WO2016064192A1 - 전자기파 조사에 의한 도전성 패턴 형성용 조성물, 이를 사용한 도전성 패턴 형성 방법과, 도전성 패턴을 갖는 수지 구조체 - Google Patents

전자기파 조사에 의한 도전성 패턴 형성용 조성물, 이를 사용한 도전성 패턴 형성 방법과, 도전성 패턴을 갖는 수지 구조체 Download PDF

Info

Publication number
WO2016064192A1
WO2016064192A1 PCT/KR2015/011155 KR2015011155W WO2016064192A1 WO 2016064192 A1 WO2016064192 A1 WO 2016064192A1 KR 2015011155 W KR2015011155 W KR 2015011155W WO 2016064192 A1 WO2016064192 A1 WO 2016064192A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
conductive pattern
forming
composition
inorganic additive
Prior art date
Application number
PCT/KR2015/011155
Other languages
English (en)
French (fr)
Inventor
김재현
전신희
김재진
정한나
박치성
신부건
박철희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/510,967 priority Critical patent/US10837114B2/en
Priority to CN201580056626.7A priority patent/CN107075239B/zh
Priority to PCT/KR2015/011155 priority patent/WO2016064192A1/ko
Priority to EP15852488.4A priority patent/EP3176792B1/en
Priority to JP2017513795A priority patent/JP6389326B2/ja
Publication of WO2016064192A1 publication Critical patent/WO2016064192A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • C08J7/065Low-molecular-weight organic substances, e.g. absorption of additives in the surface of the article
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1614Process or apparatus coating on selected surface areas plating on one side
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2026Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
    • C23C18/204Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/024Electroplating of selected surface areas using locally applied electromagnetic radiation, e.g. lasers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/003Apparatus or processes specially adapted for manufacturing conductors or cables using irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/34Apparatus or processes specially adapted for manufacturing conductors or cables for marking conductors or cables
    • H01B13/348Apparatus or processes specially adapted for manufacturing conductors or cables for marking conductors or cables using radiant energy, e.g. a laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/0049Casings being metallic containers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • C23C18/405Formaldehyde
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS

Definitions

  • the present invention makes it possible to form a fine conductive pattern on a variety of polymer resins including polycarbonate resins or resin layers by a simple method of electromagnetic wave irradiation and plating, and also to improve the physical properties of the resin product or resin layer by the electromagnetic wave irradiation. It relates to a composition for forming a conductive pattern by electromagnetic wave irradiation, which can further reduce the decrease, a method of forming a conductive pattern using the same, and a resin structure having a conductive pattern.
  • a method of forming a conductive pattern by forming a metal layer on the surface of the polymer resin substrate and then applying photolithography or printing a conductive paste may be considered.
  • a polymer resin substrate is formed by blending and molding a special inorganic additive (eg, Sb doped Sn0 2, etc.) including a ' transition metal such as antimony or tin on a polymer resin chip, After directly irradiating electromagnetic waves such as a laser to a predetermined region, a metal layer is formed by plating in the laser irradiation region, thereby forming a conductive pattern on the polymer resin substrate.
  • a special inorganic additive eg, Sb doped Sn0 2, etc.
  • a metal layer is formed by plating in the laser irradiation region, thereby forming a conductive pattern on the polymer resin substrate.
  • such inorganic additives may be used for the physical properties of the polymer resin substrate, the mechanical properties of the resin product formed therefrom, and the dielectric constant. It can lower, and cause dielectric loss.
  • a means such as reducing its content or minimizing its particle size is applied, it exhibits sufficient absorption and sensitivity in the irradiation region of electromagnetic waves such as a laser. In this case, even if the plating is carried out after the electromagnetic wave irradiation, a good conductive pattern becomes difficult, and the conductive pattern often does not exhibit sufficient adhesive force to the polymer resin substrate, and is often easily dropped.
  • a method of increasing the irradiation conditions of electromagnetic waves such as lasers, for example, average power for irradiating electromagnetic waves, and the like may be considered.
  • the resin substrate itself may be excessively damaged and its mechanical properties and the like may be degraded.
  • electromagnetic wave irradiation under severe commercially unfavorable conditions is required, the economics of the overall process may also be greatly degraded. Can be.
  • the present invention makes it possible to form a fine conductive pattern well on a variety of polymer resin products or resin layers including polycarbonate resins by a simple method of electromagnetic wave irradiation and plating, and also the physical properties of the resin product or resin layer by the electromagnetic wave irradiation. It is to provide a composition for forming a conductive pattern by electromagnetic wave irradiation which can further reduce the decrease, and a conductive pattern forming method using the same.
  • the present invention also provides a resin structure having a conductive pattern formed from the above-mentioned composition for forming a conductive pattern.
  • the present invention is a polymer resin including a polycarbonate resin; And an electromagnetic wave absorbing inorganic additive, which absorbs electromagnetic waves having a wavelength in the infrared region, and which satisfies a characteristic in which the laser sensitivity Ls defined by Equation 1 is about 1.6 ⁇ -log (Ls) ⁇ 6.0.
  • compositions for pattern formation :
  • wt is a value representing the content (weight) of the electromagnetic wave absorbing inorganic additive as a weight fraction of the total composition when the total content (weight) of the composition for forming a conductive pattern is 1,
  • the polymer resin further includes at least one resin selected from the group consisting of ABS resin, polyalkylene terephthalate resin, polypropylene resin and polyphthalamide resin, in addition to polycarbonate resin. It may include.
  • the electromagnetic wave absorbing inorganic additive may include one or more conductive metal elements, and may include a non-conductive metal compound in which a cation and an anion are included and chemically bonded to each other. Can be. More specific examples of the electromagnetic wave absorbing inorganic additive having the form of such a non-conductive metal compound include CuCr0 2 , NiCr0 2 , AgCr0 2 .
  • the electromagnetic wave absorbing inorganic additive may satisfy a characteristic in which the laser sensitivity Ls is about 1.6 ⁇ -log (Ls) ⁇ 5.6, and at the same time, By absorbing the electromagnetic wave having a wavelength in the infrared region can exhibit a property of generating a metal core containing the conductive metal element or its ions.
  • the electromagnetic wave absorbing inorganic additive may be used as a single material stratifying these two properties together, and specific examples of such inorganic additives include the non-conductive metal compounds listed above.
  • the electromagnetic wave absorbing inorganic additive may only stratify the laser sensitivity Ls of about 1.6 ⁇ -log (Ls) ⁇ 5.6, in this case, if necessary.
  • Ls laser sensitivity
  • a conductive seed former that generates a metal nucleus containing a conductive metal element or its silver may be additionally used.
  • the conductive seed former may be applied and formed on the surface of the polymer resin
  • the electromagnetic wave absorbing inorganic additive is Fe 3 (P0 4 ) 2 , Zn 3 (P0 4 ) 2 , ZnFe 2 ( It may include one or more selected from the group consisting of P 4 4 2 , NbOx and MoOx.
  • the conductive seed former is copper (Cu), platinum (Pt), palladium (Pd), silver (Ag), gold (Au), nickel (Ni), tungsten (W), titanium 1 type selected from the group consisting of (Ti), chromium (Cr), aluminum (A1), zinc (Zn), tin (Sn), lead (Pb), magnesium (Mg), manganese (Mn) and iron (Fe) It may contain the above conductive metal, ions or complex ions thereof.
  • the electromagnetic wave absorbing adjuvant may aid in the absorbent for the electromagnetic radiation representing the electromagnetic wave absorptive inorganic additive. This allows higher absorption and sensitivity in the electromagnetic radiation region even when electromagnetic absorbing inorganic additives are used, which exhibit relatively low laser sensitivities, e.g., about 5.6 ⁇ -log (Ls) ⁇ 6.0. have. Accordingly, the range of the electromagnetic wave absorbing inorganic additive applicable to form a good conductive pattern in the electromagnetic wave irradiation region can be further extended.
  • the electromagnetic wave absorbing inorganic additive may be included in about 0.05 to 30% by weight, or about 0.1 to 20% by weight based on the total composition.
  • the composition for forming a conductive pattern the laser electromagnetic wave having a wavelength of about 100nm to 1200nm, typically about 1064nm is irradiated with an average power of about 1 to 20W, black is about 1.5 to 20W, the irradiation region of the laser electromagnetic wave
  • the plating may be carried out to form a composition applied to form a conductive pattern.
  • the electromagnetic wave absorbing inorganic additive may be included as a particle having an average particle diameter of about 0.05 to 20 /, or about 0.1 to 15 zm.
  • electromagnetic wave absorption aid about 0.01 to 20 weight percent of the composition.
  • carbon-based black pigments such as carbon black may be included in about 0.01 to 5% by weight black is about 0.1 to 2% by weight
  • titanium dioxide may be included in about 0.1 to 20% by weight, or about 5 to 10% by weight. have.
  • composition for forming a conductive pattern is, in addition to each component described above, in the group consisting of thermal stabilizers, UV stabilizers, flame retardants, lubricants, antioxidants, inorganic layering agents, color additives, lamellar reinforcing agents, flow modifiers and functional reinforcing agents
  • the at least one additive selected may further comprise from about 0.01 to 30 weight percent of the total composition.
  • the present invention also comprises the steps of forming a resin worm by molding the above-mentioned composition for forming a conductive pattern into a resin product, or by applying to another product; Irradiating an electromagnetic wave having a wavelength of an infrared ray region to a predetermined region of the resin product or the resin layer; And forming a conductive metal layer by plating the irradiation region of the electromagnetic wave, thereby providing a method of forming a conductive pattern by direct irradiation of the electromagnetic wave.
  • the present invention also provides a polymer resin substrate comprising a polycarbonate resin; An electromagnetic wave absorbing inorganic additive dispersed in the polymer resin substrate, absorbing electromagnetic waves having a wavelength in the infrared region, and satisfying a characteristic in which the laser sensitivity Ls defined by Equation 1 is 1.6 ⁇ -log (Ls) ⁇ 6.0; And it provides a resin structure having a conductive pattern comprising a conductive metal worm formed on a predetermined region of the polymer resin substrate.
  • a predetermined region in which the conductive metal layer is formed may be applied to a region in which electromagnetic waves having a wavelength of an infrared region are irradiated onto the polymer resin substrate.
  • the electromagnetic radiation region even if electromagnetic radiation in the infrared region is irradiated with a relatively low content of a special inorganic additive exhibiting electromagnetic wave absorption, and gentle irradiation conditions (e.g., low average power) which is commercially and generally applied, the electromagnetic radiation region
  • a special inorganic additive exhibiting electromagnetic wave absorption
  • gentle irradiation conditions e.g., low average power
  • FIG. 1 is a schematic diagram schematically showing an example of a method of forming a conductive pattern by direct irradiation of electromagnetic waves according to another embodiment of the present invention in the order of processes.
  • FIG. 2 shows the -log (Ls) value (X-axis) of the respective compositions and good conductive patterns when the conductive patterns are formed on the polycarbonate resin substrate using the conductive pattern forming compositions of Examples 1 to 17.
  • FIG. This graph shows the relationship between the required laser electromagnetic wave and minimum power condition (Y axis).
  • FIG. 3 shows -log (Ls) of each composition when a conductive pattern is formed on a polycarbonate resin substrate using the composition for forming a conductive pattern of Examples 18 to 34 (different from laser irradiation conditions from Examples 1 to 17). ) Is a graph showing the relationship between the value (X axis) and the minimum power condition (Y axis) of laser electromagnetic waves necessary for forming a good conductive pattern.
  • FIG. 5 illustrates the formation of a good conductive pattern when the conductive pattern is formed on the polycarbonate resin substrate by using the composition for forming the conductive pattern of Example 17 and Example 52, wherein titanium dioxide is additionally used. Required This photo shows the progress of the test to determine the minimum power condition of the laser electromagnetic wave.
  • composition for forming a conductive pattern according to a specific embodiment of the present invention, a method of forming a conductive pattern using the same, and a resin structure having a conductive pattern will be described.
  • a polymer resin including a polycarbonate resin; And an electromagnetic wave absorbing inorganic additive that absorbs electromagnetic waves having a wavelength in the infrared region and that satisfies a characteristic in which the laser sensitivity Ls defined by Equation 1 is 1.6 ⁇ -log (Ls) ⁇ 6.0.
  • a composition for formation is provided: [Formula 1]
  • the effective radius of the electromagnetic wave absorbing inorganic additive calculated by the formula
  • ⁇ I a value expressed as a weight fraction of the total content (weight) of the electromagnetic wave absorbing inorganic additive when the total content (weight) of the composition for forming a conductive pattern is 1,
  • a method of forming a conductive pattern on a resin substrate such as a polymer resin product or a resin layer including a polycarbonate resin using a composition for forming a conductive pattern according to an embodiment of the present invention is as follows. After extruding and / or extruding the composition for forming the conductive pattern and molding it into a resin product or a resin layer, and irradiating electromagnetic waves such as a laser having a wavelength in the infrared region to the region to form the conductive pattern, Electromagnetic wave absorbing inorganic additives that are uniformly dispersed in the polymer resin substrate may cause these electromagnetic waves to be above a certain level. Will be absorbed.
  • the surface of the polymer resin substrate in the electromagnetic wave irradiation region may have a certain level or more roughness.
  • the electromagnetic wave absorbing inorganic additive absorbs electromagnetic waves having a wavelength in the infrared region, and generates, for example, a metal nucleus in the electromagnetic wave irradiation region, including a conductive metal element included in the inorganic additive, or the like. You can.
  • the metal nucleus is coated at the time of the electromagnetic nucleus irradiation region, that is, the portion where the metal nucleus is generated with a certain level of surface roughness.
  • the plating can be uniformly and well performed in one row, and the conductive metal layer formed by the plating can be attached with a relatively high adhesion to the surface of the polymer resin substrate to form a conductive pattern.
  • the plating itself does not proceed properly due to the formation of the metal nucleus (ie, the conductive metal layer itself is not formed properly), and even if some plating proceeds, the adhesion of the conductive metal layer to the surface of the polymer resin substrate that is smooth is not achieved. Cannot be represented. Therefore, the conductive metal layer itself is not formed in the non-electromagnetic wave irradiation region, or even if some plating proceeds, the conductive metal layer by such plating can be removed very easily. Accordingly, the conductive metal layer remains selectively in only the electromagnetic wave irradiation region, thereby forming a fine conductive pattern having a desired shape on the polymer resin substrate.
  • the metal nucleus is sufficiently formed and the seed can be good and uniform plating by seeding, By the surface roughness of a predetermined level or more, the conductive metal layer formed by the plating exhibits excellent adhesion, and thus a good conductive pattern can be formed.
  • the metal nucleus serving as a seed during the plating may not be sufficiently formed to be uniform.
  • the fine shape of the desired shape on the polymer resin substrate by the above-described method In order to form the conductive pattern better (to have higher adhesion to the polymer resin substrate surface) by uniform plating, in the electromagnetic radiation region, the electromagnetic wave absorbing inorganic additive may exhibit higher electromagnetic wave absorbing and / or sensitivity. Thus, it was confirmed that it is very important to sufficiently generate a metal nucleus serving as the seed, and to make the surface of the polymer resin substrate have a surface roughness of a predetermined level or more.
  • the polymer resin substrate in particular, basically excellent physical properties when the irradiation conditions are darkened, such as simply increasing the content of the inorganic additive or increasing the electromagnetic wave irradiation power.
  • Various physical properties such as mechanical properties of the polycarbonate-based resin substrate known to have can be greatly reduced.
  • the laser electromagnetic wave having a wavelength in the infrared region of about 100 to 1200 nm for example, mild conditions that are commercially and generally applied to the electromagnetic radiation irradiation conditions without greatly increasing the content of the inorganic additives, For example, even when irradiated under mild conditions with an average power of about 1.5 to 15 W or about 1.5 to 20 W, it is possible to perform uniform plating on the surface of the polymer resin substrate in the electromagnetic wave irradiation region and to form a good conductive pattern showing excellent adhesion.
  • compositions and related technologies that can be made.
  • the present inventors continue to research to solve this technical request, and as a result, by controlling the type, content, shape and size of the electromagnetic wave absorbing inorganic additives, it is defined by the formula (1) represented by these inorganic additives It was confirmed that the physical property value of the laser sensitivity Ls could be adjusted. Furthermore, the inventors have found that such laser sensitivity Ls is approximately 1.6 ⁇ -log (Ls) ⁇ 6.0, more suitably approximately 1.6 ⁇ -log (Ls) ⁇ 5.6, or 2.0 ⁇ -log (Ls) ⁇ 5.0.
  • Ls laser sensitivity Ls
  • the inventors have found that such laser sensitivity Ls is approximately 1.6 ⁇ -log (Ls) ⁇ 6.0, more suitably approximately 1.6 ⁇ -log (Ls) ⁇ 5.6, or 2.0 ⁇ -log (Ls) ⁇ 5.0.
  • the resin substrate including the inorganic additive exhibits low sensitivity to electromagnetic waves such as lasers, and thus the surface roughness that can achieve the excellent adhesion can be achieved.
  • electromagnetic waves need to be irradiated with very strong power conditions of about 20 W or more. For this reason, the fall of the physical property of a polycarbonate resin base material can appear large.
  • the electromagnetic radiation irradiation in these dark conditions is beyond the commercial and general application range, and the overall process cost can also be greatly increased.
  • the minimum laser power, such as the minimum laser, required to cause denaturation of the resin substrate becomes about 1.0 W
  • the type and content of -log (Ls) of about 1.6 or less Even if inorganic additives are used, it is difficult to adjust the electromagnetic wave irradiation conditions to an average power of less than about LOW.
  • the use of the inorganic additive having the -log (Ls) of about 1.6 or less may result in deterioration of the physical properties of the resin substrate, depending on the economical efficiency of the overall process or the increase of the content of the inorganic additive. It can be difficult.
  • the inventors When the electromagnetic wave is irradiated, the inventors have confirmed that the electromagnetic wave absorbing inorganic additives in the polymer resin substrate exhibit scattering properties due to the surface shape and size of the particles, together with the absorbency against the electromagnetic wave.
  • the measured value of the BET specific surface area A (m 2 / g) is assumed to be 4 K Re 2 (m 2 ) / weight (g), the density B (g / cm 3 ) was assumed to be 3/4 [(weight ( g )) / (Re 3 (cm 3 ))], from which the effective radius was calculated.
  • the radius Re was derived.
  • the BET specific surface area A (m 2 / g) can be measured according to the conventional method for measuring the specific surface area of the inorganic particles
  • the density B (g / cm 3 ) is the kind of material constituting the electromagnetic wave absorbing inorganic additives. Can be determined accordingly.
  • the wt of the equation (1) is, as a factor to consider the content of the electromagnetic wave absorptive inorganic additive, the content at the time of the total amount (weight) of the above-mentioned conductive pattern forming composition to 1, the electromagnetic wave absorptive inorganic additive ( Weight) can be a value expressed as a weight fraction of the total composition (e.g., when the total composition of the inorganic additive is 3% by weight, wt is 0.03 which is a weight fraction of the total content of the composition 1). ).
  • the Iaa is a constant for the electromagnetic wave absorbency exhibited by a particular inorganic additive, according to the type of the electromagnetic wave absorbing inorganic additive, the predetermined infrared region measured using a UV-vis-IR spectrum for the inorganic additive
  • the absorbance of the electromagnetic wave absorbing inorganic additive calculated by the formula of absorbance ⁇ (from ⁇ ⁇ ⁇ ⁇ ) for an electromagnetic wave having a wavelength (for example, a wavelength of about 100 to 1200 nm, typically a wavelength of about 1064 nm).
  • the present inventors calculated the property values of Ls from Re- 14 , wt and Iaa measured and calculated as described above, and as described above, these property values are about 1.6 ⁇ -log (Ls).
  • the above-described relationship of about 1.6 ⁇ -log (Ls) ⁇ 6.0 is determined in consideration of physical properties of the polycarbonate-based resin among various polymer resin substrates, and in the composition for forming a conductive pattern of the embodiment, the polymer resin Includes a polycarbonate resin.
  • the polycarbonate resin in consideration of the type of the polymer resin substrate such as the resin product or the resin layer to be obtained using the composition of one embodiment, in addition to the polycarbonate resin may further include additional polymer resins such as various thermoplastic resins or thermosetting resins. Of course.
  • additional polymer resins include ABS resins, polyalkylene terephthalate resins, polypropylene resins, or polyphthalamide resins, which may be used with two or more selected resins or other polycarbonate resins. Various known resins may be further included.
  • the electromagnetic wave absorbing inorganic additive contains, for example, at least one conductive metal element such as Cu, Ag, or Ni, and includes a cation and an anion, which are chemically ionically and selectively covalently bonded to each other.
  • a non-conductive metal compound When a non-conductive metal compound having such a form is irradiated with an electromagnetic wave such as a laser, a metal nucleus containing the conductive metal element or the (ion) ion thereof from the non-conductive metal compound This metal nucleus can be selectively exposed in a predetermined region irradiated with electromagnetic waves to form an adhesive active surface of the surface of the polymer resin substrate.
  • the sensitivity of electromagnetic waves is improved by satisfying the relationship of about 1.6 ⁇ -log (Ls) ⁇ 6.0, it is better formed. Can.
  • this metal core and bonding the active surface it may proceed well, a uniform coating to a see d, in the electromagnetic wave irradiation area having a more satisfactory good adhesion to the substrate surface a polymer resin A conductive pattern can be formed.
  • electromagnetic wave absorbing inorganic additive in the form of the non-conductive metal compound described above include CuCr0 2 , NiCr0 2 , AgCr0 2 CuMo0 2 , NiMo0 2 , .AgMo0 2 , NiMn0 2 , AgMn0 2 , NiFe0 2 , AgFe0 2 , CuW0 2 , AgW0 2 , NiW0 2 , AgSn0 2 , NiSn0 2 , CuSn0 2 , CuA10 2 , CuGa0 2 , Culn0 2 , CuT10 2 , CuY0 2 , CuSc0 2 , CuLa0 2 , CuLu0 2 , NiA10 2 , NiGa0 2 , Niln0 2 , NiT10 2 , NiY0 2 , NiSc0 2 , NiLa0 2 , NiLu0 2 , AgA10 2 , AgGa0 2 , Agl
  • the non-conductive metal compounds exemplified above exhibit better absorption for electromagnetic waves having a wavelength in the infrared region, for example, wavelengths of about 100 nm to 1200 nm, typically about 1064 nm, thus providing about 1.6 ⁇ -log described above. (Ls) ⁇ 6.0 can be achieved.
  • the non-conductive metal compounds may facilitate the reduction / precipitation of the conductive metal (for example, Cu, etc.) or ions thereof contained therein, and thus the metal nucleus, and the formation of an adhesive active surface. Therefore, by using these non-conductive metal compounds as an electromagnetic wave absorbing inorganic additive, it is possible to easily form a better conductive pattern having excellent adhesion to the polymer resin substrate in the electromagnetic wave irradiation region.
  • the electromagnetic wave absorbing inorganic additive may satisfy the characteristic that the laser sensitivity Ls is about 1.6 ⁇ -log (Ls) ⁇ 5.6, At the same time, it is possible to exhibit a property of sufficiently forming the above-described metal nucleus and the adhesive active surface.
  • the electromagnetic wave absorbing inorganic additive may be used as a single material that satisfies these two properties. Examples of such a single material may include the non-conductive metal compounds shown as the examples described above, and more preferably Cu-containing. Non-conductive metal compounds may be mentioned.
  • the electromagnetic wave absorbing inorganic additive may satisfy only a characteristic in which the laser sensitivity Ls is about 1.6 ⁇ -log (Ls) ⁇ 5.6.
  • Ls the laser sensitivity
  • a conductive seed former that generates a metal nucleus may be further included in the composition of the above embodiment.
  • examples of the electromagnetic wave absorbing inorganic additive may include at least one selected from the group consisting of Fe 3 (P0 4 ) 2 , Zn 3 (P0 4 ) 2 , ZnFe 2 (P0 4 ) 2 , NbOx, and MoOx. Can be mentioned.
  • the conductive seed forming agent may be additionally used in order to form a metal nucleus and an adhesive active surface including the same to form a better conductive pattern.
  • the conductive seed forming agent may be included in the polymer resin together with the electromagnetic wave absorbing inorganic additive, or may be applied and formed in the form of a solution or dispersion on the surface of the polymer resin substrate.
  • a conductive seed is formed on the polymer resin substrate in the region irradiated with electromagnetic waves, and the conductive seed can grow during plating. As a result, it can play a role in facilitating good and uniform plating to enable formation of a good conductive metal layer.
  • Such conductive seed formers include copper (Cu), platinum (Pt), palladium (Pd), silver (Ag), gold (Au), nickel (Ni), tungsten (W), titanium (Ti), chromium (Cr) At least one conductive metal selected from the group consisting of aluminum (A1), zinc (Zn), tin (Sn), lead (Pb), magnesium (Mg), manganese (Mn) and iron (Fe), or ions thereof It may include complex ions. More specifically, the conductive seed forming agent may be not only such a conductive metal, its ions or complex silver itself, but may be in any form such as metal nanoparticles, metal compounds or metal complexes containing them. . In addition, the conductive seed former may be provided and used in the form of a solution or dispersion containing the conductive metal, ions or complex ions thereof, or metal nanoparticles, metal compounds or metal complex compounds containing them.
  • the group consisting of carbon black, smoke, flexible, lamp black, channel black, farnes black and acetylene black At least one carbon-based pigment pigment selected from; Or electromagnetic waves such as titanium dioxide (Ti0 2 ), which is a kind of white pigment. It may further comprise an absorption aid. Such electromagnetic wave absorption aid may be further improved by assisting the absorbency and / or sensitivity to the electromagnetic wave represented by the above-mentioned electromagnetic wave absorbing inorganic additive.
  • the electromagnetic wave absorbing inorganic additive may be included in about 0.05 to 30% by weight, or about 0.1 to 20% by weight based on the total composition.
  • the specific inorganic additives described above can be used in such amounts to reduce the physical property degradation of the polycarbonate-based resin substrate with the addition of the inorganic additives, so that the characteristics of about 1.6 ⁇ -log (Ls) ⁇ 6.0 It may be easier to achieve.
  • electromagnetic wave absorption aid may be included in about 0.01 to 20% by weight based on the total composition.
  • the carbon-based dark pigments such as carbon black, may be included in about 0.01 to 5% by weight, black is about 0.1 to 2% by weight ⁇ 3 ⁇ 4, titanium dioxide is about ⁇ to 20% by weight, black is about 0.5 to 10% by weight It may be included as.
  • the electromagnetic wave absorbing inorganic additive may have a large spherical particle form, and may be included as a particle form having an average particle diameter of about 0.05 to 20, or about 0.1 to 15.
  • the effective radius Re may be appropriately adjusted to be one factor that makes it easier to achieve a characteristic of about 1.6 ⁇ -log (Ls) ⁇ 6.0.
  • the electromagnetic wave absorbing inorganic additive having the average particle diameter and particle shape may have an effective radius Re of about 0.1 to 1500, depending on the type and density of the material forming the same.
  • the conductive pattern forming composition may have a laser electromagnetic wave having a wavelength of about 100 nm to about 1200 nm, typically about 1064 nm, about 1 to 20 W, or The composition may be irradiated with an average power of about 1.5 to 20 W, and the plating may be applied to the irradiation region of the laser electromagnetic wave to form a composition applied to form a conductive pattern.
  • These electromagnetic radiation irradiation conditions are commercial, generally gentle irradiation conditions, when applying the composition of one embodiment, even under such irradiation conditions, in the electromagnetic wave irradiation region, achieve excellent electromagnetic sensitivity, constant on the polymer resin substrate
  • the composition for forming a conductive pattern of the embodiment described above in addition to each component described above, a group consisting of a heat stabilizer, UV stabilizer, flame retardant, lubricant, antioxidant, inorganic filler, color additives, impact modifier, flow modifier and functional reinforcement
  • One or more additives selected from may further comprise from about 0.01 to 30 weight « 3 ⁇ 4 of the total composition.
  • an inorganic layering agent such as glass fiber may be included in an amount of about 0.5 to 30% by weight based on the total composition
  • other additives such as impact modifiers, flame retardants, and flow modifiers may be included in an amount of 01 to 5% by weight of the total composition. May contain%.
  • a method of forming a conductive pattern by direct irradiation of electromagnetic waves using the composition for forming a conductive pattern of the embodiment described above may include forming a resin layer by molding the composition for forming a conductive pattern of the above-described embodiment into a resin product or by applying it to another product; Irradiating an electromagnetic wave having a wavelength of an infrared ray region to a predetermined region of the resin product or the resin layer; And plating the irradiation area of the electromagnetic wave to form a conductive metal layer.
  • FIG. 1 an example of the method of forming the conductive pattern is shown in a simplified step by step.
  • the above-described composition for forming a conductive pattern may be molded into a resin product or applied to another product to form a resin layer.
  • a product molding method or a resin layer forming method using a conventional polymer resin composition is particularly limited.
  • the composition for forming the conductive pattern is extruded and engraved, and then formed into pellets or particles, and then injection molded into a desired form to prepare various polymer resin products. Can be.
  • the polymer resin product or the resin layer thus formed may have a form in which the above-mentioned electromagnetic wave absorbing inorganic additive is uniformly dispersed on the resin substrate formed from the polymer resin.
  • the above-mentioned electromagnetic wave absorbing inorganic additive may be uniformly dispersed throughout the entire area on the resin substrate and maintained in a non-conductive state.
  • Electromagnetic waves can be irradiated.
  • a surface roughness of a predetermined level or more may be formed on the surface of the polymer resin substrate in such an irradiation area, and the conductive metal element or its ions are reduced / precipitated from the electromagnetic wave absorbing inorganic additive or the like to form a metal core including the same.
  • Can be generated see second figure in FIG. 1).
  • the electromagnetic radiation irradiation region that is, the metal core is generated, has a surface roughness of a predetermined level or more.
  • uniform plating proceeds well, and the conductive metal layer formed by the plating adheres to the surface of the polymer resin substrate with a relatively high adhesive force to form a conductive pattern.
  • the plating itself does not proceed properly (ie, the conductive metal layer itself is not formed properly) due to the non-formation of the metal nucleus, and even if some plating proceeds, the adhesion to the surface of the polymer resin substrate having the conductive metal layer is smooth. Cannot be represented. Therefore, the conductive metal worm itself is not formed in the non-irradiated region of the electromagnetic wave, or even if some plating is performed, the conductive metal layer by the plating can be removed very easily.
  • the conductive metal layer of the non-electromagnetic wave irradiated region is removed as necessary, the conductive metal layer remains selectively in the electromagnetic wave irradiated region to form a fine conductive pattern of a desired shape on the polymer resin substrate. It can be formed favorably.
  • the laser electromagnetic wave having a wavelength corresponding to the infrared region for example, wavelengths of about 100 nm to 1200 nm, or about 1060 nm to 1070 nm, or about .1064 nm, is irradiated with an average power of about 1 to 20 W.
  • the conductive metal layer may be formed by plating the electromagnetic wave irradiation area.
  • a conductive metal layer exhibiting excellent adhesion to the polymer resin substrate may be formed in the electromagnetic radiation irradiation region, and the conductive metal layer may be easily removed in the remaining regions. Accordingly, a fine conductive pattern may be selectively formed only in a predetermined region on the polymer resin substrate.
  • the polymer resin substrate may be treated with an electroless plating solution containing a reducing agent and a conductive metal ion.
  • the conductive metal ions contained in the electroless plating solution may be chemically reduced to form a conductive pattern, and in particular, the conductive pattern may be well formed with excellent adhesion in the electromagnetic wave irradiation region.
  • the conductive pattern may be better formed by using the seed as a seed.
  • a resin structure having a conductive pattern obtained by the above-described composition for forming a conductive pattern and a conductive pattern forming method is provided.
  • a resin structure includes a polymer resin substrate including a polycarbonate resin; An electromagnetic wave absorbing inorganic additive dispersed in the polymer resin substrate, absorbing electromagnetic waves having a wavelength in the infrared region, and stratifying a characteristic in which the laser sensitivity Ls defined by Equation 1 is 1.6 ⁇ -log (Ls) ⁇ 6.0; And a conductive metal layer formed on a predetermined region of the polymer resin substrate.
  • a predetermined region in which the conductive metal layer is formed may be applied to a region in which electromagnetic waves having a wavelength of an infrared region are irradiated onto the polymer resin substrate.
  • the resin structure described above may be made of various resin products or resin layers such as mobile phone cases having conductive patterns for antennas, other RFID tags, various sensors, or MEMS.
  • Various resin products or resin layers which have conductive patterns, such as a structure, can be used.
  • the operation and effect of the invention will be described in more detail with reference to specific examples. However, this is presented as an example of the invention, whereby the scope of the invention is not limited in any sense.
  • Spherical non-conductive metal compound powders of 0 "0 2 were used with the polycarbonate resin.
  • thermal stabilizers IR1076, PEP36
  • UV stabilizers UV 32 9
  • lubricants EP184 which are additives for processing and stabilization
  • S2001 layered reinforcement
  • the extruded pellet-like resin composition was injection molded into a substrate having a diameter of 100 mm and a thickness of 2 mm at about 260 to 280 ° C.
  • the plating solution was prepared by dissolving 3 g of copper sulfate, 14 g of Rotsel salt, and 4 g of sodium hydroxide in 100 ml of deionized water. To 40 ml of the plating solution prepared, 1.6 ml of formaldehyde was added as a reducing agent. The resin substrate whose surface was activated with a laser was immersed in the plating solution for 3 to 5 hours, and then washed with distilled water. Through this process, a conductive pattern having a thickness of 10 or more Formed.
  • the adhesion performance of the formed conductive pattern (or plated layer) was evaluated using the ISO 2409 standard method. In this evaluation, a 3M scotch # 371 tape having an adhesive force of 4.9 N / 10 mm width was used, and a cross cut test of a 10 X 10 grid was applied to the conductive pattern. It was evaluated under the ISO class of:
  • class 1 grade peeling area of the conductive pattern is greater than 0% and 5% or less of the conductive pattern area to be evaluated;
  • Class 2 Class: Peel Area of Conductive Pattern
  • class 4 peeling area of the conductive pattern o 'More than 35% of the conductive pattern area to be evaluated 65% or less;
  • Class 5 Peeling area of conductive pattern 0 'More than 65% of the area of the conductive pattern to be evaluated.
  • Example 1 while increasing the average power for irradiating the laser within the range of 1 to 30W, the formation of the above-described conductive pattern and the evaluation of its adhesion strength was repeated, and according to the result is necessary for good conductive pattern formation
  • the minimum power condition of the laser was calculated and the results are shown in Table i below.
  • a conductive pattern was formed in the same manner as in Example 1, except that the kind of the non-conductive metal compound, the BET specific surface area (change in particle size), and its content (wt) were changed as summarized in Table 1 below.
  • the physical properties of the electrically conductive metal compound and the conductive pattern (Iaa, wt, Re, and one log (Ls), and the minimum power condition of the laser electromagnetic wave required for forming a good conductive pattern) are collectively shown in Table 1 below.
  • LGD additive 1 CuCr0 2 ; LGD additive 2: CuA10 2 LGD additive 3: CuS0 4 ; LGD additive 4: Cul; LGD additive 5: CuSn 2 (P0 4 ) 3 .
  • a conductive pattern was formed by the same composition and method as in Examples 1 to 17, except that the laser irradiation condition was changed to the condition of Laser condition 2 below.
  • LGD additive 1 CuCr0 2 ; LGD additive 2: CuA10 2 LGD additive 3: CuS0 4 ; LGD additive 4: Cul; LGD additive 5: CuSn 2 (P0 4 ) 3 .
  • Examples 35 to 51 Formation of Conductive Patterns by Laser Direct Irradiation Conductive patterns were formed in the same composition and method as in Examples 1 to 17, except that carbon black having a weight of ⁇ 3/4 was added to Examples 1 to 17 and the content of polycarbonate resin was reduced by that amount.
  • a conductive pattern was formed in the same composition and method as in Example 17, except that 5 wt% titanium dioxide was added to Example 17, and the polycarbonate resin content was reduced by that amount.
  • Example 52 the general properties (Iaa, wt, Re, and -log (Ls)) of the non-conductive metal compound are the same as those of Example 17, and the minimum power condition of the laser electromagnetic wave necessary for forming a good conductive pattern is It was determined by repeated testing according to the same method as 17, in particular the method shown in FIG. As a result, it was confirmed that a good conductive pattern could be formed under a minimum power of 14.3 W (for Example 17, a good conductive pattern was not obtained until 14.3 W, and the minimum power was determined to be 17.4 W).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Electrochemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 폴리카보네이트 수지를 포함한 각종 고분자 수지 제품 또는 수지층 상에, 전자기파 조사 및 도금의 간단한 방법으로 미세 도전성 패턴을 양호하게 형성할 수 있게 하면서도, 상기 전자기파 조사에 의한 수지 제품 또는 수지충의 물성 저하를 보다 줄일 수 있는 전자기파 조사에 의한 도전성 패턴 형성용 조성물, 이를 사용한 도전성 패턴 형성 방법과, 도전성 패턴을 갖는 수지 구조체에 관한 것이다. 상기 전자기파 조사에 의한 도전성 패턴 형성용 조성물은 폴리카보네이트 수지를 포함한 고분자 수지; 및 적외선 영역의 파장을 갖는 전자기파를 흡수하고, 소정의 관계식으로 정의되는 레이저 민감도 Ls가 1.6 < - log(Ls) < 6.0인 특성을 층족하는 전자기파 흡수성 무기 첨가제를 포함하는 것이다.

