WO2016065796A1 - 一种coa基板及其制作方法和显示装置 - Google Patents

一种coa基板及其制作方法和显示装置 Download PDF

Info

Publication number
WO2016065796A1
WO2016065796A1 PCT/CN2015/074280 CN2015074280W WO2016065796A1 WO 2016065796 A1 WO2016065796 A1 WO 2016065796A1 CN 2015074280 W CN2015074280 W CN 2015074280W WO 2016065796 A1 WO2016065796 A1 WO 2016065796A1
Authority
WO
WIPO (PCT)
Prior art keywords
black matrix
infrared light
substrate
coa substrate
layer
Prior art date
Application number
PCT/CN2015/074280
Other languages
English (en)
French (fr)
Inventor
张锋
姚琪
曹占锋
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP15795094.0A priority Critical patent/EP3214486A4/en
Priority to US14/767,953 priority patent/US20170176810A1/en
Publication of WO2016065796A1 publication Critical patent/WO2016065796A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/11Function characteristic involving infrared radiation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a COA substrate, a method for fabricating the same, and a display device.
  • Display devices such as liquid crystal display (LCD) and organic electro-luminescence devices (OLED) have become a necessity in people's lives.
  • LCD liquid crystal display
  • OLED organic electro-luminescence devices
  • COA color filter on Array
  • the existing black matrix is generally composed of a resin coated with carbon black particles. Since the carbon black particles absorb light, the black matrix can well shield the light.
  • the black matrix since the black matrix is located on the array substrate, it is necessary to align the black matrix layer structure with the pattern of the layer structure in front of the black matrix layer structure, but since the black matrix has an absorption effect on the light, After the black matrix is applied, the front layer pattern becomes invisible, so that the alignment of the black matrix with its front layer pattern cannot be achieved. Therefore, the display quality of the display device is affected, and even the display device finally formed is not available, which is a problem of defective products.
  • Embodiments of the present invention provide a COA substrate, a manufacturing method thereof, and a display device, which solve the problem that the pattern alignment between the black matrix and the front layer structure cannot be performed when forming a black matrix in the conventional COA substrate, and the display is improved.
  • the display quality of the device avoids the production of display devices as defective products.
  • a COA substrate comprising a black matrix, wherein:
  • the material of the black matrix is a material that transmits infrared light
  • the alignment light source in which the black matrix and the front layer pattern of the black matrix are aligned is infrared light.
  • the COA substrate further includes a first passivation layer formed on the substrate, wherein:
  • the black matrix is formed on the first passivation layer.
  • the COA substrate further includes a resin flat layer and a color filter, wherein:
  • the color filter is formed at a position on the black matrix covering the substrate, and the color filter is covered by the resin flat layer.
  • the material of the black matrix comprises: a resin material having red, green, and blue pigments or a black resin.
  • the black matrix has a thickness of 2 to 4 ⁇ m and an optical density per unit thickness of 1 to 2 ⁇ m.
  • a display device comprising any of the COA substrates of the first aspect.
  • a method of fabricating a COA substrate comprising:
  • a material that is transparent to infrared light is used and a para-light source that emits infrared light is used to form a black matrix on the substrate.
  • the method further includes:
  • a resin flat layer covering the color filter is formed on the color filter.
  • the method further includes: forming a first passivation layer on the substrate, wherein the infrared light-transmissive material is used to form a black matrix on the substrate by using a matching light source capable of emitting infrared light.
  • a matching light source capable of emitting infrared light.
  • the alignment with the front layer pattern of the black matrix is performed using a aligning light source capable of emitting infrared light, and the black matrix is formed by processing the film by a patterning process.
  • the method further includes:
  • the material of the black matrix comprises: a resin material having red, green, blue pigment or a black resin.
  • the black matrix has a thickness of 2 to 4 ⁇ m and an optical density per unit thickness of 1 to 2 ⁇ m.
  • the COA substrate provided by the embodiment of the present invention, the manufacturing method thereof and the display device form a black matrix by using a material transparent to infrared light, and simultaneously use infrared light to align the black matrix with the layer structure in front thereof, thus forming black In the matrix, the alignment mark on the black matrix and the previous layer structure can be seen, and the exact alignment of the black matrix and the pattern of the layer structure in front thereof can be realized, which solves the problem that the black matrix cannot be performed in forming the black matrix in the existing COA substrate.
  • the problem of alignment of the pattern of the layer structure in front of it improves the display quality of the display device and prevents the display device produced from becoming a defective product. At the same time, production costs are reduced.
  • FIG. 1 is a schematic structural diagram of a COA substrate according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another COA substrate according to another embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a method for fabricating a COA substrate according to still another embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of another method for fabricating a COA substrate according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a comparison of transmittance spectra of a prior art black matrix according to an embodiment of the present invention.
  • Reference numerals 1-substrate; 2-gate; 3-gate insulating layer; 4-active layer; 5-source; 6-drain; 7-first passivation layer; 8-black matrix; - resin flat layer; 10-color filter; 11 - common electrode layer; 12 - second passivation layer; 13-pixel electrode layer.
  • the COA substrate includes: a substrate 1, a gate 2, a gate insulating layer 3, an active layer 4, a source 5, a drain 6 and are formed in a first passivation layer 7 on source 5 and drain 6, the COA substrate further comprising a black matrix 8, wherein:
  • black matrix 8 is formed at a position on the first passivation layer 7 covering the source 5 and the drain 6 such that the source 5 and the drain 6 are partially exposed.
