WO2016065867A1 - 空调器 - Google Patents

空调器 Download PDF

Info

Publication number
WO2016065867A1
WO2016065867A1 PCT/CN2015/077021 CN2015077021W WO2016065867A1 WO 2016065867 A1 WO2016065867 A1 WO 2016065867A1 CN 2015077021 W CN2015077021 W CN 2015077021W WO 2016065867 A1 WO2016065867 A1 WO 2016065867A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
heat dissipation
valve
heat exchanger
heat
Prior art date
Application number
PCT/CN2015/077021
Other languages
English (en)
French (fr)
Inventor
韩宇
李金波
孟庆好
陈明瑜
曾祥兵
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201420635820.3U external-priority patent/CN204227746U/zh
Priority claimed from CN201410594196.1A external-priority patent/CN105627611A/zh
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Priority to US15/518,898 priority Critical patent/US10480800B2/en
Priority to EP15855546.6A priority patent/EP3214380B1/en
Priority to BR112017008493-7A priority patent/BR112017008493B1/pt
Publication of WO2016065867A1 publication Critical patent/WO2016065867A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/008Refrigerant heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve

Definitions

  • the present invention relates to the field of air conditioning technology, and in particular, to an air conditioner.
  • inverter air conditioners have been widely used in the industry.
  • the frequency conversion module generates a large heat, which limits the high frequency operation of the compressor in a high temperature environment.
  • Most of the current electronically controlled heat dissipation methods use metal fins to dissipate heat through air convection.
  • the heat dissipation method is poor in heat dissipation, and the usual practice is to reduce the electronically controlled heat by reducing the operating frequency of the compressor to ensure the normal operation of the air conditioner. It greatly affects the cooling effect of the inverter air conditioner in the case of high outdoor environment temperature, which affects the user's comfort.
  • the technology of controlling the outdoor heat-dissipation by the low-temperature refrigerant has the problem of generating condensation water or lowering the temperature of the outdoor electromechanical control, which affects the reliability and safety of the electronic control.
  • the publication number is CN102844980, and the name is a refrigeration device.
  • the refrigeration system complicated in design, poor in processability, complicated in program control, and high in cost, it is difficult to form a product.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent. To this end, the present invention provides an air conditioner which has the advantages of good performance, high stability and high stability.
  • An air conditioner includes: a compressor having an exhaust port and a return air port; a reversing assembly including a first port to a fourth port, the first port and the One of the second port and the third port is turned on, the fourth port is electrically connected to the other of the second port and the third port, the first port and the row a gas port is connected, the fourth port is connected to the gas return port; an outdoor heat exchanger and an indoor heat exchanger, and the first end of the outdoor heat exchanger is connected to the second port, the indoor heat exchanger The first end is connected to the third port; the electronically controlled heat sink assembly includes an electronic control component and a heat dissipation component for dissipating heat from the electronic control component, the heat dissipation component being connected in series a second end of the indoor heat exchanger and a second end of the outdoor heat exchanger; a one-way throttle valve, the one-way throttle valve including a first valve port and a second valve port, a first valve port is connected to the second end of the
  • the air conditioner of the present invention by providing a one-way throttle valve between the outdoor heat exchanger and the indoor heat exchanger, it is possible to make a single
  • the throttle valve is fully conductive when the refrigerant flows from the outdoor heat exchanger to the indoor heat exchanger, and throttles when the refrigerant flows from the indoor heat exchanger to the outdoor heat exchanger, and the air conditioner is cooled and manufactured.
  • the refrigerant can dissipate heat from the electronic control components, thereby reducing the temperature of the electronic control components and improving the operational stability of the electronic control components.
  • the refrigerant is partially throttled or unthrottled before flowing into the heat dissipating component, so the refrigerant temperature is slightly higher than the ambient temperature, thereby effectively reducing the generation of condensed water, improving the working stability of the electronic control component, and thereby improving the operation.
  • Air conditioner performance and market competitiveness are partially throttled or unthrottled before flowing into the heat dissipating component, so the refrigerant temperature is slightly higher than the ambient temperature, thereby effectively reducing the generation of condensed water, improving the working stability of the electronic control component, and thereby improving the operation. Air conditioner performance and market competitiveness.
  • the reversing assembly is a four-way valve.
  • the heat dissipating assembly includes: a heat dissipating tube connected in series between the indoor heat exchanger and the outdoor heat exchanger; and a heat dissipating tube, wherein the heat dissipating tube is disposed in the On the heat dissipation housing, the heat dissipation housing is in contact with the electronic control component for dissipating heat from the electronic control component.
  • the heat dissipation case includes: a heat dissipation substrate, the heat dissipation substrate is in contact with the electronic control component; a fixed baffle, the fixed baffle is disposed on the heat dissipation substrate, the fixed baffle and the heat dissipation An accommodation space for accommodating the heat pipe is defined between the substrates.
  • both ends of the heat pipe extend from opposite sidewalls of the heat sink to be connected to the one-way throttle valve and the indoor heat exchanger.
  • both ends of the heat pipe extend from the same side of the heat sink to be connected to the one-way throttle valve and the indoor heat exchanger.
  • a first groove is disposed on an end surface of the heat dissipation substrate facing the fixed baffle, and a second groove is disposed on an end surface of the fixed baffle facing the heat dissipation substrate, the first The recess and the second recess cooperate to define the receiving space.
  • the fixed baffle is provided with a fixing post
  • the heat dissipating substrate is provided with a fixing hole
  • the fixing post is riveted and connected to the fixing hole