Description

【명세서】
【발명의 명칭】
전자기파 조사에 의한 도전성 패턴 형성용 조성물, 이를 사용한 도전성 패턴 형성 방법과, 도전성 패턴을 갖는 수지 구조체
【관련 출원 (들)과의 상호 인용】
본 출원은 2014년 10월 23일자 한국 특허 출원 게 10-2014-0144490호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
【기술분야】
본 발명은 폴리카보네이트 수지를 포함한 각종 고분자 수지 제풀 또는 수지층 상에, 전자기파 조사 및 도금의 간단한 방법으로 미세 도전성 패턴을 양호하게 형성할 수 있게 하면서도, 상기 전자기파 조사에 의한 수지 제품 또는 수지층의 물성 저하를 보다 줄일 수 있는 전자기파 조사에 의한 도전성 패턴 형성용 조성물, 이를 사용한 도전성 패턴 형성 방법과, 도전성 패턴을 갖는 수지 구조체에 관한 것이다.
【배경기술】
최근 들어 미세 전자 기술이 발전함에 따라, 각종 수지 제품 또는 수지층 등의 고분자 수지 기재 (또는 제품) 표면에 미세한 도전성 패턴이 형성된 구조체에 대한 요구가 증대되고 있다. 이러한 고분자 수지 기재 표면의 도전성 패턴 및 구조체는 핸드폰 케이스에 일체화된 안테나, 각종 센서 , MEMS 구조체 또는 RFID 태그 등의 다양한 대상물을 형성하는데 적용될 수 있다. ^
이와 같이, 고분자 수지 기재 표면에 도전성 패턴을 형성하는 기술에 대한 관심이 증가하면서, 이에 관한 몇 가지 기술이 제안된 바 있다. 그러나, 아직까지 이러한 기술을 보다 효과적으로 이용할 수 있는 방법은 제안되지 못하고 있는 실정이다.
예를 들어, 이전에 알려진 기술에 따르면, 고분자 수지 기재 표면에 금속층을 형성한 후 포토리소그라피를 적용하여 도전성 패턴을 형성하거나, 도전성 페이스트를 인쇄하여 도전성 패턴을 형성하는 방법 등이 고려될 수 있다. 그러나, 이러한 기술에 따라 도전성 패턴을 형성할 경우, 필요한 공정 또는 장비가 지나치게 복잡해지거나, 양호하고도 미세한 도전성 패턴을 형성하기가 어려워지는 단점이 있다. 이에 보다 단순화된 공정으로 고분자 수지 기재 표면에 미세한 도전성 패턴을 보다 효과적으로 형성할 수 있는 기술의 개발이 계속적으로 요구되어 왔다.
최근 들어, 이러한 기술적 요구를 해결할 수 있는 방법의 하나로서, 레이저 등 전자기파에 흡수 특성을 나타내는 특수한 무기 첨가제를 고분자 수지 기재에 포함시키고, 이에 대한 전자기파 조사 및 도금에 의해 도전성 패턴을 형성하는 방법이 제안된 바 있고, 이러한 도전성 패턴 형성 방법이 일부 적용되고 있다.
이러한 방법에 따르면, 예를 들어, 고분자 수지 칩에 안티몬 또는 주석 등의' 전이 금속을 포함하는 특수한 무기 첨가제 (예를 들어, Sb doped Sn02 등)를 블랜딩 및 성형하여 고분자 수지 기재를 형성하고, 소정 영역에 레이저 등 전자기파를 직접 조사한 후, 레이저 조사 영역에서 도금에 의해 금속층을 형성함으로서, 상기 고분자 수지 기재 상에 도전성 패턴을 형성하게 된다.
그런데, 이러한 도전성 패턴 형성 방법에서는, 위와 같은 특수한 무기 첨가제가 고분자 수지 칩 자체에 상당량 블랜딩될 필요가 있으므로, 이러한 무기 첨가제가 고분자 수지 기재나, 이로부터 형성된 수지 제품의 기계적 특성, 유전율 등의 물성을 저하시킬 수 있고, 유전 손실을 일으킬 수 있다. 만일, 이러한 무기 첨가제의 부가에 따른 물성 손실을 줄이기 위해, 이의 함량을 줄이거나 그 입자 크기를 미세화하는 등의 수단을 적용하는 경우, 레이저 등 전자기파의 조사 영역에서 이에 대한 층분한 흡수성 및 민감성이 발현되지 않아, 전자기파 조사 후에 도금을 진행하더라도 양호한 도전성 패턴이 어렵게 되고, 도전성 패턴이 고분자 수지 기재에 대해 충분한 접착력을 나타내지 못하여 쉽게 떨어지는 경우가 많다.
또한, 상술한 문제점을 해결하기 위해, 레이저 등 전자기파의 조사 조건, 예를 들어, 전자기파를 조사하는 평균 파워 등을 보다 높이는 방법을 고려할 수도 있지만, 이 경우에도, 강한 파워의 전자기파 조사 등에 의해 상기 고분자 수지 기재 자체가 과도하게 손상되어 이의 기계적 물성 등이 저하될 수 있고, 이러한 가혹한 조건 하의 전자기파 조사에 의해서도 양호한 도전성 패턴의 형성이 어렵게 되는 경우가 많다. 더구나, 상업적으로 부적당한 가혹한 조건 하의 전자기파 조사가 필요하게 됨에 따라, 전체적인 공정의 경제성 역시 크게 저하될 수 있다.
이러한 종래 기술의 문제점으로 인해, 각종 고분자 수지 제품 또는 수지층 상에, 전자기파 조사 및 도금의 간단한 방법으로 미세 도전성 패턴을 양호하게 형성할 수 있게 하면서도, 상기 전자기파 조사에 의한 수지 제품 또는 수지층의 물성 저하를 보다 즐일 수 있는 관련 기술의 개발이 계속적으로 요구되고 있다. [발명의 내용】
【해결하려는 과제】
본 발명은 폴리카보네이트 수지를 포함한 각종 고분자 수지 제품 또는 수지층 상에, 전자기파 조사 및 도금의 간단한 방법으로 미세 도전성 패턴을 양호하게 형성할 수 있게 하면서도, 상기 전자기파 조사에 의한 수지 제품 또는 수지층의 물성 저하를 보다 줄일 수 있는 전자기파 조사에 의한 도전성 패턴 형성용 조성물과, 이를 사용한 도전성 패턴 형성 방법을 제공하는 것이다.
본 발명은 또한, 상기 도전성 패턴 형성용 조성물 등으로부터 형성된 도전성 패턴을 갖는 수지 구조체를 제공하는 것이다.
【과제의 해결 수단】
본 발명은 폴리카보네이트 수지를 포함한 고분자 수지; 및 적외선 영역의 파장을 갖는 전자기파를 흡수하고, 하기 수학식 1로 정의되는 레이저 민감도 Ls가 약 1.6 < -log(Ls) < 6.0인 특성을 충족하는 전자기파 흡수성 무기 첨가제를 포함하는 전자기파 조사에 의한 도전성 패턴 형성용 조성물을 제공한다:
[수학식 1]
레이저 민감도 Ls = Re 1 4 wt x Iaa
상기 수학식 1에서,
Re는 전자기파 흡수성 무기 첨가제의 BET 비표면적 A(m2/g)와, 밀도 B(g/cm3)로부터, Re = 300/[A(m2/g) x B(g/cm3)]의 식에 의해 산출된 상기 전자기파 흡수성 무기 첨가제의 유효 반경을 나타내고,
wt는 상기 도전성 패턴 형성용 조성물의 전체 함량 (중량)을 1로 할 때, 상기 전자기파 흡수성 무기 첨가제의 함량 (중량)을 전체 조성물에 대한 중량 분율로 나타낸 값이고,
Iaa는 상기 전자기파 흡수성 무기 첨가제에 대해, UV-vis-IR 스펙트럼을 사용하여 측정된 소정의 적외선 영역의 파장을 갖는 전자기파에 대한 흡광도 IR (%)로부터, Iaa = (1 - IR)2 I 2 ^의 식에 의해 산출된 상기 전자기파 흡수성 무기 첨가제의 유효 광선 흡수율을 나타낸다.
상기 전자기파 조사에 의한 도전성 패턴 형성용 조성물에서, 상기 고분자 수지는 폴리카보네이트 수지 외에, ABS 수지, 폴리알킬렌테레프탈레이트 수지, 폴리프로필렌 수지 및 폴리프탈아미드 수지로 이루어진 군에서 선택된 1종 이상의 수지를 더 포함할 수 있다.
그리고, 전자기파 조사에 의한 도전성 패턴 형성용 조성물에서, 상기 전자기파 흡수성 무기 첨가제는 1종 이상의 도전성 금속 원소를 함유하며, 양이온과 음이온이 포함되어 이들이 서로 화학적으로 결합된 형태의 비도전성 금속 화합물을 포함할 수 있다. 이러한 비도전성 금속 화합물의 형태를 갖는 상기 전자기파 흡수성 무기 첨가제의 보다 구체적인 예로는, CuCr02, NiCr02, AgCr02. CuMo02, NiMo02, AgMo02, NiMn02, AgMn02, NiFe02, AgFe02, CuW02, AgW02, NiW02, AgSn02, NiSn02, CuSn02, CuA102, CuGa02, Culn02, CuT102, CuY02, CuSc02, CuLa02, CuLu02, NiA102, NiGa02, Niln02, NiT102, NiY02, NiSc02, NiLa02, NiLu02, AgA102, AgGa02, Agln02, AgT102, AgY02, AgSc02, AgLa02( AgLu02, CuSn2(P04)3, Cul, CuCl, CuBr, CuF, Agl, CuS04, Cu2P207, Cu3P2Os, Cu4P209, Cu5P2O10 및 Cu2P4012로 이투어진 군에서 선택된 1종 이상의 비도전성 금속 화합물을 들 수 있다.
그리고, 전자기파 조사에 의한 도전성 패턴 형성용 조성물의 일 실시예에 따르면, 상기 전자기파 흡수성 무기 첨가제는 상기 레이저 민감도 Ls가 약 1.6 < - log(Ls) < 5.6인 특성을 층족할 수 있고, 이와 동시에 상기 적외선 영역의 파장을 갖는 전자기파를 흡수하여 상기 도전성 금속 원소 또는 그 이온을 포함하는 금속핵을 발생시키는 성질을 나타낼 수 있다. 이 경우, 상기 전자기파 흡수성 무기 첨가제는 이러한 2 가지 특성을 함께 층족하는 단일 물질로서 사용될 수 있고, 이러한 무기 첨가제의 구체적인 예로는 위에서 나열된 비도전성 금속 화합물들을 들 수 있다.
다만, 상기 도전성 패턴 형성용 조성물의 다른 실시예에 따르면, 상기 전자기파 흡수성 무기 첨가제는 레이저 민감도 Ls가 약 1.6 < -log(Ls) < 5.6인 특성만을 층족할 수도 있으며, 이 경우, 필요에 따라, 상기 적외선 영역의 파장을 갖는 전자기파의 조사에 의해, 도전성 금속 원소 또는 그 이은을 포함하는 금속핵을 발생시키는 도전성 시드 형성제를 추가적으로 사용할 수도 있다. 이러한 다른 실시예에서, 상기 도전성 시드 형성제는 상기 고분자 수지의 표면에 도포 및 형성될 수 있고, 상기 전자기파 흡수성 무기 첨가제는 Fe3(P04)2, Zn3(P04)2, ZnFe2(P04)2, NbOx 및 MoOx로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 또, 이러한 다른 실시예에서, 상기 도전성 시드 형성제는 구리 (Cu), 백금 (Pt), 팔라듐 (Pd), 은 (Ag), 금 (Au), 니켈 (Ni), 텅스텐 (W), 티타늄 (Ti), 크롬 (Cr), 알루미늄 (A1), 아연 (Zn), 주석 (Sn), 납 (Pb), 마그네슘 (Mg), 망간 (Mn) 및 철 (Fe)로 이루어진 군에서 선택된 1종 이상의 도전성 금속, 이의 이온 또는 착이온을 포함할 수 있다.
한편, 상기 도전성 패턴 형성용 조성물의 또 다른 실시예에 따르면, 카본블랙, 송연, 유연, 램프블랙, 채널블랙, 파네스블랙, 아세틸렌블랙 및 이산화티타늄 (Ti02)으로 이루어진 군에서 선택된 1종 이상의 전자기파 흡수 보조제를 더 포함할 수도 있다. '이러한 전자기파 흡수 보조제는 상기 전자기파 흡수성 무기 첨가제가 나타내는 전자기파에 대한 흡수성을 보조할 수 있다. 이로서, 상대적으로 낮은 레이저 민감도, 예를 들어, 약 5.6 < -log(Ls) < 6.0의 특성을 나타내는 전자기파 흡수성 무기 첨가제가 사용되는 경우에도, 전자기파 조사 영역에서 보다 높은 흡수성 및 민감도가 발현되도록 할 수 있다. 이에 따라, 전자기파 조사 영역에서 양호한 도전성 패턴을 형성하기 위해 적용 가능한 전자기파 흡수성 무기 첨가제의 범위가 보다 확장될 수 있다.
한편, 상술한 도전성 패턴 형성용 조성물에서, 상기 전자기파 흡수성 무기 첨가제는 전체 조성물에 대해 약 0.05 내지 30 중량 %, 혹은 약 0.1 내지 20 중량 %로 포함될 수 있다.
또, 상기 도전성 패턴 형성용 조성물은, 약 lOOOnm 내지 1200nm, 대표적으로 약 1064nm의 파장을 갖는 레이저 전자기파가 약 1 내지 20W, 흑은 약 1.5 내지 20W의 평균 파워로 조사되고, 상기 레이저 전자기파의 조사 영역에 도금이 진행되어 도전성 패턴을 형성하는데 적용되는 조성물로 될 수 있다.
그리고, 상기 도전성 패턴 형성용 조성물에서, 상기 전자기파 흡수성 무기 첨가제는 약 0.05 내지 20/ , 혹은 약 0.1 내지 15 zm의 평균 입경을 갖는 입자 형태로서 포함될 수 있다.
또, 상기 전자기파 흡수성 무기 첨가제와 함께, 필요에 따라, 별도의 전자기파 흡수 보조제가 사용되는 경우, 이러한 전자기파 흡수 보조제는 전체 조성물에 대해 약 0.01 내지 20 중량 %로 포함될 수 있다. 이때, 카본블랙 등의 탄소계 흑색 안료는 약 0.01 내지 5 중량 흑은 약 0.1 내지 2 중량 %로 포함될 수 있고, 이산화티타늄은 약 0.1 내지 20 중량 %, 혹은 약 으5 내지 10 중량 %로 포함될 수 있다.
그리고, 상술한 도전성 패턴 형성용 조성물은, 상술한 각 성분 외에도, 열 안정게, UV 안정제, 난연제, 활제, 항산화제, 무기 층전제, 색 첨가제, 층격 보강제, 유동성 개질제 및 기능성 보강제로 이루어진 군에서 선택된 1종 이상의 첨가제를 전체 조성물에 대해 약 0.01 내지 30 중량 %로 더 포함할 수 있다.
한편, 본 발명은 또한, 상술한 도전성 패턴 형성용 조성물을 수지 제품으로 성형하거나, 다른 제품에 도포하여 수지충을 형성하는 단계; 상기 수지 제품 또는 수지층의 소정 영역에 적외선 영역의 파장을 갖는 전자기파를 조사하는 단계; 및 상기 전자기파의 조사 영역을 도금시켜 도전성 금속층을 형성하는 단계를 포함하는 전자기파의 직접 조사에 의한 도전성 패턴 형성 방법을 제공한다.
본 발명은 또한, 폴리카보네이트 수지를 포함한 고분자 수지 기재; 상기 고분자 수지 기재에 분산되어 있고, 적외선 영역의 파장을 갖는 전자기파를 흡수하며, 상기 수학식 1로 정의되는 레이저 민감도 Ls가 1.6 < -log(Ls) < 6.0인 특성을 충족하는 전자기파 흡수성 무기 첨가제; 및 상기 고분자 수지 기재의 소정 영역 상에 형성된 도전성 금속충을 포함하는 도전성 패턴을 갖는 수지 구조체를 제공한다.
이러한 수지 구조체에서, 상기 도전성 금속층이 형성된 소정 영역은 상기 고분자 수지 기재에 적외선 영역의 파장을 갖는 전자기파가 조사된 영역에 대웅할 수 있다.
【발명의 효과】
본 발명에 따르면, 전자기파 흡수성을 나타내는 특수한 무기 첨가제가 상대적으로 낮은 함량으로 사용되고, 상업적, 일반적으로 적용되는 온화한 조사 조건 (예를 들어, 낮은 평균 파워)으로 적외선 영역의 전자기파가 조사되더라도, 전자기파 조사 영역의 폴리카보네이트계 수지 기재 상에 우수한 접착력을 나타내는 미세 도전성 패턴을 양호하게 형성할 수 있게 하는 전자기파 조사에 의한 도전성 패턴 형성용 조성물과, 이를 사용한 도전성 패턴 형성 방법 등이 제공된다.
이를 적용함에 따라, 특수한 무기 첨가제가 상대적으로 낮은 함량으로 사용되고, 전자기파가 낮은 파워 등의 은화한 조건 하에 조사되더라도 폴리카보네이트계 수지 기재 상에 양호한 도전성 패턴을 형성할 수 있게 된다. 그 결과, 전자기파 조사나 특수한 무기 첨가제의 사용 등에 따른 폴리카보네이트계 수지 기재의 우수한 물성이 저하되는 것을 최소화할 수 있고, 전체적인 공정 및 제품의 경쎄성 역시 크게 향상시킬 수 있다.