  • the black matrix is located on the source and the drain, covering only a part of the source and the drain, and can ensure the normal display of the COA substrate to a position where the normal shading action is performed. It should be noted that, in this embodiment, only the position of the black matrix is exemplified, and the position of the black matrix is not limited.
  • the material of the black matrix 8 is a material that transmits infrared light.
  • the alignment light source in which the black matrix 8 and the front layer pattern of the black matrix are aligned is infrared light.
  • the black matrix in one embodiment of the present invention uses a material that transmits infrared light energy but has good light absorption characteristics in the visible light band, and performs a pair of patterns of the black matrix and its front layer structure, for example, a source and a drain.
  • the infrared spectrum is used as the alignment light source.
  • the black matrix adopts a material having a light absorption characteristic in all bands, and the alignment mark is visible when the alignment of the black matrix is performed. In this way, the accurate alignment of the pattern of the black matrix and the layer structure in front thereof can be realized, and the black matrix can be formed at an accurate position to realize the black matrix light absorption effect without affecting the normal display of the display device.
  • FIG. 5 is a schematic diagram of transmittance comparison of a black matrix of a prior art according to an embodiment of the present invention.
  • the optical density of the black matrix in the illustrated embodiment is 4.
  • the black matrix of the present invention is in the light wave.
  • the transmittance is high, so that the above technical purpose and the corresponding technical effects can be achieved.
  • the infrared light aligning light source ie, the infrared light that the black matrix can transmit
  • the wavelength band is preferably 780 nm to 1100 nm.
  • the black matrix has an optical density of 4 (for example, a black matrix material can be selected to have a unit thickness optical density of 1-2 ⁇ m, black matrix The thickness is 2-4 ⁇ m), and the wavelength of the infrared light source (ie, the infrared light that the black matrix can transmit) is selected to be 900 nm. Under this condition, the transmittance of infrared light can reach 10% or more, so that an optimization effect can be obtained.
  • the substrate may be a glass substrate or a quartz substrate; the gate, the source and the drain may be formed by using a metal material or the like; the gate insulating layer may be formed by using silicon nitride or silicon oxide or silicon oxynitride.
  • the active layer may be formed using a metal oxide semiconductor material or the like; the first passivation layer may be formed using silicon nitride or a transparent organic resin material or the like.
  • the COA substrate provided by the embodiment of the invention forms a black matrix by using a material transparent to infrared light, and uses infrared light to align the black matrix with the layer structure in front thereof, so that a black matrix can be seen when forming the black matrix.
  • the alignment mark on the previous layer structure realizes the accurate alignment of the pattern of the black matrix and the layer structure in front thereof, and solves the problem that the black matrix and the front layer structure cannot be performed when the black matrix is formed in the existing COA substrate.
  • the alignment problem of the pattern improves the display quality of the display device, and prevents the display device produced from becoming a defective product. At the same time, production costs are reduced.
  • the COA substrate further includes: a resin flat layer 9 and a color filter 10, wherein:
  • the color filter 10 is formed at a position on the black matrix 8 covering the substrate 1, and the color filter 10 is covered by the resin flat layer 9.
  • the COA substrate further includes: a common electrode layer 11 , a second passivation layer 12 , and a pixel electrode layer 13 .
  • the material of the black matrix includes a resin material having red, green, and blue pigments or a black resin.
  • the thickness of the black matrix is 2 to 4 ⁇ m.
  • the thickness of the black matrix in the embodiment is set to 2 to 4 ⁇ m, and the optical density value per unit thickness is 1 to 2/ ⁇ m, which can ensure that the formed black matrix has a good function of absorbing visible light and realizing the light absorption of the black matrix. At the same time, it is ensured that the infrared light can pass through the black matrix, and the alignment mark can be seen when the black matrix is aligned.
  • the black matrix in one embodiment of the present invention is generally formed of a resin material having red, green, and blue pigments or a black resin, and the black matrix is formed of carbon black particles in the prior art, and the black provided in the present invention.
  • the dielectric constant of the matrix is small, the resistivity is high, and electrical characteristics such as voltage holding ratio are better, and the characteristics of the TFT are improved, so that the formed display The performance of the piece is better.
  • the sensing device for providing the aligning light source and the light emitted by the aligning light source in the embodiment can be installed in the exposure device, and the infrared light can be emitted by the aligning light source by appropriately changing the exposure device, and the sensing device can receive The infrared spectrum emitted by the alignment source.
  • a COA substrate is formed by using a material transparent to infrared light to form a black matrix, and infrared light is used to align the black matrix with a layer structure in front thereof, so that black can be seen when forming a black matrix.
  • the alignment mark on the matrix and the previous layer structure realizes the accurate alignment of the pattern of the black matrix and the layer structure in front thereof, and solves the problem that the black matrix and the front layer structure cannot be performed in forming the black matrix in the existing COA substrate.
  • the problem of pattern alignment improves the display quality of the display device and prevents the production of the display device from becoming a defective product. At the same time, production costs are reduced.
  • One embodiment of the present invention provides a display device including a COA substrate provided by one embodiment of the present invention.
