WO2016068534A1 - 리튬 황 전지 - Google Patents

리튬 황 전지 Download PDF

Info

Publication number
WO2016068534A1
WO2016068534A1 PCT/KR2015/010998 KR2015010998W WO2016068534A1 WO 2016068534 A1 WO2016068534 A1 WO 2016068534A1 KR 2015010998 W KR2015010998 W KR 2015010998W WO 2016068534 A1 WO2016068534 A1 WO 2016068534A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
sulfonated
positive electrode
sulfur battery
electrolyte
Prior art date
Application number
PCT/KR2015/010998
Other languages
English (en)
French (fr)
Inventor
박창훈
장민철
양두경
손병국
최정훈
김택경
송명훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150115013A external-priority patent/KR101725650B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580059497.7A priority Critical patent/CN107078343B/zh
Priority to US15/522,904 priority patent/US10468650B2/en
Priority to JP2017519301A priority patent/JP6917888B2/ja
Priority to EP15855109.3A priority patent/EP3203567B1/en
Publication of WO2016068534A1 publication Critical patent/WO2016068534A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium sulfur battery having reduced safety of the electrode active material, preventing diffusion of lithium polysulfide into the negative electrode, showing improved life characteristics, and having improved safety by suppressing dendrite growth at the negative electrode. will be.
  • Lithium-sulfur battery uses a sulfur-based compound having a sulfur-sulfur bond as a positive electrode active material, and an alkali metal such as lithium, or a carbon-based material in which insertion / deintercalation of metal ions such as lithium ions occurs As a negative electrode active material, wherein the oxidation number of S decreases as the SS bond is broken during the reduction reaction (discharge), and the oxidation of the SS bond is formed again when the oxidation number of S increases during the oxidation reaction (charging). Reduction reactions are used to store and generate electrical energy.
  • the redox reaction of lithium and sulfur in a lithium sulfur battery may be represented by the following reaction formula.
  • lithium metal as an anode has the advantage of being light in weight and excellent in energy density, but has a problem in that cycle life characteristics are deteriorated because of its high reactivity.
  • Such protective films include inorganic protective films and polymer protective films.
  • LiPON Lithium Phosphorus Oxy-Nitride
  • the LiPON passivation layer is formed by sputtering under a nitrogen gas atmosphere.
  • Lithium sulfur battery according to an embodiment of the present invention, the positive electrode and the negative electrode disposed opposite each other; A separator interposed between the positive electrode and the negative electrode; And an electrolyte and further comprising at least one of a film of a lithium ion conductive polymer having a sulfonic acid group (-SO 3 H) and a metal oxide film positioned between the cathode and the separator, positioned between the anode and the separator.
  • a film of a lithium ion conductive polymer having a sulfonic acid group (-SO 3 H) and a metal oxide film positioned between the cathode and the separator, positioned between the anode and the separator.
  • the membrane of the lithium ion conductive polymer having the sulfonic acid group is a copolymer of poly (perfluorosulfonic acid), poly (perfluorocarboxylic acid), sulfonated tetrafluoroethylene and fluorovinyl ether.
  • Sulfonated polyarylene ether Sulfonated polyarylene ether, sulfonated polyarylene ether ketone, sulfonated polyarylene ether ether sulfone, sulfonated polyazole, sulfonated polyvinyl alcohol, sulfonated polyphenylene oxide, sulfonated polyphenylene sulfide , Sulfonated polysulfones, sulfonated polycarbonates, sulfonated polystyrenes, sulfonated polyimides, sulfonated polyamides, sulfonated polyquinoxalines, sulfonated (phosphated) polyphosphazenes, sulfonated polybenzimidazoles and these It may be to include one or more polymers selected from the group consisting of a copolymer.
  • the lithium ion conductive polymer having a sulfonic acid group may be one having a lithium ion conductivity of 1 ⁇ 10 ⁇ 4 S / cm or more.
  • the membrane of the lithium ion conductive polymer having a sulfonic acid group may have a thickness of 0.1 to 10 ⁇ m.
  • the metal oxide film may be colloidal silica, amorphous silica, surface treated silica, colloidal alumina, amorphous alumina, tin oxide, titanium oxide, titanium sulfide, vanadium oxide, zirconium oxide, iron oxide, iron sulfide, iron titanate, barium titanate and It may be one containing a metal oxide selected from the group consisting of a mixture thereof.
  • the metal oxide film may have a thickness of 0.1 to 10 ⁇ m.
  • the electrolyte may include a supersaturated lithium polysulfide (lithium polysulfide).
  • the positive electrode may include a positive electrode active material consisting of an elemental sulfur, a sulfur-based compound, and a mixture thereof.
  • the positive electrode may include carbon paper coated with a carbon-based conductive agent, and the carbon paper may be impregnated with an electrolyte including lithium polysulfide.
  • the anode may be positioned on the carbon paper and the carbon paper, and include a conductive layer including a carbon-based conductive agent, and the carbon paper and the conductive layer may include lithium polysulfide.
  • the lithium sulfur battery according to the present invention exhibits reduced lifespan of the electrode active material, prevents diffusion of lithium polysulfide into the negative electrode, thereby improving life characteristics, and further improves safety by inhibiting dendrite growth in the negative electrode.
  • FIG. 1 is an exploded perspective view of a lithium sulfur battery according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of a lithium sulfur battery according to another embodiment of the present invention.
  • FIG 3 is a graph showing the cycle characteristics of Li 2 S 6 concentration of the battery according to an embodiment of the present invention.
  • FIG. 4 is a graph normalized to FIG. 3.
  • FIG. 5 is a schematic diagram illustrating a test procedure of voltage characteristics for each chain of Li 2 S n in Experimental Example 4 of the present invention.
  • FIG. 6 is a graph showing the battery voltage according to the capacity characteristics of the battery according to Experimental Example 4 of the present invention.
  • Example 7 is a graph showing the discharge capacity characteristics according to the number of cycles of the battery according to Experimental Example 4 of the present invention.
  • the present invention forms a film of a lithium ion conductive polymer having a sulfonic acid end group between a positive electrode and a separator in manufacturing a lithium sulfur battery, thereby preventing lithium polysulfide from diffusing to the negative electrode, thereby improving the life characteristics of the battery. Or by forming a metal oxide film between lithium and the separator to suppress dendrite growth at the negative electrode, thereby improving the safety of the battery, and additionally, the loss of the electrode active material due to the use of an electrolyte saturated with lithium polysulfide. Characterized in that to prevent.
  • the lithium sulfur battery according to an embodiment of the present invention, the positive electrode and the negative electrode which are disposed facing each other; A separator interposed between the positive electrode and the negative electrode; And an electrolyte and further comprising at least one of a film of a lithium ion conductive polymer having a sulfonic acid group (-SO 3 H) and a metal oxide film positioned between the cathode and the separator, positioned between the anode and the separator.
  • a film of a lithium ion conductive polymer having a sulfonic acid group (-SO 3 H) and a metal oxide film positioned between the cathode and the separator, positioned between the anode and the separator.
  • FIG. 1 is a schematic diagram schematically showing the structure of a lithium sulfur battery according to an embodiment of the present invention. 1 is only an example for describing the present invention and the present invention is not limited thereto.
  • a lithium sulfur battery includes a positive electrode 1 and a negative electrode 2 disposed opposite to each other, a separator 3 interposed between the positive electrode and the negative electrode, And a membrane of a lithium ion conductive polymer having an electrolyte and having a sulfonic acid group (-SO 3 H) between the positive electrode 1 and the separator 3 and between the negative electrode 2 and the separator 3, respectively. 5) and at least one film of the metal oxide film 6 optionally further.
  • the sulfonic acid group membrane 5 of the lithium ion conductive polymer having a (-SO 3 H) comprises a sulfonic acid group (-SO 3 H) at the terminal of the polymer chain, wherein Located between the positive electrode 1 and the separator 3 to block the diffusion of lithium polysulfide to the negative electrode 2 to improve battery life characteristics.
  • the membrane 5 of the lithium ion conductive polymer having the sulfonic acid group (-SO 3 H) is tetrafluoro containing a poly (perfluorosulfonic acid), a poly (perfluorocarboxylic acid), and a sulfonic acid group.
  • Sulfonated fluorine hydrocarbon polymers such as ethylene and fluorovinyl ether copolymers; Or sulfonated polyaryleneether (PAE), sulfonated polyaryleneetheretherketone (PAEEK), sulfonated polyaryleneetherethersulfone (PAEES), sulfonated polyazole, sulfonated Polyvinylalcohol (PVA), sulfonated polyphenylene oxide, sulfonated polyphenylene sulfide, sulfonated polysulfone, sulfonated polycarbonate, sulfonated polystyrene, sulfonated polyimide And sulfonated non-fluorinated hydrocarbon polymers such as sulfonated polyamide, sulfonated polyquinoxaline, sulfonated (phosphated) polyphosphazene, or sulfonated polybenzimidazole,
  • the lithium ion conductive polymer having a sulfonic acid group may be preferably a weight average molecular weight of 90,000 to 1,000,000 g / mol.
  • the weight average molecular weight of the lithium ion conductive polymer is less than 90,000 g / mol or more than 1,000,000 g / mol, the improvement effect of using the lithium ion conductive polymer may be insignificant.
  • the lithium ion conductive polymer having a sulfonic acid group preferably has a lithium ion conductivity of 1 ⁇ 10 ⁇ 4 S / cm or more. If the lithium ion conductivity is less than 1 ⁇ 10 ⁇ 4 S / cm, the lithium ion may not move smoothly, and thus an improvement effect due to the film formation of the lithium ion conductive polymer may be insignificant.
  • the membrane 5 of the lithium ion conductive polymer having a sulfonic acid group may have a thickness of 0.1 to 10 ⁇ m.
  • the thickness is less than 0.1 ⁇ m, it is difficult to completely block the contact between the active material and the organic solvent.
  • the thickness is more than 10 ⁇ m, the lithium ion conductivity is low, so that the overvoltage is large, and thus battery characteristics are deteriorated. More preferably, it may be 0.5 to 5 ⁇ m.
  • the metal oxide film 6 is located between the negative electrode 2 and the separator 3 to suppress the growth of the dendrite in the negative electrode 2 to improve the safety of the battery.
  • the metal oxide film 6 is colloidal silica, amorphous silica, surface-treated silica, colloidal alumina, amorphous alumina, tin oxide, titanium oxide, titanium sulfide (TiS 2 ), vanadium oxide, zirconium oxide (ZrO 2 ), Iron oxide (Iron Oxide), iron sulfide (Iron Sulfide, FeS), iron titanate (Iron titanate, FeTiO 3 ), barium titanate (Vanadium titanate, BaTiO 3 ) and mixtures thereof. Can be.
  • the metal oxide film 6 may have a thickness of 0.1 to 10 ⁇ m. If the thickness is less than 0.1 ⁇ m or more than 10 ⁇ m, the improvement effect of forming the metal oxide film 6 may be insignificant.
  • the positive electrode 1 for example, is located on the positive electrode current collector and the positive electrode current collector, and includes a positive electrode active material layer including a positive electrode active material and optionally a conductive agent and a binder. can do.
  • the cathode current collector it may be preferable to use foamed aluminum, foamed nickel, and the like, which have excellent conductivity.
  • the cathode active material layer may include elemental sulfur (S8), a sulfur-based compound, or a mixture thereof as the cathode active material.
  • the positive electrode active material layer further includes a conductive agent for allowing electrons to move smoothly in the positive electrode 1 together with the positive electrode active material, and a binder for increasing the binding force between the positive electrode active material or between the positive electrode active material and the current collector. can do.
  • the conductive agent may be a carbon-based material such as carbon black, acetylene black or Ketjen black; Or it may be a conductive polymer such as polyaniline, polythiophene, polyacetylene, polypyrrole, it may be preferably included in 5 to 20% by weight relative to the total weight of the positive electrode active material layer. If the content of the conductive agent is less than 5% by weight, the conductivity improvement effect according to the use of the conductive agent is insignificant, whereas if it exceeds 20% by weight, the content of the positive electrode active material is relatively small, there is a fear that the capacity characteristics.
  • the binder may be poly (vinyl acetate), polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, alkylated polyethylene oxide, crosslinked polyethylene oxide, polyvinyl ether, poly (methyl methacrylate), poly Vinylidene fluoride, copolymer of polyhexafluoropropylene and polyvinylidene fluoride (trade name: Kynar), poly (ethyl acrylate), polytetrafluoroethylene, polyvinylchloride, polyacrylonitrile, polyvinylpyridine , Polystyrene, derivatives thereof, blends, copolymers and the like can be used.
  • the binder may be preferably contained in 5 to 20% by weight based on the total weight of the positive electrode active material layer.
  • the content of the binder is less than 5% by weight, the effect of improving the binding strength between the positive electrode active material or between the positive electrode active material and the current collector according to the use of the binder is insignificant.However, when the content of the binder exceeds 20% by weight, the content of the positive electrode active material is relatively small, thereby decreasing the capacity characteristics. There is a concern.
  • the positive electrode 1 as described above may be prepared according to a conventional method. Specifically, after the positive electrode active material layer-forming composition prepared by mixing a positive electrode active material, a conductive agent and a binder on an organic solvent, is applied onto a current collector It can be prepared by drying and optionally rolling.
  • the organic solvent may uniformly disperse the positive electrode active material, the binder, and the conductive agent, and it is preferable to use one that is easily evaporated. Specifically, acetonitrile, methanol, ethanol, tetrahydrofuran, water, isopropyl alcohol, etc. are mentioned.
  • the positive electrode (1) is a positive electrode current collector; And a conductive layer positioned on the positive electrode current collector and including a conductive agent and optionally a binder, wherein the positive electrode current collector and the conductive layer may include lithium polysulfide as a liquid positive electrode active material.
  • the positive electrode 1 is prepared by coating a mixture of a conductive agent and a binder selectively on the positive electrode current collector to prepare a positive electrode material, and then to prepare an electrode assembly using the electrolyte, and includes an electrolyte containing supersaturated lithium polysulfide It can be prepared by adding.
  • lithium polysulfide may be inserted between the pores of the cathode material to serve as a cathode.
  • the positive electrode current collector and the conductive agent may be the same as described above, and the positive electrode current collector may be carbon paper, and the conductive agent may be a carbon-based conductive agent such as carbon black.
  • FIG. 2 is a schematic diagram schematically showing the structure of a lithium sulfur battery 200 including the positive electrode 10 having the above configuration. 2 is only an example for describing the present invention and the present invention is not limited thereto.
  • a lithium sulfur battery 200 includes a positive electrode 10 and a negative electrode 20 disposed opposite to each other, and the positive electrode 10 and the negative electrode 20.
  • a membrane of a lithium ion conductive polymer including a separator 30 interposed between the separator 30 and an electrolyte, and positioned between the anode 10 and the separator 30 and having a sulfonic acid group (-SO 3 H). 50 and a metal oxide film 60 positioned between the cathode 30 and the separator 30.
  • the positive electrode 10 includes a carbon paper 11 and a conductive agent 12 including a carbon-based conductive agent such as carbon black, positioned on the carbon paper 11 and the carbon paper 11 as a positive electrode current collector. 11) and lithium polysulfide 13 as a liquid positive electrode active material in the conductive agent 12 may be included.
  • the electrolyte containing lithium polysulfide is poured into the carbon paper 11 coated with the conductive agent 12 such as carbon black without using the sulfur electrode as the positive electrode 10 as in the conventional lithium sulfur battery.
  • the production of the positive electrode 10 is simple and easy, there is no influence by the proportion of the electrode constituents, the final production of the lithium sulfur battery 200 by producing a uniform active material composition This can reduce the deviation from.
  • the negative electrode 20 reacts with a material capable of reversibly intercalating or deintercalating lithium ions and lithium ions as a negative electrode active material, and reversibly reacts with a lithium-containing compound. It may include a material selected from the group consisting of a lithium metal and a lithium alloy.
  • any carbon-based negative electrode active material generally used in lithium sulfur batteries may be used, and specific examples thereof include crystalline carbon and amorphous materials. Carbon or these can be used together.
  • a representative example of a material capable of reacting with lithium ions to reversibly form a lithium-containing compound may include, but is not limited to, tin oxide (SnO 2 ), titanium nitrate, silicon (Si), and the like.
  • the alloy of the lithium metal may be an alloy of lithium with a metal of Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, or Cd.
  • the negative electrode 20 may optionally further include a binder together with the negative electrode active material.
  • the binder serves to paste the negative electrode active material, mutual adhesion between the active materials, adhesion between the active material and the current collector, and buffer effect on the expansion and contraction of the active material. Specifically, the binder is the same as described above.
  • the negative electrode 20 may further include a negative electrode current collector for supporting the negative electrode active layer including the negative electrode active material and the binder.
  • the negative electrode current collector may be specifically selected from the group consisting of copper, aluminum, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof.
  • the stainless steel may be surface treated with carbon, nickel, titanium, or silver, and an aluminum-cadmium alloy may be used as the alloy.
  • calcined carbon, a nonconductive polymer surface-treated with a conductive agent, or a conductive polymer may be used.
  • the cathode 30 may be a thin film of lithium metal.
  • sulfur used as the cathode active material may be converted into an inert material and attached to the surface of the lithium anode.
  • inactive sulfur is sulfur in a state in which sulfur can no longer participate in the electrochemical reaction of the anode through various electrochemical or chemical reactions.
  • inert sulfur formed on the surface of the lithium negative electrode may serve as a protective layer of the lithium negative electrode.
  • the lithium metal and inert sulfur formed on the lithium metal for example lithium sulfide, may be used as the negative electrode 30.
  • the separator 30 is a physical separator having a function of physically separating the electrode, and can be used without particular limitation as long as it is usually used as a separator in a lithium sulfur battery. It is desirable to have low resistance to ion migration of the electrolyte and excellent electrolyte-wetting ability.
  • a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer may be used alone. It may be used as a lamination or or a conventional porous non-woven fabric, for example, a non-woven fabric made of glass fibers, polyethylene terephthalate fibers of high melting point, etc. may be used, but is not limited thereto.
  • the electrolyte may include supersaturation lithium polysulfide.
  • the supersaturation means a state in which the concentration of the solute dissolved in the solvent exceeds the equilibrium value.
  • the lithium polysulfide When the lithium polysulfide is not dissolved in the electrolyte, sulfur alone becomes polysulfide from the positive electrode and dissolves in the electrolyte at the time of discharge, thereby reducing the battery capacity due to the decrease in the positive electrode active material.
  • the lithium polysulfide when the lithium polysulfide is dissolved in the electrolyte in a supersaturated state, the lithium polysulfide (Li 2 S x ) (1 ⁇ x ⁇ 8 ) dissolved in the electrolyte is S 8 2- , S 6 2- , there are uniformly dispersed in the electrolyte in the form of - S 4 2-, S 2 2- , polysulfide ions (S x 2), such as S 2-.
  • the lithium polysulfide may be prepared by adding and mixing a lithium sulfur compound such as Li 2 S and elemental sulfur in an electrolyte.
  • the electrolyte further includes a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent may be a polar solvent such as an aryl compound, bicyclic ether, acyclic carbonate, sulfoxide compound, lactone compound, ketone compound, ester compound, sulfate compound, sulfite compound, and the like.
  • a polar solvent such as an aryl compound, bicyclic ether, acyclic carbonate, sulfoxide compound, lactone compound, ketone compound, ester compound, sulfate compound, sulfite compound, and the like.
  • the non-aqueous organic solvent may be 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, dioxolane (Dioxolane, DOL), 1,4-dioxane, tetra Hydrofuran, 2-methyltetrahydrofuran, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC), ethyl propyl carbonate, dipropyl carbonate, butyl ethyl carbonate, ethyl Propanoate (EP), toluene, xylene, dimethyl ether (dimethyl ether, DME), diethyl ether, triethylene glycol monomethyl ether (TEGME), diglyme, tetraglyme, hexamethyl phosph Hexamethyl phosphoric triamide, gamma butyrolactone (
  • a mixed solvent of triethylene glycol monomethyl ether / dioxolane / dimethyl ether may be more preferable.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in lithium sulfur batteries.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 LiN (C 2 F 5 SO 2 ) 2 (Lithium bis (perfluoroethylsulfonyl) imide, BETI), LiN (CF 3 SO 2 ) 2 (Lithium bis (Trifluoromethanesulfonyl) imide, LiTFSI), LiN (C a F 2a + 1 SO 2 ) (C b F 2b + 1 SO 2 ) (where a and b are natural numbers, preferably 1 ⁇ a ⁇ 20 and 1 ⁇ b ⁇ 20), lithium poly [4,4 ′-
  • the lithium salt may be included at a concentration of 0.6 to 2M in the electrolyte. If the concentration of the lithium salt is less than 0.6M, the conductivity of the electrolyte is lowered and the performance of the electrolyte is lowered. If the concentration of the lithium salt is higher than 2M, the viscosity of the electrolyte is increased to reduce the mobility of lithium ions.
  • the electrolyte further includes additives (hereinafter, referred to as 'other additives') that can be generally used in the electrolyte for the purpose of improving the life characteristics of the battery, suppressing the reduction of the battery capacity, and improving the discharge capacity of the battery. can do.
  • additives hereinafter, referred to as 'other additives'
  • the lithium sulfur batteries 100 and 200 according to the present invention may reduce the loss of the electrode active material, block diffusion of lithium polysulfide into the negative electrode, and exhibit improved life characteristics, and dendrites at the negative electrode. Increased safety due to growth inhibition, portable devices such as mobile phones, notebook computers, digital cameras, camcorders, hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (plug-in) HEV, PHEV) and electric vehicles, and medium to large energy storage system.
  • HEVs hybrid electric vehicles
  • plug-in plug-in hybrid electric vehicles
  • PHEV PHEV
  • a symmetric cell was fabricated using lithium metal (bulk Li: 150 ⁇ m) as an anode, and a lithium thin film-copper thin film (Li foil (40 ⁇ m) —Cu foil (20 ⁇ m)) as a cathode.
  • the effect of the supersaturated lithium polysulfide was indirectly measured by adding as an additive while changing the content of lithium polysulfide to confirm the increase in utilization efficiency of the symmetric battery.
  • Lithium bis (1 M) in an organic solvent composed of triethylene glycol monomethyl ether (TEGDME) / dioxolane (DOL) / dimethyl ether (DME) (mixed volume ratio 1/1/1) as an electrolyte in the symmetric battery.
  • An electrolyte prepared by dissolving trifluoromethanesulfonyl) imide (LiTFSI) and LiNO 3 at a concentration of 0.1 M was used.
  • Sulfur (average particle size: 5 ⁇ m) was mixed in acetonitrile using a conductive agent, a binder, and a ball mill to prepare a composition for forming a cathode active material layer.
  • carbon black was used as the conductive agent and polyethylene oxide (molecular weight 5,000,000 g / mol) was used as the binder, and the mixing ratio was 60:20:20 in the weight ratio of sulfur: conductor: binder.
  • the prepared positive electrode active material layer-forming composition was applied to an aluminum current collector and dried to prepare a positive electrode (energy density of the positive electrode: 1.0 mAh / cm 2).
  • a film (thickness: 0.5 ⁇ m, ion conductivity: 1 ⁇ 10 ⁇ 4 S / cm) of a lithium ion conductive polymer of poly (perfluorosulfonic acid) was formed.
  • a metal oxide film (thickness: 0.5 ⁇ m) containing colloidal silica was formed on a cathode of lithium metal having a thickness of 150 ⁇ m.
  • the prepared anode and the cathode are positioned so that the lithium ion conductive polymer film and the metal oxide film face each other, and then, an electrode assembly is manufactured through a separator of porous polyethylene, the electrode assembly is placed inside the case, and then lithium is inserted into the case.
  • An electrolyte containing polysulfide was injected to prepare a lithium sulfur battery.
  • TEGDME triethylene glycol monomethyl ether
  • DOL dioxolane
  • DME dimethyl ether
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • Li 2 S dilithium sulfide
  • elemental sulfur were added, followed by a magnetic stirrer at 90 ° C. The reaction was performed for 48 hours to synthesize lithium polysulfide (Li 2 S n ) in the electrolyte.
  • a lithium sulfur battery was manufactured in the same manner as in Example 1, except that the metal oxide film was not formed on the cathode.
  • a lithium sulfur battery was manufactured in the same manner as in Example 1, except that a film of the lithium ion conductive polymer was not formed on the cathode.
  • a positive electrode material was prepared by dip coating carbon black on carbon paper (thickness: 142 mu m, fiber diameter: 7 to 7.5 mu m) (82% porosity).
  • a film (thickness: 0.5 mu m, ionic conductivity: 1 ⁇ 10 -4 S / cm) of a lithium ion conductive polymer of poly (perfluorosulfonic acid) was formed on the cathode material.
  • a metal oxide film (thickness: 0.5 ⁇ m) containing colloidal silica was formed on a cathode of lithium metal having a thickness of 150 ⁇ m.
  • the prepared anode and cathode were positioned so that the lithium ion conductive polymer film and the metal oxide film faced each other, and then, an electrode assembly was manufactured through a separator of porous polyethylene, and the electrode assembly was placed inside the case.
  • the lithium sulfur battery was manufactured by injecting an electrolyte including lithium polysulfide into the case.
  • the electrolyte containing lithium polysulfide, 1M concentration in an organic solvent consisting of triethylene glycol monomethyl ether (TEGDME) / dioxolane (DOL) / dimethyl ether (DME) (mixed volume ratio 1/1/1)
  • Lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) was dissolved in an electrolyte prepared by adding dilithium sulfide (Li 2 S) and elemental sulfur (elemental sulfur) and then using a magnetic stirrer at 90 ° C. The reaction was carried out for 48 hours at to prepare lithium polysulfide (Li 2 S n ) in the electrolyte.
  • Sulfur (average particle size: 5 ⁇ m) was mixed in acetonitrile using a conductive agent, a binder, and a ball mill to prepare a composition for forming a cathode active material layer.
  • carbon black was used as the conductive agent and polyethylene oxide (molecular weight 5,000,000 g / mol) was used as the binder, and the mixing ratio was 60:20:20 in the weight ratio of sulfur: conductor: binder.
  • the resulting positive electrode active material layer-forming composition was applied to an aluminum current collector and then dried to prepare a positive electrode (energy density of the positive electrode: 1.0 mAh / cm 2).
  • lithium metal having a thickness of 150 ⁇ m was used as the negative electrode.
  • An electrode assembly was manufactured between the prepared positive electrode and the negative electrode through a separator of porous polyethylene, the electrode assembly was placed in a case, and an electrolyte was injected into the case to prepare a lithium sulfur battery.
  • TEGDME triethylene glycol monomethyl ether
  • DOL dioxolane
  • DME dimethyl ether
  • An electrolyte prepared by dissolving romethanesulfonyl) imide (LiTFSI) was used.
  • Example 4 The positive electrode prepared in Example 4 was observed using a scanning electron microscope. The result is shown in FIG. 3 of Korean Patent Application No. 2015-0115013 (Application Date: August 14, 2015) which is the original application of the present invention.
  • carbon black is dispersed and present on the carbon paper, and lithium polysulfide is filled between the carbon paper and the pores in the carbon black.
  • Example 1 Referring to Figures 3, 4 and Table 3, the discharge capacity characteristics and capacity retention rate of Example 1 are generally good, and the higher the Li 2 S 6 concentration of the electrolyte, the higher the discharge capacity characteristics and capacity retention rate can be confirmed. there was.
  • a cathode material prepared by deep coating carbon black on carbon paper (thickness: 142 ⁇ m, fiber diameter: 7 to 7.5 ⁇ m) is used as a cathode.
  • the positive electrode and the negative electrode were positioned to face each other, and then a test cell was prepared through a separator of porous polyethylene. Thereafter, 40 ⁇ l of polysulfide (Li 2 S n ) catholyte was dropped into the cathode material, and the voltage characteristics of each chain of Li 2 S n were measured.
  • the type of polysulfide and the amount of sulfur (mg) added in 40 ⁇ l of the polysulfide cathode are shown in Table 4 below.
  • the battery voltage according to the capacity-specific capacity characteristics of lithium polysulfide of the cathode system is shown in FIG. 6, and the discharge capacity characteristics of the lithium polysulfide concentration-dependent cycle number of the cathode system are shown in FIG. 7.
  • the electrolyte contains supersaturated lithium polysulfide
  • diffusion of polysulfide ions dissolved from the electrode can be suppressed to reduce active material loss, and polysulfide ions in the vicinity of the electrode are involved in the discharge reaction, thereby improving charge and discharge efficiency and cycle performance.
  • the reaction activity was higher than that of the solid surface. .
  • the present invention relates to a lithium sulfur battery, the battery comprising a positive electrode and a negative electrode disposed opposite each other; A separator interposed between the positive electrode and the negative electrode; And an electrolyte and further comprising at least one of a film of a lithium ion conductive polymer having a sulfonic acid group (-SO 3 H) and a metal oxide film positioned between the cathode and the separator, positioned between the anode and the separator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬 황 전지에 관한 것으로, 상기 전지는 서로 대향 배치되는 양극과 음극; 상기 양극과 음극 사이에 개재되는 세퍼레이터; 및 전해질을 포함하고, 그리고 상기 양극과 세퍼레이터 사이에 위치하며, 술폰산기(-SO3H)를 갖는 리튬이온 전도성 고분자의 막 및 상기 음극과 세퍼레이터 사이에 위치하는 금속산화물막 중 적어도 1 이상의 막을 더 포함함으로써, 전극 활물질의 손실이 감소되고, 리튬 폴리설파이드의 음극으로의 확산이 차단되어 개선된 수명 특성을 나타낼 수 있으며, 또 음극에서의 덴드라이트 성장 억제로 향상된 안전성을 나타낼 수 있다.