따라서, 이러한 도전성 패턴 형성용 조성물이나 도전성 패턴 형성 방법 등을 이용해, 휴대폰 케이스 등 각종 수지 제품 상의 안테나용 도전성 패턴, RFID 태그, 각종 센서, MEMS 구조체 등을 매우 효과적으로 형성할 수 있게 된다.
【도면의 간단한 설명】
도 1은 발명의 다른 구현예에 따른 전자기파의 직접 조사에 의한 도전성 패턴의 형성 방법의 일례를 공정 순서대로 개략적으로 나타낸 모식도이다.
도 2는 실시예 1 내지 17의 도전성 패턴 형성용 조성물을 사용하여 폴리카보네이트 수지 기재에 도전성 패턴을 형성하였을 때, 각 조성물의 -log(Ls) 값 (X축)과, 양호한 도전성 패턴 형성을 위해 필요한 레이저 전자기파와 최소 파워 조건 (Y축)의 관계를 나타낸 그래프이다.
도 3은 실시예 18 내지 34(실시예 1 내지 17과는 레이저 조사 조건 상이함)의 도전성 패턴 형성용 조성물을 사용하여 폴리카보네이트 수지 기재에 도전성 패턴을 형성하였을 때, 각 조성물의 -log(Ls) 값 (X축)과, 양호한 도전성 패턴 형성을 위해 필요한 레이저 전자기파의 최소 파워 조건 (Y축)의 관계를 나타낸 그래프이다.
도 4는 실시예 35 내지 51(실시예 1 내지 17에 카본블랙 추가 사용함)의 도전성 패턴 형성용 조성물을 사용하여 폴리카보네이트 수지 기재에 도전성 패턴을 형성하였을 때, 각 조성물의 -log(Ls) 값 (X축)과, 양호한 도전성 패턴 형성을 위해 필요한 레이저 전자기파의 최소 파워 조건 (Y축)의 관계를 나타낸 그래프이다.
도 5는 실시예 17과, 이산화티타늄이 추가 사용된 실시예 52의 도전성 패턴 형성용 조성물을 각각 사용하여 폴리카보네이트 수지 기재에 도전성 패턴을 형성하였을 때, 양호한 도전성 패턴의 형성 여부를 평가하고, 이를 위해 필요한 레이저 전자기파의 최소 파워 조건을 결정하기 위한 시험올 진행하는 모습을 나타내는 사진이다.
【발명을 실시하기 위한 구체적인 내용】
이하 발명의 구체적인 구현예에 따른 도전성 패턴 형성용 조성물, 이를 사용한 도전성 패턴 형성 방법과, 도전성 패턴을 갖는 수지 구조체에 대해 설명하기로 한다.
발명의 일 구현예에 따르면, 폴리카보네이트 수지를 포함한 고분자 수지; 및 적외선 영역의 파장을 갖는 전자기파를 흡수하고, 하기 수학식 1로 정의되는 레이저 민감도 Ls가 1.6 < -log(Ls) < 6.0인 특성을 충족하는 전자기파 흡수성 무기 첨가제를 포함하는 전자기파 조사에 의한 도전성 패턴 형성용 조성물이 제공된다: [수학식 1]
레이저 민감도 Ls = Re-L4x wt x Iaa
상기 수학식 1에서,
Re는 전자기파 흡수성 무기 첨가제의 BET 비표면적 A(m2/g)와, 밀도 B(g/cm3)로부터, Re = 300/[A(m2/g) x B(g/cm3)]의 식에 의해 산출된 상기 전자기파 흡수성 무기 첨가제의 유효 반경을 나타내고,
^는 상기 도전성 패턴 형성용 조성물의 전체 함량 (중량)을 1로 할 때, 상기 전자기파 흡수성 무기 첨가제의 함량 (중량) 전체 조성물에 대한 중량 분율로 나타낸 값이고,
Iaa는 상기 전자기파 흡수성 무기 첨가제에 대해, UV-vis-IR 스펙트럼을 사용하여 측정된 소정의 적외선 영역의 파장을 갖는 전자기파에 대한 흡광도 IR (%)로부터, Iaa = (1 ᅳ IR)2 I 2 1의 식에 의해 산출된 상기 전자기파 흡수성 무기 첨가제의 유효 광선 흡수율을 나타낸다.
먼저, 발명의 일 구현예에 따른 도전성 패턴 형성용 조성물을 사용해 폴리카보네이트 수지를 포함한 고분자 수지 제품 또는 수지층 등의 수지 기재 상에 도전성 패턴을 형성하는 방법은 다음과 같다. 상기 도전성 패턴 형성용 조성물을 압출 및 /또는 사출하여 이를 수지 제품 또는 수지층 등의 형태로 성형한 후, 도전성 패턴을 형성할 영역에 적외선 영역의 파장을 갖는 레이저 등 전자기파를 조사하면, 해당 영역의 고분자 수지 기재 내에 균일하게 분산되어 있는 전자기파 흡수성 무기 첨가제가 이러한 전자기파를 일정 수준 이상으로 흡수하게 된다. 이러한 전자기파 흡수성 무기 첨가제가 나타내는 전자기파 흡수성 및 /또는 민감성으로 인해, 해당 전자기파 조사 영역의 고분자 수지 기재 표면은 일정 수준 이상의 거칠기를 갖게 될 수 있다. 이와 함께, 상기 전자기파 흡수성 무기 첨가제는 상기 적외선 영역의 파장을 갖는 전자기파를 흡수하여, 예를 들어, 상기 무기 첨가제에 포함되는 도전성 금속 원소 또는 그 이은 등을 포함하는 금속핵을 상기 전자기파 조사 영역에서 발생시킬 수 있다.
그 이후에, 고분자 수지 기재 표면을 무전해 도금 등의 방법으로 도금하게 되면, 상기 전자기파 조사 영역, 즉, 일정 수준 이상의 표면 거칠기를 가지며 상기 금속핵이 발생된 부분에서는, 상기 금속핵이 도금시의 seed로 작용하여 도금이 균일하고 양호하게 1행될 수 있고, 이러한 도금에 의해 형성된 도전성 금속층이 고분자 수지 기재 표면에 대해 상대적으로 높은 접착력으로 부착되어 도전성 패턴을 형성할 수 있다. 이에 비해, 나머지 부분에서는 상기 금속핵의 미형성으로 도금 자체가 제대로 진행되지 않고 (즉, 도전성 금속층 자체가 제대로 형성되지 않고), 일부 도금이 진행되더라도 도전성 금속층이 매끈한 고분자 수지 기재 표면에 대해 접착력을 나타낼 수 없다. 따라서, 전자기파 미조사 영역에서는 도전성 금속층 자체가 형성되지 않거나, 일부 도금이 진행되더라도 이러한 도금에 의한 도전성 금속층을 매우 쉽게 제거할 수 있다. 이에 따라, 상기 전자기파 조사 영역에만 선택적으로 도전성 금속층이 잔류하여 고분자 수지 기재 상에 원하는 형태의 미세 도전성 패턴을 형성할 수 있게 된다.
이때, 상기 무기 첨가제의 전자기파 흡수성 및 /또는 민감도에 부합하는 적절한 수준 (평균 파워 등)의 전자기파가 조사되면, 상기 금속핵이 충분히 형성되면서 이를 seed로 하여 양호하고도 균일한 도금이 이루어질 수 있고, 일정 수준 이상의 표면 거칠기에 의해, 상기 도금으로 형성된 도전성 금속층이 우수한 접착력을 나타내어, 양호한 도전성 패턴이 형성될 수 있다. 이에 비해, 상기 무기 첨가제의 전자기파 흡수성 및 /또는 민감도를 고려하여 층분치 못한 수준 (평균 파워 등)의 전자기파가 조사될 경우에는, 상기 도금시의 seed 역할을 하는 금속핵이 충분히 형성되지 못하여 균일한 도금이 제대로 이루어지기 어렵고, 더 나아가 상기 표면 거칠기 및 이에 따른 도전성 금속층의 접착력이 열악해 짐에 따라, 전자기파 조사 영역에 양호한 도전성 패턴이 형성되기 어렵게 될 수 있다. 따라서, 상술한 방법으로 고분자 수지 기재 상에 원하는 형태의 미세 도전성 패턴을 균일한 도금에 의해 보다 양호하게 (고분자 수지 기재 표면에 대해 보다 높은 접착력을 갖도록) 형성하기 위해서는, 전자기파 조사 영역에서, 상기 전자기파 흡수성 무기 첨가제가 보다 높은 전자기파 흡수성 및 /또는 민감도를 나타내도록 하여, 상기 seed 역할을 하는 금속핵 등을 충분히 발생시키고, 고분자 수지 기재 표면이 일정 수준 이상의 표면 거칠기를 갖도록 하는 것이 매우 중요함이 확인되었다.
그러나, 이러한 높은 전자기파 흡수성 및 /또는 민감도를 나타내도록 하기 위해, 단순히 무기 첨가제의 함량을 증가시키거나, 전자기파 조사 파워를 높이는 등 조사 조건을 가흑하게 하는 경우, 고분자 수지 기재, 특히, 기본적으로 우수한 물성을 갖는 것으로 알려진 폴리카보네이트계 수지 기재의 기계적 물성 등 제반 물성을 크게 저하시킬 수 있다. 이에 따라, 무기 첨가제의 함량을 크게 증가시키지 않고, 또 전자기파 조사 조건을 상업적, 일반적으로 적용되는 온화한 조건, 예를 들어, 약 lOOOnm 내지 1200nm의 적외선 영역의 파장을 갖는 레이저 전자기파를 약 1 내지 20W, 예를 들어, 약 1.5 내지 15W 또는 약 1.5 내지 20W의 평균 파워의 온화한 조건 하에 조사하더라도, 전자기파 조사 영역에서 고분자 수지 기재 표면에 대해 균일한 도금의 진행을 가능케 하고 우수한 접착력을 나타내는 양호한 도전성 패턴을 형성할 수 있는 조성물 및 관련 기술의 개발이 계속적으로 요청되었다.
본 발명자들은 이러한 기술적 요청을 해결하기 위해 계속적으로 연구를 진행하였으며, 그 결과, 상기 전자기파 흡수성 무기 첨가제의 종류, 함량, 형상 및 크기 등을 제어하여, 이러한 무기 첨가제가 나타내는 상기 수학식 1로 정의되는 레이저 민감도 Ls의 물성 값을 조절할 수 있음을 확인하였다. 더 나아가, 본 발명자들은 이러한 레이저 민감도 Ls가 대략 1.6 < -log(Ls) < 6.0, 보다 적절하게는 대략 1.6 < -log(Ls) < 5.6, 혹은 2.0 < -log(Ls) < 5.0인 특성을 층족하도록 전자기파 흡수성 무기 첨가제의 종류, 함량, 형상 및 크기 둥을 제어하여 사용함에 따라, 폴리카보네이트 수지 기재에 대해 상술한 기술적 요청을 해결할 수 있음을 실험적으로 확인하고 본 발명을 완성하였다.
즉, 후술하는 실시예에서도 뒷받침되는 바와 같이, 대략 1.6 < -log(Ls) < 6.0의 특성을 충족하는 전자기파 흡수성 무기 첨가제를 적용할 경우, 이러한 무기 첨가제의 함량을 크게 증가시키지 않더라도, 상업적, 일반적으로 적용되는 온화한 전자기파 조사 조건 하에서, 전자기파 조사 영역의 수지 기재에 일정 수준 이상의 표면 거칠기를 형성시킬 수 있고, 도금시 seed 역할을 하는 금속핵을 충분히 발생시킬 수 있음이 확인되었다. 그 결과, 상기 무기 첨가제의 첨가나 전자기파 조사에 의한 폴리카보네이트계 수지 기재의 물성 저하를 최소화하면서도, 이러한 수지 기재 표면에 우수한 접착력을 나타내는 양호한 도전성 패턴을 매우 용이하게 형성할 수 있음이 확인되었다.
이에 비해, 상기 -log(Ls)가 약 6.0 이상으로 되어 지나치게 커지는 경우, 상기 무기 첨가제를 포함한 수지 기재가 레이저 등 전자기파에 대해 낮은 민감도를 나타냄에 따라, 상기 우수한 접착력을 달성할 수 있는 표면 거칠기를 형성하고 금속핵을 충분히 형성하기 위해서는, 약 20W를 넘는 매우 강한 파워 조건으로 전자기파가 조사될 필요가 있다. 이로 인해, 폴리카보네이트계 수지 기재의 물성 저하가 크게 나타날 수 있다. 더구나, 이러한 가흑한 조건의 전자기파 조사는 상업적, 일반적 적용 범위를 상회하는 것이므로, 전체적인 공정 비용 역시 크게 상승할 수 있다.
반대로, 현재까지 밝혀진 적외선 영역의 전자기파에 대한 흡수성 무기 첨가제를 고려할 때, 상기 -log(Ls)가 약 1.6 이하로 되는 특성은 실질적으로 충족하기 어렵거나, 이를 충족시키기 위해서는, 무기 첨가제의 함량이 지나치게 증가하게 될 수 있다. 이 경우 역시 폴리카보네이트계 수지 기재의 물성 저하가 크게 나타날 수 있어 적절하지 않다. 더구나, 상기 수지 기재의 변성을 일으키기 위해 필요한 최소한의 레이저 등 전자기파 파워 (threshold laser power; 문턱 레이저 파워)가 약 1.0W로 되기 때문에, 설령 상기 -log(Ls)가 약 1.6 이하로 되는 종류 및 함량으로 무기 첨가제를 사용하더라도, 전자기파 조사 조건을 약 LOW 에 못미치는 평균 파워로 조절하기는 어렵게 된다. 그 결과, 상기 -log(Ls)가 약 1.6 이하로 되는 무기 첨가제를 사용하는 것은 오히려 전체적인 공정의 비경제성 또는 무기 첨가제의 함량 증가에 따론 수지 기재의 물성 저하를 초래할 수 있을 뿐 추가적인 효과는 기대하기 어려울 수 있다.
한편, 이하에서는 상기 레이저 민감도 Ls가 갖는 기술적 의미, 측정 및 산출 방법과, 이를 달성하기 위한 구체적인 구현예들에 대해 설명하기로 한다. 먼저, 상기 레이저 민감도 Ls를 정의하는 수학식 1에서, Re는 전자기파 흡수성 무기 첨가제의 BET 비표면적 A(m2/g)와, 밀도 B(g/cm3)로부터, Re = 300/[A(m2/g) x B(g/cm3)]의 식에 의해 산출된 상기 전자기파 흡수성 무기 첨가제의 유효 반경을 나타낸다. 본 발명자들은 전자기파가 조사되었을 때, 고분자 수지 기재 내의 전자기파 흡수성 무기 첨가제들은 전자기파에 대한 흡수성과 함께, 그 입자의 표면 형상 및 크기 등에 의한 산란성을 나타냄을 확인하였다. 이러한 흡수성 및 산란성을 함께 고려하기 위해, 상기 BET 비표면적 A(m2/g)의 측정 값을 4 K Re2(m2)/중량 (g)으로 가정하고, 상기 밀도 B(g/cm3)의 측정 값을 3/4 [(중량 (g))/( Re3(cm3))]으로 가정하여, 이로부터 상기 유효 반경을 산출하였다. 또한, 이러한 유효 반경을 적절히 단위 환산하기 위한 상수를 함께 고려하여, Re = 300/[A(m2/g) x B(g/cm3)]의 식에 의해 산출되는 전자기파 흡수성 무기 첨가제의 유효 반경 Re를 도출하였다. 이때, 상기 BET 비표면적 A(m2/g)는 통상적인 무기 입자의 비표면적 측정 방법에 따라 측정할 수 있고, 상기 밀도 B(g/cm3)는 상기 전자기파 흡수성 무기 첨가제를 이루는 물질 종류에 따라 정해질 수 있다.
이러한 방법으로 유효 반경 Re를 도출한 후, 관련 실험을 계속한 결과, 상기 전자기파 흡수성 무기 첨가제의 전자기파 흡수성 및 산란성을 함께 고려한 전자기파 민감도는 Re"1 4에 비례함을 확인하였다.
이와 함께, 상기 수학식 1의 wt는'전자기파 흡수성 무기 첨가제의 함량을 고려하기 위한 인자로서, 상기 도전성 패턴 형성용 조성물의 전체 함량 (중량)을 1로 할 때, 상기 전자기파 흡수성 무기 첨가제의 함량 (중량)을 전체 조성물에 대한 중량 분율로 나타낸 값으로 될 수 있다 (예를 들어, 전체 조성물 증 상기 무기 첨가제가 3 중량 %로 될 경우, wt는 조성물 전체 함량 1에 대한 중량 분율인 0.03으로 됨 .).
또한, 상기 Iaa는 상기 전자기파 흡수성 무기 첨가제의 종류에 따라, 특정한 무기 첨가제가 나타내는 전자기파 흡수성에 대한 상수로서, 상기 무기 첨가제에 대해, UV-vis-IR 스꿰트럼을 사용하여 측정된 소정의 적외선 영역의 파장 (예를 들어, 약 lOOOnm 내지 1200nm 의 파장, 대표적으로 약 1064nm의 파장)을 갖는 전자기파에 대한 흡광도 ^ ( 로부터,^ ^^ ^ ^의 식에 의해 산출된 상기 전자기파 흡수성 무기 첨가제의 유효 광선 흡수율을 나타낼 수 있다. 본 발명자들은 상술한 바와 같이 측정 및 산출된 Re—14, wt 및 Iaa로부터, Ls의 물성 값을 산출하였고, 이미 상술한 바와 같이, 이러한 물성 값이 약 1.6 < - log(Ls) < 6.0의 관계를 층족할 수 있도록 입자 형상, 크기, 함량 및 종류 등이 조절된 전자기파 흡수성 무기 첨가제를 폴리카보네이트계 수지 기재에 적용할 경우, 상대적으로 낮은 함량의 무기 첨가제를 사용하고, 온화한 조건 하에 전자기파를 조사하더라도, 전자기파 조사 영역에서 매우 우수한 전자기파 민감도가 발현되어, 양호한 도전성 패턴이 쉽게 형성될 수 있음을 확인하였다. 다음으로, 상술한 상기 레이저 민감도 Ls에 관하여, 약 1.6 < -log(Ls) < 6.0의 관계를 층족하기 위한 일 구현예에 따른 조성물의 구체적인 실시예를 설명하기로 한다.