  • An embodiment of the present invention provides a display device that forms a black matrix in a display device by using a material that is transparent to infrared light, and uses infrared light to align the black matrix with a layer structure in front thereof, so that when a black matrix is formed
  • the alignment mark on the black matrix and the previous layer structure can be seen, and the exact alignment of the pattern of the black matrix and the layer structure in front thereof can be realized, which solves the problem that the black matrix and the front cannot be performed in forming the black matrix in the existing COA substrate.
  • the problem of the pattern alignment of the layer structure improves the display quality of the display device, and prevents the produced display device from becoming a defective product. At the same time, production costs are reduced.
  • Embodiments of the present invention provide a method for fabricating a COA substrate. Referring to FIG. 3, the method includes the following steps:
  • a black matrix can be formed by using infrared light, a material that is not transparent to visible light, and the black matrix has a light blocking effect.
  • the alignment light source can be irradiated and formed by alignment of the alignment mark on the first passivation layer.
  • An embodiment of the present invention provides a method for fabricating a COA substrate by forming a black matrix by using a material that is transparent to infrared light, and simultaneously aligning the black matrix with the layer structure in front thereof by using infrared light, so that when the black matrix is formed, Seeing the alignment of the black matrix and the previous layer structure, the exact alignment of the black matrix and the pattern of the layer structure in front of it, The problem that the pattern alignment of the black matrix and the layer structure in front of the black matrix cannot be performed in forming the black matrix in the conventional COA substrate is solved, the display quality of the display device is improved, and the display device to be manufactured is prevented from becoming a defective product. At the same time, production costs are reduced.
  • One embodiment of the present invention provides a method of fabricating a COA substrate. Referring to FIG. 4, the method includes the following steps:
  • a gate metal layer including a gate, a gate line, and a gate line lead on the substrate.
  • a thickness can be deposited on a substrate such as a glass substrate or a quartz substrate by magnetron sputtering.
  • a metal such as molybdenum, aluminum, aluminum-nickel alloy, molybdenum-tungsten alloy, chromium, or copper may be used, or a combination of the above-mentioned materials may be used.
  • the gate metal layer is formed on a certain area of the substrate by a patterning process such as exposure, development, etching, and peeling using a mask.
  • the thickness can be deposited on the glass substrate by chemical vapor deposition or magnetron sputtering.
  • the gate electrode insulating layer film is usually made of silicon nitride, and silicon oxide, silicon oxynitride or the like can also be used.
  • a metal oxide semiconductor film may be deposited on the gate insulating layer by chemical vapor deposition, and then the metal oxide semiconductor film is patterned once to form an active layer, that is, after the photoresist is coated, a common mask is used.
  • the template may expose, develop, and etch the substrate to form an active layer.
  • a method similar to the fabrication of the gate line is used to deposit a layer of a similar thickness to the gate metal on the substrate.
  • To Metal film The source, drain, and data lines are formed in a certain region by a patterning process.
  • a layer thickness is applied to the entire substrate by a method similar to that of the gate insulating layer and the active layer.
  • the first passivation layer is usually made of silicon nitride or a transparent organic resin material.
  • a material that transmits infrared light energy forms a film on the first passivation layer.
  • the first passivation layer is coated with a film by using infrared light to transmit light through which the visible light is impermeable, and the material of the film is generally a resin having red, green and blue pigments or capable of being absorbed. A black resin or the like which has the characteristics of visible light.
  • the black matrix is formed by processing the film by a patterning process.
  • the infrared light is emitted from the alignment light source capable of emitting infrared light, and the infrared light is irradiated onto the first passivation layer through the thin film forming the black matrix, so that the alignment mark on the first passivation layer is visible, and then according to The alignment mark forms a black matrix covering the source and drain and exposing the source and drain portions at respective locations of the first passivation layer by a patterning process.
  • step 207 may also be performed simultaneously with the step 206.
  • the execution order is not specifically limited, and the actual application determines the execution order according to a specific manufacturing process.
  • a layer of thickness is deposited by magnetron sputtering. Between ITO or IZO, after exposure, development, etching to form a common electrode layer,
  • a passivation layer is applied over the entire substrate in a manner similar to that of the gate insulating layer and the active layer, and the material thereof is usually silicon nitride or a transparent organic resin material.
  • ITO or IZO is deposited on the second passivation layer by magnetron sputtering, and then exposed, developed, and etched to form a pixel electrode layer.
  • An embodiment of the present invention provides a method for fabricating a COA substrate by forming a black matrix by using a material that is transparent to infrared light, and simultaneously aligning the black matrix with the layer structure in front thereof by using infrared light, so that when the black matrix is formed, Seeing the alignment mark on the black matrix and the previous layer structure, realizing the exact alignment of the black matrix and the pattern of the layer structure in front thereof, and solving the problem that the black matrix and the front side cannot be performed when forming the black matrix in the existing COA substrate
  • the problem of pattern alignment of the layer structure improves the display quality of the display device, and prevents the produced display device from becoming a defective product. At the same time, production costs are reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Filters (AREA)

