WO2016063556A1 - 車両の動力伝達制御装置 - Google Patents

車両の動力伝達制御装置 Download PDF

Info

Publication number
WO2016063556A1
WO2016063556A1 PCT/JP2015/060048 JP2015060048W WO2016063556A1 WO 2016063556 A1 WO2016063556 A1 WO 2016063556A1 JP 2015060048 W JP2015060048 W JP 2015060048W WO 2016063556 A1 WO2016063556 A1 WO 2016063556A1
Authority
WO
WIPO (PCT)
Prior art keywords
engagement
shift
engaged
shaft
fork
Prior art date
Application number
PCT/JP2015/060048
Other languages
English (en)
French (fr)
Inventor
勇樹 桝井
Original Assignee
アイシン・エーアイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エーアイ株式会社 filed Critical アイシン・エーアイ株式会社
Priority to DE112015004775.1T priority Critical patent/DE112015004775T5/de
Publication of WO2016063556A1 publication Critical patent/WO2016063556A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/04Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways with a shaft carrying a number of rotatable transmission members, e.g. gears, each of which can be connected to the shaft by a clutching member or members between the shaft and the hub of the transmission member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D11/00Clutches in which the members have interengaging parts
    • F16D11/08Clutches in which the members have interengaging parts actuated by moving a non-rotating part axially
    • F16D11/10Clutches in which the members have interengaging parts actuated by moving a non-rotating part axially with clutching members movable only axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/089Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears all of the meshing gears being supported by a pair of parallel shafts, one being the input shaft and the other the output shaft, there being no countershaft involved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/24Final output mechanisms therefor; Actuating means for the final output mechanisms each of the final output mechanisms being moved by only one of the various final actuating mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H2063/3089Spring assisted shift, e.g. springs for accumulating energy of shift movement and release it when clutch teeth are aligned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0047Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising five forward speeds

Definitions

  • the present invention relates to a vehicle power transmission control device.
  • an “engaged member” and an “engagement member” are provided for each of the shift stages.
  • the “engaged member” is fixed to an idler gear that is rotatably provided on the input shaft or output shaft of the transmission.
  • the “engagement member” is a non-rotatable relative to the shaft on which the idle gear is provided, and an engagement position that engages with the engaged member in the axial direction and a non-engagement with the engaged member. It is provided to be movable between engagement positions.
  • the “engagement member” of one of the plurality of gears is in the “engagement position”, and the “engagement member” of the remaining gears of the plurality of gears is “not engaged”. In the “position”, the gear position is realized.
  • the clutch is engaged when performing a shift operation (hereinafter referred to as “shift-up”) that changes the “realized shift speed” to the high speed side in the acceleration state of the vehicle.
  • shift-up a shift operation
  • the “engagement member” at the “engagement position” of the gear stage before the gear shift is driven toward the “non-engagement position” and the “non-engagement position” of the gear stage after the gear shift.
  • shift down a shift operation that changes the “realized gear stage” to the low speed side in the deceleration state of the vehicle is referred to as “shift down”, and no gear shift operation is performed when a certain gear stage is realized.
  • the acceleration state of the vehicle is referred to as “normal acceleration”
  • the deceleration state of the vehicle that does not involve a shift operation in a state in which a certain shift speed is realized is referred to as “normal deceleration”.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a vehicle power transmission device that can achieve a seamless upshift, and is suitable for “downshift, normal acceleration, and normal deceleration.
  • One aspect of the present invention is to provide an aspect of "operation can be obtained”.
  • the vehicle power transmission control device has the following two points. That is, the first point is that a pair of frictional engagement surfaces are provided at portions of the engaging member and the engaged member that are opposed to each other for each shift stage. When the engagement member is in the non-engagement position, the pair of friction engagement surfaces do not contact each other, and the engagement member is in the engagement position. In some cases, the pair of friction engagement surfaces are configured to contact each other.
  • the pair of friction engagement surfaces are preferably a female conical friction engagement surface and a male conical friction engagement surface. As a result, it is easy to generate a friction torque (torque in the direction of reducing the difference in rotational speed between the engaging member and the engaged member) that is larger than when the pair of friction engaging surfaces is a pair of planar friction engaging surfaces. .
  • a second point relates to an engagement structure between a shaft (corresponding shaft) provided with an idle gear and the engagement member for each of the shift speeds, and when the engagement member is in the engagement position,
  • the engagement member is the axial force that presses the engaged member, and the deceleration direction.
  • the configuration is such that a force (engagement pressing force) having a magnitude corresponding to the magnitude of the torque is generated.
  • this configuration is mutually related when, for example, the torque in the deceleration direction of the vehicle is acting between the corresponding shaft and the engagement member when the engagement member is in the engagement position.
  • first engaging surface during deceleration Either one or both of the corresponding shaft and the engaging surface of the engaging member (hereinafter referred to as “first engaging surface during deceleration”) or both of the engaging shaft and the engaging member are generated so that the engaging pressing force is generated. It can be realized by tilting with respect to the axial direction.
  • the vehicle is decelerated between the engagement member and the engaged member.
  • the engaging member is inclined with respect to the axial direction so as to receive the axial force moving away from the engaged member.
  • both “second engagement surfaces during deceleration” collide with each other.
  • the engagement member of the gear stage before the shift is moved from the “engagement position” to the “non-engagement” by using the “axial force” without using the driving force of the actuator. It can be reliably moved to “position”.
  • the engagement member at the engagement position of the gear stage before the shift is in the disengagement position with the clutch maintained in the engaged state.
  • the engagement member at the disengagement position of the gear stage after the shift is driven toward the engagement position.
  • the engaging surfaces of the engaging member and the engaged member that are engaged with each other when the torque in the acceleration direction of the vehicle is acting between the engaging member and the engaged member of the shift stage after the shift. are in contact with each other (in other words, using the torque transmission action of the dog clutch), “the torque in the acceleration direction of the vehicle is between the engaged member and the engaged member of the gear stage after the shift.
  • the “transmitted state” can be obtained stably.
  • seamless upshifting can be executed instantaneously and stably.
  • the engagement member at the engagement position of the gear stage before the shift in a state where the clutch is changed / maintained from the engaged state to the disconnected state. Is driven toward the disengaged position, and the engaging member at the disengaged position of the gear stage after the shift is driven toward the engaged position.
  • the engagement member of the shift stage before the shift is in the non-engagement position, the engagement member of the shift stage after the shift is in the engagement position, and the engagement pressing force is A state of pressing the engaged member regardless of the state is realized.
  • the clutch is changed from the divided state to the engaged state.
  • the “second deceleration” of the gear stage after the shift is performed at the time of shift down. Since the “engagement surfaces” do not come into contact with each other, the engagement member of the gear stage after the shift moves from the “engagement position” to the “non-engagement position” due to the inclination of the “engagement surface during second deceleration” (That is, a situation where torque in the deceleration direction of the vehicle cannot be transmitted) does not occur.
  • the drive torque in the deceleration direction of the drive source is not transmitted to the drive wheels only during the extremely short period during which the clutch is maintained in the disconnected state, but the downshift is instantaneously stabilized. Can be executed.
  • the clutch is maintained in the engaged state during normal acceleration and normal deceleration, and the engagement member at the engagement position of the realized gear stage is provided. It is always pressed in the axial direction toward the engaged member regardless of the engagement pressing force.
  • the engagement member of the realized gear stage is always pressed toward the engaged member, so that “the engaging member is engaged” by the same mechanism as in the above-described shift down.
  • the “force for pressing the joint member” is gradually amplified.
  • the engaging member and the engaged member are fixed to each other (the rotational speed difference becomes zero) before the “second engaging surface at the time of deceleration” of the shift stage that has been realized comes into contact with each other. Become). That is, “torque in the deceleration direction of the vehicle between the engagement member and the engaged member of the realized gear is utilized by using the friction torque without contacting the“ second deceleration engagement surfaces ”with each other. Is transmitted ”.
  • FIG. 1 is a diagram illustrating a schematic configuration of a power transmission control device for a vehicle according to an embodiment of the present invention. It is a figure which shows typically the switching mechanisms 101 and 102 shown in FIG.
  • FIG. 3 is a perspective view of a first-speed engaged member 110 shown in FIG. 2.
  • FIG. 3 is a perspective view of a second speed engaged member 120 shown in FIG. 2.
  • FIG. 3 is a perspective view of a first speed engagement member 130 shown in FIG. 2.
  • FIG. 3 is a perspective view of a second speed engagement member 140 shown in FIG. 2.
  • FIG. 3 is a first diagram corresponding to FIG. 2 for explaining an operation at the time of shift-up.
  • FIG. 3 is a second diagram corresponding to FIG. 2 for explaining the operation at the time of shifting up.
  • FIG. 3 is a first diagram corresponding to FIG. 2 for explaining an operation at the time of shift-up.
  • FIG. 3 is a second diagram corresponding to FIG. 2 for explaining the operation at the time of shifting up
  • FIG. 6 is a third diagram corresponding to FIG. 2 for explaining the operation at the time of shifting up.
  • FIG. 9 is a fourth diagram corresponding to FIG. 2 for illustrating the operation at the time of shift-up.
  • FIG. 6 is a fifth diagram corresponding to FIG. 2 for explaining the operation at the time of shift-up.
  • FIG. 3 is a first diagram corresponding to FIG. 2 for explaining an operation at the time of downshifting.
  • FIG. 3 is a second diagram corresponding to FIG. 2 for explaining an operation at the time of downshifting.
  • FIG. 6 is a third diagram corresponding to FIG. 2 for explaining the operation at the time of downshifting.
  • FIG. 6 is a fourth diagram corresponding to FIG. 2 for explaining the operation at the time of downshifting.
  • FIG. 9 is a fourth diagram corresponding to FIG. 2 for illustrating the operation at the time of shift-up.
  • FIG. 6 is a fifth diagram corresponding to FIG. 2 for explaining the operation at the time of shift-up.
  • FIG. 9 is a fifth diagram corresponding to FIG. 2 for illustrating the operation at the time of downshifting.
  • FIG. 3 is a first diagram corresponding to FIG. 2 for explaining an operation at the time of transition from normal deceleration to normal acceleration.
  • FIG. 3 is a second diagram corresponding to FIG. 2 for explaining an operation at the time of transition from normal deceleration to normal acceleration.
  • FIG. 6 is a third diagram corresponding to FIG. 2 for explaining the operation at the time of transition from normal deceleration to normal acceleration.
  • FIG. 6 is a fourth diagram corresponding to FIG. 2 for explaining the operation at the time of transition from normal deceleration to normal acceleration.
  • FIG. 10 is a fifth diagram corresponding to FIG. 2 for illustrating the operation at the time of transition from normal deceleration to normal acceleration.
  • FIG. 3 is a first diagram corresponding to FIG. 2 for explaining an operation at the time of transition from normal acceleration to normal deceleration.
  • FIG. 3 is a second diagram corresponding to FIG. 2 for explaining the operation at the time of transition from normal acceleration to normal deceleration.
  • FIG. 6 is a third diagram corresponding to FIG. 2 for explaining the operation at the time of transition from normal acceleration to normal deceleration.
  • FIG. 9 is a fourth diagram corresponding to FIG. 2 for explaining the operation at the time of transition from normal acceleration to normal deceleration.
  • a transmission T / M included in the present apparatus is interposed in a power transmission system that connects a drive output shaft of an engine, which is a drive source of the vehicle, and a drive wheel of the vehicle. (1st) to 5th (5th)).
  • the transmission T / M includes an input shaft A2 and an output shaft A3 that are parallel to each other.
  • the input shaft A2 and the output shaft A3 are supported by a T / M housing (not shown) so as to be relatively rotatable.
  • the input shaft A2 of the transmission T / M is connected to the drive output shaft A1 of the engine E / G via the clutch C / D and the flywheel F / W.
  • a power transmission system is formed between the input shaft A2 and the drive output shaft A1 of the engine E / G.
  • An output shaft A3 of the transmission T / M is connected to a drive wheel D / W of the vehicle via a differential D / F.
  • a power transmission system is formed between the output shaft A3 and the drive wheels D / W.
  • the clutch C / D is a friction clutch disk having one of well-known configurations provided to rotate integrally with the input shaft A2 of the transmission T / M. More specifically, the clutch C / D (more precisely, the clutch disc) faces each other with respect to the flywheel F / W provided to rotate integrally with the output shaft A1 of the engine E / G. It is arranged coaxially. The axial position of the clutch C / D (more precisely, the clutch disc) with respect to the flywheel F / W can be adjusted. The axial position of the clutch C / D is adjusted by the clutch actuator ACT1.
  • the clutch C / D has a “joined state” in which a power transmission system is formed between the drive output shaft A1 of the engine and an input shaft A2 of the transmission, and a “divided state” in which the power transmission system is not formed. And can be selectively realized.
  • the clutch C / D does not include a clutch pedal operated by the driver.
  • the transmission T / M includes a plurality of fixed gears (also referred to as “driving gears”) G1i, G2i, G3i, G4i, and G5i, and a plurality of idle gears (also referred to as “driven gears”) G1o, G2o, G3o, and G4o. , G5o.
  • the plurality of fixed gears G1i, G2i, G3i, G4i, and G5i are each fixed to the input shaft A2 coaxially and relatively unrotatably, and each fixed to the input shaft A2 so as not to move relative to each other. It corresponds to each of a plurality of forward gears.
  • these fixed gears G1i, G2i, G3i, G4i, and G5i correspond to first speed, second speed, third speed, fourth speed, and fifth speed, respectively.
  • Each of the plurality of idle gears G1o, G2o, G3o, G4o, G5o is provided coaxially and relatively rotatably with the output shaft A3, and each is provided with relative movement in the axial direction of the output shaft A3. It corresponds to each of a plurality of forward gears, and each meshes with a fixed gear of each corresponding gear.
  • these idle gears G1o, G2o, G3o, G4o, and G5o correspond to the first speed, the second speed, the third speed, the fourth speed, and the fifth speed, respectively.
  • the transmission T / M includes switching mechanisms SW1, SW2, SW3, SW4, and SW5.
  • the switching mechanisms SW1, SW2, SW3, SW4, and SW5 correspond to 1st speed, 2nd speed, 3rd speed, 4th speed, and 5th speed, respectively.
  • Each switching mechanism selectively selects “a state in which relative rotation is impossible” and “a state in which relative rotation is not possible” with respect to the corresponding shaft on which the idle gear is provided. Realize.
  • one shift stage is selectively realized from a plurality of shift stages.
  • “Achieving” a certain gear position means that “the idle gear of that gear stage cannot rotate relative to the corresponding shaft on which the idle gear is provided, and the idle gear of another gear stage is “The state where the gears can rotate relative to the corresponding shafts provided with the idle gears”.
  • the reduction ratio ratio of the rotational speed of the input shaft A2 to the rotational speed of the output shaft A3 is adjusted by controlling the ACT2 to change the “speed stage to be realized”.
  • the control device 200 includes an accelerator opening sensor S1, a shift position sensor S2, a brake sensor S3, and an electronic control unit ECU.
  • the accelerator opening sensor S1 is a sensor that detects an operation amount (accelerator opening) of the accelerator pedal AP.
  • the shift position sensor S2 is a sensor that detects the position of the shift lever SF.
  • the brake sensor S3 is a sensor that detects whether or not the brake pedal BP is operated.
  • the electronic control unit ECU controls the actuators ACT1 and ACT2 based on the information from the sensors S1 to S3 and other sensors as described above, so that the clutch C / D state (engaged state or disconnected state) is controlled. State), and “realized shift speed” of the transmission T / M are set / changed.
  • the electronic control unit ECU controls the drive torque of the output shaft A1 of the engine E / G by controlling the fuel injection amount (throttle valve opening) of the engine E / G.
  • FIG. 2 shows a switching mechanism SW1 corresponding to the first speed and a switching mechanism SW2 corresponding to the second speed.
  • SW1 includes an engaged member EN1, a sleeve (engaging member) SL1, a fork shaft FS1, and a fork FK1.
  • SW2 includes an engaged member EN2, a sleeve (engaging member) SL2, a fork shaft FS2, and a fork FK2.
  • “Numerals” included in the reference numerals of the constituent members represent “corresponding shift speeds”. Since both switching mechanisms SW1 and SW2 have the same structure, only SW1 will be described below.
  • the engaged member EN1 is provided coaxially and relatively rotatably on the output shaft A3 of the transmission T / M, and is fixed to the side surface of the first-speed idler gear G1o.
  • the engaged member EN1 may be a part of the idle gear G1o.
  • the engaged member EN1 is integral with the first idle gear G1o and rotates relative to the output shaft A3.
  • the sleeve SL1 is provided coaxially with the output shaft A3 so as not to rotate relative to the output shaft A3, and is engaged with the engaged member EN1 in the axial direction and the engaged member EN1 from the “engaged position”. It is possible to move between a “non-engagement position” (position shown in FIG. 2) that is far from the position and does not engage the engaged member EN1.
  • a “non-engagement position” position shown in FIG. 2
  • the engagement structure between the sleeve SL1 and the output shaft A3 extends in the axial direction provided on the outer surface of the “hub HB1 provided coaxially and integrally with the output shaft A3”.
  • This can be achieved by fitting an inner pin SL1b protruding radially inward from the inner peripheral surface of the sleeve SL1 into the groove HB1a.
  • This engagement structure can also be achieved by fitting an outer pin that protrudes radially outward from the outer surface of the hub HB1 into an axially extending groove provided on the inner peripheral surface of the sleeve SL1. Can be done.
  • the engaged member EN1 has, for example, a plurality of (four in this example) protruding in the axial direction toward the sleeve SL1 on the side surface on the sleeve SL1 side of the disk-shaped main body.
  • An engaged claw EN1a is provided.
  • FIG. 4 shows an example of the engaged member EN2.
  • a plurality of sleeves SL ⁇ b> 1 project in the axial direction toward the engaged member EN ⁇ b> 1 on the axial end surface of the cylindrical main body portion on the non-engaging member EN ⁇ b> 1 side.
  • four engagement claws SL1a are provided.
  • FIG. 6 shows an example of the sleeve SL2.
  • the engagement claw SL1a When the sleeve SL1 is in the “engagement position”, the engagement claw SL1a can be engaged with the engagement claw EN1a, and when the sleeve SL1 is in the “non-engagement position”, the engagement claw SL1a is engaged with the engagement claw SL1a.
  • the claw EN1a does not engage.
  • the acceleration surface EN1aa of the engaged claw EN1a and the acceleration surface SL1aa of the engagement claw SL1a can abut when the torque in the acceleration direction of the vehicle is acting.
  • the acceleration surface HB1aa of the groove HB1a and the inner pin SL1b can come into contact with each other. In this state, the portion of the acceleration surface HB1aa of the groove HB1a with which the inner pin SL1b abuts extends in parallel to the axial direction.
  • the sleeve SL1 does not receive an axial force.
  • the acceleration surfaces EN1aa and SL1aa both extend parallel to the axial direction. Therefore, even if the acceleration surfaces EN1aa and SL1aa come into contact with each other and are pressed against each other, the sleeve SL1 does not receive an axial force.
  • the deceleration surface EN1ab of the engaged claw EN1a and the deceleration surface SL1ab of the engagement claw SL1a abut when the torque in the deceleration direction of the vehicle is acting.
  • the deceleration surface HB1ab of the groove HB1a and the inner pin SL1b can come into contact with each other. In this state, the portion of the deceleration surface HB1ab of the groove HB1a with which the inner pin SL1b abuts is inclined with respect to the axial direction.
  • engagement pressing force an axial force that presses the engaged member EN1 (hereinafter referred to as “engagement pressing force”).
  • the magnitude of the engagement pressing force is proportional to the magnitude of torque in the deceleration direction acting between the output shaft A3 and the sleeve SL1.
  • the same effect can be obtained by inclining the portion with which the outer pin abuts on the deceleration surface of the groove of the sleeve SL1 with respect to the axial direction.
  • the deceleration surfaces EN1ab and SL1ab are both inclined with respect to the axial direction.
  • the sleeve SL1 receives an axial force in a direction away from the engaged member EN1. Only one of the deceleration surfaces EN1ab and SL1ab may be inclined with respect to the axial direction.
  • a pair of friction engagement surfaces SL1c and EN1c are provided at portions of the sleeve SL1 and the engaged member EN1 that face each other.
  • the pair of friction engagement surfaces includes a female conical friction engagement surface SL1c on the sleeve SL1 side and a male conical friction engagement surface EN1c on the engaged member EN1 side.
  • the pair of friction engagement surfaces may include a male conical friction engagement surface on the sleeve SL1 side and a female conical friction engagement surface on the engaged member EN1 side. It may be a plane friction engagement surface.
  • Friction torque (torque in a direction to reduce the rotational speed difference between the sleeve SL1 and the engaged member EN1) is generated.
  • the “engagement position” of the sleeve (position where the engagement claw and the engagement claw are engaged) has a certain width in the axial direction.
  • the pair of friction engagement surfaces may be configured to start contact at a position inside the width thereof.
  • the axial position of the sleeve SL1 is controlled via the fork shaft FS1 and the fork FK1.
  • the fork shaft FS1 is supported by a housing (not shown) of the transmission T / M so as to be parallel to the output shaft A3 and movable in the axial direction.
  • the axial position of FS1 is controlled by an actuator ACT2-1 that is a part of the transmission actuator ACT2.
  • the axial position of FS1 is selected from one of “first position” (position shown in FIG. 2), “intermediate position” (described later), and “second position” (described later). Controlled.
  • the fork FK1 includes a "connecting portion connected to the fork shaft FS1 so as to be relatively movable in the axial direction", and a “gripping portion integrated with the connecting portion and connected to the sleeve SL1 so as not to be relatively movable in the axial direction" Is provided.
  • the connecting portion of the fork FK1 is disposed between a pair of snap rings SR1 and SR1 that are fixed to the fork shaft FS1 with an interval in the axial direction.
  • a pair of coil springs SP1 and SP1 are interposed in a pair of gaps between both ends in the axial direction of the connecting portion of the FK1 and the pair of snap rings SR1 and SR1.
  • FIG. 7 shows the acceleration state of the vehicle at the first speed (EN 2, SL 2, SL 1, EN 1 angular velocities: 2 ⁇ , ⁇ , ⁇ , ⁇ ) when the accelerator pedal AP is “ON” and the clutch C / D is “engaged”. ).
  • the first speed fork shaft FS1 is controlled to the “second position”
  • the second speed fork shaft FS2 is controlled to the “first position”. Yes.
  • the sleeve SL2 is maintained in the “non-engagement position”, while the sleeve SL1 is in the “engagement position” and is directed toward the engaged member EN1 by the pressing force F1a by the springs SP1 and SP1. It is pressed in the axial direction.
  • the friction engagement surfaces EN1c and SL1c are pressed against each other by the pressing force F1a.
  • the driving torque is transmitted by utilizing the torque transmission action of the so-called “dog clutch” by the contact between the non-engaging member EN1 and the acceleration surfaces EN1aa and SL1aa of the sleeve SL1.
  • the torque transmission action of the "friction cone clutch” is not functioning.
  • the first-speed fork shaft FS1 is moved from the “first position” to the “intermediate position” from the state shown in FIG.
  • the sleeve SL1 is maintained at the “engagement position”, while the pressing force F1a by the springs SP1 and SP1 disappears.
  • the same transmission path as the drive torque transmission path of engine E / G shown in FIG. 7 is maintained.
  • the second-speed fork shaft FS2 is moved from the “first position” to the “intermediate position”.
  • the sleeve SL2 moves from the “non-engagement position” to the “engagement position”.
  • the acceleration surface EN2aa of the non-engaging member EN2 and the acceleration surface SL2aa of the sleeve SL2 approach each other.
  • the acceleration surfaces EN2aa and SL2aa are not yet in contact with each other. Since the fork FK2 is in the original position with respect to the fork shaft FS2, the sleeve SL2 does not receive axial force from the springs SP2 and SP2.
  • the second-speed fork shaft FS2 is moved from the “intermediate position” to the “second position” as shown in FIG.
  • a pressing force F2a is generated by the springs SP2 and SP2, and the sleeve SL2 is pressed in the axial direction toward the engaged member EN2 by the pressing force F2a.
  • the friction engagement surfaces EN2c and SL2c are pressed against each other by the pressing force F2a.
  • the acceleration surfaces EN2aa and SL2aa approaching each other due to the difference in rotational speed between the non-engaging member EN2 and the sleeve SL2 are in contact with each other.
  • the angular velocities of EN2, SL2, SL1, and EN1 instantaneously change from “2 ⁇ , ⁇ , ⁇ , ⁇ ” to “ ⁇ , ⁇ , ⁇ , 1 / 2 ⁇ ”. To change.
  • the first-speed fork shaft FS1 is moved from the “intermediate position”. Moved to “first position”.
  • the sleeve SL1 moves from the “engaged position” to the “non-engaged position”. That is, when the sleeve SL1 moves from the “engaged position” to the “non-engaged position”, the “axial force resulting from the inclination of the deceleration surfaces EN1ab and SL1ab” assists the movement.
  • the sleeve SL1 can reliably move from the “engaged position” to the “non-engaged position”. As a result, the upshift from the first speed to the second speed is completed.
  • the acceleration surface HB2aa of the hub HB2 and the inner pin SL2b of the sleeve SL2 are in contact, and the acceleration surface EN2aa of the non-engaging member EN2 and the acceleration surface SL2aa of the sleeve SL2 are in contact with each other. It is in contact.
  • the drive torque of the engine E / G is as follows: drive output shaft A1, clutch C / D, input shaft A2, fixed gear G2i, idle gear G2o, non-engaging member EN2, sleeve SL2, hub HB2, output shaft A3.
  • Differential D / F Drive wheel D / W
  • the acceleration surfaces EN2aa and SL2aa of the non-engaging member EN2 and the sleeve SL2 are similar to each other as in the first speed acceleration state (see FIG. 7).
  • the driving torque is transmitted using the torque transmission action of a so-called “dog clutch” caused by the contact of.
  • the non-engaging member EN2 and the non-engaging member EN2 and the first-speed acceleration state (see FIG. 7) described above are achieved.
  • the torque transmission action of the so-called “friction cone clutch” due to the pressure between the friction engagement surfaces EN2c and SL2c of the sleeve SL2 is not functioning.
  • FIG. 12 shows the vehicle deceleration state (EN2, SL2, SL1 immediately after the accelerator pedal AP is “OFF” and the clutch C / D is changed from “engaged” to “divided” in the state where the second speed is realized.
  • the first speed fork shaft FS1 is controlled to the “first position”
  • the second speed fork shaft FS2 is controlled to the “second position”. Yes.
  • the sleeve SL1 is maintained in the “non-engagement position”, while the sleeve SL2 is in the “engagement position” and is directed toward the engaged member EN2 by the pressing force F2a by the springs SP2 and SP2. It is pressed in the axial direction. As a result, the friction engagement surfaces EN2c and SL2c are pressed against each other by the pressing force F2a. Since the clutch C / D is “divided”, the transmission path of the drive torque of the engine E / G to the drive wheels D / W has not been established.
  • the second-speed fork shaft FS2 is moved from the “second position” to the “first position” from the state shown in FIG. As a result, the sleeve SL2 moves from the “engaged position” to the “non-engaged position”.
  • the first-speed fork shaft FS1 is moved from the “first position” to the “second position” from the state shown in FIG.
  • the sleeve SL1 moves from the “non-engagement position” to the “engagement position”.
  • the deceleration surface EN1ab of the non-engaging member EN1 and the deceleration surface SL1ab of the sleeve SL1 approach each other (the deceleration surfaces EN1ab and SL1ab are Not yet in contact).
  • the torque in the deceleration direction acts between the output shaft A3 and the sleeve SL1 by the action of the friction torque T1a.
  • the gap between the deceleration surface HB1ab of the hub HB1 and the inner pin SL1b of the sleeve SL1 is clogged, and the deceleration surface HB1ab and the inner pin SL1b are brought into contact with each other and pressed against each other.
  • the clutch C / D is “engaged” from “divided” as shown in FIG.
  • the friction torque is also increased by the friction torque T1b based on F1b to become “T1a + T1b”.
  • the friction torque is increased in this way, the pressing force between the inclined deceleration surface HB1ab of the hub HB1 and the inner pin SL1b increases, and as a result, the engagement pressing force F1b further increases.
  • the sleeve SL1 and the engaged member EN1 are fixed to each other before the deceleration surfaces EN1ab and SL1ab come into contact with each other due to the rotational speed difference between the sleeve SL1 and the engaged member EN1 ( The rotational speed difference is kept at zero).
  • the angular velocities of EN2, SL2, SL1, and EN1 change instantaneously from “ ⁇ , ⁇ , ⁇ , 1 / 2 ⁇ ” to “2 ⁇ , ⁇ , ⁇ , ⁇ ”. Thereby, the downshift from the second speed to the first speed is completed.
  • the sleeve SL1 moves from the “engagement position” to the “non-engagement position” due to the inclination of the deceleration surfaces EN1ab and SL1ab. (That is, a situation where torque in the deceleration direction of the vehicle cannot be transmitted) does not occur.
  • the drive torque in the deceleration direction of the engine E / G is not transmitted to the drive wheels only during the extremely short period in which the clutch C / D is maintained in the disconnected state, but the downshift is executed instantaneously and stably. Can be done.
  • the deceleration surface HB1ab of the hub HB1 and the inner pin SL1b of the sleeve SL1 are in contact, and the deceleration surface EN1ab of the non-engaging member EN1 and the deceleration surface SL1ab of the sleeve SL1 are in contact with each other. It is in contact.
  • the deceleration torque from the drive wheel D / W is as follows: differential D / F ⁇ output shaft A3 ⁇ hub HB1 ⁇ sleeve SL1 ⁇ non-engaging member EN1 ⁇ idling gear G1o ⁇ fixed gear G1i ⁇ input shaft A2 ⁇ clutch C / D ⁇ drive output shaft A1 ⁇ engine E / G
  • FIG. 17 shows a state where the vehicle is decelerating at the first speed when the accelerator pedal AP is “OFF” and the clutch C / D is “engaged” (EN2, SL2, SL1, EN1 angular velocities: 2 ⁇ , ⁇ , ⁇ , ⁇ ).
  • the sleeve SL1 is constantly pressed toward the engaged member EN1 by the pressing force F1a by the springs SP1 and SP1, so that the sleeve SL1 material is “engaged position” for some reason. From the vehicle to the “non-engagement position” (that is, a situation in which the torque in the acceleration direction of the vehicle cannot be transmitted) hardly occurs. As a result, the normal acceleration can be stably maintained using the above-described “torque transmission action of the dog clutch”.
  • FIG. 22 shows an acceleration state at the first speed of the vehicle when the accelerator pedal AP is “ON” and the clutch C / D is “engaged” (angular speeds of EN2, SL2, SL1, and EN1: 2 ⁇ , ⁇ , ⁇ , ⁇ ).
  • this state is the same as the state shown in FIG. That is, the torque in the acceleration direction is transmitted using the torque transmission action of a so-called “dog clutch” by the contact between the acceleration surfaces EN1aa and SL1aa.
  • the accelerator pedal AP is changed from “ON” to “OFF” as shown in FIG.
  • the direction of the torque acting between the output shaft A3 and the sleeve SL1 is switched from the acceleration direction to the deceleration direction, so that the pressing force between the acceleration surface HB1aa of the hub HB1 and the inner pin SL1b of the sleeve SL1 and acceleration
  • the pressing force between the surfaces EN1aa and SL1aa disappears.
  • the pressing force F1a by the springs SP1 and SP1 is maintained.
  • the deceleration surfaces EN1ab and SL1ab do not come into contact with each other as in the case of the shift down. Therefore, the sleeve SL1 is moved from the “engagement position” due to the inclination of the deceleration surfaces EN1ab and SL1ab. A situation of moving to the “non-engagement position” (that is, a situation where torque in the deceleration direction of the vehicle cannot be transmitted) does not occur.
  • the present invention is not limited to the above exemplary embodiment, and various applications and modifications are possible.
  • each of the following embodiments to which the above embodiment is applied can be implemented.
  • each of the switching mechanisms SW1 to SW5 is provided on either the input shaft A2 or the output shaft A3. Also good.
  • Each of the switching mechanisms SW1 to SW5 is provided on a shaft provided with a corresponding idle gear among the input shaft A2 and the output shaft A3.
  • the fork and the fork shaft are configured to be relatively movable in the axial direction, and the axial position of the fork shaft is any one of “first position”, “intermediate position”, and “second position”.
  • the fork and the fork shaft are configured so as not to move relative to each other in the axial direction, and the axial position of the fork shaft is defined as “first position” and “intermediate”. It may be configured to be selectively controlled to any one of “position”.
  • the state similar to the case where the fork shaft is controlled to the “second position” in the above embodiment (the state where the sleeve presses the engaged member) Can be obtained by controlling the actuator that drives the fork shaft so as to press in the “direction in which the engaged member is pressed”.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Gear-Shifting Mechanisms (AREA)

Abstract

シームレスのシフトアップを達成できる車両の動力伝達装置であって「シフトダウン、通常加速、及び、通常減速においても適切な作動が得られるもの」の提供。 各変速段について、「被係合部材」と「係合部材」とが設けられている。「被係合部材」は、遊転ギヤに固定される。「係合部材」は、遊転ギヤが設けられた対応軸に、相対回転不能、且つ、軸方向において「被係合部材と係合する係合位置」と「被係合部材と係合しない非係合位置」との間を移動可能に設けられる。係合部材及び被係合部材の互いに対向する部位に一対の摩擦係合面が設けられる。遊転ギヤが設けられた対応軸と係合部材との係合構造に関し、係合部材が係合位置にある場合において減速方向のトルクが作用するときに互いに係合する対応軸及び係合部材のそれぞれの係合面が、「係合部材が被係合部材を押圧する軸方向の力」が発生するように、軸方向に対して傾斜している。

Description

車両の動力伝達制御装置
 本発明は、車両の動力伝達制御装置に関する。
 従来より、複数の変速段を有する変速機と、車両の動力源の駆動出力軸と前記変速機の入力軸との間に介装されたクラッチと、を備え、前記変速機及び前記クラッチをアクチュエータで制御する、車両の動力伝達制御装置が広く知られている(例えば、特許文献1、2を参照)。
 上記文献に記載された装置の変速機では、前記各変速段について、「被係合部材」と「係合部材」とが設けられている。「被係合部材」は、変速機の入力軸又は出力軸に相対回転可能に設けられた遊転ギヤに固定されている。「係合部材」は、遊転ギヤが設けられている軸に、相対回転不能、且つ、軸方向において前記被係合部材と係合する係合位置と前記被係合部材と係合しない非係合位置との間を移動可能に設けられている。複数の変速段のうちの1つの変速段の「係合部材」が「係合位置」にあり、且つ、複数の変速段のうちの残りの変速段の「係合部材」が「非係合位置」にある場合において、その変速段が実現される。
 上記文献に記載された装置では、車両の加速状態にて「実現される変速段」を高速側に変更する変速作動(以下、「シフトアップ」と呼ぶ)を実行する際、前記クラッチを接合状態に維持した状態にて、変速前の変速段の「係合位置」にある「係合部材」を「非係合位置」に向けて駆動するとともに変速後の変速段の「非係合位置」にある「係合部材」を「係合位置」に向けて駆動することによって、シフトアップが瞬時に実行され得る。この結果、駆動源の加速方向の駆動トルクを途切れなく駆動輪に伝達しながら(所謂「シームレス」の)シフトアップを達成することができる。
特表2010-510464号公報 特表2009-536713号公報
 以下、説明の便宜上、車両の減速状態にて「実現される変速段」を低速側に変更する変速作動を「シフトダウン」と呼び、或る変速段が実現された状態で変速作動を伴わない車両の加速状態を「通常加速」と呼び、或る変速段が実現された状態で変速作動を伴わない車両の減速状態を「通常減速」と呼ぶ。
 上述したようにシームレスのシフトアップを達成できる車両の動力伝達装置では、「シフトアップ」以外の「シフトダウン」、「通常加速」、及び、「通常減速」においても、適切な作動が得られることが望ましい。
 本発明は、上記の点に鑑みてなされたものであり、その目的は、シームレスのシフトアップを達成できる車両の動力伝達装置であって「シフトダウン、通常加速、及び、通常減速においても適切な作動が得られるもの」の一態様を提供することにある。
 本発明に係る車両の動力伝達制御装置の特徴は、以下の2つの点にある。即ち、第1の点は、各変速段について、前記係合部材及び前記被係合部材における互いに対向する部位に一対の摩擦係合面が設けられたこと、である。前記係合部材及び前記被係合部材は、前記係合部材が前記非係合位置にある場合には前記一対の摩擦係合面同士が接触せず、前記係合部材が前記係合位置にある場合には前記一対の摩擦係合面同士が接触するように構成される。ここにおいて、前記一対の摩擦係合面は、雌型の円錐摩擦係合面、及び、雄型の円錐摩擦係合面であることが好適である。これにより、前記一対の摩擦係合面が一対の平面摩擦係合面である場合より大きい摩擦トルク(係合部材及び被係合部材の回転速度差を小さくする方向のトルク)を発生させ易くなる。
 第2の点は、前記各変速段について、遊転ギヤが設けられた軸(対応軸)と前記係合部材との係合構造に関し、前記係合部材が前記係合位置にある場合において、前記対応軸と前記係合部材との間で前記車両の減速方向のトルクが作用しているとき、前記係合部材が前記被係合部材を押圧する前記軸方向の力であって前記減速方向のトルクの大きさに応じた大きさの力(係合押圧力)が発生する構成が採用されたこと、にある。ここにおいて、この構成は、例えば、前記係合部材が前記係合位置にある場合において前記対応軸と前記係合部材との間で前記車両の減速方向のトルクが作用しているときに互いに係合する前記対応軸及び前記係合部材のそれぞれの係合面(以下、「第1減速時係合面」と呼ぶ)の何れか一方又は両方を、前記係合押圧力が発生するように前記軸方向に対して傾斜させることによって実現され得る。
 加えて、上記本発明に係る装置では、前記各変速段について、前記係合部材が前記係合位置にある場合において前記係合部材と前記被係合部材との間で前記車両の減速方向のトルクが作用しているときに互いに係合する前記係合部材及び前記被係合部材のそれぞれの係合面(以下、「第2減速時係合面」と呼ぶ)の何れか一方又は両方が、前記係合部材が前記被係合部材から遠ざかる前記軸方向の力を受けるように前記軸方向に対して傾斜していること、が好適である。シフトアップの際、変速後の変速段の係合部材が被係合部材に係合した直後にて、変速前の変速段の係合部材及び被係合部材について両者間に生じる回転速度差に起因して両者の「第2減速時係合面」同士が衝突する。このとき、上記構成によれば、前記「軸方向の力」を利用して、アクチュエータの駆動力を用いることなく、変速前の変速段の係合部材を「係合位置」から「非係合位置」に確実に移動させることができる。
 上記本発明に係る装置では、シフトアップの際、前記クラッチが前記接合状態に維持された状態にて、変速前の変速段の前記係合位置にある前記係合部材が前記非係合位置に向けて駆動されるとともに変速後の変速段の前記非係合位置にある前記係合部材が前記係合位置に向けて駆動される。この結果、「変速前の変速段の前記係合部材が前記非係合位置にあり、且つ、変速後の変速段の前記係合部材が前記係合位置にあるとともに前記係合押圧力とは無関係に前記被係合部材を押圧する状態」が実現される。
 従って、変速後の変速段の係合部材及び被係合部材の間で車両の加速方向のトルクが作用しているときに互いに係合する係合部材及び被係合部材のそれぞれの係合面が互いに当接することを利用して(換言すれば、ドグクラッチのトルク伝達作用を利用して)、「変速後の変速段の係合部材及び被係合部材の間で車両の加速方向のトルクが伝達される状態」が安定して得られる。以上、上記本発明に係る装置では、シームレスのシフトアップが瞬時に安定して実行され得る。なお、上述のように、「第2減速時係合面」が前記軸方向に対して傾斜する構成が採用されると、変速前の変速段の係合部材を「係合位置」から「非係合位置」に確実に瞬時に移動させることができる。
 また、上記本発明に係る装置では、シフトダウンの際、前記クラッチを前記接合状態から前記分断状態に変更・維持した状態にて、変速前の変速段の前記係合位置にある前記係合部材が前記非係合位置に向けて駆動されるとともに変速後の変速段の前記非係合位置にある前記係合部材が前記係合位置に向けて駆動される。この結果、「変速前の変速段の前記係合部材が前記非係合位置にあり、且つ、変速後の変速段の前記係合部材が前記係合位置にあるとともに前記係合押圧力とは無関係に前記被係合部材を押圧する状態」が実現される。その後、前記クラッチが前記分断状態から前記接合状態に変更される。
 ここで、変速後の変速段の係合部材が被係合部材に押圧されると、前記一対の摩擦係合面が互いに押圧されて、変速後の変速段の係合部材及び被係合部材の間に両者の回転速度差を小さくする方向の摩擦トルクが作用する。この摩擦トルクに起因して、変速後の変速段の「第1減速時係合面」同士が互いに当接し且つ押圧される。この結果、この摩擦トルクの大きさに応じた大きさの前記「係合押圧力」が発生し、「変速後の変速段の係合部材が被係合部材を押圧する力」が増幅される。「変速後の変速段の係合部材が被係合部材を押圧する力」が増幅されると、前記摩擦トルクが増幅され、この結果、前記「係合押圧力」が増幅される。前記「係合押圧力」が増幅されると、「変速後の変速段の係合部材が被係合部材を押圧する力」が更に増幅される。
 このように、変速後の変速段の係合部材が被係合部材を一旦押圧すると、前記「第1の点」に基づく摩擦トルクの発生、及び、前記「第2の点」に基づく係合押圧力の発生、によって、変速後の変速段の係合部材及び被係合部材の間の回転速度差がゼロになるように、「変速後の変速段の係合部材が被係合部材を押圧する力」(従って、摩擦トルク)が次第に増幅されていく。この結果、変速後の変速段の係合部材及び被係合部材の間の回転速度差に起因して「第2減速時係合面」が互いに当接する前の段階で、変速後の変速段の係合部材及び被係合部材が互いに固定される(回転速度差がゼロになる)。即ち、「第2減速時係合面」が互いに当接することなく、摩擦トルクを利用して(換言すれば、摩擦クラッチのトルク伝達作用を利用して)、「変速後の変速段の係合部材及び被係合部材の間で車両の減速方向のトルクが伝達される状態」が得られる。
 従って、例えば、上述のように、「第2減速時係合面」が前記軸方向に対して傾斜する構成が採用されても、シフトダウン時において、変速後の変速段の「第2減速時係合面」が互いに当接しないので、「第2減速時係合面」の傾斜に起因して変速後の変速段の係合部材が「係合位置」から「非係合位置」に移動する事態(即ち、車両の減速方向のトルクが伝達され得なくなる事態)が発生しない。以上、本発明に係る装置では、シフトダウンの際、クラッチが分断状態に維持される極短期間だけは駆動源の減速方向の駆動トルクが駆動輪に伝達されないものの、シフトダウンが瞬時に安定して実行され得る。
 また、上記本発明に係る装置では、通常加速、及び、通常減速の際、前記クラッチが前記接合状態に維持されるとともに、実現されている変速段の前記係合位置にある前記係合部材が、前記被係合部材に向けて前記係合押圧力とは無関係に前記軸方向に常時押圧される。
 このように、通常加速の際、実現されている変速段の係合部材が被係合部材に向けて常時押圧されるので、何らかの理由でその係合部材が「係合位置」から「非係合位置」に移動する事態(即ち、車両の加速方向のトルクが伝達され得なくなる事態)が発生し難い。この結果、上述した「ドグクラッチのトルク伝達作用」を利用して、通常加速が安定して維持され得る。
 また、通常減速の際、実現されている変速段の係合部材が被係合部材に向けて常時押圧されるので、上述したシフトダウンの場合と同じメカニズムによって「その係合部材がその被係合部材を押圧する力」が次第に増幅されていく。この結果、実現されている変速段の「第2減速時係合面」が互いに当接する前の段階で、その係合部材及びその被係合部材が互いに固定される(回転速度差がゼロになる)。即ち、「第2減速時係合面」が互いに当接することなく、摩擦トルクを利用して、「実現されている変速段の係合部材及び被係合部材の間で車両の減速方向のトルクが伝達される状態」が得られる。従って、上述したシフトダウンの場合と同様、「第2減速時係合面」が前記軸方向に対して傾斜する構成が採用されても、通常減速の際、実現されている変速段の「第2減速時係合面」の傾斜に起因してその変速段の係合部材が「係合位置」から「非係合位置」に移動する事態(即ち、車両の減速方向のトルクが伝達され得なくなる事態)が発生しない。この結果、上述した「摩擦クラッチのトルク伝達作用」を利用して、通常減速が安定して維持され得る。
 以上、本発明に係る装置によれば、シームレスのシフトアップが達成され得ることに加え、シフトダウン、通常加速、及び、通常減速においても適切な作動が得られる。
本発明の実施形態に係る車両の動力伝達制御装置の概略構成を示す図である。 図1に示す切替機構101、102を模式的に示す図である。 図2に示す1速の被係合部材110の斜視図である。 図2に示す2速の被係合部材120の斜視図である。 図2に示す1速の係合部材130の斜視図である。 図2に示す2速の係合部材140の斜視図である。 シフトアップの際の作動を説明するための図2に対応する第1の図である。 シフトアップの際の作動を説明するための図2に対応する第2の図である。 シフトアップの際の作動を説明するための図2に対応する第3の図である。 シフトアップの際の作動を説明するための図2に対応する第4の図である。 シフトアップの際の作動を説明するための図2に対応する第5の図である。 シフトダウンの際の作動を説明するための図2に対応する第1の図である。 シフトダウンの際の作動を説明するための図2に対応する第2の図である。 シフトダウンの際の作動を説明するための図2に対応する第3の図である。 シフトダウンの際の作動を説明するための図2に対応する第4の図である。 シフトダウンの際の作動を説明するための図2に対応する第5の図である。 通常減速から通常加速への移行の際の作動を説明するための図2に対応する第1の図である。 通常減速から通常加速への移行の際の作動を説明するための図2に対応する第2の図である。 通常減速から通常加速への移行の際の作動を説明するための図2に対応する第3の図である。 通常減速から通常加速への移行の際の作動を説明するための図2に対応する第4の図である。 通常減速から通常加速への移行の際の作動を説明するための図2に対応する第5の図である。 通常加速から通常減速への移行の際の作動を説明するための図2に対応する第1の図である。 通常加速から通常減速への移行の際の作動を説明するための図2に対応する第2の図である。 通常加速から通常減速への移行の際の作動を説明するための図2に対応する第3の図である。 通常加速から通常減速への移行の際の作動を説明するための図2に対応する第4の図である。
 以下、本発明の実施形態に係る車両の動力伝達制御装置(以下、「本装置」とも呼ぶ)について図面を参照しつつ説明する。本装置に含まれる変速機T/Mは、車両の駆動源であるエンジンの駆動出力軸と車両の駆動輪とを結ぶ動力伝達系統に介装され、車両前進用に5つの変速段(1速(1st)~5速(5th))を備えている。
 図1に示すように、変速機T/Mは、互いに平行な入力軸A2及び出力軸A3を備えている。入力軸A2及び出力軸A3は、T/Mのハウジング(図示せず)に相対回転可能に支持されている。変速機T/Mの入力軸A2は、クラッチC/D及びフライホイールF/Wを介して、エンジンE/Gの駆動出力軸A1に接続されている。この入力軸A2とエンジンE/Gの駆動出力軸A1との間で動力伝達系統が形成される。変速機T/Mの出力軸A3は、ディファレンシャルD/Fを介して車両の駆動輪D/Wに接続されている。この出力軸A3と駆動輪D/Wとの間で動力伝達系統が形成される。
 クラッチC/Dは、変速機T/Mの入力軸A2に一体回転するように設けられた周知の構成の1つを有する摩擦クラッチディスクである。より具体的には、エンジンE/Gの出力軸A1に一体回転するように設けられたフライホイールF/Wに対して、クラッチC/D(より正確には、クラッチディスク)が互いに向き合うように同軸的に配置されている。フライホイールF/Wに対するクラッチC/D(より正確には、クラッチディスク)の軸方向の位置が調整可能になっている。クラッチC/Dの軸方向位置は、クラッチアクチュエータACT1により調整される。この結果、クラッチC/Dは、エンジンの駆動出力軸A1と変速機の入力軸A2との間で動力伝達系統が形成される「接合状態」と、前記動力伝達系統が形成されない「分断状態」とを選択的に実現可能に構成されている。なお、このクラッチC/Dは、運転者によって操作されるクラッチペダルを備えていない。
 変速機T/Mは、複数の固定ギヤ(「駆動ギヤ」ともいう)G1i、G2i、G3i、G4i、G5iと、複数の遊転ギヤ(「被動ギヤ」ともいう)G1o、G2o、G3o、G4o、G5oを備えている。複数の固定ギヤG1i、G2i、G3i、G4i、G5iは、それぞれが入力軸A2に同軸的且つ相対回転不能に、且つそれぞれが入力軸A2の軸方向に相対移動不能に固定されるとともに、それぞれが前進用の複数の変速段のそれぞれに対応している。具体的には、これらの固定ギヤG1i、G2i、G3i、G4i、G5iがそれぞれ、1速、2速、3速、4速、5速に対応している。複数の遊転ギヤG1o、G2o、G3o、G4o、G5oは、それぞれが出力軸A3に同軸的且つ相対回転可能に、且つそれぞれが出力軸A3の軸方向に相対移動不能に設けられ、且つそれぞれが前進用の複数の変速段のそれぞれに対応するとともに、それぞれが対応する変速段の固定ギヤと常時噛合している。具体的には、これらの遊転ギヤG1o、G2o、G3o、G4o、G5oがそれぞれ、1速、2速、3速、4速、5速に対応している。
 変速機T/Mは、切替機構SW1、SW2、SW3、SW4、SW5を備える。切替機構SW1、SW2、SW3、SW4、SW5はそれぞれ、1速、2速、3速、4速、5速に対応している。各切替機構は、対応する変速段の遊転ギヤがその遊転ギヤが設けられている対応軸に対して「相対回転不能となる状態」と「相対回転可能となる状態」とを選択的に実現する。変速機アクチュエータACT2を用いて切替機構SW1~SW5を制御することによって、複数の変速段のうちから1つの変速段が選択的に実現される。或る変速段が「実現される」とは、「その変速段の遊転ギヤがその遊転ギヤが設けられている対応軸に対して相対回転不能となり、且つ、他の変速段の遊転ギヤがそれらの遊転ギヤが設けられている対応軸に対して相対回転可能となる状態」を指す。ACT2を制御して「実現される変速段」を変更することによって、減速比(出力軸A3の回転速度に対する入力軸A2の回転速度の割合)が調整される。
 制御装置200は、アクセル開度センサS1、シフト位置センサS2、ブレーキセンサS3及び電子制御ユニットECUを備えている。アクセル開度センサS1は、アクセルペダルAPの操作量(アクセル開度)を検出するセンサである。シフト位置センサS2は、シフトレバーSFの位置を検出するセンサである。ブレーキセンサS3は、ブレーキペダルBPの操作の有無を検出するセンサである。電子制御ユニットECUは、上述のセンサS1~S3、並びにその他のセンサ等からの情報等に基づいて、上述のアクチュエータACT1、ACT2を制御することで、クラッチC/Dの状態(接合状態か、分断状態か)、並びに、変速機T/Mの「実現される変速段」を設定・変更する。また、この電子制御ユニットECUは、エンジンE/Gの燃料噴射量(スロットル弁の開度)を制御することで、エンジンE/Gの出力軸A1の駆動トルクを制御する。
 以下、切替機構SW1~SW5について説明する。切替機構SW1~SW5はいずれも同様の構造を有するため、ここでは図2~図6を参照しつつ切替機構SW1、及び、SW2の構造についてのみ説明する。図2は、1速に対応する切替機構SW1と、2速に対応する切替機構SW2と、を示す。SW1は、被係合部材EN1、スリーブ(係合部材)SL1、フォークシャフトFS1、及び、フォークFK1を含む。SW2は、被係合部材EN2、スリーブ(係合部材)SL2、フォークシャフトFS2、及び、フォークFK2を含む。なお、各構成部材の符号に含まれる「数字」は「対応する変速段」を表わす。切替機構SW1、SW2はいずれも同様の構造を有するため、以下、SW1についてのみ説明する。
 被係合部材EN1は、変速機T/Mの出力軸A3に同軸的且つ相対回転可能に設けられ、1速の遊転ギヤG1oの側面に固定されている。被係合部材EN1は、遊転ギヤG1oの一部であってもよい。被係合部材EN1は、第1遊転ギヤG1oと一体で、出力軸A3に対して相対回転する。
 スリーブSL1は、出力軸A3に同軸的且つ相対回転不能に設けられるとともに、軸方向に関して、被係合部材EN1と係合する「係合位置」と、「係合位置」より被係合部材EN1から遠く且つ被係合部材EN1と係合しない「非係合位置」(図2に示す位置)との間で移動可能である。スリーブSL1と出力軸A3との係合構造は、例えば、図2に示すように、「出力軸A3に同軸的且つ一体に設けられたハブHB1」の外表面に設けられた軸方向に延在する溝HB1aに、スリーブSL1の内周面から径方向内側に向けて突出するインナピンSL1bが嵌合することによって達成され得る。なお、この係合構造は、スリーブSL1の内周面に設けられた軸方向に延在する溝に、ハブHB1の外表面から径方向外側に向けて突出するアウタピンが嵌合することによっても達成され得る。
 図3に示すように、被係合部材EN1は、例えば、円板状の本体部のスリーブSL1側の側面に、スリーブSL1に向けて軸方向に突出する複数(本例では、4つ)の被係合爪EN1aを備えている。なお、図4は、被係合部材EN2の一例を示す。同様に、図5に示すように、スリーブSL1は、例えば、円筒状の本体部の非係合部材EN1側の軸方向の端面に、被係合部材EN1に向けて軸方向に突出する複数(本例では、4つ)の係合爪SL1aを備えている。なお、図6は、スリーブSL2の一例を示す。
 スリーブSL1が「係合位置」にある場合、係合爪SL1aと被係合爪EN1aとが係合し得、スリーブSL1が「非係合位置」にある場合、係合爪SL1aと被係合爪EN1aとが係合しない。
 スリーブSL1が「係合位置」にある場合において、車両の加速方向のトルクが作用しているとき、被係合爪EN1aの加速面EN1aaと係合爪SL1aの加速面SL1aaとが当接し得、且つ、溝HB1aの加速面HB1aaとインナピンSL1bとが当接し得る。この状態にて、溝HB1aの加速面HB1aaにおけるインナピンSL1bが当接する部分は、軸方向に平行に延在している。従って、インナピンSL1bと加速面HB1aaとが当接し互いに押圧されても、スリーブSL1は軸方向の力を受けない。同様に、加速面EN1aa、SL1aaは共に軸方向に平行に延在している。従って、加速面EN1aa、SL1aa同士が当接し互いに押圧されても、スリーブSL1は軸方向の力を受けない。
 一方、スリーブSL1が「係合位置」にある場合において、車両の減速方向のトルクが作用しているとき、被係合爪EN1aの減速面EN1abと係合爪SL1aの減速面SL1abとが当接し得、且つ、溝HB1aの減速面HB1abとインナピンSL1bとが当接し得る。この状態にて、溝HB1aの減速面HB1abにおけるインナピンSL1bが当接する部分は、軸方向に対して傾斜している。この結果、インナピンSL1bと減速面HB1abとが当接し互いに押圧された場合、スリーブSL1は被係合部材EN1を押圧する軸方向の力(以下、「係合押圧力」と呼ぶ)を受ける。係合押圧力の大きさは、出力軸A3とスリーブSL1との間で作用している減速方向のトルクの大きさに比例する。上述した「スリーブSL1の内周面に設けられた軸方向に延在する溝に、ハブHB1の外表面から径方向外側に向けて突出するアウタピンが嵌合する」構成が採用される場合、スリーブSL1が「係合位置」にある場合においてスリーブSL1の前記溝の減速面におけるアウタピンが当接する部分を軸方向に対して傾斜することによって、同様の作用が得られる。また、減速面EN1ab、SL1abが共に軸方向に対して傾斜している。この結果、減速面EN1ab、SL1ab同士が当接(衝突)した場合、スリーブSL1は被係合部材EN1から離れる方向の軸方向の力を受ける。減速面EN1ab、SL1abの何れか一方のみが軸方向に対して傾斜していてもよい。
 スリーブSL1、及び被係合部材EN1における互いに対向する部位には、一対の摩擦係合面SL1c、EN1cが設けられている。図2に示す例では、一対の摩擦係合面は、スリーブSL1側の雌型の円錐摩擦係合面SL1cと、被係合部材EN1側の雄型の円錐摩擦係合面EN1cとで構成される。なお、一対の摩擦係合面は、スリーブSL1側の雄型の円錐摩擦係合面と、被係合部材EN1側の雌型の円錐摩擦係合面とで構成されてもよいし、一対の平面摩擦係合面であってもよい。
 スリーブSL1が「非係合位置」にある場合、一対の摩擦係合面SL1c、EN1cが接触しない。スリーブSL1が「係合位置」にある場合、一対の摩擦係合面SL1c、EN1cが接触するとともに、一対の摩擦係合面SL1c、EN1cの間で、スリーブSL1の被係合部材EN1に対する軸方向の押圧力に応じた摩擦トルク(スリーブSL1及び被係合部材EN1の回転速度差を小さくする方向のトルク)が発生する。なお、実際には、スリーブの「係合位置」(係合爪と被係合爪とが係合する位置)は、軸方向において一定の幅を有する。スリーブが軸方向において被係合部材に近づく過程において、その幅の内側の或る位置で、一対の摩擦係合面が接触を開始するように構成され得る。
 スリーブSL1の軸方向位置は、フォークシャフトFS1、及び、フォークFK1を介して制御される。具体的には、フォークシャフトFS1は、変速機T/Mのハウジング(図示せず)に、出力軸A3と平行、且つ、軸方向に移動可能に支持されている。FS1の軸方向位置は、変速機アクチュエータACT2の一部であるアクチュエータACT2-1によって制御される。具体的には、FS1の軸方向位置は、「第1位置」(図2に示す位置)、「中間位置」(後述)、及び、「第2位置」(後述)の何れか一つに選択的に制御される。
 フォークFK1は、「フォークシャフトFS1に軸方向に相対移動可能に連結される連結部」と、「連結部と一体、且つ、スリーブSL1と軸方向に相対移動不能に連結された把持部」と、を備える。フォークFK1の連結部は、フォークシャフトFS1に軸方向に間隔をあけて固定された一対のスナップリングSR1、SR1の間に配置されている。FK1の連結部の軸方向の両端部と、一対のスナップリングSR1、SR1と、の間の一対の隙間には、一対のコイルスプリングSP1、SP1が介装されている。
 フォークシャフトFS1に対してフォークFK1が軸方向に関して原位置(図2に示す位置)にある場合、コイルスプリングSP1、SP1によってフォークFK1を軸方向に駆動する力が発生しない。一方、フォークシャフトFS1に対してフォークFK1が軸方向に関して原位置から離れると、コイルスプリングSP1、SP1によってフォークFK1が原位置に戻るようにフォークFK1を軸方向に駆動する力が発生する。
 スリーブSL1が「非係合位置」(図2に示す位置)にあり、且つ、フォークシャフトFS1が「第1位置」にあるとき(図2を参照)、FS1に対してフォークFK1が原位置にある。従って、スリーブSL1は、スプリングSP1、SP1によって軸方向に駆動されない。
 スリーブSL1が「係合位置」にあり、且つ、フォークシャフトFS1が「中間位置」にあるとき(後述する図8を参照)、FS1に対してフォークFK1が原位置にある。従って、スリーブSL1は、スプリングSP1、SP1によって軸方向に駆動されない。
 スリーブSL1が「係合位置」にあり、且つ、フォークシャフトFS1が「第2位置」にあるとき(後述する図7を参照)、フォークシャフトFS1に対してフォークFK1が原位置から離れ、スプリングSP1、SP1によって、スリーブSL1が被係合部材EN1を軸方向に押圧する力F1aが発生する。
 以下、切替機構SW1~SW5の詳細な作動について、「シフトアップ」(車両の加速状態にて「実現される変速段」を高速側に変更する変速作動)、「シフトダウン」(車両の減速状態にて「実現される変速段」を低速側に変更する変速作動)、「通常加速」(或る変速段が実現された状態で変速作動を伴わない車両の加速状態)、及び、「通常減速」(或る変速段が実現された状態で変速作動を伴わない車両の減速状態)に分けて順に説明する。
(シフトアップ)
 以下、図7~図11を参照しながら、1速から2速へのシフトアップの際の切替機構SW1、SW2の作動の一例について説明する。この例では、1速の減速比:2速の減速比が2:1の場合が想定されている。
 図7は、アクセルペダルAPが「ON」でクラッチC/Dが「接合」の状態における、1速での車両の加速状態(EN2、SL2、SL1、EN1の角速度:2ω、ω、ω、ω)を示す。図7に示すように、1速が実現された状態では、1速のフォークシャフトFS1が「第2位置」に制御され、且つ、2速のフォークシャフトFS2が「第1位置」に制御されている。この結果、スリーブSL2は、「非係合位置」に維持される一方で、スリーブSL1は、「係合位置」にあるとともに、スプリングSP1、SP1による押圧力F1aによって被係合部材EN1に向けて軸方向に押し付けられている。この結果、摩擦係合面EN1c、SL1c同士が押圧力F1aによって互いに押し付けられている。
 図7に示す車両の1速の加速状態では、ハブHB1の加速面HB1aaとスリーブSL1のインナピンSL1bとが当接し、且つ、非係合部材EN1の加速面EN1aaとスリーブSL1の加速面SL1aaとが当接している。この結果、エンジンE/Gの駆動トルクは、駆動出力軸A1→クラッチC/D→入力軸A2→固定ギヤG1i→遊転ギヤG1o→非係合部材EN1→スリーブSL1→ハブHB1→出力軸A3→ディファレンシャルD/F→駆動輪D/Wへと伝達される。
 このように、1速の加速状態では、非係合部材EN1及びスリーブSL1の加速面EN1aa、SL1aa同士の当接による所謂「ドグクラッチ」のトルク伝達作用を利用して、駆動トルクが伝達される。このように、非係合部材EN1及びスリーブSL1の間のトルクの伝達が「ドグクラッチ」によって達成されるので、非係合部材EN1及びスリーブSL1の摩擦係合面EN1c、SL1c同士の押圧による所謂「摩擦コーンクラッチ」のトルク伝達作用は機能していない。
 次に、図7に示す状態から、図8に示すように、1速のフォークシャフトFS1が「第1位置」から「中間位置」へと移動される。この結果、スリーブSL1は「係合位置」に維持される一方で、スプリングSP1、SP1による押圧力F1aが消滅する。図7に示したエンジンE/Gの駆動トルクの伝達経路と同じ伝達経路は維持されている。
 図8に示す状態から、図9に示すように、2速のフォークシャフトFS2が「第1位置」から「中間位置」へと移動される。この結果、スリーブSL2が「非係合位置」から「係合位置」へと移動する。この結果、非係合部材EN2とスリーブSL2との回転速度差に起因して、非係合部材EN2の加速面EN2aaとスリーブSL2の加速面SL2aaとが近づいていく。図9に示す段階では、加速面EN2aa、SL2aa同士は未だ当接していない。なお、フォークFK2はフォークシャフトFS2に対して原位置にあるので、スリーブSL2は、スプリングSP2、SP2から軸方向の力を受けていない。
 図9に示す状態から、図10に示すように、2速のフォークシャフトFS2が「中間位置」から「第2位置」へと移動される。この結果、スプリングSP2、SP2による押圧力F2aが発生し、押圧力F2aによってスリーブSL2が被係合部材EN2に向けて軸方向に押し付けられる。この結果、摩擦係合面EN2c、SL2c同士が押圧力F2aによって互いに押し付けられる。
 加えて、図10に示す段階では、非係合部材EN2とスリーブSL2との回転速度差に起因して互いに近づいていた加速面EN2aa、SL2aa同士が当接している。この2速側の加速面EN2aa、SL2aa同士の当接によって、EN2、SL2、SL1、EN1の角速度が「2ω、ω、ω、ω」から「ω、ω、ω、1/2ω」へと瞬時に変化する。この結果、1速側の非係合部材EN1とスリーブSL1との間に回転速度差が発生し、当接していた加速面EN1aa、SL1aa同士が離間するとともに、減速面EN1ab、SL1ab同士が近づいていく。そして、減速面EN1ab、SL1ab同士が当接することによって、上述した「減速面EN1ab、SL1abの傾斜」に起因して、スリーブSL1が被係合部材EN1から離れる方向(係合位置から非係合位置へ向かう方向)の軸方向の力を受ける。
 このように、スリーブSL1が「係合位置から非係合位置へ向かう軸方向の力」を受ける時期と同時期に、図11に示すように、1速のフォークシャフトFS1が「中間位置」から「第1位置」へと移動される。この結果、スリーブSL1が「係合位置」から「非係合位置」へと移動する。即ち、スリーブSL1の「係合位置」から「非係合位置」への移動に際し、上記「減速面EN1ab、SL1abの傾斜に起因する軸方向の力」がその移動を補助する。これにより、スリーブSL1が「係合位置」から「非係合位置」へと確実に移動し得る。この結果、1速から2速へのシフトアップが完了する。
 図11に示す車両の2速の加速状態では、ハブHB2の加速面HB2aaとスリーブSL2のインナピンSL2bとが当接し、且つ、非係合部材EN2の加速面EN2aaとスリーブSL2の加速面SL2aaとが当接している。この結果、エンジンE/Gの駆動トルクは、駆動出力軸A1→クラッチC/D→入力軸A2→固定ギヤG2i→遊転ギヤG2o→非係合部材EN2→スリーブSL2→ハブHB2→出力軸A3→ディファレンシャルD/F→駆動輪D/Wへと伝達される。
 このように、シフトアップの完了後の車両の2速の加速状態では、上述した1速の加速状態(図7を参照)と同様、非係合部材EN2及びスリーブSL2の加速面EN2aa、SL2aa同士の当接による所謂「ドグクラッチ」のトルク伝達作用を利用して、駆動トルクが伝達される。このように、非係合部材EN2及びスリーブSL2の間のトルクの伝達が「ドグクラッチ」によって達成されるので、上述した1速の加速状態(図7を参照)と同様、非係合部材EN2及びスリーブSL2の摩擦係合面EN2c、SL2c同士の押圧による所謂「摩擦コーンクラッチ」のトルク伝達作用は機能していない。
 以上、図7~図11を参照しながら、1速から2速へのシフトアップの際の切替機構SW1、SW2の作動の一例について説明した。この例では、フォークシャフトの軸方向位置の変更に関し、「FS1の第2位置から中間位置への変更」、「FS2の第1位置から中間位置への変更」、「FS2の中間位置から第2位置への変更」、「FS1の中間位置から第1位置への変更」がこの順に実行されているが、例えば、「FS1の第2位置から中間位置への変更」及び「FS2の第1位置から中間位置への変更」が同時に実行され、その後、「FS2の中間位置から第2位置への変更」及び「FS1の中間位置から第1位置への変更」が同時に実行されてもよいし、中間位置を経ずに、「FS1の第2位置から第1位置への変更」及び「FS2の第1位置から第2位置への変更」が同時に実行されてもよい。
(シフトダウン)
 次に、図12~図16を参照しながら、2速から1速へのシフトダウンの際の切替機構SW1、SW2の作動の一例について説明する。この例でも、1速の減速比:2速の減速比が2:1の場合が想定されている。
 図12は、2速が実現された状態で、アクセルペダルAPが「OFF」で、クラッチC/Dが「接合」から「分断」に変更された直後における車両の減速状態(EN2、SL2、SL1、EN1の角速度:ω、ω、ω、1/2ω)を示す。図12に示すように、2速が実現された状態では、1速のフォークシャフトFS1が「第1位置」に制御され、且つ、2速のフォークシャフトFS2が「第2位置」に制御されている。この結果、スリーブSL1は、「非係合位置」に維持される一方で、スリーブSL2は、「係合位置」にあるとともに、スプリングSP2、SP2による押圧力F2aによって被係合部材EN2に向けて軸方向に押し付けられている。この結果、摩擦係合面EN2c、SL2c同士が押圧力F2aによって互いに押し付けられている。クラッチC/Dが「分断」されているので、エンジンE/Gの駆動トルクの駆動輪D/Wへの伝達経路は確立されていない。
 次に、図12に示す状態から、図13に示すように、2速のフォークシャフトFS2が「第2位置」から「第1位置」へと移動される。この結果、スリーブSL2が「係合位置」から「非係合位置」へと移動する。
 次に、図13に示す状態から、図14に示すように、1速のフォークシャフトFS1が「第1位置」から「第2位置」へと移動される。この結果、スリーブSL1が「非係合位置」から「係合位置」へと移動する。この結果、非係合部材EN1とスリーブSL1との回転速度差に起因して、非係合部材EN1の減速面EN1abとスリーブSL1の減速面SL1abとが近づいていく(減速面EN1ab、SL1ab同士は未だ当接していない)。
 他方、スプリングSP1、SP1による押圧力F1aが発生し、押圧力F1aによってスリーブSL1が被係合部材EN1に向けて軸方向に押し付けられる。従って、摩擦係合面EN1c、SL1c同士が押圧力F1aによって互いに押し付けられる。この結果、非係合部材EN1とスリーブSL1との間で、押圧力F1aに基づく減速方向(=両者の回転速度差を小さくする方向)の摩擦トルクT1aが発生する。
 この摩擦トルクT1aの作用によって、出力軸A3とスリーブSL1との間で減速方向のトルクが作用する。この結果、図15に示すように、ハブHB1の減速面HB1abとスリーブSL1のインナピンSL1bとの間の隙間が詰まり、減速面HB1abとインナピンSL1bとが当接し互いに押圧される。この結果、上述したように、「減速面HB1abの軸方向に対する傾斜」に起因して、スリーブSL1は、被係合部材EN1を押圧する軸方向の力(=係合押圧力)を受ける。このように、スリーブSL1が「係合押圧力」を受ける時期と同時期に、図16に示すように、クラッチC/Dが「分断」から「接合」される。
 このように、スプリングSP1、SP1による押圧力F1aに基づく摩擦トルクT1aに起因して、ハブHB1の傾いた減速面HB1abとインナピンSL1bとが当接し互いに押圧されることによって、摩擦トルクT1aの大きさに応じた大きさの係合押圧力F1bが発生する。この係合押圧力F1bの発生によって、「スリーブSL1が被係合部材EN1を押圧する軸方向の力」(=摩擦係合面EN1c、SL1c同士の押圧力)がF1bだけ増大されて「F1a+F1b」となる。この結果、摩擦トルクも、F1bに基づく摩擦トルクT1bだけ増大されて「T1a+T1b」となる。このように摩擦トルクが増大されると、ハブHB1の傾いた減速面HB1abとインナピンSL1bとの間の押圧力が増大し、この結果、係合押圧力F1bが更に増大する。係合押圧力F1bが増大されると、摩擦係合面EN1c、SL1c同士の押圧力(=F1a+F1b)が更に増大される。
 このように、スリーブSL1が被係合部材EN1を一旦押圧すると、摩擦係合面EN1c、SL1c同士の押圧力に基づく摩擦トルクの発生、並びに、ハブHB1の傾いた減速面HB1abとインナピンSL1bとの間の押圧力に基づく係合押圧力の発生、によって、スリーブSL1と被係合部材EN1との間の回転速度差がゼロになるように、「スリーブSL1が被係合部材EN1を押圧する軸方向の力」(従って、摩擦トルク)が次第に増大されていく。この結果、スリーブSL1及び被係合部材EN1の間の回転速度差に起因して減速面EN1ab、SL1ab同士が互いに当接する前の段階で、スリーブSL1及び被係合部材EN1が互いに固定される(回転速度差がゼロに維持される)。この結果、EN2、SL2、SL1、EN1の角速度が「ω、ω、ω、1/2ω」から「2ω、ω、ω、ω」へと瞬時に変化する。これにより、2速から1速へのシフトダウンが完了する。
 シフトダウンの完了後の車両の1速の減速状態(アクセルペダルAP:OFF、クラッチC/D:接合)では、減速面EN1ab、SL1ab同士が互いに当接することなく(即ち、ドグクラッチによるトルク伝達作用を利用することなく)、摩擦トルクを利用して(即ち、摩擦コーンクラッチのトルク伝達作用を利用して)、スリーブSL1及び被係合部材EN1の間で減速方向のトルクが伝達される。
 このように、シフトダウンの際、減速面EN1ab、SL1ab同士が互いに当接しないので、減速面EN1ab、SL1abの傾斜に起因してスリーブSL1が「係合位置」から「非係合位置」に移動する事態(即ち、車両の減速方向のトルクが伝達され得なくなる事態)が発生しない。以上、シフトダウンの際、クラッチC/Dが分断状態に維持される極短期間だけはエンジンE/Gの減速方向の駆動トルクが駆動輪に伝達されないものの、シフトダウンが瞬時に安定して実行され得る。
 図16に示す車両の1速の減速状態では、ハブHB1の減速面HB1abとスリーブSL1のインナピンSL1bとが当接し、且つ、非係合部材EN1の減速面EN1abとスリーブSL1の減速面SL1abとが当接している。この結果、駆動輪D/Wからの減速トルクは、ディファレンシャルD/F→出力軸A3→ハブHB1→スリーブSL1→非係合部材EN1→遊転ギヤG1o→固定ギヤG1i→入力軸A2→クラッチC/D→駆動出力軸A1→エンジンE/Gへと伝達される。
(通常減速から通常加速への変更)
 次に、図17~図21を参照しながら、1速での通常減速から通常加速への変更の際の切替機構SW1の作動の一例について説明する。
 図17は、アクセルペダルAPが「OFF」で、クラッチC/Dが「接合」の状態における車両の1速での減速状態(EN2、SL2、SL1、EN1の角速度:2ω、ω、ω、ω)を示す。図17に示すように、この状態は、上述した図16に示した状態と同じである。即ち、減速面EN1ab、SL1ab同士が互いに当接することなく(即ち、ドグクラッチによるトルク伝達作用を利用することなく)、摩擦係合面EN1c、SL1c同士の押圧力(=F1a+F1b)に基づく摩擦トルク(=T1a+T1b)を利用して(即ち、摩擦コーンクラッチのトルク伝達作用を利用して)、スリーブSL1及び被係合部材EN1の回転速度差がゼロに維持されて、スリーブSL1及び被係合部材EN1の間で減速方向のトルクが伝達される。
 図17に示す状態にて、図18に示すように、アクセルペダルAPが「OFF」から「ON」に変更される。この結果、出力軸A3とスリーブSL1との間で作用するトルクの方向が減速方向から加速方向に切り替わるので、ハブHB1の減速面HB1abとスリーブSL1のインナピンSL1bとの間の押圧力が消滅する。従って、係合押圧力F1bも消滅し、スリーブSL1が被係合部材EN1を押圧する軸方向の力(=摩擦係合面EN1c、SL1c同士の押圧力)が、スプリングSP1、SP1による押圧力F1aのみとなる。従って、摩擦トルク(の最大値)もT1aのみとなる。
 加えて、出力軸A3とスリーブSL1との間で加速方向のトルクが作用することによって、図19に示すように、ハブHB1の加速面HB1aaとスリーブSL1のインナピンSL1bとの間の隙間が詰まり、加速面HB1aaとインナピンSL1bとが当接し互いに押圧される。この結果、エンジンE/Gの加速方向のトルクの全てが出力軸A3とスリーブSL1との間で作用するようになる。このエンジンE/Gの加速方向のトルクの大きさが摩擦トルクT1aよりも大きいと、図20に示すように、摩擦係合面EN1c、SL1c同士に滑りが生じ、加速面EN1aa、SL1aa同士が接近し、互いに当接する。加速面EN1aa、SL1aa同士が当接すると、図21に示すように、上述した図7に示した状態と同じ状態が得られる。即ち、加速面EN1aa、SL1aa同士の当接による所謂「ドグクラッチ」のトルク伝達作用を利用して、加速方向のトルクが伝達される。その後、1速での通常加速の状態が得られる。
 加えて、1速での通常加速の際、スプリングSP1、SP1による押圧力F1aによってスリーブSL1が被係合部材EN1に向けて常時押圧されるので、何らかの理由でスリーブSL1材が「係合位置」から「非係合位置」に移動する事態(即ち、車両の加速方向のトルクが伝達され得なくなる事態)が発生し難い。この結果、上述した「ドグクラッチのトルク伝達作用」を利用して、通常加速が安定して維持され得る。
(通常加速から通常減速への変更)
 次に、図22~図25を参照しながら、1速での通常加速から通常減速への変更の際の切替機構SW1の作動の一例について説明する。
 図22は、アクセルペダルAPが「ON」で、クラッチC/Dが「接合」の状態における車両の1速での加速状態(EN2、SL2、SL1、EN1の角速度:2ω、ω、ω、ω)を示す。図22に示すように、この状態は、上述した図21に示した状態と同じである。即ち、加速面EN1aa、SL1aa同士の当接による所謂「ドグクラッチ」のトルク伝達作用を利用して、加速方向のトルクが伝達される。
 図22に示す状態にて、図23に示すように、アクセルペダルAPが「ON」から「OFF」に変更される。この結果、出力軸A3とスリーブSL1との間で作用するトルクの方向が加速方向から減速方向に切り替わるので、ハブHB1の加速面HB1aaとスリーブSL1のインナピンSL1bとの間の押圧力、並びに、加速面EN1aa、SL1aa同士の押圧力が消滅する。スプリングSP1、SP1による押圧力F1aは維持される。
 加えて、出力軸A3とスリーブSL1との間で減速方向のトルクが作用することによって、図24に示すように、ハブHB1の減速面HB1abとスリーブSL1のインナピンSL1bとの間の隙間が詰まり、減速面HB1abとインナピンSL1bとが当接し互いに押圧される。この結果、図25に示すように、係合押圧力F1b(従って、摩擦トルクT1b)が発生し、上述した図17に示した状態と同じ状態が得られる。即ち、減速面EN1ab、SL1ab同士が互いに当接することなく(即ち、ドグクラッチによるトルク伝達作用を利用することなく)、摩擦係合面EN1c、SL1c同士の押圧力(=F1a+F1b)に基づく摩擦トルク(=T1a+T1b)を利用して(即ち、摩擦コーンクラッチのトルク伝達作用を利用して)、スリーブSL1及び被係合部材EN1の回転速度差がゼロに維持されて、スリーブSL1及び被係合部材EN1の間で減速方向のトルクが伝達される。その後、1速での通常減速の状態が得られる。
 このように、通常減速の際も、シフトダウンの場合と同様、減速面EN1ab、SL1ab同士が互いに当接しないので、減速面EN1ab、SL1abの傾斜に起因してスリーブSL1が「係合位置」から「非係合位置」に移動する事態(即ち、車両の減速方向のトルクが伝達され得なくなる事態)が発生しない。
 本発明は、上記の典型的な実施形態のみに限定されるものではなく、種々の応用や変形が考えられる。例えば、上記実施の形態を応用した次の各形態を実施することもできる。
 上記の実施形態では、切替機構SW1~SW5を出力軸A3に設ける場合について記載したが、本発明では、切替機構SW1~SW5のそれぞれが、入力軸A2及び出力軸A3の何れに設けられていてもよい。切替機構SW1~SW5のそれぞれは、入力軸A2及び出力軸A3のうち対応する遊転ギヤが設けられている軸に設けられる。
 上記の実施形態では、一例として1速と2速との間でシフトアップ及びシフトダウンが行われる場合(即ち、切替機構SW1、SW2の作動)について記載したが、1速と2速の組み合わせ以外の組み合わせでシフトアップ及びシフトダウンが行われる場合にも、1速と2速との間でのシフトアップ及びシフトダウンの作動と同様の作動が行われ得る。
 上記の実施形態では、フォークとフォークシャフトとが軸方向に相対移動可能に構成され、フォークシャフトの軸方向位置が、「第1位置」、「中間位置」、及び「第2位置」の何れか一つに選択的に制御されるように構成されているが、フォークとフォークシャフトとが軸方向に相対移動不能に構成され、フォークシャフトの軸方向位置が、「第1位置」、及び「中間位置」の何れか一つに選択的に制御されるように構成されてもよい。この場合、上記の実施形態においてフォークシャフトが「第2位置」に制御される場合と同様の状態(スリーブが被係合部材を押圧する状態)は、「中間位置」にあるフォークシャフトを「スリーブが被係合部材を押圧する方向」に押圧するように、フォークシャフトを駆動するアクチュエータを制御することによって得ることができる。

Claims (5)

  1.  車両の動力源の駆動出力軸から動力が入力される入力軸と、前記車両の駆動輪へ動力を出力する出力軸とを備え、複数の変速段を有する変速機と、
     前記動力源の駆動出力軸と前記変速機の入力軸との間に介装されクラッチであって、前記動力源の駆動出力軸と前記変速機の入力軸と間で動力伝達系統が形成される接合状態と、前記動力伝達系統が形成されない分断状態とを選択的に実現するクラッチと、
     前記クラッチを制御する第1アクチュエータと、
     前記変速機を制御して前記複数の変速段のうちから1つの変速段を選択的に実現する第2アクチュエータと、
     前記車両の走行状態に基づいて、前記第1アクチュエータ、及び前記第2アクチュエータを制御する制御手段と、
     を備えた車両の動力伝達制御装置であって、
     前記変速機は、
     それぞれが前記入力軸又は前記出力軸に相対回転不能に設けられ、且つ前記複数の変速段のそれぞれに対応する複数の固定ギヤと、
     それぞれが前記入力軸又は前記出力軸に相対回転可能に設けられ、且つ前記複数の変速段のそれぞれに対応し、且つ対応する変速段の前記固定ギヤと常時噛合する複数の遊転ギヤと、
     前記複数の遊転ギヤのうちの1つの遊転ギヤが前記入力軸及び前記出力軸のうちその遊転ギヤが設けられている対応軸に対して相対回転不能となる状態を、前記複数の遊転ギヤについて選択的に達成して、その遊転ギヤに対応する変速段を実現する切替機構と、
     を備え、
     前記切替機構は、前記各変速段について、
     前記遊転ギヤに設けられた被係合部材と、
     前記入力軸及び前記出力軸のうち前記遊転ギヤが設けられている前記対応軸に設けられ、前記対応軸と、相対回転不能、且つ、軸方向において前記被係合部材と係合する係合位置と、前記係合位置より前記被係合部材から遠く且つ前記被係合部材と係合しない非係合位置との間を移動可能に係合する係合部材と、
     を備え、
     前記各変速段について、前記係合部材及び前記被係合部材における互いに対向する部位には一対の摩擦係合面が設けられ、前記係合部材及び前記被係合部材は、前記係合部材が前記非係合位置にある場合には前記一対の摩擦係合面同士が接触せず、前記係合部材が前記係合位置にある場合には前記一対の摩擦係合面同士が接触するように構成され、
     前記各変速段について、前記対応軸と前記係合部材との係合構造は、前記係合部材が前記係合位置にある場合において、前記対応軸と前記係合部材との間で前記車両の減速方向のトルクが作用しているとき、前記係合部材が前記被係合部材を押圧する前記軸方向の力であって前記減速方向のトルクの大きさに応じた大きさの力である係合押圧力が発生するように構成され、
     前記第2アクチュエータが、前記各変速段の前記係合部材を前記軸方向に駆動するように構成され、
     前記複数の変速段のうちの1つの変速段の前記係合部材が前記係合位置にあり、且つ、前記複数の変速段のうちの残りの変速段の前記係合部材が前記非係合位置にある場合において、その変速段が実現され、
     前記制御手段は、
     実現される変速段を変更する変速作動の非実行中は、前記クラッチを前記接合状態に維持するとともに、実現されている変速段の前記係合位置にある前記係合部材を、前記被係合部材に向けて前記係合押圧力とは無関係に前記軸方向に常時押圧し、
     実現される変速段を高速側に変更する前記変速作動を実行する際、前記クラッチを前記接合状態に維持した状態にて、変速前の変速段の前記係合位置にある前記係合部材を前記非係合位置に向けて駆動するとともに変速後の変速段の前記非係合位置にある前記係合部材を前記係合位置に向けて駆動して、変速前の変速段の前記係合部材が前記非係合位置にあり、且つ、変速後の変速段の前記係合部材が前記係合位置にあるとともに前記係合押圧力とは無関係に前記被係合部材を押圧する状態を実現し、
     実現される変速段を低速側に変更する前記変速作動を実行する際、前記クラッチを前記接合状態から前記分断状態に変更・維持した状態にて、変速前の変速段の前記係合位置にある前記係合部材を前記非係合位置に向けて駆動するとともに変速後の変速段の前記非係合位置にある前記係合部材を前記係合位置に向けて駆動して、変速前の変速段の前記係合部材が前記非係合位置にあり、且つ、変速後の変速段の前記係合部材が前記係合位置にあるとともに前記係合押圧力とは無関係に前記被係合部材を押圧する状態を実現し、その後、前記クラッチを前記分断状態から前記接合状態に変更するように構成された、車両の動力伝達制御装置。
  2.  請求項1に記載の車両の動力伝達制御装置において、
     前記各変速段について、前記係合部材が前記係合位置にある場合において前記係合部材と前記被係合部材との間で前記車両の減速方向のトルクが作用しているときに互いに係合する前記係合部材及び前記被係合部材のそれぞれの係合面の何れか一方又は両方は、前記係合部材が前記被係合部材から遠ざかる前記軸方向の力を受けるように前記軸方向に対して傾斜している、車両の動力伝達制御装置。
  3.  請求項1又は請求項2に記載の車両の動力伝達制御装置において、
     前記各変速段について、前記係合部材が前記係合位置にある場合において前記対応軸と前記係合部材との間で前記車両の減速方向のトルクが作用しているときに互いに係合する前記対応軸及び前記係合部材のそれぞれの係合面の何れか一方又は両方が、前記係合押圧力が発生するように前記軸方向に対して傾斜している、車両の動力伝達制御装置。
  4.  請求項1乃至請求項3の何れか一項に記載の車両の動力伝達制御装置において、
     前記各変速段について、前記係合部材及び前記被係合部材に設けられた前記一対の摩擦係合面は、雌型の円錐摩擦係合面、及び、雄型の円錐摩擦係合面である、車両の動力伝達制御装置。
  5.  請求項1乃至請求項4の何れか一項に記載の車両の動力伝達制御装置において、
     前記切替機構は、前記各変速段について、
     前記対応軸と平行、且つ、軸方向に移動可能に配置されたフォークシャフトと、
     前記フォークシャフトに前記軸方向に相対移動可能に連結され、且つ、前記係合部材と前記軸方向に相対移動不能に連結されたフォークと、
     前記フォークシャフトに設けられ、前記軸方向における前記フォークシャフトに対する前記フォークの相対位置に応じて前記フォークに対して前記軸方向の弾性力を発生する弾性部材と、
     を備え、
     前記第2アクチュエータが、前記各変速段の前記フォークシャフトを前記軸方向に駆動するように構成され、
     前記フォークシャフトに対して前記フォークが原位置にある場合、前記フォークを前記軸方向に駆動する力が発生せず、前記フォークシャフトに対して前記フォークが前記原位置から離れると前記フォークが前記原位置に戻るように前記フォークを前記軸方向に駆動する力が発生し、
     前記各変速段について、前記係合部材が前記非係合位置にあり、且つ、前記フォークシャフトが前記軸方向における第1位置にあるとき、前記フォークシャフトに対して前記フォークが前記原位置にあり、前記係合部材は前記軸方向に駆動されず、
     前記係合部材が前記係合位置にあり、且つ、前記フォークシャフトが前記軸方向における第2位置にあるとき、前記フォークシャフトに対して前記フォークが前記原位置から離れ、前記係合部材が前記被係合部材を前記軸方向に押圧する力が発生し、
     前記制御手段は、
     前記変速作動の非実行中は、前記クラッチを前記接合状態に維持するとともに、実現されている変速段の前記フォークシャフトを前記第2位置に常時維持し、
     実現される変速段を高速側に変更する前記変速作動を実行する際、前記クラッチを前記接合状態に維持した状態にて、変速前の変速段の前記フォークシャフトを前記第2位置から前記第1位置に向けて駆動するとともに、変速後の変速段の前記フォークシャフトを前記第1位置から前記第2位置に向けて駆動し、
     実現される変速段を低速側に変更する前記変速作動を実行する際、前記クラッチを前記接合状態から前記分断状態に変更・維持した状態にて、変速前の変速段の前記フォークシャフトを前記第2位置から前記第1位置に向けて駆動するとともに、変速後の変速段の前記フォークシャフトを前記第1位置から前記第2位置に向けて駆動し、その後、前記クラッチを前記分断状態から前記接合状態に変更するように構成された、車両の動力伝達制御装置。
PCT/JP2015/060048 2014-10-21 2015-03-31 車両の動力伝達制御装置 WO2016063556A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112015004775.1T DE112015004775T5 (de) 2014-10-21 2015-03-31 Kraftübertragungssteuervorrichtung für ein Fahrzeug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-214745 2014-10-21
JP2014214745A JP6370672B2 (ja) 2014-10-21 2014-10-21 車両の動力伝達制御装置

Publications (1)

Publication Number Publication Date
WO2016063556A1 true WO2016063556A1 (ja) 2016-04-28

Family

ID=55760611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060048 WO2016063556A1 (ja) 2014-10-21 2015-03-31 車両の動力伝達制御装置

Country Status (3)

Country Link
JP (1) JP6370672B2 (ja)
DE (1) DE112015004775T5 (ja)
WO (1) WO2016063556A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6298997B2 (ja) * 2015-05-08 2018-03-28 ジヤトコ株式会社 自動変速機
JP2017150582A (ja) * 2016-02-25 2017-08-31 いすゞ自動車株式会社 シフト装置
DE102018126475A1 (de) * 2018-10-24 2020-04-30 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Betätigungsmechanismus, Kupplungssteller und Getriebesteller mit verbessertem Vibrationsverhalten
JP7391106B2 (ja) * 2019-12-13 2023-12-04 株式会社ユニバンス 変速機
JP7061660B1 (ja) 2020-12-23 2022-04-28 株式会社ユニバンス 動力伝達装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121423U (ja) * 1981-01-21 1982-07-28
JPS5879133U (ja) * 1981-11-25 1983-05-28 矢島 和男 可搬式エンジン発電機の動力切換装置
JPH1061731A (ja) * 1996-08-23 1998-03-06 Kawasaki Heavy Ind Ltd ミッションギヤ
JP2003522923A (ja) * 2000-02-15 2003-07-29 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト トルク伝達装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121423U (ja) * 1981-01-21 1982-07-28
JPS5879133U (ja) * 1981-11-25 1983-05-28 矢島 和男 可搬式エンジン発電機の動力切換装置
JPH1061731A (ja) * 1996-08-23 1998-03-06 Kawasaki Heavy Ind Ltd ミッションギヤ
JP2003522923A (ja) * 2000-02-15 2003-07-29 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト トルク伝達装置

Also Published As

Publication number Publication date
DE112015004775T5 (de) 2017-07-06
JP2016080127A (ja) 2016-05-16
JP6370672B2 (ja) 2018-08-08

Similar Documents

Publication Publication Date Title
JP6370672B2 (ja) 車両の動力伝達制御装置
EP2653754B1 (en) Control device for dual clutch transmission and control method for dual clutch transmission
JP6438292B2 (ja) 車両用変速機
US9097319B2 (en) Automated manual transmission for vehicle
JP6212582B2 (ja) 自動変速機および自動変速機の制御方法
US10557506B2 (en) Dog clutch
CN113454371B (zh) 变速器系统
JP2017155791A (ja) 自動変速機および自動変速機の制御方法
JP5902423B2 (ja) 車両の動力伝達制御装置
JP4742928B2 (ja) 複数クラッチ式変速機の変速制御装置
US6619151B2 (en) Transmission
WO2014132837A1 (ja) 車両用変速機
JP6212581B2 (ja) 自動変速機および自動変速機の制御方法
WO2016152781A1 (ja) 車両の動力伝達制御装置
JP5945484B2 (ja) 車両用変速機
JP2013032825A (ja) 車両の動力伝達制御装置
JP2013204758A (ja) 車両用変速機
US8932173B2 (en) Automated manual transmission for vehicle
EP2963315A1 (en) Vehicle transmission
JP6550820B2 (ja) 車両の動力伝達制御装置
JP2017207181A (ja) 変速機
JP2022189646A (ja) 車両の制御装置
JP2003278808A (ja) 自動変速装置
JP2005133877A (ja) 車両用自動変速機
JP2015068359A (ja) 車両用変速機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015004775

Country of ref document: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM F1205A DATED 10.08.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15851868

Country of ref document: EP

Kind code of ref document: A1