  • the shape of the accommodation space is the same as the shape of the heat pipe.
  • the throttling element is a capillary or an electronic expansion valve.
  • FIG. 1 is a schematic structural view of an air conditioner according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view of the one-way throttle valve of Figure 1;
  • FIG 3 and 4 are cross-sectional views of an electrically controlled heat sink assembly of an air conditioner in accordance with various embodiments of the present invention.
  • Compressor 110 exhaust port 111, air return port 112,
  • Reversing component 120 first port 121, second port 122, third port 123, fourth port 124,
  • Electronically controlled heat sink assembly 150 Electronically controlled heat sink assembly 150, electronic control component 151,
  • the heat dissipation component 152 The heat dissipation component 152, the heat dissipation pipe 1521, the heat dissipation case 1522, the heat dissipation substrate 1523, the fixed baffle 1524, the accommodation space 1525,
  • One-way throttle valve 160 first valve port 161, second valve port 162,
  • a spool 164 a passage 1641, a first section 1642, a second section 1643, a communication hole 1644,
  • Throttle element 170 is a Throttle element 170.
  • an air conditioner 100 includes: a compressor 110, a reversing component 120, an outdoor heat exchanger 130, an indoor heat exchanger 140, an electronically controlled heat sink assembly 150, and a single To the throttle valve 160 and the throttle element 170.
  • the compressor 110 has an exhaust port 111 and a return air port 112.
  • the compressor 110 compresses the refrigerant into a high-temperature and high-pressure gas and then discharges it through the exhaust port 111. After the refrigerant passes through the circulation, the compressor returns to the compression port 112.
  • the commutation component 120 includes a first port 121 to a fourth port 124, and the first port 121 is electrically connected to one of the second port 122 and the third port 123, and the fourth port 124 and the second port 122 and the third port 123
  • the other of the switches is connected, the first port 121 is connected to the exhaust port 111, and the fourth port 124 is connected to the air return port 112.
  • the first end 131 of the outdoor heat exchanger is connected to the second port 122, and the first end 141 of the indoor heat exchanger is connected to the third port 123.
  • the electronically controlled heat sink assembly 150 can include an electronic control component 151 and a heat dissipation component 152 for dissipating heat from the electrical control component 151.
  • the heat dissipation component 152 is coupled in series with the second end 132 of the outdoor heat exchanger. Between the second end 142 of the indoor heat exchanger.
  • the electronic control component 151 is a heat generating component. In order to ensure the operational stability of the electronic control component 151, the heat dissipation component 152 is required to dissipate heat from the electronic control component 151.
  • the throttling element 170 is connected in series between the heat dissipation assembly 152 and the second end 142 of the indoor heat exchanger to cool and depressurize the refrigerant.
  • the throttling element 170 is a capillary or electronic expansion valve.
  • the one-way throttle valve 160 includes a first valve port 161 and a second valve port 162.
  • the first valve port 161 is connected to the second end 132 of the outdoor heat exchanger, and the second valve port 162 and the heat dissipating component 152 connected, from the first valve port 161 to the second In the flow direction of the valve port 162, the one-way throttle valve 160 is fully turned on, which functions only as a connecting pipe; in the flow direction from the second valve port 162 to the first valve port 161, the one-way throttle valve 160 For the throttle valve, it acts as a throttling.
  • completely conducting means that the pressures at both ends of the first one-way throttle valve 160 are equal, and the one-way throttle valve 160 functions only as a connecting pipe, and the refrigerant can smoothly flow from the first valve port 161 to the first Two valve ports 162, without throttling.
  • the one-way throttle valve 160 may include a housing 163, a spool 164, and a movable member 165.
  • the housing 163 has a chamber 1631 therein, and the valve core 164 is disposed in the chamber 1631.
  • the spool 164 has a passage 1641 communicating with the chamber 1631, the first end of the passage 1641 is disposed adjacent to the first valve port 161, and the second end of the passage 1641 is disposed adjacent to the second valve port 162.
  • the passage 1641 includes a first section 1642 and a second section 1643 communicating with the first section 1642, the cross-sectional area of the first section 1642 being smaller than the cross-sectional area of the second section 1643, the outer peripheral wall of the first section 1642 and the chamber 1631
  • the inner wall is fitted, and a gap is formed between the outer peripheral wall of the second section 1643 and the inner wall of the chamber 1631, and a plurality of communication holes 1644 communicating with the chamber 1631 are disposed on the side wall of the second section 1643.
  • the sum of the areas of the cross sections of the plurality of communication holes 1644 is greater than or equal to the cross-sectional area of the second section 1643.
  • the movable member 165 is slidably disposed in the second section 1643 to open or close the communication hole 1644, and the outer peripheral wall of the movable member 165 is fitted to the inner wall of the second section 1643.
  • the movable member 165 is provided with a throttle passage 1651.
  • the first end of the throttle passage 1651 is disposed at a position adjacent to the first valve port 161, and the second end of the throttle passage 1651 is disposed at a position adjacent to the second valve port 162.
  • the cross-sectional area of the throttle channel 1651 is much smaller than the cross-sectional area of the second segment 1643.
  • the movable member 165 When the movable member 165 is moved to a position adjacent to the second valve port 162, the movable member 165 opens the communication hole 1644, and the second portion 1643 of the passage 1641 can communicate with the chamber 1631 through the communication hole 1644; when the movable member 165 moves to the vicinity When the position of the valve port 161 is reached, the movable member 165 closes the communication hole 1644, and the passage 1641 cannot communicate with the chamber 1631 through the communication hole 1644, and the refrigerant communicates with the chamber 1631 through the throttle passage 1651.
  • the refrigerant When the refrigerant flows from the first valve port 161 to the second valve port 162, in the direction indicated by the arrow c in FIG. 2, the refrigerant enters the chamber 1631 from the first valve port 161, and then the valve body 164 passes through the passage 1641. One end enters into the first section 1642 of the passage 1641. Under the pushing of the refrigerant, the movable member 165 moves in the direction indicated by the arrow c in the second section 1643, and the movable member 165 opens the communication hole 1644, and the refrigerant is first. After entering the second segment 1643, the segment 1642 enters into the chamber 1631 through the communication hole 1644.
  • the one-way throttle valve 160 only functions as a connecting pipe, that is, the pressure body at both ends of the channel 1641 is equal; when the refrigerant is second When the valve port 162 flows to the first valve port 161, in the direction indicated by the arrow d in FIG. 2, the refrigerant enters the chamber 1631 from the second valve port 162, and then enters the passage through the second end of the passage 1641 of the spool 164.
  • the movable member 165 moves in the direction indicated by the arrow d in the second segment 1643, the movable member 165 closes the communication hole 1644, and the refrigerant enters from the chamber 1631 to the first
  • the throttle segment 1651 enters the first segment 1642, and then the channel 1641 The first end flows out into the chamber 1631. Since the cross-sectional area of the throttle passage 1651 is much smaller than the cross-sectional area of the second section 1643, the pressure difference between the two ends of the passage 1641 is large, and the one-way throttle valve 160 is knuckle. Flow effect.
  • the first port 121 of the reversing component 120 is electrically connected to the second port 122
  • the third port 123 is electrically connected to the fourth port 124 .
  • the compressor 110 compresses the refrigerant into a high temperature and high pressure gas and discharges it through the exhaust port 111.
  • the refrigerant enters the reversing assembly 120 from the first port 121 and sequentially flows through the reversing assembly.
  • the second port 122 of the 120, the first end 131 of the outdoor heat exchanger enters the outdoor heat exchanger 130; as shown in FIG. 1 and FIG.
  • the first valve port 161 of the one-way throttle valve 160 enters the one-way throttle valve 160 and flows out of the second valve port 162 of the one-way throttle valve 160.
  • the one-way throttle valve 160 is fully turned on, and only The role of the connecting tube.
  • the refrigerant flows out of the second valve port 162 of the one-way throttle valve 160, it flows through the heat dissipation component 152 in turn, and the throttle element 170 enters the indoor heat exchanger 140 from the second end 142 of the indoor heat exchanger; the refrigerant After flowing out of the first end 141 of the indoor heat exchanger, the third port 123 of the reversing assembly 120 enters the reversing assembly 120, and sequentially returns to the compressor 110 through the fourth port 124 and the return port 112. At this point, the air conditioner 100 completes the cooling process.
  • the high-temperature high-pressure gaseous refrigerant discharged from the exhaust port 111 is condensed and radiated in the outdoor heat exchanger 130, and the temperature of the refrigerant flowing out of the outdoor heat exchanger 130 is slightly higher.
  • the one-way throttle valve 160 only functions as a connecting pipe at this time, and does not function as a throttling, the temperature of the refrigerant is substantially unchanged after passing through the one-way throttle valve 160, and the temperature of the refrigerant is still slightly higher than the ambient temperature.
  • the electronic control unit 151 can be dissipated while effectively preventing the generation of condensed water.
  • the refrigerant that has passed through the electronic control unit 151 flows through the throttle element 170, enters the indoor heat exchanger 140, and evaporates and absorbs heat in the indoor heat exchanger 140, and finally returns to the compressor 110.
  • the refrigerant can effectively dissipate heat from the electronic control unit 151, thereby lowering the temperature of the electronic control unit 151 and improving the stability of the electronic control unit 151.
  • the refrigerant temperature is slightly higher than the ambient temperature, thereby effectively reducing the generation of condensed water, thereby improving the operational stability of the electronic control unit 151.
  • the first port 121 of the reversing component 120 is electrically connected to the third port 123
  • the second port 122 is electrically connected to the fourth port 124 .
  • the compressor 110 compresses the refrigerant into a high temperature and high pressure gas and discharges it through the exhaust port 111.
  • the refrigerant enters the reversing assembly 120 from the first port 121 and passes through the reversing assembly 120 in sequence.
  • the flow element, the one-way throttle valve 160 is an auxiliary throttle element.
  • the refrigerant flowing out of the first valve port 161 of the one-way throttle valve 160 enters the outdoor heat exchanger 130 from the second end 132 of the outdoor heat exchanger, and flows out from the first end 131 of the outdoor heat exchanger;
  • the second port 122 enters the reversing component 120 and passes through the fourth port 124 in sequence.
  • the return air port 112 is returned to the compressor 110. So far, the air conditioner 100 has completed the heating process.
  • the high-temperature high-pressure gaseous refrigerant discharged from the exhaust port 111 is condensed and radiated in the indoor heat exchanger 140, and the temperature of the refrigerant flowing out of the indoor heat exchanger 140 is high. At ambient temperature. After passing through the heat dissipating component 152, the refrigerant enters the one-way throttle valve 160 from the second valve port 162 and flows out of the first valve port 161 of the one-way throttle valve 160 to complete the full throttle.
  • the one-way throttle valve 160 is an auxiliary throttle element, and after the refrigerant flowing out of the indoor heat exchanger 140 passes through the throttle element 170, the temperature of the refrigerant is lowered, but the temperature is still Slightly higher than the ambient temperature, when the refrigerant whose temperature is slightly higher than the ambient temperature flows through the heat dissipating component 152, the electronic control unit 151 can be dissipated while effectively reducing the generation of condensed water.
  • the refrigerant flowing out of the one-way throttle valve 160 enters the outdoor heat exchanger 130 to evaporate and absorb heat, and finally returns to the compressor 110.
  • the refrigerant can effectively dissipate heat from the electronic control unit 151, thereby lowering the temperature of the electronic control unit 151 and improving the stability of the electronic control unit 151.
  • the temperature of the refrigerant is lower than the temperature of the refrigerant at the second end 142 of the indoor heat exchanger, and is still higher than the ambient temperature, thereby the process of dissipating heat of the refrigerant to the electronic control unit 151.
  • the generation of condensed water can be effectively reduced, thereby improving the heating effect of the air conditioner 100.
  • the refrigerant will all pass through the heat dissipating component 152. Since the refrigerant flow rate is large, the electronic control component 151 can have a better cooling effect, thereby improving the electronic control component 151.
  • the work stability further improves the performance of the air conditioner 100.
  • the structure of the air conditioner 100 according to the embodiment of the present invention is simpler, thereby simplifying the control system, facilitating the formation of a product, and thereby reducing the production cost.
  • the one-way throttle valve 160 can be caused to flow from the outdoor heat exchanger 130 to the refrigerant.
  • the indoor heat exchanger 140 functions as a full conduction, and throttles when the refrigerant flows from the indoor heat exchanger 140 to the outdoor heat exchanger 130, so that the refrigerant can be in the cooling and heating modes of the air conditioner 100.
  • the electronic control unit 151 performs heat dissipation, thereby lowering the temperature of the electronic control unit 151, improving the operational stability of the electronic control unit 151, simplifying the structure of the air conditioner 100, and reducing the production cost.
  • the refrigerant temperature is slightly higher than the ambient temperature, thereby effectively reducing the generation of condensed water and improving the working stability of the electronic control unit 151. Furthermore, the performance and market competitiveness of the air conditioner 100 are improved.
  • the reversing component 120 may include a first pipe to a fourth pipe, and the first pipe to the fourth pipe are connected end to end in sequence, and the first pipe is connected in series with the first pipe.
  • the reversing assembly 120 can be a four-way valve.
  • the heat dissipation assembly 152 may include a heat dissipation tube 1521 and a heat dissipation housing 1522.
  • the heat pipe 1521 is a copper pipe.
  • the heat pipe 1521 is connected in series between the indoor heat exchanger 140 and the outdoor heat exchanger 130, and the refrigerant can flow in the heat pipe 1521.
  • the heat pipe 1521 is disposed on the heat dissipation case 1522, and the heat dissipation case 1522 is in contact with the electronic control component 151 for dissipating heat from the electronic control component 151. Thereby, the heat dissipation efficiency of the heat dissipation component 152 can be improved, and the operational stability of the electronic control component 151 can be ensured.
  • the heat dissipation housing 1522 may include a heat dissipation substrate 1523 and a fixed baffle 1524.
  • the heat dissipation substrate 1523 is in contact with the electronic control component 151, and the temperature of the electronic control component 151 can be directly transmitted to the heat dissipation substrate 1523.
  • the fixed baffle 1524 is disposed on the heat dissipation substrate 1523, whereby the fixed baffle 1524 and the heat dissipation substrate 1523 can directly perform heat exchange. It can be understood that the connection manner between the fixed baffle 1524 and the heat dissipation substrate 1523 is not particularly limited. For example, in the example shown in FIGS. 3 and 4, the fixed baffle 1524 is attached to the heat dissipation substrate 1523.
  • the fixing baffle 1524 is provided with a fixing post (not shown), and the heat dissipating substrate 1523 is provided with a fixing hole (not shown), and the fixing post is riveted and connected to the fixing hole.
  • the contact area between the fixed baffle 1524 and the heat dissipation substrate 1523 can be increased, and the heat exchange efficiency between the fixed baffle 1524 and the heat dissipation substrate 1523 can be improved.
  • an accommodation space 1525 for accommodating the heat dissipation pipe 1521 is defined between the fixed baffle 1524 and the heat dissipation substrate 1523.
  • the heat exchange area between the fixed baffle 1524 and the heat dissipation pipe 1521 can be increased, and the heat dissipation efficiency of the heat dissipation component 152 can be further improved, and the operational stability of the electronic control component 151 can be ensured.
  • the shape of the accommodation space 1525 is the same as the shape of the heat pipe 1521.
  • the contact area between the heat dissipation pipe 1521 and the fixed baffle 1524 and the heat dissipation substrate 1523 is further increased, and the heat dissipation pipe 1521 can directly exchange heat with the fixed baffle 1524 and the heat dissipation substrate 1523.
  • the end surface of the heat dissipation substrate 1523 facing the fixed baffle 1524 is provided with a first groove
  • the end surface of the fixed baffle 1524 facing the heat dissipation substrate 1523 is provided with a second surface.
  • the groove, the first groove and the second groove cooperate to define the receiving space 1525.
  • both ends of the heat dissipation pipe 1521 protrude from the opposite side walls of the heat dissipation case 1522 to be connected to the one-way throttle valve 160 and the indoor heat exchanger 140, respectively.
  • the positions of the two ends of the heat dissipation pipe 1521 are not limited thereto.
  • the two ends of the heat dissipation pipe 1521 are respectively from the same side of the heat dissipation case 1522.
  • the heat pipe 1521 can be formed in a U-shaped structure, thereby lengthening the length of the heat pipe 1521 in the heat dissipation case 1522, thereby increasing the connection between the heat pipe 1521 and the heat dissipation substrate 1523 and the fixed baffle 1524.
  • the contact area further improves the heat dissipation efficiency of the heat dissipation component 152.
  • the temperature of the electronic control component 151 can be lowered by more than 15 ° C, and the high temperature operating frequency of the compressor 110 can be Increase 20HZ.
  • the outdoor temperature is 35 ° C or more
  • the high-temperature cooling capacity of the air conditioner 100 according to the embodiment of the present invention is increased by more than 10% than that of the related art air conditioner; when the outdoor temperature is 55 ° C or more, the air conditioner according to the embodiment of the present invention 100 high-temperature cooling capacity is increased by more than 20% compared with air conditioners in related art.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. Or in one piece; it may be a mechanical connection, or it may be an electrical connection or a communication with each other; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship between two elements. Unless otherwise expressly defined. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

一种空调器(100)包括:压缩机(110)、换向组件(120)、室外换热器(130)、室内换热器(140)、电控散热器组件(150)、单向节流阀(160)以及节流元件(170),其中,单向节流阀(160)包括第一阀口(161)和第二阀口(162),在从第一阀口(161)到第二阀口(162)的流通方向上,单向节流阀(170)完全导通,在从第二阀口(162)到第一阀口(161)的流通方向上,单向节流阀(170)为节流阀。

Description

空调器 技术领域
本发明涉及空调技术领域,具体而言,尤其涉及一种空调器。
背景技术
随着空调技术的发展,变频空调在行业内得到了普遍的应用。但变频空调器的室外电控控制系统中,变频模块发热大,在高温环境下限制了压缩机高频运行。当前大部分使用的电控散热方式,多为金属散热片通过空气对流进行散热。但在室外高温环境下,该散热方式散热较差,通常做法是通过降低压缩机运转频率而降低电控发热来保证空调器正常运行。极大的影响了变频空调在室外使用环境温度较高情况下的制冷效果,影响用户使用舒适性。现有通过低温冷媒对室外机电控散热的技术存在产生凝露水或将室外机电控温度降的过低的问题,影响电控使用可靠性和安全。如公开号为CN102844980,名称为制冷装置,不仅制冷系统设计复杂、加工性差、程序控制复杂和成本高,难以形成产品。并且制冷循环时可能存在使用节流一部分的冷媒吸收功率器件的热量,对能效损失较大。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明提出一种空调器,所述空调器具有使用性能好、稳定好高的优点。
根据本发明提供的空调器,包括:压缩机,所述压缩机具有排气口和回气口;换向组件,所述换向组件包括第一端口至第四端口,所述第一端口与所述第二端口和所述第三端口中的其中一个导通,所述第四端口与所述第二端口和所述第三端口中的另一个导通,所述第一端口与所述排气口相连,所述第四端口与所述回气口相连;室外换热器和室内换热器,所述室外换热器的第一端与所述第二端口相连,所述室内换热器的第一端与所述第三端口相连;电控散热器组件,所述电控散热器组件包括电控元件和用于对所述电控元件进行散热的散热组件,所述散热组件串联在所述室内换热器的第二端和所述室外换热器的第二端之间;单向节流阀,所述单向节流阀包括第一阀口和第二阀口,所述第一阀口与所述室外换热器的第二端相连,所述第二阀口与所述散热组件相连,在从所述第一阀口到所述第二阀口的流通方向上,所述单向节流阀完全导通,在从所述第二阀口到所述第一阀口的流通方向上,所述单向节流阀为节流阀;节流元件,所述节流元件串联在所述散热组件和所述室内换热器的第二端之间。
根据本发明的空调器,通过在室外换热器和室内换热器之间设置单向节流阀,可以使单 向节流阀在冷媒由室外换热器流向室内换热器时起完全导通的作用,而在冷媒由室内换热器流向室外换热器时起节流作用,进而空调器在制冷和制热模式下,冷媒均可以对电控元件进行散热,由此,降低了电控元件的温度,提高了电控元件的工作稳定性。另外,冷媒在流入散热组件之前经部分节流或未经节流,故冷媒温度略高于环境温度,从而有效地减少了冷凝水的产生,提高了电控元件的工作稳定性,进而提高了空调器的使用性能和市场竞争力。
优选地,所述换向组件为四通阀。
根据本发明的一个实施例,所述散热组件包括:散热管,所述散热管串联在所述室内换热器和所述室外换热器之间;散热壳,所述散热管设在所述散热壳上,所述散热壳与所述电控元件接触用于对所述电控元件散热。
进一步地,所述散热壳包括:散热基板,所述散热基板与所述电控元件接触;固定挡板,所述固定挡板设在所述散热基板上,所述固定挡板和所述散热基板之间限定出用于容纳所述散热管的容纳空间。
在本发明的一个示例中,所述散热管的两端分别从所述散热壳的相对侧壁伸出以与所述单向节流阀和所述室内换热器相连。
在本发明的另一个示例中,所述散热管的两端分别从散热壳的同一侧伸出以与所述单向节流阀和所述室内换热器相连。
可选地,所述散热基板的朝向所述固定挡板的端面上设有第一凹槽,所述固定挡板的朝向所述散热基板的端面上设有第二凹槽,所述第一凹槽和第二凹槽配合限定出所述容纳空间。
可选地,所述固定挡板上设有固定柱,所述散热基板上设有固定孔,所述固定柱与所述固定孔铆合连接。
优选地,所述容纳空间的形状与所述散热管的形状相同。
可选地,所述节流元件为毛细管或电子膨胀阀。
附图说明
图1是根据本发明的一个实施例的空调器的结构示意图;
图2是图1中的单向节流阀的剖面图;
图3和图4是根据本发明的不同实施例的空调器的电控散热器组件的剖面图。
附图标记:
空调器100,
压缩机110,排气口111,回气口112,
换向组件120,第一端口121,第二端口122,第三端口123,第四端口124,
室外换热器130,室外换热器的第一端131,室外换热器的第二端132,
室内换热器140,室内换热器的第一端141,室内换热器的第二端142,
电控散热器组件150,电控元件151,
散热组件152,散热管1521,散热壳1522,散热基板1523,固定挡板1524,容纳空间1525,
单向节流阀160,第一阀口161,第二阀口162,
壳体163,腔室1631,
阀芯164,通道1641,第一段1642,第二段1643,连通孔1644,
活动部件165,节流通道1651,
节流元件170。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照图1-图4详细描述根据本发明实施例的空调器100。
如图1-图4所示,根据本发明实施例的空调器100,包括:压缩机110、换向组件120、室外换热器130、室内换热器140、电控散热器组件150、单向节流阀160和节流元件170。
具体而言,压缩机110具有排气口111和回气口112,压缩机110将冷媒压缩成高温高压的气体后由通过排气口111排出,冷媒经过循环后,再由回气口112返回到压缩机110内。换向组件120包括第一端口121至第四端口124,第一端口121与第二端口122和第三端口123中的其中一个导通,第四端口124与第二端口122和第三端口123中的另一个导通,第一端口121与排气口111相连,第四端口124与回气口112相连。室外换热器的第一端131与第二端口122相连,室内换热器的第一端141与第三端口123相连。
如图1和图2所示,电控散热器组件150可以包括电控元件151和用于对电控元件151进行散热的散热组件152,散热组件152串联在室外换热器的第二端132和室内换热器的第二端142之间。需要说明的是,空调器100在运行过程中,电控元件151为发热元件,为了保证电控元件151的工作稳定性,需要散热组件152对电控元件151进行散热。节流元件170串联在散热组件152和室内换热器的第二端142之间,以对冷媒进行降温降压。优选地,节流元件170为毛细管或电子膨胀阀。
如图2所示,单向节流阀160包括第一阀口161和第二阀口162,第一阀口161与室外换热器的第二端132相连,第二阀口162与散热组件152相连,在从第一阀口161到第二 阀口162的流通方向上,单向节流阀160完全导通,其只起连接管的作用;在从第二阀口162到第一阀口161的流通方向上,单向节流阀160为节流阀,其起节流的作用。这里的“完全导通”是指第一单向节流阀160两端的压强大体相等,单向节流阀160只起到连接管的作用,冷媒可以从第一阀口161顺利地流至第二阀口162,而不起节流作用。
例如,在如图2所示的示例中,单向节流阀160可以包括:壳体163、阀芯164以及活动部件165。其中,壳体163内具有腔室1631,阀芯164设在腔室1631内。阀芯164具有与腔室1631连通的通道1641,通道1641的第一端设在邻近第一阀口161的位置处,通道1641的第二端设在邻近第二阀口162的位置处。通道1641包括第一段1642和与第一段1642连通的第二段1643,第一段1642的横截面积小于第二段1643的横截面积,第一段1642的外周壁与腔室1631的内壁贴合,第二段1643的外周壁与腔室1631的内壁之间具有间隙,且第二段1643的侧壁上设有多个与腔室1631连通的连通孔1644。优选地,多个连通孔1644的横截面的面积之和大于等于第二段1643的横截面积。活动部件165可滑动地设在第二段1643内以打开或关闭连通孔1644,活动部件165的外周壁与第二段1643的内壁贴合。活动部件165上设有节流通道1651,节流通道1651的第一端设在邻近第一阀口161的位置处,节流通道1651的第二端设在邻近第二阀口162的位置处,节流通道1651的横截面积远小于第二段1643的横截面积。当活动部件165移动到邻近第二阀口162的位置时,活动部件165打开连通孔1644,通道1641的第二段1643可以通过连通孔1644与腔室1631连通;当活动部件165移动到邻近第一阀口161的位置时,活动部件165关闭连通孔1644,通道1641无法通过连通孔1644与腔室1631连通,冷媒通过节流通道1651与腔室1631连通。
当冷媒由第一阀口161流向第二阀口162时,如图2中箭头c所示的方向,冷媒由第一阀口161进入到腔室1631内,再由阀芯164通道1641的第一端进入到通道1641的第一段1642内,在冷媒的推动下,活动部件165在第二段1643内沿着箭头c所示的方向移动,活动部件165打开连通孔1644,冷媒由第一段1642进入到第二段1643后,通过连通孔1644进入到腔室1631内,此时单向节流阀160只起连接管的作用,即通道1641两端的压强大体相等;当冷媒由第二阀口162流向第一阀口161时,如图2中箭头d所示的方向,冷媒由第二阀口162进入到腔室1631内,再由阀芯164通道1641的第二端进入到通道1641的第二段1643内,在冷媒的推动下,活动部件165在第二段1643内沿着箭头d所示的方向移动,活动部件165关闭连通孔1644,冷媒从腔室1631内进入到第二段1643后,通过节流通道1651进入到第一段1642,再由通道1641的第一端流出进入到腔室1631内,由于节流通道1651的横截面积远小于第二段1643的横截面积,通道1641两端的压强相差较大,此时单向节流阀160起节流作用。
下面参照图1和图2详细描述根据本发明实施例的空调器100的工作过程。
如图1所示,当空调器100处于制冷模式时,换向组件120的第一端口121与第二端口122导通,第三端口123与第四端口124导通。如图1中箭头a所示的方向,压缩机110将冷媒压缩成高温高压的气体并由排气口111排出,冷媒由第一端口121进入到换向组件120,并依次流经换向组件120的第二端口122、室外换热器的第一端131后进入到室外换热器130内;如图1和图2所示,冷媒再由室外换热器的第二端132流出后,由单向节流阀160的第一阀口161进入单向节流阀160,并由单向节流阀160的第二阀口162流出,单向节流阀160完全导通,其只起连接管的作用。冷媒由单向节流阀160的第二阀口162流出后,又依次流经散热组件152、节流元件170由室内换热器的第二端142进入到室内换热器140内;冷媒再由室内换热器的第一端141流出后,由换向组件120的第三端口123进入到换向组件120内,并依次通过第四端口124、回气口112返回到压缩机110内。至此,空调器100完成了制冷过程。
需要说明的是,在空调器100的制冷模式下,由排气口111排出的高温高压的气态冷媒在室外换热器130内进行冷凝散热,由室外换热器130流出的冷媒的温度略高于环境温度。由于此时单向节流阀160只起连接管的作用,而不起节流作用,进而冷媒经过单向节流阀160后温度大体不变,冷媒温度仍略高于环境温度。当温度略高于环境温度的冷媒流经散热组件152时,可以对电控元件151进行散热,同时可以有效地防止冷凝水的产生。经过电控元件151后的冷媒,流经节流元件170后,进入到室内换热器140,并在室内换热器140内进行蒸发吸热,最后返回到压缩机110内。
由此,在空调器100的制冷模式下,冷媒可以对电控元件151进行有效地散热,进而降低了电控元件151的温度,提高了电控元件151的稳定性。另外,由于冷媒在流入散热组件152之前未经过节流,故冷媒温度略高于环境温度,从而有效地减少了冷凝水的产生,进而提高了电控元件151的工作稳定性。
如图1所示,当空调器100处于制热模式时,换向组件120第一端口121与第三端口123导通,第二端口122与第四端口124导通。如图1中箭头b所示的方向,压缩机110将冷媒压缩成高温高压的气体并由排气口111排出,冷媒由第一端口121进入到换向组件120,并依次经过换向组件120的第三端口123、室内换热器的第一端141后进入到室内换热器140;冷媒由室内换热器的第二端142流出后,依次流经节流元件170、散热组件152并由单向节流阀160的第二阀口162进入到单向节流阀160内。如图1和图2所示,冷媒由第二阀口162流向第一阀口161,此时单向节流阀160可以辅助节流元件170起节流作用,故节流元件170为部分节流元件,单向节流阀160为辅助节流元件。由单向节流阀160的第一阀口161流出的冷媒由室外换热器的第二端132进入到室外换热器130内,并由室外换热器的第一端131流出;冷媒由第二端口122进入换向组件120,并依次经过第四端口124、 回气口112后返回到压缩机110内。至此,空调器100完成了制热过程。
需要说明的是,在空调器100的制热模式下,由排气口111排出的高温高压的气态冷媒在室内换热器140内进行冷凝散热,由室内换热器140流出的冷媒的温度高于环境温度。冷媒经过散热组件152后,由第二阀口162进入单向节流阀160,并由单向节流阀160的第一阀口161流出,以完成完全节流。又因节流元件170为部分节流元件,单向节流阀160为辅助节流元件,冷媒在由室内换热器140流出的冷媒经过节流元件170后,冷媒温度降低,但其温度仍略高于环境温度,当温度略高于环境温度的冷媒流经散热组件152时,既可以对电控元件151进行散热,又可以有效地减少冷凝水的产生。由单向节流阀160流出的冷媒进入到室外换热器130内进行蒸发吸热,最后返回到压缩机110内。
由此,在空调器100的制热模式下,冷媒可以对电控元件151进行有效地散热,进而降低了电控元件151的温度,提高了电控元件151的稳定性。另外,冷媒经过节流元件170部分节流后,冷媒温度比室内换热器的第二端142处的冷媒温度低,且仍比环境温度高,由此冷媒在对电控元件151散热的过程中,可以有效地减少冷凝水的产生,进而提高了空调器100的制热效果。
此外,空调器100在制冷和制热的模式下,冷媒将全部经过散热组件152,由于冷媒流量大,故对电控元件151能起到较好的降温效果,从而提高了电控元件151的工作稳定性,进而提高了空调器100的使用性能。而且与相关技术相比,根据本发明实施例的空调器100的结构更加简单,从而简化控制系统,易于形成产品,进而降低了生产成本。
根据本发明实施例的空调器100,通过在室外换热器130和室内换热器140之间设置单向节流阀160,可以使单向节流阀160在冷媒由室外换热器130流向室内换热器140时起完全导通的作用,而在冷媒由室内换热器140流向室外换热器130时起节流作用,进而空调器100在制冷和制热模式下,冷媒均可以对电控元件151进行散热,由此降低了电控元件151的温度,提高了电控元件151的工作稳定性,简化了空调器100的结构,降低了生产成本。同时,由于冷媒在流入散热组件152之前经部分节流或未经节流,故冷媒温度略高于环境温度,从而有效地减少了冷凝水的产生,提高了电控元件151的工作稳定性,进而提高了空调器100的使用性能和市场竞争力。
可以理解的是,对于换向组件120的结构不做特殊限定,换向组件120可以包括第一管道至第四管道,第一管道至第四管道依次首尾相连,第一管道上串联有第一电磁阀,第二管道上串联有第二电磁阀,第三管道上串联有第三电磁阀,第四管道上串联有第四电磁阀,第一管道和第二管道的连接处限定出第一接口c,第一管道和第四管道的连接处限定出第二接口d,第四管道和第三管道的连接处限定出第四接口f,第三管道和第二管道的连接处限定出第三接口e,第一电磁阀和第三电磁阀同时开启或关闭,第二电磁阀和第四电磁阀同时 开启或关闭。在本发明的一个优选的实施例中,换向组件120可以为四通阀。
如图3和图4所示,根据本发明的一个实施例,散热组件152可以包括:散热管1521和散热壳1522。优选地,散热管1521为铜管。由此,可以提高散热管1521的热交换效率。其中,散热管1521串联在室内换热器140和室外换热器130之间,冷媒可以在散热管1521内流动。散热管1521设在散热壳1522上,散热壳1522与电控元件151接触用于对电控元件151散热。由此,可以提高散热组件152的散热效率,保证电控元件151的运行稳定性。
进一步地,散热壳1522可以包括:散热基板1523和固定挡板1524。其中,散热基板1523与电控元件151接触,电控元件151的温度可以直接传递至散热基板1523上。固定挡板1524设在散热基板1523上,由此固定挡板1524与散热基板1523可以直接进行热交换。可以理解的是,对于固定挡板1524与散热基板1523之间的连接方式不做特殊限定,例如,在如图3和图4所示的示例中,固定挡板1524贴合在散热基板1523上。进一步地,固定挡板1524上设有固定柱(图未示出),散热基板1523上设有固定孔(图未示出),固定柱与固定孔铆合连接。由此,可以增大固定挡板1524与散热基板1523之间的接触面积,进而提高了固定挡板1524与散热基板1523之间的热交换效率。
为进一步提高散热组件152的散热效率,固定挡板1524和散热基板1523之间限定出用于容纳散热管1521的容纳空间1525。由此,可以增大固定挡板1524与散热管1521之间的热交换面积,进而可以进一步提高散热组件152的散热效率,保证电控元件151的运行稳定性。优选地,容纳空间1525的形状与散热管1521的形状相同。由此,进一步增大了散热管1521与固定挡板1524、散热基板1523之间的接触面积,散热管1521可以与固定挡板1524、散热基板1523直接进行热交换。
例如,在如图3和图4所示的示例中,散热基板1523的朝向固定挡板1524的端面上设有第一凹槽,固定挡板1524的朝向散热基板1523的端面上设有第二凹槽,第一凹槽和第二凹槽配合限定出容纳空间1525。由此,便于将散热管1521安装在散热壳1522上,同时也增大了散热管1521与散热基板1523、固定挡板1524之间的接触面积。为方便加工,在本发明的一个示例中,为方便加工,在本发明的一个示例中,第一凹槽和第二凹槽的横截面分别形成为半圆形。
在如3所示的示例中,为提高散热组件152的散热效率,散热管1521的两端分别从散热壳1522的相对侧壁伸出以与单向节流阀160和室内换热器140相连。当然,散热管1521的两端的位置并不限于此,为进一步提高散热组件152的散热效率,例如,在如图4所示的示例中,散热管1521的两端分别从散热壳1522的同一侧伸出以与单向节流阀160和室内换热器140阀相连。例如,散热管1521可以形成为U形结构,进而延长了散热管1521在散热壳1522内的长度,从而增大了散热管1521与散热基板1523、固定挡板1524间的接 触面积,进而进一步提高了散热组件152的散热效率。
经实验验证,在相同的工况条件下,与相关技术中的空调器相比,根据本发明实施例的空调器100,电控元件151温度可以降低15℃以上,压缩机110高温运行频率可提高20HZ。当室外温度为35℃以上时,根据本发明实施例的空调器100高温制冷量比相关技术中的空调器提高10%以上;当室外温度为55℃以上时,根据本发明实施例的空调器100高温制冷量比相关技术中的空调器提高20%以上。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种空调器,其特征在于,包括:
    压缩机,所述压缩机具有排气口和回气口;
    换向组件,所述换向组件包括第一端口至第四端口,所述第一端口与所述第二端口和所述第三端口中的其中一个导通,所述第四端口与所述第二端口和所述第三端口中的另一个导通,所述第一端口与所述排气口相连,所述第四端口与所述回气口相连;
    室外换热器和室内换热器,所述室外换热器的第一端与所述第二端口相连,所述室内换热器的第一端与所述第三端口相连;
    电控散热器组件,所述电控散热器组件包括电控元件和用于对所述电控元件进行散热的散热组件,所述散热组件串联在所述室内换热器的第二端和所述室外换热器的第二端之间;
    单向节流阀,所述单向节流阀包括第一阀口和第二阀口,所述第一阀口与所述室外换热器的第二端相连,所述第二阀口与所述散热组件相连,在从所述第一阀口到所述第二阀口的流通方向上,所述单向节流阀完全导通,在从所述第二阀口到所述第一阀口的流通方向上,所述单向节流阀为节流阀;
    节流元件,所述节流元件串联在所述散热组件和所述室内换热器的第二端之间。
  2. 根据权利要求1所述的空调器,其特征在于,所述换向组件为四通阀。
  3. 根据权利要求1所述的空调器,其特征在于,所述散热组件包括:
    散热管,所述散热管串联在所述室内换热器和所述室外换热器之间;
    散热壳,所述散热管设在所述散热壳上,所述散热壳与所述电控元件接触用于对所述电控元件散热。
  4. 根据权利要求3所述的空调器,其特征在于,所述散热壳包括:
    散热基板,所述散热基板与所述电控元件接触;
    固定挡板,所述固定挡板设在所述散热基板上,所述固定挡板和所述散热基板之间限定出用于容纳所述散热管的容纳空间。
  5. 根据权利要求3所述的空调器,其特征在于,所述散热管的两端分别从所述散热壳的相对侧壁伸出以与所述单向节流阀和所述室内换热器相连。
  6. 根据权利要求3所述的空调器,其特征在于,所述散热管的两端分别从散热壳的同一侧伸出以与所述单向节流阀和所述室内换热器相连。
  7. 根据权利要求4所述的空调器,其特征在于,所述散热基板的朝向所述固定挡板的端面上设有第一凹槽,所述固定挡板的朝向所述散热基板的端面上设有第二凹槽,所述第一凹槽和第二凹槽配合限定出所述容纳空间。
  8. 根据权利要求4所述的空调器,其特征在于,所述固定挡板上设有固定柱,所述散 热基板上设有固定孔,所述固定柱与所述固定孔铆合连接。
  9. 根据权利要求4所述的空调器,其特征在于,所述容纳空间的形状与所述散热管的形状相同。
  10. 根据权利要求1所述的空调器,其特征在于,所述节流元件为毛细管或电子膨胀阀。
PCT/CN2015/077021 2014-10-28 2015-04-20 空调器 WO2016065867A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/518,898 US10480800B2 (en) 2014-10-28 2015-04-20 Air conditioner
EP15855546.6A EP3214380B1 (en) 2014-10-28 2015-04-20 Air conditioner
BR112017008493-7A BR112017008493B1 (pt) 2014-10-28 2015-04-20 Condicionador de ar

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201420635820.3 2014-10-28
CN201420635820.3U CN204227746U (zh) 2014-10-28 2014-10-28 空调器
CN201410594196.1A CN105627611A (zh) 2014-10-28 2014-10-28 空调器
CN201410594196.1 2014-10-28

Publications (1)

Publication Number Publication Date
WO2016065867A1 true WO2016065867A1 (zh) 2016-05-06

Family

ID=55856511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077021 WO2016065867A1 (zh) 2014-10-28 2015-04-20 空调器

Country Status (4)

Country Link
US (1) US10480800B2 (zh)
EP (1) EP3214380B1 (zh)
BR (1) BR112017008493B1 (zh)
WO (1) WO2016065867A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412552A (zh) * 2020-03-27 2020-07-14 宁波奥克斯电气股份有限公司 一种空调的循环系统及空调

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175345A1 (ja) * 2016-04-07 2017-10-12 三菱電機株式会社 空気調和装置
CN110043971A (zh) * 2019-04-17 2019-07-23 青岛海尔空调器有限总公司 一种散热器、空调室外机和空调器
CN111947241A (zh) * 2020-08-20 2020-11-17 珠海格力电器股份有限公司 空调系统及其排风控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914781A (ja) * 1995-06-30 1997-01-17 Mitsubishi Heavy Ind Ltd 冷暖房用分離形空気調和機
CN102844980A (zh) * 2010-05-06 2012-12-26 大金工业株式会社 制冷装置
CN203533996U (zh) * 2013-09-29 2014-04-09 广东美的制冷设备有限公司 空调用单向节流阀、多分路分流装置及空调制冷系统
CN203605362U (zh) * 2013-11-14 2014-05-21 广东美的制冷设备有限公司 冷暖型空调器
CN203719266U (zh) * 2013-08-27 2014-07-16 广东美的制冷设备有限公司 用于变频空调的制冷系统和具有该制冷系统的变频空调
CN203837143U (zh) * 2014-04-10 2014-09-17 广东美的暖通设备有限公司 空调器及空调器的变频模块的冷却装置
CN104110907A (zh) * 2013-04-17 2014-10-22 广州华凌制冷设备有限公司 单冷型空调器和冷暖型空调器
CN204227746U (zh) * 2014-10-28 2015-03-25 广东美的制冷设备有限公司 空调器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179894A (en) * 1977-12-28 1979-12-25 Wylain, Inc. Dual source heat pump
US5038580A (en) * 1989-12-05 1991-08-13 Hart David P Heat pump system
CA2128178A1 (en) * 1994-07-15 1996-01-16 Michel Antoine Grenier Ground source heat pump system
US5802864A (en) * 1997-04-01 1998-09-08 Peregrine Industries, Inc. Heat transfer system
NO20005575D0 (no) * 2000-09-01 2000-11-03 Sinvent As Metode og arrangement for avriming av kulde-/varmepumpeanlegg
US6615602B2 (en) * 2001-05-22 2003-09-09 Ken Wilkinson Heat pump with supplemental heat source
US7591145B1 (en) * 2004-02-26 2009-09-22 Earth To Air Systems, Llc Heat pump/direct expansion heat pump heating, cooling, and dehumidification system
CN200940727Y (zh) * 2006-04-28 2007-08-29 赵敏 一种用于热泵型空调的单向节流阀
JP2009281602A (ja) * 2008-05-20 2009-12-03 Daikin Ind Ltd ヒートポンプ装置
JP4471023B2 (ja) * 2008-06-12 2010-06-02 ダイキン工業株式会社 空気調和機
JP4488093B2 (ja) * 2008-07-24 2010-06-23 ダイキン工業株式会社 空気調和機
JPWO2011083756A1 (ja) * 2010-01-05 2013-05-13 ダイキン工業株式会社 冷凍装置
JP5348282B2 (ja) * 2011-07-20 2013-11-20 ダイキン工業株式会社 冷媒配管の取付構造
AU2013254078B2 (en) * 2012-04-27 2015-11-05 Daikin Industries, Ltd. Refrigerating apparatus
JP5408285B2 (ja) * 2012-04-27 2014-02-05 ダイキン工業株式会社 冷却器、電装品ユニット及び冷凍装置
CN103175262B (zh) 2013-03-19 2015-08-26 深圳市拓日新能源科技股份有限公司 太阳能空调
CN103912929A (zh) 2014-03-28 2014-07-09 珠海格力电器股份有限公司 温控系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914781A (ja) * 1995-06-30 1997-01-17 Mitsubishi Heavy Ind Ltd 冷暖房用分離形空気調和機
CN102844980A (zh) * 2010-05-06 2012-12-26 大金工业株式会社 制冷装置
CN104110907A (zh) * 2013-04-17 2014-10-22 广州华凌制冷设备有限公司 单冷型空调器和冷暖型空调器
CN203719266U (zh) * 2013-08-27 2014-07-16 广东美的制冷设备有限公司 用于变频空调的制冷系统和具有该制冷系统的变频空调
CN203533996U (zh) * 2013-09-29 2014-04-09 广东美的制冷设备有限公司 空调用单向节流阀、多分路分流装置及空调制冷系统
CN203605362U (zh) * 2013-11-14 2014-05-21 广东美的制冷设备有限公司 冷暖型空调器
CN203837143U (zh) * 2014-04-10 2014-09-17 广东美的暖通设备有限公司 空调器及空调器的变频模块的冷却装置
CN204227746U (zh) * 2014-10-28 2015-03-25 广东美的制冷设备有限公司 空调器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3214380A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412552A (zh) * 2020-03-27 2020-07-14 宁波奥克斯电气股份有限公司 一种空调的循环系统及空调

Also Published As

Publication number Publication date
EP3214380A4 (en) 2018-06-06
BR112017008493B1 (pt) 2022-09-27
EP3214380B1 (en) 2022-07-20
BR112017008493A2 (pt) 2017-12-26
US10480800B2 (en) 2019-11-19
US20170234553A1 (en) 2017-08-17
EP3214380A1 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
CN107477770B (zh) 空调器及其控制方法
WO2016065867A1 (zh) 空调器
US11441789B2 (en) Convection/radiation air conditioning terminal and air conditioning system
CN209857294U (zh) 制冷系统及具有其的空调器
WO2024179530A1 (zh) 热管理集成模块和车辆
WO2016082440A1 (zh) 空调器
CN105627424A (zh) 空调器
CN209857252U (zh) 空气调节系统和空气调节装置
CN203671790U (zh) 空调器及其换热系统
CN217235882U (zh) 变频空调系统
WO2016065868A1 (zh) 空调器
CN108895698A (zh) 空调器
CN105627425A (zh) 空调器
CN107421015A (zh) 空调器
CN209857251U (zh) 空气调节系统和空气调节装置
CN208186898U (zh) 空调器
CN209857250U (zh) 空气调节系统和空气调节装置
KR101433173B1 (ko) 열전모듈을 이용한 공기조화기
CN207146712U (zh) 空调器
CN111442439A (zh) 变频空调系统
CN104266411A (zh) 一种复合制冷系统用组合式风冷换热总成
WO2021109975A1 (zh) 制冷系统和用于空调系统电控组件散热的换热系统
WO2018018517A1 (zh) 空调系统的控制方法
CN216716398U (zh) 空调器
CN215336705U (zh) 空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855546

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015855546

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015855546

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017008493

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017008493

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170425