Description

리튬 황 전지
본 발명은 전극 활물질의 손실이 감소되고, 리튬 폴리설파이드의 음극으로의 확산이 차단되어 개선된 수명 특성을 나타내며, 또 음극에서의 덴드라이트(dendrite) 성장 억제로 향상된 안전성을 갖는 리튬 황 전지에 관한 것이다.
휴대 전자기기의 발전으로 가볍고 고용량 전지에 대한 요구가 갈수록 증가함에 따라, 이러한 요구를 충족시킬 수 있는 이차 전지로 황계 물질을 양극 활물질로 사용하는 리튬-황 전지에 대한 개발이 활발하게 진행되고 있다.
리튬-황 전지는 황-황 결합(Sulfur-Sulfur bond)을 가지는 황 계열 화합물을 양극 활물질로 사용하고, 리튬과 같은 알카리 금속, 또는 리튬 이온 등과 같은 금속 이온의 삽입/탈삽입이 일어나는 탄소계 물질을 음극 활물질로 사용하는 이차 전지로서, 환원 반응시(방전시) S-S 결합이 끊어지면서 S의 산화수가 감소하고, 산화 반응시(충전시) S의 산화수가 증가하면서 S-S 결합이 다시 형성되는 산화-환원 반응을 이용하여 전기적 에너지를 저장 및 생성한다.
구체적으로, 리튬 황 전지에 있어서 리튬과 황의 산화 환원 반응은 하기 반응식으로 표현될 수 있다.
2Li + S8 (고체) ↔ Li2S8 (용액)
2Li + Li2S8 (용액) ↔ 2Li2S4 (용액)
2Li + Li2S4 (용액) ↔ 2Li2S2 (용액)
2Li + Li2S2 (용액) ↔ 2Li2S (고체 침전물)
상기 반응식을 참조하면, 황과 리튬의 산화 환원 반응시에는 새로운 반응 생성물인 리튬 폴리설파이드(lithium polysulfide)가 생성됨을 알 수 있다. 실제 리튬 황 전지에서 이용할 수 있는 황의 반응 용량은 일부 폴리설파이드의 비가역적 반응 특성으로 인하여 이론 용량의 절반정도인 840mAh/g 정도로 매우 낮다. 그 결과, 황을 양극활물질로 사용하는 리튬 황 전지는 전지 용량이 낮은 문제가 있다.
또, 음극으로서 리튬 금속은 가볍고 에너지 밀도가 우수하다는 장점이 있지만, 반응성이 높기 때문에 사이클 수명 특성이 저하되는 문제가 있다. 이 같은 문제를 해결하기 위해 최근에는 리튬 금속 표면을 보호할 수 있는 보호막 형성에 관한 연구가 진행되고 있다. 이러한 보호막으로는 무기 보호막과 고분자 보호막이 있으며, 이중에서 리튬 이온 전도체인 LiPON(Lithium Phosphorus Oxy-Nitride)이 대표적으로 연구되고 있다. 그러나 상기 LiPON 보호막은 질소 가스 분위기 하에서 스퍼터링 방법으로 형성되는데, 리튬 금속표면에 직접 형성시키고자 할 경우 질소 가스와 리튬 금속이 반응하여 리튬 금속 표면에 결착력이 매우 불량한 검은색의 다공성 리튬 복합 화합물이 부산물로 형성되는 문제가 있었다. 또한 고분자 보호막을 형성하는 경우에도, 보호막 형성시 사용되는 유기 용매와 리튬 금속간의 반응이 발생되는 경우가 있다.
따라서 리튬 황 전지에 있어서 전기화학적 산화환원 반응을 증가시켜 용량을 증가시키기 위한 소재의 개발이 요구된다.
[선행기술문헌]
[특허문헌]
한국등록특허 제10-0385357호 (2003.05.14 등록)
본 발명의 목적은 전극 활물질의 손실이 감소되고, 리튬 폴리설파이드의 음극으로의 확산이 차단되어 개선된 수명 특성을 나타낼 수 있고, 또 음극에서의 덴드라이트 성장 억제로 향상된 안전성을 나타낼 수 있는 리튬 황 전지를 제공하는 것이다.
본 발명의 일 실시예에 따른 리튬 황 전지는, 서로 대향 배치되는 양극과 음극; 상기 양극과 음극 사이에 개재되는 세퍼레이터; 및 전해질을 포함하고, 그리고 상기 양극과 세퍼레이터 사이에 위치하며, 술폰산기(-SO3H)를 갖는 리튬이온 전도성 고분자의 막 및 상기 음극과 세퍼레이터 사이에 위치하는 금속산화물막 중 적어도 1 이상의 막을 더 포함한다,
상기 리튬 황 전지에 있어서, 상기 술폰산기를 갖는 리튬이온 전도성 고분자의 막은 폴리(퍼플루오로설폰산), 폴리(퍼플루오로카르복실산), 설폰화 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 설폰화 폴리아릴렌에테르, 설폰화 폴리아릴렌에테르에테르케톤, 설폰화 폴리아릴렌에테르에테르설폰, 설폰화 폴리아졸, 설폰화 폴리비닐알코올, 설폰화 폴리페닐렌옥사이드, 설폰화 폴리페닐렌 설파이드, 설폰화 폴리설폰, 설폰화 폴리카보네이트, 설폰화 폴리스티렌, 설폰화 폴리이미드, 설폰화 폴리아미드, 설폰화 폴리퀴녹살린, 설폰화 (포스페이티드) 폴리포스파젠, 설폰화 폴리벤즈이미다졸 및 이들의 공중합체로 이루어진 군에서 선택되는 1종 이상의 고분자를 포함하는 것일 수 있다.
또, 상기 술폰산기를 갖는 리튬이온 전도성 고분자는 1X10-4 S/cm 이상의 리튬이온 전도도를 갖는 것일 수 있다.
또, 상기 술폰산기를 갖는 리튬이온 전도성 고분자의 막은 0.1 내지 10㎛의 두께를 갖는 것일 수 있다.
또, 상기 금속산화물막은 콜로이달 실리카, 비정질 실리카, 표면 처리된 실리카, 콜로이달 알루미나, 비정질 알루미나, 틴 옥사이드, 티타늄 옥사이드, 티타늄 설파이드, 바나듐 옥사이드, 지르코늄 옥사이드, 산화철, 황화철, 티탄산 철, 티탄산 바륨 및 이들의 혼합물로 이루어진 군에서 선택되는 금속산화물을 포함하는 것일 수 있다.
또, 상기 금속산화물막은 0.1 내지 10㎛의 두께를 갖는 것일 수 있다.
또, 상기 전해질은 과포화된 리튬 폴리설파이드(lithium polysulfide)를 포함하는 것일 수 있다.
또, 상기 양극은 황 원소, 황 계열 화합물 및 이들의 혼합물로 이루어진 양극 활물질을 포함하는 것일 수 있다.
또, 상기 양극은 탄소계 도전제로 코팅된 카본페이퍼를 포함하고, 상기 카본페이퍼에 리튬 폴리설파이드를 포함하는 전해질이 함침된 것일 수 있다.
또, 상기 양극은 카본페이퍼 및 상기 카본페이퍼 위에 위치하며, 탄소계 도전제를 포함하는 도전제층을 포함하고, 상기 카본페이퍼 및 도전제층이 리튬 폴리설파이드를 포함하는 것일 수 있다.
기타 본 발명의 실시예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
본 발명에 따른 리튬 황 전지는 전극 활물질의 손실이 감소되고, 리튬 폴리설파이드의 음극으로의 확산이 차단되어 개선된 수명 특성을 나타내며, 또 음극에서의 덴드라이트 성장 억제로 향상된 안전성을 나타낸다.
도 1은 본 발명의 일 실시예에 따른 리튬 황 전지의 분해 사시도이다.
도 2는 본 발명의 다른 일 실시예에 따른 리튬 황 전지의 분해 사시도이다.
도 3은 본 발명의 일 실시예에 따른 전지의 Li2S6 농도 별 사이클 특성을 나타낸 그래프이다.
도 4는 상기 도 3을 정규화(normalized)하여 나타낸 그래프이다.
도 5는 본 발명의 실험예 4에서 Li2Sn의 체인별 전압 특성 조사 실험 과정을 나타낸 개요도이다.
도 6은 본 발명의 실험예 4에 따른 전지의 용량특성에 따른 전지전압을 나타낸 그래프이다.
도 7은 본 발명의 실험예 4 에 따른 전지의 사이클 횟수에 따른 방전용량특성을 나타낸 그래프이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, '포함하다' 또는 '가지다' 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 리튬 황 전지의 제조시, 양극과 세퍼레이터 사이에 술폰산 말단기를 갖는 리튬이온 전도성 고분자의 막을 형성하여 리튬 폴리설파이드가 음극으로 확산되는 것을 차단하고, 그 결과로 전지의 수명특성을 개선시키거나, 또는 리튬과 세퍼레이터 사이에 금속산화물막을 형성하여 음극에서의 덴드라이트의 성장(dendrite growth)을 억제하여 전지의 안전성을 향상시키며, 또 추가적으로 리튬 폴리설파이드가 과포화된 전해질의 사용으로 전극 활물질의 손실을 방지하는 것을 특징으로 한다.
즉, 본 발명의 일 실시예에 따른 리튬 황 전지는, 서로 대향 배치되는 양극과 음극; 상기 양극과 음극 사이에 개재되는 세퍼레이터; 및 전해질을 포함하고, 그리고 상기 양극과 세퍼레이터 사이에 위치하며, 술폰산기(-SO3H)를 갖는 리튬이온 전도성 고분자의 막 및 상기 음극과 세퍼레이터 사이에 위치하는 금속산화물막 중 적어도 1 이상의 막을 더 포함한다.
도 1은 본 발명의 일 실시예에 따른 리튬 황 전지의 구조를 개략적으로 나타낸 모식도이다. 도 1은 본 발명을 설명하기 위한 일 예일뿐 본 발명이 이에 한정되는 것은 아니다.
이하 도 1을 참조하여 설명하면, 본 발명의 일 실시예에 따른 리튬 황 전지는 서로 대향 배치되는 양극(1)과 음극(2), 상기 양극과 음극 사이에 개재되어 위치하는 세퍼레이터(3), 및 전해질을 포함하고, 그리고 상기 양극(1)과 세퍼레이터(3) 사이, 및 상기 음극(2)과 세퍼레이터(3) 사이에 각각 술폰산기(-SO3H)를 갖는 리튬이온 전도성 고분자의 막(5) 및 금속산화물막(6) 중 적어도 1 이상의 막을 선택적으로 더 포함한다.
상기 리튬 황 전지(100)에 있어서, 상기 술폰산기(-SO3H)를 갖는 리튬이온 전도성 고분자의 막(5)은 고분자 사슬의 말단에 술폰산기(-SO3H)를 포함하는 것으로서, 상기 양극(1)과 세퍼레이터(3) 사이에 위치하여 리튬 폴리설파이드가 음극(2)으로 확산되는 것을 차단하여 전지 수명 특성을 개선시킨다.
구체적으로 상기 술폰산기(-SO3H)를 갖는 리튬이온 전도성 고분자의 막(5)은 폴리(퍼플루오로설폰산), 폴리(퍼플루오로카르복실산), 설폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르 공중합체 등과 같은 설폰화 불소 탄화수소계 고분자; 또는 설폰화 폴리아릴렌에테르(polyaryleneether, PAE), 설폰화 폴리아릴렌에테르에테르케톤(polyaryleneetheretherketone, PAEEK), 설폰화 폴리아릴렌에테르에테르설폰(polyaryleneetherethersulfone, PAEES), 설폰화 폴리아졸(polyazole), 설폰화 폴리비닐알콜(polyvinylalcohol, PVA), 설폰화 폴리페닐렌옥사이드(polyphenylene oxide), 설폰화 폴리페닐렌 설파이드(polyphenylene sulfide), 설폰화 폴리설폰, 설폰화 폴리카보네이트, 설폰화 폴리스티렌, 설폰화 폴리이미드, 설폰화 폴리아미드, 설폰화 폴리퀴녹살린, 설폰화 (포스페이티드) 폴리포스파젠 또는 설폰화 폴리벤즈이미다졸 등과 같은 설폰화 비불소 탄화수소계 고분자일 수 있으며, 또, 상기한 고분자를 포함하는 블록 공중합체(block copolymer), 멀티블록 공중합체(multiblock copolymer), 또는 그라프트 공중합체(grafting copolymer)일 수 있다. 상기 리튬이온 전도성 고분자 중 1종 단독 또는 2종 이상이 혼합되어 포함될 수 있다.
또, 상기 술폰산기(-SO3H)를 갖는 리튬이온 전도성 고분자는 중량평균 분자량이 90,000 내지 1,000,000g/mol인 것이 바람직할 수 있다. 리튬이온 전도성 고분자의 중량 평균 분자량이 90,000g/mol 미만이거나 또는 1,000,000g/mol을 초과하는 경우 리튬 이온 전도성 고분자 사용에 따른 개선 효과가 미미할 수 있다.
또, 상기 술폰산기를 갖는 리튬이온 전도성 고분자는 리튬이온 전도도가 1X10-4 S/cm 이상인 것이 바람직하다. 리튬이온 전도도가 1X10-4 S/cm 미만인 경우에는 리튬이온의 이동이 원활하지 않아 리튬이온 전도성 고분자의 막 형성에 따른 개선효과가 미미할 수 있다.
또, 상기 술폰산기를 갖는 리튬이온 전도성 고분자의 막(5)은 0.1 내지 10㎛의 두께를 갖는 것이 바람직할 수 있다. 두께가 0.1㎛ 미만인 경우에는 활물질과 유기 용매와의 접촉을 완전하게 차단하기 힘들고, 10㎛을 초과하는 경우에는 리튬이온 전도도가 낮아 과전압이 크게 걸리고 이로 인하여 전지 특성이 저하되어 바람직하지 않다. 보다 바람직하게는 0.5 내지 5㎛일 수 있다.
한편, 상기 금속산화물막(6)은 상기 음극(2)과 상기 세퍼레이터(3) 사이에 위치하여 상기 음극(2)에서의 덴드라이트의 성장을 억제하여 전지의 안전성을 향상시키는 역할을 한다.
구체적으로 상기 금속산화물막(6)은 콜로이달 실리카, 비정질 실리카, 표면 처리된 실리카, 콜로이달 알루미나, 비정질 알루미나, 틴 옥사이드, 티타늄 옥사이드, 티타늄 설파이드(TiS2), 바나듐 옥사이드, 지르코늄 옥사이드(ZrO2), 산화철(Iron Oxide), 황화철(Iron Sulfide, FeS), 티탄산 철(Iron titanate, FeTiO3), 티탄산 바륨(Vanadium titanate, BaTiO3) 및 이들의 혼합물로 이루어진 군에서 선택되는 금속산화물을 포함할 수 있다.
상기 금속산화물막(6)은 0.1 내지 10㎛의 두께를 갖는 것이 바람직할 수 있다. 두께가 0.1㎛ 미만이거나, 10㎛를 초과할 경우 상기 금속산화물막(6) 형성에 따른 개선효과가 미미할 수 있다.
한편, 상기 리튬 황 전지(100)에 있어서, 상기 양극(1)은 일 예로서, 양극집전체 및 상기 양극집전체 위에 위치하며, 양극활물질와 선택적으로 도전제 및 바인더를 포함하는 양극활물질층을 포함할 수 있다.
상기 양극집전체로는 구체적으로 우수한 도전성을 갖는 발포 알루미늄, 발포 니켈 등을 사용하는 것이 바람직할 수 있다.
또, 상기 양극활물질층은 양극활물질로서 황 원소(elemental sulfur, S8), 황 계열 화합물 또는 이들의 혼합물을 포함할 수 있다. 상기 황 계열 화합물은 구체적으로, Li2Sn(n≥1), 유기황 화합물 또는 탄소-황 폴리머((C2Sx)n: x=2.5∼50, n≥2) 등일 수 있다.
또, 상기 양극활물질층은 상기한 양극활물질과 함께 전자가 양극(1) 내에서 원활하게 이동하도록 하기 위한 도전제, 및 양극활물질간 또는 양극활물질과 집전체와의 결착력을 높이기 위한 바인더를 더 포함할 수 있다.
상기 도전제는 카본 블랙, 아세틸렌 블랙, 케첸 블랙과 같은 탄소계 물질; 또는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤과 같은 전도성 고분자일 수 있으며, 양극활물질층 총 중량에 대하여 5 내지 20중량%로 포함되는 것이 바람직할 수 있다. 도전제의 함량이 5중량% 미만이면 도전제 사용에 따른 도전성 향상효과가 미미하고, 반면 20중량%를 초과하면 양극활물질의 함량이 상대적으로 적게 되어 용량 특성이 저하될 우려가 있다.
또, 상기 바인더로는 폴리(비닐 아세테이트), 폴리비닐알코올, 폴리에틸렌옥사이드, 폴리비닐피롤리돈, 알킬레이티드 폴리에틸렌옥사이드, 가교결합된 폴리에틸렌옥사이드, 폴리비닐에테르, 폴리(메틸메타크릴레이트), 폴리비닐리덴플루오라이드, 폴리헥사플루오로프로필렌과 폴리비닐리덴플루오라이드의 코폴리머(상품명: Kynar), 폴리(에틸아크릴레이트), 폴리테트라플루오로에틸렌, 폴리비닐클로라이드, 폴리아크릴로니트릴, 폴리비닐피리딘, 폴리스티렌, 이들의 유도체, 블랜드, 코폴리머 등이 사용될 수 있다. 또 상기 바인더는 양극활물질층 총 중량에 대하여 5 내지 20중량%로 포함되는 것이 바람직할 수 있다. 바인더의 함량이 5중량% 미만이면 바인더 사용에 따른 양극활물질간 또는 양극활물질과 집전체간 결착력 개선효과가 미미하고, 반면 20중량%를 초과하면 양극활물질의 함량이 상대적으로 적게 되어 용량 특성이 저하될 우려가 있다.
상기와 같은 양극(1)은 통상의 방법에 따라 제조될 수 있으며, 구체적으로는 양극활물질과 도전제 및 바인더를 유기 용매 상에서 혼합하여 제조한 양극 활물질층 형성용 조성물을, 집전체 위에 도포한 후 건조 및 선택적으로 압연하여 제조될 수 있다.
이때 상기 유기용매로는 양극활물질, 바인더 및 도전제를 균일하게 분산시킬 수 있으며, 쉽게 증발되는 것을 사용하는 것이 바람직하다. 구체적으로는 아세토니트릴, 메탄올, 에탄올, 테트라하이드로퓨란, 물, 이소프로필알코올 등을 들 수 있다.
상기 양극(1)의 또 다른 일 예로서, 상기 양극(1)은 양극집전체; 및 상기 양극집전체 위에 위치하며, 도전제 및 선택적으로 바인더를 포함하는 도전층을 포함하고, 상기 양극집전체 및 도전층이 액상의 양극활물질로서 리튬 폴리설파이드를 포함하는 것일 수 있다.
구체적으로, 상기 양극(1)은 상기 양극집전체에 도전제 및 선택적으로 바인더의 혼합물을 코팅하여 양극재를 제조하고, 이를 이용하여 전극조립제를 제조한 뒤, 과포화 리튬폴리설파이드를 포함하는 전해질을 첨가함으로써 제조될 수 있다. 이 경우 상기 양극재의 기공 사이로 리튬 폴리설파이드가 삽입되면서 양극의 역할을 할 수 있다.
이때 상기 양극집전체 및 도전제는 앞서 설명한 것과 동일하며, 상기 양극집전체가 카본페이퍼이고, 상기 도전제는 카본블랙 등의 탄소계 도전제인 것이 바람직할 수 있다.
도 2는 상기와 같은 구성을 갖는 양극(10)을 포함하는 리튬 황 전지(200)의 구조를 개략적으로 나타낸 모식도이다. 도 2는 본 발명을 설명하기 위한 일 예일뿐 본 발명이 이에 한정되는 것은 아니다.
이하 도 2를 참조하여 설명하면, 본 발명의 또 다른 일 실시예에 따른 리튬 황 전지(200)는 서로 대향 배치되는 양극(10)과 음극(20), 상기 양극(10)과 음극(20) 사이에 개재되어 위치하는 세퍼레이터(30), 및 전해질을 포함하고, 그리고 상기 양극(10)과 상기 세퍼레이터(30) 사이에 위치하며, 술폰산기(-SO3H)를 갖는 리튬이온 전도성 고분자의 막(50) 및 상기 음극(30)과 상기 세퍼레이터(30) 사이에 위치하는 금속산화물막(60)을 더 포함한다. 이때 양극(10)은 양극집전체로서 카본페이퍼(11) 및 상기 카본페이퍼(11) 위에 위치하며, 카본블랙 등의 탄소계 도전제를 포함하는 도전제(12)를 포함하고, 상기 카본페이퍼(11) 및 도전제(12) 내 액상의 양극활물질로서 리튬 폴리설파이드(13)를 포함하는 것일 수 있다.
이와 같이 통상의 리튬 황 전지에서와 같이 상기 양극(10)으로서 황 전극을 사용하지 않고 리튬 폴리설파이드를 포함하는 전해질을 카본블랙 등의 도전제(12)가 코팅된 카본페이퍼(11)에 주액하여 제조한 양극(10)을 사용함으로써, 상기 양극(10)의 제조가 간단하고 용이하고, 또 전극 구성물질의 비율에 따른 영향이 없으며, 균일한 활물질 조성 제조로 최종 제조된 리튬 황 전지(200)에서의 편차를 줄일 수 있다.
한편, 상기 리튬 황 전지(200)에 있어서, 상기 음극(20)은 음극활물질로서 리튬 이온을 가역적으로 인터칼레이션 또는 디인터칼레이션할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 및 리튬 합금으로 이루어진 군에서 선택되는 것을 포함할 수 있다.
상기 리튬이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질로는 탄소 물질로서, 리튬 황 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 구체적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 또한, 상기 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질의 대표적인 예로는 산화 주석(SnO2), 티타늄 나이트레이트, 실리콘(Si) 등을 들 수 있으나 이에 한정되는 것은 아니다. 상기 리튬 금속의 합금은 구체적으로 리튬과 Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, 또는 Cd의 금속과의 합금일 수 있다.
또, 상기 음극(20)은 상기한 음극활물질과 함께 선택적으로 바인더를 더 포함할 수 있다.
상기 바인더는 상기 음극활물질의 페이스트화, 활물질간 상호 접착, 활물질과 집전체와의 접착, 활물질 팽창 및 수축에 대한 완충 효과 등의 역할을 한다. 구체적으로 상기 바인더는 앞서 설명한 바와 동일하다.
또, 상기 음극(20)은 상기한 음극활물질 및 바인더를 포함하는 음극활성층의 지지를 위한 음극집전체를 더 포함할 수도 있다.
상기 음극집전체는 구체적으로 구리, 알루미늄, 스테인리스스틸, 티타늄, 은, 팔라듐, 니켈, 이들의 합금 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있다. 상기 스테인리스스틸은 카본, 니켈, 티탄 또는 은으로 표면 처리될 수 있으며, 상기 합금으로는 알루미늄-카드뮴 합금이 사용될 수 있다. 그 외에도 소성 탄소, 도전제로 표면 처리된 비전도성 고분자, 또는 전도성 고분자 등이 사용될 수도 있다.
또, 상기 음극(30)은 리튬금속의 박막일 수도 있다.
통상 리튬 황 전지(200)를 충방전하는 과정에서, 상기 양극활물질로 사용되는 황이 비활성 물질로 변환되어 상기 리튬 음극 표면에 부착될 수 있다. 이와 같은 비활성 황(inactive sulfur)은 황이 여러 가지 전기화학적 또는 화학적 반응을 거쳐 양극의 전기화학 반응에 더 이상 참여할 수 없는 상태의 황이다. 그러나, 상기 리튬 음극 표면에 형성된 비활성 황은 리튬 음극의 보호막(protective layer)으로서의 역할을 할 수도 있다. 그 결과, 상기 리튬 금속과 이 리튬 금속 위에 형성된 비활성 황, 예를 들어 리튬 설파이드를 상기 음극(30)으로 사용할 수도 있다.
또, 상기 리튬 황 전지(200)에 있어서, 상기 세퍼레이터(30)는 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서, 통상 리튬 황 전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해질 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
또, 상기 리튬 황 전지(200)에 있어서, 상기 전해질은 과포화(supersaturation) 리튬 폴리설파이드를 포함하는 것일 수 있다. 이때 상기 과포화란 용매중에 용해된 용질의 농도가 평형상태의 값을 초과하는 상태를 의미한다.
상기 전해질 중에 상기 리튬 폴리설파이드를 용해시키지 않는 경우, 방전시에 양극으로부터 유황 단체가 폴리설파이드가 되어 전해질 중에 용해됨으로써, 양극활물질 감소에 따른 전지 용량 감소의 문제가 있다. 그러나, 상기 리튬 폴리설파이드를 상기 전해질 중에 미리 과포화 상태로 용해시키면, 상기 전해질 중 용해된 상기 리튬 폴리설파이드(Li2Sx)(1≤x≤8)가 S8 2-, S6 2-, S4 2-, S2 2-, S2- 등의 폴리설파이드 이온(Sx 2 -)의 형태로 전해질 중에 균일하게 분산되어 존재한다. 그 결과, 전극으로부터 용해한 폴리설파이드 이온의 확산이 억제되어 활물질 손실을 감소시킬 수 있고, 또 전극 근방의 폴리설파이드 이온이 방전 반응에 관여함으로써, 충방전 효율 및 사이클 성능이 향상될 수 있다. 또, 고체-액체 반응으로 카이네틱(kinetic) 상승 효과가 있기 때문에, 고체 계면(solid surface) 대비 높은 반응활성도를 나타낼 수 있다.
상기 리튬 폴리설파이드는 Li2S 등의 리튬 황 화합물과 원소 황(elemental sulfur)을 전해질 중에 첨가하여 혼합함으로써 제조될 수 있다.
또, 상기 전해질은 비수성 유기용매와 리튬염을 더 포함한다.
상기 비수성 유기용매는 구체적으로, 아릴 화합물, 바이사이클릭 에테르, 비환형 카보네이트, 설폭사이드 화합물, 락톤 화합물, 케톤 화합물, 에스테르 화합물, 설페이트 화합물, 설파이트 화합물 등과 같은 극성 용매일 수 있다.
보다 구체적으로는 상기 비수성 유기용매는 1,2-디메톡시에탄, 1,2-디에톡시에탄, 1,2-디부톡시에탄, 디옥솔란(Dioxolane, DOL), 1,4-디옥산, 테트라하이드로푸란, 2-메틸테트라하이드로퓨란, 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC), 에틸프로필카보네이트, 디프로필카보네이트, 부틸에틸카보네이트, 에틸프로파노에이트(EP), 톨루엔, 자일렌, 디메틸에테르(dimethyl ether, DME), 디에틸에테르, 트리에틸렌글리콜모노메틸에테르(Triethylene glycol monomethyl ether, TEGME), 디글라임, 테트라글라임, 헥사메틸 포스포릭 트리아마이드(hexamethyl phosphoric triamide), 감마부티로락톤(GBL), 아세토니트릴, 프로피오니트릴, 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), N-메틸피롤리돈, 3-메틸-2-옥사졸리돈, 아세트산에스테르, 부티르산에스테르 및 프로피온산에스테르, 디메틸포름아마이드, 설포란(SL), 메틸설포란, 디메틸아세트아마이드, 디메틸설폭사이드, 디메틸설페이트, 에틸렌글리콜 디아세테이트, 디메틸설파이트, 또는 에틸렌글리콜설파이트 등을 들 수 있다.
이중에서도 트리에틸렌글리콜모노메틸에테르/디옥솔란/디메틸에테르의 혼합용매가 보다 바람직할 수 있다.
또, 상기 리튬염은 리튬 황 전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용할 수 있다. 구체적으로 상기 리튬염으로는 LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2(Lithium bis(perfluoroethylsulfonyl)imide, BETI), LiN(CF3SO2)2(Lithium bis(Trifluoromethanesulfonyl)imide, LiTFSI), LiN(CaF2a+1SO2)(CbF2b+1SO2)(단, a 및 b는 자연수, 바람직하게는 1≤a≤20이고, 1≤b≤20임), 리튬 폴리[4,4'-(헥사플루오로이소프로필리덴)디페녹시]술포닐이미드(lithium poly[4,4'-(hexafluoroisopropylidene)diphenoxy]sulfonylimide, LiPHFIPSI) LiCl, LiI, LiB(C2O4)2 등이 사용될 수 있으며, 이중에서도 LiTFSI, BETI 또는 LiPHFIPSI 등과 같은 술포닐기-함유 이미드 리튬 화합물이 보다 바람직할 수 있다
또, 상기 리튬염은 전해질 중 0.6 내지 2M의 농도로 포함되는 것이 바람직할 수 있다. 리튬염의 농도가 0.6M 미만이면 전해질의 전도도가 낮아져 전해질 성능이 저하되고, 2M을 초과하는 경우에는 전해질의 점도가 증가하여 리튬 이온의 이동성이 감소되는 문제점이 있다.
상기 전해질은 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 일반적으로 전해질에 사용될 수 있는 첨가제(이하, '기타 첨가제'라 함)를 더 포함할 수 있다.
상기와 같이 본 발명에 따른 리튬 황 전지(100, 200)는 전극 활물질의 손실이 감소되고, 리튬 폴리설파이드의 음극으로의 확산이 차단되어 개선된 수명 특성을 나타낼 수 있으며, 또 음극에서의 덴드라이트 성장 억제로 향상된 안전성을 갖기 때문에, 빠른 충전 속도가 요구되는 휴대전화, 노트북 컴퓨터, 디지털 카메라, 캠코더 등의 휴대용 기기나, 하이브리드 전기자동차(hybrid electric vehicle, HEV), 플러그인 하이브리드 전기자동차(plug-in HEV, PHEV) 등의 전기 자동차 분야, 그리고 중대형 에너지 저장 시스템에 유용하다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
[실험예 1: 과포화된 리튬 폴리설파이드의 효과 측정]
리튬 금속(bulk Li: 150㎛)를 양극으로 하고, 리튬 박막-구리 박막(Li foil(40㎛)-Cu foil(20㎛))을 음극으로 하는 시메트릭 전지(symmetric cell)을 제조하고, 전해질에 리튬 폴리설파이드의 함량을 변경하면서 첨가제로 첨가하여 시메트릭 전지의 이용 효율 증가를 확인함으로써, 과포화된 리튬 폴리설파이드의 효과를 간접적으로 측정하였다.
( 참고예 1)
상기 시메트릭 전지에서 전해질로서, 트리에틸렌글리콜모노메틸에테르(TEGDME)/디옥솔란(DOL)/디메틸에테르(DME)(혼합부피비=1/1/1)로 이루어진 유기용매에 1M 농도의 리튬 비스(트리플루오로메탄설포닐)이미드(LiTFSI) 및 0.1M 농도의 LiNO3를 용해시켜 제조한 전해질을 사용하였다.
( 참고예 2)
상기 참고예 1의 전해질에서 0.05M 농도의 Li2S6를 더 첨가하였다.
( 참고예 3)
상기 참고예 1의 전해질에서 0.5M 농도의 Li2S6를 더 첨가하였다.
상기 참고예 1 내지 3에서 제조된 시메트릭 전지에 대하여, 상기 양극(bulk Li: 150㎛)에서 음극(Li foil(40㎛)-Cu foil(20㎛))으로 C-rate 0.1C, DOD 10% 방전 후 충전하는 사이클을 15번 반복한 후, 구리 박막 위의 Li 함량을 최대 충전으로 빼내어 용량을 확인하였다. 상기 측정한 Li의 함량으로 음극 쪽의 Li의 잔류량 및 잔류 용량을 확인하였다. 이를 이용하여 하기 계산식 1에 따라 전지 이용 효율을 계산하였고, 그 결과를 하기 표 1에 나타내었다.
[계산식 1]
X=[(qc-(q1-qr)/N)/qc]
- qc: 진행하는 Li 함량(DOD 10%: 1.32mA)
- q1: Cu 박막 위의 Li 함량(40㎛: 13.2mA)
- qr: 사이클 진행 후 fully stripping시켜 측정된 Li 함량(측정값)
- N: 15회
또한, 참고예 2 및 3에서 제조된 시메트릭 전지에서 Li2S6의 농도에 따른 Li2S와 S의 함량을 하기 표 2에 나타내었다.
구분 전해질 Cyclic efficiency 편차
참고예 1 TEGDME/DOL/DME(1:1:1)+LiTFSI(1M)+LiNO3(0.1M) 85.38% 1.06%
참고예 2 TEGDME/DOL/DME(1:1:1)+LiTFSI(1M)+LiNO3(0.1M)+Li2S6(0.05M) 88.1% 0.98%
참고예 3 TEGDME/DOL/DME(1:1:1)+LiTFSI(1M)+LiNO3(0.1M)+Li2S6(0.5M) 92.12% 0.04%
구분 Li2S6 농도 전해질 1ml 당 함량(mg)
Li2S S
참고예 2 0.05M 2.2973 8.0165
참고예 3 0.5M 22.973 80.165
상기 표 1 및 표 2를 참고하면, 리튬 폴리설파이드의 첨가량이 증가할수록 Li2S와 S의 함량이 증가하고, 전지의 이용 효율이 증가하는 것을 확인할 수 있다. 따라서, 전해질이 과포화된 리튬 폴리설파이드를 포함하는 경우 전지의 효율이 더욱 향상될 것임을 알 수 있다.
[ 실시예 1: 전지의 제조]
황(평균 입도: 5㎛)을 아세토니트릴 중에서 도전제와 바인더와 볼밀을 사용하여 믹싱하여 양극활물질층 형성용 조성물을 제조하였다. 이때 도전제로는 카본블랙을, 바인더로는 폴리에틸렌옥사이드(분자량 5,000,000g/mol)을 각각 사용하였으며, 혼합 비율은 중량비로 황:도전제:바인더가 60:20:20가 되도록 하였다. 제조한 양극활물질층 형성용 조성물을 알루미늄 집전체에 도포한 후 건조하여 양극을 제조하였다(양극의 에너지 밀도: 1.0mAh/㎠).
상기 양극의 활물질층 위에 폴리(퍼플루오로설폰산)의 리튬이온 전도성 고분자의 막(두께: 0.5㎛, 이온 전도도: 1X10-4 S/cm)을 형성하였다.
또, 두께 150㎛의 리튬 금속의 음극에 대해 콜로이달 실리카를 포함하는 금속산화물막(두께: 0.5㎛)을 형성하였다.
상기 제조한 양극과 음극을 리튬이온 전도성 고분자 막 및 금속산화물막이 대면하도록 위치시킨 후, 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 리튬 폴리설파이드를 포함하는 전해질을 주입하여 리튬 황 전지를 제조하였다. 이때 상기 리튬 폴리설파이드를 포함하는 전해질은, 트리에틸렌글리콜모노메틸에테르(TEGDME)/디옥솔란(DOL)/디메틸에테르(DME)(혼합부피비=1/1/1)로 이루어진 유기용매에 1M 농도의 리튬 비스(트리플루오로메탄설포닐)이미드(LiTFSI)를 용해시켜 제조한 전해질 중에, 디리튬설파이드(Li2S)와 원소 황(elemental sulfur)를 첨가한 후 자력교반기를 이용하여 90℃에서 48시간 동안 반응시켜 전해질 중에 리튬 폴리설파이드(Li2Sn)를 합성시킴으로써 제조하였다.
[ 실시예 2: 전지의 제조]
음극 위에 금속산화물막을 형성하지 않는 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 실시하여 리튬 황 전지를 제조하였다.
[ 실시예 3: 전지의 제조]
양극 위에 리튬이온 전도성 고분자의 막을 형성하지 않는 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 실시하여 리튬 황 전지를 제조하였다.
[ 실시예 4: 전지의 제조]
카본페이퍼(두께: 142㎛, 파이버 직경: 7~7.5㎛)에 카본블랙을 딥코팅하여 양극재를 제조하였다(공극율 82%). 상기 양극재 위에 폴리(퍼플루오로설폰산)의 리튬이온 전도성 고분자의 막(두께: 0.5㎛, 이온 전도도: 1X10-4 S/cm)을 형성하였다.
또, 두께 150㎛의 리튬 금속의 음극에 대해 콜로이달 실리카를 포함하는 금속산화물막(두께: 0.5㎛)을 형성하였다.
상기 제조한 양극과 음극을 리튬이온 전도성 고분자 막 및 금속산화물막이 대면하도록 위치시킨 후, 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시켰다. 케이스 내부로, 리튬 폴리설파이드를 포함하는 전해질을 주입하여 리튬 황 전지를 제조하였다. 이때 이때 상기 리튬 폴리설파이드를 포함하는 전해질은, 트리에틸렌글리콜모노메틸에테르(TEGDME)/디옥솔란(DOL)/디메틸에테르(DME)(혼합부피비=1/1/1)로 이루어진 유기용매에 1M 농도의 리튬 비스(트리플루오로메탄설포닐)이미드(LiTFSI)를 용해시켜 제조한 전해질 중에, 디리튬설파이드(Li2S)와 원소 황(elemental sulfur)를 첨가한 후 자력교반기를 이용하여 90℃에서 48시간 동안 반응시켜 전해질 중에 리튬폴리설파이드(Li2Sn)를 합성시킴으로써 제조하였다.
[ 비교예 1: 전지의 제조]
황(평균 입도: 5㎛)을 아세토니트릴 중에서 도전제와 바인더와 볼밀을 사용하여 믹싱하여 양극활물질층 형성용 조성물을 제조하였다. 이때 도전제로는 카본블랙을, 바인더로는 폴리에틸렌옥사이드(분자량 5,000,000g/mol)을 각각 사용하였으며, 혼합 비율은 중량비로 황:도전제:바인더가 60:20:20가 되도록 하였다. 결과로 제조된 양극활물질층 형성용 조성물을 알루미늄 집전체에 도포한 후 건조하여 양극을 제조하였다(양극의 에너지 밀도: 1.0mAh/㎠).
또, 두께 150㎛의 리튬 금속을 음극으로 사용하였다.
상기 제조한 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해질을 주입하여 리튬 황 전지를 제조하였다. 이때 이때 상기 전해질은, 트리에틸렌글리콜모노메틸에테르(TEGDME)/디옥솔란(DOL)/디메틸에테르(DME)(혼합부피비=1/1/1)로 이루어진 유기용매에 1M 농도의 리튬 비스(트리플루오로메탄설포닐)이미드(LiTFSI)를 용해시켜 제조한 전해질을 사용하였다.
[실험예 2: 양극 관찰]
상기 실시예 4에서 제조한 양극을 주사전자현미경을 이용하여 관찰하였다. 그 결과는 본 발명의 원출원인 한국 특허 출원 제2015-0115013호(출원일: 2015년 8월 14일)의 도 3에 나타내었다.
상기 한국 특허 출원 제2015-0115013호의 도 3에 나타난 바와 같이, 카본페이퍼 위에 카본블랙이 분산되어 존재하며, 카본페이퍼와 카본블랙 내 기공 사이에 리튬 폴리설파이드가 충진되어 있음을 확인할 수 있다.
[실험예 3: 전해질의 Li2S6 농도 별 사이클 특성 측정]
상기 실시예 1에 따른 리튬 황 전지의 전해질의 Li2S6 농도에 따른 사이클 특성을 측정하여 도 3 및 도 4에 나타내었고 이로부터 용량유지율을 계산하여 하기 표 3(@50CYC.)에 나타내었다.
구분 전해질 용량유지율 (@50CYC.)
비교예 1 TEGDME/DOL/DME(1:1:1)+LiTFSI(1M)+LiNO3(0.1M) 51.78%
실시예 1:Li2S6(0.1M) TEGDME/DOL/DME(1:1:1)+LiTFSI(1M)+LiNO3(0.1M) +Li2S6(0.1M) 66.07%
실시예 1:Li2S6(0.2M) TEGDME/DOL/DME(1:1:1)+LiTFSI(1M)+LiNO3(0.1M)+Li2S6(0.2M) 73.37%
실시예 1:Li2S6(0.5M) TEGDME/DOL/DME(1:1:1)+LiTFSI(1M)+LiNO3(0.1M)+Li2S6(0.5M) 75.96%
도 3, 도 4 및 표 3을 참고하면, 실시예 1의 방전용량특성 및 용량유지율은 전반적으로 양호하고, 전해질의 Li2S6 농도가 높을수록 방전용량특성 및 용량유지율이 향상되는 것을 확인할 수 있었다.
[실험예 4: Li2Sn 의 chain 별 전압 특성(voltage characteristic)]
Li2Sn의 chain 별 전압 특성을 알아보기 위하여 황 전극의 영향이 적은 캐쏠라이트 시스템(catholyte system)으로 실험을 진행하였다. 실험 과정은 도 5 및 표 4에 나타내었다.
도 5을 참고하면, 상기 실시예 4에서와 같이, 카본페이퍼(두께: 142㎛, 파이버 직경: 7~7.5㎛)에 카본블랙을 딥코팅하여 제조된 양극재(GDL)를 사용하고, 음극으로 두께 150㎛의 리튬 금속을 사용하고, 상기 양극과 음극을 대면하도록 위치시킨 후, 다공성 폴리에틸렌의 세퍼레이터를 개재하여 테스트 셀을 제조하였다. 이후, 상기 양극재에 폴리설파이드(Li2Sn) 캐쏠라이트 40㎕를 떨어뜨려 Li2Sn의 chain 별 전압 특성을 측정하였다. 이때, 상기 폴리설파이드 캐쏠라이트 40㎕ 중 폴리설파이드의 종류 및 투입되는 황의 함량(mg)은 하기 표 4에 나타내었다.
투입 S (mg)
Li2S6(0.2M) 0.688
Li2S8(0.2M) 0.917
Li2S6(0.5M) 1.72
Li2S8(0.5M) 2.29
Ref.(Li/S) 0.986
* JNT-E: 두께: 142㎛, 공극률 82%
상기 캐쏠라이트 시스템의 리튬 폴리설파이드의 농도별 용량특성에 따른 전지전압을 도 6에 나타내었고, 상기 캐쏠라이트 시스템의 리튬 폴리설파이드의 농도별 사이클 횟수에 따른 방전용량특성을 도 7에 나타내었다.
도 6 및 도 7을 참고하면, 전해질의 리튬 폴리설파이드 농도가 높을수록 용량특성 및 전지전압이 높게 유지되는 것을 확인하였다.
전해질이 과포화된 리튬 폴리설파이드를 포함하는 경우 전극으로부터 용해한 폴리설파이드 이온의 확산이 억제되어 활물질 손실을 감소시킬 수 있고, 전극 근방의 폴리설파이드 이온이 방전 반응에 관여함으로써, 충방전 효율 및 사이클 성능이 향상될 수 있으며, 또, 고체-액체 반응으로 카이네틱(kinetic) 상승 효과가 있기 때문에, 고체 계면(solid surface) 대비 높은 반응활성도를 나타낼 수 있음을 상기 실험예 3 및 4에 의하여 확인할 수 있었다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
[부호의 설명]
1, 10: 양극
2, 20: 음극
3, 30: 세퍼레이터
5, 50: 술폰산기를 갖는 리튬이온 전도성 고분자의 막
6, 60: 금속산화물막
11: 카본페이퍼
12: 도전제
13: 리튬 폴리설파이드 용액
100, 200: 리튬 황 전지
본 발명은 리튬 황 전지에 관한 것으로, 상기 전지는 서로 대향 배치되는 양극과 음극; 상기 양극과 음극 사이에 개재되는 세퍼레이터; 및 전해질을 포함하고, 그리고 상기 양극과 세퍼레이터 사이에 위치하며, 술폰산기(-SO3H)를 갖는 리튬이온 전도성 고분자의 막 및 상기 음극과 세퍼레이터 사이에 위치하는 금속산화물막 중 적어도 1 이상의 막을 더 포함함으로써, 전극 활물질의 손실이 감소되고, 리튬 폴리설파이드의 음극으로의 확산이 차단되어 개선된 수명 특성을 나타낼 수 있으며, 또 음극에서의 덴드라이트 성장 억제로 향상된 안전성을 나타낼 수 있다.

Claims (10)

  1. 서로 대향 배치되는 양극과 음극;
    상기 양극과 음극 사이에 개재되는 세퍼레이터; 및
    전해질을 포함하고, 그리고
    상기 양극과 세퍼레이터 사이에 위치하며, 술폰산기(-SO3H)를 갖는 리튬이온 전도성 고분자의 막 및 상기 음극과 세퍼레이터 사이에 위치하는 금속산화물막 중 적어도 1 이상의 막을 더 포함하는 리튬 황 전지.
  2. 제1항에 있어서,
    상기 술폰산기를 갖는 리튬이온 전도성 고분자의 막이 폴리(퍼플루오로설폰산), 폴리(퍼플루오로카르복실산), 설폰화 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 설폰화 폴리아릴렌에테르, 설폰화 폴리아릴렌에테르에테르케톤, 설폰화 폴리아릴렌에테르에테르설폰, 설폰화 폴리아졸, 설폰화 폴리비닐알코올, 설폰화 폴리페닐렌옥사이드, 설폰화 폴리페닐렌 설파이드, 설폰화 폴리설폰, 설폰화 폴리카보네이트, 설폰화 폴리스티렌, 설폰화 폴리이미드, 설폰화 폴리아미드, 설폰화 폴리퀴녹살린, 설폰화(포스페이티드) 폴리포스파젠, 설폰화 폴리벤즈이미다졸 및 이들의 공중합체로 이루어진 군에서 선택되는 1종 이상의 고분자를 포함하는 것인 리튬 황 전지.
  3. 제1항에 있어서,
    상기 술폰산기를 갖는 리튬이온 전도성 고분자가 1X10-4 S/cm 이상의 리튬이온 전도도를 갖는 것인 것인 리튬 황 전지.
  4. 제1항에 있어서.
    상기 술폰산기를 갖는 리튬이온 전도성 고분자의 막이 0.1 내지 10㎛의 두께를 갖는 것인 리튬 황 전지.
  5. 제1항에 있어서.
    상기 금속산화물막이 콜로이달 실리카, 비정질 실리카, 표면 처리된 실리카, 콜로이달 알루미나, 비정질 알루미나, 틴 옥사이드, 티타늄 옥사이드, 티타늄 설파이드, 바나듐 옥사이드, 지르코늄 옥사이드, 산화철, 황화철, 티탄산 철, 티탄산 바륨 및 이들의 혼합물로 이루어진 군에서 선택되는 금속산화물을 포함하는 것인 리튬 황 전지.
  6. 제1항에 있어서.
    상기 금속산화물막이 0.1 내지 10㎛의 두께를 갖는 것인 리튬 황 전지.
  7. 제1항에 있어서,
    상기 전해질이 과포화된 리튬 폴리설파이드(lithium polysulfide)를 포함하는 것인 리튬 황 전지.
  8. 제1항에 있어서,
    상기 양극이 황 원소, 황 계열 화합물 및 이들의 혼합물로 이루어진 양극 활물질을 포함하는 것인 리튬 황 전지.
  9. 제1항에 있어서,
    상기 양극이 탄소계 도전제로 코팅된 카본페이퍼를 포함하고, 상기 카본페이퍼에 리튬 폴리설파이드를 포함하는 전해질이 함침된 것인 리튬 황 전지.
  10. 제1항에 있어서,
    상기 양극이 카본페이퍼 및 상기 카본페이퍼 위에 위치하며, 탄소계 도전제를 포함하는 도전제층을 포함하고, 상기 카본페이퍼 및 도전제층이 리튬 폴리설파이드를 포함하는 것인 리튬 황 전지.
PCT/KR2015/010998 2014-10-29 2015-10-19 리튬 황 전지 WO2016068534A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580059497.7A CN107078343B (zh) 2014-10-29 2015-10-19 锂硫电池
US15/522,904 US10468650B2 (en) 2014-10-29 2015-10-19 Lithium sulfur battery
JP2017519301A JP6917888B2 (ja) 2014-10-29 2015-10-19 リチウム硫黄電池
EP15855109.3A EP3203567B1 (en) 2014-10-29 2015-10-19 Lithium-sulfur battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0147907 2014-10-29
KR20140147907 2014-10-29
KR1020150115013A KR101725650B1 (ko) 2014-10-29 2015-08-14 리튬 황 전지
KR10-2015-0115013 2015-08-14

Publications (1)

Publication Number Publication Date
WO2016068534A1 true WO2016068534A1 (ko) 2016-05-06

Family

ID=55857802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010998 WO2016068534A1 (ko) 2014-10-29 2015-10-19 리튬 황 전지

Country Status (1)

Country Link
WO (1) WO2016068534A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018137416A (ja) * 2017-02-21 2018-08-30 財團法人國家同▲歩▼輻射研究中心 導電性ペーパー電極、電気化学キャパシタ及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130065127A1 (en) * 2010-06-17 2013-03-14 Linda Faye NAZAR Multicomponent electrodes for rechargeable batteries
KR20140064925A (ko) * 2011-09-02 2014-05-28 꼼미사리아 아 레네르지 아또미끄 에 오 에네르지 알떼르나띠브스 리튬-황 (Li-S) 유형의 전기화학 전지 및 그 제조 방법
US20140272569A1 (en) * 2013-03-15 2014-09-18 GM Global Technology Operations LLC Coating for separator or cathode of lithium-sulfur or silicon-sulfur battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130065127A1 (en) * 2010-06-17 2013-03-14 Linda Faye NAZAR Multicomponent electrodes for rechargeable batteries
KR20140064925A (ko) * 2011-09-02 2014-05-28 꼼미사리아 아 레네르지 아또미끄 에 오 에네르지 알떼르나띠브스 리튬-황 (Li-S) 유형의 전기화학 전지 및 그 제조 방법
US20140272569A1 (en) * 2013-03-15 2014-09-18 GM Global Technology Operations LLC Coating for separator or cathode of lithium-sulfur or silicon-sulfur battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AGOSTINI, MARCO ET AL.: "A Lithium-Ion Sulfur Battery Based on a Carbon-Coated Lithium-Sulfide Cathode and an Electrodeposited Silicon-Based Anode", ACS APPL. MATER. INTERFACES, vol. 6, 2 February 2014 (2014-02-02), pages 10924 - 10928, XP055438571 *
TANG, QIWEI ET AL.: "Nafion coated sulfurecarbon electrode for high performance lithiumesulfur batteries", JOURNAL OF POWER SOURCES, vol. 246, 2 August 2013 (2013-08-02), pages 253 - 259, XP028739909 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018137416A (ja) * 2017-02-21 2018-08-30 財團法人國家同▲歩▼輻射研究中心 導電性ペーパー電極、電気化学キャパシタ及びその製造方法
US10468202B2 (en) 2017-02-21 2019-11-05 National Synchrotron Radiation Research Center Conductive paper electrode, electrochemical capacitor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR101725650B1 (ko) 리튬 황 전지
WO2018034526A1 (ko) 다중 보호층을 포함하는 음극 및 이를 포함하는 리튬 이차전지
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2015065102A1 (ko) 리튬 이차전지
WO2016159702A1 (ko) 비수 전해액 및 이를 구비한 리튬 이차전지
WO2019088672A1 (ko) 전기화학소자용 음극 활물질, 상기 음극 활물질을 포함하는 음극 및 이를 포함하는 전기화학소자
WO2017171436A1 (ko) 고체 고분자 전해질 및 이의 제조 방법
WO2019112167A1 (ko) 리튬금속전지용 음극 및 이를 포함한 리튬금속전지
WO2020055183A1 (ko) 리튬 이차전지용 음극 및 리튬 이차전지의 제조방법
WO2018159950A1 (ko) 리튬 이차전지
WO2019194433A1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020085823A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2014193148A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2020185014A1 (ko) 음극 및 이를 포함하는 이차전지
WO2019147082A1 (ko) 리튬 이차전지용 음극 및 상기 음극을 포함하는 리튬 이온 이차 전지
WO2020153822A1 (ko) 리튬 이차 전지
WO2016052910A1 (ko) 리튬이차전지용 음극 활물질, 이의 제조 방법, 이를 포함하는 리튬이차전지용 음극, 및 리튬이차전지
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020111649A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019221410A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2018062883A2 (ko) 메쉬 형태의 절연층을 포함하는 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2019203455A1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019078506A2 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021187965A1 (ko) 전도성의 부식 방지층이 탭 상에 형성되어 있는 양극 집전체, 이를 포함하는 양극, 및 리튬 이차전지
WO2017030416A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017519301

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15522904

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015855109

Country of ref document: EP