Abstract

一种COA基板及其制作方法和显示装置,涉及显示技术领域,解决了现有的COA基板中在形成黑矩阵时无法进行黑矩阵与其前面的层结构的图案对位的问题,提高了显示器件的显示品质,避免生产的显示器件成为残次品。该COA基板包括:黑矩阵(8),其中:所述黑矩阵(8)的材料为红外光能透过的材料;所述黑矩阵(8)与所述黑矩阵(8)的前层图案进行对位的对位光源为红外光。

Description

一种COA基板及其制作方法和显示装置
交叉申请
本发明要求于2014年10月31日在中国提交的申请号为CN.201410602704.6的中国申请的优先权,其内容包含在此作为参考。
技术领域
本发明涉及显示技术领域,尤其涉及一种COA基板及其制作方法和显示装置。
背景技术
液晶显示器件(Liquid Crystal Display,简称LCD)和有机电致发光器件(Organic electrolμminescent device,简称OLED)等显示器件已成为人们生活中的必需品,随着人们需求的提高,为了提高显示器件的显示品质,避免阵列基板和彩膜基板对盒时的偏差影响显示器件开口率和出现漏光的问题,彩色滤光片与阵列基板集成在一起的集成技术(Color Filter on Array,简称COA)应用而生,COA技术就是将黑矩阵和彩色滤光片设置于阵列基板上。
现有的黑矩阵一般是采用包覆碳黑颗粒的树脂构成,由于碳黑颗粒对光线具有吸收作用,从而黑矩阵能够起到很好的屏蔽光线的作用。在COA技术中,由于黑矩阵位于阵列基板上,因此在形成黑矩阵层结构时需要将黑矩阵层结构与其前面的层结构的图案进行对位,但是由于黑矩阵对光线具有吸收作用,因此在黑矩阵涂覆以后前层图案变的不可见,因此无法实现黑矩阵与其前层图案的对位。从而,影响显示器件的显示品质,甚至出现最终形成的显示器件不可用,成为残次品的问题。
发明内容
本发明的实施例提供一种COA基板及其制作方法和显示装置,解决了现有的COA基板中在形成黑矩阵时无法进行黑矩阵与其前面的层结构的图案对位的问题,提高了显示器件的显示品质,避免生产的显示器件成为残次品。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种COA基板,所述COA基板包括黑矩阵,其中:
所述黑矩阵的材料为红外光能透过的材料;
所述黑矩阵与所述黑矩阵的前层图案进行对位的对位光源为红外光。
可选的,所述COA基板还包括形成在基板上的第一层钝化层,其中:
所述黑矩阵形成在所述第一层钝化层上。
可选的,所述COA基板还包括树脂平坦层和彩色滤光片,其中:
所述彩色滤光片形成在所述黑矩阵上覆盖所述基板的位置处,所述彩色滤光片被所述树脂平坦层覆盖。
可选的,所述黑矩阵的材料包括:具有红、绿和蓝色素的树脂材料或者黑色树脂。
可选的,所述黑矩阵的厚度为2~4μm,单位厚度光密度为1~2/μm。
第二方面,提供一种显示装置,所述显示装置包括第一方面所述的任一COA基板。
第三方面,提供一种COA基板的制作方法,所述方法包括:
采用红外光能透过的材料并采用能发射红外光的对位光源进行对位在基板上形成黑矩阵。
可选的,所述方法还包括:
在所述黑矩阵上形成覆盖所述基板的所述彩色滤光片;
在所述彩色滤光片上形成覆盖所述彩色滤光片的树脂平坦层。
可选的,所述方法还包括:在基板上形成第一钝化层,所述采用红外光能透过的材料并采用能发射红外光的对位光源进行对位在基板上形成黑矩阵,包括:
采用红外光能透过的材料在所述第一层钝化层上形成一层薄膜;
使用能发射红外光的对位光源进行与所述黑矩阵的前层图案的对位,并通过构图工艺处理所述薄膜形成所述黑矩阵。
可选的,所述方法还包括:
采用能够接收红外光的感应装置接收所述对位光源发射的且透过 所述黑矩阵的光线。
可选的,所述黑矩阵的材料包括:具有红、绿、蓝色素的树脂材料或者黑色树脂。
可选的,所述黑矩阵的厚度为2~4μm,单位厚度光密度为1~2/μm。
本发明的实施例提供的COA基板及其制作方法和显示装置,通过采用红外光能透过的材料形成黑矩阵,同时采用红外光进行黑矩阵与其前面的层结构的对位,这样在形成黑矩阵时可以看到黑矩阵和前面的层结构上面的对位标识,实现黑矩阵与其前面的层结构的图案的准确对位,解决了现有的COA基板中在形成黑矩阵时无法进行黑矩阵与其前面的层结构的图案对位的问题,提高了显示器件的显示品质,避免生产的显示器件成为残次品。同时,降低了生产成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的一个实施例提供的一种COA基板的结构示意图;
图2为本发明的另一实施例提供的另一种COA基板的结构示意图;
图3为本发明的再一实施例提供的一种COA基板的制作方法的流程示意图;
