WO2016063771A1 - ピセン誘導体、光電変換材料及び光電変換素子 - Google Patents

ピセン誘導体、光電変換材料及び光電変換素子 Download PDF

Info

Publication number
WO2016063771A1
WO2016063771A1 PCT/JP2015/079033 JP2015079033W WO2016063771A1 WO 2016063771 A1 WO2016063771 A1 WO 2016063771A1 JP 2015079033 W JP2015079033 W JP 2015079033W WO 2016063771 A1 WO2016063771 A1 WO 2016063771A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
photoelectric conversion
groups
unsubstituted hydrocarbon
Prior art date
Application number
PCT/JP2015/079033
Other languages
English (en)
French (fr)
Inventor
康師 西原
恵太 兵頭
裕樹 森
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to JP2016555186A priority Critical patent/JP6625546B2/ja
Priority to KR1020177000706A priority patent/KR20170071466A/ko
Priority to EP15853086.5A priority patent/EP3210986A4/en
Priority to CN201580038074.7A priority patent/CN106661048B/zh
Priority to US15/504,425 priority patent/US10074804B2/en
Publication of WO2016063771A1 publication Critical patent/WO2016063771A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/228Polymers, i.e. more than 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a novel p-type organic semiconductor material having a specific structure, a photoelectric conversion material, and a photoelectric conversion element using the same.
  • P3HT poly (3-hexylthiophene)
  • PCBM [[6, 6] which is an n-type organic semiconductor material, as materials having high photoelectric conversion efficiency in organic thin film solar cells.
  • -Phenyl-C61-butyric acid methyl ester and a bulk heterojunction made of a mixed material (see Non-Patent Document 1, etc.).
  • a low molecular compound such as pentacene may be used as the p-type organic semiconductor material.
  • a polymer type material is more suitable for device manufacturing by coating, which can reduce cost and increase screen size. It is considered easy.
  • a characteristic required for the p-type organic semiconductor material is that the material has a highly planar ⁇ -conjugated plane. This is because high ⁇ - ⁇ interaction and high carrier transport efficiency can be expected, and as a result, high photovoltaic power can be provided.
  • Patent Documents 1 to 3 disclose a polymer p-type organic semiconductor.
  • an object of the present invention is to provide a p-type organic semiconductor material that is easy to manufacture and has high planarity in a polymer skeleton.
  • Another object of the present invention is to provide a photoelectric conversion layer, a photoelectric conversion element, and an organic thin film solar cell having high photoelectric conversion efficiency using the p-type organic semiconductor material.
  • a picene derivative represented by the following general formula (1) can easily produce a photoelectric conversion layer when used as a p-type organic semiconductor material.
  • the photoelectric conversion element having the photoelectric conversion layer exhibits high carrier mobility and can solve the above-described problems.
  • the present invention has been made on the basis of the above findings, and provides a novel picene derivative (hereinafter also referred to as a picene derivative) having at least one structural unit represented by the following general formula (1).
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, halogen atom, cyano group, nitro group, hydroxyl group, carboxyl group, thiol group, —SiR 7 R 8 R 9 , -NR 10 R 11 group, or a substituted or unsubstituted hydrocarbon group, At least one of R 1 , R 2 , R 3 , R 4 , R 5 and R 6 is not a hydrogen atom, R 7 , R 8 , R 9 , R 10 or R 11 each independently represents a hydrogen atom, a substituted or unsubstituted hydrocarbon group. )
  • the present invention also provides a photoelectric conversion material comprising (A) the above-mentioned picene derivative as a p-type organic semiconductor material and (B) an n-type organic semiconductor material.
  • the present invention also provides (A) a p-type organic semiconductor material containing at least one picene derivative, and (B) a photoelectric conversion material containing an n-type organic semiconductor material.
  • the present invention also provides a photoelectric conversion layer obtained by forming the photoelectric conversion material into a film.
  • this invention provides the photoelectric conversion element which has the said photoelectric converting layer.
  • this invention provides the organic thin-film solar cell which has the said photoelectric conversion element.
  • a novel picene derivative useful as an organic semiconductor material can be provided.
  • the photoelectric conversion material of the present invention containing the compound is used, high performance of the device can be realized due to high carrier mobility.
  • FIG. 1A is a cross-sectional view showing an example of the configuration of the photoelectric conversion element of the present invention
  • FIG. 1B is a cross-sectional view showing another example of the configuration of the photoelectric conversion element of the present invention
  • FIG.1 (c) is sectional drawing which shows another example of a structure of the photoelectric conversion element of this invention.
  • the picene derivative is a compound having at least one structural unit represented by the general formula (1).
  • * in the said General formula (1) means that group represented by these formulas couple
  • the monocycle represented by A 1 and A 2 in the general formula (1) is not particularly limited, but is preferably an aromatic monocycle, and specific examples include a benzene ring, a furan ring, and thiophene.
  • a heterocyclic ring containing a sulfur atom, a selenium atom, or a tellurium atom is preferable because it improves the characteristics of the device.
  • R 1 , R 2 , R 3 , R 4 , R 5 or R 6 in the general formula (1) are each independently a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxyl group, a carboxyl group, a thiol group, —SiR. 7 R 8 R 9 , —NR 10 R 11 represents a substituted or unsubstituted hydrocarbon group, and at least one of R 1 , R 2 , R 3 , R 4 , R 5, and R 6 One is not a hydrogen atom.
  • R 7 , R 8 , R 9 , R 10 or R 11 each independently represents a hydrogen atom, a substituent or an unsubstituted hydrocarbon group.
  • examples of the halogen atom include fluorine, chlorine, bromine, iodine and the like.
  • the hydrocarbon group include an aromatic hydrocarbon group, an aromatic hydrocarbon group substituted with an aliphatic hydrocarbon, and an aliphatic hydrocarbon group, and those having 1 to 40 carbon atoms, particularly 4 to 22 carbon atoms. Is preferred.
  • the aromatic hydrocarbon group include phenyl, naphthyl, cyclohexylphenyl, biphenyl, terphenyl, fluoryl, thiophenylphenyl, furanylphenyl, 2′-phenyl-propylphenyl, benzyl, naphthylmethyl, and the like.
  • Examples of the aliphatic hydrocarbon group include methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, isobutyl, amyl, isoamyl, t-amyl, hexyl, heptyl, isoheptyl, t-heptyl, n -Linear, branched and cyclic alkyl groups such as octyl, isooctyl, t-octyl, nonyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, etc., and these aliphatic hydrocarbon groups Is interrupted by —O—, —COO—, —OCO—, —CO—, —S—, —SO—
  • R 15 has a substituent.
  • Examples of the aromatic hydrocarbon group substituted with the aliphatic hydrocarbon include phenyl, naphthyl, benzyl and the like substituted with the aliphatic hydrocarbon group.
  • Examples of the group that may substitute these hydrocarbon groups include a halogen atom, a cyano group, a nitro group, a hydroxyl group, a carboxyl group, a thiol group, and a —NR′R ′′ group, and R ′ and R ′′ are It represents a substituted or unsubstituted hydrocarbon group, and examples of the substituted or unsubstituted hydrocarbon group include the same groups as described above.
  • the picene derivative may have a structural unit other than the structural unit represented by the general formula (1) (hereinafter also referred to as other structural unit).
  • the structural unit of the general formula (1) is preferably 5 to 100 mol%, more preferably 10 to 90 mol%, and more preferably 20 to 80 mol%. It is particularly preferred that
  • picene derivatives represented by the general formula (1) those represented by the following general formula (1-1) or (1-2) are preferable because of easy production.
  • a 3 and A 4 represent a 6-membered ring among those exemplified for A 1 and A 2 above
  • a 5 and A 6 represent a 5-membered ring among those exemplified for A 1 and A 2 above
  • R 1 , R 2 , R 3 , R 4 , R 5 or R 6 is the same as in the general formula (1), At least one of R 1 , R 2 , R 3 , R 4 , R 5 and R 6 is not a hydrogen atom.
  • the other structural unit is not particularly limited as long as it is a ⁇ -conjugated group, but examples include structural units selected from the following group Y or group Z. From the viewpoint of durability and light resistance of the material, (Y— A structural unit selected from 2), (Y-3), (Y-4) or group Z is preferred.
  • X 1 and X 4 represent S, O or NR 12 k represents an integer of 1 to 4, R 12 represents a substituted or unsubstituted hydrocarbon group,
  • the hydrogen atom in the structural unit represented by group Y includes a halogen atom, a cyano group, a nitro group, a hydroxyl group, a carboxyl group, a thiol group, a —NR 13 R 14 group, a substituted or unsubstituted hydrocarbon group, or May be substituted with a substituted or unsubstituted heterocyclic group, R 13 and R 14 represent a substituted or unsubstituted hydrocarbon group.
  • X 2 represents S or NR 15 ;
  • X 3 represents S, NR 15 , CR 16 R 17 or SiR 16 R 17 ,
  • X 5 represents S, O or NR 15 ;
  • R 15 , R 16 and R 17 represent a substituted or unsubstituted hydrocarbon group;
  • the hydrogen atom in the structural unit represented by group Z includes a halogen atom, a cyano group, a nitro group, a hydroxyl group, a carboxyl group, a thiol group, a —NR 18 R 19 group, a substituted or unsubstituted hydrocarbon group, or May be substituted with a substituted or unsubstituted heterocyclic group, R 18 and R 19 represent a substituted or unsubstituted hydrocarbon group.
  • a hydrocarbon group which may substitute a hydrogen atom in the structural unit represented by group Y or group Z, and NR 12 representing X 1 and X 4 in group Y, R 15 , X 2 in group Z and NR 15 representing the X 5, and as NR 15, CR 16 R 17, SiR 16 R 12, R 15, R 16 and substituted with are or unsubstituted hydrocarbon group represented by R 17 of R 17 representing a X 3 Is the same group as the substituted or unsubstituted hydrocarbon group in the general formula (1).
  • the picene derivative includes a structural unit of the group Y or group Z
  • the picene derivative is represented by the following general formula (1 ′), and each of o, p, or q structural units in the general formula (1 ′)
  • the arrangement is not particularly limited, and the effects of the present invention are achieved.
  • p or q which is a structural unit of the group Y or the group Z is 1 to 10 when o which is a structural unit of the formula (1) is 1.
  • a more preferable value of p is 0 to 8, more preferably 1 to 5, from the viewpoint of high light absorption efficiency in the long wavelength region.
  • a more preferable value of q is 0 to 2, more preferably 1 to 2, and particularly preferably 1 from the viewpoint of high light absorption efficiency in the long wavelength region.
  • Y represents a group selected from the group Y
  • Z represents a group selected from the group Z
  • o represents 1 or more and 1000 or less
  • p and q represent 0 or more and 1000 or less.
  • picene derivatives include compounds represented by the following general formula (2), and more preferred examples include compounds represented by the following general formula (2-1) or (2-2).
  • a 1 , A 2 , R 1 , R 2 , R 3 , R 4 , R 5 and R 6 represent the same groups as in the above formula (1); At least one of R 1 , R 2 , R 3 , R 4 , R 5 and R 6 is not a hydrogen atom, Y 1 and Y 2 are a single bond or a group connected by combining 1 to 5 groups selected from the following (Y-1) to (Y-8): Z 1 represents a single bond or a group selected from the following (Z-1) to (Z-21): n represents an integer of 1 to 1000. )
  • X 1 and X 4 represent S, O or NR 12 k represents an integer of 1 to 4, R 12 represents a substituted or unsubstituted hydrocarbon group,
  • the hydrogen atoms in the groups represented by (Y-1) to (Y-4) and (Y-6) to (Y-8) are halogen atoms, cyano groups, nitro groups, hydroxyl groups, carboxyl groups, thiol groups.
  • —NR 13 R 14 group a substituted or unsubstituted hydrocarbon group or a substituted or unsubstituted heterocyclic group
  • R 13 and R 14 represent a substituted or unsubstituted hydrocarbon group.
  • X 2 represents S or NR 15 ;
  • X 3 represents S, NR 15 , CR 16 R 17 or SiR 16 R 17 ,
  • X 5 represents S, O or NR 15 ;
  • R 15 , R 16 and R 17 represent a substituted or unsubstituted hydrocarbon group
  • the hydrogen atoms in the groups represented by (Z-1) to (Z-21) are substituted with halogen atoms, cyano groups, nitro groups, hydroxyl groups, carboxyl groups, thiol groups, —NR 18 R 19 groups, Or may be substituted with an unsubstituted hydrocarbon group or a substituted or unsubstituted heterocyclic group, R 18 and R 19 represent a substituted or unsubstituted hydrocarbon group.
  • a 1 , A 2 , R 1 , R 2 , R 3 , R 4 , R 5 and R 6 represent the same groups as in the above formula (1); A 3 and A 4 are the same as in the above formula (1-1), A 5 and A 6 are the same as in the above formula (1-2), Y 1 , Y 2 , Z 1 and n are the same as in the above formula (2), At least one of R 1 , R 2 , R 3 , R 4 , R 5 and R 6 is not a hydrogen atom.
  • a compound in which at least one of Y 1 , Y 2, or Z 1 is not a single bond is used as a photoelectric conversion element. It is preferable because of its excellent characteristics.
  • at least one of R 1 , R 2 , R 3 , R 4 , R 5 and R 6 is a hydrogen atom.
  • R 1 , R 2 , R 3 , R 4 , R 5, and R 6 each represents an unsubstituted alkyl group having 1 to 30 carbon atoms or a substituted alkyl group having 1 to 30 carbon atoms.
  • the methylene group in the alkyl group may represent —CH ⁇ CH— or —C ⁇ C—, and the substituents that may be substituted for the alkyl group include an alkoxy group, an alkylthio group, an aryl group, and an aryloxy group.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 the position of the substituent other than the hydrogen atom is not particularly limited to the position of the substituent, but the effect of the present invention is achieved.
  • R 1 , R 3 , R 4 and R 6 more preferably R 1 and R 6 .
  • picene derivatives include the following Nos. 1-No. 17 is mentioned, but it is not particularly limited to these.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are the same groups as those in the general formula (1), and n is the same as that in the general formula (2).
  • the same number is represented, Hex represents a hexyl group, 2-EH represents a 2-ethylhexyl group, 2-HD represents a 2-hexyldecyl group, and 2-OD represents a 2-octyldodecyl group.
  • any of the picene derivatives of the present invention is not limited to its production method, and can be obtained by a method using a known general reaction.
  • a method for producing the picene derivative represented by the general formula (2) a bistrimethyltin body (4) reacted from the picene derivative (3) according to the following reaction formula and a known synthesis method can be used.
  • the picene derivative (2) of the present invention can be obtained by polycondensation reaction with the halogenated ⁇ -conjugated group (5).
  • a 1 , A 2 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , Y 1 , Y 2 , Z 1 , n are the same as those described in the general formula (2). Represents the same group.
  • the picene derivative of the present invention is suitable as an organic semiconductor material and can also be used for applications such as antioxidants.
  • the photoelectric conversion material of the present invention contains (A) a p-type organic semiconductor material containing at least one picene derivative, and (B) an n-type organic semiconductor material.
