WO2016063399A1 - 超臨界流体によるガス化装置、及びガス化方法 - Google Patents

超臨界流体によるガス化装置、及びガス化方法 Download PDF

Info

Publication number
WO2016063399A1
WO2016063399A1 PCT/JP2014/078209 JP2014078209W WO2016063399A1 WO 2016063399 A1 WO2016063399 A1 WO 2016063399A1 JP 2014078209 W JP2014078209 W JP 2014078209W WO 2016063399 A1 WO2016063399 A1 WO 2016063399A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
gasification
slurry
radical scavenger
scavenger
Prior art date
Application number
PCT/JP2014/078209
Other languages
English (en)
French (fr)
Inventor
幸彦 松村
泰孝 和田
晴仁 久保田
昭史 中村
圭二 尾山
良文 川井
琢史 野口
Original Assignee
中国電力株式会社
国立大学法人広島大学
中電プラント株式会社
株式会社東洋高圧
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社, 国立大学法人広島大学, 中電プラント株式会社, 株式会社東洋高圧 filed Critical 中国電力株式会社
Priority to JP2015539990A priority Critical patent/JPWO2016063399A1/ja
Priority to PCT/JP2014/078209 priority patent/WO2016063399A1/ja
Publication of WO2016063399A1 publication Critical patent/WO2016063399A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention is a gasification apparatus for producing a raw material slurry from a gasified raw material, heating and pressurizing water contained in the produced raw material slurry to a supercritical state, and decomposing the gasified raw material to obtain a fuel gas, And a gasification method.
  • Patent Document 1 discloses that a biomass slurry containing a nonmetallic catalyst is hydrothermally treated under conditions of a temperature of 374 ° C. or higher and a pressure of 22.1 MPa or higher, and the generated fuel gas is used for a power generator.
  • a biomass gasification power generation system that generates power and heats a slurry body using exhaust heat from a power generation device is described.
  • JP 2008-246343 A Japanese Patent Laid-Open No. 9-3457
  • the present invention has been made in view of such circumstances, and an object thereof is to suppress the generation of tar in a high temperature range when a gasification raw material containing a polymer compound is used.
  • the present invention produces a raw material slurry from a gasification raw material containing a polymer compound, and heats and pressurizes water containing the gasification raw material to bring it into a supercritical state.
  • a gasification apparatus for decomposing a raw material to obtain a fuel gas the scavenger addition unit for adding a radical scavenger to the raw slurry, and the gasification raw material in the raw slurry to which the radical scavenger is added It has a gasification processing part which heats and pressurizes the water which contains to a supercritical state, It is characterized by the above-mentioned.
  • the scavenger addition unit preferably uses carboxylic acid as the radical scavenger.
  • a heat exchanger for exchanging heat between the processed fluid sent from the gasification processing section and the gasification raw material and heating the gasification raw material is provided upstream of the gasification processing section. It is preferable that the scavenger addition part is provided on the side and the radical scavenger is added to the heated gasification raw material sent from the heat exchanger.
  • the heat exchanger is preferably a spiral heat exchanger.
  • the present invention produces a raw material slurry from a gasification raw material containing a polymer compound, decomposes the gasification raw material by heating and pressurizing water containing the gasification raw material into a supercritical state
  • a gasification method for obtaining a fuel gas comprising adding a radical scavenger to the raw slurry, and heating and adding water containing the gasified raw material in the raw slurry to which the radical scavenger is added to a supercritical state. It is characterized by pressing.
  • A is a cross-sectional view of a spiral heat exchanger.
  • B is a longitudinal cross-sectional view of a spiral heat exchanger.
  • guaiacol is a compound that generates tar by a radical reaction, and was selected as a model of lignin.
  • Formic acid is a kind of radical scavenger having a radical scavenging effect and is a kind of carboxylic acid.
  • guaiacol is dissolved in a solvent so that the concentration is 0.25 wt%, 0.5 wt%, 1 wt%, and formic acid is 0.5 wt%.
  • concentration 0.25 wt%, 0.5 wt%, 1 wt%, and formic acid is 0.5 wt%.
  • Fig. 1 shows the result of the confirmation test.
  • the horizontal axis represents the concentration of guaiacol.
  • the vertical axis represents the amount of char generated.
  • generation amount of char was shown by the black rhombus. Further, for the sample of the comparative example, the amount of char generated is shown by a white square.
  • the amount of char produced in the comparative sample was about 0.1 [-]
  • the amount of char produced in the sample to which the radical scavenger was added was about 0.00 [- ]Met.
  • the supercritical gasifier in the present embodiment includes a raw material adjustment unit 10, a raw material supply unit 20, a heat exchange unit 30, a gasification processing unit 40, and a fuel gas recovery unit 50. .
  • the raw material slurry adjusted by the raw material adjusting unit 10 is sent by the raw material supply unit 20 to the heat exchanger 31 included in the heat exchanging unit 30. Then, a radical scavenger is added to the raw material slurry heated by the heat exchanger 31 and introduced into the gasification processing unit 40. In the gasification processing unit 40, the introduced raw material slurry is further heated to bring the water containing the gasified raw material in the raw material slurry into a supercritical state. Thereby, the gasification raw material is decomposed. The treated fluid containing water in a supercritical state is introduced into the heat exchanger 31 and heat exchanged with the raw slurry.
  • the water contained in the processed fluid becomes a subcritical state, and the processed fluid changes into a gas-liquid two-phase flow.
  • the gas phase portion contains fuel gas such as hydrogen, carbon monoxide, and methane produced by the decomposition process.
  • the fuel gas recovery unit 50 gas-liquid separates the processed fluid sent from the heat exchange unit 30 and stores the gas part in the gas tank 52 as fuel gas.
  • the fuel gas stored in the gas tank 52 is used as fuel in the gasification processing unit 40 or used as fuel for other devices.
  • the raw material adjustment unit 10 is a part that adjusts the raw material slurry from the gasification raw material and the like, and includes an adjustment tank 11 and a crusher 12.
  • the adjustment tank 11 is a container for preparing a suspension by mixing gasification raw materials, activated carbon, water, and the like, and is provided with a stirring blade (not shown).
  • gasification raw material for example, materials containing polymer compounds such as lignin, protein, and fat can be used, such as plants, shochu residue, and hen droppings.
  • Activated carbon functions as a nonmetallic catalyst, and porous particles having an average particle diameter of 200 ⁇ m or less can be used.
  • the crusher 12 is a device for crushing the solid content (mainly gasification raw material) contained in the suspension mixed in the adjustment tank 11 to obtain a uniform size. In this embodiment, crushing is performed so that the average particle size of the solid content is 500 ⁇ m or less. Due to crushing by the crusher 12, the suspension becomes a raw slurry.
  • the raw material supply unit 20 is a part that feeds the raw material slurry at a high pressure, and includes a supply pump 21 and a high pressure pump 22.
  • the supply pump 21 is a device for supplying the raw slurry sent from the crusher 12 toward the high-pressure pump 22.
  • the high-pressure pump 22 is a device for sending the raw slurry at high pressure.
  • the high-pressure pump 22 pressurizes the raw material slurry to about 25 MPa.
  • the heat exchange unit 30 heats the raw material slurry by causing heat exchange between the raw material slurry supplied from the raw material supply unit 20 and the processed fluid after being decomposed by the gasification processing unit 40. At the same time, it is a part that cools the processed fluid.
  • the heat exchanging unit 30 includes a heat exchanger 31, a decompression mechanism 32, and a cooler 33.
  • the heat exchanger 31 is a device that exchanges heat between the raw slurry and the processed fluid, and a spiral heat exchanger 31 is used. As shown in FIGS. 3A and 3B, the heat exchanger 31 has a columnar appearance, and a high temperature side channel 31a and a low temperature side channel 31b are provided therein. The high temperature side channel 31a and the low temperature side channel 31b are wound in a spiral shape, and are alternately arranged from the center toward the radial direction.
  • the high temperature side flow path 31a and the low temperature side flow path 31b are alternately arranged and spirally wound, so that the raw material slurry flowing through the low temperature side flow path 31b is raised in a short time. Can be warmed.
  • tar for convenience, referred to as low temperature tar
  • saccharide polymerization is actively performed in a temperature range of about 200 to 350 ° C. That is, by using a spiral type as the heat exchanger 31, the raw slurry is heated to about 450 ° C. in a short time, so that the period during which saccharide polymerization becomes active is short. Thereby, generation
  • the decompression mechanism 32 is a device that decompresses the processed fluid discharged from the heat exchanger 31, and the cooler 33 is a device that cools the treated fluid discharged from the decompression mechanism 32. .
  • the treated fluid a mixture of waste water, activated carbon, and ash
  • cooler 33 is a device that cools the treated fluid discharged from the decompression mechanism 32.
  • the gasification processing unit 40 heats and pressurizes the raw material slurry heated by the heat exchanger 31, thereby bringing the water containing the gasification raw material into a supercritical state and decomposing the gasification raw material (organic matter) contained in the raw material slurry.
  • the scavenger addition part 41 is a part for adding a radical scavenger to the raw slurry heated by the heat exchanger 31, and has a scavenger tank 41a and a scavenger pump 41b.
  • the scavenger tank 41a is a container for storing a radical scavenger.
  • solution-form formic acid is stored as a radical scavenger.
  • the scavenger pump 41b is configured to add the radical scavenger stored in the scavenger tank 41a to a raw material slurry at a high pressure.
  • the raw material slurry is pressurized to 25 MPa. For this reason, the scavenger pump 41b adds the radical scavenger pressure to the raw material slurry at a pressure higher than 25 MPa.
  • the preheater 42 is a device that preheats the raw slurry to which the radical scavenger is added.
  • the raw slurry introduced at about 450 ° C. is heated to about 600 ° C.
  • the gasification reactor 43 is an apparatus that maintains water containing the gasification raw material in a supercritical state and decomposes the gasification raw material (organic matter) contained in the raw material slurry.
  • the temperature is set to 600 ° C. and the pressure is set to 25 MPa, and the gasification raw material is decomposed for 1 to 2 minutes.
  • the radical scavenger is added to the raw material slurry, as explained in the confirmation test, the radical reaction hardly occurs during the decomposition treatment of the gasification raw material, and the generation of char is suppressed. be able to.
  • generation of tar referred to as high temperature tar for convenience
  • the fuel gas recovery unit 50 is a part that recovers fuel gas from the processed fluid, and includes a gas-liquid separator 51 and a gas tank 52.
  • the gas-liquid separator 51 is a part that separates the treated fluid discharged from the cooler 33 of the heat exchange unit 30 into fuel gas (gas), drainage, activated carbon, and ash (slurry). Then, the separated fuel gas is sent to the gas tank 52.
  • the gas tank 52 is a container that stores the fuel gas separated by the gas-liquid separator 51.
  • the fuel gas stored in the gas tank 52 is supplied as fuel for the preheater 42 and the gasification reactor 43 included in the gasification processing unit 40.
  • the fuel gas stored in the gas tank 52 is also used as fuel for other devices.
  • the radical scavenger is added to the raw slurry, the generation of char and high temperature tar during the decomposition treatment of the raw slurry (gasification raw material) Can be suppressed.
  • the spiral type is used as the heat exchanger 31, generation of low-temperature tar can be suppressed.
  • radical scavenger formic acid is exemplified in the above-described embodiment, but it is not limited to formic acid.
  • acetic acid acetic acid for disposal
  • an amino acid or wood vinegar may be used.
  • a carboxylic acid compound compound having a carboxyl group
  • compounds other than carboxylic acid compounds can be used as radical scavengers as long as they can suppress the radical reaction of the polymer compound at a high temperature of about 400 to 650 ° C.
  • the scavenger addition unit 41 in the above-described embodiment, a configuration in which a radical scavenger is added between the heat exchanger 31 and the preheater 42 is exemplified. However, it is not limited to this configuration.
  • the scavenger addition unit 41 may be configured to add a radical scavenger between the preheater 42 and the gasification reactor 43. Further, the scavenger addition unit 41 may be configured to directly add a radical scavenger to the preheater 42 and the gasification reactor 43.
  • the spiral heat exchanger 31 is illustrated in the above-described embodiment, but is not limited thereto.
  • a double tube type may be used, or another type of heat exchanger may be used.
  • the heat exchanger 31 and the preheater 42 may be eliminated, and the gasification raw material and the radical scavenger may be directly introduced into the gasification reactor 43.
  • the post-treatment fluid discharged from the gasification reactor 43 is preferably used for heating the gasification reactor 43.

Abstract

 本発明の課題は、ガス化原料を含む水を加熱及び加圧して超臨界状態とし、このガス化原料を分解処理して燃料ガスを得るに際し、高温域でのタールの生成を抑制することにある。 本発明は、高分子化合物を含むガス化原料から原料スラリーを作製し、前記ガス化原料を含む水を加熱及び加圧して超臨界状態とすることで前記ガス化原料を分解処理し、燃料ガスを得るガス化装置であって、原料スラリーにラジカル捕捉剤を添加する捕捉剤添加部41と、ラジカル捕捉剤が添加された原料スラリーにおけるガス化原料を含む水を、超臨界状態まで加熱及び加圧するガス化処理部40とを有することを特徴とする。

Description

超臨界流体によるガス化装置、及びガス化方法
 本発明は、ガス化原料から原料スラリーを作製し、作製した原料スラリーに含まれる水を加熱及び加圧して超臨界状態とし、このガス化原料を分解処理して燃料ガスを得るガス化装置、及びガス化方法に関する。
 超臨界状態でガス化原料を分解処理して燃料ガスを得るガス化装置が知られている。例えば、特許文献1には、非金属系触媒を含んだバイオマスのスラリー体を温度374℃以上、圧力22.1MPa以上の条件下で水熱処理し、生成された燃料ガスを利用して発電装置で発電し、発電装置からの排熱を利用してスラリー体を加熱するバイオマスガス化発電システムが記載されている。
 ガス化原料に含まれている有機物は、ガス化に際しチャーやタールの発生源となる。これらのチャーやタールが発生してしまうと、配管に目詰まりが生じる等の問題が生じる。生成された燃料ガスを内燃機関で燃焼させた際に、この内燃機関に対して悪影響を及ぼす恐れもある。このため、チャーやタールはできるだけ生成されないことが望ましい。
 ここで、石炭やプラスチックをガス化原料とするガス化装置では、例えば、特許文献2に記載されているように、水素供与性溶剤からの水素ラジカルを用い、重縮合によるチャーの生成を抑制することが行われている。
特開2008-246343号公報 特開平9-3457号公報
 しかしながら、植物、焼酎残渣、及び採卵鶏糞等をガス化原料とする場合、リグニン、タンパク質、及び脂肪といった高分子化合物を含むことから、高分子化合物が重合する400℃から650℃程度の高温域において、高分子化合物を起源とするタールが生成される。このため、高温域でのタールの生成を抑制することが求められる。
 本発明は、このような事情に鑑みてなされたものであり、その目的は、高分子化合物を含むガス化原料を用いた場合において、高温域でのタールの生成を抑制することにある。
 前述の目的を達成するため、本発明は、高分子化合物を含むガス化原料から原料スラリーを作製し、前記ガス化原料を含む水を加熱及び加圧して超臨界状態とすることで前記ガス化原料を分解処理し、燃料ガスを得るガス化装置であって、前記原料スラリーにラジカル捕捉剤を添加する捕捉剤添加部と、前記ラジカル捕捉剤が添加された前記原料スラリーにおける前記ガス化原料を含む水を、超臨界状態まで加熱及び加圧するガス化処理部とを有することを特徴とする。
 前述のガス化装置において、前記捕捉剤添加部は、前記ラジカル捕捉剤としてカルボン酸を用いることが好ましい。
 前述のガス化装置において、前記ガス化処理部から送出された処理後流体と前記ガス化原料とを熱交換し、前記ガス化原料を加熱する熱交換器を、前記ガス化処理部よりも上流側に設け、前記捕捉剤添加部は、前記熱交換器から送出された加熱後の前記ガス化原料に前記ラジカル捕捉剤を添加することが好ましい。
 前述のガス化装置において、前記熱交換器は、スパイラル式熱交換器であることが好ましい。
 また、本発明は、高分子化合物を含むガス化原料から原料スラリーを作製し、前記ガス化原料を含む水を加熱及び加圧して超臨界状態とすることで前記ガス化原料を分解処理し、燃料ガスを得るガス化方法であって、前記原料スラリーにラジカル捕捉剤を添加し、前記ラジカル捕捉剤が添加された前記原料スラリーにおける前記ガス化原料を含む水を、超臨界状態まで加熱及び加圧することを特徴とする。
 本発明によれば、高分子化合物を含むガス化原料を用いて燃料ガスを生成しても、高温域でのタールの生成を抑制できる。
確認試験の結果を説明する図である。 超臨界ガス化装置の構成を説明する図である。 (a)は、スパイラル式熱交換器の横断面図である。(b)は、スパイラル式熱交換器の縦断面図である。
 超臨界ガス化装置の説明に先立って、ラジカル捕捉剤の効果を確認するための確認試験について説明する。この確認試験では、グアヤコールにギ酸を添加したサンプルと、ギ酸を添加しないサンプルを用い、チャーの生成量を比較した。ここで、グアヤコールは、ラジカル反応によってタールを生成する化合物であり、リグニンのモデルとして選定した。ギ酸は、ラジカルの捕捉効果を有するラジカル捕捉剤の一種であり、カルボン酸の一種である。
 この確認試験では、グアヤコールを、濃度が0.25重量%、0.5重量%、1重量%となるように、かつ、ギ酸を、濃度が0.5重量%となるように溶媒に溶解することで、ラジカル捕捉剤を添加した3種類のサンプルを作製した。同様に、グアヤコールを、濃度が0.25重量%、0.5重量%、1重量%となるように溶媒に溶解することで、比較例となる3種類のサンプルを作製した。そして、これら6種類のサンプルについて、チャーの生成量を比較した。
 図1は、確認試験の結果である。図1において、横軸はグアヤコールの濃度である。また、縦軸はチャーの生成量である。そして、ラジカル捕捉剤を添加したサンプルについては、チャーの生成量を黒塗りの菱形で示した。また、比較例のサンプルについては、チャーの生成量を白塗りの正方形で示した。
 グアヤコール濃度0.25重量%において、比較例のサンプルではチャーの生成量が約0.08[-]であったのに対し、ラジカル捕捉剤を添加したサンプルではチャーの生成量が約0.00[-]であった。グアヤコール濃度0.5重量%において、比較例のサンプルではチャーの生成量が約0.02[-]であったのに対し、ラジカル捕捉剤を添加したサンプルではチャーの生成量が約0.00[-]であった。グアヤコール濃度1重量%において、比較例のサンプルではチャーの生成量が約0.1[-]であったのに対し、ラジカル捕捉剤を添加したサンプルではチャーの生成量が約0.00[-]であった。
 このように、今回の確認試験では、グアヤコール溶液にラジカル捕捉剤としてのギ酸を添加することにより、チャーの生成を抑制できることが確認された。これは、グアヤコールからのチャーの生成が、ラジカル反応によって行われるためと考えられる。すなわち、グアヤコールのラジカルがギ酸によって捕捉され、ラジカル反応が抑制された結果、チャーの生成量が大きく減少されたと考えられる。
 以上の確認試験の結果を踏まえ、改良が施された超臨界ガス化装置について説明する。図2に示すように、本実施形態における超臨界ガス化装置は、原料調整部10、原料供給部20、熱交換部30、ガス化処理部40、及び燃料ガス回収部50を有している。
 この超臨界ガス化装置では、原料調整部10で調整された原料スラリーを、原料供給部20により、熱交換部30が有する熱交換器31に送出する。そして、熱交換器31で加熱された原料スラリーにラジカル捕捉剤を添加し、ガス化処理部40に導入する。ガス化処理部40では、導入された原料スラリーをさらに加熱し、原料スラリーにおけるガス化原料を含んだ水を超臨界状態にする。これにより、ガス化原料が分解処理される。超臨界状態の水を含んだ処理後流体は、熱交換器31に導入され、原料スラリーとの間で熱交換される。この熱交換によって処理後流体に含まれる水が亜臨界状態になり、処理後流体は気液二相流へと変化する。そして、気相部分には、分解処理で生成された水素、一酸化炭素、メタン等の燃料ガスが含まれる。燃料ガス回収部50では、熱交換部30から送出された処理後流体を気液分離し、気体部分を燃料ガスとしてガスタンク52に貯留する。ガスタンク52に貯留された燃料ガスは、ガス化処理部40での燃料として使用されたり、他の装置の燃料として使用されたりする。
 以下、超臨界ガス化装置の各部について説明する。
 原料調整部10は、ガス化原料等から原料スラリーを調整する部分であり、調整タンク11と破砕機12とを有している。
 調整タンク11は、ガス化原料、活性炭、水などを混合して懸濁液を作製する容器であり、図示しない攪拌翼が設けられている。ガス化原料としては、例えば、植物、焼酎残渣、及び採卵鶏糞といったように、リグニン、タンパク質、及び脂肪といった高分子化合物を含む資材を用いることができる。活性炭は、非金属系触媒として機能するものであり、平均粒径200μm以下の多孔質の粒子を用いることができる。
 破砕機12は、調整タンク11で混合された懸濁液に含まれる固形分(主にガス化原料)を破砕し、均一な大きさにするための装置である。本実施形態では、固形分の平均粒径が500μm以下になるように破砕を行っている。破砕機12による破砕により、懸濁液は原料スラリーになる。
 原料供給部20は、原料スラリーを高圧で送出する部分であり、供給ポンプ21と高圧ポンプ22とを有している。供給ポンプ21は、破砕機12から送出された原料スラリーを、高圧ポンプ22に向けて供給するための装置である。高圧ポンプ22は、原料スラリーを高圧で送出するための装置である。この高圧ポンプ22により、原料スラリーは25MPa程度まで加圧される。
 熱交換部30は、原料供給部20から供給された原料スラリーと、ガス化処理部40で分解処理された後の処理後流体との間で熱交換を行わせることで、原料スラリーを加熱するとともに処理後流体を冷却する部分である。この熱交換部30は、熱交換器31と、減圧機構32と、クーラー33とを有している。
 熱交換器31は、原料スラリーと処理後流体との間で熱交換を行わせる装置であり、スパイラル式の熱交換器31が用いられている。図3(a),(b)に示すように、この熱交換器31は円柱状の外観を呈しており、内部には高温側流路31a及び低温側流路31bが設けられている。これらの高温側流路31a及び低温側流路31bは渦巻き状に巻かれており、中心から半径方向に向かって交互に配置されている。
 スパイラル式の熱交換器31では、高温側流路31aと低温側流路31bが、交互に配置され渦巻き状に巻かれていることから、低温側流路31bを流れる原料スラリーを短時間で昇温させることができる。これにより、グルコースなどの糖類の重合によって生じるタール(便宜上、低温タールという)を効果的に抑制できる。これは、糖類の重合が200~350℃程度の温度域で活発に行われることによる。すなわち、熱交換器31としてスパイラル式のものを用いることにより、原料スラリーが450℃程度まで短時間で加熱されるため、糖類の重合が活発になる期間が短時間で済む。これにより、低温タールの発生を効果的に抑制できる。
 図2に示すように、減圧機構32は、熱交換器31から排出された処理後流体を減圧する装置であり、クーラー33は、減圧機構32から排出された処理後流体を冷却する装置である。これらの減圧機構32とクーラー33により、クーラー33から排出される処理後流体(排水、活性炭、及び灰分の混合物)は、常圧常温程度まで減圧及び冷却される。
 ガス化処理部40は、熱交換器31で加熱された原料スラリーを加熱及び加圧することで、ガス化原料を含む水を超臨界状態とし、原料スラリーに含まれるガス化原料(有機物)を分解する部分であり、捕捉剤添加部41と、予熱器42と、ガス化反応器43を有している。
 捕捉剤添加部41は、熱交換器31で加熱された原料スラリーにラジカル捕捉剤を添加する部分であり、捕捉剤タンク41aと、捕捉剤ポンプ41bとを有している。捕捉剤タンク41aは、ラジカル捕捉剤を貯留する容器である。本実施形態では、ラジカル捕捉剤として溶液状のギ酸が貯留されている。捕捉剤ポンプ41bは、捕捉剤タンク41aに貯留されたラジカル捕捉剤を高圧にして原料スラリーへ添加するものである。本実施形態では、原料スラリーが25MPaまで加圧されている。このため、捕捉剤ポンプ41bは、ラジカル捕捉剤の圧力を25MPaよりも高くして原料スラリーへ添加している。
 予熱器42は、ラジカル捕捉剤が添加された原料スラリーを予熱する装置である。本実施形態では約450℃で導入された原料スラリーを約600℃まで加熱している。ガス化反応器43は、ガス化原料を含む水を超臨界状態に維持し、原料スラリーに含まれるガス化原料(有機物)を分解させる装置である。本実施形態では温度を600℃、圧力を25MPaに定め、1~2分間に亘ってガス化原料の分解処理を行っている。ここで、本実施形態では、原料スラリーにラジカル捕捉剤が添加されているので、確認試験で説明したように、ガス化原料の分解処理時において、ラジカル反応が生じ難くなり、チャーの発生を抑えることができる。また、ラジカル反応が生じ難くなることから、タール(便宜上、高温タールという)の発生を効果的に抑制できる。
 燃料ガス回収部50は、処理後流体から燃料ガスを回収する部分であり、気液分離器51、及び、ガスタンク52を有している。気液分離器51は、熱交換部30のクーラー33から排出された処理後流体を燃料ガス(気体)と排水、活性炭、灰分(スラリー)に分離する部分である。そして、分離後の燃料ガスについては、ガスタンク52に送られる。ガスタンク52は、気液分離器51で分離された燃料ガスを貯留する容器である。そして、ガスタンク52に貯留された燃料ガスは、ガス化処理部40が有する予熱器42やガス化反応器43の燃料として供給される。また、ガスタンク52に貯留された燃料ガスは、他の装置の燃料にも使用される。
 以上説明したように、本実施形態の超臨界ガス化装置によれば、ラジカル捕捉剤を原料スラリーに添加しているので、原料スラリー(ガス化原料)の分解処理時におけるチャーの発生や高温タールの発生を抑制できる。また、熱交換器31としてスパイラル式のものを用いているので、低温タールの発生も抑制できる。
 以上の実施形態の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれる。例えば、次のように構成してもよい。
 ラジカル捕捉剤に関し、前述の実施形態ではギ酸を例示したが、ギ酸に限定されるものではない。例えば、ラジカル捕捉剤として、酢酸(廃棄用の酢酸)を用いてもよいし、アミノ酸や木酢液を用いてもよい。要するに、ラジカル捕捉剤としては、カルボン酸系の化合物(カルボキシル基を有する化合物)が好適に用いられる。なお、カルボン酸系の化合物以外であっても、400~650℃程度の高温下において、高分子化合物のラジカル反応を抑制できる物質であれば、ラジカル捕捉剤として使用できる。
 捕捉剤添加部41に関し、前述の実施形態では、熱交換器31と予熱器42の間にて、ラジカル捕捉剤を添加するように構成したものを例示した。しかしながら、この構成に限定されるものではない。例えば、捕捉剤添加部41を、予熱器42とガス化反応器43の間にラジカル捕捉剤を添加する構成にしてもよい。また、捕捉剤添加部41を、予熱器42やガス化反応器43に対してラジカル捕捉剤を直接添加する構成にしてもよい。
 熱交換器31に関し、前述の実施形態では、スパイラル式熱交換器31を例示したが、これに限定されるものではない。例えば、二重管式のものを用いてもよいし、他の形式の熱交換器を用いてもよい。
 そして、二重管式の熱交換器を用いた場合、この熱交換器における原料スラリーが通る低温側流路の途中に、捕捉剤添加部41によってラジカル捕捉剤を添加する構成にしてもよい。
 また、熱交換器31及び予熱器42をなくし、ガス化原料とラジカル捕捉剤をガス化反応器43へ直接導入してもよい。この場合、ガス化反応器43から排出される処理後流体に関しては、ガス化反応器43の加熱に利用することが好ましい。
10…原料調整部,11…調整タンク,12…破砕機,20…原料供給部,21…供給ポンプ,22…高圧ポンプ,30…熱交換部,31…熱交換器(スパイラル式熱交換器),31a…高温側流路,31b…低温側流路,32…減圧機構,33…クーラー,40…ガス化処理部,41…捕捉剤添加部,41a…捕捉剤タンク,41b…捕捉剤ポンプ,42…予熱器,43…ガス化反応器,50…燃料ガス回収部,51…気液分離器,52…ガスタンク

Claims (5)

  1.  高分子化合物を含むガス化原料から原料スラリーを作製し、前記ガス化原料を含む水を加熱及び加圧して超臨界状態とすることで前記ガス化原料を分解処理し、燃料ガスを得るガス化装置であって、
     前記原料スラリーにラジカル捕捉剤を添加する捕捉剤添加部と、
     前記ラジカル捕捉剤が添加された前記原料スラリーにおける前記ガス化原料を含む水を、超臨界状態まで加熱及び加圧するガス化処理部とを有することを特徴とするガス化装置。
  2.  前記捕捉剤添加部は、前記ラジカル捕捉剤としてカルボン酸を用いることを特徴とする請求項1に記載のガス化装置。
  3.  前記ガス化処理部から送出された処理後流体と前記ガス化原料とを熱交換し、前記ガス化原料を加熱する熱交換器を、前記ガス化処理部よりも上流側に設け、
     前記捕捉剤添加部は、前記熱交換器から送出された加熱後の前記ガス化原料に前記ラジカル捕捉剤を添加することを特徴とする請求項1又は2に記載のガス化装置。
  4.  前記熱交換器は、スパイラル式熱交換器であることを特徴とする請求項3に記載のガス化装置。
  5.  高分子化合物を含むガス化原料から原料スラリーを作製し、前記ガス化原料を含む水を加熱及び加圧して超臨界状態とすることで前記ガス化原料を分解処理し、燃料ガスを得るガス化方法であって、
     前記原料スラリーにラジカル捕捉剤を添加し、
      前記ラジカル捕捉剤が添加された前記原料スラリーにおける前記ガス化原料を含む水を、超臨界状態まで加熱及び加圧することを特徴とするガス化方法。
PCT/JP2014/078209 2014-10-23 2014-10-23 超臨界流体によるガス化装置、及びガス化方法 WO2016063399A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015539990A JPWO2016063399A1 (ja) 2014-10-23 2014-10-23 超臨界流体によるガス化装置、及びガス化方法
PCT/JP2014/078209 WO2016063399A1 (ja) 2014-10-23 2014-10-23 超臨界流体によるガス化装置、及びガス化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078209 WO2016063399A1 (ja) 2014-10-23 2014-10-23 超臨界流体によるガス化装置、及びガス化方法

Publications (1)

Publication Number Publication Date
WO2016063399A1 true WO2016063399A1 (ja) 2016-04-28

Family

ID=55760467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078209 WO2016063399A1 (ja) 2014-10-23 2014-10-23 超臨界流体によるガス化装置、及びガス化方法

Country Status (2)

Country Link
JP (1) JPWO2016063399A1 (ja)
WO (1) WO2016063399A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115006857A (zh) * 2022-06-30 2022-09-06 广西埃索凯循环科技有限公司 一种采用二效并联蒸发间歇蒸发结晶装置和工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335266Y2 (ja) * 1983-02-12 1988-09-19
JP2001192676A (ja) * 2000-01-11 2001-07-17 Mitsubishi Materials Corp 炭化水素資源等の高効率転換方法
JP2014189590A (ja) * 2013-03-26 2014-10-06 Chugoku Electric Power Co Inc:The 活性炭によるバイオマスの超臨界水ガス化システムの運転方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335266Y2 (ja) * 1983-02-12 1988-09-19
JP2001192676A (ja) * 2000-01-11 2001-07-17 Mitsubishi Materials Corp 炭化水素資源等の高効率転換方法
JP2014189590A (ja) * 2013-03-26 2014-10-06 Chugoku Electric Power Co Inc:The 活性炭によるバイオマスの超臨界水ガス化システムの運転方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115006857A (zh) * 2022-06-30 2022-09-06 广西埃索凯循环科技有限公司 一种采用二效并联蒸发间歇蒸发结晶装置和工艺
CN115006857B (zh) * 2022-06-30 2024-02-13 广西埃索凯循环科技有限公司 一种采用二效并联蒸发间歇蒸发结晶装置和工艺

Also Published As

Publication number Publication date
JPWO2016063399A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
Khan et al. Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: A review
Zhuang et al. The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment
Gai et al. Hydrogen-rich gas production by steam gasification of hydrochar derived from sewage sludge
Kambo et al. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications
DK1931753T3 (en) PROCESS FOR THE GENERATION OF METHANE AND / OR FROM BIOMASS methane hydrates
WO2004016718A1 (ja) バイオマスの改質方法、改質バイオマス、バイオマス水スラリーとその製造方法、改質バイオマスガスおよびバイオマスのガス化方法
JP2003041268A (ja) バイオマスのガス化方法
JP2010533769A (ja) 増加した転換時間での蒸気水素添加ガス化方法及び装置
JP5938788B2 (ja) 湿潤バイオマスを、熱化学的に炭化、およびガス化する方法
JP2006274013A (ja) バイオマスガス化システム
JP2009543690A (ja) 高エネルギー密度バイオマス‐水スラリーのための方法
Güleç et al. A comprehensive comparative study on the energy application of chars produced from different biomass feedstocks via hydrothermal conversion, pyrolysis, and torrefaction
JP6070906B1 (ja) 超臨界水ガス化システムおよびガス化方法
Azaare et al. Co-hydrothermal carbonization of pineapple and watermelon peels: Effects of process parameters on hydrochar yield and energy content
Lu et al. Integration of biomass torrefaction and gasification based on biomass classification: a review
Mohamed et al. Biofuel production by co-pyrolysis of sewage sludge and other materials: a review
KR102063831B1 (ko) Red를 연계한 저온조건의 바이오매스내 회분유발성분을 제거한 연료 생산 및 발전 시스템
JP2005205252A (ja) バイオマスを含む高濃度スラリー、および高濃度スラリーの製造方法、並びにバイオマス燃料の製造方法
Ibrahim Bio-energy production from rice straw: A review
Hoekman et al. Hydrothermal carbonization (HTC) of biomass for energy applications
WO2016063399A1 (ja) 超臨界流体によるガス化装置、及びガス化方法
WO2015132922A1 (ja) 超臨界流体によるガス化装置
KR101137897B1 (ko) 목질계 바이오매스로부터 가연성 합성가스 생산을 위한 간접 가스화 방법
JP6066411B2 (ja) 活性炭によるバイオマスの超臨界水ガス化システムの運転方法
JP6364645B2 (ja) バイオマス処理システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015539990

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904221

Country of ref document: EP

Kind code of ref document: A1