먼저, 상술한 약 1.6 < -log(Ls) < 6.0의 관계는 다양한 고분자 수지 기재 중에서도, 폴리카보네이트계 수지 기재의 물성을 고려하여 결정된 것으로서, 상기 일 구현예의 도전성 패턴 형성용 조성물에서, 상기 고분자 수지는 폴리카보네이트 수지를 포함한다. 다만, 일 구현예의 조성물을 사용하여 얻고자 하는 수지 제품 또는 수지층 등 고분자 수지 기재의 종류를 고려하여, 상기 폴리카보네이트 수지 외에 다른 다양한 열가소성 수지 또는 열경화성 수지 등의 추가적 고분자 수지를 더 포함할 수 있음은 물론이다. 이러한 추가적 고분자 수지의 구체적인 예로는, ABS 수지, 폴리알킬렌테레프탈레이트 수지, 폴리프로필렌 수지 또는 폴리프탈아미드 수지 등을 들 수 있고, 이들 중에 선택된 2종 이상의 수지 또는 기타 폴리카보네이트 수지와 함께 사용 가능한 것으로 알려진 다양한 수지를 더 포함시킬 수 있다.
그리고, 상기 전자기파 흡수성 무기 첨가제는, 예를 들어, Cu, Ag 또는 Ni 등의 1종 이상의 도전성 금속 원소를 함유하며, 양이온과 음이온이 포함되어 이들이 서로 화학적으로 이온 결합 및 선택적으로 공유 결합된 형태의 비도전성 금속 화합물을 포"함할 수 있다. 이러한 형태를 갖는 비도전성 금속 화합물에 대해 레이저 등 전자기파를 조사하면, 상기 비도전성 금속 화합물로부터 상기 도전성 금속 원소, 또는 그 (착)이온을 포함하는 금속핵이 충분히 환원 /석출 및 형성될 수 있다. 이러한 금속핵은 전자기파가 조사된 소정 영역에서 선택적으로 노출되어 고분자 수지 기재 표면의 접착활성 표면을 형성할 수 있다. 상기 금속핵 및 접착활성 표면은 이미 상술한 약 1.6 < -log(Ls) < 6.0의 관계를 충족하여 전자기파 민감도가 향상될 경우, 더욱 잘 형성될 수 있다. 또, 이러한 금속핵 및 접착활성 표면에 의해, 이를 seed로 하여 균일한 도금이 잘 진행될 수 있고, 전자기파 조사 영역에서 고분자 수지 기재 표면에 대해 더욱 우수한 접착력을 갖는 양호한 도전성 패턴이 형성될 수 있다.
상술한 비도전성 금속 화합물의 형태를 갖는 전자기파 흡수성 무기 첨가제의 보다 구체적인 예로는, CuCr02, NiCr02, AgCr02 CuMo02, NiMo02, .AgMo02, NiMn02, AgMn02, NiFe02, AgFe02, CuW02, AgW02, NiW02, AgSn02, NiSn02, CuSn02, CuA102, CuGa02, Culn02, CuT102, CuY02, CuSc02, CuLa02, CuLu02, NiA102, NiGa02, Niln02, NiT102, NiY02, NiSc02, NiLa02, NiLu02, AgA102, AgGa02, Agln02, AgT102, AgY02, AgSc02, AgLa02, AgLu02, CuSn2(P04)3, Cul, CuCl, CuBr, CuF, Agl, CuS04, Cu2P207, Cu3P2Os, Cu4P209, Cu5P2O10 및 12!> 4012로 이루어진 군에서 선택된 1종 이상의 비도전성 금속 화합물을 들 수 있다.
위에서 예시된 비도전성 금속 화합물들은 적외선 영역의 파장, 예를 들어, 약 lOOOnm 내지 1200nm 의 파장, 대표적으로 약 1064nm의 파장을 갖는 전자기파에 대한 보다 우수한 흡수성을 나타냄에 따라, 상술한 약 1.6 < -log(Ls) < 6.0의 특성의 달성을 가능케 할 수 있다. 더 나아가, 상기 비도전성 금속 화합물들은 이들 중에 포함된 도전성 금속 (예를 들어, Cu 등) 또는 그 이온의 환원 /석출 및 이에 따른 금속핵과, 접착활성 표면의 형성을 보다 용이하게 할 수 있다. 따라서, 이러한 비도전성 금속 화합물들을 전자기파 흡수성 무기 첨가제로 사용함에 따라, 전자기파 조사 영역에서 고분자 수지 기재에 대해 뛰어난 접착력을 갖는 보다 양호한 도전성 패턴을 용이하게 형성할 수 있게 된다.
상술한 일 구현예의 전자기파 조사에 의한 도전성 패턴 형성용 조성물의 일 실시예에 따르면, 상기 전자기파 흡수성 무기 첨가제는 상기 레이저 민감도 Ls가 약 1.6 < -log(Ls) < 5.6인 특성을 층족할 수 있고, 이와 동시에 상술한 금속핵 및 접착활성 표면을 충분히 형성시키는 성질을 나타낼 수 있다. 이 경우, 상기 전자기파 흡수성 무기 첨가제는 이러한 2 가지 특성을 함께 충족하는 단일 물질로서 사용될 수 있는데, 이러한 단일 물질의 예로는 상술한 예들로서 제시된 비도전성 금속 화합물들을 들 수 있고, 보다 적절하게는 Cu 함유 비도전성 금속 화합물들을 들 수 있다.
다만, 상기 도전성 패턴 형성용 조성물의 다른 실시예에 따르면, 상기 전자기파 흡수성 무기 첨가제는 레이저 민감도 Ls가 약 1.6 < -log(Ls) < 5.6인 특성만을 층족할 수도 있으며, 이 경우, 필요에 따라, 상기 적외선 영역의 파장을 갖는 전자기파의 조사에 의해, 도전성 금속 원소 또는 그 이온을 포함하는 금속핵을 발생시키는 도전성 시드 형성제를 상기 일 구현예의 조성물에 추가적으로 포함시킬 수도 있다. 이러한 다른 실시예에서, 전자기파 흡수성 무기 첨가제의 예로는, Fe3(P04)2, Zn3(P04)2, ZnFe2(P04)2, NbOx 및 MoOx로 이루어진 군에서 선택된 1종 이상을 들 수 있다.
이러한 전자기파 흡수성 무기 첨가제를 사용하거나, 혹은 상술한 예들로서 제시된 비도전성 금속 화합물, 예를 들어, Ag 또는 Ni 등을 포함하는 비도전성 금속 화합물들을 사용하는 경우에도 그 사용 함량 또는 전자기파 조사 조건 등에 따라 금속핵이 층분히 발생하지 않을 수 있는데, 이 경우 금속핵 및 이를 포함한 접착활성 표면을 층분히 형성시켜 보다 양호한 도전성 패턴을 형성할 수 있도록 하기 위해, 상기 도전성 시드 형성제를 추가적으로 사용할 수 있다. 이때, 상기 도전성 시드 형성제는 상기 전자기파 흡수성 무기 첨가제와 함께 상기 고분자 수지 내에 포함될 수도 있지만, 상기 고분자 수지 기재 표면에 용액 또는 분산액 등의 형태로 도포 및 형성될 수도 있다. 이로서, 전자기파가 조사된 영역의 고분자 수지 기재 상에 도전성 시드가 형성되어, 이러한 도전성 시드가 도금시 성장할 수 있다. 그 결과, 양호하고도 균일한 도금을 촉진하여 양호한 도전성 금속층의 바람직한 형성을 가능케 하는 역할을 할 수 있다.
이러한 도전성 시드 형성제는 구리 (Cu), 백금 (Pt), 팔라듐 (Pd), 은 (Ag), 금 (Au), 니켈 (Ni), 텅스텐 (W), 티타늄 (Ti), 크롬 (Cr), 알루미늄 (A1), 아연 (Zn), 주석 (Sn), 납 (Pb), 마그네슴 (Mg), 망간 (Mn) 및 철 (Fe)로 이루어진 군에서 선택된 1종 이상의 도전성 금속, 이의 이온 또는 착이온을 포함할 수 있다. 보다 구체적으로, 상기 도전성 시드 형성제는 이러한 도전성 금속, 이의 이온 또는 착이은의 그 자체로 될 수 있을 뿐 아니라, 이들을 함유한 금속 나노 입자, 금속 화합물 또는 금속 착화합물 등의 임의의 형태로 될 수 있다. 또한, 상기 도전성 시드 형성제는 상기 도전성 금속, 이의 이온 또는 착이온이나, 이들을 함유한 금속 나노 입자, 금속 화합물 또는 금속 착화합물 등을 포함하는 용액 또는 분산액의 형태로 제공 및 사용될 수 있다.
한편, 상기 일 구현예에 따른 도전성 패턴 형성용 조성물의 또 다른 실시예에 따르면, 상술한 각 구성 성분 외에, 카본블랙, 송연, 유연, 램프블랙, 채널블랙, 파네스블랙 및 아세틸렌블랙으로 이루어진 군에서 선택된 1종 이상의 탄소계 혹색 안료; 또는 백색 안료의 일종인 이산화티타늄 (Ti02) 등의 전자기파 흡수 보조제를 더 포함할 수도 있다. 이러한 전자기파 흡수 보조제는 상술한 전자기파 흡수성 무기 첨가제가 나타내는 전자기파에 대한 흡수성 및 /또는 민감성을 보조하여 더욱 향상시킬 수 있다.
따라서, 이러한 전자기파 흡수 보조제가 추가적으로 사용될 경우, 상술한 약 1.6 < -log(Ls) < 6.0의 범위 중, 상대적으로 낮은 레이저 민감도, 예를 들어, 약 5.6 < -log(Ls) < 6.0의 특성을 나타내는 전자기파 흡수성 무기 첨가제가사용되는 경우에도, 전자기파 조사 영역에서 보다 높은 흡수성 및 민감도가 발현되 H록 할 수 있다. 이에 따라, 전자기파 조사 영역에서 양호한 도전성 패턴을 형성하기 위해 적용 가능한 전자기파 흡수성 무기 첨가제의 범위가 보다 확장될 수 있다. 한편, 상술한 일 구현예의 도전성 패턴 형성용 조성물에서, 상기 전자기파 흡수성 무기 첨가제는 전체 조성물에 대해 약 0.05 내지 30 중량 %, 혹은 약 0.1 내지 20 중량 %로 포함될 수 있다. 이러한 함량 범위로 인해, 상기 무기 첨가제의 추가에 따른, 폴리카보네이트계 수지 기재의 물성 저하를 줄이면서도, 상술한 특정 무기 첨가제를 이러한 함량으로 사용하여 약 1.6 < -log(Ls) < 6.0의 특성의 달성이 보다 용이하게 될 수 있다.
그리고, 상기 전자기파 흡수성 무기 첨가제와 함께, 필요에 따라, 별도의 전자기파 흡수 보조제가 사용되는 경우, 이러한 전자기파 흡수 보조제는 전체 조성물에 대해 약 0.01 내지 20 중량 %로 포함될 수 있다. 이때, 카본블랙 등의 탄소계 혹색 안료는 약 0.01 내지 5 중량 %, 흑은 약 0.1 내지 2 중량 <¾로 포함될 수 있고, 이산화티타늄은 약 αΐ 내지 20 중량 %, 흑은 약 0.5 내지 10 중량 %로 포함될 수 있다.
또, 상기 전자기파 흡수성 무기 첨가제는 대량 구형의 입자 형태를 가질 수 있고, 약 0.05 내지 20 , 혹은 약 0.1 내지 15 의 평균 입경을 갖는 입자 형태로서 포함될 수 있다. 이 또한, 상기 수학식 1에서, 유효 반경 Re 를 적절히 조절하여, 약 1.6 < -log(Ls) < 6.0의 특성의 달성을 보다 용이하게 하는 하나의 인자로 될 수 있다. 상기 평균 입경 및 입자 형태를 갖는 전자기파 흡수성 무기 첨가제는 이를 이루는 물질의 종류 및 밀도 등에 따라 다르기는 하지만, 예를 들어, 약 0.1 내지 1500의 유효 반경 Re 를 가질 수 있다.
그리고, 상기 도전성 패턴 형성용 조성물은, 약 lOOOnm 내지 1200nm, 대표적으로 약 1064nm의 파장을 갖는 레이저 전자기파가 약 1 내지 20W, 혹은 약 1.5 내지 20W의 평균 파워로 조사되고, 상기 레이저 전자기파의 조사 영역에 도금이 진행되어 도전성 패턴을 형성하는데 적용되는 조성물로 될 수 있다. 이러한 전자기파 조사 조건은 상업적, 일반적으로 널리 적용되는 온화한 조사 조건으로서, 일 구현예의 조성물을 적용할 경우, 이러한 조사 조건 하에서도, 전자기파 조사 영역에서, 우수한 전자기파 민감도를 달성하고, 고분자 수지 기재 상에 일정 수준 이상의 표면 거칠기 및 금속핵을 층분히 형성하여, 고분자 수지 기재 표면에 대해 우수한 접착력을 나타내는 양호한 도전성 패턴을 용이하게 형성할 수 있게 된다. 따라서, 가혹한 조건 하의 전자기파 조사에 의한 고분자 수지 기재의 제반 물성 저하를 최소화할 수 있다.
한편, 상술한 일 구현예의 도전성 패턴 형성용 조성물은, 상술한 각 성분 외에도, 열 안정제, UV 안정제, 난연제, 활제, 항산화제, 무기 충전제, 색 첨가제, 충격 보강제, 유동성 개질제 및 기능성 보강제로 이루어진 군에서 선택된 1종 이상의 첨가제를 전체 조성물에 대해 약 0.01 내지 30 중량 «¾로 더 포함할 수 있다. 예를 들어, 유리 섬유와 같은 무기 층전제 등을 전체 조성물에 대해 약 0.5 내지 30 중량 %로 포함할 수 있고, 기타 충격 보강제, 난연제 및 유동성 개질제 등의 첨가제를 전체 조성물에 대해 으 01 내지 5 중량 %로 포함할 수 있다.
한편, 발명의 다른 구현예에 따르면, 상술한 일 구현예의 도전성 패턴 형성용 조성물을 사용하여 전자기파의 직접 조사에 의해 도전성 패턴을 형성하는 방법이 제공된다. 이러한 도전성 패턴 형성 방법은 상술한 일 구현예의 도전성 패턴 형성용 조성물을 수지 제품으로 성형하거나, 다른 제품에 도포하여 수지층을 형성하는 단계; 상기 수지 제품 또는 수지층의 소정 영역에 적외선 영역의 파장을 갖는 전자기파를 조사하는 단계; 및 상기 전자기파의 조사 영역을 도금시켜 도전성 금속층을 형성하는 단계를 포함할 수 있다.
이하, 첨부한 도면을 참고로, 상기 다른 구현예에 따른 도전성 패턴의 형성 방법을 각 단계별로 설명하기로 한다. 참고로, 도 1에서는 상기 도전성 패턴 형성 방법의 일 예를 공정 단계별로 간략화하여 나타내고 있다.
상기 도전성 패턴 형성 방법에서는, 먼저, 상술한 도전성 패턴 형성용 조성물을 수지 제품으로 성형하거나, 다른 제품에 도포하여 수지층을 형성할 수 있다. 이러한 수지 제품의 성형 또는 수지층의 형성에 있어서는, 통상적인 고분자 수지 조성물을 사용한 제품 성형 방법 또는 수지층 형성 방법이 별다른 제한 없이 적용될 수 있다. 예를 들어, 상기 조성물을 사용하여 수지 제품을 성형함에 있어서는, 상기 도전성 패턴 형성용 조성물을 압출 및 넁각한 후 펠릿 또는 입자 형태로 형성하고, 이를 원하는 형태로 사출 성형하여 다양한 고분자 수지 제품을 제조할 수 있다.
이렇게 형성된 고분자 수지 제품 또는 수지층은 상기 고분자 수지로부터 형성된 수지 기재 상에, 상술한 전자기파 흡수성 무기 첨가제가 균일하게 분산된 형태를 가질 수 있다. 특히, 상술한 전자기파 흡수성 무기 첨가제는 상기 수지 기재 상의 전 영역에 걸쳐 균일하게 분산되어 비도전성을 갖는 상태로 유지될 수 있다.
이러한 고분자 수지 제품 또는 수지층을 형성한 후에는, 도 1의 첫 번째 도면에 도시된 바와 같이, 도전성 패턴을 형성하고자 하는 상기 수지 제품 또는 수지층의 소정 영역에, 적외선 영역의 파장을 갖는 레이저 등 전자기파를 조사할 수 있다. 이러한 전자기파를 조사하면, 이러한 조사 영역에서 고분자 수지 기재의 표면에 일정 수준 이상의 표면 거칠기가 형성될 수 있으며, 상기 전자기파 흡수성 무기 첨가제 등으로부터 도전성 금속 원소 또는 그 이온이 환원 /석출되어 이를 포함한 금속핵을 발생시킬 수 있다 (도 1의 두 번째 도면 참조).
특히, 이러한 금속핵 및 표면 거칠기 등은 전자기파가 조사된 일정 영역에만 형성됨에 따라, 후술하는 도금 단계를 진행하면, 상기 전자기파 조사 영역, 즉, 상기 금속핵이 발생되고, 일정 수준 이상의 표면 거칠기를 갖게 된 부분에서는, 상기 금속핵을 seed로 하는 균일한 도금이 잘 진행되고, 도금에 의해 형성된 도전성 금속층이 고분자 수지 기재 표면에 대해 상대적으로 높은 접착력으로 부착되어 도전성 패턴을 형성할 수 있다. 이에 비해, 나머지 부분에서는 상기 금속핵의 미형성으로 도금 자체가 제대로 진행되지 않고 (즉, 도전성 금속층 자체가 제대로 형성되지 않고), 일부 도금이 진행되더라도, 도전성 금속층이 매끈한 고분자 수지 기재 표면에 대해 접착력을 나타낼 수 없다. 따라서, 전자기파 미조사 영역에서는 도전성 금속충 자체가 형성되지 않거나, 일부 도금이 진행되더라도 이러한 도금에 의한 도전성 금속층을 매우 쉽게 제거할 수 있다. 이에 따라, 그 이후 공정에서, 필요에 따라 전자기파 미조사 영역의 도전성 금속층을 제거하게 되면, 상기 전자기파 조사 영역에만 선택적으로 도전성 금속층이 잔류하여 고분자 수지 기재 상에 원하는 형태의 미세 도전성 패턴을 양호하게 형성할 수 있게 된다.
한편, 상기 전자기파 조사 단계에서는, 적외선 영역에 해당하는 파장, 예를 들어, 약 lOOOnm 내지 1200nm, 혹은 약 1060nm 내지 1070nm, 혹은 약 .1064nm의 파장을 갖는 레이저 전자기파가 약 1 내지 20W의 평균 파워로 조사될 수 있다. 한편, 상술한 전자기파 조사 단계를 진행한 후에는, 도 1의 세 번째 도면에 도시된 바와 같이, 상기 전자기파 조사 영역을 도금시켜 도전성 금속층을 형성하는 단계를 진행할 수 있다. 이러한 도금 단계를 진행한 결과, 전자기파 조사 영역에서는 고분자 수지 기재에 대해 우수한 접착력을 나타내는 도전성 금속층이 형성될 수 있고, 나머지 영역에서는 도전성 금속층이 쉽게 제거될 수 있다. 이에 따라, 고분자 수지 기재 상의 소정 영역에만 선택적으로 미세한 도전성 패턴이 형성될 수 있다.ᅳ
이러한 도금 단계에서는, 상기 고분자 수지 기재를 환원제 및 도전성 금속 이온을 포함한 무전해 도금 용액 등으로 처리할 수 있다. 이와 같은 도금 단계의 진행으로, 상기 무전해 도금 용액에 포함된 도전성 금속 이온이 화학적 환원되어 도전성 패턴이 형성될 수 있고, 특히, 이러한 도전성 패턴은 전자기파 조사 영역에서 우수한 접착력으로 양호하게 형성될 수 있다. 또한, 전자기파 조사 영역에서 금속핵이 형성된 경우, 이를 seed로 하여 상기 도전성 패턴이 더욱 양호하게 형성될 수 있다.
한편, 발명의 또 다론 구현예에 따르면, 상술한 도전성 패턴 형성용 조성물 및 도전성 패턴 형성 방법에 의해 얻어진 도전성 패턴을 갖는 수지 구조체가 제공된다. 이러한 수지 구조체는 폴리카보네이트 수지를 포함한 고분자 수지 기재; 상기 고분자 수지 기재에 분산되어 있고, 적외선 영역의 파장을 갖는 전자기파를 흡수하며, 상기 수학식 1로 정의되는 레이저 민감도 Ls가 1.6 < - log(Ls) < 6.0인 특성을 층족하는 전자기파 흡수성 무기 첨가제; 및 상기 고분자 수지 기재의 소정 영역 상에 형성된 도전성 금속층을 포함할 수 있다.
이러한 수지 구조체에서, 상기 도전성 금속층이 형성된 소정 영역은 상기 고분자 수지 기재에 적외선 영역의 파장을 갖는 전자기파가 조사된 영역에 대웅할 수 있다.
상술한 수지 구조체는 안테나용 도전성 패턴을 갖는 휴대폰 케이스 등 각종 수지 쩨품 또는 수지층으로 되거나, 기타 RFID 태그, 각종 센서 또는 MEMS 구조체 등의 도전성 패턴을 갖는 다양한 수지 제품 또는 수지층으로 될 수 있다. 이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다. 실시예 1: 레이저 직접 조사에 의한 도전성 패턴의 형성
0"02의 구형 비도전성 금속 화합물 분말을 폴리카보네이트 수지와 함께 사용하였다. 추가로, 공정 및 안정화를 위한 첨가제인 열 안정화제 (IR1076, PEP36), UV 안정제 (UV329), 활제 (EP184), 및 층격보강제 (S2001)들을 함께 사용하여 전자기파 조사에 의한 도전성 패턴 형성용 조성물을 제조하였다.
상기 폴리카보네이트 수지 대비 비도전성 금속 화합물 5 중량 <¾, 충격보강제 4 중량 %, 활제 포함 기타 첨가제 1 중량 %로 흔합하여, 260 내지 280oC에서 압출을 통하여 Blending 하여, 펠렛 형태의 수지 조성물을 제조하였다, 이렇게 압출된 펠렛 형태의 수지 조성물을 약 260 내지 280oC에서 직경 100 mm, 두께 2 mm 기판으로 사출 성형하였다.
한편, 위에서 제조된 수지 가판에 대해, Nd-YAG laser 장치를 이용하여, 1064 nm 파장대의 레이저를 하기 Laser condition 1의 조건 하에 15mmxl5mm 의 면적에 대해 조사하여 표면을 활성화시켰다.
Laser ConditioR i
40kH2:
¾^2¾ 220ns 이어서, 상기 레이저 조사에 의해 표면이 활성화된 수지 기판에 대하여 다음과 같이 무전해 도금 공정을 실시하였다. 도금 용액은 황산구리 3g, 롯셀염 14g, 수산화나트륨 4g을 100ml의 탈이온수에 용해시켜 제조하였다. 제조된 도금 용액 40 ml에 환원제로 포름알데하이드 1.6ml를 첨가하였다. 레이저로 표면이 활성화된 수지 기판을 3 내지 5 시간 동안 도금 용액에 담지시킨 후, 증류수로 세척하였다. 이러한 과정을 통해 10 이상의 두께를 갖는 도전성 패턴을 형성하였다. 형성된 도전성 패턴 (혹은 도금층)의 접착 성능은 ISO 2409 표준 방법을 이용하여 평가하였다. 이러한 평가에 있어서는, 4.9N/10mm width의 접착력을 갖는 3M scotch #371 테이프를 사용하였고, 상기 도전성 패턴에 대해 10 X 10 모눈의 cross cut test를 적용하여, 상기 도전성 패턴의 박리된 면적에 따라 다음의 ISO class기준 하에 평가하였다:
1. class 0 등급: 도전성 패턴의 박리 면적ᄋ 평가 대상 도전성 패턴 면적의
0%;
2. class 1 등급: 도전성 패턴의 박리 면적ᄋ 평가 대상 도전성 패턴 면적의 0% 초과 5% 이하;
3. class 2 등급: 도전성 패턴의 박리 면적ᄋ 평가 대상 도전성 패턴 면적의
5% 초과 15% 이하;
' 4. class 3 등급: 도전성 패턴의 박리 면적 o 평가 대상 도전성 패턴 면적의
15% 초과 35% 이하;
5. class 4 등급: 도전성 패턴의 박리 면적ᄋ' 평가 대상도전성 패턴 면적의 35% 초과 65% 이하;
6. class 5 등급: 도전성 패턴의 박리 면적ᄋ' 평가 대상 도전성 패턴 면적의 65% 초과.
이러한 평가 결과, 상기 class 0 또는 1 등급으로 되어, 도전성 패턴의 박리 면적이 평가 대상 도전성 패턴 면적의 5% 이하로 될 경우, 접착력이 우수한 도전성 패턴이 양호하게 형성된 것으로 평가하였다.
상기 실시예 1에서는, 레이저를 조사하는 평균 파워를 1 내지 30W의 범위 내에서 증가시켜가며, 상술한 도전성 패턴의 형성 및 이의 접착력 평가 시험을 반복하였고, 그 결과에 따라 양호한 도전성 패턴 형성을 위해 필요한 레이저의 최소 파워 조건을 산출하고, 이의 결과를 하기 표 i에 나타내었다.
한편, 상기 실시예 1에서 10"02의 구형 비도전성 금속 화합물 분말에 대해 약 150°C의 온도에서 약 3시간 동안 전처리 (비표면적 측정을 위한 전처리)를 진행한 후, BET 방법으로 비표면적 A(m2/g)를 측정하는 한편, 해당 물질의 밀도 B(g/cm3)가 5.627 g/cm3임을 확인하였다. 이러한 측정 결과로부터, Re = 300/[A(m2/g) x B(g/cm3)]의 식에 의해 유효 반경 Re를 산출하였고, 상기 A(m2/g) 및 Re의 산출 결과를 하기 표 1에 함께 나타내었다. 또, UV—vis-NIR spectrometer를 사용하여, 상기 &02의 구형 비도전성 금속 화합물 분말이 1064 nm 파장대의 레이저에 대해 나타내는 흡광도 IR (%)을 측정하였고, 이러한 측정 결과로부터 Iaa = (1 - IR)2 I 2 ^의 식에 의해 Iaa 값을 측정하였다. 상기 Iaa, wt (비도전성 금속 화합물의 함량 (중량 %)/100) 및 Re를 수학식 에 대입하여 Ls 및 -log(Ls) 값을 산출하였다. 이러한 Iaa, wt, Re 및 - log(Ls)를 표 1에 함께 정리해 나타내었다. 실시예 2 내지 17: 레이저 직접 조사에 의한 도전성 패턴의 형성
비도전성 금속 화합물의 종류, BET 비표면적 (입경 변경) 및 그 함량 (wt)을 하기 표 1에 정리된 바와 같이 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 도전성 패턴을 형성하였고, 상기 비도전성 금속 화합물 및 도전성 패턴의 제반 물성 (Iaa, wt, Re 및 一 log(Ls)와, 양호한 도전성 패턴 형성을 위해 필요한 레이저 전자기파의 최소 파워 조건)올 하기 표 ' 1에 함께 정리하여 나타내었다.
[표 1]
Figure imgf000024_0001
상기 표 1에서, 상기 -log(Ls) 값 (X축)과, 양호한 도전성 패턴 형성을 위해 필요한 레이저 전자기파의 최소 파워 조건 (Y축)의 관계를 그래프로 정리하여 도 2에 도시하였다.
참고로, 도 2에서, LGD additive 1: CuCr02; LGD additive 2: CuA102 LGD additive 3: CuS04; LGD additive 4: Cul; LGD additive 5: CuSn2(P04)3이다.
상기 표 1 및 도 2를 참고하면, 약 1.6 < -log(Ls) < 6.0, 보다 구체적으로 약 1.6 < -log(Ls) < 5.6의 관계를 충족하는 비도전성 금속 화합물을 전자기파 흡수성 무기 첨가제로 사용하는 경우, 레이저 전자기파의 조사 조건이 평균 파워 약 1 내지 20W의 은화한 조건으로 되더라도, 접착력이 우수한 양호한 도전성 패턴이 형성될 수 있음이 확인되었다. 또, 상기 -log(Ls)와, 상기 양호한 도전성 패턴 형성을 위해 필요한 레이저 전자기파의 최소 파워 조건은 대략 비례 관계에 있는 것으로 확인되었다. 실시예 18 내지 34: 레이저 직접 조사에 의한 도전성 패턴의 형성
레이저 조사 조건을 하기 Laser condition 2의 조건으로 변경한 것을 제외하고는 실시예 1 내지 17과 동일한 조성 및 방법으로 도전성 패턴을 형성하였다.
Laser Ceniition 2
ISMnits
주 H수 SQ M∑.
간격 5Q
H«¾ 30~ϊ5ρι 상기 비도전성 금속 화합물 및 도전성 패턴의 제반 물성 (Iaa, wt, Re 및 - log(Ls)와, 양호한 도전성 패턴 형성을 위해 필요한 레이저 전자기파의 최소 파워 조건)을 하기 표 2에 함께 정리하여 나타내었다. [표 2]
Figure imgf000026_0001
상기 표 2에서, 상기 -log(Ls) 값 (X축)과, 양호한 도전성 패턴 형성을 위해 필요한 레이저 전자기파의 최소 파워 조건 (Y축)의 관계를 그래프로 정리하여 도 3에 도시하였다.
참고로, 도 3에서, LGD additive 1: CuCr02; LGD additive 2: CuA102 LGD additive 3: CuS04; LGD additive 4: Cul; LGD additive 5: CuSn2(P04)3이다.
상기 표 2 및 도 3을 참고하면, 실시예 18 내지 34에서 레이저 조사 조건이 일부 변경되는 경우에도, 약 1.6 < -log(Ls) < 6.0, 보다 구체적으로 약 1.6 < - log(Ls) < 5.6의 관계를 층족하는 비도전성 금속 화합물을 전자기파 흡수성 무기 첨가제로 사용하는 경우, 레이저 전자기파의 조사 조건이 평균 파워 약 2.2 내지 14W의 온화한 조건으로 되더라도, 접착력이 우수한 양호한 도전성 패턴이 형성될 수 있음이 확인되었다. 특히, 레이저 조사시의 보다 높은 피크 파워로 인해, 실시예 1 내지 17에 비해서도 더욱 낮은 파워 조건 하에 양호한 도전성 패턴이 형성될 수 있음이 확인되었다. 실시예 35 내지 51: 레이저 직접 조사에 의한 도전성 패턴의 형성 실시예 1 내지 17에 1 중량 <¾의 카본블랙을 추가하고, 그만큼 폴리카보네이트 수지의 함량을 줄인 것을 제외하고는 실시예 1 내지 17과 동일한 조성 및 방법으로 도전성 패턴을 형성하였다.
상기 비도전성 금속 화합물 및 도전성 패턴의 제반 물성 (Iaa, wt, Re 및 - log(Ls)와, 양호한 도전성 패턴 형성을 위해 필요한 레이저 전자기파의 최소 파워 조건)을 하기 표 3에 함께 정리하여 나타내었다.
[표 3]
Figure imgf000027_0001
상기 표 3에서, 상기 -log(Ls) 값 (X축)과, 양호한 도전성 패턴 형성을 위해 필요한 레이저 전자기파의 최소 파워 조건 (Y축)의 관계를 그래프로 정리하여 도 4에 도시하였다. 이때, 실시예 1 내지 17에 관한 그래프와 비교하여 나타내었다. 상기 표 3 및 도 4를 참고하면, 실시예 35 내지 51에서는, 전자기파 흡수 보조제인 카본블랙이 추가 사용됨에 따라, 실시예 1 내지 17에 비해서도 더욱 낮은 파워 조건 하에 양호한 도전성 패턴이 형성될 수 있음이 확인되었다.
따라서, 이러한 카본블랙 추가에 의해, 약 1.6 < -log(Ls) < 6.0의 범위 내에서도 상대적으로 높은 약 5.6 < -log(Ls) < 6.0의 특성올 나타내는 전자기파 흡수성 무기 첨가제가사용되는 경우에도, 접착력이 우수한 양호한 도전성 패턴이 형성될 수 있을 것으로 예측된다. 실시예 52: 레이저 직접 조사에 의한 도전성 패턴의 형성
실시예 17에 5 중량 %의 이산화티타늄을 추가하고, 그만큼 폴리카보네이트 수지의 함량을 줄인 것을 제외하고는 실시예 17과 동일한 조성 및 방법으로 도전성 패턴을 형성하였다.
이러한 실시예 52에서 상기 비도전성 금속 화합물의 제반 물성 (Iaa, wt, Re 및 -log(Ls))은 실시예 17과 동일하며, 양호한 도전성 패턴 형성을 위해 필요한 레이저 전자기파의 최소 파워 조건은 실시예 17과 동일한 방법, 특히 도 5에 도시된 방법에 따라 반복 시험하여 결정하였다. 그 결과, 14.3W의 최소 파워 하에서 양호한 도전성 패턴이 형성될 수 있음이 확인되었다 (실시예 17의 경우, 14.3W까지는 양호한 도전성 패턴이 얻어지지 않았고, 최소 파워는 17.4W로 결정됨 .).
따라서, 이러한 이산화티타늄의 추가에 의해서도, 약 1.6 < -log(Ls) < 6.0의 범위 내에서 상대적으로 높은 약 5.6 < -log(Ls) < 6.0의 특성을 나타내는 전자기파 흡수성 무기 첨가제가 사용되는 경우에도, 접착력이 우수한 양호한 도전성 패턴이 형성될 수 있을 것으로 예측된다. 이는 상기 이산화티타늄이 레이저의 산란 효과 및 산란율을 최적화하여, 상기 Ls의 값을 추가 상승 (- log(Ls)의 추가 감소)시킬 수 있기 때문으로 보인다.

Claims

【청구범위】 【청구항 1】 폴리카보네이트 수지를 포함한 고분자 수지; 및 적외선 영역의 파장을 갖는 전자기파를 흡수하고, 하기 수학식 1로 정의되는 레이저 민감도 Ls가 1.6 < -log(Ls) < 6.0인 특성을 충족하는 전자기파 흡수성 무기 첨가제를 포함하는 전자기파 조사에 의한 도전성 패턴 형성용 조성물:
[수학식 1]
레이저 민감도 Ls = Re"1 '4 x wt x Iaa
상기 수학식 1에서,
Re는 전자기파 흡수성 무기 첨가제의 BET 비표면적 A(m2/g)와, 밀도 B(g/cm3)로부터, Re = 300/[A(m2/g) x B(g/cm3)]의 식에 의해 산출된 상기 전자가파 흡수성 무기 첨가제의 유효 반경을 나타내고,
wt는 상기 도전성 패턴 형성용 조성물의 전체 함량 (중량)을 1로 할 때, 상기 전자기파 흡수성 무기 첨가제의 함량 (중량)을 전체 조성물에 대한 중량 분율로 나타낸 값이고,
Iaa는 상기 전자기파 흡수성 무기 첨가제에 대해, UV-vis— IR 스펙트럼을 사용하여 측정된 소정의 적외선 영역의 파장을 갖는 전자기파에 대한 흡광도 IR (<¾)로부터, Iaa = (1 - IR)2 I 2 ^의 식에 의해 산출된 상기 전자기파 흡수성 무기 첨가제의 유효 광선 흡수율을 나타낸다. .
【청구항 2】
게 1 항에 있어서, 상기 고분자 수지는 ABS 수지, 폴리알킬렌테레프탈레이트 수지, 폴리프로필렌 수지 및 폴리프탈아미드 수지로 이루어진 군에서 선택된 1종 이상의 수지를 더 포함하는 전자기파 조사에 의한 도전성 패턴 형성용 조성물.
【청구항 3】
제 1 항에 있어서, 상기 전자기파 흡수성 무기 첨가제는 1종 이상의 도전성 금속 원소를 함유하며, 양이온과 음이온이 포함되어 이들이 서로 화학적으로 결합된 형태의 비도전성 금속 화합물을 포함하는 전자기파 조사에 의한 도전성 패턴 형성용 조성물.
【청구항 4】
제 1 항에 있어서, 상기 전자기파 흡수성 무기 첨가제는 CuCr02, NiCr02, AgCr02 CuMo02, NiMo02, AgMo02, NiMn02, AgMn02, NiFe02, AgFe02, CuW02, AgW02 NiW02, AgSn02, NiSn02, CuSn02, CuA102, CuGa02, Culn02, CuT102, CuY02, CuSc02, CuLa02, CuLu02, NiA102, NiGa02, Niln02, NiT102, NiY02, NiSc02, NiLa02, NiLu02, AgA102, AgGa02, Agln02, AgT102, AgY02, AgSc02, AgLa02, AgLu02, CuSn2(P04)3, Cul, CuCl, CuBr, CuF, Agl, CuS04, Cu2P2Ov, Cu3P208, Cu4P209, Cu5P2O10 및 Cu2P40,2로 이루어진 군에서 선택된 1종 이상의 비도전성 금속 화합물을 포함하는 전자기파 조사에 의한 도전성 패턴 형성용조성물.
【청구항 5】
제 3 항에 있어서, 상기 전자기파 흡수성 무기 첨가제는 상기 레이저 민감도 Ls가 1.6 < -log(Ls) < 5.6인 특성을 층족하고, 상기 적외선 영역의 파장을 갖는 전자기파를 흡수하여 상기 도전성 금속 원소 또는 그 이온을 포함하는 금속핵을 발생시키는 전자기파 조사에 의한 도전성 패턴 형성용 조성물.
【청구항 6】
제 1 항에 있어서, 상기 전자기파 흡수성 무기 첨가제는 레이저 민감도 Ls가 1.6 < -log(Ls) < 5.6인 특성을 층족하고,
상기 적외선 영역의 파장을 갖는 전자기파의 조사에 의해, 도전성 금속 원소 또는 그 이온을 포함하는 금속핵을 발생시키는 도전성 시드 형성제를 더 포함하는 전자피가 조사에 의한 도전성 패턴 형성용 조성물.
【청구항 7】
제 6 항에 있어서, 상기 도전성 시드 형성제는 상기 고분자 수지의 표면에 도포 및 형성되는 전자피가 조사에 의한 도전성 패턴 형성용 조성물.
【청구항 8】
제 6 항에 있어서,
상기 전자기파 흡수성 무기 첨가제는 Fe (P04)2, Zn3(P04)2, ZnFe2(P04)2, NbOx 및 MoOx로 이루어진 군에서 선택된 1종 이상을 포함하고,
상기 도전성 시드 형성제는 구리 (Cu), 백금 (Pt), 팔라듐 (Pd), 은 (Ag), 금 (Au), 니켈 (Ni), 텅스텐 (W), 티타늄 (Ti), 크롬 (Cr), 알루미늄 (A1), 아연 (Zn), 주석 (Sn), 납 (Pb), 마그네슘 (Mg), 망간 (Mn) 및 철 (Fe)로 이루어진 군에서 선택된 1종 이상의 도전성 금속, 이의 이온 또는 착이온을 포함하는 전자기파 조사에 의한 도전성 패턴 형성용 조성물.
【청구항 9】
제 1 항에 있어서, 카본블랙, 송연, 유연, 램프블랙, 채널블랙, 파네스블랙, 아세틸렌블랙 및 이산화티타늄 (Ti02)으로 이루어진 군에서 선택된 1종 이상의 전자기파 흡수 보조제를 더 포함하는 전자기파 조사에 의한 도전성 패턴 형성용 조성물.
【청구항 10】
제 1 항에 있어서, 상기 전자기파 흡수성 무기 첨가제는 전체 조성물에 대해 αο5 내지 30 중량1 ¾로 포함되는 전자기파 조사에 의한 도전성 패턴 형성용 조성물.
【청구항 11】
제 1 항에 있어서, lOOOnm 내지 1200nm의 파장을 갖는 레이저 전자기파가 1 내지 20W의 평균 파워로 조사되고, 상기 레이저 전자기파의 조사 영역에 도금이 진행되어 도전성 패턴을 형성하는 전자기파의 조사에 의한 도전성 패턴 형성용 조성물.
【청구항 12】
제 1 항에 있어서, 상기 전자기파 흡수성 무기 첨가제는 0.05 내지 20/ΛΠ의 평균 입경을 갖는 전자기파의 조사에 의한 도전성 패턴 형성용 조성물.
【청구항 13】
제 9 항에 있어서, 상기 전자기파 흡수 보조제는 전체 조성물에 대해 0.01 내지 20 중량 %로 포함되는 전자기파 조사에 의한 도전성 패턴 형성용 조성물.
【청구항 14】
게 1 항에 있어서, 열 안정제, UV 안정제, 난연제, 활제, 항산화제, 무기 '충전제, 색 첨가제, 층격 보강제, 유동성 개질제 및 기능성 보강제로 이루어진 군에서 선택된 1종 이상의 첨가제를 전체 조성물에 대해 0.01 내지 30 중량 %로 더 포함하는 전자기파 조사에 의한 도전성 패턴 형성용 조성물.
[청구항 15】
제 1 항 내지 제 14 항 중 어느 한 항에 의한 도전성 패턴 형성용 조성물을 수지 제품으로 성형하거나, 다른 제품에 도포하여 수지층을 형성하는 단계;
상기 수지 제품 또는 수지층의 소정 영역에 적외선 영역의 파장을 갖는 전자기파를 조사하는단계; 및
상기 전자기파의 조사 영역을 도금시켜 도전성 금속층을 형성하는 단계를 포함하는 전자기파의 직접 조사에 의한 도전성 패턴 형성 방법.
【청구항 16】
제 15 항에 있어서, 상기 전자기파 조사 단계에서 lOOOnm 내지 1200nm의 파장을 갖는 레이저 전자기파가 1 내지 20W의 평균 파워로 조사되는 전자기파의 직접 조사에 의한 도전성 패턴 형성 방법.
【청구항 17】
폴리카보네이트 수지를 포함한 고분자 수지 기재;
상기 고분자 수지 기재에 분산되어 있고, 적외선 영역의 파장을 갖는 전자기파를 흡수하며, 하기 수학식 1로 정의되는 레이저 민감도 Ls가 1.6 < - log(Ls) < 6.0인 특성을 층족하는 전자기파 흡수성 무기 첨가제; 및
상기 고분자 수지 기재의 소정 영역 상에 형성된 도전성 금속층을 포함하는 도전성 패턴을 갖는 수지 구조체:
[수학식 1]
레이저 민감도 Ls = Re-Mx wt x Iaa
상기 수학식 1에서,
Re는 전자기파 흡수성 무기 첨가제의 BET 비표면적 A(m2/g)와, 밀도
B(g/cm3)로부터, Re = 300/[A(m2/g) x B(g/cm3)]의 식에 의해 산출된 상기 전자기파 흡수성 무기 첨가제의 유효 반경을 나타내고,
wt는 도전성 패턴 형성용 조성물의 전체 함량 (도전성 금속층을 제외한 고분자 수지 기재 및 전자기파 흡수성 무기 첨가제의 전체 함량)을 1로 할 때, 상기 전자기파 흡수성 무기 첨가제의 함량 (중량)올 전체 조성물에 대한 중량 분율로 나타낸 값이고,
laa는 상기 전자기파 흡수성 무기 첨가제에 대해, UV-vis-IR 스펙트럼을 사용하여 측정된 소정의 적외선 영역의 파장을 갖는 전자기파에 대한 흡광도 IR
(%)로부터, laa = (1 - IR)2 I 2 ^의 식에 의해 산출된 상기 전자기파 흡수성 무기 첨가제의 유효 광선 흡수율을 나타낸다.
【청구항 18】
제 17 항에 있어서, 상기 도전성 금속층이 형성된 소정 영역은 상기 고분자 수지 기재에 적외선 영역의 파장을 갖는 전자기파가 조사된 영역에 대응하는 도전성 패턴을 갖는 수지 구조체.
PCT/KR2015/011155 2014-10-23 2015-10-21 전자기파 조사에 의한 도전성 패턴 형성용 조성물, 이를 사용한 도전성 패턴 형성 방법과, 도전성 패턴을 갖는 수지 구조체 WO2016064192A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/510,967 US10837114B2 (en) 2014-10-23 2015-10-21 Composition for forming conductive pattern by irradiation of electromagnetic waves, method for forming conductive pattern using same, and resin structure having conductive pattern
CN201580056626.7A CN107075239B (zh) 2014-10-23 2015-10-21 通过电磁波辐射形成导电图案的组合物、形成导电图案的方法以及具有导电图案的树脂结构
PCT/KR2015/011155 WO2016064192A1 (ko) 2014-10-23 2015-10-21 전자기파 조사에 의한 도전성 패턴 형성용 조성물, 이를 사용한 도전성 패턴 형성 방법과, 도전성 패턴을 갖는 수지 구조체
EP15852488.4A EP3176792B1 (en) 2014-10-23 2015-10-21 Composition for forming conductive pattern by electromagnetic wave radiation, method for forming conductive pattern using same, and resin structure having conductive pattern
JP2017513795A JP6389326B2 (ja) 2014-10-23 2015-10-21 電磁波照射による導電性パターン形成用組成物、これを用いた導電性パターン形成方法と、導電性パターンを有する樹脂構造体