  • the p-type organic semiconductor material only needs to contain at least one of the above-described picene derivatives of the present invention, and other known materials can be used in combination.
  • the contents described above are applied as appropriate to the picene derivative of the present invention.
  • Known materials include, for example, phthalocyanine pigments, indigo or thioindigo pigments, quinacridone pigments, triarylmethane derivatives, triarylamine derivatives, oxazole derivatives, hydrazone derivatives, stilbene derivatives, pyrazoline derivatives, polysilane derivatives, polyphenylene vinylenes and their Derivatives (eg, poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylene vinylene]: MEH-PPV, poly [2-methoxy-5- (3 ′, 7′-dimethyloctyloxy) ) -1,4-phenylenevinylene]), polythiophene and its derivative
  • the content of the picene derivative is preferably 1 to 99% by mass, more preferably 1 to 80% by mass in the (A) p-type organic semiconductor material. %.
  • n-type organic semiconductor material As an n-type organic semiconductor material, a perylene pigment, a perinone pigment, a polycyclic quinone pigment, an azo pigment, C60 fullerene, C70 fullerene, and a derivative thereof can be used.
  • n-type organic semiconductor materials C60 fullerene, C70 fullerene, and derivatives thereof are preferable because they have high carrier mobility as n-type materials and / or high charge separation efficiency.
  • the compound quoted as an example as an n-type organic-semiconductor material may be used independently, or may be used together.
  • Examples of the C60 fullerene, C70 fullerene, and derivatives thereof include the following C1 to C6 compounds.
  • C1 PCBM phenyl
  • -C61-butyric acid methyl ester is preferably used.
  • the weight ratio of the component (A) to the component (B) is 10:90 to 90:10, preferably 10:90 to 70:30, more preferably Is 20:80 to 50:50.
  • the photoelectric conversion material of the present invention may contain one or more solvents as necessary.
  • the solvent is not particularly limited as long as it can dissolve or disperse the component (A) and the component (B).
  • water, alcohol solvent, diol solvent, ketone solvent, ester solvent, ether examples thereof include an aliphatic solvent, an aliphatic or alicyclic hydrocarbon solvent, an aromatic hydrocarbon solvent, a hydrocarbon solvent having a cyano group, a halogenated hydrocarbon solvent, and other solvents.
  • a photoelectric conversion material using a solvent can be used as a coating solution.
  • Examples of the alcohol solvent include methanol, ethanol, propanol, isopropanol, 1-butanol, isobutanol, 2-butanol, tertiary butanol, pentanol, isopentanol, 2-pentanol, neopentanol, third Pentanol, hexanol, 2-hexanol, heptanol, 2-heptanol, octanol, 2-ethylhexanol, 2-octanol, cyclopentanol, cyclohexanol, cycloheptanol, methylcyclopentanol, methylcyclohexanol, methylcycloheptanol , Benzyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoether Ether, diethylene glycol monomethyl
  • diol solvent examples include ethylene glycol, propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, isoprene glycol ( 3-methyl-1,3-butanediol), 1,2-hexanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,2-octanediol, octanediol (2-ethyl) -1,3-hexanediol), 2-butyl-2-ethyl-1,3-propanediol, 2,5-dimethyl-2,5-hexanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol 1,4-cyclohexanedimethanol and
  • ketone solvent examples include acetone, ethyl methyl ketone, methyl isopropyl ketone, methyl butyl ketone, methyl isobutyl ketone, methyl amyl ketone, methyl hexyl ketone, ethyl butyl ketone, diethyl ketone, dipropyl ketone, diisobutyl ketone, and methyl.
  • ester solvent examples include methyl formate, ethyl formate, methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, second butyl acetate, third butyl acetate, amyl acetate, isoamyl acetate, and third amyl acetate.
  • ether solvent examples include tetrahydrofuran, tetrahydropyran, morpholine, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, triethylene glycol dimethyl ether, dibutyl ether, diethyl ether, dioxane and the like.
  • Examples of the aliphatic or alicyclic hydrocarbon solvents include pentane, hexane, cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, heptane, octane, decalin, solvent naphtha, turpentine oil, D-limonene, pinene, and minerals.
  • Spirit, Swazol # 310 Cosmo Matsuyama Oil Co., Ltd., Solvesso # 100 (Exxon Chemical Co., Ltd.)
  • aromatic hydrocarbon solvent examples include benzene, toluene, ethylbenzene, xylene, mesitylene, diethylbenzene, cumene, isobutylbenzene, cymene, and tetralin.
  • hydrocarbon solvent having a cyano group examples include acetonitrile, 1-cyanopropane, 1-cyanobutane, 1-cyanohexane, cyanocyclohexane, cyanobenzene, 1,3-dicyanopropane, 1,4-dicyanobutane, , 6-dicyanohexane, 1,4-dicyanocyclohexane, 1,4-dicyanobenzene and the like.
  • halogenated hydrocarbon solvent examples include carbon tetrachloride, chloroform, dichloromethane, trichloroethylene, chlorobenzene, dichlorobenzene, and trichlorobenzene.
  • organic solvents examples include N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylformamide, aniline, triethylamine, pyridine and carbon disulfide.
  • preferable solvents include chloroform, dichloromethane, toluene, xylene, chlorobenzene, dichlorobenzene, trichlorobenzene and the like.
  • the content is not particularly limited as long as it does not hinder the formation of a photoelectric conversion layer using the photoelectric conversion material. It is preferable that the total amount of the component (A) and the component (B) is 0.1 to 20 parts by weight when it is 100 parts by weight, more preferably 1 to 10 parts by weight, and particularly preferably Is preferably selected from the range of 3 to 7 parts by weight.
  • the photoelectric conversion layer of the present invention is obtained by forming the photoelectric conversion material of the present invention into a film.
  • the film forming method is not particularly limited. For example, vapor deposition method, physical vapor deposition method (PVD), chemical vapor deposition method (CVD), atomic layer deposition method (ALD), atomic layer epitaxy method (ALE).
  • Dry processes such as molecular beam epitaxy (MBE), vapor phase epitaxy (VPE), sputtering, plasma polymerization, etc .; dip coating, casting, air knife coating, curtain coating, roller coating, wire Forming a coating on a support by wet processes such as bar coating, gravure coating, spin coating, LB, offset printing, screen printing, flexographic printing, dispenser printing, ink jet, and extrusion coating The method of doing is mentioned.
  • the film thickness of the photoelectric conversion layer is not particularly limited, but generally it is preferably set to about 5 nm to 5 ⁇ m, and heat treatment such as annealing may be performed.
  • the photoelectric conversion layer is used for an element in which p-type and n-type organic semiconductor materials are mixed.
  • organic bulk heterojunction element which is a preferred embodiment, a super hierarchical nanostructure junction element, a hybrid heterojunction type, pi Used for the i layer and the like in an n-junction element.
  • the photoelectric conversion element of this invention is comprised similarly to a conventionally well-known photoelectric conversion element except having at least one photoelectric conversion layer of this invention.
  • the support 1, the electrode 2, the charge transfer layer 3, the photoelectric conversion layer 4, and the electrode 5 are sequentially stacked.
  • a structure excluding the charge transfer layer 3 as shown in FIG. 1B or a structure further having a charge transfer layer 6 as shown in FIG. 1C may be used.
  • the photoelectric conversion element of the present invention light needs to reach the photoelectric conversion layer 4 from the support 1.
  • the electrode 2 and the charge transfer layer 3 are formed of a light transmissive material, and the light transmittance Is preferably set to be 70% or more.
  • the support 1 can stably hold the electrode 2 on the surface, the support 1 is not limited by the material and thickness, but needs to have transparency. Therefore, the shape of the support may be plate or film. Transparency refers to the property of transmitting light in a predetermined wavelength region used in a photoelectric conversion element, for example, visible light region at a high rate.
  • a photoelectric conversion element for example, visible light region at a high rate.
  • the support 1 for example, glass, transparent polymer film (polyethylene terephthalate (PET), tetraacetyl cellulose (TAC), polycarbonate, polyethylene naphthalate, polyphenylene sulfide, polyester sulfone, syndiotactic polystyrene) or the like can be used.
  • the photoelectric conversion element of the present invention is preferably formed on the surface of the support 1.
  • the work functions of a pair of electrodes (electrode 2 and electrode 5) arranged opposite to each other may be relatively large (that is, work functions are different from each other). Therefore, it is sufficient that the work function of the electrode 2 is relatively larger than that of the electrode 5.
  • the work function difference between the two electrodes is preferably 0.5 V or more.
  • a buffer layer is provided between each electrode and the semiconductor layer and the compound of the buffer layer on the electrode and the electrode are chemically bonded, these restrictions may be relaxed.
  • Examples of the electrodes 2 and 5 include noble metals such as gold, platinum, and silver, metals such as zinc oxide, indium oxide, tin oxide (NESA), tin-doped indium oxide (ITO), and fluorine-doped tin oxide (FTO).
  • noble metals such as gold, platinum, and silver
  • metals such as zinc oxide, indium oxide, tin oxide (NESA), tin-doped indium oxide (ITO), and fluorine-doped tin oxide (FTO).
  • organic conductive compounds such as PEDOT-PSS can be used as appropriate.
  • Electrode materials may be used alone or in combination. Since the electrode 2 needs to have transparency, a transparent material such as zinc oxide, NESA, ITO, FTO, and PEDOT-PSS is used.
  • the electrode 2 and the electrode 5 can be formed by using a dry process or a wet process using these electrode materials in the same manner as the photoelectric conversion layer 4. Further, it may be formed by firing by a sol-gel method or the like.
  • the thickness of the electrode is generally set to about 5 to 1000 nm, more preferably about 10 to 500 nm for both the electrode 2 and the electrode 5, although depending on the material of the electrode substance used.
  • the charge transfer layers 3 and 6 prevent the electrode material from entering and reacting with the photoelectric conversion layer, and prevent recombination of charges separated by the photoelectric conversion layer, thereby efficiently transferring the charge to the electrodes 2 and 5.
  • the material include charge transfer materials such as PEDOT: PSS, PEO, V 2 O 5 , zinc oxide, lithium fluoride, TiOx, and naphthalenetetracarboxylic acid anhydride.
  • the charge transfer layer 3 needs to have transparency.
  • the photoelectric conversion layer 4 is a P3HT: PCBM bulk hetero type
  • PEDOT: PSS is often used for the charge transfer layer 3
  • LiF is often used for the charge transfer layer 6.
  • the charge transfer layers 3 and 6 can be formed using these charge transfer materials by a dry process method or a wet process method in the same manner as the photoelectric conversion layer 4.
  • the thickness of the charge transfer layers 3 and 6 is generally set to about 0.01 to 100 nm, more preferably about 0.1 to 50 nm.
  • the photoelectric conversion element of the present invention can be used for a photodiode, a photodetector and the like in addition to the organic thin film solar cell of the present invention.
  • Step 1 2,9-Bis (triisopropylsilyl) phenanthro [1,2-b: 8 , 7-b '] dithiophene
  • PDT phenanthro [1,2-b: 8,7-b ′] dithiophene
  • n-BuLi (1.6M in hexane) (3.85 mL, 6.2 mmol, 2.2 equiv) was added dropwise, and the mixture was allowed to cool to room temperature and stirred for 1 hour. After stirring, the mixture was cooled to ⁇ 78 ° C., and TIPSCl (triisopropylsilyl chloride, 1.44 mL, 6.7 mmol, 2.4 equiv) was added dropwise, followed by refluxing for 24 hours. The reaction was stopped by adding water and 1N hydrochloric acid, and extracted with chloroform. The organic layer was washed with a saturated aqueous sodium chloride solution and then dried over anhydrous magnesium sulfate.
  • Step 2 4,7-Bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -2,9-Bis (triisopropylsilyl) phenanthro [1,2-b: 8 , 7-b] dithiophene (8a) [Ir (OMe) (cod)] 2 ((1,5-Cyclooctadiene) (methoxy) iridium (I) Dimer, 50 mg, 0.075 mmol, 5 mol%), dtbpy (4, 4-di-tert-butyl bipyridine, 40 mg, 0.15 mmol, 10 mol%), B 2 pin 2 (Bis (pinacolato) diboron, 762 mg, 3 mmol, 2 equiv), dehydrated cyclohexane (30 mL) were added, and the mixture was stirred at room temperature for 10 minutes.
  • Step 3 Synthesis of 4,7-dibromo-2,9-Bis (triisopropylsilyl) phenanthro [1,2-b: 8,7-b '] dithiophene (9a) To a 50 mL Schlenk tube, 8a (1.07 g, 1.25 mmol, 1 equiv), CuBr 2 (1.68 g, 7.5 mmol, 6 equiv) and NMP / MeOH / H 2 O (15 mL / 6 mL / 3 mL) were added and refluxed for 15 hours.
  • Step 4 Synthesis of 4,7-didodecyl-2,9-Bis (triisopropylsilyl) phenanthro [1,2-b: 8,7-b '] dithiophene (10a) Add 1-dodecene (412 ⁇ L, 1.86 mmol, 3 equiv), 9-BBN dimer (232 mg, 0.95 mmol, 1.53 equiv) and dehydrated THF (12 mL) to a 50 mL Schlenk tube under an argon gas atmosphere, and continue at 60 ° C. for 1 hour. Stir.
  • Step 5 Synthesis of 4,7-didodecylphenanthro [1,2-b: 8,7-b '] dithiophene (3a) Under an argon gas atmosphere, 10a (613 mg, 0.65 mmol, 1 equiv), TBAF (1M in THF) (6.5 mL, 6.5 mmol, 10 equiv) and dehydrated THF (26 mL) were added to a 50 mL Schlenk tube, and the mixture was stirred at room temperature for 15 hours. The reaction was stopped by adding water and extracted with chloroform. The organic layer was washed with a saturated aqueous sodium chloride solution and then dried over anhydrous magnesium sulfate.
  • Step 6 Synthesis of 4,7-didodecyl-2,9-Bis (trimethylstannyl) phenanthro [1,2-b: 8,7-b '] dithiophene (4a) Under an argon gas atmosphere, 3a (188 mg, 0.3 mmol, 1 equiv) and dehydrated THF (12 mL) were added to a 20 ml Schlenk tube and cooled to 0 ° C. Thereafter, n-BuLi (1.6M in hexane) (0.56 mL, 0.9 mmol, 3 equiv) was added dropwise, followed by refluxing for 2 hours.
  • n-BuLi 1.6M in hexane
  • 4a (62.7 mg, 0.066 mmol, 1 equiv)
  • BTZ-2T-HD (5a, 59.7 mg, 0.066 mmol, 1 equiv)
  • Pd (PPh 3 ) 4 1.5 mg, 1.32 ⁇ mol, 2 mol%)
  • argon gas was sealed and sealed with a stopper.
  • dehydrated toluene 3.3 mL was added, and the mixture was stirred for 40 minutes at 180 ° C. under microwave irradiation using a microwave irradiation apparatus.
  • Compound 4b was synthesized by the same method as in Step 1 to Step 6 of Example 1. After adding 4b (56.1 mg, 0.059 mmol), 5b (55.5 mg, 0.059 mmol) and Pd (PPh 3 ) 4 (1.4 mg, 1.2 ⁇ mol) to a 5 ml reaction vessel, put argon gas and seal the reaction vessel did. Thereafter, toluene (2.5 mL) was added to the reaction vessel, followed by stirring at 180 ° C. for 40 minutes in a microwave reactor.
  • Compound 4b was synthesized by the same method as in Step 1 to Step 6 of Example 1.
  • Add 4b (60.0 mg, 0.063 mmol), 5c (72.1 mg, 0.063 mmol) and Pd (PPh 3 ) 4 (1.5 mg, 1.2 ⁇ mol) to a 5 mL reaction vessel, then add argon gas and seal the reaction vessel did. Thereafter, toluene (2.9 mL) was added to the reaction vessel, followed by stirring at 180 ° C. for 40 minutes in a microwave reactor.
  • an aqueous solution of poly (3,4-ethylene-dioxythiophene): poly (styrenesulfonate) (PEDOT: PSS, CleviousPVPAI4083) was dropped as an anode buffer layer through a 0.45 ⁇ m PVDF syringe filter, Spin coated at 5000 rpm for 30 seconds. After drying on a hot plate at 120 ° C. for 10 minutes, it was immediately carried into a glove box.
  • Compound No. 10 at a concentration of 10 g / L.
  • the active layer was formed on the substrate coated with (PEDOT: PSS) by spin coating at 400 rpm for 30 seconds and then 1000 rpm for 5 seconds. After drying at room temperature, transferred to a vacuum deposition apparatus, 3 ⁇ 10?

