR102478818B1 (ko) 2017-02-10 2022-12-20 스탈크랩 자동 제어되는 액체 부피를 통한 기체 스트림의 제조 및 처리를 위한 장치
US11547966B2 (en) 2017-02-10 2023-01-10 Starklab Device for producing and treating a gas stream through an automatically controlled volume of liquid
JP2020507465A (ja) * 2017-02-10 2020-03-12 スタルクラブ 気体流を生成して液体の自動的に制御された体積に通して処理するための装置
KR20190111960A (ko) * 2017-02-10 2019-10-02 스탈크랩 자동 제어되는 액체 부피를 통한 기체 스트림의 제조 및 처리를 위한 장치
RU2751198C2 (ru) * 2017-02-10 2021-07-12 Старклаб Устройство для создания и обработки газового потока путем его пропускания через автоматически регулируемый объем жидкости
CN110267737B (zh) * 2017-02-10 2021-09-10 斯塔克拉博公司 用于通过自动调节的液体体积制备和处理气流的设备
WO2018146123A1 (fr) 2017-02-10 2018-08-16 Starklab Dispositif pour la production et le traitement de flux gazeux a travers un volume de liquide regule automatiquement
JP7065865B2 (ja) 2017-02-10 2022-05-12 スタルクラブ 気体流を生成して液体の自動的に制御された体積に通して処理するための装置
FR3062799A1 (fr) * 2017-02-10 2018-08-17 Starklab Dispositif pour la production et le traitement de flux gazeux a travers un volume de liquide regule automatiquement
WO2019105888A1 (fr) 2017-11-28 2019-06-06 Etex Building Performance International Sas Procédé et agencement de séchage de feuille
WO2020030419A1 (fr) 2018-08-10 2020-02-13 Starklab Dispositif de mise en contact d'un flux gazeux et d'un flux de liquide
US11654391B2 (en) 2018-08-10 2023-05-23 Starklab Device for bringing a gas stream and a liquid stream into contact
FR3084843A1 (fr) 2018-08-10 2020-02-14 Starklab Dispositif de mise en contact d'un flux gazeux et d'un flux de liquide
FR3121736A1 (fr) 2021-04-07 2022-10-14 Starklab Systeme de combustion utilisant comme comburant un melange de dioxygene et d’un gaz deshumidifie obtenu a partir des fumees de combustion
WO2022214421A1 (fr) 2021-04-07 2022-10-13 Starklab Systeme de combustion utilisant comme comburant un melange de dioxygene et d'un gaz deshumidifie obtenu a partir des fumees de combustion
WO2023237496A1 (fr) 2022-06-09 2023-12-14 Carbodown Systeme de combustion apte a fonctionner avec un recyclage du gaz de combustion
FR3136518A1 (fr) 2022-06-09 2023-12-15 Starklab Systeme de combustion apte a fonctionner en oxycombustion avec recyclage du gaz de combustion et en combustion classique avec de l’air comme comburant
FR3136538A1 (fr) 2022-06-09 2023-12-15 Starklab Systeme de combustion apte a fonctionner avec un recyclage du gaz de combustion
WO2024141436A1 (fr) 2022-12-29 2024-07-04 Carbodown Systeme de combustion apte a fonctionner avec un recyclage des fumees de combustion
FR3144645A1 (fr) 2022-12-29 2024-07-05 Starklab Systeme de combustion apte a fonctionner avec un recyclage des fumees de combustion

Also Published As

Publication number Publication date
BR112017009345A2 (pt) 2017-12-19
JP7165171B2 (ja) 2022-11-02
WO2016071648A3 (fr) 2016-11-17
ZA201703113B (en) 2019-03-27
EP3215794B1 (fr) 2024-07-03
CA2966093C (fr) 2023-09-26
MA40912A (fr) 2017-09-12
RU2017118195A3 (fr) 2019-06-24
US10946326B2 (en) 2021-03-16
RU2017118195A (ru) 2018-12-06
CA2966093A1 (fr) 2016-05-12
CN112999829A (zh) 2021-06-22
EP3215794A2 (fr) 2017-09-13
US11452965B2 (en) 2022-09-27
CN107106971A (zh) 2017-08-29
SG11201703703SA (en) 2017-06-29
JP2017534832A (ja) 2017-11-24
JP2021001725A (ja) 2021-01-07
EP3215794C0 (fr) 2024-07-03
AU2015341607A1 (en) 2017-05-25
RU2707462C2 (ru) 2019-11-26
CN107106971B (zh) 2021-03-30
US20210197113A1 (en) 2021-07-01
KR20170084132A (ko) 2017-07-19
US20170320006A1 (en) 2017-11-09

Similar Documents

Publication Publication Date Title
CA2966093C (fr) Dispositif de production et de traitement d'un flux gazeux a travers un volume de liquide, installation et procede mettant en oeuvre ce dispositif
CA2932511C (fr) Dispositif de production d'un flux d'air a travers un volume de liquide
BE1025321A1 (nl) Inrichting en werkwijze voor het drogen van een vochtig gecomprimeerd gas en een compressorinstallatie voorzien van zulke inrichting
FR3028304B1 (fr) Installation et procede de recuperation de calories dans flux gazeux
US8888897B2 (en) Method and apparatus for handling gases
FR3028189A1 (fr) Dispositif de production et de traitement d'un flux gazeux a travers un volume de liquide, installation et procede mettant en oeuvre ce dispositif
EP2668457B1 (fr) Procede et dispositif de traitement thermique du bois avec des gaz deshydrates et depoussieres
FR2678047A1 (fr) Dispositif de traitement des fumees chaudes et polluees, notamment acides, provenant de la combustion du fuel dans une chaudiere industrielle ou de chauffage urbain.
EP3563094B1 (fr) Installation pour la production et le traitement de flux gazeux à travers un volume de liquide
EP3579964B1 (fr) Dispositif pour la production et le traitement de flux gazeux a travers un volume de liquide regule automatiquement
CN205613208U (zh) 工业厂房内除尘装置
FR2510734A1 (fr) Ensemble refroidisseur et epurateur a eau utilisable en association avec un evaporateur de pompe a chaleur
EP0233826A1 (fr) Procédé et dispositif permettant de récupérer la chaleur sur des installations rejetant de l'air chaud chargé de vapeur et d'accroître la productivité de ces installations
FR3144926A1 (fr) Generateur d’eau atmospherique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15801897

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2966093

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2015801897

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15524862

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017524340

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015341607

Country of ref document: AU

Date of ref document: 20151106

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201703703S

Country of ref document: SG

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017009345

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20177014901

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017118195

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017009345

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170503