图4为本发明的又一实施例提供的另一种COA基板的制作方法的流程示意图;
图5为本发明一实施例与现有技术黑矩阵的透过率光谱比较示意图。
附图标记:1-基板;2-栅极;3-栅绝缘层;4-有源层;5-源极;6-漏极;7-第一层钝化层;8-黑矩阵;9-树脂平坦层;10-彩色滤光片;11-公共电极层;12-第二层钝化层;13-像素电极层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的一个实施例提供一种COA基板,参照图1所示,该COA基板包括:基板1、栅极2、栅绝缘层3、有源层4、源极5、漏极6和形成在源极5和漏极6上的第一层钝化层7,该COA基板还包括黑矩阵8,其中:
一种可行的实现方案为,黑矩阵8形成在第一层钝化层7上覆盖源极5和漏极6使得源极5和漏极6部分裸露的位置处。
其中,黑矩阵位于源极和漏极上,只覆盖一部分源极和漏极,能保证COA基板的正常显示起到正常遮光作用的位置处。需要说明的是,本实施例中只是举例说明黑矩阵的位置,并没有限定黑矩阵的位置只能是如此。
其中,黑矩阵8的材料为红外光能透过的材料。
黑矩阵8与黑矩阵的前层图案进行对位的对位光源为红外光。
具体的,本发明一个实施例中的黑矩阵采用红外光能透过但在可见光波段具有很好的吸光特性的材料,进行黑矩阵与其前面的层结构例如:源极和漏极的图案的对位时采用红外光谱作为对位光源。相比于现有技术方案中黑矩阵采用全波段均具有吸光特性的材料相比,在进行黑矩阵的对位时,对位标识可见。这样,可以实现黑矩阵与其前面的层结构的图案的准确对位,保证黑矩阵形成在准确的位置,实现黑矩阵吸光作用的同时,不影响显示器件的正常显示。结合参考图5,为本发明一实施例与现有技术黑矩阵的透过率光谱比较示意图,图示实施例中黑矩阵的光密度为4,由图中可知,本发明的黑矩阵在光波波长在位于相应红外波段时,具有高透过率,从而可实现上述的技术目的以及具有相应的技术效果。
优选的,上述的红外光对位光源(即黑矩阵能透过的红外光)为近红外光,波段优选为780nm至1100nm。在一较佳实施例中,黑矩阵光密度为4(例如可选择黑矩阵材料单位厚度光密度值为1-2μm,黑矩阵的 厚度为2-4μm),红外光对位光源波长(即黑矩阵能透过的红外光)选择为900nm,此条件下红外光的透过率可达到10%以上,从而能够获得优化效果。
其中,基板可以是玻璃基板或石英基板等;栅极、源极和漏极可以是采用金属材料等形成的;栅绝缘层可以是采用氮化硅,也可以使用氧化硅和氮氧化硅等形成的;有源层可以是采用金属氧化物半导体材料等形成的;第一层钝化层可以是采用氮化硅或透明的有机树脂材料等形成的。
本发明的实施例提供的COA基板,通过采用红外光能透过的材料形成黑矩阵,同时采用红外光进行黑矩阵与其前面的层结构的对位,这样在形成黑矩阵时可以看到黑矩阵和前面的层结构上面的对位标识,实现黑矩阵与其前面的层结构的图案的准确对位,解决了现有的COA基板中在形成黑矩阵的时无法进行黑矩阵与其前面的层结构的图案的对位的问题,提高了显示器件的显示品质,避免生产的显示器件成为残次品。同时,降低了生产成本。
进一步,参照图2所示,该COA基板还包括:树脂平坦层9和彩色滤光片10,其中:
彩色滤光片10形成在黑矩阵8上覆盖基板1的位置处,彩色滤光片10被树脂平坦层9覆盖。
需要说明的是,如图2中所示,该COA基板还包括:公共电极层11、第二层钝化层12和像素电极层13。
其中,黑矩阵的材料包括:具有红、绿和蓝色素的树脂材料或者黑色树脂。
黑矩阵的厚度为2~4μm。
具体的,本实施例中的黑矩阵的厚度设置为2~4μm,单位厚度光密度值1~2/μm,可以保证形成的黑矩阵具有很好的吸收可见光的作用,实现黑矩阵的吸光作用;同时保证红外光可以透过黑矩阵,实现黑矩阵对位时对位标识可见。
同时,本发明一个实施例中的黑矩阵一般采用具有红、绿、蓝色素的树脂材料或者黑色树脂形成,相比于现有技术方案中黑矩阵由碳黑颗粒形成,本发明中提供的黑矩阵的介电常数较小,电阻率较高,电学特性例如电压保持比更好,提高TFT的特性,使得形成的显示器 件的性能更佳。
其中,本实施例中的提供对位光源和接收对位光源发射的光线的感应装置可以安装在曝光设备中,可以通过对曝光设备进行适当的改变实现对位光源发射红外光,感应装置能够接收对位光源发射的红外光谱。
本发明的一个实施例提供的COA基板,通过采用红外光能透过的材料形成黑矩阵,同时采用红外光进行黑矩阵与其前面的层结构的对位,这样在形成黑矩阵时可以看到黑矩阵和前面的层结构上面的对位标识,实现黑矩阵与其前面的层结构的图案的准确对位,解决了现有的COA基板中在形成黑矩阵时无法进行黑矩阵与其前面的层结构的图案对位的问题,提高了显示器件的显示品质,避免生产的显示器件成为残次品。同时,降低了生产成本。
本发明的一个实施例提供一种显示装置,该显示装置包括本发明中的一个实施例提供的COA基板。
本发明的一个实施例提供的显示装置,通过采用红外光能透过的材料形成显示装置中的黑矩阵,同时采用红外光进行黑矩阵与其前面的层结构的对位,这样在形成黑矩阵时可以看到黑矩阵和前面的层结构上面的对位标识,实现黑矩阵与其前面的层结构的图案的准确对位,解决了现有的COA基板中在形成黑矩阵时无法进行黑矩阵与其前面的层结构的图案对位的问题,提高了显示器件的显示品质,避免生产的显示器件成为残次品。同时,降低了生产成本。
本发明的实施例提供一种COA基板的制作方法,参照图3所示,该方法包括以下步骤:
101、采用红外光能透过的材料并采用能发射红外光的对位光源进行对位在基板上形成黑矩阵。
具体的,采用红外光可以透过,可见光不能透过的材料来形成黑矩阵,且黑矩阵具有遮光作用。其中,在制作黑矩阵的时候可以采用对位光源进行照射并通过第一钝化层上的对位标识进行对位来形成。
本发明的一个实施例提供的COA基板的制作方法,通过采用红外光能透过的材料形成黑矩阵,同时采用红外光进行黑矩阵与其前面的层结构的对位,这样在形成黑矩阵时可以看到黑矩阵和前面的层结构上面的对位标识,实现黑矩阵与其前面的层结构的图案的准确对位, 解决了现有的COA基板中在形成黑矩阵时无法进行黑矩阵与其前面的层结构的图案对位的问题,提高了显示器件的显示品质,避免生产的显示器件成为残次品。同时,降低了生产成本。
本发明的一个实施例提供一种COA基板的制作方法,参照图4所示,该方法包括以下步骤:
201、在基板上形成包括栅极、栅线和栅线引线的栅金属层。
具体的,可以采用磁控溅射的方法在基板例如玻璃基板或石英基板上沉积一层厚度在
Figure PCTCN2015074280-appb-000001
Figure PCTCN2015074280-appb-000002
的金属薄膜,该金属薄膜通常可以采用钼、铝、铝镍合金、钼钨合金、铬、或铜等金属,也可以使用上述几种材料薄膜的组合结构。然后,用掩模板通过曝光、显影、刻蚀、剥离等构图工艺处理,在基板的一定区域上形成栅金属层。
202、在栅金属层上形成一层栅绝缘层。
具体的,可以利用化学气相沉积法或者磁控溅射的方法在玻璃基板上沉积厚度为
Figure PCTCN2015074280-appb-000003
Figure PCTCN2015074280-appb-000004
的栅电极绝缘层薄膜,该栅绝缘层薄膜的材料通常是氮化硅,也可以使用氧化硅和氮氧化硅等。
203、在栅绝缘层上形成有源层、源极、漏极和数据线。
具体的,可以利用化学气相沉积法在栅绝缘层上沉积金属氧化物半导体薄膜,然后对金属氧化物半导体薄膜进行一次构图工艺形成有源层,即在光刻胶涂覆后,用普通的掩模板对基板进行曝光、显影、刻蚀形成有源层即可。
进而,采用和制作栅线类似的方法,在基板上沉积一层类似于栅金属的厚度在
Figure PCTCN2015074280-appb-000005
Figure PCTCN2015074280-appb-000006
金属薄膜。通过构图工艺处理在一定区域形成源极、漏极和数据线。
204、制作覆盖有源层、源极、漏极和数据线的第一层钝化层。
具体的,采用和栅绝缘层以及有源层相类似的方法,在整个基板上涂覆一层厚度在
Figure PCTCN2015074280-appb-000007
Figure PCTCN2015074280-appb-000008
的第一层钝化层,其材料通常是氮化硅或透明的有机树脂材料。
205、采用红外光能透过的材料在第一层钝化层上形成一层薄膜。
具体的,采用红外光可以透过可见光不能透过的材料,在第一层钝化层上涂敷一层薄膜,该薄膜的材料一般为具有红、绿、蓝三色素的树脂或者具有能够吸收可见光的特性的黑色树脂等。
206、使用能发射红外光的对位光源进行与黑矩阵的前层图案的对 位,并通过构图工艺处理薄膜形成黑矩阵。
具体的,使用能够发射红外光的对位光源发射红外光,同时红外光透过形成黑矩阵的薄膜照射到第一钝化层上,使得第一钝化层上的对位标识可见,之后根据对位标识通过构图工艺处理在第一钝化层的相应位置上形成覆盖源极和漏极并使得源极和漏极部分裸露的黑矩阵。
207、采用能够接收红外光的感应装置接收对位光源发射且透过黑矩阵的光线。
需要说明的是,步骤207也可以是与步骤206同时执行的,本实施例中对于其执行顺序不作具体的限定,实际应用中根据具体的制作工艺来决定执行顺序。
208、在黑矩阵上形成覆盖基板的彩色滤光片。
209、在彩色滤光片上形成覆盖彩色滤光片的树脂平坦层。
210、在有机树脂层上形成公共电极层。
具体的,采用磁控溅射的方法沉积一层厚度在
Figure PCTCN2015074280-appb-000009
之间的ITO或者IZO,之后经过曝光、显影、刻蚀形成公共电极层,
211、在公共电极层上制作覆盖树脂平坦层的第二层钝化层。
具体的,采用和栅绝缘层以及有源层相类似的方法,在整个基板上涂覆一层钝化层,其材料通常是氮化硅或透明的有机树脂材料。
212、在第二层钝化层上形成像素电极层。
采用磁控溅射的方法在第二层钝化层上沉积ITO或者IZO,然后经过曝光、显影、刻蚀形成像素电极层。
本发明的一个实施例提供的COA基板的制作方法,通过采用红外光能透过的材料形成黑矩阵,同时采用红外光进行黑矩阵与其前面的层结构的对位,这样在形成黑矩阵时可以看到黑矩阵和前面的层结构上面的对位标识,实现黑矩阵与其前面的层结构的图案的准确对位,解决了现有的COA基板中在形成黑矩阵时无法进行黑矩阵与其前面的层结构的图案对位的问题,提高了显示器件的显示品质,避免生产的显示器件成为残次品。同时,降低了生产成本。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。 因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种COA基板,其特征在于,所述COA基板包括:黑矩阵,其中:
    所述黑矩阵的材料为红外光能透过的材料;
    所述黑矩阵与所述黑矩阵的前层图案进行对位的对位光源为红外光。
  2. 根据权利要求1所述的COA基板,其特征在于,所述COA基板还包括形成在基板上的第一层钝化层,其中:
    所述黑矩阵形成在所述第一层钝化层上。
  3. 根据权利要求1或2所述的COA基板,其特征在于,所述COA基板还包括树脂平坦层和彩色滤光片,其中:
    所述彩色滤光片形成在所述黑矩阵上覆盖所述基板的位置处,所述彩色滤光片被所述树脂平坦层覆盖。
  4. 根据权利要求1或2所述的COA基板,其特征在于,
    所述黑矩阵的材料包括:具有红、绿和蓝色素的树脂材料或者黑色树脂。
  5. 根据权利要求1或2所述的COA基板,其特征在于,
    所述黑矩阵的厚度为2~4μm,单位厚度光密度为1~2/μm。
  6. 一种显示装置,其特征在于,所述显示装置包括权利要求1~5任一所述的COA基板。
  7. 一种COA基板的制作方法,其特征在于,所述方法包括:
    采用红外光能透过的材料并采用能发射红外光的对位光源进行对位,在基板上形成黑矩阵。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    在所述黑矩阵上形成覆盖所述基板的所述彩色滤光片;
    在所述彩色滤光片上形成覆盖所述彩色滤光片的树脂平坦层。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:在基板上形成第一钝化层,所述采用红外光能透过的材料并采用能发射红外光的对位光源进行对位在基板上形成黑矩阵,包括:
    采用红外光能透过的材料在所述第一层钝化层上形成一层薄膜;
    使用能发射红外光的对位光源进行与所述黑矩阵的前层图案的对 位,并通过构图工艺处理所述薄膜形成所述黑矩阵。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    采用能够接收红外光的感应装置接收所述对位光源发射透过所述黑矩阵的光线。
  11. 根据权利要求7或8所述的方法,其特征在于,
    所述黑矩阵的材料包括:具有红、绿、蓝色素的树脂材料或者黑色树脂。
  12. 根据权利要求7或8所述的方法,其特征在于,
    所述黑矩阵的厚度为2~4μm,单位厚度光密度为1~2/μm。
PCT/CN2015/074280 2014-10-31 2015-03-16 一种coa基板及其制作方法和显示装置 WO2016065796A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15795094.0A EP3214486A4 (en) 2014-10-31 2015-03-16 Coa substrate and manufacturing method thereof, and display device
US14/767,953 US20170176810A1 (en) 2014-10-31 2015-03-16 Coa substrate and method for manufacturing the same, as well as display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410602704.6 2014-10-31
CN201410602704.6A CN104297980A (zh) 2014-10-31 2014-10-31 一种coa基板及其制作方法和显示装置

Publications (1)

Publication Number Publication Date
WO2016065796A1 true WO2016065796A1 (zh) 2016-05-06

Family

ID=52317772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074280 WO2016065796A1 (zh) 2014-10-31 2015-03-16 一种coa基板及其制作方法和显示装置

Country Status (4)

Country Link
US (1) US20170176810A1 (zh)
EP (1) EP3214486A4 (zh)
CN (1) CN104297980A (zh)
WO (1) WO2016065796A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297980A (zh) * 2014-10-31 2015-01-21 京东方科技集团股份有限公司 一种coa基板及其制作方法和显示装置
TWI553381B (zh) * 2015-02-09 2016-10-11 群創光電股份有限公司 顯示面板
CN112786624A (zh) * 2015-02-09 2021-05-11 群创光电股份有限公司 显示面板
CN105140216A (zh) * 2015-07-29 2015-12-09 北京理工大学 带有附加层的tft lcd结构生成方法及不良检测设备
CN105241547B (zh) * 2015-10-10 2018-05-18 京东方科技集团股份有限公司 一种显示面板、显示装置和检测紫外线强度的方法
CN106908987A (zh) * 2017-05-02 2017-06-30 深圳市华星光电技术有限公司 一种液晶显示屏及加工方法
CN107132705A (zh) * 2017-07-18 2017-09-05 京东方科技集团股份有限公司 隔垫物、隔垫物的制备方法、显示面板及显示装置
CN107367859A (zh) 2017-08-22 2017-11-21 惠科股份有限公司 一种显示装置
CN107357060A (zh) * 2017-08-29 2017-11-17 惠科股份有限公司 一种显示面板的制造方法及制造设备
CN108054190B (zh) * 2018-01-10 2024-03-19 京东方科技集团股份有限公司 Oled单元及其制造方法、显示面板、显示装置
CN108538902B (zh) 2018-05-21 2020-09-01 深圳市华星光电技术有限公司 Oled背板的制作方法及oled背板
GB2581466A (en) * 2018-07-04 2020-08-26 Flexenable Ltd Control component for optoelectronic device
CN110211502A (zh) * 2019-06-28 2019-09-06 云谷(固安)科技有限公司 阵列基板及其制作方法和显示面板的制作方法
CN113777896B (zh) * 2020-06-09 2023-02-28 上海微电子装备(集团)股份有限公司 一种对准装置及其对准方法、光刻机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020089615A1 (en) * 2001-01-11 2002-07-11 Nec Corporation Active-matrix type liquid crystal display device and manufacturing method thereof
CN101688935A (zh) * 2007-08-22 2010-03-31 三菱化学株式会社 树脂黑底、遮光性感光性树脂组合物、tft元件基板和液晶显示装置
CN103985717A (zh) * 2014-05-13 2014-08-13 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置
CN104297980A (zh) * 2014-10-31 2015-01-21 京东方科技集团股份有限公司 一种coa基板及其制作方法和显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256334A (ja) * 2006-03-20 2007-10-04 Nec Lcd Technologies Ltd カラーフィルタ印刷方法、カラーフィルタ印刷装置、及びカラーフィルタ基板
TWI319823B (en) * 2006-07-04 2010-01-21 Liquid crystal display panel
KR20100022707A (ko) * 2008-08-20 2010-03-03 삼성전자주식회사 액정 표시 장치 및 그 제조 방법
KR101544793B1 (ko) * 2008-12-04 2015-08-18 삼성디스플레이 주식회사 가변 투명도를 가지는 차광 부재 및 이를 포함하는 표시판과 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020089615A1 (en) * 2001-01-11 2002-07-11 Nec Corporation Active-matrix type liquid crystal display device and manufacturing method thereof
CN101688935A (zh) * 2007-08-22 2010-03-31 三菱化学株式会社 树脂黑底、遮光性感光性树脂组合物、tft元件基板和液晶显示装置
CN103985717A (zh) * 2014-05-13 2014-08-13 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置
CN104297980A (zh) * 2014-10-31 2015-01-21 京东方科技集团股份有限公司 一种coa基板及其制作方法和显示装置

Also Published As

Publication number Publication date
EP3214486A4 (en) 2018-03-28
EP3214486A1 (en) 2017-09-06
US20170176810A1 (en) 2017-06-22
CN104297980A (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
WO2016065796A1 (zh) 一种coa基板及其制作方法和显示装置
WO2016065797A1 (zh) 一种coa基板及其制作方法和显示装置
US9620572B2 (en) OLED display panel, method for manufacturing the same and display device
WO2016065852A1 (zh) 一种coa基板及其制作方法和显示装置
WO2016082234A1 (zh) 薄膜晶体管、显示装置及薄膜晶体管的制造方法
TWI515911B (zh) 薄膜電晶體基板及其製作方法以及顯示器
TWI477869B (zh) 顯示面板之陣列基板及其製作方法
US9606393B2 (en) Fabrication method of substrate
US8441592B2 (en) TFT-LCD array substrate and manufacturing method thereof
WO2017124673A1 (zh) 阵列基板的制作方法及液晶显示面板
KR20120039947A (ko) 표시 장치 및 그 제조 방법
TWI464787B (zh) 邊緣電場切換型液晶顯示面板之陣列基板及其製作方法
WO2020228425A1 (zh) 阵列基板及其制造方法、显示面板、显示装置
WO2012086595A1 (ja) 半導体装置、カラーフィルタ基板、カラーフィルタ基板を備える表示装置、および半導体装置の製造方法
WO2015021712A1 (zh) 阵列基板及其制造方法和显示装置
WO2018205596A1 (zh) 薄膜晶体管及其制造方法、阵列基板、显示面板及显示装置
US20150255493A1 (en) Display device and method of manufacturing the same
US9841676B2 (en) Method of manufacturing display device using bottom surface exposure
US20150171118A1 (en) Display substrate and method of manufacturing the display substrate
TWI540737B (zh) 主動元件及其製造方法
US9035364B2 (en) Active device and fabricating method thereof
WO2015096395A1 (zh) 一种阵列基板的制作方法、阵列基板和显示装置
US10191339B2 (en) BOA liquid crystal panel based on IGZO-TFT and method for manufacturing the same
JP2002250913A (ja) 液晶表示装置とその製造方法
TWI569456B (zh) 薄膜電晶體及其製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14767953

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015795094

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015795094

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE