WO2016063672A1 - 風力発電装置の異常監視装置 - Google Patents

風力発電装置の異常監視装置 Download PDF

Info

Publication number
WO2016063672A1
WO2016063672A1 PCT/JP2015/076892 JP2015076892W WO2016063672A1 WO 2016063672 A1 WO2016063672 A1 WO 2016063672A1 JP 2015076892 W JP2015076892 W JP 2015076892W WO 2016063672 A1 WO2016063672 A1 WO 2016063672A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring device
unit
lubricating oil
sensor
wind turbine
Prior art date
Application number
PCT/JP2015/076892
Other languages
English (en)
French (fr)
Inventor
彰利 竹内
隆 長谷場
啓介 橋爪
一輝 小屋町
Original Assignee
Ntn株式会社
彰利 竹内
隆 長谷場
啓介 橋爪
一輝 小屋町
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 彰利 竹内, 隆 長谷場, 啓介 橋爪, 一輝 小屋町 filed Critical Ntn株式会社
Publication of WO2016063672A1 publication Critical patent/WO2016063672A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • This invention relates to an abnormality monitoring device for a wind turbine generator.
  • Japanese Patent Application Laid-Open No. 2005-233722 discloses a foreign matter detection system capable of detecting when a very small amount of foreign matter is mixed in the lubricating oil.
  • This foreign matter detection system includes a capturing means for capturing foreign matter (for example, magnetic powder such as iron powder, and other foreign matter) in a pipe through which a fluid (for example, lubricating oil) flows, and releasing the captured foreign matter, and the released foreign matter.
  • a detecting means for detecting that the gas flows through the pipe, and a control means.
  • the control means is configured to control the foreign matter to be captured by the catching means for a time period in which the foreign matter stays until it can be detected by the detection means, and to release the foreign matter when the time has elapsed.
  • the foreign matter detection system as described above can also be applied to a system for circulating lubricating oil that lubricates a gearbox of a wind power generator, for example.
  • Lubricating oil that lubricates the gearbox of a wind turbine generator may be mixed with iron powder due to gear damage or aging.
  • As one of the abnormality monitoring items of the speed increaser of the wind power generator it is considered to detect iron powder in the lubricating oil.
  • it is necessary to install a light transmission sensor or the like.
  • a sensor for abnormality monitoring such as a light transmission sensor requires a DC low voltage (for example, 5 to 15 V) power supply voltage supplied to the sensor itself.
  • a DC low voltage for example, 5 to 15 V
  • the wiring for supplying the power supply voltage in the nacelle of the wind turbine generator requires labor and time for installation of the monitoring device, and causes a failure of the monitoring device. Therefore, it is preferable that the number of wires for installing the monitoring device is small.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an abnormality monitoring device for a wind turbine generator in which the number of wirings is reduced.
  • the present invention is an abnormality monitoring device for a wind power generator, and is provided in a circulation path for circulating lubricating oil that lubricates movable parts of the wind power generator, and generates power by receiving the flow of the lubricating oil.
  • a power generation unit and a detection unit that detects occurrence of an abnormality in the wind turbine generator using the power generated by the power generation unit.
  • the power generation unit includes an impeller that rotates in response to the flow of the lubricating oil, and a generator that generates electric power with the rotational force of the impeller.
  • the detection unit includes a sensor that detects foreign matter in the lubricating oil.
  • the abnormality monitoring device includes a calculation unit that is supplied with a power supply voltage from a power source different from the detection unit and calculates the amount of foreign matter mixed in the lubricating oil based on the output of the sensor.
  • the calculating unit detects the flow rate of the lubricating oil based on the rotational speed of the impeller, and calculates the amount of foreign matter mixed in the lubricating oil based on the detected flow rate and the output of the sensor.
  • the senor includes an irradiation unit that irradiates the lubricating oil with light using electric power generated by the power generation unit, and a light receiving unit that detects the amount of light transmitted through the lubricating oil.
  • the senor is provided upstream of the impeller in the circulation path.
  • the detection unit includes a sensor that detects foreign matter in the lubricating oil and a wireless transmission unit that wirelessly transmits information detected by the sensor.
  • the abnormality monitoring device further includes a monitoring device main body to which a power supply voltage is supplied from a power source different from the detection unit.
  • the monitoring apparatus main body includes a wireless reception unit that receives information transmitted by the wireless transmission unit, a calculation unit that calculates the amount of foreign matter mixed in the lubricant based on the information received by the wireless reception unit, and a calculation result of the calculation unit. And a storage unit for storing.
  • the detection unit includes a vibration sensor that detects the vibration of the wind turbine generator using the power generated by the power generation unit.
  • the number of wires for installing the abnormality monitoring device is reduced, and an abnormality monitoring device that is easy to work and difficult to break down can be realized.
  • FIG. 2 is a diagram schematically showing the structure of a sensor unit 150.
  • FIG. 4 is a cross-sectional view showing a cross section taken along line IV-IV in FIG. 3. It is a block diagram which shows the structure of the abnormality monitoring apparatus 145.
  • FIG. 1 is a diagram schematically showing a configuration of a wind turbine generator 1 including a state detection device according to the present embodiment.
  • the wind power generator 1 includes a plurality of blades 20, a nacelle 100, and a tower 200.
  • the nacelle 100 is provided at the upper end of the tower 200.
  • a main shaft 110, a main bearing 120, a speed increaser (gear box) 130, a generator 140, and an abnormality monitoring device 145 are stored.
  • the abnormality monitoring device 145 includes a sensor unit 150 and a monitoring device main body 160.
  • the blade 20 is provided at the tip of the main shaft 110 and converts wind force into rotational torque and transmits it to the main shaft 110.
  • the main shaft 110 is rotatably supported by the main bearing 120 inside the nacelle 100 and transmits the rotational torque received from the blade 20 to the speed increaser 130.
  • the speed increaser 130 is provided between the main shaft 110 and the generator 140, and increases the rotational speed of the main shaft 110 and outputs it to the generator 140.
  • the generator 140 is connected to the output shaft 131 of the speed increaser 130 and generates power by the rotational torque received from the speed increaser 130.
  • the generator 140 is configured by, for example, an induction generator.
  • a circulation device 170 for circulating the lubricating oil to the speed increaser 130.
  • FIG. 2 is a diagram schematically showing a configuration of a circulation device 170 for circulating the lubricating oil to the speed increaser 130.
  • the circulation device 170 includes an oil pan 171, a pipe 172, a pump 173, and an oil filter 174.
  • the oil pan 171 is provided at the lower part of the speed increaser 130.
  • One end of the pipe 172 is connected to the lower part of the oil pan 171, and the other end of the pipe 172 is connected to the upper part of the speed increaser 130.
  • the pump 173 and the oil filter 174 are provided on the path of the pipe 172.
  • the lubricating oil stored in the oil pan 171 is supplied from one end of the pipe 172 to the oil filter 174 and filtered.
  • the lubricating oil that has passed through the oil filter 174 is sent out from the pump 173, spontaneously falls from the other end of the pipe 172 provided on the top of the speed increasing device 130, and is supplied to the gear 132 in the speed increasing device 130. .
  • the lubricating oil supplied to the gear 132 is returned to the oil pan 171 by natural fall.
  • the sensor unit 150 is provided in the pipe 172 between the oil pan 171 and the oil filter 174.
  • the position where the sensor unit 150 is provided is not necessarily limited to the portion after the pump 173 as long as it is on the route of the pipe 172. Further, the arrangement order of the oil filter 174, the pump 173, and the sensor unit 150 may not be as shown in FIG.
  • the monitoring device main body 160 is composed of a CPU (Central Processing Unit) (not shown) and a unit incorporating a memory. Based on the information stored in the memory, the output value of the sensor unit 150, etc., the lubricating oil flowing in the pipe 172 It is determined whether or not a foreign matter such as iron powder is mixed in. When the monitoring device main body 160 determines that foreign matter is mixed in the lubricating oil, it issues a warning by turning on a lamp (not shown) or the like, or an abnormality is detected in a remote monitor via a telephone line or a wireless line. Send data for judgment.
  • a lamp not shown
  • Send data for judgment Send data for judgment.
  • power generation is performed in the vicinity of the sensor, and the power supply voltage is supplied to the sensor and the wireless transmission unit.
  • FIG. 3 is a diagram schematically showing the structure of the sensor unit 150.
  • FIG. 4 is a cross-sectional view showing a cross section taken along line IV-IV in FIG.
  • the sensor unit 150 includes a transmissive optical sensor 151 that detects the transmitted light amount of the lubricating oil supplied to the speed increaser 130.
  • the optical sensor 151 includes light emitting elements 151A and 151B and light receiving elements 151C and 151D.
  • the sensor unit 150 further includes a power generation unit 152 that receives the flow of the lubricating oil sent from the oil pan 171 toward the pump 173 and generates power.
  • the power generation unit 152 includes an impeller 153 that rotates in response to the flow of lubricating oil, a generator 155 that rotates when the impeller 153 rotates, and generates electric power. The rotation of the impeller 153 is transmitted to the rotor of the generator 155.
  • a transmission shaft 154 A transmission shaft 154.
  • the sensor unit 150 further receives a vibration sensor 190 for detecting gear vibration of the gearbox 130, an output of the optical sensor 151, and an output of the vibration sensor 190, and wirelessly transmits data included in these outputs.
  • Wireless transmission unit 158 Wireless transmission unit 158.
  • the impeller 153 rotates, the flow of the lubricating oil is disturbed. If disturbance of the lubricating oil flow occurs in the vicinity of the optical sensor 151, the accuracy with which the optical sensor 151 detects foreign matter such as iron powder may be deteriorated.
  • the impeller 153 is arranged downstream of the optical sensor 151 in the flow of the lubricating oil, the disturbance of the lubricating oil flow due to the rotation of the impeller 153 does not affect the optical sensor 151. Therefore, as shown in FIGS. 3 and 4, it is preferable that the impeller 153 be disposed downstream of the flow of the lubricating oil from the optical sensor 151.
  • the sensor unit 150 further includes a flow path portion 157 in which a translucent portion is formed of transparent acrylic or the like. Flange is formed at both ends of the flow path portion 157 and is fastened to the pipe 172 by a fastening member 180.
  • the sensor unit 150 is transported to the construction site of the wind power generator in a state where the optical sensor, the power generation unit, and the wireless transmission unit are attached to the flow path unit 157 in advance.
  • the installation work of the sensor unit 150 only needs to fasten the fastening member 180 and wire the vibration sensor 190 and the wireless transmission unit 158.
  • the sensor unit 150 may be sold as a product with the optical sensor 151, the power generation unit 152, and the wireless transmission unit attached to the flow path unit 157 in advance, and the person in charge of construction works in advance before going to the construction site. It may be assembled.
  • FIG. 5 is a block diagram showing the configuration of the abnormality monitoring device 145.
  • abnormality monitoring device 145 includes a sensor unit 150 and a monitoring device main body 160.
  • the power supply voltage V ⁇ b> 1 generated by the generator 155 is supplied to the sensor unit 150.
  • the monitoring apparatus main body 160 is supplied with the power supply voltage V2 from the switchboard 400 installed in the nacelle of the wind turbine generator.
  • the sensor unit 150 includes an optical sensor 151, a rotation speed sensor 156, a vibration sensor 190, and a wireless transmission unit 158.
  • the optical sensor 151 detects a foreign matter in the lubricating oil by detecting a change in the light transmission amount of the lubricating oil.
  • the rotational speed sensor 156 detects the rotational speed of the impeller 153 that rotates the generator 155.
  • the vibration sensor 190 detects the vibration of the gear box 130.
  • the rotational speed sensor 156 may not be provided.
  • the vibration sensor 190 may detect a vibration of a portion other than the speed increaser 130.
  • the wireless transmission unit 158 wirelessly transmits information included in the outputs of the optical sensor 151, the rotation speed sensor 156, and the vibration sensor 190 to the monitoring apparatus main body 160.
  • the monitoring apparatus main body 160 includes a wireless reception unit 162, a calculation unit 164, and a storage unit 166.
  • the wireless reception unit 162 receives the information transmitted by the wireless transmission unit 158.
  • the calculation unit 164 calculates the amount of foreign matter mixed in the lubricating oil based on the information received by the wireless reception unit 162.
  • the storage unit 166 stores the calculation result of the calculation unit 164.
  • the calculation result stored in the storage unit 166 may be collected by an operator who has come to check during maintenance, or may be transmitted to a remote supervisor via a telephone line or a wireless line (not shown).
  • the arithmetic unit 164 When the arithmetic unit 164 detects that the lubricating oil is contaminated due to the light transmission amount detected by the optical sensor 151 being lower than a predetermined value, the arithmetic unit 164 notifies a supervisor by turning on a warning lamp (not shown). To do.
  • the calculation unit 164 calculates the flow rate of the lubricating oil based on the output of the rotation speed sensor 156 and corrects the light transmission amount. For example, when the contamination of the lubricating oil is determined based on the integrated value of the light transmission amount during the determination time, the light transmission amount can be corrected by changing the length of the determination time according to the flow velocity. .
  • the relationship between the rotational speed and the flow rate, and the relationship between the flow rate and the length of the determination time have been experimentally determined in advance. It is good to map it.
  • the abnormality monitoring device for the wind turbine generator is provided in a circulation path for circulating the lubricating oil that lubricates movable parts such as the speed increaser 130 of the wind turbine generator.
  • a power generation unit 152 that generates power in response to the flow of the lubricating oil and a detection unit 159 that detects the occurrence of an abnormality in the wind turbine generator using the power generated by the power generation unit 152 are provided.
  • the power generation unit 152 includes an impeller 153 that rotates in response to the flow of the lubricating oil, and a generator 155 that generates electric power with the rotational force of the impeller 153.
  • the detection unit 159 includes an optical sensor 151 that detects foreign matter in the lubricating oil.
  • the abnormality monitoring device includes a calculation unit 164 that is supplied with a power supply voltage V2 from a power source different from the detection unit 159 and calculates the amount of foreign matter mixed in the lubricant based on the output of the optical sensor 151.
  • the calculation unit 164 detects the flow rate of the lubricant based on the rotational speed of the impeller 153, and calculates the amount of foreign matter mixed in the lubricant based on the detected flow rate and the output of the optical sensor 151.
  • the optical sensor 151 includes an irradiation unit (light emitting elements 151A and 151B) that irradiates the lubricating oil with light using the electric power generated by the power generation unit, and a light receiving unit (light receiving element) that detects the amount of light transmitted through the lubricating oil. 151C, 151D).
  • an irradiation unit light emitting elements 151A and 151B
  • a light receiving unit light receiving element
  • the optical sensor 151 is provided upstream of the impeller 153 in the circulation path.
  • the detection unit 159 includes an optical sensor 151 that detects foreign matter in the lubricating oil, and a wireless transmission unit 158 that wirelessly transmits information detected by the optical sensor 151.
  • the abnormality monitoring device 145 further includes a monitoring device main body 160 to which the power supply voltage V2 is supplied from a power source different from the detection unit 159.
  • the monitoring apparatus main body 160 includes a wireless reception unit 162 that receives information transmitted by the wireless transmission unit 158, a calculation unit 164 that calculates the amount of foreign matter mixed in the lubricant based on the information received by the wireless reception unit 162, And a storage unit 166 that stores the calculation result of the unit 164.
  • the detection unit 159 includes a vibration sensor 190 that detects the vibration of the wind turbine generator using the power generated by the power generation unit 152.
  • the sensor unit 150 is attached to a part of the piping 172 of the oil circulation system, the impeller 153 is attached to a part of the sensor unit 150, and power is generated by the flow of the lubricating oil. Sensors are driven by the generated power.
  • the calculation unit 164 corrects the output of the optical sensor 151 according to the change in the flow velocity, and increases the accuracy of the amount of foreign matter per unit volume to prevent false alarms.
  • the power supply voltage generated by the sensor unit 150 is also supplied to the vibration sensor 190.
  • the power generated by the impeller 153 is also used as the power source of the wireless transmission unit 158.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

 風力発電装置の異常監視装置は、風力発電装置の増速機などの可動部の潤滑を行なう潤滑油を循環させる循環経路に設けられるとともに、潤滑油の流れを受けて発電を行なう発電部(152)と、発電部(152)が発電した電力を用いて風力発電装置の異常発生の検知を行なう検知部(159)とを備える。好ましくは、発電部(152)は、潤滑油の流れを受けて回転する羽根車(153)と、羽根車(153)の回転力で発電を行なう発電機(155)とを含む。これにより、配線本数が低減された風力発電装置の異常監視装置を提供する。

Description

風力発電装置の異常監視装置
 この発明は、風力発電装置の異常監視装置に関する。
 特開2005-233722号公報には、潤滑油中の異物混入量が極めて微量である場合にそれを検出することが可能な異物検出システムが開示されている。この異物検出システムは、流体(例えば潤滑油)が流れる管内で異物(例えば、鉄粉等の磁性体粉、その他の異物)を捕捉し且つ捕捉した異物を解放する捕捉手段と、解放された異物が管内を流過するのを検出する検出手段と、制御手段とを有する。この制御手段は、検出手段で検出可能な程度まで異物が滞留する時間だけ捕捉手段で異物を捕捉し、当該時間が経過したならば異物を解放する制御を行なうように構成されている。
特開2005-233722号公報
 上記のような異物検出システムは、たとえば風力発電装置の増速機を潤滑する潤滑油を循環させるシステムにも適用することができる。風力発電装置の増速機を潤滑する潤滑油は、ギヤの損傷時や経年変化などによって、鉄粉が混入することがある。風力発電装置の増速機の異常監視項目の一つとして、潤滑油内の鉄粉検出を行なうことが検討されている。油循環システムの配管中に鉄粉を検出するためには、光透過センサなどを設置する必要がある。
 光透過センサなどの異常監視のためのセンサは、センサ自体に供給する直流低圧(たとえば5~15V)の電源電圧が必要である。しかし、センサを設置するような場所は、風力発電装置の電源系統と離れている場合が多い。風力発電装置のナセル内に電源電圧を供給するための配線を引き回すのは、監視装置設置工事に手間と時間とを要するし、監視装置の故障の一因となる。したがって、監視装置を設置するための配線は一本でも少ないほうが好ましい。
 この発明は、上記の課題を解決するためになされたものであって、その目的は、配線本数が低減された風力発電装置の異常監視装置を提供することである。
 この発明は、要約すると、風力発電装置の異常監視装置であって、風力発電装置の可動部の潤滑を行なう潤滑油を循環させる循環経路に設けられるとともに、潤滑油の流れを受けて発電を行なう発電部と、発電部が発電した電力を用いて風力発電装置の異常発生の検知を行なう検知部とを備える。
 好ましくは、発電部は、潤滑油の流れを受けて回転する羽根車と、羽根車の回転力で発電を行なう発電機とを含む。
 より好ましくは、検知部は、潤滑油の異物を検出するセンサを含む。異常監視装置は、検知部とは別の電源から電源電圧が供給され、センサの出力に基づいて、潤滑油の異物混入量を演算する演算部とを含む。
 さらに好ましくは、演算部は、羽根車の回転速度に基づいて潤滑油の流速を検出し、検出した流速とセンサの出力とに基づいて、潤滑油の異物混入量を演算する。
 さらに好ましくは、センサは、発電部が発電した電力を用いて光を潤滑油に照射する照射部と、潤滑油を透過した光量を検出する受光部とを含む。
 さらに好ましくは、センサは、循環経路において、羽根車よりも上流に設けられる。
 好ましくは、検知部は、潤滑油の異物を検出するセンサと、センサの検出した情報を無線で送信する無線送信ユニットとを含む。異常監視装置は、検知部とは別の電源から電源電圧が供給される監視装置本体をさらに備える。監視装置本体は、無線送信ユニットが送信した情報を受信する無線受信ユニットと、無線受信ユニットが受信した情報に基づいて、潤滑油の異物混入量を演算する演算部と、演算部の演算結果を記憶する記憶部とを含む。
 好ましくは、検知部は、発電部が発電した電力を用いて風力発電装置の振動を検出する振動センサを含む。
 本発明によれば、異常監視装置を設置するための配線本数が減り、工事が容易で故障しにくい異常監視装置を実現できる。
本実施の形態による状態検出装置を備えた風力発電装置1の構成を模式的に示す図である。 増速機130に潤滑油を循環させるための循環装置170の構成を模式的に示す図である。 センサユニット150の構造を模式的に示した図である。 図3のIV-IVにおける断面を示した断面図である。 異常監視装置145の構成を示すブロック図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 図1は、本実施の形態による状態検出装置を備えた風力発電装置1の構成を模式的に示す図である。
 風力発電装置1は、複数のブレード20と、ナセル100と、タワー200とを含んで構成される。
 ナセル100は、タワー200の上端部に設けられる。ナセル100の内部には、主軸110と、主軸受120と、増速機(ギヤボックス)130と、発電機140と、異常監視装置145とが格納されている。異常監視装置145は、センサユニット150と、監視装置本体160とを含む。
 ブレード20は、主軸110の先端に設けられ、風力を回転トルクに変換して主軸110に伝達する。主軸110は、ナセル100内部で主軸受120に回転可能に支持され、ブレード20から受ける回転トルクを増速機130へ伝達する。
 増速機130は、主軸110と発電機140との間に設けられ、主軸110の回転速度を増速して発電機140へ出力する。
 発電機140は、増速機130の出力軸131に接続され、増速機130から受ける回転トルクによって発電する。発電機140は、たとえば、誘導発電機によって構成される。
 ナセル100の内部には、増速機130に潤滑油を循環させるための循環装置170(後述の図2参照)が設けられる。
 図2は、増速機130に潤滑油を循環させるための循環装置170の構成を模式的に示す図である。
 循環装置170は、オイルパン171と、配管172と、ポンプ173と、オイルフィルタ174とを含む。
 オイルパン171は、増速機130の下部に設けられる。配管172の一方の端部はオイルパン171の下部に接続され、配管172の他方の端部は増速機130の上部に接続される。ポンプ173およびオイルフィルタ174は、配管172の経路上に設けられる。
 ポンプ173が駆動されると、オイルパン171に溜められた潤滑油が配管172の一方の端部からオイルフィルタ174に供給されてろ過される。オイルフィルタ174を通過した潤滑油は、ポンプ173から送出され、増速機130の上部に設けられた配管172の他方の端部から自然落下して増速機130内のギヤ132に供給される。ギヤ132に供給された潤滑油は、自然落下によってオイルパン171に戻される。
 センサユニット150は、配管172において、オイルパン171とオイルフィルタ174との間の部分に設けられる。なお、センサユニット150が設けられる位置は、配管172の経路上であれば、必ずしもポンプ173より後の部分に限定されるものではない。また、オイルフィルタ174、ポンプ173、センサユニット150の配置順も図2に示した通りでなくても構わない。
 潤滑油に混入した大きな異物はオイルフィルタ174で除去されるが、増速機130のギヤの摩耗や破損などで生じる鉄粉などの細かい異物はオイルフィルタ174では除去できない。そこで、監視装置本体160によって潤滑油に混入した異物の量の監視が行なわれる。
 監視装置本体160は、図示しないCPU(Central Processing Unit)およびメモリを内蔵したユニットにより構成され、当該メモリに記憶された情報およびセンサユニット150の出力値等に基づいて、配管172を流れる潤滑油中に鉄粉等の異物か混入されているか否かを判定する。監視装置本体160は、潤滑油に異物か混入されていると判定した場合、図示しないランプを点灯させる等によって警告を発したり、電話回線や無線回線を経由して遠隔地の監視者に異常を判断するためのデータを送信したりする。
 センサユニット150に光センサなどを使用する場合、出力信号のケーブルをすこし離れた位置にある監視装置本体160まで配線することが考えられるが、設置工事時に配線のために時間を要することが問題である。
 また、センサに電源が必要な場合があるが、監視装置本体から電源配線を引き回すのも設置工事時に配線のために時間を要する。配線を不要とするために無線で監視装置本体160にセンサの検出データを送信することも考えられるが、同様に電源配線が問題となる。
 そこで、本実施の形態では、センサの付近で発電を行なって、センサや無線送信ユニットに電源電圧を供給することとした。
 図3は、センサユニット150の構造を模式的に示した図である。図4は、図3のIV-IVにおける断面を示した断面図である。
 図3、図4を参照して、センサユニット150は、増速機130に供給される潤滑油の透過光量を検出する、透過型の光センサ151を含む。光センサ151は、発光素子151A,151Bと、受光素子151C,151Dとを含む。
 センサユニット150は、さらに、オイルパン171からポンプ173に向けて送出された潤滑油の流れを受けて発電する発電部152を含む。発電部152は、潤滑油の流れを受けて回転する羽根車153と、羽根車153が回転するとロータが回転して発電を行なう発電機155と、羽根車153の回転を発電機155のロータに伝えるシャフト154とを含む。
 センサユニット150は、さらに、増速機130のギヤの振動を検出するための振動センサ190と、光センサ151の出力と振動センサ190の出力とを受けてこれらの出力に含まれるデータを無線送信する無線送信ユニット158とを含む。
 羽根車153と光センサ151の位置関係にも考慮する必要がある。羽根車153が回転すると潤滑油の流れに乱れが発生する。光センサ151付近に潤滑油の流れの乱れが生じると、光センサ151が鉄粉などの異物を検出する精度が悪化するおそれがある。羽根車153を光センサ151よりも潤滑油の流れの下流に配置すると、羽根車153が回転することによる潤滑油の流れの乱れが光センサ151に影響を与えない。したがって、図3、図4に示すように、羽根車153を光センサ151よりも潤滑油の流れの下流に配置すると好ましい。
 センサユニット150は、透明なアクリルなどで透光部が形成された流路部157をさらに含む。流路部157の両端部にはフランジが形成されており、配管172に締結部材180によって締結されている。センサユニット150は、光センサと発電部と無線送信ユニットが流路部157に予め取り付けられた状態で風力発電装置の工事現場に運搬される。
 したがって、センサユニット150の設置工事は、締結部材180を締結し、振動センサ190と無線送信ユニット158とを配線するだけで済む。
 なお、センサユニット150は、光センサ151と発電部152と無線送信ユニットが流路部157に予め取り付けられた状態で製品として販売されてもよく、工事担当者が、工事現場に行く前に予め組み上げてもよい。
 図5は、異常監視装置145の構成を示すブロック図である。図5を参照して、異常監視装置145は、センサユニット150と、監視装置本体160とを含む。センサユニット150には、発電機155によって発電された電源電圧V1が供給される。監視装置本体160には、風力発電装置のナセル内に設置された配電盤400などから電源電圧V2が供給される。
 センサユニット150は、光センサ151と、回転速度センサ156と、振動センサ190と、無線送信ユニット158とを含む。
 光センサ151は、潤滑油の光透過量の変化を検出することによって、潤滑油の異物を検出する。回転速度センサ156は、発電機155を回転させる羽根車153の回転速度を検出する。振動センサ190は、増速機130の振動を検出する。
 なお、羽根車153の回転速度が発電機155の出力電力などによってわかる場合には、回転速度センサ156を設けなくてもよい。また、振動センサ190は、増速機130以外の部分の振動を検出するものであってもよい。
 無線送信ユニット158は、光センサ151、回転速度センサ156、振動センサ190の出力に含まれる情報を無線で監視装置本体160に送信する。
 監視装置本体160は、無線受信ユニット162と、演算部164と、記憶部166とを含む。
 無線受信ユニット162は、無線送信ユニット158が送信した情報を受信する。演算部164は、無線受信ユニット162が受信した情報に基づいて、潤滑油の異物混入量を演算する。記憶部166は、演算部164の演算結果を記憶する。記憶部166に記憶された演算結果は、メンテナンス時に点検に来た作業者が回収してもよいし、図示しない電話回線や無線回線などによって遠隔地の監視者に送信されてもよい。
 演算部164は、光センサ151の検出した光透過量が所定値よりも低下したことによって潤滑油に汚れが発生したことを検出すると、図示しない警告灯を点灯させるなどして、監視者に報知する。
 その際に、誤警報を防ぐため、演算部164は回転速度センサ156の出力によって、潤滑油の流速を演算して、光透過量の補正を行なう。たとえば、判定時間の光透過量の積算値に基づいて潤滑油の汚れを判断する場合には、流速に応じて判定時間の長さを変更することによって、光透過量の補正を行なうことができる。なお、回転速度が早ければ流速も早くなり、流速が早ければ判定時間は短くなるが、回転速度と流速の関係や、流速と判定時間の長さとの関係は、予め実験的に求めておいて、マップ化しておくと良い。
 最後に、本実施の形態について、再び図面を参照して総括する。主に図3および図5を参照して、本実施の形態の風力発電装置の異常監視装置は、風力発電装置の増速機130などの可動部の潤滑を行なう潤滑油を循環させる循環経路に設けられるとともに、潤滑油の流れを受けて発電を行なう発電部152と、発電部152が発電した電力を用いて風力発電装置の異常発生の検知を行なう検知部159とを備える。
 好ましくは、発電部152は、潤滑油の流れを受けて回転する羽根車153と、羽根車153の回転力で発電を行なう発電機155とを含む。
 より好ましくは、検知部159は、潤滑油の異物を検出する光センサ151を含む。異常監視装置は、検知部159とは別の電源から電源電圧V2が供給され、光センサ151の出力に基づいて、潤滑油の異物混入量を演算する演算部164とを含む。
 さらに好ましくは、演算部164は、羽根車153の回転速度に基づいて潤滑油の流速を検出し、検出した流速と光センサ151の出力とに基づいて、潤滑油の異物混入量を演算する。
 さらに好ましくは、光センサ151は、発電部が発電した電力を用いて光を潤滑油に照射する照射部(発光素子151A,151B)と、潤滑油を透過した光量を検出する受光部(受光素子151C,151D)とを含む。
 さらに好ましくは、光センサ151は、循環経路において、羽根車153よりも上流に設けられる。
 好ましくは、検知部159は、潤滑油の異物を検出する光センサ151と、光センサ151の検出した情報を無線で送信する無線送信ユニット158とを含む。異常監視装置145は、検知部159とは別の電源から電源電圧V2が供給される監視装置本体160をさらに備える。監視装置本体160は、無線送信ユニット158が送信した情報を受信する無線受信ユニット162と、無線受信ユニット162が受信した情報に基づいて、潤滑油の異物混入量を演算する演算部164と、演算部164の演算結果を記憶する記憶部166とを含む。
 好ましくは、検知部159は、発電部152が発電した電力を用いて風力発電装置の振動を検出する振動センサ190を含む。
 以上説明したように、本実施の形態では、油循環システムの配管172の一部にセンサユニット150を取り付け、センサユニット150の一部に羽根車153が付属し、潤滑油の流れによって発電し、発電電力によってセンサ類を駆動させる。
 演算部164は、流速の変化によって、光センサ151の出力の補正を行ない、単位体積当たりの異物量の精度を高めて誤警報を防ぐ。
 センサユニット150によって発電した電源電圧は、振動センサ190にも供給される。無線送信ユニット158の電源も、羽根車153によって発電した電力を用いる。
 このように構成することによって、電源配線や信号配線の本数を減らすことができ、設置工事が容易な異常監視装置を実現することができる。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 100 ナセル、110 主軸、120 主軸受、130 増速機、131 出力軸、132 ギヤ、140,155 発電機、145 異常監視装置、150 センサユニット、151 光センサ、151A,151B 発光素子、151C,151D 受光素子、152 発電部、153 羽根車、154 シャフト、156 回転速度センサ、157 流路部、158 無線送信ユニット、160 監視装置本体、162 無線受信ユニット、164 演算部、166 記憶部、170 循環装置、171 オイルパン、172 配管、173 ポンプ、174 オイルフィルタ、180 締結部材、190 振動センサ、200 タワー、400 配電盤。

Claims (8)

  1.  風力発電装置の異常監視装置であって、
     前記風力発電装置の可動部の潤滑を行なう潤滑油を循環させる循環経路に設けられるとともに、前記潤滑油の流れを受けて発電を行なう発電部と、
     前記発電部が発電した電力を用いて前記風力発電装置の異常発生の検知を行なう検知部とを備える、風力発電装置の異常監視装置。
  2.  前記発電部は、
     前記潤滑油の流れを受けて回転する羽根車と、
     前記羽根車の回転力で発電を行なう発電機とを含む、請求項1に記載の風力発電装置の異常監視装置。
  3.  前記検知部は、
     前記潤滑油の異物を検出するセンサを含み、
     前記異常監視装置は、前記検知部とは別の電源から電源電圧が供給され、前記前記センサの出力に基づいて、前記潤滑油の異物混入量を演算する演算部とを含む、請求項2に記載の風力発電装置の異常監視装置。
  4.  前記演算部は、前記羽根車の回転速度に基づいて前記潤滑油の流速を検出し、検出した流速と前記センサの出力とに基づいて、前記潤滑油の異物混入量を演算する、請求項3に記載の風力発電装置の異常監視装置。
  5.  前記センサは、
     前記発電部が発電した電力を用いて光を前記潤滑油に照射する照射部と、
     前記潤滑油を透過した光量を検出する受光部とを含む、請求項3に記載の風力発電装置の異常監視装置。
  6.  前記センサは、前記循環経路において、前記羽根車よりも上流に設けられる、請求項5に記載の風力発電装置の異常監視装置。
  7.  前記検知部は、
     前記潤滑油の異物を検出するセンサと、
     前記センサの検出した情報を無線で送信する無線送信ユニットとを含み、
     前記異常監視装置は、前記検知部とは別の電源から電源電圧が供給される監視装置本体をさらに備え、
     前記監視装置本体は、
     前記無線送信ユニットが送信した情報を受信する無線受信ユニットと、
     前記無線受信ユニットが受信した情報に基づいて、前記潤滑油の異物混入量を演算する演算部と、
     前記演算部の演算結果を記憶する記憶部とを含む、請求項1に記載の風力発電装置の異常監視装置。
  8.  前記検知部は、
     前記発電部が発電した電力を用いて前記風力発電装置の振動を検出する振動センサを含む、請求項1に記載の風力発電装置の異常監視装置。
PCT/JP2015/076892 2014-10-23 2015-09-24 風力発電装置の異常監視装置 WO2016063672A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014216342A JP2016084714A (ja) 2014-10-23 2014-10-23 風力発電装置の異常監視装置
JP2014-216342 2014-10-23

Publications (1)

Publication Number Publication Date
WO2016063672A1 true WO2016063672A1 (ja) 2016-04-28

Family

ID=55760717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076892 WO2016063672A1 (ja) 2014-10-23 2015-09-24 風力発電装置の異常監視装置

Country Status (2)

Country Link
JP (1) JP2016084714A (ja)
WO (1) WO2016063672A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159945A (zh) * 2016-08-05 2016-11-23 三峡大学 一种基于多场景模式下的风电连锁脱网路径链搜寻方法
CN106208045A (zh) * 2016-08-05 2016-12-07 三峡大学 一种避免集群风电场连锁脱网的分层分级控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018194011A (ja) * 2017-05-12 2018-12-06 株式会社日立製作所 風力発電機のグリースの監視システムおよび方法
JP6919986B2 (ja) * 2017-06-30 2021-08-18 株式会社日立製作所 風力発電機の潤滑油の監視システムおよび方法
CN108590982B (zh) * 2018-03-26 2020-08-11 华北电力大学 一种风电机组限功率运行的异常数据处理方法
JP7032258B2 (ja) * 2018-07-17 2022-03-08 株式会社日立製作所 風力発電機診断システムおよび方法
JP7252737B2 (ja) * 2018-11-08 2023-04-05 株式会社日立製作所 風力発電機のグリースの監視システムおよび方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125817A (ja) * 2009-12-18 2011-06-30 Mitsubishi Heavy Ind Ltd 油中水分・異物除去装置および油中水分・異物除去方法
JP2011208635A (ja) * 2010-03-12 2011-10-20 Ntn Corp 摩耗検知装置およびそれを備える風力発電装置ならびに摩耗検知方法
US20120025529A1 (en) * 2011-05-31 2012-02-02 General Electric Company System and Methods for Monitoring Oil Conditions of a Wind Turbine Gearbox
JP2013185507A (ja) * 2012-03-08 2013-09-19 Ntn Corp 状態監視システム
US20130309088A1 (en) * 2012-05-15 2013-11-21 Clipper Windpower, Llc Method for Protecting Wind Turbine Equipment in Fire Event
JP2014051987A (ja) * 2013-10-18 2014-03-20 Hitachi Ltd ダウンウインド型風車
WO2014112034A1 (ja) * 2013-01-15 2014-07-24 三菱重工業株式会社 異常診断方法及びシステム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5510926B2 (ja) * 2010-03-26 2014-06-04 Ntn株式会社 ブレード用軸受の異常検出装置および異常検出方法
JP5980591B2 (ja) * 2012-06-29 2016-08-31 ナブテスコ株式会社 色センサーおよび機械装置遠隔監視システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125817A (ja) * 2009-12-18 2011-06-30 Mitsubishi Heavy Ind Ltd 油中水分・異物除去装置および油中水分・異物除去方法
JP2011208635A (ja) * 2010-03-12 2011-10-20 Ntn Corp 摩耗検知装置およびそれを備える風力発電装置ならびに摩耗検知方法
US20120025529A1 (en) * 2011-05-31 2012-02-02 General Electric Company System and Methods for Monitoring Oil Conditions of a Wind Turbine Gearbox
JP2013185507A (ja) * 2012-03-08 2013-09-19 Ntn Corp 状態監視システム
US20130309088A1 (en) * 2012-05-15 2013-11-21 Clipper Windpower, Llc Method for Protecting Wind Turbine Equipment in Fire Event
WO2014112034A1 (ja) * 2013-01-15 2014-07-24 三菱重工業株式会社 異常診断方法及びシステム
JP2014051987A (ja) * 2013-10-18 2014-03-20 Hitachi Ltd ダウンウインド型風車

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159945A (zh) * 2016-08-05 2016-11-23 三峡大学 一种基于多场景模式下的风电连锁脱网路径链搜寻方法
CN106208045A (zh) * 2016-08-05 2016-12-07 三峡大学 一种避免集群风电场连锁脱网的分层分级控制方法

Also Published As

Publication number Publication date
JP2016084714A (ja) 2016-05-19

Similar Documents

Publication Publication Date Title
WO2016063672A1 (ja) 風力発電装置の異常監視装置
ES2374848T3 (es) Procedimiento para el funcionamiento de una instalación de energía eólica.
CN102597728B (zh) 机器和用于监测机器的安全轴承的状态的方法
ES2546939T3 (es) Turbina eólica y procedimiento de detección de hielo asimétrico en una turbina eólica
RU2013126118A (ru) Система и способ контроля рабочих характеристик мельниц
SE535025C2 (sv) Vindkraftverk och en metod för att driva ett vindkraftverk
BR112014015469B1 (pt) Método para controlar uma disposição de bomba
KR20160080338A (ko) 비상용 디젤 발전기의 기계적 상태 모니터링 시스템 및 그 방법
EP2752525A8 (en) Self-power generation type pipe sensor, disaster detection system, and self-power generation type pipe attachment device
CN104094110A (zh) 监测风力发电设备齿轮箱的方法和系统,以及相应的风力发电设备
JP2010206964A (ja) 回転機械システム
KR20130046858A (ko) 풍력 발전기 블레이드 감시 시스템 및 이를 이용한 감시 방법
JP2011202626A (ja) ブレード用軸受の異常検出装置および異常検出方法
RU2015103230A (ru) Контролируемое соединение компонентов, ветроэнергетическая установка, способ мониторинга соединения компонентов для обнаружения нежелательного отсоединения соединенного компонента
WO2020195691A1 (ja) 状態監視システム
KR102151105B1 (ko) IoT/ICT를 이용한 스마트 제트팬 및 유지관리 통합시스템
JP2019074059A (ja) 風力発電システム
US20120283985A1 (en) Non-invasive speed sensor
CN103256173B (zh) 风机监控方法及系统、风机组监控系统
US20160356267A1 (en) State detection device for wind power generation apparatus
JP2017059115A (ja) 制御装置および制御方法
ES2806507T3 (es) Acoplamiento inteligente
JP2015074998A (ja) 風力発電用風車の監視システム、風力発電システム、風力発電用風車の監視方法及び風力発電用風車の監視プログラム
JP2016079860A (ja) 風力発電装置の異常監視装置
CN110785793A (zh) 风力涡轮机的烟雾验证过程

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15853577

Country of ref document: EP

Kind code of ref document: A1