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Photovoltaic Devices (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

 本発明は、製造が容易であり、高分子骨格内に高い平面性を有する、p型有機半導体材料を提供すること及びそのようなp型有機半導体材料を用いた高い光電変換効率を有する光電変換層、光電変換素子及び有機薄膜太陽電池を提供するものであり、具体的には、下記一般式(1)で表される構成単位を少なくとも1つ有するピセン誘導体並びに(A)p型有機半導体材料として前記ピセン誘導体、及び(B)n型有機半導体材料を含有してなる光電変換材料を提供するものである。一般式(1)の詳細は本明細書に記載の通りである。

Description

ピセン誘導体、光電変換材料及び光電変換素子
 本発明は、特定の構造を有する新規なp型有機半導体材料、光電変換材料及びこれを用いた光電変換素子に関する。
 近年、持続的に利用でき、資源が枯渇せず、環境汚染が小さい太陽電池(太陽光発電)が盛んに検討されている。太陽電池は、Si系や非Si系の無機系太陽電池と、色素増感型や有機薄膜型の有機系太陽電池とに大別される。無機系太陽電池は、概して光電変換効率が高いが、高真空が必要であったり、高温熱処理が必要であったりするため製造コストが高くなるという欠点がある。一方、有機系太陽電池は、塗布法や印刷法等での製膜が可能であるため、製造コストは低く、大面積での製膜が可能である。また、無機系太陽電池に比べ素子を軽くすることも利点として挙げられる。特に、有機薄膜型の太陽電池は、印刷法に優れ、フィルム等への製膜も容易であるためフレキシブルな太陽電池も容易であるとされている。
 しかし、有機系太陽電池の光電変換効率は低いものが多いため、高光電変換効率化が課題となっている。
 現在、有機薄膜型の太陽電池における高い光電変換効率が得られている材料として、p型有機半導体材料のP3HT〔ポリ(3-ヘキシルチオフェン)〕とn型有機半導体材料のPCBM〔[6,6]-フェニル-C61-ブチル酸メチルエステル〕との混合材料からなるバルクへテロ接合が挙げられる(非特許文献1等参照)。また、p型有機半導体材料として、ペンタセンなどの低分子化合物を用いる場合もあるが、一般に高分子型の材料の方が塗布による素子製造に適しているとされ、低コスト化や大画面化が容易であると考えられている。
 p型有機半導体材料に求められる特徴として、材料中に平面性の高いπ共役平面を有していることが挙げられる。これは、高いπ-π相互作用や高いキャリア輸送効率が期待できるためであり、結果として高い光起電力を提供できる。
 特許文献1~3には、高分子型のp型有機半導体に関する開示がなされている。
米国特許出願公開2008/0083455号公報 特開2009-158921号公報 特表2011-116962号公報
F. Padinger, et al., Adv. Funct. Mater., 13, 85 (2003)
 従って、本発明の目的は、製造が容易であり、高分子骨格内に高い平面性を有する、p型有機半導体材料を提供することにある。
 また本発明の目的は、上記p型有機半導体材料を用いて高い光電変換効率を有する光電変換層、光電変換素子及び有機薄膜太陽電池を提供することにある。
 本発明者らは、鋭意検討を重ねた結果、下記一般式(1)で表されるピセン誘導体は、p型有機半導体材料として使用すると、光電変換層を容易に製造できることを知見した。さらに検討を進めた結果、該光電変換層を有する光電変換素子は、高いキャリア移動度を示し、上記課題を解決し得ることを知見した。
 本発明は、上記知見に基づいてなされたもので、下記一般式(1)で表される構成単位を少なくとも1つ有する新規のピセン誘導体(以下、ピセン誘導体ともいう)を提供するものである。
Figure JPOXMLDOC01-appb-C000007
 