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020140144490A KR101722744B1 (ko) 2014-10-23 2014-10-23 전자기파 조사에 의한 도전성 패턴 형성용 조성물, 이를 사용한 도전성 패턴 형성 방법과, 도전성 패턴을 갖는 수지 구조체
KR10-2014-0144490 2014-10-23
PCT/KR2015/011155 WO2016064192A1 (ko) 2014-10-23 2015-10-21 전자기파 조사에 의한 도전성 패턴 형성용 조성물, 이를 사용한 도전성 패턴 형성 방법과, 도전성 패턴을 갖는 수지 구조체

Publications (1)

Publication Number Publication Date
WO2016064192A1 true WO2016064192A1 (ko) 2016-04-28

Family

ID=55761156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011155 WO2016064192A1 (ko) 2014-10-23 2015-10-21 전자기파 조사에 의한 도전성 패턴 형성용 조성물, 이를 사용한 도전성 패턴 형성 방법과, 도전성 패턴을 갖는 수지 구조체

Country Status (6)

Country Link
US (1) US10837114B2 (ko)
EP (1) EP3176792B1 (ko)
JP (1) JP6389326B2 (ko)
KR (1) KR101722744B1 (ko)
CN (1) CN107075239B (ko)
WO (1) WO2016064192A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108295868A (zh) * 2018-03-06 2018-07-20 湖北文理学院 AgCrO2-CuCr2O4复合材料、其制备方法及应用
WO2018178020A1 (de) * 2017-03-30 2018-10-04 Chemische Fabrik Budenheim Kg Verwendung von kristallwasserfreien fe(ii)-verbindungen als strahlungsabsorber
US10793437B2 (en) 2017-03-30 2020-10-06 Chemische Fabrik Budenheim Kg Method for the manufacture of Fe(II)P/Fe(II)MetP compounds
US11718727B2 (en) 2017-03-30 2023-08-08 Chemische Fabrik Budenheim Kg Method for manufacturing electrically conductive structures on a carrier material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101823660B1 (ko) 2013-08-09 2018-01-30 주식회사 엘지화학 전자기파의 직접 조사에 의한 도전성 패턴 형성 방법과, 도전성 패턴을 갖는 수지 구조체
KR101717753B1 (ko) * 2013-11-29 2017-03-17 주식회사 엘지화학 도전성 패턴 형성용 조성물, 이를 사용한 도전성 패턴 형성 방법과, 도전성 패턴을 갖는 수지 구조체
KR101774041B1 (ko) 2014-09-17 2017-09-01 주식회사 엘지화학 도전성 패턴 형성용 조성물 및 도전성 패턴을 가지는 수지 구조체
KR102011928B1 (ko) * 2016-09-22 2019-08-19 주식회사 엘지화학 전자기파 조사에 의한 도전성 패턴 형성용 조성물 및 이를 사용한 도전성 패턴 형성 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100716486B1 (ko) * 2001-07-05 2007-05-10 엘피케이에프 레이저 앤드 일렉트로닉스 악티엔게젤샤프트 도체 트랙 구조물 및 그 구조물의 제조 방법
JP2008140972A (ja) * 2006-12-01 2008-06-19 Auto Network Gijutsu Kenkyusho:Kk 導電回路を有する成形品及びその製造方法
KR20110112860A (ko) * 2009-12-17 2011-10-13 비와이디 컴퍼니 리미티드 표면 금속화 방법, 플라스틱 제품 제조 방법 및 이로부터 제조된 플라스틱 제품
KR20120124167A (ko) * 2011-05-03 2012-11-13 주식회사 디지아이 레이저 직접 구조화용 조성물 및 이를 이용한 레이저 직접 구조화 방법
US20130106659A1 (en) * 2011-10-31 2013-05-02 Ticona Llc Thermoplastic Composition for Use in Forming a Laser Direct Structured Substrate

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19535068C2 (de) 1995-09-21 1997-08-21 Lpkf Cad Cam Systeme Gmbh Beschichtung zur strukturierten Erzeugung von Leiterbahnen auf der Oberfläche von elektrisch isolierenden Substraten, Verfahren zum Herstellen der Beschichtung und von strukturierten Leiterbahnen
DE19723734C2 (de) 1997-06-06 2002-02-07 Gerhard Naundorf Leiterbahnstrukturen auf einem nichtleitenden Trägermaterial und Verfahren zu ihrer Herstellung
DE19731346C2 (de) 1997-06-06 2003-09-25 Lpkf Laser & Electronics Ag Leiterbahnstrukturen und ein Verfahren zu deren Herstellung
DE50008242D1 (de) 2000-09-26 2004-11-18 Enthone Omi Deutschland Gmbh Verfahren zur selektiven Metallisierung dielektrischer Materialien
JP2002311843A (ja) 2001-04-17 2002-10-25 Dainippon Printing Co Ltd 電磁波遮蔽用部材及びディスプレイ
JP2003023290A (ja) 2001-07-09 2003-01-24 Dainippon Printing Co Ltd 電磁波遮蔽用部材及びその製造方法
KR100521911B1 (ko) 2001-07-09 2005-10-13 다이니폰 인사츠 가부시키가이샤 전자파 차폐용 부재 및 그 제조방법
DE102006017630A1 (de) 2006-04-12 2007-10-18 Lpkf Laser & Electronics Ag Verfahren zur Herstellung einer Leiterbahnstruktur sowie eine derart hergestellte Leiterbahnstruktur
JP2008034651A (ja) 2006-07-28 2008-02-14 Takenaka Komuten Co Ltd 電磁波吸収体
US8492464B2 (en) 2008-05-23 2013-07-23 Sabic Innovative Plastics Ip B.V. Flame retardant laser direct structuring materials
US10119021B2 (en) * 2008-05-23 2018-11-06 Sabic Global Technologies B.V. Flame retardant laser direct structuring materials
EP2354185A1 (en) 2010-02-08 2011-08-10 Mitsubishi Chemical Europe GmbH Polymer composition
WO2012056385A1 (en) 2010-10-25 2012-05-03 Sabic Innovative Plastics Ip B.V. Improved electroless plating performance of laser direct structuring materials
WO2012056416A1 (en) 2010-10-26 2012-05-03 Sabic Innovative Plastics Ip B.V Laser direct structuring materials with all color capability
DE102011000138A1 (de) 2011-01-14 2012-07-19 Lpkf Laser & Electronics Ag Verfahren zur selektiven Metallisierung eines Substrats sowie ein nach diesem Verfahren hergestellter Schaltungsträger
KR101227179B1 (ko) 2011-04-26 2013-01-28 한국기계연구원 레이저를 이용한 인쇄 회로 기판의 제조 방법
WO2012150736A1 (ko) * 2011-05-03 2012-11-08 주식회사 디지아이 레이저 직접 구조화용 조성물 및 이를 이용한 레이저 직접 구조화 방법
EP2604648A1 (en) * 2011-12-12 2013-06-19 Mitsubishi Chemical Europe GmbH Thermoplastic composition
KR101961515B1 (ko) 2012-06-06 2019-03-22 미쓰비시 엔지니어링-플라스틱스 코포레이션 레이저 다이렉트 스트럭쳐링용 수지 조성물, 수지 성형품, 및 도금층을 갖는 성형품의 제조 방법
US20140296411A1 (en) 2013-04-01 2014-10-02 Sabic Innovative Plastics Ip B.V. High modulus laser direct structuring composites
KR20140124918A (ko) * 2013-04-02 2014-10-28 김한주 레이저 직접 구조화 공정용 조성물
KR101574736B1 (ko) 2013-04-26 2015-12-07 주식회사 엘지화학 도전성 패턴 형성용 조성물, 이를 사용한 도전성 패턴 형성 방법과, 도전성 패턴을 갖는 수지 구조체
KR101610346B1 (ko) 2013-04-26 2016-04-07 주식회사 엘지화학 도전성 패턴 형성용 조성물, 이를 사용한 도전성 패턴 형성 방법과, 도전성 패턴을 갖는 수지 구조체
KR101631701B1 (ko) 2013-12-30 2016-06-24 주식회사 엘지화학 도전성 패턴 형성용 조성물 및 도전성 패턴을 갖는 수지 구조체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100716486B1 (ko) * 2001-07-05 2007-05-10 엘피케이에프 레이저 앤드 일렉트로닉스 악티엔게젤샤프트 도체 트랙 구조물 및 그 구조물의 제조 방법
JP2008140972A (ja) * 2006-12-01 2008-06-19 Auto Network Gijutsu Kenkyusho:Kk 導電回路を有する成形品及びその製造方法
KR20110112860A (ko) * 2009-12-17 2011-10-13 비와이디 컴퍼니 리미티드 표면 금속화 방법, 플라스틱 제품 제조 방법 및 이로부터 제조된 플라스틱 제품
KR20120124167A (ko) * 2011-05-03 2012-11-13 주식회사 디지아이 레이저 직접 구조화용 조성물 및 이를 이용한 레이저 직접 구조화 방법
US20130106659A1 (en) * 2011-10-31 2013-05-02 Ticona Llc Thermoplastic Composition for Use in Forming a Laser Direct Structured Substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3176792A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018178020A1 (de) * 2017-03-30 2018-10-04 Chemische Fabrik Budenheim Kg Verwendung von kristallwasserfreien fe(ii)-verbindungen als strahlungsabsorber
CN110475815A (zh) * 2017-03-30 2019-11-19 化学制造布敦海姆两合公司 无结晶水Fe(II)化合物作为辐射吸收剂的用途
US10793437B2 (en) 2017-03-30 2020-10-06 Chemische Fabrik Budenheim Kg Method for the manufacture of Fe(II)P/Fe(II)MetP compounds
TWI758432B (zh) * 2017-03-30 2022-03-21 德商坎斯菲立克布登漢兩合公司 無結晶水Fe(II)化合物作為輻射吸收劑的用途
US11536880B2 (en) 2017-03-30 2022-12-27 Chemische Fabrik Budenheim Kg Use of crystal water-free Fe(II) compounds as radiation absorbers
US11718727B2 (en) 2017-03-30 2023-08-08 Chemische Fabrik Budenheim Kg Method for manufacturing electrically conductive structures on a carrier material
CN108295868A (zh) * 2018-03-06 2018-07-20 湖北文理学院 AgCrO2-CuCr2O4复合材料、其制备方法及应用
CN108295868B (zh) * 2018-03-06 2020-11-06 湖北文理学院 AgCrO2-CuCr2O4复合材料、其制备方法及应用

Also Published As

Publication number Publication date
CN107075239B (zh) 2019-07-05
KR101722744B1 (ko) 2017-04-03
EP3176792A1 (en) 2017-06-07
EP3176792B1 (en) 2020-06-17
JP2017535028A (ja) 2017-11-24
JP6389326B2 (ja) 2018-09-12
KR20160047931A (ko) 2016-05-03
EP3176792A4 (en) 2018-03-28
CN107075239A (zh) 2017-08-18
US10837114B2 (en) 2020-11-17
US20170275764A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
WO2016064192A1 (ko) 전자기파 조사에 의한 도전성 패턴 형성용 조성물, 이를 사용한 도전성 패턴 형성 방법과, 도전성 패턴을 갖는 수지 구조체
JP6162898B2 (ja) 電磁波の直接照射による導電性パターン形成方法と、導電性パターンを有する樹脂構造体
JP6162879B2 (ja) 導電性パターン形成用組成物、これを用いた導電性パターンの形成方法と、導電性パターンを有する樹脂構造体
TWI527943B (zh) 用於形成傳導性圖案的組成物和方法以及在上面具有該傳導性圖案的樹脂結構體
JP6254272B2 (ja) 導電性パターン形成用組成物、これを用いた導電性パターン形成方法と、導電性パターンを有する樹脂構造体
JP6475267B2 (ja) 導電性パターン形成用組成物、これを用いた導電性パターンの形成方法
KR102010472B1 (ko) 전자기파의 직접 조사에 의한 도전성 패턴 형성 방법
KR102011928B1 (ko) 전자기파 조사에 의한 도전성 패턴 형성용 조성물 및 이를 사용한 도전성 패턴 형성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852488

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015852488

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015852488

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017513795

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15510967

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE