WO2016066076A1 - 曝光装置的调整装置及调整方法 - Google Patents

曝光装置的调整装置及调整方法 Download PDF

Info

Publication number
WO2016066076A1
WO2016066076A1 PCT/CN2015/092900 CN2015092900W WO2016066076A1 WO 2016066076 A1 WO2016066076 A1 WO 2016066076A1 CN 2015092900 W CN2015092900 W CN 2015092900W WO 2016066076 A1 WO2016066076 A1 WO 2016066076A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
adjustment
wedge
radius
optical
Prior art date
Application number
PCT/CN2015/092900
Other languages
English (en)
French (fr)
Inventor
孙晶露
Original Assignee
上海微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备有限公司 filed Critical 上海微电子装备有限公司
Priority to KR1020177014355A priority Critical patent/KR101985331B1/ko
Priority to JP2017522667A priority patent/JP6649951B2/ja
Priority to US15/523,140 priority patent/US10197919B2/en
Publication of WO2016066076A1 publication Critical patent/WO2016066076A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • G03F7/70266Adaptive optics, e.g. deformable optical elements for wavefront control, e.g. for aberration adjustment or correction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70308Optical correction elements, filters or phase plates for manipulating imaging light, e.g. intensity, wavelength, polarisation, phase or image shift
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70641Focus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70833Mounting of optical systems, e.g. mounting of illumination system, projection system or stage systems on base-plate or ground

Definitions

  • the present invention relates to an exposure apparatus and an exposure method, and more particularly to an adjustment apparatus and an adjustment method of an exposure apparatus.
  • Flat panel display technology is developing faster and larger in size. If the exposure is performed using an objective lens of a larger field of view, the yield can be effectively improved. However, as the field of view of the objective optical system increases, the difficulty in designing, manufacturing, and the like increases.
  • the objective lens of the same field of view and moderately sized is used to splicing multiple fields of view into a desired large field of view, and the number of splicing is selected according to the required field of view, thus achieving a large field of view requirement. It reduces the difficulty of optical manufacturing and has high compatibility and flexibility.
  • each sub-objective lens Due to the use of multiple sub-objectives for splicing, each sub-objective lens will have a deviation from the theoretical position due to its own performance and assembly tolerances. At the same time, since the larger mask will be deformed by gravity, the surface of the photosensitive substrate will also have a surface error. Therefore, in order to be able to image each field of view in an ideal position, each objective unit has its own adjustment device to adjust the position of the imaging field of view to ensure the performance of the entire mosaic field of view.
  • the scanning type exposure apparatus has a plurality of projection optical systems arranged such that adjacent projection regions are quantitatively displaced in the scanning direction and the respective end portions of the adjacent projection regions are repeated in a direction orthogonal to the scanning direction, that is, a so-called multi-lens scanning exposure Device (multi-lens scanning type exposure device).
  • the multi-lens scanning type exposure apparatus illuminates the reticle by a plurality of slit-shaped illumination regions, synchronously scans the reticle and the photosensitive substrate in a direction orthogonal to the arrangement direction of the illumination regions, and passes through a plurality of illumination regions
  • Each of the plurality of projection optical systems correspondingly disposed to expose the pattern of the photomask to the photosensitive substrate.
  • Patent JP2005331694A discloses an exposure apparatus that is realized by translation of a right angle mirror or a wedge plate set.
  • the translation of the right-angle mirror adjusts the focal plane to change the position of the optimal object image plane, reducing the depth of focus while adjusting the focal plane.
  • the wedge-shaped flat vertical translation focusing mode changes the distance between the two wedge plates to cause translation in the Y-direction of the image plane.
  • This translation requires compensation using the rotation of a parallel plate.
  • two parallel plates are rotated around the X and Y directions to adjust.
  • the afocal optical system composed of three semi-lens groups moves at any magnification to adjust the magnification, and at the same time introduces a focal plane change.
  • the focal plane change requires a focusing system to compensate.
  • Patent US20020005940 discloses an exposure apparatus that is realized by axial translation of an afocal optical system consisting of two lenses.
  • the focal plane adjustment function is realized by translation of an afocal optical system composed of three lenses.
  • the focal plane and magnification adjustment device need to be used simultaneously to adjust the focal plane or magnification.
  • the existing focal plane and magnification adjustment device are separated, and the magnification and focal plane are adjusted respectively, and the adjustment introduces other undesired crosstalk, which needs to be compensated by other devices, so the adjustment process is cumbersome.
  • the present invention provides an adjusting device for an optical system in which a pair of incident light planes and an exiting light surface are a pair of parallel planes, and is placed in an exposure apparatus, wherein the adjusting apparatus includes at least one A wedge lens and a plurality of optical lenses for adjusting at least one of a focal plane, a magnification, and a position of a corresponding field of view of the exposure device by adjusting a relative position of at least one pair of adjacent lenses.
  • the exposure apparatus includes a light source, a photomask, a projection optical system, and a photosensitive substrate
  • the adjustment device is disposed between the photomask and the projection optical system or the projection optical system and the photosensitive substrate Or the inside of the projection optical system, the light source illuminates the pattern on the reticle, and is optically adjusted by the adjusting device, and then projected onto the photosensitive substrate.
  • the projection optical system includes at least one Dyson optical system including a right angle mirror, a lens, and a concave mirror.
  • the adjustment device is placed between a plurality of Dyson optical systems or between a right angle mirror and a lens of the Dyson optical system.
  • the adjusting device includes:
  • a first wedge lens having a first slope and a first wedge angle
  • a first optical lens having a second inclined surface and an opposite first curved surface, the second inclined surface being adjacent to and parallel to the first inclined surface, having a first wedge angle, the first curved surface having a first radius of curvature;
  • a second optical lens having a second curved surface and an opposite third curved surface, the second curved surface being adjacent to the first curved surface, having a second radius of curvature that is the same as or similar to the first radius of curvature, the third The curved surface has a third radius of curvature;
  • a third optical lens having a fourth curved surface adjacent to the third curved surface, having a fourth radius of curvature that is the same as or similar to the third radius of curvature.
  • the angle of the first wedge angle of the adjusting device ranges from 0.5° to 10°.
  • first radius of curvature, the second radius of curvature, the third radius of curvature, and the fourth radius of curvature of the adjusting device have a radius ranging from 200 mm to 2000 mm.
  • the adjusting device includes:
  • a first wedge lens having a first slope and a first wedge angle
  • a first optical lens having a second inclined surface and an opposite first curved surface, the second inclined surface being adjacent to and parallel to the first inclined surface, having a first wedge angle, the first curved surface having a first radius of curvature;
  • a second optical lens having a second curved surface and an opposite third curved surface, the second curved surface being adjacent to the first curved surface, having a second radius of curvature that is the same as or similar to the first radius of curvature, the third The curved surface has a third radius of curvature;
  • a third optical lens having a fourth curved surface and an opposite third inclined surface, wherein the fourth curved surface is adjacent to the third curved surface, and has a fourth radius of curvature that is the same as or similar to the third radius of curvature, the third inclined surface Parallel to the first slope, having a second wedge angle;
  • the second wedge lens has a fourth slope and a second wedge angle, the fourth slope being adjacent to the third slope and parallel to the first slope.
  • the angle of the first wedge angle of the adjusting device ranges from 0.5° to 10°.
  • the present invention also provides an adjustment method applied to an adjustment device, comprising: placing an adjustment device in an exposure device, wherein the adjustment device has a pair of parallel planes of an incident light surface and an exit light surface.
  • An optical system and comprising at least one wedge lens and a plurality of optical lenses, the adjusting method further comprising adjusting a focal plane, a magnification, a position of the corresponding field of view of the exposure device by adjusting a relative position of the at least one pair of adjacent lenses at least one.
  • the adjusting device comprises a first wedge lens, a first optical lens, a second optical lens and a third optical lens, the first wedge lens having a first slope and a first wedge angle.
  • the focal plane adjustment is achieved by moving the first wedge lens along the first slope direction.
  • magnification adjustment is achieved by moving one or more of the first optical lens, the second optical lens, and the third optical lens in the optical axis direction.
  • magnification adjustment is performed by moving one or more of the first optical lens, the second optical lens, and the third optical lens along the optical axis direction while moving the first wedge lens in the first slope direction to A magnification adjustment that achieves no focal plane change.
  • the position is adjusted to a translational and/or rotational adjustment by tilting the entire adjustment device by tilting, and/or rotating the first wedge lens in the optical axis direction to achieve an exposure pattern on the photosensitive substrate.
  • the image position is relatively translated and/or rotated.
  • the adjusting device further includes a second wedge lens having a fourth slope and a second wedge angle and parallel to the first slope.
  • the focal plane adjustment achieves a change in the focal plane by relatively moving the first wedge lens or the second wedge lens along the first slope direction.
  • magnification adjustment achieves a change in magnification by moving one or more of the first optical lens, the second optical lens, and the third optical lens in the optical axis direction.
  • magnification adjustment is performed by moving one or more of the first optical lens, the second optical lens, and the third optical lens in the optical axis direction while moving the first wedge lens in the first slope direction, One or more of the two wedge lenses to achieve magnification adjustment without a focal plane change.
  • the position is adjusted to a translational and/or rotational adjustment by tilting the entire adjustment device by tilting, and/or rotating the first wedge lens and/or the second wedge lens along the optical axis of the exposure light path to achieve exposure of the exposure pattern
  • the image position on the substrate is relatively translated and/or rotated.
  • the invention also provides an exposure device comprising a light source, a reticle, a photosensitive substrate and the above-mentioned adjusting device, wherein the light source illuminates the pattern on the reticle, and the optical path is adjusted by the adjusting device, and the projection is exposed On the photosensitive substrate.
  • the present invention provides a special set of adjustment devices capable of simultaneously or separately achieving continuous adjustment of focal plane, magnification and position, and adjusting the focal plane, magnification and position without introducing other changes.
  • FIG. 1 is a schematic structural diagram of an optical system of an exposure apparatus according to an embodiment of the present invention.
  • FIG. 2A is a schematic structural diagram of an adjusting apparatus according to Embodiment 1 of the present invention.
  • FIG. 2B is a schematic structural diagram of an adjusting apparatus according to Embodiment 2 of the present invention.
  • FIG. 3A is a schematic diagram of adjusting a focal plane of an adjusting device according to Embodiment 1 of the present invention.
  • 3B is a schematic diagram of adjusting a focal plane of an adjusting device according to Embodiment 2 of the present invention.
  • FIG. 4A is a schematic diagram of magnification adjustment of an adjusting device according to Embodiment 1 of the present invention.
  • 4B is a schematic diagram of magnification adjustment of an adjusting device according to Embodiment 2 of the present invention.
  • FIG. 5A is a schematic diagram of translation adjustment of an adjusting device according to Embodiment 1 of the present invention.
  • FIG. 5B is a schematic diagram of translation adjustment of an adjusting device according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural diagram of an adjusting apparatus according to Embodiment 3 of the present invention.
  • 1 light source
  • 2 reticle
  • 3 adjustment device
  • 4 right angle mirror
  • 5 lens
  • 6 concave mirror
  • 7 right angle mirror
  • 8 lens
  • 9 concave mirror
  • 10 Dyson Optical System
  • 11 Dyson Optical System
  • 12 Photosensitive Substrate
  • 34 Wedge Lens
  • 37 Optical Lens
  • 38 wedge lens
  • ⁇ X X-direction shift amount
  • ⁇ Y Y-direction shift amount
  • 13 wedge lens
  • 14 optical lens
  • 15 optical lens
  • 16 optical lens
  • 17 wedge lens.
  • FIG. 1 is a schematic diagram of an optical system of an exposure apparatus, and the exposure apparatus provided by the present invention includes a light source 1, a mask 2, an adjustment device 3, a Dyson optical system 10, a Dyson optical system 11, and a photosensitive substrate 12,
  • the Dyson optical system 10 comprises a right angle mirror 4, a lens 5 and a concave mirror 6, the Dyson optical system 11 comprising a right angle mirror 7, a lens 8 and a concave mirror 9, the adjustment device 3 being placed in the reticle 2
  • the adjusting device 3 is a non-focal optical system in which both ends (ie, the incident light surface and the outgoing light surface) are parallel planes, that is, the system does not exist.
  • the optical focal length has no converging effect on the light passing through the system, and the adjusting device 3 can be placed in a plurality of positions, such as the unmarked dashed box in FIG. 1 being the other position of the adjusting device 3, but not limited to the figure In the position shown in Figure 1, this adjustment device 3 can also be placed in all optical paths that may be adjusted to the image field.
  • the light source 1 is irradiated with a pattern image on the reticle 2, and is projected onto the photosensitive substrate 12 by an adjustment device, Dyson optical systems 10 and 11.
  • the exposure apparatus includes at least one Dyson optical system.
  • the exposure apparatus includes two Dyson optical systems, namely Dyson optical systems 10 and 11, which are merely used to facilitate the description of the exposure apparatus, and are not limited to wearing
  • the number of Sen optical systems is two.
  • the Dyson optical system can be replaced with other optical systems.
  • the incident light surface 341 and the outgoing light surface 312 of the adjusting device 3 are planes parallel to each other and have a thickness of H1, which includes:
  • the first wedge lens 34 has a first slope 342 and a first wedge angle ⁇ 1;
  • the first optical lens 33 has a second inclined surface 331 and an opposite first curved surface 332.
  • the second inclined surface 331 is adjacent to and parallel to the first inclined surface 342 and has a first wedge angle ⁇ 1, and the first curved surface 332 has First radius of curvature R1;
  • the second optical lens 32 has a second curved surface 321 and an opposite third curved surface 322.
  • the second curved surface 321 is adjacent to the first curved surface 332 and has the same or similar second curvature as the first radius of curvature R1.
  • a radius R2 the third curved surface 322 has a third radius of curvature R3;
  • the third optical lens 31 has a fourth curved surface 311 close to the third curved surface 322 and has a fourth radius of curvature R4 that is the same as or similar to the third radius of curvature R3.
  • the radius of the first radius of curvature R1, the second radius of curvature R2, the third radius of curvature R3, and the fourth radius of curvature R4 of the adjusting device 3 ranges from 200 mm to 2000 mm.
  • the lens material of the adjustment device 3 uses an ultraviolet high transmittance material.
  • the angle range of the first wedge angle ⁇ 1 of the adjusting device 3 is 0.5 ° ⁇ 10 °.
  • the optical lenses 31, 32, and 33 are a portion cut from a full-circular lens or a full-circular lens, and are not limited to the curved curved direction shown in Fig. 2A.
  • the order in which the adjustment means 3 is placed in the optical path may be from the lenses 31 to 34 or from the lenses 34 to 31.
  • the optical lenses 31 and 33 may be plano-convex lenses or plano-concave lenses, and the optical lenses 32 may be lenticular lenses, biconcave lenses or meniscus lenses.
  • the wedge surface direction of the adjusting device 3 is as shown in FIG. 2A.
  • the optical path of the transmission adjusting means 3 is changed by increasing or decreasing the thickness of the wedge lens 34 in the optical path to effect a change in the focal plane. Further, since the air gap between the optical lens 33 and the wedge lens 34 is kept constant as the wedge lens 34 moves along the inclined surface, it is possible to make the focal plane adjustment not introduce translation like the horizontal position.
  • the user can select the placement position of the adjustment device 3 according to actual needs, and the adjustment device 3 is placed between the reticle 2 and the right angle mirror 4 to change the optimal reticle position, and the adjustment device 3 is placed on the photosensitive substrate and the right angle reflection.
  • the optimum photosensitive substrate position can be changed between the mirrors 7.
  • the sensitivity of the focal plane adjustment is proportional to the first wedge angle ⁇ 1 of the first slope 342 and to the refractive index of the material used by the wedge lens 34.
  • the change in the optical system magnification can be achieved by simultaneously changing the size of the air gap between the optical lenses 31 and 32 and between the optical lenses 32 and 33, or by individually changing the size of any one of the air spaces, while making the wedge lens 34
  • the translation along the slope direction can eliminate the focal plane change caused by the change of the air gap, and realize the magnification adjustment without other influence.
  • the sensitivity of the magnification adjustment is related to the air interval of the selected adjustment.
  • the sensitivity of the two air gaps is related to the material and the radius of curvature of the two adjacent optical lenses, as shown in FIG. 4A, the air separation sensitivity between the optical lenses 31 and 32.
  • the material of the optical lens 31, the radius of curvature of the optical lens 31 R4, the material of the optical lens 32, and the radius of curvature R3 of the optical lens 32 are related, and the air gap sensitivity of the optical lenses 32 and 33 is the same.
  • the design can be combined with the radius of curvature according to the different requirements of the adjustment device optical system for the adjustment range and adjustment accuracy, so that the best sensitivity to the mechanical and control aspects of the optical system can be obtained.
  • the sensitivity of the two air gaps can be designed to be different by different combinations of curvature radius and material, so that different adjustment sensitivities can be obtained by selecting and adjusting the low sensitivity interval, the high sensitivity interval, and simultaneously adjusting the high and low sensitivity intervals. Used in different scene requirements.
  • 5A and 5B are schematic diagrams of translational adjustment of the adjustment device 3.
  • the rotation about the X axis can adjust the translation of the image plane Y direction
  • the rotation about the Y axis can adjust the translation like the X direction.
  • 5A and 5B show the adjustment device 3 rotating around the Y-axis to adjust the image plane X direction translation and the X-axis rotation to adjust the image plane Y-direction translation, respectively.
  • the distance in the X direction is ⁇ X
  • the distance in the Y direction is ⁇ Y.
  • the sensitivity of the translational adjustment is proportional to the refractive index of the material of the four lenses 31, 32, 33 and 34, and is proportional to the total thickness H1 of the four lenses.
  • the same sensitivity can be obtained by material selection and lens thickness.
  • the adjustment device 3 can also implement a rotation adjustment function. As shown in FIG. 2A, by rotating the first wedge lens along the optical axis of the exposure light path, the relative rotational movement of the image position of the exposure pattern on the photosensitive substrate is achieved.
  • the four lenses of the adjustment device 3 are all composed of a commonly used fused silica material having a high throughput of ultraviolet light.
  • the optical lens 31 is a plano-concave lens having a radius of curvature of 800 mm.
  • the optical lens 32 is a lenticular lens having a radius of curvature of 800 mm on the side close to the optical lens 31 and a radius of curvature of 900 mm on the side close to the optical lens 33.
  • the optical lens 33 has a radius of curvature of 900 mm, and the wedge lens 34 and Optical lens 33
  • the wedge angles on the side close to the wedge lens 34 are both 5°
  • the center thickness of the four lenses of the adjusting device 3 are 15 mm, 15 mm, 15 mm, and 10 mm, respectively
  • the air gap between the optical lenses 31 and 32 is 1.6 mm, and optical.
  • the air gap between the lenses 32 and 33 is 1.5 mm
  • the air gap between the optical lens 33 and the wedge lens 34 is 0.5 mm.
  • the infinite radius of curvature represents that one side of the lens is a plane, the four lenses are air between each other, and the unit of curvature radius and center thickness are both mm.
  • the adjusting device 3 can realize focal plane adjustment, magnification adjustment and translation adjustment functions.
  • the wedge device 34 moves along the slope direction, and changes the optical path of the transmission adjusting device 3 by increasing or decreasing the thickness of the wedge lens 34 in the optical path to achieve a change in the focal plane; and simultaneously changing the optical lens 31 and 32
  • the size of the air gap between the optical lenses 32 and 33 or the size of any one of the air spaces alone can achieve a change in the magnification of the optical system, while shifting the wedge lens 34 in the direction of the slope can eliminate the change in the focal plane caused by the change in the air gap.
  • the adjustment device 3 as a whole is equivalent to a parallel flat plate, and the rotation around the X axis can adjust the translation of the image plane Y direction, and the rotation around the Y axis can adjust the translation like the X direction.
  • the adjustment device 3 uses the detailed data in Table 1. At this time, the adjustment sensitivity of the focusing surface of the adjusting device 3 is 28.125 nm/um, that is, when the wedge lens is moved obliquely upward in the 5° slope direction, the moving surface is shortened by 28.125 nm for every 1 um. This sensitivity is relatively low, for mechanical and control The seek is also very low, which makes it very easy to achieve precise control of the focus surface.
  • the magnification adjustment sensitivity of the air gap between the optical lenses 31 and 32 is 0.57 ppm/um, that is, the air gap is increased by 10 um, and the system magnification is increased by 5.7 ppm.
  • the magnification adjustment sensitivity of the air gap between the optical lenses 32 and 33 is -0.53 ppm/um, that is, the air gap is increased by 10 um, and the system magnification is reduced by 5.3 ppm.
  • the reason why the absolute values of the above two intervals are relatively close is that the same material is used and the radius of curvature is relatively close.
  • magnification adjustment When it is necessary to finely adjust the magnification, it is possible to change only the air interval between the optical lenses 31 and 32 (the axial movement of the optical lens 31); when a higher sensitivity is required, the above two air spaces are simultaneously changed in the opposite direction (optical lens) 32 axial movement), which gives a sensitivity of 11ppm/10um.
  • the focal plane slight change caused by the magnification adjustment can be adjusted using the wedge lens 34 for focal plane compensation.
  • the image plane translation sensitivity of the adjustment device 3 using the data of Table 1 is 17.6 nm/urad, that is, the adjustment device 3 is rotated by 1 urad around the X axis, and the image plane is translated by 17.6 nm in the Y direction. Similarly, the adjustment device 3 is wound. The Y-axis rotates 1urad, and the image plane translates 17.6 nm in the X direction.
  • the incident light surface 381 and the outgoing light surface 352 of the adjusting device 3 are mutually parallel planes, and the thickness is H2, which includes :
  • the first wedge lens 38 has a first slope 382, and a first wedge angle ⁇ 1;
  • the first optical lens 37 has a second inclined surface 371 and an opposite first curved surface 372.
  • the second inclined surface 372 is adjacent to and parallel to the first inclined surface 382 and has a first wedge angle ⁇ 1, and the first curved surface 372 has First radius of curvature R1;
  • the second optical lens 36 has a second curved surface 361 and an opposite third curved surface 362.
  • the second curved surface 361 is adjacent to the first curved surface 372 and has the same or similar second curvature as the first radius of curvature R1.
  • a radius R2 the third curved surface 362 has a third radius of curvature R3;
  • the third optical lens 35 has a fourth curved surface 351 close to the third curved surface 362 and has a fourth radius of curvature R4 that is the same as or similar to the third radius of curvature R3.
  • the radius of the first radius of curvature R1, the second radius of curvature R2, the third radius of curvature R3, and the fourth radius of curvature R4 of the adjusting device 3 ranges from 200 mm to 2000 mm.
  • the lens material of the adjustment device 3 uses an ultraviolet high transmittance material.
  • the angle of the first wedge angle ⁇ 1 of the adjusting device 3 ranges from 0.5° to 10°.
  • the optical lenses 35, 36 and 37 are a part cut from a full-circular lens or a full-round lens, and are not limited to FIG. 2B.
  • the curved surface shown is in the direction of curvature.
  • the order in which the adjustment means 3 is placed in the optical path may be from the lenses 35 to 38 or from the lenses 38 to 35.
  • the optical lenses 35 and 37 may be plano-convex lenses or plano-concave lenses, and the optical lenses 36 may be lenticular lenses, biconcave lenses or meniscus lenses.
  • the wedge surface direction of the adjusting device 3 is as shown in FIG. 2B.
  • FIG. 3B the adjustment operation of the focal plane is the same as that of FIG. 3A.
  • FIG. 4B the adjustment operation of the magnification adjustment is the same as that of FIG. 4A. Please refer to FIG. 3A and FIG. The operation mode of FIG. 4A is not described herein again.
  • FIGS. 5A and 5B are schematic diagrams showing the translation adjustment of the adjusting device 3 in the first embodiment.
  • the translational adjustment diagram of the adjusting device 3 is also shown in Figs. 5A and 5B.
  • the rotation about the X axis can adjust the translation of the image plane Y direction
  • the rotation about the Y axis can adjust the translation like the X direction.
  • 5A and 5B show the adjustment device 3 rotating around the Y-axis to adjust the image plane X direction translation and the X-axis rotation to adjust the image plane Y-direction translation, respectively.
  • the distance in the X direction is ⁇ X
  • the distance in the Y direction is ⁇ Y.
  • the sensitivity of the translational adjustment is proportional to the refractive index of the material of the four lenses 35, 36, 37 and 38, and is proportional to the total thickness H2 of the four lenses.
  • the same sensitivity can be obtained by material selection and lens thickness.
  • the adjustment device 3 can also implement a rotation adjustment function. As shown in FIG. 2B, by rotating the first wedge lens along the optical axis of the exposure light path, the relative rotational movement of the image position of the exposure pattern on the photosensitive substrate is achieved.
  • the incident light surface 171 and the exit light surface 132 of the adjusting device 3 are planes parallel to each other and have a thickness of H3.
  • the first wedge lens 17 has a first slope 172, and a first wedge angle ⁇ 1;
  • the first optical lens 16 has a second inclined surface 161 and an opposite first curved surface 162.
  • the second inclined surface 161 is adjacent to and parallel to the first inclined surface 172 and has a wedge angle ⁇ 1.
  • the first curved surface 162 has a first surface. Radius of curvature R1;
  • the second optical lens 15 has a second curved surface 151 and an opposite third curved surface 152.
  • the second curved surface 152 is adjacent to the first curved surface 162 and has the same or similar second curvature as the first radius of curvature R1.
  • a radius R2 the third curved surface 152 has a third radius of curvature R3;
  • the third optical lens 14 has a fourth curved surface 141 and an opposite third inclined surface 142.
  • the fourth curved surface 141 is adjacent to the third curved surface 152 and has a fourth radius of curvature that is the same as or similar to the third radius of curvature R3.
  • R4 the third slope 142 is parallel to the first slope 172, having a second wedge angle ⁇ 2;
  • the second wedge lens 13 has a fourth slope 131 and a second wedge angle ⁇ 2, and the fourth slope 131 is adjacent to the third slope 142 and parallel to the first slope 172.
  • any one of the first wedge lens 17 or the second wedge lens 13 is used for focal plane adjustment, and A piece of light rotates around the optical axis to adjust the horizontal rotation of the image plane.
  • the focal plane adjustment, the magnification adjustment and the translation adjustment function of the first embodiment, the second embodiment and the third embodiment can be used simultaneously or separately.
  • the present invention provides a special set of adjustment devices capable of simultaneously or separately achieving continuous adjustment of focal plane, magnification and translation, and adjusting focal plane, magnification and translation without introducing other changes, the other variations Including the image plane change caused by the focal plane adjustment and the focal plane change caused by the magnification adjustment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Lenses (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lens Barrels (AREA)

Abstract

提供了一种调整装置,为入射光面(341,381,171)与出射光面(312,352,132)为一对平行平面的光学系统,且置于一曝光装置中,调整装置(3)包括至少一个楔形透镜(34,38,17,13)和多个光学透镜(31,32,33,35,36,37,14,15,16),用于通过调整至少一对相邻透镜的相对位置来调整曝光装置对应视场的焦面、倍率以及位置中的至少一个。还提供了一种与调整装置相对应的调整方法,用于实现曝光装置对应视场的焦面、倍率和位置调整。

Description

曝光装置的调整装置及调整方法 技术领域
本发明涉及一种曝光装置及曝光方法,尤其是涉及一种曝光装置的调整装置及调整方法。
背景技术
平板显示技术发展较快,尺寸越来越大。如果使用较大视场的物镜进行曝光能够有效地提升产率。然而随着物镜光学系统视场的增大,设计及加工制造等各方面的难度都会增加。使用相同的视场且大小适中的物镜采用一定排列方式将多个视场拼接成所需的大视场,根据所需视场大小来选择拼接的个数,这样既实现了大视场要求又降低了光学加工制造难度同时具有很高的兼容性和灵活性。
由于使用了多个子物镜进行拼接,每个子物镜由于自身的性能及装配公差等成像位置会与理论位置有偏差。同时由于较大的光罩会因重力产生变形,感光基板表面也会有面型的误差。因此为了能够使每个视场都能够成像在理想位置,每个物镜单元都有独自的调整装置来调整成像视场的位置以保证整个拼接视场的性能。
扫描型曝光装置有配置多个投影光学系统以使邻接投影区域在扫描方向进行所定量位移且使邻接投影区域的各个端部在与扫描方向直交的方向重复,即所谓多透镜方式的扫描型曝光装置(多透镜扫描型曝光装置)。多透镜方式的扫描型曝光装置是由多个狭缝状的照明区域来照明光罩、在对该照明区域的排列方向成直交的方向上同步扫描光罩和感光基板、通过与多个照明区域的各个对应设置的该多个投影光学系统将设于光罩的图案曝光于感光基板上的装置。
专利JP2005331694A公开了一种曝光装置,所述焦面调整功能通过直角反射镜或楔形平板组的平移来实现。直角反射镜平移调整焦面会同时改变最佳物像面的位置,在焦面调整的同时减小了焦深。楔形平板垂向平移调焦方式改变了两片楔板间的距离将引起像面Y方向的平移。此平移需要使用平行平板的旋转来补偿。像水平平移使用两片平行平板分别绕X、Y方向旋转进行调整。三片半透镜组组成的无焦光学系统任意一片移动调整倍率,同时引入焦面变化,焦面变化需要调焦系统进行补偿。
专利US20020005940公开了一种曝光装置,所述倍率调整功能通过两片透镜组成的无焦光学系统的轴向平移来实现。所述焦面调整功能通过三片透镜组成的无焦光学系统平移来实现。两片镜片无焦光学系统平移调节倍率时会引起焦面变化,同样的三片透镜无焦光学系统调节焦面时会引起倍率的变化。焦面和倍率调整装置需要同时使用配合进行焦面或倍率的调整。
现有的焦面和倍率调整机装置都是分离的,分别对倍率和焦面进行调节,且调整会引入其他不期望出现的串扰,这些串扰需要使用其他装置进行补偿,因此调整过程较为繁琐。
发明内容
本发明的目的在于提供一种同时或分别实现焦面、倍率和位置调整的调整装置和调整方法,且调整焦面、倍率和位置的同时不会引入其他变化。
为了达到上述目的,本发明提供了一种调整装置,为入射光面与出射光面为一对平行平面的光学系统,且置于一曝光装置中,其特征在于,所述调整装置包括至少一个楔形透镜和多个光学透镜,用于通过调整至少一对相邻透镜的相对位置来调整所述曝光装置对应视场的焦面、倍率以及位置中的至少一个。
进一步地,所述曝光装置包括光源、光罩、投影光学系统和感光基板,所述调整装置置于所述光罩和所述投影光学系统之间或者所述投影光学系统和所述感光基板之间或者所述投影光学系统的内部,所述光源照射所述光罩上的图案成像,并通过所述调整装置进行光路调整后,投影曝光于所述感光基板上。
进一步地,所述投影光学系统包括至少一个戴森光学系统,所述戴森光学系统包括直角反射镜、透镜和凹面反射镜。
进一步地,所述调整装置置于多个戴森光学系统之间或戴森光学系统的直角反射镜和透镜之间。
进一步地,所述调整装置包括:
第一楔形透镜,具有第一斜面,及第一楔角;
第一光学透镜,具有第二斜面及相对的第一弯曲面,所述第二斜面靠近且平行上述第一斜面,具有第一楔角,所述第一弯曲面具有第一曲率半径;
第二光学透镜,具有第二弯曲面及相对的第三弯曲面,所述第二弯曲面靠近上述第一弯曲面,具有与第一曲率半径相同或者相近的第二曲率半径,所述第三弯曲面具有第三曲率半径;
第三光学透镜,具有靠近所述第三弯曲面的第四弯曲面,具有与第三曲率半径相同或者相近的第四曲率半径。
进一步地,所述调整装置的第一楔角的角度范围为0.5°~10°。
进一步地,所述调整装置的第一曲率半径、第二曲率半径、第三曲率半径和第四曲率半径的半径范围为200mm~2000mm。
进一步地,所述调整装置包括:
第一楔形透镜,具有第一斜面,及第一楔角;
第一光学透镜,具有第二斜面及相对的第一弯曲面,所述第二斜面靠近且平行上述第一斜面,具有第一楔角,所述第一弯曲面具有第一曲率半径;
第二光学透镜,具有第二弯曲面及相对的第三弯曲面,所述第二弯曲面靠近上述第一弯曲面,具有与第一曲率半径相同或者相近的第二曲率半径,所述第三弯曲面具有第三曲率半径;
第三光学透镜,具有第四弯曲面及相对的第三斜面,所述第四弯曲面靠近上述第三弯曲面,具有与第三曲率半径相同或者相近的第四曲率半径,所述第三斜面与第一斜面平行,具有第二楔角;
第二楔形透镜,具有第四斜面,及第二楔角,所述第四斜面靠近上述第三斜面,且与第一斜面平行。
进一步地,所述调整装置的第一楔角的角度范围为0.5°~10°。
本发明还提供了一种应用于调整装置的调整方法,包括将一种调整装置置于一曝光装置中,其特征在于,所述调整装置为入射光面与出射光面为一对平行平面的光学系统,且包括至少一个楔形透镜和多个光学透镜,所述调整方法还包括通过调整至少一对相邻透镜的相对位置来调整所述曝光装置对应视场的焦面、倍率、位置中的至少一个。
进一步地,所述调整装置包括第一楔形透镜、第一光学透镜、第二光学透镜和第三光学透镜,所述第一楔形透镜具有第一斜面及第一楔角。
进一步地,所述焦面调整通过沿所述第一斜面方向移动第一楔形透镜实现。
进一步地,所述倍率调整通过沿光轴方向移动所述第一光学透镜、第二光学透镜,及第三光学透镜中的一个或多个实现。
进一步地,所述倍率调整通过沿光轴方向移动所述第一光学透镜、第二光学透镜,及第三光学透镜中的一个或多个,同时沿第一斜面方向移动第一楔形透镜,以实现无焦面变化的倍率调整。
进一步地,所述位置调整为平移和/或旋转调整,是通过倾斜旋转整个所述调整装置,和/或沿光轴方向旋转第一楔形透镜实现曝光图案在感光基板上 的图像位置相对平移和/或旋转。
进一步地,所述调整装置还包括第二楔形透镜,所述第二楔形透镜具有第四斜面及第二楔角,且平行于第一斜面。
进一步地,所述焦面调整通过沿所述第一斜面方向,相对移动所述第一楔形透镜或第二楔形透镜以实现焦面的改变。
进一步地,所述倍率调整通过沿光轴方向移动所述第一光学透镜、第二光学透镜,及第三光学透镜中的一个或多个以实现倍率的改变。
进一步地,所述倍率调整通过沿光轴方向移动所述第一光学透镜、第二光学透镜,及第三光学透镜中的一个或多个,同时沿第一斜面方向移动第一楔形透镜、第二楔形透镜中的一个或多个以实现无焦面变化的倍率调整。
进一步地,所述位置调整为平移和/或旋转调整,是通过倾斜旋转整个所述调整装置,和/或沿曝光光路光轴旋转第一楔形透镜和/或第二楔形透镜实现曝光图案在感光基板上的图像位置相对平移和/或旋转。
本发明还提供了一种曝光装置,包括光源、光罩、感光基板和上述的调整装置,所述光源照射光罩上的图案成像,并通过所述调整装置进行光路调整后,投影曝光于所述感光基板上。
与现有技术相比,本发明提供了一组特殊形态的调整装置,能够同时或分别实现焦面、倍率和位置的连续调整,且调整焦面、倍率和位置的同时不会引入其他变化。
附图说明
图1为本发明实施例提供的曝光装置光学系统概略构成图;
图2A为本发明实施例一提供的调整装置的结构示意图;
图2B为本发明实施例二提供的调整装置的结构示意图;
图3A为本发明实施例一提供的调整装置的焦面调整示意图;
图3B为本发明实施例二提供的调整装置的焦面调整示意图;
图4A为本发明实施例一提供的调整装置的倍率调整示意图;
图4B为本发明实施例二提供的调整装置的倍率调整示意图;
图5A为本发明实施例一提供的调整装置的平移调整示意图;
图5B为本发明实施例一提供的调整装置的平移调整示意图;
图6为本发明实施例三提供的调整装置的结构示意图。
其中,1:光源,2:光罩,3:调整装置,4:直角反射镜,5:透镜,6:凹面反射镜,7:直角反射镜,8:透镜,9:凹面反射镜,10:戴森光学系统,11:戴森光学系统,12:感光基板,31:光学透镜,32:光学透镜,33:光学透镜,34:楔形透镜,35:光学透镜,36:光学透镜,37:光学透镜,38:楔形透镜,△X:X方向平移量,△Y:Y方向平移量,13:楔形透镜,14:光学透镜,15:光学透镜,16:光学透镜,17:楔形透镜。
具体实施方式
下面将结合附图对本发明的具体实施方式进行更详细的描述,根据下列描述并结合权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比率,仅用以方便、明晰地辅助说明本发明实施例的目的。
如图1所示的曝光装置光学系统概略构成图,本发明提供的曝光装置包括光源1、光罩2、调整装置3、戴森光学系统10、戴森光学系统11和感光基板12,所述戴森光学系统10包括直角反射镜4、透镜5和凹面反射镜6,所述戴森光学系统11包括直角反射镜7、透镜8和凹面反射镜9,所述调整装置3放置在光罩2和直角反射镜4之间,所述调整装置3整体是一个两端(即入射光面与出射光面)为平行平面的无焦光学系统,即所述系统不存在 光学焦距,对经过所述系统的光没有汇聚作用,所述调整装置3可放置在多个位置,如图1中未标号的虚线方框为调整装置3其他可放置的位置,但不限于图1中所示位置,还可将此调整装置3放置于所有可能对像场进行调节的光路中。所述光源1照射光罩2上的图案成像,经调整装置、戴森光学系统10和11投影曝光于所述感光基板12上。
所述曝光装置包括至少一个戴森光学系统,在图1中,曝光装置包括两个戴森光学系统,即戴森光学系统10和11,这仅仅用于方便描述该曝光装置,并不限定戴森光学系统的数量为两个。且根据实际需求,所述戴森光学系统,可以替换成其他光学系统。
实施例一
如图2A所示,在本实施例中,所述调整装置3的入射光面341与出射光面312为相互平行的平面,厚度为H1,其包括:
第一楔形透镜34,具有第一斜面342,及第一楔角θ1;
第一光学透镜33,具有第二斜面331及相对的第一弯曲面332,所述第二斜面331靠近且平行上述第一斜面342,具有第一楔角θ1,所述第一弯曲面332具有第一曲率半径R1;
第二光学透镜32,具有第二弯曲面321及相对的第三弯曲面322,所述第二弯曲面321靠近上述第一弯曲面332,具有与第一曲率半径R1相同或者相近的第二曲率半径R2,所述第三弯曲面322具有第三曲率半径R3;
第三光学透镜31,具有靠近所述第三弯曲面322的第四弯曲面311,具有与第三曲率半径R3相同或者相近的第四曲率半径R4。
所述调整装置3的第一曲率半径R1、第二曲率半径R2、第三曲率半径R3和第四曲率半径R4的半径范围为200mm~2000mm。所述调整装置3的镜片材料使用紫外高透过率材料。所述调整装置3的第一楔角θ1的角度范围为 0.5°~10°。
所述光学透镜31、32和33为从整圆镜片或是从整圆镜片上切割得到的一部分,并且不限于图2A中所示的曲面弯曲方向。所述调整装置3在光路中的放置顺序可以是从透镜31到34,也可以从透镜34到31。所述光学透镜31和33可以为平凸透镜也可以为平凹透镜,所述光学透镜32可以为双凸透镜、双凹透镜或弯月透镜。所述调整装置3的楔面方向如图2A所示。
如图3A所示,其中,所述楔形透镜34可沿着斜面方向运动,通过增加或减小楔形透镜34在光路中的厚度来改变透过调整装置3的光程,实现焦面的改变。此外,由于所述楔形透镜34沿斜面运动时光学透镜33与楔形透镜34间的空气间隔均保持不变,因此能够使焦面调整不引入像水平位置的平移。
用户可以根据实际需求选择调整装置3的放置位置,将所述调整装置3放置在光罩2与直角反射镜4之间可以改变最佳光罩位置,将调整装置3放置在感光基板与直角反射镜7之间可以改变最佳感光基板位置。
焦面调整的灵敏度与第一斜面342的第一楔角θ1成正比、与楔形透镜34使用材料的折射率成正比。通过选择适当的材料和第一楔角θ1大小即可根据曝光装置光学系统对调节范围和调节精度的不同需求提供合适的焦面调整灵敏度。
如图4A所示,同时改变光学透镜31与32间和光学透镜32与33间的空气间隔的大小或单独改变其中任一个空气间隔的大小就能够实现光学系统倍率的变化,同时使楔形透镜34沿斜面方向平移能够消除空气间隔变化引起的焦面变化,实现无其他影响的倍率调整。
倍率调整的灵敏度和选择调整的空气间隔有关,上述两个空气间隔的灵敏度都与相邻两片光学透镜的材料和曲率半径相关,如图4A所示,光学透镜31与32间的空气间隔灵敏度与光学透镜31的材料、光学透镜31的曲率半径 R4、光学透镜32的材料以及光学透镜32的曲率半径R3相关,光学透镜32与33的空气间隔灵敏度同理。设计时可以根据曝光装置光学系统对调节范围、调节精度的不同需求选择合适的材料与曲率半径组合,这样可以得到对该光学系统机械和控制等方面最佳的灵敏度。同时针对一个以加工好的调整装置3可以通过选择调整不同的空气间隔来得到不同的灵敏度。设计时可以通过不同曲率半径和材料的组合将两个空气间隔的灵敏度设计得有一定的差异,这样可以通过选择调整低灵敏度间隔、高灵敏度间隔和同时调整高低灵敏度间隔来得到不同的调整灵敏度以便不同场景需求中使用。
图5A和5B为调整装置3的平移调整示意图。
由于所述调整装置3整体相当于一块平行平板,绕X轴旋转可以调节像面Y方向平移,绕Y轴旋转可以调整像X方向的平移。图5A和5B所示分别为调整装置3绕Y轴旋转调整像面X方向平移和绕X轴旋转调整像面Y向平移。其中,X方向平移的距离为△X,Y向平移的距离为△Y。
平移调整的灵敏度与所述四片透镜31、32、33和34的材料总体的折射率成正比,同时与所述四片透镜总的厚度H1成正比。同样的可以通过材料选择和透镜厚度的不同得到不同的灵敏度。
此外,所述调整装置3还可以实现旋转调整功能。如图2A所示,通过沿曝光光路光轴旋转第一楔形透镜,实现曝光图案在感光基板上的图像位置相对旋转移动。
下面表1为调整装置3如图2A所示结构的一个具体实例的详细数据。所述调整装置3的四片透镜全部由普遍使用的对紫外光有高通过率的熔融石英材料组成。光学透镜31为曲率半径800mm的平凹透镜,光学透镜32为靠近光学透镜31一侧曲率半径800mm及靠近光学透镜33一侧曲率半径900mm的双凸透镜,光学透镜33曲率半径为900mm,楔形透镜34和光学透镜33 靠近楔形透镜34一侧的楔角均为5°,所述调整装置3的四片透镜中心厚度分别为15mm、15mm、15mm和10mm,光学透镜31和32之间的空气间隔为1.6mm,光学透镜32和33之间的空气间隔为1.5mm,光学透镜33和楔形透镜34之间的空气间隔为0.5mm。此外,如表一所示,曲率半径无限大代表透镜的一侧为平面,四片透镜相互之间为空气,曲率半径和中心厚度的单位均为mm。
表1
Figure PCTCN2015092900-appb-000001
所述调整装置3可以实现焦面调整、倍率调整和平移调整功能。所述楔形装置34沿着斜面方向运动,通过增加或减小楔形透镜34在光路中的厚度来改变透过调整装置3的光程,实现焦面的改变;同时改变光学透镜31与32间和光学透镜32与33间的空气间隔的大小或单独改变其中任一个空气间隔的大小就能够实现光学系统倍率的变化,同时使楔形透镜34沿斜面方向平移能够消除空气间隔变化引起的焦面变化,实现无其他影响的倍率调整;所述调整装置3整体相当于一块平行平板,绕X轴旋转可以调节像面Y方向平移,绕Y轴旋转可以调整像X方向的平移。
所述调整装置3使用表一中的详细数据。此时,该调整装置3对焦面的调整灵敏度为28.125nm/um,即楔形透镜沿5°斜面方向向斜上方运动时,每运动1um将会使焦面缩短28.125nm。这个灵敏度比较低,对机械及控制的要 求也很低,这样可以非常容易实现对焦面的精密控制。
光学透镜31和32之间的空气间隔的倍率调整灵敏度为0.57ppm/um,即空气间隔增加10um,系统倍率将增大5.7ppm。光学透镜32和33之间的空气间隔的倍率调整灵敏度为-0.53ppm/um,即空气间隔增加10um,系统倍率将减小5.3ppm。上述两个间隔的灵敏度绝对值比较接近的原因是使用了相同的材料并且曲率半径比较接近。当需要对倍率进行精细调整时可以只改变光学透镜31和32之间的空气间隔(光学透镜31轴向移动);当需要更高的灵敏度时,同时反方向改变上述两个空气间隔(光学透镜32轴向移动),这样能够得到11ppm/10um的灵敏度。倍率调整带来的焦面微量变化可使用楔形透镜34进行焦面补偿调整。
使用表一数据的调整装置3的像面平移灵敏度为17.6nm/urad,即所述调整装置3整体绕X轴旋转1urad,像面会在Y方向上平移17.6nm;同样的,该调整装置3绕Y轴旋转1urad,像面会在X方向上平移17.6nm。
实施例二
本实施例与实施例一的区别在于,如图2B所示,在实施例二中,所述调整装置3的入射光面381与出射光面352为相互平行的平面,厚度为H2,其包括:
第一楔形透镜38,具有第一斜面382,及第一楔角θ1;
第一光学透镜37,具有第二斜面371及相对的第一弯曲面372,所述第二斜面372靠近且平行上述第一斜面382,具有第一楔角θ1,所述第一弯曲面372具有第一曲率半径R1;
第二光学透镜36,具有第二弯曲面361及相对的第三弯曲面362,所述第二弯曲面361靠近上述第一弯曲面372,具有与第一曲率半径R1相同或者相近的第二曲率半径R2,所述第三弯曲面362具有第三曲率半径R3;
第三光学透镜35,具有靠近所述第三弯曲面362的第四弯曲面351,具有与第三曲率半径R3相同或者相近的第四曲率半径R4。
所述调整装置3的第一曲率半径R1、第二曲率半径R2、第三曲率半径R3和第四曲率半径R4的半径范围为200mm~2000mm。所述调整装置3的镜片材料使用紫外高透过率材料。所述调整装置3的第一楔角θ1的角度范围为0.5°~10°。
本实施例中的其余结构技术特征均与实施例一中的相同,所述光学透镜35、36和37为从整圆镜片或是从整圆镜片上切割得到的一部分,并且不限于图2B中所示的曲面弯曲方向。所述调整装置3在光路中的放置顺序可以是从透镜35到38,也可以从透镜38到35。所述光学透镜35和37可以为平凸透镜也可以为平凹透镜,所述光学透镜36可以为双凸透镜、双凹透镜或弯月透镜。所述调整装置3的楔面方向如图2B所示。
如图3B所示的调整装置3,其焦面调整的操作方式与图3A的一致,如图4B所示的调整装置3,其倍率调整的操作方式与图4A的一致,请参考图3A和图4A的操作方式,在此不再赘述。
图5A和5B为实施例一中调整装置3的平移调整示意图,在实施例二中,调整装置3的平移调整示意图也为图5A和5B。
由于所述调整装置3整体相当于一块平行平板,绕X轴旋转可以调节像面Y方向平移,绕Y轴旋转可以调整像X方向的平移。图5A和5B所示分别为调整装置3绕Y轴旋转调整像面X方向平移和绕X轴旋转调整像面Y向平移。其中,X方向平移的距离为△X,Y向平移的距离为△Y。
平移调整的灵敏度与所述四片透镜35、36、37和38的材料总体的折射率成正比,同时与所述四片透镜总的厚度H2成正比。同样的可以通过材料选择和透镜厚度的不同得到不同的灵敏度。
此外,所述调整装置3还可以实现旋转调整功能。如图2B所示,通过沿曝光光路光轴旋转第一楔形透镜,实现曝光图案在感光基板上的图像位置相对旋转移动。
实施例三
本实施例与实施例一/二的区别在于,如图6所示,在实施例三中,所述调整装置3的入射光面171与出射光面132为相互平行的平面,厚度为H3,包括:
第一楔形透镜17,具有第一斜面172,及第一楔角θ1;
第一光学透镜16,具有第二斜面161及相对的第一弯曲面162,所述第二斜面161靠近且平行上述第一斜面172,具有楔角θ1,所述第一弯曲面162具有第一曲率半径R1;
第二光学透镜15,具有第二弯曲面151及相对的第三弯曲面152,所述第二弯曲面152靠近上述第一弯曲面162,具有与第一曲率半径R1相同或者相近的第二曲率半径R2,所述第三弯曲面152具有第三曲率半径R3;
第三光学透镜14,具有第四弯曲面141及相对的第三斜面142,所述第四弯曲面141靠近上述第三弯曲面152,具有与第三曲率半径R3相同或者相近的第四曲率半径R4,所述第三斜面142与第一斜面172平行,具有第二楔角θ2;
第二楔形透镜13,具有第四斜面131,及第二楔角θ2,所述第四斜面131靠近上述第三斜面142,且与第一斜面172平行。
所述调整装置3除实现如图2A、2B所述调整装置3的焦面、倍率和平移调整功能外,第一楔形透镜17或第二楔形透镜13中的任一片用于焦面调节,另外一片绕光轴旋转,可以调整像面水平方向旋转。
本实施例中的其余结构技术特征均与实施例一/二中的相同,故在此不再 赘述。
上述实施例一、实施例二和实施例三的焦面调整、倍率调整和平移调整功能可以同时使用也可以单独使用。
综上,本发明提供了一组特殊形态的调整装置,能够同时或分别实现焦面、倍率和平移的连续调整,且调整焦面、倍率和平移的同时不会引入其他变化,所述其他变化包括焦面调整引起的像面平移变化和倍率调整引起的焦面变化。
上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。

Claims (22)

  1. 一种调整装置,为入射光面与出射光面为一对平行平面的光学系统,且置于一曝光装置中,其特征在于,所述调整装置包括至少一个楔形透镜和多个光学透镜,用于通过调整至少一对相邻透镜的相对位置来调整所述曝光装置对应视场的焦面、倍率以及位置中的至少一个。
  2. 如权利要求1所述的调整装置,其特征在于,所述曝光装置包括光源、光罩、投影光学系统和感光基板,所述调整装置置于所述光罩和所述投影光学系统之间或者所述投影光学系统和所述感光基板之间或者所述投影光学系统的内部,所述光源照射所述光罩上的图案成像,并通过所述调整装置进行光路调整后,投影曝光于所述感光基板上。
  3. 如权利要求2所述的调整装置,其特征在于,所述投影光学系统包括至少一个戴森光学系统,所述戴森光学系统包括直角反射镜、透镜和凹面反射镜。
  4. 如权利要求3所述的调整装置,其特征在于,所述调整装置置于多个戴森光学系统之间或戴森光学系统的直角反射镜和透镜之间。
  5. 如权利要求1所述的调整装置,其特征在于,所述调整装置包括:
    第一楔形透镜,具有第一斜面,及第一楔角;
    第一光学透镜,具有第二斜面及相对的第一弯曲面,所述第二斜面靠近且平行上述第一斜面,具有第一楔角,所述第一弯曲面具有第一曲率半径;
    第二光学透镜,具有第二弯曲面及相对的第三弯曲面,所述第二弯曲面靠近上述第一弯曲面,具有与第一曲率半径相同或者相近的第二曲率半径,所述第三弯曲面具有第三曲率半径;
    第三光学透镜,具有靠近所述第三弯曲面的第四弯曲面,具有与第三曲率半径相同或者相近的第四曲率半径。
  6. 如权利要求5所述的调整装置,其特征在于,所述调整装置的第一楔 角的角度范围为0.5°~10°。
  7. 如权利要求5所述的调整装置,其特征在于,所述调整装置的第一曲率半径、第二曲率半径、第三曲率半径和第四曲率半径的半径范围为200mm~2000mm。
  8. 如权利要求1所述的调整装置,其特征在于,所述调整装置包括:
    第一楔形透镜,具有第一斜面,及第一楔角;
    第一光学透镜,具有第二斜面及相对的第一弯曲面,所述第二斜面靠近且平行上述第一斜面,具有第一楔角,所述第一弯曲面具有第一曲率半径;
    第二光学透镜,具有第二弯曲面及相对的第三弯曲面,所述第二弯曲面靠近上述第一弯曲面,具有与第一曲率半径相同或者相近的第二曲率半径,所述第三弯曲面具有第三曲率半径;
    第三光学透镜,具有第四弯曲面及相对的第三斜面,所述第四弯曲面靠近上述第三弯曲面,具有与第三曲率半径相同或者相近的第四曲率半径,所述第三斜面与第一斜面平行,具有第二楔角;
    第二楔形透镜,具有第四斜面,及第二楔角,所述第四斜面靠近上述第三斜面,且与第一斜面平行。
  9. 如权利要求8所述的调整装置,其特征在于,所述调整装置的第一楔角及第二楔角的角度范围为0.5°~10°。
  10. 如权利要求8所述的调整装置,其特征在于,所述调整装置的第一曲率半径、第二曲率半径、第三曲率半径和第四曲率半径的半径范围为200mm~2000mm。
  11. 一种调整方法,包括将一种调整装置置于一曝光装置中,其特征在于,所述调整装置为入射光面与出射光面为一对平行平面的光学系统,且包括至少一个楔形透镜和多个光学透镜,所述调整方法还包括通过调整至少一对相邻透镜的相对位置来调整所述曝光装置对应视场的焦面、倍率、位置中的至少一个。
  12. 如权利要求11所述的调整方法,其特征在于,所述调整装置包括第一楔形透镜、第一光学透镜、第二光学透镜和第三光学透镜,所述第一楔形透镜具有第一斜面及第一楔角。
  13. 如权利要求12所述的调整方法,其特征在于,所述焦面调整通过沿所述第一斜面方向移动第一楔形透镜实现。
  14. 如权利要求12所述的调整方法,其特征在于,所述倍率调整通过沿光轴方向移动所述第一光学透镜、第二光学透镜,及第三光学透镜中的一个或多个实现。
  15. 如权利要求12所述的调整方法,其特征在于,所述倍率调整通过沿光轴方向移动所述第一光学透镜、第二光学透镜,及第三光学透镜中的一个或多个,同时沿第一斜面方向移动第一楔形透镜,以实现无焦面变化的倍率调整。
  16. 如权利要求12所述的调整方法,其特征在于,所述位置调整为平移和/或旋转调整,是通过,倾斜旋转整个所述调整装置和/或沿光轴方向旋转第一楔形透镜实现曝光图案在感光基板上的图像位置相对平移和/或旋转。
  17. 如权利要求12所述的调整方法,其特征在于,所述调整装置还包括第二楔形透镜,所述第二楔形透镜具有第四斜面及第二楔角,且平行于第一斜面。
  18. 如权利要求17所述的调整方法,其特征在于,所述焦面调整通过沿所述第一斜面方向,相对移动所述第一楔形透镜或第二楔形透镜以实现焦面的改变。
  19. 如权利要求17所述的调整方法,其特征在于,所述倍率调整通过沿光轴方向移动所述第一光学透镜、第二光学透镜,及第三光学透镜中的一个或多个以实现倍率的改变。
  20. 如权利要求17所述的调整方法,其特征在于,所述倍率调整通过沿光轴方向移动所述第一光学透镜、第二光学透镜,及第三光学透镜中的一个 或多个,同时沿第一斜面方向移动第一楔形透镜、第二楔形透镜中的一个或多个以实现无焦面变化的倍率调整。
  21. 如权利要求17所述的调整方法,其特征在于,所述位置调整为平移和/或旋转调整,是通过,倾斜旋转整个所述调整装置和/或沿曝光光路光轴旋转第一楔形透镜和/或第二楔形透镜实现曝光图案在感光基板上的图像位置相对平移和/或旋转。
  22. 一种曝光装置,其特征在于,所述曝光装置包括光源、光罩、感光基板和如权利要求1-10中任一项所述的调整装置,所述光源照射光罩上的图案成像,并通过所述调整装置进行光路调整后,投影曝光于所述感光基板上。
PCT/CN2015/092900 2014-10-29 2015-10-27 曝光装置的调整装置及调整方法 WO2016066076A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177014355A KR101985331B1 (ko) 2014-10-29 2015-10-27 노광 장치 및 노광 장치를 위한 조정 방법
JP2017522667A JP6649951B2 (ja) 2014-10-29 2015-10-27 露光装置の調整装置及び調整方法
US15/523,140 US10197919B2 (en) 2014-10-29 2015-10-27 Adjusting device and adjusting method for exposure device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410597382.0 2014-10-29
CN201410597382.0A CN105549327B (zh) 2014-10-29 2014-10-29 曝光装置的调整装置及调整方法

Publications (1)

Publication Number Publication Date
WO2016066076A1 true WO2016066076A1 (zh) 2016-05-06

Family

ID=55828596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092900 WO2016066076A1 (zh) 2014-10-29 2015-10-27 曝光装置的调整装置及调整方法

Country Status (6)

Country Link
US (1) US10197919B2 (zh)
JP (1) JP6649951B2 (zh)
KR (1) KR101985331B1 (zh)
CN (1) CN105549327B (zh)
TW (1) TWI584081B (zh)
WO (1) WO2016066076A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107450192A (zh) * 2017-09-22 2017-12-08 中国烟草总公司郑州烟草研究院 一种用于光路调节的小型三维调节装置
WO2018236770A1 (en) * 2017-06-19 2018-12-27 Suss Microtec Photonic Systems Inc. MAGNIFICATION AND / OR BEAM ORIENTATION COMPENSATION IN OPTICAL SYSTEMS
US11175487B2 (en) 2017-06-19 2021-11-16 Suss Microtec Photonic Systems Inc. Optical distortion reduction in projection systems

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106292188B (zh) * 2015-05-24 2019-01-18 上海微电子装备(集团)股份有限公司 曝光装置
DE102017115365B4 (de) * 2017-07-10 2020-10-15 Carl Zeiss Smt Gmbh Inspektionsvorrichtung für Masken für die Halbleiterlithographie und Verfahren
US10771767B2 (en) * 2019-02-28 2020-09-08 Intel Corporation Projector for active stereo depth sensors
TWI728831B (zh) * 2019-08-14 2021-05-21 香港商立景創新有限公司 可對焦成像裝置
CN110936014A (zh) * 2019-12-30 2020-03-31 苏州迅镭激光科技有限公司 一种可实现大幅面扫描焊接的光学系统
CN113848685A (zh) * 2021-09-26 2021-12-28 上海度宁科技有限公司 一种曝光装置及适用于该曝光装置的调整装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1452017A (zh) * 2002-04-12 2003-10-29 尼康株式会社 曝光装置及曝光方法
CN101551508A (zh) * 2008-03-31 2009-10-07 大日本网屏制造株式会社 像位置调整装置以及光学装置
JP2010039347A (ja) * 2008-08-07 2010-02-18 Mejiro Precision:Kk 投影露光装置
CN103364963A (zh) * 2012-04-04 2013-10-23 佳能株式会社 光学系统、曝光装置以及设备制造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3305294A (en) * 1964-12-03 1967-02-21 Optical Res & Dev Corp Two-element variable-power spherical lens
JP3359123B2 (ja) * 1993-09-20 2002-12-24 キヤノン株式会社 収差補正光学系
JPH10142555A (ja) * 1996-11-06 1998-05-29 Nikon Corp 投影露光装置
JP3306772B2 (ja) * 1998-07-01 2002-07-24 キヤノン株式会社 投影露光装置及びデバイスの製造方法
US6811953B2 (en) 2000-05-22 2004-11-02 Nikon Corporation Exposure apparatus, method for manufacturing therof, method for exposing and method for manufacturing microdevice
JP4590124B2 (ja) * 2001-04-09 2010-12-01 キヤノン株式会社 測定装置
JP3381256B2 (ja) * 2001-05-31 2003-02-24 株式会社ニコン 投影露光装置、露光方法、半導体の製造方法及び投影光学系の調整方法
JP2004200430A (ja) * 2002-12-19 2004-07-15 Nikon Corp 露光装置、露光装置の調整方法及び露光方法
JP4244156B2 (ja) * 2003-05-07 2009-03-25 富士フイルム株式会社 投影露光装置
JP2005024584A (ja) * 2003-06-30 2005-01-27 Nikon Corp 走査型投影露光装置及び露光方法
KR101200654B1 (ko) * 2003-12-15 2012-11-12 칼 짜이스 에스엠티 게엠베하 고 개구율 및 평평한 단부면을 가진 투사 대물렌즈
JP4547714B2 (ja) 2004-05-19 2010-09-22 株式会社ニコン 投影光学系、露光装置、および露光方法
KR101244255B1 (ko) * 2004-12-16 2013-03-18 가부시키가이샤 니콘 투영 광학계, 노광 장치, 노광 시스템 및 노광 방법
TWI453795B (zh) 2005-01-21 2014-09-21 尼康股份有限公司 照明光學裝置、曝光裝置、曝光方法以及元件製造方法
JP2006261155A (ja) 2005-03-15 2006-09-28 Fuji Photo Film Co Ltd 露光装置及び露光方法
JP5312058B2 (ja) * 2009-01-19 2013-10-09 キヤノン株式会社 投影光学系、露光装置及びデバイス製造方法
KR102047505B1 (ko) 2009-08-26 2019-12-02 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
KR20140041844A (ko) * 2011-08-30 2014-04-04 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치, 리소그래피 장치를 셋업하는 방법 및 디바이스 제조 방법
JP6410406B2 (ja) * 2012-11-16 2018-10-24 キヤノン株式会社 投影光学系、露光装置および物品の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1452017A (zh) * 2002-04-12 2003-10-29 尼康株式会社 曝光装置及曝光方法
CN101551508A (zh) * 2008-03-31 2009-10-07 大日本网屏制造株式会社 像位置调整装置以及光学装置
JP2010039347A (ja) * 2008-08-07 2010-02-18 Mejiro Precision:Kk 投影露光装置
CN103364963A (zh) * 2012-04-04 2013-10-23 佳能株式会社 光学系统、曝光装置以及设备制造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018236770A1 (en) * 2017-06-19 2018-12-27 Suss Microtec Photonic Systems Inc. MAGNIFICATION AND / OR BEAM ORIENTATION COMPENSATION IN OPTICAL SYSTEMS
US10539770B2 (en) 2017-06-19 2020-01-21 Suss Microtec Photonic Systems Inc. Magnification compensation and/or beam steering in optical systems
KR20200020812A (ko) * 2017-06-19 2020-02-26 서스 마이크로텍 포토닉 시스템즈 인코포레이티드 광학계에서의 배율 보상 및 빔 조향 방법 및 장치
JP2020524309A (ja) * 2017-06-19 2020-08-13 ズース マイクロテック フォトニック システムズ インコーポレイテッド 光学系における倍率補正及び/又はビームステアリング
TWI706158B (zh) * 2017-06-19 2020-10-01 美商蘇斯微科光電系統股份有限公司 放大率補償方法及光學系統
KR102290482B1 (ko) * 2017-06-19 2021-08-13 서스 마이크로텍 포토닉 시스템즈 인코포레이티드 광학계에서의 배율 보상 및 빔 조향 방법 및 장치
US11175487B2 (en) 2017-06-19 2021-11-16 Suss Microtec Photonic Systems Inc. Optical distortion reduction in projection systems
US11209635B2 (en) 2017-06-19 2021-12-28 Suss Microtec Photonic Systems Inc. Magnification compensation and/or beam steering in optical systems
CN107450192A (zh) * 2017-09-22 2017-12-08 中国烟草总公司郑州烟草研究院 一种用于光路调节的小型三维调节装置
CN107450192B (zh) * 2017-09-22 2023-05-12 中国烟草总公司郑州烟草研究院 一种用于光路调节的小型三维调节装置

Also Published As

Publication number Publication date
US20170322493A1 (en) 2017-11-09
TW201627775A (zh) 2016-08-01
KR101985331B1 (ko) 2019-06-03
US10197919B2 (en) 2019-02-05
TWI584081B (zh) 2017-05-21
CN105549327B (zh) 2018-03-02
JP6649951B2 (ja) 2020-02-19
CN105549327A (zh) 2016-05-04
KR20170077190A (ko) 2017-07-05
JP2017534918A (ja) 2017-11-24

Similar Documents

Publication Publication Date Title
TWI584081B (zh) Adjustment device for adjusting device and adjustment method thereof
JP5696644B2 (ja) 画像表示装置
TWI706158B (zh) 放大率補償方法及光學系統
US9348121B2 (en) Magnification optical system
TWI427323B (zh) 投影鏡頭與投影裝置
KR101188202B1 (ko) 프로젝션 디스플레이 장치의 광학계
WO2006098919A2 (en) Micromirror array lens with focal length gradient
TWI705266B (zh) 光學系統及其光學鏡頭
CA1143192A (en) Beam-splitting optical system
JP2008203604A (ja) 投射型映像表示装置
KR20130112753A (ko) 광학계, 노광 장치 및 디바이스 제조 방법
WO2016188358A1 (zh) 曝光装置
JP6642672B2 (ja) 投射光学系の製造方法および画像表示装置の製造方法
JP2010257998A (ja) 反射投影光学系、露光装置、及びデバイスの製造方法
JP6409839B2 (ja) 投射光学系の製造方法および画像表示装置の製造方法
CN219997404U (zh) 投影光学系统和电子设备
JP2015132723A (ja) 投射光学系および画像表示装置
KR102473294B1 (ko) 투영 시스템에서의 광학 왜곡 감소
JP4765314B2 (ja) 照明光学装置
JP2020074015A (ja) 投射光学系の製造方法および画像表示装置の製造方法
JP2015143861A (ja) 投射光学系および画像表示装置
CN108345090A (zh) 一种f数的l型短焦全高清投影镜头
JPH08124823A (ja) 露光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017522667

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15523140

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177014355

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15856057

Country of ref document: EP

Kind code of ref document: A1