(式中、A1及びA2は、それぞれ独立に単環を表し、
 R1、R2、R3、R4、R5及びR6は、それぞれ独立に水素原子、ハロゲン原子、シアノ基、ニトロ基、水酸基、カルボキシル基、チオール基、-SiR789、-NR1011基、又は置換基を有している若しくは無置換の炭化水素基を表し、
 R1、R2、R3、R4、R5及びR6の少なくとも一つは水素原子では無く、
 R7、R8、R9、R10又はR11はそれぞれ独立に水素原子又は置換基を有している若しくは無置換の炭化水素基を表す。)
 また、本発明は、(A)p型有機半導体材料として上記のピセン誘導体、及び(B)n型有機半導体材料を含有してなる光電変換材料を提供するものである。
 また、本発明は、(A)ピセン誘導体を少なくとも一種含有するp型有機半導体材料、及び(B)n型有機半導体材料を含有してなる光電変換材料を提供するものである。
 また、本発明は、上記光電変換材料を製膜して得られる光電変換層を提供するものである。
 また、本発明は、上記光電変換層を有してなる光電変換素子を提供するものである。
 また、本発明は、上記光電変換素子を有してなる有機薄膜太陽電池を提供するものである。
 本発明によれば、有機半導体材料として有用な新規なピセン誘導体を提供することができる。該化合物を含有する本発明の光電変換材料を用いれば、高いキャリア移動度により、素子の高性能化を実現できる。
図1(a)は、本発明の光電変換素子の構成の一例を示す断面図であり、図1(b)は、本発明の光電変換素子の構成の別の一例を示す断面図であり、図1(c)は、本発明の光電変換素子の構成の別の一例を示す断面図である。
 以下、本発明のピセン誘導体、光電変換材料、光電変換層、光電変換層及び有機薄膜太陽電池について、好ましい実施形態に基づき詳細に説明する。
<ピセン誘導体>
 ピセン誘導体は、上記一般式(1)で表される構成単位を少なくとも1つ有する化合物である。尚、上記一般式(1)中の*は、これらの式で表される基が、*部分で、隣接する基と結合することを意味する(以下同様)。
 上記一般式(1)におけるA1及びA2が表す単環とは、特に限定されないが、芳香族性の単環であることが好ましく、具体的な例としては、ベンゼン環、フラン環、チオフェン環、セレノフェン環、テルロフェン環、チアゾール環、イソチアゾール環、オキサゾール環、イソオキサゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、ピロール環、イミダゾール環、ピラゾール環等が挙げられる。中でも、硫黄原子、セレン原子、テルル原子を含む複素環は、素子の特性を向上させるため好ましい。
 上記一般式(1)におけるR1、R2、R3、R4、R5又はR6はそれぞれ独立に水素原子、ハロゲン原子、シアノ基、ニトロ基、水酸基、カルボキシル基、チオール基、-SiR789、-NR1011基、置換基を有している若しくは無置換の炭化水素基を表し、R1、R2、R3、R4、R5及びR6の少なくとも一つは水素原子ではない。
 R7、R8、R9、R10又はR11はそれぞれ独立に水素原子又は置換基を有している又は無置換の炭化水素基を示す。
 上記一般式(1)において、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等が挙げられ、
 上記炭化水素基としては、芳香族炭化水素基、脂肪族炭化水素で置換された芳香族炭化水素基、脂肪族炭化水素基が挙げられ、炭素原子数1~40、特に4~22であるものが好ましい。
 上記芳香族炭化水素基としては、例えば、フェニル、ナフチル、シクロヘキシルフェニル、ビフェニル、ターフェニル、フルオレイル、チオフェニルフェニル、フラニルフェニル、2’-フェニル-プロピルフェニル、ベンジル、ナフチルメチル等が挙げられ、
 上記脂肪族炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、s-ブチル、t-ブチル、イソブチル、アミル、イソアミル、t-アミル、ヘキシル、ヘプチル、イソヘプチル、t-ヘプチル、n-オクチル、イソオクチル、t-オクチル、ノニル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル等の直鎖、分岐及び環状のアルキル基が挙げられ、これら脂肪族炭化水素基は、-O-、-COO-、-OCO-、-CO-、-S-、-SO-、-SO2-、-NR15-、-HC=CH-又は-C≡C-で中断されていてもよく(尚、該中断は脂肪族炭化水素基の結合する部分を中断していてもよい)、R15は、置換基を有している又は無置換の炭化水素基を表し、置換基を有している又は無置換の炭化水素基としては、上記と同様の基が挙げられ、中でもパーフルオロアルキルが好ましい。
 上記脂肪族炭化水素で置換された芳香族炭化水素基としては、上記脂肪族炭化水素基により置換されたフェニル、ナフチル、ベンジル等が挙げられる。
 これらの炭化水素基を置換してもよい基としては、ハロゲン原子、シアノ基、ニトロ基、水酸基、カルボキシル基、チオール基、-NR’R”基等が挙げられ、R’及びR”は、置換基を有している又は無置換の炭化水素基を表し、置換基を有している又は無置換の炭化水素基としては、上記と同様の基が挙げられる。
 ピセン誘導体の中でも、上記一般式(1)で表される構成単位を2以上、100以下有するものは製膜性に優れるため好ましい。また、ピセン誘導体は、上記一般式(1)で表される構成単位以外の構成単位(以下、その他の構成単位とも呼ぶ)を有していてもよい。ピセン誘導体が、その他の構成単位を含む場合、上記一般式(1)の構成単位が5~100モル%であることが好ましく、10~90モル%であることが更に好ましく、20~80モル%であることが特に好ましい。
 上記一般式(1)で表されるピセン誘導体の中でも、下記一般式(1-1)又は(1-2)で表されるものが、製造が容易であるため好ましい。
Figure JPOXMLDOC01-appb-C000008
 
(式中、A3及びA4は、上記A1及びA2で例示した内の6員環であるものを表し、
 A5及びA6は、上記A1及びA2で例示した内の5員環であるものを表し、
 R1、R2、R3、R4、R5又はR6は、上記一般式(1)と同様であり、
 R1、R2、R3、R4、R5及びR6の少なくとも一つは水素原子ではない。)
 上記一般式(1-1)及び(1-2)で表される構成を有するピセン誘導体の中でも、上記一般式(1-1)中のA3及びA4が同一の6員環であるもの、又は上記一般式(1-2)中のA5及びA6が同一の5員環であるものは、製造がより容易であるため好ましい。
 その他の構成単位としては、π共役の基であれば特に限定されないが、例として下記群Y又は群Zから選ばれる構成単位が挙げられ、材料の耐久性、耐光性の点から、(Y-2)、(Y-3)、(Y-4)又は群Zから選ばれる構成単位が好ましい。
Figure JPOXMLDOC01-appb-C000009
 
(式中、X1及びX4はS、O又はNR12を表し、
 kは1~4の整数を表し、
 R12は置換されている若しくは無置換の炭化水素基を表し、
 群Yで表される構成単位中の水素原子は、ハロゲン原子、シアノ基、ニトロ基、水酸基、カルボキシル基、チオール基、-NR1314基、置換されている若しくは無置換の炭化水素基又は置換されていている若しくは無置換の複素環基で置換されていてもよく、
 R13及びR14は、置換されていている又は無置換の炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000010
 
(式中、X2はS又はNR15を表し、
 X3はS、NR15、CR1617又はSiR1617を表し、
 X5はS、O又はNR15を表し、
 R15、R16及びR17は、置換されている若しくは無置換の炭化水素基を表し、
 群Zで表される構成単位中の水素原子は、ハロゲン原子、シアノ基、ニトロ基、水酸基、カルボキシル基、チオール基、-NR1819基、置換されている若しくは無置換の炭化水素基又は置換されている若しくは無置換の複素環基で置換されていてもよく、
 R18及びR19は、置換されている若しくは無置換の炭化水素基を表す。)
 群Y又は群Zで表される構成単位中の水素原子を置換してもよい炭化水素基、並びに群Y中のX1及びX4を表すNR12、群Z中のR15、X2及びX5を表すNR15、及びX3を表すNR15、CR1617、SiR1617のR12、R15、R16及びR17が表す置換されている若しくは無置換の炭化水素基としては、上記一般式(1)における置換されている又は無置換の炭化水素基と同様の基が挙げられる。
 ピセン誘導体が上記群Y又は群Zの構成単位を含む場合、ピセン誘導体は、下記一般式(1’)として表され、該一般式(1’)におけるo、p又はq個の各構成単位の並びは特に限定されず本発明の効果を奏する。また、各構成単位の好ましい比率としては、式(1)の構成単位であるoを1としたときに、群Y又は群Zの構成単位であるp又はqは1~10である。より好ましいpの値は、長波長域の高い光吸収効率の点から、0~8であり、更に好ましくは1~5である。またより好ましいqの値は、長波長域の高い光吸収効率の点から、0~2であり、更に好ましくは1~2であり、特に好ましくは1である。
Figure JPOXMLDOC01-appb-C000011
 
(式中の水素原子は、上記一般式(1)と同様に置換されていてもよく、
 Yは上記群Yから選ばれる基を表し、
 Zは上記群Zから選ばれる基を表し、
 oは1以上1000以下を表し、
 p及びqは、0以上1000以下を表す。)
 また、ピセン誘導体の好ましい例として、下記一般式(2)で表される化合物、より好ましい例として下記一般式(2-1)又は(2-2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 
(式中、A1、A2、R1、R2、R3、R4、R5及びR6は、上記式(1)と同様の基を表し、
 R1、R2、R3、R4、R5及びR6の少なくとも一つは水素原子では無く、
 Y1及びY2は単結合又は下記(Y-1)~(Y-8)から選ばれる基を1~5個組み合わせて連結した基であり、
 Z1は、単結合又は下記(Z-1)~(Z-21)から選ばれる基を表し、
 nは1以上1000以下の整数を表す。)
Figure JPOXMLDOC01-appb-C000013
 
(式中、X1及びX4はS、O又はNR12を表し、
 kは1~4の整数を表し、
 R12は置換されている若しくは無置換の炭化水素基を表し、
 (Y-1)~(Y-4)及び(Y-6)~(Y-8)で表される基中の水素原子は、ハロゲン原子、シアノ基、ニトロ基、水酸基、カルボキシル基、チオール基、-NR1314基、置換されている若しくは無置換の炭化水素基又は置換されている若しくは無置換の複素環基で置換されていてもよく、
 R13及びR14は、置換されている若しくは無置換の炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000014
 
(式中、X2はS又はNR15を表し、
 X3はS、NR15、CR1617又はSiR1617を表し、
 X5はS、O又はNR15を表し、
 R15、R16及びR17は、置換されている若しくは無置換の炭化水素基を表し、
 (Z-1)~(Z-21)で表される基中の水素原子は、ハロゲン原子、シアノ基、ニトロ基、水酸基、カルボキシル基、チオール基、-NR1819基、置換されている若しくは無置換の炭化水素基又は置換されている若しくは無置換の複素環基で置換されていてもよく、
 R18及びR19は、置換されている若しくは無置換の炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000015
 
(式中、A1、A2、R1、R2、R3、R4、R5及びR6は、上記式(1)と同様の基を表し、
 A3及びA4は、上記式(1-1)と同様であり、
 A5及びA6は、上記式(1-2)と同様であり、
 Y1、Y2、Z1及びnは、上記式(2)と同様であり、
 R1、R2、R3、R4、R5及びR6の少なくとも一つは水素原子ではない。)
 上記一般式(2)、(2-1)又は(2-2)で表される化合物の中でも、Y1、Y2又はZ1の少なくとも一つが単結合ではない化合物は、光電変換素子としての特性に優れるため好ましい。
 また、一般式(2)、(2-1)又は(2-2)で表される化合物において、R1、R2、R3、R4、R5及びR6の少なくとも一つは水素原子以外の置換基であり、R1、R2、R3、R4、R5及びR6の置換基の種類に特に限定されず本発明の効果を奏するが、好ましくは、R1、R2、R3、R4、R5及びR6の少なくとも一つが、炭素原子数1~30の無置換アルキル基、又は炭素原子数1~30の置換アルキル基を表し、該無置換アルキル基及び置換アルキル基中のメチレン基は、-CH=CH-又は-C≡C-を表してもよく、該アルキル基を置換してもよい置換基は、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、複素環基、アシル基、アシルオキシ基、アミノ基、スルホニル基、カルボキシル基、シアノ基、スルホ基、水酸基、メルカプト基、イミド基、ハロゲン原子である化合物、より好ましくは炭素原子数1~30の無置換アルキル基、又は炭素原子数1~30の置換アルキル基である化合物、特に炭素原子数10~20の無置換アルキル基、又は炭素原子数10~20の置換アルキル基である化合物が好ましい。
 また、R1、R2、R3、R4、R5及びR6において、水素原子以外の置換基の位置については、置換基の位置に特に限定されず本発明の効果を奏するが、好ましくは、R1、R3、R4及びR6であり、より好ましくは、R1及びR6である。
 ピセン誘導体の具体例としては、下記No.1~No.17が挙げられるが、特にこれらに制限されることはない。尚、下記式中のR1、R2、R3、R4、R5、R6は上記一般式(1)におけるものと同様の基であり、nは上記一般式(2)におけるものと同様の数を表し、Hexはヘキシル基、2-EHは2-エチルヘキシル基、2-HDは2-ヘキシルデシル基、2-ODは2-オクチルドデシル基を表す。
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
 本発明のピセン誘導体は、何れも、その製造方法に制限されず、周知一般の反応を利用した方法で得ることができる。上記一般式(2)で表されるピセン誘導体の製造方法の一例としては、下記の反応式に従い、ピセン誘導体(3)から反応させたビストリメチルスズ体(4)と、既知の合成法により得たハロゲン化π共役基(5)とを重縮合反応させることで、本発明のピセン誘導体(2)を得ることができる。
Figure JPOXMLDOC01-appb-C000020
 
(式中、A1、A2、R1、R2、R3、R4、R5、R6、Y1、Y2、Z1、nは上記一般式(2)で説明したものと同様の基を表す。)
 本発明のピセン誘導体は、有機半導体材料として好適なほか、酸化防止剤等の用途にも使用することができる。
<光電変換材料>
 本発明の光電変換材料は、(A)ピセン誘導体を少なくとも一種含有するp型有機半導体材料、及び(B)n型有機半導体材料を含有するものである。
 (A)p型有機半導体材料としては、上述した本発明のピセン誘導体を少なくとも一種含んでいればよく、その他の公知材料を合わせて用いることが出来る。本発明のピセン誘導体については、上述した内容が適宜適用される。公知材料としては、例えば、フタロシアニン系顔料、インジゴ又はチオインジゴ系顔料、キナクリドン系顔料、トリアリールメタン誘導体、トリアリールアミン誘導体、オキサゾール誘導体、ヒドラゾン誘導体、スチルベン誘導体、ピラゾリン誘導体、ポリシラン誘導体、ポリフェニレンビニレン及びその誘導体(例えば、ポリ[2-メトキシ-5-(2-エチルヘキシロキシ)-1,4-フェニレンビニレン]:MEH-PPV、ポリ[2-メトキシ-5-(3’,7’-ジメチルオクチロキシ)-1,4-フェニレンビニレン])、ポリチオフェン及びその誘導体(例えば、ポリ(3-ドデシルチオフェン)、ポリ(3-ヘキシルチオフェン):P3HT、ポリ(3-オクチルチオフェン))、ポリ-N-ビニルカルバゾール誘導体等が挙げられる。
 (A)p型有機半導体材料として、その他の公知材料を用いる場合、ピセン誘導体の含有量は、(A)p型有機半導体材料中、好ましくは1~99質量%、より好ましくは1~80質量%である。
 (B)n型有機半導体材料としては、ペリレン系顔料、ペリノン系顔料、多環キノン系顔料、アゾ系顔料、C60フラーレンやC70フラーレン及びその誘導体等を用いることができ、また、有機金属錯体〔例えば、トリス(8-キノリノラート)アルミニウム、ビス(10-ベンゾ[h]キノリノラート)ベリリウム、5-ヒドロキシフラボンのベリリウム塩、5-ヒドロキシフラボンのアルミニウム塩〕、オキサジアゾール誘導体〔例えば、1,3-ビス[5'-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2'-イル]ベンゼン〕、トリアゾール誘導体〔例えば、3-(4'-tert-ブチルフェニル)-4-フェニル-5-(4''-ビフェニル)-1,2,4-トリアゾール〕、フェナントロリン誘導体[例えば、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(バソクプロイン、BCP)]、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、ジフェニルキノン誘導体、ニトロ置換フルオレノン誘導体、チオピランジオキサイド誘導体等を用いることもできる。(B)n型有機半導体材料の中でも、n型材料として高いキャリヤ移動度を有し、及び/又は電荷分離効率が高い点から、C60フラーレンやC70フラーレン及びその誘導体が好ましい。尚、n型有機半導体材料として例に挙げた化合物は、単独で使用してもよく、あるいは複数併用してもよい。
 上記のC60フラーレンやC70フラーレン及びその誘導体としては、以下のC1~C6の化合物が例に挙げられ、中でも、電子準位の整合性に優れ、入手が容易である点から、C1のPCBM(フェニル-C61-ブチル酸メチルエステル)が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000021
 
 本発明の光電変換材料において、(A)成分と(B)成分の重量比率(前者:後者)は10:90~90:10であり、好ましくは10:90~70:30であり、さらに好ましくは20:80~50:50である。
 また、本発明の光電変換材料は、必要に応じて一種又は二種以上の溶媒を含有してもよい。
 上記溶媒としては、(A)成分及び(B)成分を溶解又は分散可能なものであれば特に制限されないが、例えば、水、アルコール系溶剤、ジオール系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤、脂肪族又は脂環族炭化水素系溶剤、芳香族炭化水素系溶剤、シアノ基を有する炭化水素溶剤、ハロゲン化炭化水素系溶剤、その他の溶剤等が挙げられる。溶媒を用いた光電変換材料は、塗布液として用いることができる。
 上記アルコール系溶剤としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、1-ブタノール、イソブタノール、2-ブタノール、第3ブタノール、ペンタノール、イソペンタノール、2-ペンタノール、ネオペンタノール、第3ペンタノール、ヘキサノール、2-ヘキサノール、ヘプタノール、2-ヘプタノール、オクタノール、2―エチルヘキサノール、2-オクタノール、シクロペンタノール、シクロヘキサノール、シクロヘプタノール、メチルシクロペンタノール、メチルシクロヘキサノール、メチルシクロヘプタノール、ベンジルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングルコールモノエチルエーテル、ジエチレングルコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、2-(N,N-ジメチルアミノ)エタノール、3(N,N-ジメチルアミノ)プロパノール等が挙げられる。
 上記ジオール系溶剤としては、例えば、エチレングリコール、プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、イソプレングリコール(3-メチル-1,3-ブタンジオール)、1,2-ヘキサンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,2-オクタンジオール、オクタンジオール(2-エチル-1,3-ヘキサンジオール)、2-ブチル-2-エチル-1,3-プロパンジオール、2,5-ジメチル-2,5-ヘキサンジオール、1,2-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール等が挙げられる。
 上記ケトン系溶剤としては、例えば、アセトン、エチルメチルケトン、メチルイソプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、メチルアミルケトン、メチルヘキシルケトン、エチルブチルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン、メチルシクロヘキサノン等が挙げられる。
 上記エステル系溶剤としては、例えば、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸第2ブチル、酢酸第3ブチル、酢酸アミル、酢酸イソアミル、酢酸第3アミル、酢酸フェニル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸イソプロピル、プロピオン酸ブチル、プロピオン酸イソブチル、プロピオン酸第2ブチル、プロピオン酸第3ブチル、プロピオン酸アミル、プロピオン酸イソアミル、プロピオン酸第3アミル、プロピオン酸フェニル、2-エチルヘキサン酸メチル、2-エチルヘキサン酸エチル、2-エチルヘキサン酸プロピル、2-エチルヘキサン酸イソプロピル、2-エチルヘキサン酸ブチル、乳酸メチル、乳酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸メチル、メトキシプロピオン酸エチル、エトキシプロピオン酸エチル、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、エチレングリコールモノイソプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノ第2ブチルエーテルアセテート、エチレングリコールモノイソブチルエーテルアセテート、エチレングリコールモノ第3ブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノイソプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、プロピレングリコールモノ第2ブチルエーテルアセテート、プロピレングリコールモノイソブチルエーテルアセテート、プロピレングリコールモノ第3ブチルエーテルアセテート、ブチレングリコールモノメチルエーテルアセテート、ブチレングリコールモノエチルエーテルアセテート、ブチレングリコールモノプロピルエーテルアセテート、ブチレングリコールモノイソプロピルエーテルアセテート、ブチレングリコールモノブチルエーテルアセテート、ブチレングリコールモノ第2ブチルエーテルアセテート、ブチレングリコールモノイソブチルエーテルアセテート、ブチレングリコールモノ第3ブチルエーテルアセテート、アセト酢酸メチル、アセト酢酸エチル、オキソブタン酸メチル、オキソブタン酸エチル、γ-ラクトン、マロン酸ジメチル、コハク酸ジメチル、プロピレングリコールジアセテート、δ-ラクトン等が挙げられる。
 上記エーテル系溶剤としては、例えば、テトラヒドロフラン、テトラヒドロピラン、モルホリン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジブチルエーテル、ジエチルエーテル、ジオキサン等が挙げられる。
 上記脂肪族又は脂環族炭化水素系溶剤としては、例えば、ペンタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、オクタン、デカリン、ソルベントナフサ、テレピン油、D-リモネン、ピネン、ミネラルスピリット、スワゾール#310(コスモ松山石油(株)、ソルベッソ#100(エクソン化学(株))等が挙げられる。
 上記芳香族炭化水素系溶剤としては、例えば、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン、ジエチルベンゼン、クメン、イソブチルベンゼン、シメン、テトラリン等が挙げられる。
 上記シアノ基を有する炭化水素溶剤としては、例えば、アセトニトリル、1-シアノプロパン、1-シアノブタン、1-シアノヘキサン、シアノシクロヘキサン、シアノベンゼン、1,3-ジシアノプロパン、1,4-ジシアノブタン、1,6-ジシアノヘキサン、1,4-ジシアノシクロヘキサン、1,4-ジシアノベンゼン等が挙げられる。
 上記ハロゲン化炭化水素系溶媒としては、例えば、四塩化炭素、クロロホルム、ジクロロメタン、トリクロロエチレン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等が挙げられる。
 上記その他の有機溶剤としては、例えば、N-メチル-2-ピロリドン、ジメチルスルホキシド、ジメチルホルムアミド、アニリン、トリエチルアミン、ピリジン、2硫化炭素等が挙げられる。
 これらの中でも、好ましい溶媒としては、クロロホルム、ジクロロメタン、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等が挙げられる。
 本発明の光電変換材料に上記溶媒を含有させる場合、その含有量は、該光電変換材料を用いた光電変換層の形成に支障が生じない限り特に制限されるものではないが、例えば、溶媒を100重量部としたときに(A)成分及び(B)成分の総量が0.1~20重量部となる範囲から適宜選択することが好ましく、更に好ましくは1~10重量部であり、特に好ましくは3~7重量部の範囲から選択することが望ましい。
 <光電変換層>
 次に、本発明の光電変換層について説明する。本発明の光電変換層は、本発明の光電変換材料を製膜して得られる。製膜方法に関しては特に限定するものではないが、例えば、蒸着法、物理気相成長法(PVD)、化学気相成長法(CVD)、原子層堆積法(ALD)、原子層エピタキシー法(ALE)、分子線エピタキシー法(MBE)、気相エピタキシー法(VPE)、スパッタ法、プラズマ重合法等のドライプロセス;ディップコート法、キャスト法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、スピンコート法、LB法、オフセット印刷法、スクリーン印刷法、フレキソ印刷法、ディスペンサ印刷法、インクジェット法、エクストルージョンコート法等のウェットプロセスによって支持体上に塗膜形成する方法が挙げられる。
 上記光電変換層の膜厚は、特に限定するものではないが、一般に、5nm~5μm程度に設定することが好ましく、アニーリング等の加熱処理をしてもよい。
 上記光電変換層は、p型とn型の有機半導体材料を混在させる素子に用いられ、好ましい実施形態である有機バルクヘテロ接合素子の他、超階層ナノ構造接合素子、ハイブリッドヘテロ接合型、p-i-n接合型素子におけるi層等に用いられる。
<光電変換素子及び有機薄膜太陽電池>
 本発明の光電変換素子は、本発明の光電変換層を少なくとも一つ有する以外は、従来公知の光電変換素子と同様に構成される。例えば、図1(a)を例にとって示すと、支持体1、電極2、電荷移動層3、光電変換層4、及び電極5が順次積層された構造を有する。また、図1(b)に示すように電荷移動層3を除いた構造であってもよく、図1(c)に示すように電荷移動層6を更に有する構造であってもよい。
 本発明の光電変換素子においては、支持体1から光電変換層4へ光が到達する必要がある。支持体1、電極2及び電荷移動層3から光電変換層4へ照射光を到達させるためには、支持体1、電極2及び電荷移動層3を光透過性の材料で形成し、光透過率が70%以上となるように設定することが好ましい。
 支持体1は電極2を表面に安定して保持することが可能であれば、材質や厚みには制限されないが透明性を有する必要が有る。そのため、支持体の形状は板状でもフィルム状でもよい。透明性とは、光電変換素子において使用される所定波長領域、例えば可視光領域の光を高率で透過する性質をいう。支持体1には、例えば、ガラス、透明ポリマーフィルム(ポリエチレンテレフタレート(PET)、テトラアセチルセルロース(TAC)、ポリカーボネート、ポリエチレンナフタレート、ポリフェニレンスルフィド、ポリエステルスルフォン、シンジオタクチックポリスチレン)等が使用できる。尚、本発明の光電変換素子は、支持体1の表面に形成されることが好ましいが、電極2自体にある程度の硬度があり、自立性を有する場合は、電極2が支持体1を兼ねる構造としてもよく、この場合、支持体1は省略されてもよい。
 本発明において、対向配置される一対の電極(電極2及び電極5)の仕事関数は、相互に相対的に大小関係を有する(即ち互いに仕事関数の異なる)ものとすればよい。従って、電極2の仕事関数が電極5よりも相対的に大きければよい。この場合、両電極間の仕事関数の差は0.5V以上であることが好ましい。尚、各電極と半導体層の間にバッファー層を設置し、電極上のバッファー層の化合物と電極とが化学結合している場合は、これらの制約が緩和されることがある。
 電極2及び電極5としては、例えば、金、白金、銀等の貴金属類、酸化亜鉛、酸化インジウム、酸化錫(NESA)、錫ドープ酸化インジウム(ITO)、フッ素ドープ酸化錫(FTO)等の金属酸化物、リチウム、リチウム-インジウム合金、ナトリウム、ナトリウム-カリウム合金、カルシウム、マグネシウム、マグネシウム-銀合金、マグネシウム-インジウム合金、インジウム、ルテニウム、チタニウム、マンガン、イットリウム、アルミニウム、アルミニウム-リチウム合金、アルミニウム-カルシウム合金、アルミニウム-マグネシウム合金、クロミウム、グラファイト薄膜の他PEDOT-PSS等の有機導電性化合物等を適宜用いることができる。これらの電極物質は、単独で使用してもよく、或いは複数併用してもよい。電極2は、透明性を有する必要が有るため、酸化亜鉛、NESA、ITO、FTO及びPEDOT-PSS等の透明性を有する材料が用いられる。電極2及び電極5は、これらの電極物質を用いて、上記光電変換層4同様にドライプロセス又はウェットプロセスの方法により形成することができる。また、ゾルゲル法等により焼成して形成してもよい。また、電極の厚みは、使用する電極物質の材料にもよるが、電極2及び電極5とも、一般的に5~1000nm程度、更に好ましくは10~500nm程度に設定する。
 電荷移動層3及び6は、電極材料が光電変換層へ侵入・反応するのを防止したり、光電変換層で分離された電荷の再結合を防止し効率的に電極2及び5へ電荷を移動させる等の役割がある。材料としては、PEDOT:PSS、PEO、V25、酸化亜鉛、フッ化リチウム、TiOx、ナフタレンテトラカルボン酸無水物等の電荷移動物質が挙げられる。電荷移動層3は、透明性を有する必要が有る。光電変換層4がP3HT:PCBMのバルクヘテロ型である場合、電荷移動層3はPEDOT:PSSがよく用いられ、電荷移動層6はLiFがよく用いられる。電荷移動層3及び6は、これらの電荷移動物質を用いて、上記光電変換層4同様にドライプロセス又はウェットプロセスの方法により形成することができる。また、電荷移動層3及び6の厚みは、一般的に0.01~100nm、更に好ましくは0.1~50nm程度に設定する。
 本発明の光電変換素子は、本発明の有機薄膜太陽電池の他、フォトダイオード、光検出器等に用いることができる。
 以下、実施例及び比較例をもって本発明を更に詳細に説明する。しかしながら、本発明は以下の実施例等によって何ら制限を受けるものではない。
[実施例1]化合物No.11(R1及びR6=C1225、R2、R3、R4及びR5=H)の合成
(ステップ1)2,9-Bis(triisopropylsilyl)phenanthro[1,2-b:8,7-b']dithiophene(7a)の合成
Figure JPOXMLDOC01-appb-C000022
 
 アルゴンガス雰囲気下、50mLシュレンク管にフェナントロ[1,2-b:8,7-b']ジチオフェン(PDT) (6a) (809mg, 2.8mmol, 1equiv), 脱水THF(50mL) を加え、-78℃に冷却した。その後,n-BuLi(1.6M in hexane)(3.85mL, 6.2mmol, 2.2equiv) を滴下した後、室温まで放冷し、1時間撹拌した。撹拌後、-78℃に冷却し、TIPSCl(トリイソプロピルシリルクロライド, 1.44mL, 6.7mmol, 2.4equiv) を滴下した後、24 時間還流させた。水及び1N塩酸を加えることで反応を停止させ、クロロホルムで抽出した。飽和塩化ナトリウム水溶液で有機層を洗浄した後、無水硫酸マグネシウムで乾燥し、この混合溶液をろ過後、ロータリーエバポレーターを用いて溶媒を留去した。その後、シリカゲルカラムクロマトグラフィーで精製し、目的の化合物である7aを白色固体として 69%(1.17g, 1.9mmol) の収率で得た。以下に、シリカゲルカラムクロマトグラフィーの条件及び化合物7aの分析結果を示す。
シリカゲルカラムクロマトグラフィー (Rf=0.38, hexane)。
m.p.: 98-100℃
FT-IR (KBr, cm-1): 2941 (w), 2989 (m), 2864 (w), 1564 (s), 1460 (m), 1284 (m), 1072 (m), 949 (w), 883 (m), 842 (m), 686 (m), 592 (m).
1H NMR (600 MHz, CDCl3, rt): 1.20 (d, J = 7.2 Hz, 36H), 1.55 (sept, J = 7.2 Hz, 6H) 7.68 (s, 2H), 8.04 (d, J = 8.4 Hz, 2H), 8.26 (s, 2H), 8.65 (d, J = 9 Hz, 2H).
13C[1H] NMR (150 MHz, CDCl3, rt):11.9, 18.7, 120.2, 122.2, 123.8, 126.8, 127.4, 133.5, 135.8, 138.9, 142.9.
29Si[1H] NMR (119 MHz, CDCl3, rt):2.16.
Anal. Calcd for C36H50S2Si2: C, 71.70; H, 8.36%. Found: C, 71.72; H, 8.36%.
(ステップ2)4,7-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,9-Bis(triisopropylsilyl)phenanthro[1,2-b:8,7-b]dithiophene(8a)の合成
Figure JPOXMLDOC01-appb-C000023
 
 アルゴンガス雰囲気下、50mLシュレンク管に[Ir(OMe)(cod)]2((1,5-Cyclooctadiene)(methoxy)iridium(I)Dimer, 50mg, 0.075mmol, 5 mol %)、dtbpy (4,4-di-tert-butyl bipyridine, 40mg, 0.15mmol, 10mol%)、B2pin2(Bis(pinacolato)diboron, 762mg, 3mmol, 2equiv)、脱水シクロヘキサン(30mL)を加え、室温で10分撹拌した。その後、7a(905mg, 1.5mmol, 1 equiv)を加え、遮光下80℃で10時間撹拌した。水を加えることで反応を停止させ、クロロホルムを用いて抽出した。飽和塩化ナトリウム水溶液で有機層を洗浄した後、無水硫酸マグネシウムで乾燥し、この混合溶液をろ過後,ロータリーエバポレーターを用いて溶媒を留去した。その後、シリカゲルカラムクロマトグラフィーで精製し、目的の化合物である8aを白色固体として84%(1.07g, 1.26mmol) の収率で得た。以下に、シリカゲルカラムクロマトグラフィーの条件及び化合物8aの分析結果を示す。
 シリカゲルカラムクロマトグラフィー (Rf = 0.54, hexane/ethyl acetate = 5/1)。
m.p.: 174-175℃
FT-IR (KBr, cm-1): 2943 (w), 2891 (m), 2866 (w), 1587 (m), 1463 (m), 1317 (w), 1303 (w), 1143 (w), 1099 (m), 974 (w), 846 (m), 680 (m), 605 (s).
1H NMR (600 MHz, CDCl3, rt):1.25 (d, J = 7.8 Hz, 36H), 1.48-1.53 (m, 30H), 8.33 (s, 2H), 8.48 (s, 2H), 9.32 (s, 2H).
13C[1H] NMR (150 MHz, CDCl3, rt):12.0, 18.7, 25.1, 83.9, 125.1, 126.9, 128.6, 129.2, 135.1, 136.1, 142.5, 142.7. The carbon signal adjacent to B was not observed due to low intensity.
11B[1H] NMR (192 MHz, CDCl3, rt):31.6.
29Si[1H] NMR (119 MHz, CDCl3, rt):1.96.
Anal. Calcd for C48H72B2O4S2Si2: C, 67.43; H, 8.49%. Found: C, 67.14; H, 8.52%.
(ステップ3)4,7-dibromo-2,9-Bis(triisopropylsilyl)phenanthro[1,2-b:8,7-b']dithiophene(9a)の合成
Figure JPOXMLDOC01-appb-C000024
 
 50mLシュレンク管に8a(1.07g, 1.25mmol, 1equiv)、CuBr2(1.68g, 7.5mmol,6equiv)、NMP/MeOH/H2O(15mL/6mL/3mL)を加え、15時間還流させた。1N塩酸を加えることで反応を停止させ、沈殿物を濾過した後、ヘキサンで洗浄、乾燥させることで目的化合物である9aを白色固体として88%(833mg, 1.1mmol)の収率で得た。以下に、化合物9aの分析結果を示す。
m.p.: 184-185℃
FT-IR (KBr, cm-1): 2943 (w), 2889 (m), 2864 (w), 1548 (s), 1460 (m), 1087 (m), 954 (w), 881 (m), 648 (m), 599 (m).
1H NMR (600 MHz, CDCl3, rt): 1.22 (d, J = 7.2 Hz, 36H), 1.51 (sept, J = 7.2 Hz, 6H) 7.79 (s, 2H), 8.09 (s, 2H), 8.66 (s, 2H).
13C[1H] NMR (150 MHz, CDCl3, rt): 11.9, 18.6, 116.8, 123.0, 123.6, 125.9, 127.3, 133.6, 137.3, 138.7, 143.3.
29Si[1H] NMR (119 MHz, CDCl3, rt): 2.55.
Anal. Calcd for C36H48Br2S2Si2: C, 56.83; H, 6.36%. Found: C, 56.83; H, 6.30%.
(ステップ4)4,7-didodecyl-2,9-Bis(triisopropylsilyl)phenanthro[1,2-b:8,7-b']dithiophene(10a)の合成
Figure JPOXMLDOC01-appb-C000025
 
 アルゴンガス雰囲気下、50mLシュレンク管に1-ドデセン(412μL, 1.86 mmol, 3 equiv)、9-BBN dimer (232 mg, 0.95 mmol, 1.53 equiv)、脱水THF(12mL)を加え、60℃で1時間撹拌した。室温まで放冷した後,9a(472mg, 0.62mmol, 1equiv)、Pd(dba)2(36mg, 0.03mmol, 10mol%)、[HPtBu3]BF4(36mg, 0.06mmol, 20mol%),水酸化カリウム(209mg, 3.72mmol, 6 equiv)を加え、7時間還流させた。水を加えることで反応を停止させ、クロロホルムで抽出した。飽和塩化ナトリウム水溶液で有機層を洗浄した後、無水硫酸マグネシウムで乾燥し、この混合溶液をろ過後、ロータリーエバポレーターを用いて溶媒を留去した。その後、シリカゲルカラムクロマトグラフィーで精製し、目的の化合物である10aを無色液体として87%(506mg, 0.54mmol)の収率で得た。以下に、シリカゲルカラムクロマトグラフィーの条件及び化合物10aの分析結果を示す。
シリカゲルカラムクロマトグラフィー (Rf = 0.69, hexane)。
FT-IR (KBr, cm-1): 2924 (w), 2854 (w), 1573 (s), 1454 (w), 1382 (s), 999 (m), 883 (m), 650 (m), 500 (s).
1H NMR (600 MHz, CDCl3, rt): 0.92 (t, J = 7.2 Hz, 6H), 1.26 (d, J = 7.8 Hz, 36H), 1.30-1.37 (m, 28H), 1.45 (quin, J = 7.8 Hz, 4H), 1.51-1.57 (m, 10H), 1.93 (quin, J = 7.8 Hz, 4H), 3.22 (t, J = 7.8 Hz, 4H), 7.77 (s, 2H), 8.17 (s, 2H), 8.42 (s, 2H).
13C[1H] NMR (150 MHz, CDCl3, rt): 11.9, 14.1, 18.7, 22.7, 29.4, 29.6, 29.66, 29.69, 29.73, 29.75, 29.8, 31.1, 31.9, 35.0, 119.1, 122.8, 125.5, 127.5, 131.5, 134.8, 136.2, 138.6, 143.2.
29Si[1H] NMR (119 MHz, CDCl3, rt): 2.16.
Anal. Calcd for C60H98S2Si2: C, 76.69; H, 10.51%. Found: C, 76.72; H, 10.69%.
(ステップ5)4,7-didodecylphenanthro[1,2-b:8,7-b']dithiophene(3a)の合成
Figure JPOXMLDOC01-appb-C000026
 
 アルゴンガス雰囲気下、50mLシュレンク管に10a(613mg, 0.65mmol, 1equiv)、TBAF(1M in THF)(6.5mL,6.5mmol, 10equiv)、脱水THF(26mL)を加え、室温で15時間撹拌した。水を加えることで反応を停止させ、クロロホルムで抽出した。飽和塩化ナトリウム水溶液で有機層を洗浄した後、無水硫酸マグネシウムで乾燥し、この混合溶液をろ過後、ロータリーエバポレーターを用いて溶媒を留去した。その後、シリカゲルカラムクロマトグラフィーで精製し、目的の化合物である3aを白色固体として89%(363mg, 0.58mmol) の収率で得た。以下に、シリカゲルカラムクロマトグラフィーの条件及び化合物3aの分析結果を示す。
シリカゲルカラムクロマトグラフィー (Rf = 0.52, hexane)
m.p.: 84-86℃
FT-IR (KBr, cm-1): 3039 (m), 3072 (s), 3043 (s), 2954 (w), 2914 (w), 2848 (w), 1577 (s), 1469 (w), 1344 (s), 1153 (m), 854 (w), 802 (w), 694 (w).
1H NMR (600 MHz, CDCl3, rt): 0.89 (t, J = 7.8 Hz, 6H), 1.22-1.35 (m, 28H), 1.41 (quin, J = 7.8 Hz, 4H), 1.51 (quin, J = 7.8 Hz, 4H), 1.87 (quin, J= 7.8 Hz, 4H), 3.17 (t, J = 7.8 Hz, 4H), 7.56 (d, J = 5.4 Hz, 2H), 7.60 (d, J = 5.4 Hz, 2H), 8.11 (s, 2H), 8.43 (s, 2H).
13C[1H] NMR (150 MHz, CDCl3, rt): 14.1, 22.7, 29.4, 29.6, 29.65, 29.69, 29.71, 29.8, 31.1, 31.9, 35.0, 119.2, 122.6, 123.0, 125.1, 125.7, 127.7, 136.6, 137.3, 139.0.
Anal. Calcd for C42H58S2: C, 80.45; H, 9.32%. Found: C, 80.51; H, 9.17%.
(ステップ6)4,7-didodecyl-2,9-Bis(trimethylstannyl)phenanthro[1,2-b:8,7-b']dithiophene(4a)の合成
Figure JPOXMLDOC01-appb-C000027
 
 アルゴンガス雰囲気下、20mlシュレンク管に3a(188mg, 0.3mmol, 1equiv)、脱水THF(12mL)を加え、0℃に冷却した。その後、n-BuLi(1.6M in hexane)(0.56mL, 0.9mmol, 3equiv)を滴下した後、2時間還流させた。撹拌後、0℃に冷却し、Me3SnCl(239mg, 1.2mmol, 4equiv)を滴下した後、室温で12時間撹拌させた。水を加えることで反応を停止させ、ジクロロメタンで抽出した。飽和塩化ナトリウム水溶液で有機層を洗浄した後、無水硫酸マグネシウムで乾燥し、この混合溶液をろ過後、ロータリーエバポレーターを用いて溶媒を留去した。その後,高速液体クロマトグラフィーを2回用いて精製し、目的の化合物である4aを薄黄色液体として56%(159mg, 0.17mmol) の収率で得た。以下に、化合物4aの分析結果を示す。
FT-IR (KBr, cm-1): 2924 (w), 2852 (w), 1571 (s), 1465 (s), 1377 (s), 950 (s), 771 (m), 532 (m).
1H NMR (600 MHz, CDCl3, rt): 0.46 (t, J = 28.8 Hz, 18H), 0.88 (t, J = 7.2 Hz, 6H), 1.22-1.36 (m, 28H), 1.43 (quin, J = 7.8 Hz, 4H), 1.53 (quin, J = 7.8 Hz, 4H), 1.90 (quin, J = 7.8 Hz, 4H), 3.20 (t, J = 7.8 Hz, 4H), 7.65 (s, 2H), 8.15 (s, 2H), 8.40 (s, 2H).
13C[1H] NMR (150 MHz, CDCl3, rt): 8.16 (t, JC-Sn= 177 Hz), 14.1, 22.7, 29.4, 29.6, 29.67, 29.69, 29.72, 29.8, 31.0, 31.9, 35.0, 119.1, 122.8, 125.4, 127.2, 130.8, 136.0, 138.6, 138.8, 143.9.
Anal. Calcd for C48H74S2Sn2: C, 60.52; H, 7.83%. Found: C, 60.74; H, 7.96%.
(ステップ7)化合物No.11(R1及びR6=C1225、R2、R3、R4及びR5=H)の合成
Figure JPOXMLDOC01-appb-C000028
 
 5mLのバイアル管に、4a(62.7mg, 0.066mmol, 1equiv)、BTz-2T-HD(5a、59.7mg,0.066mmol, 1equiv)、Pd(PPh3)4(1.5mg, 1.32μmol, 2mol%)を加えた後、アルゴンガスを封入し、栓をして密閉した。その後、脱水トルエン(3.3mL)を加え、マイクロウェーブ照射装置を用いて、マイクロウェーブ照射下、180℃で40分撹拌した。その後、メタノール/塩酸(100mL/5 mL)を加え、室温で3時間撹拌した。フィルターに沈殿物を濾取し、ソックスレー抽出器を用いて、メタノール、ヘキサン、クロロホルムでそれぞれ3時間抽出した。クロロホルム成分をロータリーエバポレーターを用いて溶媒を留去し、減圧乾燥させることで、目的の化合物である化合物No.11を黒紫色固体として77%(69.7mg, 0.051mmol)の収率で得た。以下に、化合物No.11の分析結果を示す。
Anal. Calcd for C88H128N2S5: C, 76.91; H, 9.39; N, 2.04%. Found: C, 76.54; H, 9.26; N, 1.99%.
Mw/Mn=31443/21602(測定条件:140℃、o-DCB)
[実施例2]化合物No.16(R1及びR6=C1225、R2、R3、R4及びR5=H)の合成
Figure JPOXMLDOC01-appb-C000029
 
 まず、実施例1のステップ1~ステップ6と同様の方法で、化合物4bを合成した。5mlの反応容器に4b(56.1 mg, 0.059 mmol), 5b (55.5 mg, 0.059 mmol) 及び Pd(PPh3)4 (1.4 mg, 1.2 μmol) を加えた後、アルゴンガスを入れ、反応容器を密閉した。その後、トルエン (2.5 mL) を反応容器に加え、マイクロ波反応装置で180℃で40分間撹拌した。反応混合物を室温まで冷却した後、メタノール (100mL) と濃塩酸 (5mL) の混合溶液に加え、室温で3時間撹拌した。沈殿物をろ過した後、メタノール、ヘキサン、クロロホルム、クロロベンゼンの順にソックスレー抽出を行った。クロロホルム及びクロロベンゼンで抽出した溶液をそれぞれ濃縮し、メタノールを用いて再沈殿させた後、ろ過及び減圧下で乾燥させることでクロロホルムに可溶な目的の化合物である化合物No.16を金属光沢を有する紫色固体として37.9mg(46%)を得た。
 以下に、化合物No.16の分析結果を示す。
GPC (o-DCB, 140℃): Mn = 30.6 kDa, PDI = 2.05 (CHCl3), Mn = 42.3 kDa, PDI = 1.82 (PhCl).
[実施例3]化合物No.17(R1及びR6=C1225、R2、R3、R4及びR5=H)の合成
Figure JPOXMLDOC01-appb-C000030
 
 まず、実施例1のステップ1~ステップ6と同様の方法で、化合物4bを合成した。5mLの反応容器に4b(60.0 mg、0.063 mmol)、5c(72.1 mg、 0.063 mmol) 及び Pd(PPh3)4 (1.5 mg、 1.2μmol)を加えた後、アルゴンガスを入れ、反応容器を密閉した。その後、トルエン (2.9 mL) を反応容器に加え、マイクロ波反応装置で180℃で 40 分間撹拌した。反応混合物を室温まで冷却した後、メタノール (100 mL) と濃塩酸 (5 mL) の混合溶液に注ぎ、室温で3 時間撹拌した。沈殿物をろ過した後、メタノール、ヘキサン、クロロホルムの順にソックスレー抽出を行った。クロロホルムで抽出した溶液をそれぞれ濃縮し、メタノールを用いて再沈殿させた後、ろ過及び減圧下で乾燥させることでクロロホルムに可溶な目的の化合物である化合物No.17を金属光沢を有する紫色固体として90.7mg(89%)を得た。
 以下に、化合物No.17の分析結果を示す。
GPC (o-DCB, 140 ℃): Mn = 22.8 kDa, PDI = 1.39.
[実施例4及び5並びに比較例1]有機薄膜太陽電池素子の作製及び評価
 ITO基板(ジオマテック社、膜厚:150nm、抵抗率:<12Ω/□、透過率:(λ=550nm)≧85%)を中性洗剤、イオン交換水、アセトン及びイソプロパノールを用いてそれぞれ10分間超音波洗浄した。その後、基板の入ったイソプロパノールを10分間煮沸し、乾燥後、UV-オゾン洗浄を20分間行った。洗浄した基板上に、陽極バッファ層としてポリ(3、4-エチレン-ジオキシチオフェン):ポリ(スチレンスルホナート)(PEDOT:PSS、CleviousPVPAI4083)の水溶液を0.45μmのPVDF製シリンジフィルターを通じて滴下し、5000rpmで30秒間スピンコートした。120℃で10分間ホットプレート上で乾燥後、直ちにグローブボックス内に搬入した。濃度10g/Lの化合物No.16(実施例2で合成)の無水クロロベンゼン溶液に、重量比((A)/(B))=1:1~1:2となるように可溶性フラーレン誘導体(PC61BM)を加え、100℃に保ったまま、400rpmで30秒、続いて1000rpmを5秒間スピンコートすることで(PEDOT:PSS)をコートした基板上に活性層を作製した。室温で乾燥後、真空蒸着装置に移し、3×10?5Pa程度の減圧下で陰極バッファ層として10nmのカルシウム、続いて陰極として80nmのアルミニウムをシャドーマスクを通じて真空蒸着することで、活性エリア0.16cm?2のバルクヘテロ接合型太陽電池素子を作製し、光電変換効率を測定した。光電変換効率は、得られたバルクヘテロ接合型太陽電池素子に対し、エアマス1.5G、100mW/cmの疑似太陽光をITO電極側から照射することにより測定した。
 また、比較例として、化合物No.16の代わりに化合物Aを用いる以外は、実施例4及び5と同様の手法で太陽電池素子を作製し、光電変換効率を測定した。これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000031
 
Figure JPOXMLDOC01-appb-C000032
 
 上記実施例により得られた、本発明のピセン誘導体をp型有機半導体として用いた場合、高い光電変換効率を示すことが確認できた。
1 支持体
2 電極
3 電荷移動層
4 光電変換層
5 電極
6 電荷移動層
 

Claims (7)

  1.  下記一般式(1)で表される構成単位を少なくとも1つ有するピセン誘導体。
    Figure JPOXMLDOC01-appb-I000001
     
    (式中、A1及びA2は、それぞれ独立に単環を表し、
     R1、R2、R3、R4、R5及びR6は、それぞれ独立に水素原子、ハロゲン原子、シアノ基、ニトロ基、水酸基、カルボキシル基、チオール基、-SiR789、-NR1011基、又は置換基を有している若しくは無置換の炭化水素基を表し、
     R1、R2、R3、R4、R5及びR6の少なくとも一つは水素原子では無く、
     R7、R8、R9、R10又はR11はそれぞれ独立に水素原子又は置換基を有している若しくは無置換の炭化水素基を表す。)
  2.  上記一般式(1)で表される構成単位を少なくとも1つと、下記群Y又は群Zから選ばれる構成単位を少なくとも1つと、を有する請求項1に記載のピセン誘導体。
    Figure JPOXMLDOC01-appb-I000002
     
    (式中、X1及びX4はS、O又はNR12を表し、
     kは1~4の整数を表し、
     R12は置換されている若しくは無置換の炭化水素基を表し、
     群Yで表される構成単位中の水素原子は、ハロゲン原子、シアノ基、ニトロ基、水酸基、カルボキシル基、チオール基、-NR1314基、置換されている若しくは無置換の炭化水素基又は置換されていている若しくは無置換の複素環基で置換されていてもよく、
     R13及びR14は、置換されていている又は無置換の炭化水素基を表す。)
     
    (式中、X2はS又はNR15を表し、
     X3はS、NR15、CR1617又はSiR1617を表し、
     X5はS、O又はNR15を表し、
     R15、R16及びR17は、置換されている若しくは無置換の炭化水素基を表し、
     群Zで表される構成単位中の水素原子は、ハロゲン原子、シアノ基、ニトロ基、水酸基、カルボキシル基、チオール基、-NR1819基、置換されている若しくは無置換の炭化水素基又は置換されている若しくは無置換の複素環基で置換されていてもよく、
     R18及びR19は、置換されている若しくは無置換の炭化水素基を表す。)
  3.  下記一般式(2)で表される構成単位を少なくとも一つ有する、請求項1又は2に記載のピセン誘導体。
    Figure JPOXMLDOC01-appb-I000004
     
    (式中、A1、A2、R1、R2、R3、R4、R5及びR6は、上記式(1)と同様の基を表し、
     R1、R2、R3、R4、R5及びR6の少なくとも一つは水素原子では無く、
     Y1及びY2は単結合又は下記(Y-1)~(Y-8)から選ばれる基を1~5個組み合わせて連結した基であり、
     Z1は、単結合又は下記(Z-1)~(Z-21)から選ばれる基を表し、
     nは1以上1000以下の整数を表す。)
    Figure JPOXMLDOC01-appb-I000005
     
    (式中、X1及びX4はS、O又はNR12を表し、
     kは1~4の整数を表し、
     R12は置換されている若しくは無置換の炭化水素基を表し、
     (Y-1)~(Y-4)及び(Y-6)~(Y-8)で表される基中の水素原子は、ハロゲン原子、シアノ基、ニトロ基、水酸基、カルボキシル基、チオール基、-NR1314基、置換されている若しくは無置換の炭化水素基又は置換されている若しくは無置換の複素環基で置換されていてもよく、
     R13及びR14は、置換されている若しくは無置換の炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-I000006
     
    (式中、X2はS又はNR15を表し、
     X3はS、NR15、CR1617又はSiR1617を表し、
     X5はS、O又はNR15を表し、
     R15、R16及びR17は、置換されている若しくは無置換の炭化水素基を表し、
     (Z-1)~(Z-21)で表される基中の水素原子は、ハロゲン原子、シアノ基、ニトロ基、水酸基、カルボキシル基、チオール基、-NR1819基、置換されている若しくは無置換の炭化水素基又は置換されている若しくは無置換の複素環基で置換されていてもよく、
     R18及びR19は、置換されている若しくは無置換の炭化水素基を表す。)
  4.  (A)p型有機半導体材料として請求項1~3のいずれか1項に記載のピセン誘導体、及び(B)n型有機半導体材料を含有してなる光電変換材料。
  5.  請求項4に記載の光電変換材料を製膜して得られる光電変換層。
  6.  請求項5に記載の光電変換層を有してなる光電変換素子。
  7.  請求項6に記載の光電変換素子を有してなる有機薄膜太陽電池。
     
PCT/JP2015/079033 2014-10-21 2015-10-14 ピセン誘導体、光電変換材料及び光電変換素子 WO2016063771A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016555186A JP6625546B2 (ja) 2014-10-21 2015-10-14 ピセン誘導体、光電変換材料及び光電変換素子
KR1020177000706A KR20170071466A (ko) 2014-10-21 2015-10-14 피센 유도체, 광전 변환 재료 및 광전 변환 소자
EP15853086.5A EP3210986A4 (en) 2014-10-21 2015-10-14 Picene derivative, photoelectric conversion material and photoelectric conversion element
CN201580038074.7A CN106661048B (zh) 2014-10-21 2015-10-14 苉衍生物、光电转换材料及光电转换元件
US15/504,425 US10074804B2 (en) 2014-10-21 2015-10-14 Picene derivative, photoelectric material, and photoelectric device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014214551 2014-10-21
JP2014-214551 2014-10-21

Publications (1)

Publication Number Publication Date
WO2016063771A1 true WO2016063771A1 (ja) 2016-04-28

Family

ID=55760814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079033 WO2016063771A1 (ja) 2014-10-21 2015-10-14 ピセン誘導体、光電変換材料及び光電変換素子

Country Status (7)

Country Link
US (1) US10074804B2 (ja)
EP (1) EP3210986A4 (ja)
JP (1) JP6625546B2 (ja)
KR (1) KR20170071466A (ja)
CN (1) CN106661048B (ja)
TW (1) TWI656124B (ja)
WO (1) WO2016063771A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105085937B (zh) * 2015-07-20 2018-03-30 深圳市华星光电技术有限公司 富勒烯/pedot:pss混合溶液的制备方法及具有富勒烯/pedot:pss复合透明导电膜的基板的制备方法
US11678562B2 (en) 2019-08-27 2023-06-13 Phillips 66 Company Methods and systems of organic semiconducting polymers
CN111620886A (zh) * 2020-05-27 2020-09-04 武汉华星光电半导体显示技术有限公司 P型有机半导体材料、制备方法及显示面板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1027577A (en) * 1963-12-12 1966-04-27 Dow Corning Organo silicon polyimides
JPH0445162A (ja) * 1990-06-12 1992-02-14 Mita Ind Co Ltd アゾ系化合物およびそれを用いた電子写真感光体
JP2011236158A (ja) * 2010-05-11 2011-11-24 Canon Inc 縮合多環化合物及びこれを用いた有機発光素子
JP2013170134A (ja) * 2012-02-20 2013-09-02 Sumitomo Chemical Co Ltd 芳香族化合物の製造方法、芳香族化合物、並びに高分子化合物
WO2013168048A1 (en) * 2012-05-07 2013-11-14 Basf Se Phenacene compounds for organic electronics
WO2013182264A1 (en) * 2012-06-05 2013-12-12 Merck Patent Gmbh Small molecules and their use as organic semiconductors
JP2014058501A (ja) * 2012-05-22 2014-04-03 Adeka Corp ピセン及びその誘導体の製造方法
JP2014240483A (ja) * 2013-05-13 2014-12-25 株式会社Adeka ピセン誘導体、光電変換材料及び光電変換素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4771888B2 (ja) 2006-08-10 2011-09-14 三洋電機株式会社 有機薄膜光電変換素子及びその製造方法
JP5359173B2 (ja) 2007-12-05 2013-12-04 東レ株式会社 光起電力素子用電子供与性有機材料、光起電力素子用材料および光起電力素子
JP5378690B2 (ja) * 2008-03-10 2013-12-25 山本化成株式会社 有機トランジスタ
KR20110057133A (ko) * 2008-08-08 2011-05-31 이데미쓰 고산 가부시키가이샤 유기 박막 트랜지스터용 화합물 및 그것을 이용한 유기 박막 트랜지스터
KR101117722B1 (ko) 2009-08-28 2012-03-07 삼성모바일디스플레이주식회사 유기 발광 소자
JP2013012505A (ja) * 2009-09-17 2013-01-17 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2011116962A (ja) 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd 組成物及び電子素子
JP5984689B2 (ja) * 2013-01-21 2016-09-06 キヤノン株式会社 有機金属錯体及びこれを用いた有機発光素子
WO2014148614A1 (ja) * 2013-03-22 2014-09-25 富士フイルム株式会社 有機薄膜トランジスタ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1027577A (en) * 1963-12-12 1966-04-27 Dow Corning Organo silicon polyimides
JPH0445162A (ja) * 1990-06-12 1992-02-14 Mita Ind Co Ltd アゾ系化合物およびそれを用いた電子写真感光体
JP2011236158A (ja) * 2010-05-11 2011-11-24 Canon Inc 縮合多環化合物及びこれを用いた有機発光素子
JP2013170134A (ja) * 2012-02-20 2013-09-02 Sumitomo Chemical Co Ltd 芳香族化合物の製造方法、芳香族化合物、並びに高分子化合物
WO2013168048A1 (en) * 2012-05-07 2013-11-14 Basf Se Phenacene compounds for organic electronics
JP2014058501A (ja) * 2012-05-22 2014-04-03 Adeka Corp ピセン及びその誘導体の製造方法
WO2013182264A1 (en) * 2012-06-05 2013-12-12 Merck Patent Gmbh Small molecules and their use as organic semiconductors
JP2014240483A (ja) * 2013-05-13 2014-12-25 株式会社Adeka ピセン誘導体、光電変換材料及び光電変換素子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MALLORY,F.B. ET AL.: "Phenacenes: a family of graphite ribbons. Part 3: Iterative strategies for the synthesis of large phenacenes", TETRAHEDRON, vol. 57, no. 17, 2001, pages 3715 - 3724, XP055435786 *
OKAMOTO,H. ET AL.: "Facile Synthesis of Picene from 1,2-Di(1-naphthyl)ethane by 9-Fluorenone- Sensitized Photolysis", ORGANIC LETTERS, vol. 13, no. 10, 2011, pages 2758 - 2761, XP055435151 *
WU,J. ET AL.: "New Angular-Shaped and Isomerically Pure Anthradithiophene with Lateral Aliphatic Side Chains for Conjugated Polymers: Synthesis, Characterization, and Implications for Solution-Prossessed Organic Field-Effect Transistors and Photovoltaics", CHEMISTRY OF MATERIALS, vol. 24, no. 12, 2012, pages 2391 - 2399, XP055303734 *

Also Published As

Publication number Publication date
TWI656124B (zh) 2019-04-11
US10074804B2 (en) 2018-09-11
EP3210986A1 (en) 2017-08-30
JP6625546B2 (ja) 2019-12-25
KR20170071466A (ko) 2017-06-23
US20170237011A1 (en) 2017-08-17
JPWO2016063771A1 (ja) 2017-08-03
TW201619166A (zh) 2016-06-01
EP3210986A4 (en) 2018-03-28
CN106661048A (zh) 2017-05-10
CN106661048B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
KR102533066B1 (ko) 유기 반도체성 화합물
JP5805438B2 (ja) 新規化合物、光電変換材料及び光電変換素子
Liang et al. Donor–acceptor conjugates-functionalized zinc phthalocyanine: Towards broad absorption and application in organic solar cells
JP5848280B2 (ja) 有機薄膜太陽電池、これに用いられる組成物および単量体、ならびに膜の製造方法
WO2014185535A1 (ja) フラーレン誘導体、及びn型半導体材料
JP6625546B2 (ja) ピセン誘導体、光電変換材料及び光電変換素子
JP5791995B2 (ja) 新規化合物、光電変換材料及び光電変換素子
Hong et al. A novel small molecule based on dithienophosphole oxide for bulk heterojunction solar cells without pre-or post-treatments
JP6284822B2 (ja) ピセン誘導体、光電変換材料及び光電変換素子
KR20190064410A (ko) 신규한 화합물 및 이를 이용하는 유기 전자 소자
JP6095229B2 (ja) ビベンゾ[b]フラン化合物、光電変換材料及び光電変換素子
JP6181318B2 (ja) 光電子工学用途のための高い導電性および吸収を有する小分子/オリゴマーの合成
JP6371051B2 (ja) アントラキノン誘導体、光電変換材料及び光電変換素子
JP6051102B2 (ja) 有機光電変換素子および有機薄膜太陽電池
JP7394629B2 (ja) 共役系高分子、製膜用組成物、有機薄膜、ならびに有機半導体素子
JP2015015462A (ja) 光電変換素子及びこれを用いてなる有機薄膜型太陽電池
JP2015105233A (ja) フラーレン誘導体
JP2015015461A (ja) 光電変換素子及びこれを用いてなる有機薄膜型太陽電池
WO2014098094A1 (ja) 有機光電変換素子、有機薄膜太陽電池、これらに用いる組成物、塗布膜、ポリマーおよび化合物
JP2016157936A (ja) 光電変換素子及び太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853086

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016555186

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177000706

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015853086

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15504425

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE