WO2016060033A1 - 眼科装置 - Google Patents

眼科装置 Download PDF

Info

Publication number
WO2016060033A1
WO2016060033A1 PCT/JP2015/078437 JP2015078437W WO2016060033A1 WO 2016060033 A1 WO2016060033 A1 WO 2016060033A1 JP 2015078437 W JP2015078437 W JP 2015078437W WO 2016060033 A1 WO2016060033 A1 WO 2016060033A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
control unit
eye
light source
Prior art date
Application number
PCT/JP2015/078437
Other languages
English (en)
French (fr)
Inventor
浩昭 岡田
央 塚田
誠 藤野
美智子 中西
酒井 潤
林 健史
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Publication of WO2016060033A1 publication Critical patent/WO2016060033A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography

Definitions

  • the present invention relates to an ophthalmologic apparatus.
  • Ophthalmic devices for screening and treating eye diseases are required to be capable of easily observing and photographing the fundus of the eye to be examined with a wide field of view.
  • a scanning laser ophthalmoscope is known.
  • the scanning laser ophthalmoscope is an apparatus that forms a front image of the fundus by scanning the fundus with laser light and detecting the return light with a light receiving device.
  • Patent Document 1 discloses a scanning laser ophthalmoscope configured to transmit an apparent point light source by a slit mirror and a main mirror toward an eye position where an eye to be examined is arranged. Yes.
  • Patent Document 1 since a wide-angle image is formed by the reflection optical system, the degree of freedom of arrangement of the optical elements is low, and the arrangement of the optical elements is changed in order to further improve the image quality. Difficult to do. Also, it is difficult to easily obtain a high-quality image due to the aberration characteristics of the optical elements of the reflective optical system. In particular, when the influence of the aberration characteristic becomes large, it becomes impossible to apply to the treatment of the eye to be examined.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a technique for easily observing the posterior segment of the eye to be examined with a wide visual field and high accuracy.
  • the ophthalmologic apparatus includes a scanning optical system that deflects light from the light source within a predetermined deflection angle range, and can irradiate the posterior eye portion of the eye to be inspected with light from the light source deflected by the scanning optical system.
  • the present invention it is possible to easily observe the posterior segment of the eye to be examined with a wide visual field and with high accuracy.
  • the ophthalmologic apparatus according to the embodiment moves an optical unit including a scanning optical system that deflects light from a light source with reference to the pupil of the eye to be examined, so that light is transmitted through the pupil to the posterior segment of the eye (fundus, vitreous) Etc.) can irradiate a wide range.
  • a configuration is an arbitrary ophthalmic apparatus capable of irradiating light to the posterior eye part, for example, a laser treatment apparatus for irradiating a treatment site on the fundus with laser light, or a state in which the eye to be examined is fixed. And can be applied to a perimeter for measuring the visual field based on the response of the subject while moving the visual target.
  • the ophthalmologic apparatus further forms a distribution of predetermined data (image, layer thickness distribution, lesion distribution, etc.) in the posterior eye portion by receiving the return light from the posterior eye portion of the eye to be examined. It is possible.
  • predetermined data image, layer thickness distribution, lesion distribution, etc.
  • OCT optical coherence tomography
  • a scanning laser ophthalmoscope (Scanning Laser Ophthalmoscope: SLO) that obtains a frontal image of the fundus by laser scanning using a coherent tomometer, a confocal optical system, and the functions of an optical coherence tomography and a scanning laser ophthalmoscope It can be applied to a multifunction machine that combines the above.
  • SLO Scanning Laser Ophthalmoscope
  • FIG. 1 shows a functional block diagram of a schematic configuration of the ophthalmologic apparatus according to this embodiment.
  • the ophthalmologic apparatus 1 is an apparatus that scans the posterior segment of the eye E with a laser beam to acquire data, and forms a front image of the fundus oculi Ef based on the acquired data.
  • the ophthalmologic apparatus 1 includes a measurement unit 100 and a processing unit 200.
  • the measurement unit 100 is used for optical observation of the fundus oculi Ef and optical measurement of the fundus oculi Ef.
  • the processing unit 200 performs processing of data acquired by the measurement unit 100, control of each part of the apparatus, and the like.
  • the measurement unit 100 includes an optical unit 110, a moving mechanism 120, a drive unit 130, a light source 140, a fixation system 150, a fixation target control unit 160, and an alignment system 170.
  • the measurement unit 100 receives light from the light source 140 through the pupil of the eye E by an optical unit 110 configured to be movable with reference to a pupil position P of the eye E (or a position near the pupil position P described later). Irradiate the posterior segment of the eye E.
  • the measurement unit 100 sends the data acquired by receiving the return light of the light irradiated to the posterior eye part of the eye E to the processing unit 200.
  • the optical unit 110 includes a scanning optical system 111, a projection system 112, and a light receiving system 113.
  • the scanning optical system 111 deflects light from the light source 140 within a predetermined deflection angle range.
  • the scanning optical system 111 deflects light from the light source 140 two-dimensionally within a predetermined deflection angle range, but deflects light from the light source 140 one-dimensionally within a predetermined deflection angle range. It may be configured to do.
  • Such a scanning optical system 111 may include an optical scanner.
  • the optical scanner uses a single-axis or biaxial deflecting member orthogonal to each other. Examples of the deflecting member include a galvano mirror, a polygon mirror, a rotating mirror, a dowel prism, a double dowel prism, a rotation prism, and a MEMS mirror scanner.
  • the projection system 112 is an optical system configured by an optical element for irradiating the back eye part (for example, the fundus oculi Ef) of the eye E with light from the light source 140 deflected by the scanning optical system 111.
  • an objective lens, a beam expander, a scanning optical system 111, a beam splitter, an aperture stop, and a collimating lens are provided in this order from the eye E side.
  • the light receiving system 113 is an optical system configured by an optical element for receiving the return light from the posterior segment of the eye E to be irradiated by the projection system 112.
  • an objective lens, a beam expander, a scanning optical system 111, a beam splitter, a condensing lens, a confocal pinhole, and a light receiving element are provided in this order from the eye E side.
  • the light receiving element one having sensitivity in the visible region or the infrared region is used according to the light output from the light source 140.
  • the optical unit 110 may further include at least one of the light source 140 and the fixation system 150. Further, at least one of the projection system 112 and the light receiving system 113 may be provided outside the optical unit 110.
  • the moving mechanism 120 moves the optical unit 110 within a predetermined moving angle range based on the pupil position P of the eye E to be examined.
  • the plane orthogonal to the optical axis is the xy plane (the x direction is the horizontal direction and the y direction is the vertical direction)
  • the pupil position P includes not only the position actually corresponding to the pupil, but also x, y, and / or Alternatively, a position displaced in the z direction (neighboring position) is also included.
  • the term “pupil position” is simply expressed except when “neighbor position” is specified, it means the pupil position or its vicinity position.
  • the moving mechanism 120 rotates the optical unit 110 three-dimensionally within a predetermined moving angle range around the pupil position P of the eye E to be examined.
  • a moving mechanism 120 includes, for example, one or more holding members that hold the optical unit 110 and one or more guide arms that are movably provided at any position within the above-described movement angle range.
  • the guide arm holds the holding member in a slidable state.
  • the moving mechanism 120 may be moved two-dimensionally in a plane orthogonal to the optical axis of the optical unit 110 passing through the pupil position P of the eye E.
  • the driving unit 130 is driven by the control unit 210 of the processing unit 200 described later, and drives the moving mechanism 120.
  • the driving unit 130 includes an actuator that generates a driving force for moving the moving mechanism 120.
  • An actuator that has received a control signal from the control unit 210 described later generates a driving force in accordance with the control signal.
  • This driving force is transmitted to the moving mechanism 120 via a driving force transmitting mechanism (not shown), and moves the moving mechanism 120 so as to be arranged at the position designated by the control signal. Thereby, the optical unit 110 can be moved to a desired position.
  • the light source 140 outputs a laser beam for irradiating the back eye part of the eye E to be examined.
  • a light source that outputs laser light with high spatial coherency is used.
  • Examples of such a light source 140 include a semiconductor laser light source (wavelength sweep laser, superluminescent diode, etc.), a solid-state laser, a gas laser, and a fiber laser.
  • a light source 140 that uses a plurality of light sources synthesized by a multiplexer such as an optical fiber multiplexer or a dichroic mirror.
  • laser light is guided to the optical unit 110 by an optical fiber.
  • a means for reducing stress such as twisting or pulling due to the movement of the optical unit 110 is provided in the joint portion of the optical fiber.
  • the fixation system 150 has a configuration for realizing at least one of internal fixation and external fixation.
  • the fixation system 150 is configured to include an optical system for projecting a fixation target onto the fundus oculi Ef of the eye E to be examined.
  • the fixation target is a target for fixing the eye E to be examined.
  • the fixation system 150 includes a fixation light source that outputs at least visible light.
  • the optical path formed by the fixation system 150 is combined with the optical path formed by the optical unit 110 by, for example, a dichroic mirror provided between the pupil position P and the optical unit 110 (objective lens).
  • the fixation system 150 may be provided in the optical unit 110.
  • the fixation system 150 When realizing external fixation, the fixation system 150 is provided in the housing of the optical unit 110, for example.
  • the fixation system 150 has, for example, a configuration in which a light emitting unit such as an LED is provided at the other end of two or more arms that are fixed at one end to the optical unit 110 and connected to each other via a joint.
  • the fixation system 150 may be provided in the housing of the measurement unit 100 and configured not to move with the optical unit 110.
  • the fixation target control unit 160 can move the projection position of the fixation target as the optical unit 110 moves.
  • the fixation target control unit 160 can link the internal fixation and the external fixation using the above-described configuration.
  • linking internal fixation and external fixation when the macular portion is included in the laser light scan area, the eye is fixed by the internal fixation, and the macula is included in the scan area. If not, the subject's eye is fixed by external fixation.
  • the fixation system 150 may have a configuration (optical system) for realizing, for example, two (or more) internal fixations.
  • the fixation system 150 is provided inside the optical unit 110 for realizing the first internal fixation, and is configured for realizing the second internal fixation provided outside the optical unit 110. It is possible to have As an example of linking two internal fixations, when a macular portion is included in the laser light scan area, the first internal fixation (inside the optical unit 110) causes the subject's eye to fixate and within the scan area When the macular portion is not included in the eye, the eye to be examined is fixed by the second internal fixation (outside the optical unit 110).
  • the fixation target control unit 160 receives the control from the control unit 210 of the processing unit 200 described later, and controls the fixation system 150.
  • the fixation target control unit 160 receives, for example, control from the control unit 210, controls the turning on and off of a fixation light source (for internal fixation and external fixation), and projects the fixation target on the fundus oculi Ef. It is possible to move the position (fixation position).
  • the alignment system 170 includes, for example, an XY alignment detection light source, an XY alignment sensor, a Z alignment detection light source, and a Z alignment sensor.
  • the XY alignment detection light from the XY alignment light source is guided to the cornea of the eye E as a parallel light beam.
  • a bright spot image (virtual image) is formed on the cornea by reflecting the XY alignment detection light with the cornea.
  • the XY alignment detection light reflected by the cornea is detected by an XY alignment sensor.
  • a detection signal obtained by the XY alignment sensor is sent to the control unit 210 described later.
  • the control unit 210 specifies the position of the bright spot image formed on the cornea of the eye E from the detection signal, and detects a positional shift with respect to the optical unit 110 in the x direction and the y direction.
  • the Z alignment detection light from the Z alignment detection light source is projected onto the cornea of the eye E.
  • a bright spot image (virtual image) is formed on the cornea by reflection of the Z alignment detection light into the cornea.
  • the Z alignment detection light reflected by the cornea is detected by a Z alignment sensor.
  • the detection signal obtained by the Z alignment sensor is sent to the control unit 210 described later.
  • the control unit 210 specifies the position of the bright spot image formed on the cornea of the eye E from this detection signal, and detects a positional shift with respect to the optical unit 110 in the z direction.
  • At least one of the above XY alignment and Z alignment may be performed using one or more cameras provided in the measurement unit 100.
  • at least one positional shift in the x direction, the y direction, and the z direction is detected.
  • the three-dimensional position of the eye E is obtained based on images taken substantially simultaneously from different directions, so that the x direction, the y direction, and the z direction are obtained. Is detected.
  • the control unit 210 performs alignment by moving the optical unit 110 so as to cancel the positional deviation in the detected x, y, and z directions.
  • the measurement unit 100 includes a focus optical system, and can generate an index (split index) for focusing on the fundus oculi Ef.
  • the light (focus light) output from the focus optical system is projected onto the fundus oculi Ef, and the fundus reflection light is detected by a sensor (not shown).
  • the control unit 210 can analyze the position of the split index from the detection signal obtained by the sensor and can focus, for example, by moving the focusing lens and the focus optical system included in the optical unit 110. Yes (autofocus function).
  • the wavelength of the laser beam output from the light source 140 is arbitrary.
  • infrared laser light or visible laser light can be used as the laser light output from the light source 140.
  • a configuration capable of selectively outputting infrared laser light and visible laser light can be applied.
  • the laser light output from the light source 140 is two-dimensionally deflected by the optical unit 110 moved by the moving mechanism 120, and the eye to be examined from the optical axis direction of the optical unit 110.
  • the fundus Ef is irradiated through the pupil of E. Specifically, the laser light incident on the eye E is scattered by the anterior eye portion of the eye E. Further, part of the laser light incident on the eye E passes through the pupil and is imaged as spot light on the fundus oculi Ef.
  • the return light of the laser light applied to the fundus oculi Ef is light that returns to the optical unit 110 from the spot light formation position (and its vicinity).
  • the return light includes scattered light (reflected light and backscattered light) of the laser light from the fundus oculi Ef, fluorescence using the laser light as excitation light, and scattered light thereof.
  • the return light passes through the pupil and exits from the eye E.
  • the return light from the eye E is guided to the light receiving system 113.
  • the return light guided to the light receiving system 113 is detected by the light receiving element.
  • the light receiving element photoelectrically converts the detected return light and outputs an electric signal (light receiving signal).
  • the above process corresponds to measurement of one point of the fundus oculi Ef, and corresponds to measurement in an irradiation area of a single spot light with respect to the fundus oculi Ef.
  • the scanning optical system 111 in the optical unit 110 (1
  • the irradiation area of the spot light on the fundus oculi Ef is moved. That is, in this embodiment, scanning of the fundus oculi Ef is executed by combining the turning of the optical unit 110 by the moving mechanism 120 and the deflection by the scanning optical system 111.
  • FIG. 2 is an explanatory view of the spot light irradiation area according to this embodiment.
  • FIG. 2 schematically shows an explanatory view of a spot light irradiation area by the scanning optical system 111 at each position of the optical unit 110 rotated by the moving mechanism 120.
  • the entire scan area shown in FIG. 2 is divided into a plurality of sub-scan areas, and the irradiation position of the spot light is moved by the scanning optical system 111 in each sub-scan area, so that the entire scan area is expanded over a wide range. Scan against.
  • a wide range of scanning is realized by scanning each of the plurality of sub-scan areas.
  • Each sub-scan area is scanned according to a deflection pattern described later.
  • the movement between the sub-scan areas is performed by the movement of the optical unit 110.
  • the movement between the sub-scan areas is performed according to a movement pattern described later.
  • the scanning optical system 111 deflects the light from the light source 140 within a predetermined deflection angle range.
  • this deflection angle range is defined as a deflection angle range ⁇ H1 in the horizontal direction (eg, x direction) and a deflection angle range ⁇ V1 in the vertical direction (eg, y direction) with reference to the deflection center of the scanning optical system 111
  • the irradiation area of the spot light by the scanning optical system 111 at each position of the optical unit 110 has a horizontal deflection angle range of ⁇ ⁇ H1 and a vertical deflection angle range of ⁇ ⁇ V1 .
  • the optical unit 110 is turned within a predetermined movement angle range around the pupil position P of the eye E to be examined.
  • this movement angle range is a movement angle range ⁇ H2 in the horizontal direction (for example, the x direction) and a movement angle range ⁇ V2 in the vertical direction (for example, the y direction)
  • the irradiation area of the spot light is shown in FIG.
  • scanning can be performed within a range where the horizontal angular range is ⁇ H and the vertical angular range is ⁇ V , and data within the range can be acquired.
  • ⁇ H1 can be 20 to 80 degrees
  • ⁇ H1 is 60 degrees
  • ⁇ H2 is 40 degrees
  • data can be acquired (image acquisition) in a range of 160 degrees in the horizontal direction.
  • ⁇ V1 can be 20 to 80 degrees
  • ⁇ V1 is 40 degrees
  • ⁇ V2 is 40 degrees
  • data can be acquired (image acquisition) in a range of 120 degrees in the vertical direction. is there. It is desirable to determine ⁇ H1 , ⁇ H2 , ⁇ V1 , and ⁇ V2 in consideration of cost and working distance.
  • the processing unit 200 includes an arithmetic device, a control device, a storage device (RAM, ROM, hard disk drive, etc.), a user interface, a communication interface, and the like.
  • the processing unit 200 includes a control unit 210, a data processing unit 220, and a user interface 230.
  • the control unit 210 controls each part of the apparatus.
  • the controller 210 includes a microprocessor and a storage device.
  • the storage device stores in advance a computer program for controlling the ophthalmologic apparatus 1.
  • the computer program includes a light source control program, an optical unit control program (including a scanning optical system control program), a moving mechanism control program, an alignment control program, and an overall control program.
  • the control unit 210 executes control processing.
  • Control for the measurement unit 100 includes control of the light source 140, control of the light receiving system 113 (light receiving element) of the optical unit 110, deflection control of the scanning optical system 111, control of the moving mechanism 120 via the drive unit 130, and fixation target control. There are control of the unit 160, control of the alignment system 170, and the like. In particular, the control unit 210 controls the scanning optical system 111 and the moving mechanism 120 in cooperation with each other. Control for the processing unit 200 includes operation control of each unit.
  • the control unit 210 can perform the following control.
  • the storage device of the control unit 210 stores in advance a predetermined deflection pattern for deflecting light from the light source 140 and a predetermined movement pattern for moving the optical unit 110.
  • the deflection pattern and the movement pattern may be set by default or may be set by the user.
  • a plurality of deflection patterns and a plurality of movement patterns can be selectively applied.
  • the control unit 210 controls the scanning optical system 111 based on a predetermined deflection pattern stored in the storage device, and controls the moving mechanism 120 based on a predetermined movement pattern stored in the storage device.
  • control unit 210 can alternately execute control of the movement mechanism 120 based on the movement pattern and control of the scanning optical system 111 based on the deflection pattern. Further, for example, the control unit 210 can perform the control of the moving mechanism 120 based on the moving pattern and the control of the scanning optical system 111 based on the deflection pattern in parallel.
  • control unit 210 can change the scanning mode of a predetermined region of the posterior segment of the eye E to be examined by controlling the scanning optical system 111 based on the deflection pattern.
  • control unit 210 can move the irradiation position of the light from the light source 140 so as to scan the rectangular region of the posterior eye part of the eye E by controlling the scanning optical system 111 based on the deflection pattern. (E.g. strip scan).
  • FIG. 3 shows an example of the scanning mode according to this embodiment.
  • FIG. 3 schematically shows a state where the predetermined area AR of the fundus oculi Ef of the eye E including the optic nerve head N and the macular portion H is divided into a plurality of sub-scan areas and scanned.
  • the control unit 210 sequentially moves the sub-scan areas SR1, SR2, SR3,... By controlling the movement mechanism 120 according to a predetermined movement pattern. At this time, the movement pattern moves to the next sub-scan area so as to overlap a part of the sub-scan area before the movement (overlap area CR1, CR2,). When forming an image of the entire scan area from an image obtained for each sub-scan area, the overlapping area is used for alignment of the images. Based on the deflection pattern, the control unit 210 moves the irradiation position of the light from the light source 140 so as to raster scan each sub-scan region (a predetermined region of the posterior segment of the eye E to be examined).
  • control unit 210 can move the irradiation position of the light from the light source 140 so as to circle scan a predetermined region of the posterior segment of the eye E based on the deflection pattern. Further, the control unit 210 can deflect the light from the light source 140 one-dimensionally by controlling the scanning optical system 111 based on the deflection pattern (slit scanning).
  • the control unit 210 projects a fixation target so as to fixate a predetermined position.
  • the control unit 210 cancels the movement of the optical axis of the optical unit 110 due to the movement of the movement mechanism 120 (displacement of the irradiation position of the spot light on the fundus oculi Ef). It is possible to move the fixation position to do so.
  • the control unit 210 causes the eye E to be fixed in a predetermined direction by the internal fixation target when the scanning area by the scanning optical system 111 includes a macular part, and when the scanning area by the scanning optical system 111 does not include the macular part.
  • control unit 210 monitors the movement of the fundus oculi Ef of the eye E, and performs tracking control that compensates for eye movement so that a predetermined part of the fundus oculi Ef is depicted at a certain position in the image (frame). It may be. Further, the control unit 210 may perform tracking afterwards by analyzing the acquired data and correcting a shift in the rendering position between images (between frames). Further, the control unit 210 may detect the direction of the line of sight of the eye E and perform tracking control so as to cancel the positional shift caused by the movement of the line of sight.
  • the control unit 210 When the optical measurement of the fundus oculi Ef is being performed or after the optical measurement is completed, the control unit 210 generates a pixel position signal and sends it to the data processing unit 220.
  • the pixel position signal indicates the arrangement of a plurality of pixels corresponding to the arrangement of a plurality of spot light irradiation areas based on the optical unit control program (that is, the light deflection pattern by the scanning optical system 111).
  • the data processing unit 220 forms a predetermined data distribution in the posterior segment of the eye E based on the light reception signal input from the light receiving element of the light receiving system 113 and the pixel position signal input from the control unit 210. It is possible. Examples of the predetermined data include a light receiving signal (laser light return light), a pixel value of an image acquired from the light receiving signal, a luminance value, and the like. Examples of distribution include intensity distribution, frequency distribution, images, and lesion distribution obtained by analyzing them. In this embodiment, the data processing unit 220 forms an image (a front image of the fundus oculi Ef) based on the profile of the received light signal as the distribution of predetermined data in the posterior segment of the eye E to be examined.
  • the predetermined data include a light receiving signal (laser light return light), a pixel value of an image acquired from the light receiving signal, a luminance value, and the like. Examples of distribution include intensity distribution, frequency distribution, images, and lesion distribution obtained by analyzing them.
  • examples of the predetermined data include a profile of a received light signal (intensity profile of return light of laser light).
  • examples of distributions include a spectral intensity distribution obtained using OCT, a tomographic image obtained by performing FFT on a received light signal profile, and a layer thickness distribution and a lesion distribution obtained by analyzing the tomographic image. is there.
  • the controller 210 alternately executes the control of the moving mechanism 120 and the control of the scanning optical system 111 a predetermined number of times.
  • the data processing unit 220 forms a distribution of predetermined data based on return light from a plurality of positions of the posterior segment of the eye E to which the laser light is irradiated by the optical unit 110 being moved.
  • control unit 210 may perform the control of the moving mechanism 120 and the control of the scanning optical system 111 in parallel.
  • the data processing unit 220 is based on return lights from a plurality of positions of the posterior segment of the eye E irradiated with the laser light by the optical unit 110 that is moved in parallel with the control of the scanning optical system 111.
  • the data processing unit 220 can generate a moving image in consideration of the difference in data acquisition timing of each sub-scan area. For example, the data processing unit 220 stores an image (data) acquired for each sub-scan area for a predetermined time in association with a timing difference from a reference data acquisition timing. As an example of the reference data acquisition timing, there is a data acquisition timing of a sub-scan area acquired first among a plurality of sub-scan areas constituting an image of the first frame of a moving image.
  • the data processing unit 220 reads an image acquired in each sub-scan area so as to cancel a timing difference in data acquisition timing of the sub-scan area that is a moving image generation target, and performs alignment of the read image Thus, an image of each frame constituting the moving image is generated.
  • the data processing unit 220 includes, for example, a microprocessor and a storage device.
  • a data processing program is stored in the storage device in advance. At least a part of the data processing is executed by the microprocessor operating according to the data processing program. Further, the data processing unit 220 may be configured to include dedicated hardware.
  • the data processing unit 220 can execute various types of data processing. As an example of such data processing, there is processing for image data formed by the data processing unit 220 or another device. Examples of this processing include various types of image processing and diagnostic support processing such as image evaluation based on image data.
  • the data processing unit 220 may be a part of the ophthalmologic apparatus 1 or an external device.
  • the user interface 230 has a display function and an operation / input function.
  • the display function is realized by a display device such as a liquid crystal display (hereinafter, LCD).
  • the display device displays information under the control of the control unit 210.
  • Operation / input functions are realized by operation devices and input devices. Examples of these are buttons, levers, knobs, mice, keyboards, trackballs and the like.
  • the control unit 210 may display a graphical user interface (GUI) on the display device.
  • GUI graphical user interface
  • the display device may be a touch screen.
  • the data processing unit 220 is an example of a “data distribution forming unit” according to this embodiment.
  • FIG. 4 shows a flowchart of an operation example of the ophthalmologic apparatus 1.
  • the control unit 210 sets the imaging mode of the ophthalmologic apparatus 1 to the imaging mode designated by the user.
  • the setting of the shooting mode includes setting of a deflection pattern and a movement pattern that are associated in advance with the shooting mode designated by the user.
  • control unit 210 causes the fixation system 150 to present a fixation target by controlling the fixation target control unit 160.
  • the control unit 210 moves the scan center position of the optical unit 110 to a predetermined tilt center position by the movement mechanism 120 by controlling the drive unit 130 according to the movement pattern corresponding to the photographing mode set in S1. .
  • the tilt center position is an initial position of the optical unit 110 that is moved according to the movement pattern.
  • the control unit 210 determines that the tilt position (the position of the optical unit 110 moved by the moving mechanism 120) is appropriate based on detection signals obtained by the XY alignment sensor and the Z alignment sensor included in the alignment system 170. It is determined whether or not. When it is determined that the tilt position is not appropriate (S4: N), the control by the control unit 210 proceeds to S5. When it is determined that the tilt position is appropriate (S4: Y), the control by the control unit 210 proceeds to S6.
  • the control unit 210 corrects the tilt position. For example, the control unit 210 can correct the tilt position so as to cancel the positional deviation based on the detection signals obtained by the XY alignment sensor and the Z alignment sensor included in the alignment system 170.
  • the control unit 210 may correct the tilt position from data or an image (observation image) acquired by the optical unit 110 arranged at the tilt position. Thereafter, the control by the control unit 210 proceeds to S3.
  • the control unit 210 performs alignment of the plurality of partial area data of the plurality of sub-scan areas by the data processing unit 220.
  • the data processing unit 220 may align the partial area data by matching images of the overlapping areas of the corresponding partial area data. Is possible.
  • the data processing unit 220 determines the position of the partial area data area (partial data of the partial area data) from the position of the optical unit 110 at the time of scanning of each sub-scan area and the deflection angle range of the scanning optical system 111 set in advance. The reference position) may be specified, and the partial area data may be aligned using the position of the specified partial area data area.
  • the control unit 210 displays a desired image on a display device included in the user interface 230 based on the partial area data registered in S8 in a display form designated by the user using the user interface 230. Above, control by the control part 210 is complete
  • the ophthalmologic apparatus 1 includes an optical unit (for example, the optical unit 110), a movement mechanism (for example, the movement mechanism 120), and a control unit (for example, the control unit 210).
  • the optical unit includes a scanning optical system (for example, scanning optical system 111) that deflects light from a light source (for example, light source 140) within a predetermined deflection angle range, and receives light from the light source deflected by the scanning optical system. It is comprised so that irradiation to the back eye part of the eye to be examined is possible.
  • the movement mechanism moves the optical unit within a predetermined movement angle range based on the pupil position (for example, pupil position P) of the eye to be examined or a position near the pupil position.
  • the control unit controls the scanning optical system and the moving mechanism in cooperation with each other.
  • the posterior segment of the eye to be examined in a wide field of view by controlling the deflection control of the scanning optical system and the movement control of the moving mechanism in cooperation.
  • the posterior segment of the eye to be inspected can be observed with high accuracy without being affected by the aberration characteristics of the optical element of the reflective optical system.
  • the moving mechanism may rotate the optical unit around the pupil position or its vicinity.
  • the control unit also controls the scanning optical system based on a predetermined deflection pattern for deflecting light from the light source, and controls the moving mechanism based on a predetermined movement pattern for moving the optical unit. May be.
  • the scanning optical system and the moving mechanism can be automatically controlled, it is possible to easily perform observation of the posterior segment of the eye to be examined with a wide field of view and high accuracy.
  • control unit may deflect the light from the light source two-dimensionally by controlling the scanning optical system based on the deflection pattern. Further, the control unit may move the irradiation position of the light from the light source so as to scan the rectangular region of the posterior eye part. Further, the control unit may move the irradiation position of the light from the light source so as to raster scan a predetermined region of the posterior eye part. Further, the control unit may move the irradiation position of the light from the light source so as to circle scan a predetermined region of the posterior eye part. Further, the control unit may deflect the light from the light source in a one-dimensional manner by controlling the scanning optical system based on the deflection pattern.
  • a control unit includes a data distribution forming unit (for example, a data processing unit 220) that forms a distribution of predetermined data in the posterior segment based on the return light from the posterior segment, and the control unit controls the moving mechanism and the scanning optics.
  • the control of the system is alternately executed, and the data distribution forming unit may form a distribution of predetermined data based on return light from a plurality of positions of the posterior eye part.
  • control unit includes a data distribution forming unit (for example, the data processing unit 220) that forms a distribution of predetermined data in the posterior eye based on the return light from the posterior eye, and the control unit moves the optical unit by the moving mechanism
  • the control and the deflection control of the light from the light source by the scanning optical system are performed in parallel, and the data distribution forming unit may form a distribution of predetermined data based on the return light from a plurality of positions of the posterior eye part .
  • the optical unit may also include a light receiving system (for example, a light receiving system 113) that receives light from the light source that receives return light that has passed through the eye to be examined.
  • the optical unit may include a light source, and the light source may output visible light or infrared light. Further, it may include a fixation system (for example, fixation system 150) for projecting a fixation target onto the fundus of the eye to be examined.
  • the fixation system may be provided in the optical unit.
  • an optical unit including a light receiving system, a light source, and a fixation system.
  • the measurement unit 100 can include two or more optical units 110.
  • the two or more optical units 110 are configured to be movable within a predetermined movement angle range with reference to the pupil position P of the eye E so that the movement mechanism 120 does not interfere with each other.
  • the movement angle range of at least one of the two or more optical units 110 may be different from the movement angle range of the other optical units 110.
  • the control unit 210 controls the scanning optical system 111 and the moving mechanism 120 in at least one of the two or more optical units 110 in association with each other.
  • a plurality of optical units that are a part of the two or more optical units 110 may be configured to be movable in cooperation with the moving mechanism 120.
  • a plurality of optical units that are a part of the two or more optical units 110 may be configured to be integrally movable by the moving mechanism 120 or may be configured to be movable independently of each other.
  • the control unit 210 controls the scanning optical system 111 and the moving mechanism 120 in at least one of the two or more optical units 110 in cooperation with each other.
  • the two or more optical units 110 may include, for example, a fixed optical unit (an optical unit that cannot be moved by the moving mechanism 120). Even in this case, the control unit 210 controls the scanning optical system 111 and the moving mechanism 120 in at least one of the two or more optical units 110 in cooperation with each other. Accordingly, by combining at least one rotation of the two or more optical units 110 and the deflection by the scanning optical system 111, a wide range scan in the fundus oculi Ef becomes possible.
  • control unit 210 can move the irradiation positions of two or more lights from the two or more optical units 110 so as to scan a predetermined region of the posterior eye part of the eye E to be examined. For example, it is possible to increase the speed by moving the irradiation position of light in different sub-scan regions by two or more optical units 110.
  • FIG. 5 shows an example of a scanning mode according to this embodiment.
  • FIG. 5 illustrates an example of a scanning mode in the case where the measurement unit 100 includes two optical units 110.
  • the same parts as those in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the control unit 210 may control the moving mechanism 120 according to a predetermined moving pattern to sequentially move the sub-scanning regions arranged in different row directions as the regions scanned by the two optical units 110. For example, the control unit 210 sequentially moves one of the two optical units 110 to the sub-scan regions SR1, SR2, SR3,... And sequentially moves the other one to the sub-scan regions SR11, SR12, SR13,. Move. At this time, the movement pattern is used to move to the next sub-scan area so as to overlap a part of the sub-scan area before the movement (overlapping areas CR1, CR2,..., CR11, CR12,).
  • control unit 210 moves to the sub-scan area so as to overlap with a part of the adjacent sub-scan areas in the column direction (overlapping areas CR01, CR02,). Based on the deflection pattern, the control unit 210 moves the irradiation position of the light from the light source 140 so as to raster scan each sub-scan region (a predetermined region of the posterior segment of the eye E to be examined).
  • control unit 210 moves one of the two optical units 110 in the order of the sub-scan areas SR1, SR12, SR3,..., And the other in the order of the sub-scan areas SR11, SR2, SR13,.
  • the rows of the sub-scan regions where the two optical units 110 are moved may be switched alternately.
  • the ophthalmologic apparatus includes two or more optical units, and the moving mechanism moves at least one of the two or more optical units within a moving angle range based on a pupil position or a position near the pupil position, and performs control.
  • the unit may control the scanning optical system and the moving mechanism in at least one of the two or more optical units in association with each other.
  • control unit may move the irradiation positions of two or more lights from two or more optical units so as to scan a predetermined region of the posterior eye part.
  • a predetermined range of the posterior segment can be scanned in parallel by two or more optical units, a wide range of the posterior segment can be scanned at high speed.
  • the optical unit 110 has an optical system that realizes the function of the scanning laser ophthalmoscope has been described.
  • the configuration of the ophthalmologic apparatus according to this embodiment is not limited to this.
  • the light receiving system 113 of the optical unit 110 includes an interference optical system, and can obtain a tomographic image of the fundus oculi Ef of the eye E by OCT.
  • the interference optical system included in the light receiving system 113 divides the low-coherence light output from the light source 140 into reference light and measurement light, and passes through the reference light and the fundus oculi Ef via a reference object (not shown). The measurement light is superimposed to generate interference light.
  • the light receiving system 113 includes a detection unit.
  • the detection unit includes, for example, a collimating lens, a diffraction grating, an imaging lens, and a CCD (Charge Coupled Device).
  • the interference light incident on the detection unit is collimated by a collimator lens and then is split (spectrally decomposed) by a diffraction grating.
  • the split interference light is imaged on the imaging surface of the CCD by the imaging lens.
  • the CCD receives this interference light, converts it into an electrical detection signal, and outputs this detection signal to the data processing unit 220.
  • the data processing unit 220 analyzes the signal corresponding to the interference light and forms an image of the fundus
  • the light source 140 is composed of a broadband light source such as a super luminescent diode (SLD) or a light emitting diode (LED) that outputs low-coherence light.
  • the low coherence light is, for example, light having a wavelength in the near infrared region and a temporal coherence length of about several tens of micrometers.
  • the optical unit 110 has been described as having a spectral domain type optical system.
  • the optical unit 110 may have a swept source type optical system.
  • the light source 140 is provided with a wavelength swept light source
  • the detector is provided with a photodetector instead of an optical member for spectrally decomposing interference light.
  • the detection unit sends the detection result (detection signal) of the photodetector to the data processing unit 220.
  • the data processing unit 220 forms a tomographic image by performing Fourier transform or the like on the spectrum distribution based on the detection result of the photodetector, for example, for each A scan line.
  • the well-known technique according to the type of OCT can be applied arbitrarily.
  • control unit 210 can move the irradiation position of the light from the light source 140 so as to circularly scan a predetermined region of the posterior segment of the eye E to be examined.
  • 6 to 8 show an example of the scanning mode according to this embodiment. 6 to 8, the same parts as those in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the control unit 210 moves the irradiation position of light in each sub-scan region RR while moving the sub-scan region RR in the radial direction so as to draw a circle in the C1 direction around a predetermined position of the fundus oculi Ef (FIG. 6). ). This makes it possible to acquire a tomographic image of the fundus oculi Ef acquired by circular radial scanning.
  • control unit 210 controls the scanning optical system 111 and the moving mechanism 120 in a coordinated manner so that the sub-scan region RR has a high density, thereby providing a high-definition tomographic image of the fundus oculi Ef. Can be obtained.
  • control unit 210 can acquire a high-definition tomographic image of the fundus oculi Ef with high density by performing circular radial scanning around a plurality of positions of the fundus oculi Ef.
  • the data processing unit 220 can acquire two-dimensional or three-dimensional tomographic image data and form an A-scan image, a B-scan image, a front image, a three-dimensional image, or the like.
  • Examples of the front image include a C-scan image, a projection image, a flattened image, or a shadowgram.
  • the data processing unit 220 can form a tomographic image, a front image, a three-dimensional image, and the like obtained by extracting dynamic characteristics of the fundus oculi Ef.
  • the configuration of the ophthalmologic apparatus according to the embodiment is not limited to the configuration described in the above embodiment.
  • the ophthalmologic apparatus according to the embodiment can be applied to the laser treatment apparatus as described above.
  • the optical unit 110 includes a projection system that irradiates the fundus Ef of the eye E with laser light, and a scanning optical system 111 that deflects the laser light according to a predetermined laser pattern under the control of the control unit 210. Composed.
  • the ophthalmologic apparatus can be applied to a perimeter as described above.
  • the optical unit 110 includes a projection system that irradiates visible light or the like onto the fundus oculi Ef of the eye E, and a scanning optical system that deflects visible light or the like so as to irradiate a desired examination position under the control of the control unit 210. 111.
  • the optical unit 110 may be configured to include means for stimulating the retina.
  • an image before stimulating the retina a front image of the fundus oculi Ef or a tomographic image of the fundus oculi Ef
  • an image after stimulating the retina a front image of the fundus oculi Ef or the fundus oculi Ef
  • the retinal nerve function and the like can be examined by comparing with a tomogram.
  • the ophthalmic apparatus includes, for example, a color image obtained by flashing visible light, a monochrome still image using near infrared light or visible light as illumination light, a fluorescein fluorescent image, and indocyanine green fluorescent light.
  • the present invention can also be applied to a fundus photographing apparatus capable of acquiring images, autofluorescence images, and the like, or an apparatus capable of angiography and blood flow measurement.
  • the user interface 230 may be used to change the size and shape of the sub-scan area by the user.
  • the control unit 210 may change the movement pattern according to the changed size and shape of the sub-scan area, and move the optical unit 110 by the movement mechanism 120 according to the changed movement pattern.
  • control unit 210 may shift the position of the turning center of the optical unit 110 in accordance with the direction of the optical axis of the optical unit 110 (imaging direction).
  • Ophthalmic Device 110 Optical Unit 111 Scanning Optical System 120 Moving Mechanism 140 Light Source 210 Control Unit

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

 広い視野で高精度な被検眼の後眼部の観察を簡便に行うための技術を提供する。実施形態に係る眼科装置は、光学ユニットと、移動機構と、制御部とを備える。光学ユニットは、光源からの光を所定の偏向角度範囲内で偏向する走査光学系を含む。更に、光学ユニットは、走査光学系により偏向された光源からの光を被検眼の後眼部に照射可能に構成されている。移動機構は、被検眼の瞳位置またはその近傍位置を基準に光学ユニットを所定の移動角度範囲内で移動させる。制御部は、走査光学系と移動機構とを連係して制御する。

Description

眼科装置
 本発明は、眼科装置に関する。
 眼疾患のスクリーニングや治療などを行うための眼科装置には、簡便に広い視野で被検眼の眼底などの観察や撮影が可能なものが求められている。このような眼科装置として、走査型レーザー検眼鏡が知られている。走査型レーザー検眼鏡は、レーザー光で眼底をスキャンし、その戻り光を受光デバイスで検出することにより、眼底の正面画像を形成する装置である。
 たとえば、特許文献1には、被検眼が配置される被検眼位置に向けて、スリット鏡と主鏡とにより見かけ上の点光源を伝達するように構成された走査型レーザー検眼鏡が開示されている。
特許第5330236号
 しかしながら、特許文献1に開示された手法では、反射光学系により広角の画像を形成するため、光学素子の配置の自由度が低く、より一層の画質の向上を図るために光学素子の配置を変更することが難しい。また、反射光学系の光学素子の収差特性により、簡便に高品質の画像を取得することは困難である。特に、収差特性の影響が大きくなると、被検眼の治療に適用することは不可能となる。
 本発明は、上記の問題点を解決するためになされたものであり、広い視野で高精度な被検眼の後眼部の観察を簡便に行うための技術を提供することを目的とする。
 実施形態に係る眼科装置は、光源からの光を所定の偏向角度範囲内で偏向する走査光学系を含み、走査光学系により偏向された光源からの光を被検眼の後眼部に照射可能に構成された光学ユニットと、被検眼の瞳位置またはその近傍位置を基準に光学ユニットを所定の移動角度範囲内で移動させる移動機構と、走査光学系と移動機構とを連係して制御する制御部と、を含む。
 この発明によれば、広い視野で高精度な被検眼の後眼部の観察を簡便に行うことが可能となる。
実施形態に係る眼科装置の構成の一例を表す概略図である。 実施形態に係る眼科装置の動作説明図である。 実施形態に係る眼科装置の動作説明図である。 実施形態に係る眼科装置の動作例を表すフロー図である。 実施形態に係る眼科装置の動作説明図である。 実施形態に係る眼科装置の動作説明図である。 実施形態に係る眼科装置の動作説明図である。 実施形態に係る眼科装置の動作説明図である。
 実施形態に係る眼科装置について、図面を参照しながら詳細に説明する。実施形態に係る眼科装置は、光源からの光を偏向する走査光学系を含む光学ユニットを被検眼の瞳孔を基準に移動させることにより、瞳孔を通して光を被検眼の後眼部(眼底、硝子体等)の広い範囲に照射することが可能な装置である。このような構成は、後眼部に光を照射することが可能な任意の眼科装置、たとえば、レーザー光を眼底における治療部位に照射するためのレーザー治療装置や、被検眼に固視させた状態で視標を移動させながら被検者の応答に基づき視野を測定するための視野計などに適用することができる。
 また、実施形態に係る眼科装置は、さらに、被検眼の後眼部からの戻り光を受光することにより当該後眼部における所定データの分布(画像や層厚分布や病変分布など)を形成することが可能である。このような構成は、後眼部を光で走査してデータを取得可能な任意の眼科装置、たとえば、光コヒーレンストモグラフィ(Optical Coherence Tomography:以下、OCT)を用いて眼底の断層像を得る光干渉断層計や、共焦点光学系を用いたレーザー走査により眼底の正面画像を得る走査型レーザー検眼鏡(Scanning Laser Ophthalmoscope:SLO)や、光干渉断層計の機能と走査型レーザー検眼鏡の機能とを組み合わせた複合機などに適用することができる。以下、実施形態に係る眼科装置が、走査型レーザー検眼鏡の機能を有する場合について説明する。
〔第1実施形態〕
[構成]
 図1に、この実施形態に係る眼科装置の概略構成の機能ブロック図を示す。
 眼科装置1は、被検眼Eの後眼部をレーザー光でスキャンしてデータを取得し、この取得されたデータに基づいて眼底Efの正面画像を形成する装置である。眼科装置1は、測定ユニット100と、処理ユニット200とを有する。測定ユニット100は、眼底Efの光学的な観察や眼底Efの光学的な計測を行うために用いられる。処理ユニット200は、測定ユニット100により取得されたデータの処理や、装置各部の制御などを行う。
(測定ユニット)
 測定ユニット100は、光学ユニット110と、移動機構120と、駆動部130と、光源140と、固視系150と、固視標制御部160と、アライメント系170とを有する。測定ユニット100は、被検眼Eの瞳位置P(または、後述の瞳位置Pの近傍位置)を基準に移動可能に構成された光学ユニット110により被検眼Eの瞳孔を通して光源140からの光を被検眼Eの後眼部に照射する。測定ユニット100は、被検眼Eの後眼部に照射された光の戻り光を受光することにより取得されたデータを処理ユニット200に送る。
 光学ユニット110は、走査光学系111と、投影系112と、受光系113とを有する。
 走査光学系111は、光源140からの光を所定の偏向角度範囲内で偏向する。この実施形態では、走査光学系111は、光源140からの光を所定の偏向角度範囲内で2次元的に偏向するが、光源140からの光を所定の偏向角度範囲内で1次元的に偏向するよう構成されてもよい。このような走査光学系111は、光スキャナーを含んでもよい。光スキャナーには、1軸または互いに直交する2軸の偏向部材が用いられる。偏向部材の例として、ガルバノミラー、ポリゴンミラー、回転ミラー、ダボプリズム(Dove Prism)、ダブルダボプリズム(Double Dove Prism)、ローテーションプリズム(Rotation Prism)、MEMSミラースキャナーなどがある。
 投影系112は、走査光学系111により偏向された光源140からの光を被検眼Eの後眼部(たとえば、眼底Ef)に照射するための光学素子により構成された光学系である。投影系112には、たとえば、被検眼E側から順に、対物レンズ、ビームエキスパンダー、走査光学系111、ビームスプリッター、開口絞り、およびコリメートレンズが設けられている。
 受光系113は、投影系112により照射された光に対する被検眼Eの後眼部からの戻り光を受光するための光学素子により構成された光学系である。受光系113には、たとえば、被検眼E側から順に、対物レンズ、ビームエキスパンダー、走査光学系111、ビームスプリッター、集光レンズ、共焦点ピンホール、および受光素子が設けられている。受光素子には、光源140から出力される光に応じて、可視領域や赤外領域に感度を有するものが用いられる。
 なお、光学ユニット110は、さらに、光源140および固視系150のうち少なくとも1つを含んで構成されていてもよい。また、投影系112および受光系113のうち少なくとも1つは、光学ユニット110の外部に設けられていてもよい。
 移動機構120は、被検眼Eの瞳位置Pを基準に光学ユニット110を所定の移動角度範囲内で移動させる。ここで、光学ユニット110の光軸が被検眼Eの正面側から瞳位置Pを通る場合に、当該光軸に直交する平面をxy平面(x方向は水平方向、y方向は垂直方向)とし、当該光軸に平行な眼底方向をz方向とすると、瞳位置Pには、瞳に実際に相当する位置だけでなく、後眼部の走査を妨げない範囲において瞳位置Pからx,yおよび/またはz方向に変位した位置(近傍位置)も含まれる。以下、この明細書において、特に「近傍位置」を明示したときを除いて単純に「瞳位置」と表記した場合は、瞳位置またはその近傍位置を意味するものとする。
 この実施形態では、移動機構120は、被検眼Eの瞳位置Pを中心に光学ユニット110を所定の移動角度範囲内で3次元的に旋回させる。このような移動機構120は、たとえば、光学ユニット110を保持する1以上の保持部材と、上記の移動角度範囲の任意の位置に移動可能に設けられた1以上のガイドアームとを含んで構成される。ガイドアームは、スライド可能な状態で保持部材を保持する。
 なお、移動機構120は、被検眼Eの瞳位置Pを通る光学ユニット110の光軸に直交する平面内で2次元的に移動させるようにしてもよい。
 駆動部130は、後述の処理ユニット200の制御部210からの制御を受け、移動機構120を駆動する。駆動部130は、移動機構120を移動させるための駆動力を発生させるアクチュエータを含む。後述の制御部210からの制御信号を受けたアクチュエータは、この制御信号に応じた駆動力を発生させる。この駆動力は、図示しない駆動力伝達機構を介して移動機構120に伝達され、制御信号により指示された位置に配置されるように移動機構120を移動させる。これにより、光学ユニット110を所望の位置に移動させることが可能となる。
 光源140は、被検眼Eの後眼部に照射するためのレーザー光を出力する。光源140としては、空間的コヒーレンシの高いレーザー光を出力する光源が用いられる。このような光源140には、半導体レーザー光源(波長掃引レーザー、スーパルミネッセントダイオードなど)、固体レーザー、ガスレーザー、ファイバレーザーなどがある。なお、光源140として、複数の光源を光ファイバ合波器やダイクロイックミラーなどの合波器により合成して用いるものを適用することも可能である。この実施形態では、光ファイバによりレーザー光を光学ユニット110に導く。たとえば、光ファイバのジョイント部には、光学ユニット110の移動に起因した捻れや引っ張りなどのストレスを低減する手段が設けられている。
 固視系150は、内部固視および外部固視の少なくとも一方を実現するための構成を有する。内部固視を実現する場合、固視系150は、被検眼Eの眼底Efに固視標を投影するための光学系を含んで構成される。固視標は、被検眼Eを固視させるための視標である。固視系150は、少なくとも可視光を出力する固視光源を含む。固視系150により形成された光路は、たとえば、瞳位置Pと光学ユニット110(対物レンズ)との間に設けられたダイクロイックミラーにより、光学ユニット110により形成された光路に合成される。内部固視を実現する場合、固視系150は、光学ユニット110内に設けられてもよい。
 外部固視を実現する場合、固視系150は、たとえば、光学ユニット110の筐体に設けられる。固視系150は、たとえば、一端が光学ユニット110に固定され関節部を介して互いに接続された2以上のアームの他端にLED等の発光部が設けられた構成を有する。外部固視を実現する場合、固視系150は、測定ユニット100の筐体に設けられ、光学ユニット110とともに移動しないように構成されていてもよい。
 固視系150が内部固視を実現する場合、固視標制御部160により、光学ユニット110の移動に伴い固視標の投影位置を移動させることが可能である。固視系150が内部固視および外部固視の双方を実現する場合、固視標制御部160により、上記の構成を用いて内部固視と外部固視とを連係させることが可能である。内部固視と外部固視とを連係させる例として、レーザー光のスキャン領域内に黄斑部が含まれているときには内部固視により被検眼に固視させ、当該スキャン領域内に黄斑部が含まれないときには外部固視により被検眼に固視させる。
 また、固視系150が、たとえば2つ(以上)の内部固視を実現するための構成(光学系)を有していてよい。この場合、固視系150は、光学ユニット110の内部に設けられ第1内部固視を実現するための構成と、光学ユニット110の外部に設けられた第2内部固視を実現するための構成とを有することが可能である。2つの内部固視を連係させる例として、レーザー光のスキャン領域内に黄斑部が含まれているときには第1内部固視(光学ユニット110の内部)により被検眼に固視させ、当該スキャン領域内に黄斑部が含まれないときには第2内部固視(光学ユニット110の外部)により被検眼に固視させる。
 固視標制御部160は、後述の処理ユニット200の制御部210からの制御を受け、固視系150を制御する。固視標制御部160は、たとえば、制御部210からの制御を受け、固視光源(内部固視用や外部固視用)の点灯および消灯を制御したり、眼底Efにおける固視標の投影位置(固視位置)を移動させたりすることが可能である。
 アライメント系170は、たとえば、XYアライメント検出用光源と、XYアライメントセンサーと、Zアライメント検出用光源と、Zアライメントセンサーとを含んで構成される。XYアライメント光源からのXYアライメント検出用光は、被検眼Eの角膜に平行光束として導かれる。その角膜には、XYアライメント検出用光の角膜反射による輝点像(虚像)が形成される。角膜で反射されたXYアライメント検出用光は、XYアライメントセンサーにより検出される。XYアライメントセンサーにより得られた検出信号は、後述の制御部210に送られる。制御部210は、この検出信号から被検眼Eの角膜に形成された輝点像の位置を特定し、x方向およびy方向の光学ユニット110に対する位置ずれを検出する。
 Zアライメント検出用光源からのZアライメント検出用光は、被検眼Eの角膜に投影される。その角膜にはZアライメント検出用光の角膜反射による輝点像(虚像)が形成される。角膜で反射されたZアライメント検出用光は、Zアライメントセンサーにより検出される。Zアライメントセンサーにより得られた検出信号は、後述の制御部210に送られる。制御部210は、この検出信号から被検眼Eの角膜に形成された輝点像の位置を特定し、z方向の光学ユニット110に対する位置ずれを検出する。
 また、上記のXYアライメントおよびZアライメントの少なくとも一方は、測定ユニット100に設けられた1以上のカメラを用いて行われてもよい。この場合、1以上のカメラにより撮影された画像に基づいて被検眼Eの位置を求めることで、x方向、y方向、およびz方向の少なくとも1つの位置ずれが検出される。なお、2以上のカメラが設けられている場合には、異なる方向から実質的に同時に撮影された画像に基づいて被検眼Eの3次元位置を求めることで、x方向、y方向、およびz方向の少なくとも1つの位置ずれが検出される。
 制御部210は、検出されたx方向、y方向、およびz方向の位置ずれをキャンセルするように光学ユニット110を移動させることによりアライメントを行う。
 なお、測定ユニット100は、フォーカス光学系を含み、眼底Efに対してフォーカス(ピント)を合わせるための指標(スプリット指標)を生成することが可能である。この場合、フォーカス光学系から出力された光(フォーカス光)は、眼底Efに投影され、その眼底反射光が、図示しないセンサーにより検出される。制御部210は、このセンサーにより得られた検出信号からスプリット指標の位置を解析して、たとえば、光学ユニット110に含まれる合焦レンズおよびフォーカス光学系を移動させてピント合わせを行うことが可能である(オートフォーカス機能)。
 上記の構成においては、光源140により出力されるレーザー光の波長は任意である。たとえば、光源140により出力されるレーザー光として、赤外レーザー光や可視レーザー光を用いることができる。また、波長帯が異なるレーザー光を選択的に出力可能に構成することも可能である。たとえば、赤外レーザー光と可視レーザー光とを選択的に出力可能な構成を適用できる。
 以上のような構成を有する測定ユニット100において、光源140から出力されたレーザー光は、移動機構120により移動された光学ユニット110により2次元的に偏向され、光学ユニット110の光軸方向から被検眼Eの瞳孔を通過して眼底Efに照射される。具体的には、被検眼Eに入射したレーザー光は、被検眼Eの前眼部にて散乱される。また、被検眼Eに入射したレーザー光の一部は、瞳孔を通過し、眼底Efにスポット光として結像される。
 眼底Efに照射されたレーザー光の戻り光は、スポット光の形成位置(およびその近傍位置)から光学ユニット110に戻ってくる光である。戻り光には、眼底Efによるレーザー光の散乱光(反射光や後方散乱光)、並びに、レーザー光を励起光とする蛍光およびその散乱光などが含まれる。戻り光は、瞳孔を通過し、被検眼Eから出射する。
 光学ユニット110において、被検眼Eからの戻り光は、受光系113に導かれる。受光系113に導かれた戻り光は、受光素子により検出される。受光素子は、検出された戻り光を光電変換し、電気信号(受光信号)を出力する。
 以上のプロセスは、眼底Efの一点の計測に相当し、眼底Efに対する単一のスポット光の照射領域における計測に相当する。この実施形態では、移動機構120により光学ユニット110を瞳位置Pを中心に(1次元的、2次元的または3次元的に)旋回しつつ、この光学ユニット110内の走査光学系111による(1次元的または2次元的な)偏向を行うことによって、眼底Efにおけるスポット光の照射領域が移動される。つまり、この実施形態では、移動機構120による光学ユニット110の旋回と、走査光学系111による偏向とを組み合わせることにより、眼底Efのスキャンが実行される。
 図2に、この実施形態に係るスポット光の照射領域の説明図を示す。図2は、移動機構120により旋回された光学ユニット110の各位置における走査光学系111によるスポット光の照射領域の説明図を模式的に表したものである。
 この実施形態では、図2に示す全スキャン領域を複数のサブスキャン領域に分割し、各サブスキャン領域内で走査光学系111によりスポット光の照射位置を移動させることにより、広範囲にわたる全スキャン領域に対してスキャンを行う。換言すると、この実施形態では、複数のサブスキャン領域をそれぞれスキャンすることにより広範囲にわたるスキャンが実現される。各サブスキャン領域は、後述の偏向パターンに従ってスキャンされる。サブスキャン領域間の移動は、光学ユニット110の移動により行われる。サブスキャン領域間の移動は、後述の移動パターンに従って行われる。
 走査光学系111は、上記のように所定の偏向角度範囲内で光源140からの光を偏向する。この偏向角度範囲が、走査光学系111の偏向中心を基準に、水平方向(たとえば、x方向)に偏向角度範囲θH1とし、垂直方向(たとえば、y方向)に偏向角度範囲θV1とすると、光学ユニット110の各位置における走査光学系111によるスポット光の照射領域は、図2に示すように、水平方向の偏向角度範囲が±θH1であり、垂直方向の偏向角度範囲が±θV1となる。
 また、光学ユニット110は、上記のように、被検眼Eの瞳位置Pを中心に所定の移動角度範囲内で旋回される。この移動角度範囲が、水平方向(たとえば、x方向)に移動角度範囲θH2とし、垂直方向(たとえば、y方向)に移動角度範囲θV2とすると、スポット光の照射領域は、図2に示すように、水平方向の角度範囲がθ=θH2+2・θH1となり、垂直方向の角度範囲がθ=θV2+2・θV1となる。
 従って、眼科装置1によれば、水平方向の角度範囲がθであり、垂直方向の角度範囲がθである範囲内でスキャンが可能となり、当該範囲内のデータの取得が可能となる。たとえば、θH1として20度~80度が可能であるためθH1を60度とし、θH2が40度とすると、水平方向に160度の範囲でデータの取得(画像の取得)が可能である。同様に、θV1として20度~80度が可能であるためθV1を40度とし、θV2が40度とすると、垂直方向に120度の範囲でデータの取得(画像の取得)が可能である。コストやワーキングディスタンスを勘案して、θH1、θH2、θV1、θV2を決定することが望ましい。
(処理ユニット)
 処理ユニット200は、演算装置、制御装置、記憶装置(RAM、ROM、ハードディスクドライブなど)、ユーザインターフェイス、通信インターフェイスなどを有する。この実施形態では、図1に示すように、処理ユニット200は、制御部210と、データ処理部220と、ユーザインターフェイス230とを含む。
 制御部210は、装置各部の制御を行う。制御部210は、マイクロプロセッサおよび記憶装置を含んで構成される。記憶装置には、眼科装置1を制御するためのコンピュータプログラムがあらかじめ格納される。このコンピュータプログラムには、光源制御用プログラム、光学ユニット制御用プログラム(走査光学系制御用プログラムを含む)、移動機構制御用プログラム、アライメント制御用プログラム、統括制御用プログラムなどが含まれる。このようなコンピュータプログラムに従ってマイクロプロセッサが動作することにより、制御部210は制御処理を実行する。
 測定ユニット100に対する制御として、光源140の制御、光学ユニット110の受光系113(受光素子)の制御、走査光学系111の偏向制御、駆動部130を介した移動機構120の制御、固視標制御部160の制御、アライメント系170の制御などがある。特に、制御部210は、走査光学系111と移動機構120とを連係して制御する。処理ユニット200に対する制御として、各部の動作制御がある。
(連係制御)
 走査光学系111と移動機構120とを連係して制御する例として、制御部210は、次のような制御を行うことが可能である。制御部210の記憶装置には、光源140からの光を偏向するための既定の偏向パターンと、光学ユニット110を移動させるための既定の移動パターンとがあらかじめ記憶されている。偏向パターンや移動パターンは、デフォルト設定されてもよいし、ユーザにより設定されてもよい。また、複数の偏向パターンや複数の移動パターンを選択的に適用することが可能である。制御部210は、記憶装置に記憶された既定の偏向パターンに基づいて走査光学系111の制御を行い、記憶装置に記憶された既定の移動パターンに基づいて移動機構120の制御を行う。たとえば、制御部210は、移動パターンに基づく移動機構120の制御と偏向パターンに基づく走査光学系111の制御とを交互に実行することが可能である。また、たとえば、制御部210は、移動パターンに基づく移動機構120の制御と偏向パターンに基づく走査光学系111の制御とを並行して行うことが可能である。
 また、制御部210は、偏向パターンに基づいて走査光学系111を制御することにより、被検眼Eの後眼部の所定領域の走査態様を変更することが可能である。たとえば、制御部210は、偏向パターンに基づき走査光学系111を制御することにより、被検眼Eの後眼部の矩形領域を走査するように光源140からの光の照射位置を移動させることが可能である(短冊状走査など)。
 図3に、この実施形態に係る走査態様の一例を示す。図3は、視神経乳頭Nと黄斑部Hとを含む被検眼Eの眼底Efの所定領域AR内を複数のサブスキャン領域に分けて走査する様子を模式的に表したものである。
 制御部210は、既定の移動パターンに従って移動機構120を制御することにより、サブスキャン領域SR1、SR2、SR3、・・・を順次に移動させる。このとき、移動パターンにより、移動前のサブスキャン領域の一部に重複するように次のサブスキャン領域に移動させる(重複エリアCR1、CR2、・・・)。サブスキャン領域毎に得られた画像から全スキャン領域の画像を形成する場合に、重複エリアは、画像同士の位置合わせに用いられる。制御部210は、偏向パターンに基づいて、各サブスキャン領域(被検眼Eの後眼部の所定領域)をラスター走査するように光源140からの光の照射位置を移動させる。
 また、制御部210は、偏向パターンに基づいて、被検眼Eの後眼部の所定領域をサークル走査するように光源140からの光の照射位置を移動させることが可能である。また、制御部210は、偏向パターンに基づき走査光学系111を制御することにより光源140からの光を1次元的に偏向させることが可能である(スリット状走査)。
(その他の制御)
 固視標制御部160の制御の例として、制御部210は、所定位置を固視するように固視標を投影させる。また、固視系150が光学ユニット110内に設けられた場合、制御部210は、移動機構120の移動による光学ユニット110の光軸の移動(眼底Efにおけるスポット光の照射位置の変位)をキャンセルするように固視位置を移動させることが可能である。また、制御部210は、走査光学系111によるスキャン領域が黄斑部を含むときには内部固視標により被検眼Eを所定方向に固視させ、走査光学系111によるスキャン領域が黄斑部を含まないときには内部固視標を消灯させることが可能である。また、内部固視標と外部固視標(外部固視灯)の双方が設けられている場合において、走査光学系111によるスキャン領域が黄斑部を含まないときには外部固視標により被検眼Eを所定方向に固視させるようにしてもよい。
 また、制御部210は、被検眼Eの眼底Efの動きを監視しつつ眼底Efの所定部位が画像(フレーム)中の一定の位置に描出されるように眼球運動を補償するトラッキング制御を行うようにしてもよい。また、制御部210は、取得されたデータを解析して画像間(フレーム間)における描出位置のずれを補正することにより事後的にトラッキングを行うようにしてもよい。また、制御部210は、被検眼Eの視線方向の検知を行い、視線の動きによる位置ずれをキャンセルするようにトラッキング制御を実行してもよい。
 眼底Efの光学的計測が行われているときに、または光学的計測が終了した後に、制御部210は、画素位置信号を生成し、データ処理部220に送る。画素位置信号は、光学ユニット制御用プログラムに基づく複数のスポット光の照射領域の配置(つまり、走査光学系111による光の偏向パターン)に対応する複数の画素の配置を示す。
(データ処理部)
 データ処理部220は、受光系113の受光素子から入力される受光信号と、制御部210から入力される画素位置信号とに基づいて、被検眼Eの後眼部における所定データの分布を形成することが可能である。所定データの例として、受光信号(レーザー光の戻り光)、受光信号から取得される画像の画素値や輝度値などがある。分布の例として、強度分布や頻度分布や画像やこれらを解析して得られる病変分布などがある。この実施形態では、データ処理部220は、被検眼Eの後眼部における所定データの分布として、受光信号のプロファイルに基づく画像(眼底Efの正面画像)を形成する。受光系113が干渉光学系を含む場合、所定データの例として、受光信号のプロファイル(レーザー光の戻り光の強度プロファイル)などがある。分布の例として、OCTを用いて取得されたスペクトル強度分布、受光信号のプロファイルに対してFFTを施すことにより得られる断層像、この断層像を解析して得られる層厚分布や病変分布などがある。
 この実施形態では、制御部210は、移動機構120の制御と走査光学系111の制御とを所定回数だけ交互に実行する。データ処理部220は、移動されている光学ユニット110によりレーザー光が照射された被検眼Eの後眼部の複数の位置からの戻り光に基づいて所定データの分布を形成する。
 また、制御部210は、移動機構120の制御と走査光学系111の制御とを並行して行うようにしてもよい。この場合、データ処理部220は、走査光学系111の制御と並行して移動されている光学ユニット110によりレーザー光が照射された被検眼Eの後眼部の複数の位置からの戻り光に基づいて所定データの分布を形成することが可能である。
 また、データ処理部220は、各サブスキャン領域のデータ取得タイミングの違いを考慮して動画像を生成することが可能である。たとえば、データ処理部220は、所定の時間だけサブスキャン領域毎に取得された画像(データ)を基準となるデータ取得タイミングとのタイミング差に関連付けて記憶する。基準となるデータ取得タイミングの例として、動画像の先頭フレームの画像を構成する複数のサブスキャン領域のうち最初に取得されたサブスキャン領域のデータ取得タイミングなどがある。データ処理部220は、動画像の生成対象のサブスキャン領域のデータ取得タイミングのタイミング差がキャンセルされるように各サブスキャン領域において取得された画像を読み出し、読み出された画像位置合わせを行うことにより、動画像を構成する各フレームの画像を生成する。
 データ処理部220は、たとえばマイクロプロセッサおよび記憶装置を含んで構成される。記憶装置には、データ処理プログラムがあらかじめ格納される。マイクロプロセッサがデータ処理用プログラムに従って動作することによってデータ処理の少なくとも一部が実行される。また、データ処理部220は、専用のハードウェアを含んで構成されてもよい。
 また、データ処理部220は、各種のデータ処理を実行することが可能である。このようなデータ処理の例として、データ処理部220または他の装置により形成された画像データに対する処理がある。この処理の例として、各種の画像処理や、画像データに基づく画像評価などの診断支援処理がある。データ処理部220は、眼科装置1の一部であってもよいし、外部装置であってもよい。
(ユーザインターフェイス)
 ユーザインターフェイス230は、表示機能と、操作・入力機能とを有する。表示機能は、液晶ディスプレイ(Liquid Crystal Display:以下、LCD)などの表示デバイスにより実現される。表示デバイスは、制御部210による制御の下に情報を表示する。
 操作・入力機能は、操作デバイスや入力デバイスにより実現される。これらの例として、ボタン、レバー、ノブ、マウス、キーボード、トラックボールなどがある。また、制御部210が表示デバイスにグラフィカルユーザーインターフェース(GUI)を表示させる構成としてもよい。この表示デバイスは、タッチスクリーンであってよい。
 データ処理部220は、この実施形態に係る「データ分布形成部」の一例である。
<動作例>
 眼科装置1の動作例について説明する。
 図4に、眼科装置1の動作例のフロー図を示す。
(S1)
 まず、ユーザインターフェイス230を用いてユーザにより撮影モードが指定されると、制御部210は、眼科装置1の撮影モードをユーザにより指定された撮影モードに設定する。この撮影モードの設定には、ユーザにより指定された撮影モードにあらかじめ関連付けられた偏向パターンおよび移動パターンの設定が含まれる。
(S2)
 次に、制御部210は、固視標制御部160を制御することにより、固視系150により固視標を提示させる。
(S3)
 次に、制御部210は、S1において設定された撮影モードに対応した移動パターンに従って駆動部130を制御することにより、移動機構120により光学ユニット110のスキャン中心位置を所定のチルト中心位置に移動させる。チルト中心位置は、移動パターンに従って移動される光学ユニット110の初期位置である。
(S4)
 次に、制御部210は、アライメント系170に含まれるXYアライメントセンサーおよびZアライメントセンサーにより得られた検出信号に基づいて、当該チルト位置(移動機構120により移動された光学ユニット110の位置)が適正か否かを判定する。当該チルト位置が適正ではないと判定されたとき(S4:N)、制御部210による制御は、S5に移行する。当該チルト位置が適正であると判定されたとき(S4:Y)、制御部210による制御は、S6に移行する。
(S5)
 S4において当該チルト位置が適正ではないと判定されたとき(S4:N)、制御部210は、チルト位置を修正する。たとえば、制御部210は、アライメント系170に含まれるXYアライメントセンサーおよびZアライメントセンサーにより得られた検出信号に基づいて、位置ずれをキャンセルするようにチルト位置を修正することが可能である。また、制御部210は、当該チルト位置に配置された光学ユニット110により取得されたデータまたは画像(観察像)からチルト位置を修正してもよい。その後、制御部210による制御は、S3に移行する。
(S6)
 S4において当該チルト位置が適正であると判定されたとき(S4:Y)、制御部210は、移動パターンに従って駆動部130を制御することにより移動機構120により光学ユニット110を移動させ、光学ユニット110により当該サブスキャン領域について得られたデータを部分エリアデータとして取得する。
(S7)
 全スキャン領域のデータが取得されていないとき(S7:N)、制御部210による制御は、S4に移行する。全スキャン領域のデータが取得されたとき(S7:Y)、制御部210による制御は、S8に移行する。
(S8)
 全スキャン領域のデータが取得されたとき(S7:Y)、制御部210は、データ処理部220により複数のサブスキャン領域の複数の部分エリアデータの位置合わせを行う。たとえば、上記のように部分エリアデータに重複エリアが含まれている場合、データ処理部220は、対応する部分エリアデータの重複エリアの画像をマッチングさせることにより部分エリアデータの位置合わせを行うことが可能である。また、データ処理部220は、各サブスキャン領域のスキャン時の光学ユニット110の位置と事前に設定された走査光学系111の偏向角度範囲とから、部分エリアデータの領域の位置(部分エリアデータの基準位置)を特定し、特定された部分エリアデータの領域の位置を用いて部分エリアデータの位置合わせを行ってもよい。
(S9)
 制御部210は、ユーザインターフェイス230を用いてユーザにより指定された表示形態で、S8において位置合わせされた部分エリアデータに基づいて所望の画像をユーザインターフェイス230に含まれる表示デバイスに表示させる。以上で、制御部210による制御は、終了する(エンド)。
[作用・効果]
 眼科装置1の作用および効果について説明する。
 眼科装置1は、光学ユニット(たとえば、光学ユニット110)と、移動機構(たとえば、移動機構120)と、制御部(たとえば、制御部210)とを含む。光学ユニットは、光源(たとえば、光源140)からの光を所定の偏向角度範囲内で偏向する走査光学系(たとえば、走査光学系111)を含み、走査光学系により偏向された光源からの光を被検眼の後眼部に照射可能に構成される。移動機構は、被検眼の瞳位置(たとえば、瞳位置P)またはその近傍位置を基準に光学ユニットを所定の移動角度範囲内で移動させる。制御部は、走査光学系と移動機構とを連係して制御する。
 このような構成によれば、走査光学系の偏向制御と移動機構の移動制御とを連係して制御することにより、広い視野で被検眼の後眼部の観察を簡便に行うことが可能となる。また、反射光学系の光学素子が有するような収差特性の影響を受けることなく、高精度に被検眼の後眼部の観察を行うことができる。
 また、移動機構は、瞳位置またはその近傍位置を中心に光学ユニットを旋回させてもよい。
 このような構成によれば、被検眼の瞳孔を通して後眼部の広い範囲を照射することができるようになる。
 また、制御部は、光源からの光を偏向するための既定の偏向パターンに基づいて走査光学系の制御を行い、光学ユニットを移動させるための既定の移動パターンに基づいて移動機構の制御を行ってもよい。
 このような構成によれば、走査光学系と移動機構とに対して自動制御が可能となるので、広い視野で高精度な被検眼の後眼部の観察を簡便に行うことができる。
 また、制御部は、偏向パターンに基づき走査光学系を制御することにより光源からの光を2次元的に偏向させてもよい。また、制御部は、後眼部の矩形領域を走査するように光源からの光の照射位置を移動させてもよい。また、制御部は、後眼部の所定領域をラスター走査するように光源からの光の照射位置を移動させてもよい。また、制御部は、後眼部の所定領域をサークル走査するように光源からの光の照射位置を移動させてもよい。また、制御部は、偏向パターンに基づき走査光学系を制御することにより光源からの光を1次元的に偏向させてもよい。
 このような構成によれば、所望の走査態様により広い視野で高精度に被検眼の後眼部についてデータを取得することが可能となる。
 また、後眼部からの戻り光に基づいて、後眼部における所定データの分布を形成するデータ分布形成部(たとえば、データ処理部220)を含み、制御部は、移動機構の制御と走査光学系の制御とを交互に実行し、データ分布形成部は、後眼部の複数の位置からの戻り光に基づいて所定データの分布を形成してもよい。
 このような構成によれば、移動機構により光学ユニットが移動された位置において走査光学系による走査により取得されたデータの分布を形成することが可能となり、被検眼の後眼部について広い視野で高精度なデータ分布を簡便に取得することができる。
 また、後眼部からの戻り光に基づいて、後眼部における所定データの分布を形成するデータ分布形成部(たとえば、データ処理部220)を含み、制御部は、移動機構による光学ユニットの移動制御と走査光学系による光源からの光の偏向制御とを並行して行い、データ分布形成部は、後眼部の複数の位置からの戻り光に基づいて所定データの分布を形成してもよい。
 このような構成によれば、移動機構による光学ユニットの移動と走査光学系による偏向とを並行して行いながら取得されたデータの分布を形成することが可能となり、被検眼の後眼部について広い視野で高精度なデータ分布を簡便に取得することができる。
 また、光学ユニットは、光源からの光が被検眼を経由した戻り光を受光する受光系(たとえば、受光系113)を含んでもよい。また、光学ユニットは、光源を含み、光源は、可視光または赤外光を出力してもよい。また、被検眼の眼底に固視標を投影するための固視系(たとえば、固視系150)を含んでもよい。また、固視系は、光学ユニットに設けられていてもよい。
 このような構成によれば、受光系や光源や固視系を含んで構成された光学ユニットを用いて、広い視野で被検眼の後眼部の観察を簡便に行うことが可能となる。
〔第2実施形態〕
 第1実施形態では、測定ユニット100が、1つの光学ユニット110を移動させる場合について説明したが、実施形態に係る眼科装置の構成は、これに限定されるものではなく、測定ユニット100は、複数の光学ユニットを有していてもよい。
 たとえば、測定ユニット100は、2以上の光学ユニット110を含むことが可能である。2以上の光学ユニット110は、たとえば、移動機構120により互いに干渉しないように被検眼Eの瞳位置Pを基準に所定の移動角度範囲内で移動可能に構成される。2以上の光学ユニット110のうち少なくとも1つの移動角度範囲は他の光学ユニット110の移動角度範囲と異なってもよい。制御部210は、2以上の光学ユニット110のうち少なくとも1つにおける走査光学系111と移動機構120とを連係して制御する。これにより、2以上の光学ユニット110の旋回と、走査光学系111による偏向とを組み合わせることにより、眼底Efにおける広範囲のスキャンが可能となる。
 また、2以上の光学ユニット110のうちその一部である複数の光学ユニットが、移動機構120により連係して移動可能に構成されてもよい。この場合、2以上の光学ユニット110の一部である複数の光学ユニットが、移動機構120により一体的に移動可能に構成されたり、互いに独立して移動可能に構成されてもよい。これらの場合でも、制御部210は、2以上の光学ユニット110のうち少なくとも1つにおける走査光学系111と移動機構120とを連係して制御する。これにより、2以上の光学ユニット110の旋回と、走査光学系111による偏向とを組み合わせることにより、眼底Efにおける広範囲のスキャンが可能となる。
 また、2以上の光学ユニット110には、たとえば、固定された光学ユニット(移動機構120により移動させることが不可能な光学ユニット)が含まれていてもよい。この場合でも、制御部210は、2以上の光学ユニット110のうち少なくとも1つにおける走査光学系111と移動機構120とを連係して制御する。これにより、2以上の光学ユニット110の少なくとも1つの旋回と、走査光学系111による偏向とを組み合わせることにより、眼底Efにおける広範囲のスキャンが可能となる。
 また、制御部210は、被検眼Eの後眼部の所定領域を走査するように2以上の光学ユニット110からの2以上の光の照射位置を移動させることが可能である。たとえば、2以上の光学ユニット110により互いに異なるサブスキャン領域内で光の照射位置を移動させることにより、高速化を図ることができる。
 図5に、この実施形態に係る走査態様の一例を示す。図5は、測定ユニット100が2つの光学ユニット110を有する場合の走査態様の一例を表す。なお、図5において、図3と同様の部分には同一符号を付し、適宜説明を省略する。
 制御部210は、既定の移動パターンに従って移動機構120を制御することにより、2つの光学ユニット110により走査される領域として、互いに異なる行方向に並ぶサブスキャン領域に順次に移動させてもよい。たとえば、制御部210は、2つの光学ユニット110の一方についてサブスキャン領域SR1、SR2、SR3、・・・に順次に移動させ、他方についてサブスキャン領域SR11、SR12、SR13、・・・に順次に移動させる。このとき、移動パターンにより、移動前のサブスキャン領域の一部に重複するように次のサブスキャン領域に移動させる(重複エリアCR1、CR2、・・・、CR11、CR12、・・・)。また、制御部210は、移動パターンにより、隣接する列方向のサブスキャン領域の一部に重複するようにサブスキャン領域に移動させる(重複エリアCR01、CR02、・・・)。制御部210は、偏向パターンに基づいて、各サブスキャン領域(被検眼Eの後眼部の所定領域)をラスター走査するように光源140からの光の照射位置を移動させる。
 また、制御部210は、2つの光学ユニット110の一方についてサブスキャン領域SR1、SR12、SR3、・・・の順序で移動させ、他方についてサブスキャン領域SR11、SR2、SR13、・・・の順序で移動させ、2つの光学ユニット110が移動されるサブスキャン領域の行を交互に切り替えてもよい。
[作用・効果]
 この実施形態に係る眼科装置の作用および効果について説明する。
 この実施形態に係る眼科装置は、2以上の光学ユニットを含み、移動機構は、2以上の光学ユニットのうち少なくとも1つを瞳位置またはその近傍位置を基準に移動角度範囲内で移動させ、制御部は、2以上の光学ユニットのうち少なくとも1つにおける走査光学系と移動機構とを連係して制御してもよい。
 また、制御部は、後眼部の所定領域を走査するように2以上の光学ユニットからの2以上の光の照射位置を移動させてもよい。
 このような構成によれば、2以上の光学ユニットにより後眼部の所定範囲について並行して走査することができるので、後眼部の広い範囲を高速に走査することが可能となる。
〔第3実施形態〕
 上記の実施形態では、光学ユニット110が走査型レーザー検眼鏡の機能を実現する光学系を有する場合について説明したが、この実施形態に係る眼科装置の構成はこれに限定されるものではない。光学ユニット110の受光系113が、干渉光学系を含み、OCTにより被検眼Eの眼底Efの断層像を取得することが可能である。
 この実施形態では、受光系113に含まれる干渉光学系は、光源140から出力された低コヒーレンス光を参照光と測定光とに分割し、図示しない参照物体を経由した参照光と眼底Efを経由した測定光とを重畳して干渉光を生成する。また、受光系113は、検出部を有する。検出部は、たとえば、コリメートレンズと、回折格子と、結像レンズと、CCD(Charge Coupled Device)とを含んで構成される。検出部に入射した干渉光は、コリメータレンズにより平行光束とされた後、回折格子によって分光(スペクトル分解)される。分光された干渉光は、結像レンズによってCCDの撮像面上に結像される。CCDは、この干渉光を受光して電気的な検出信号に変換し、この検出信号をデータ処理部220に出力する。データ処理部220は、干渉光に対応した信号を解析して眼底Efの画像を形成する。
 この場合、光源140は、低コヒーレンス光を出力するスーパールミネセントダイオード(SLD)や発光ダイオード(LED)等の広帯域光源により構成されている。低コヒーレンス光は、たとえば、近赤外領域の波長を有し、かつ、数十マイクロメートル程度の時間的コヒーレンス長を有する光とされる。
 なお、この実施形態では、光学ユニット110がスペクトラルドメインタイプの光学系を有するものとして説明したが、スウェプトソースタイプの光学系を有していてもよい。この場合、光源140には波長掃引光源が設けられるとともに、検出部には干渉光をスペクトル分解する光学部材ではなくフォトディテクタが設けられる。検出部は、フォトディテクタの検出結果(検出信号)をデータ処理部220に送る。データ処理部220は、たとえばAスキャンライン毎に、フォトディテクタの検出結果に基づくスペクトル分布にフーリエ変換等を施すことで断層像を形成する。なお、干渉光学系の構成については、OCTのタイプに応じた公知の技術を任意に適用することができる。
 この実施形態では、制御部210は、被検眼Eの後眼部の所定領域を円形ラジアル走査するように光源140からの光の照射位置を移動させることが可能である。
 図6~図8に、この実施形態に係る走査態様の一例を示す。図6~図8において、図3と同様の部分には同一符号を付し、適宜説明を省略する。
 制御部210は、眼底Efの所定位置を中心にC1方向に円を描くようにラジアル方向のサブスキャン領域RRを移動させながら、各サブスキャン領域RR内で光の照射位置を移動させる(図6)。これにより、円形ラジアル走査で取得された眼底Efの断層像の取得が可能となる。
 また、制御部210は、図7に示すように、サブスキャン領域RRが高密度となるように走査光学系111および移動機構120を連係して制御することにより、眼底Efの高精細な断層像を取得することができる。また、図8に示すように、制御部210は、眼底Efの複数の位置を中心に円形ラジアル走査を行わせることにより、高密度で眼底Efの高精細な断層像を取得することができる。
 この実施形態において、データ処理部220は、2次元または3次元の断層像データを取得し、Aスキャン画像、Bスキャン画像、正面画像、3次元画像などを形成することが可能である。正面画像の例として、Cスキャン画像、プロジェクション画像、平坦化画像、またはシャドウグラムなどがある。また、データ処理部220は、眼底Efの動的特性抽出した、断層画像、正面画像、3次元画像などを形成することが可能である。
〔その他〕
 実施形態に係る眼科装置の構成は、上記の実施形態で説明した構成に限定されるものではない。実施形態に係る眼科装置は、上記のようにレーザー治療装置に適用することが可能である。この場合、光学ユニット110は、レーザー光を被検眼Eの眼底Efに照射する投影系と、制御部210による制御を受けて既定のレーザーパターンに従ってレーザー光を偏向する走査光学系111とを含んで構成される。
 また、実施形態に係る眼科装置は、上記のように視野計に適用することが可能である。この場合、光学ユニット110は、可視光などを被検眼Eの眼底Efに照射する投影系と、制御部210による制御を受け所望の検査位置に照射するように可視光などを偏向する走査光学系111とを含んで構成される。
 また、実施形態に係る眼科装置において、光学ユニット110は、網膜を刺激する手段を含んで構成されていてもよい。このような眼科装置によれば、網膜に刺激を与える前の画像(眼底Efの正面画像や眼底Efの断層像)と網膜に刺激を与えた後の画像(眼底Efの正面画像や眼底Efの断層像)とを比較して網膜神経機能などを検査することができるようになる。
 また、実施形態に係る眼科装置は、たとえば、可視光をフラッシュ発光して得られるカラー画像、近赤外光若しくは可視光を照明光として用いたモノクロの静止画像、フルオレセイン蛍光画像、インドシアニングリーン蛍光画像、自発蛍光画像などの取得が可能な眼底撮影装置や、血管造影や血流測定が可能な装置に適用することも可能である。
 また、ユーザインターフェイス230を用いてユーザによりサブスキャン領域のサイズや形状の変更が可能にしてもよい。この場合、制御部210は、変更されたサブスキャン領域のサイズや形状に応じて移動パターンを変更し、変更された移動パターンに従って移動機構120により光学ユニット110を移動させてもよい。
 また、制御部210は、光学ユニット110の光軸の向き(撮影方向)に応じて、光学ユニット110の旋回中心の位置をシフトさせるようにしてもよい。
 以上に説明した構成は、この発明を好適に実施するための一例に過ぎない。よって、この発明の要旨の範囲内における任意の変形(省略、置換、付加など)を適宜に施すことが可能である。
1 眼科装置
110 光学ユニット
111 走査光学系
120 移動機構
140 光源
210 制御部

Claims (16)

  1.  光源からの光を所定の偏向角度範囲内で偏向する走査光学系を含み、前記走査光学系により偏向された前記光源からの光を被検眼の後眼部に照射可能に構成された光学ユニットと、
     前記被検眼の瞳位置またはその近傍位置を基準に前記光学ユニットを所定の移動角度範囲内で移動させる移動機構と、
     前記走査光学系と前記移動機構とを連係して制御する制御部と、
     を含む眼科装置。
  2.  前記移動機構は、前記瞳位置またはその近傍位置を中心に前記光学ユニットを旋回させる
     ことを特徴とする請求項1に記載の眼科装置。
  3.  前記制御部は、前記光源からの光を偏向するための既定の偏向パターンに基づいて前記走査光学系の制御を行い、前記光学ユニットを移動させるための既定の移動パターンに基づいて前記移動機構の制御を行う
     ことを特徴とする請求項1または請求項2に記載の眼科装置。
  4.  前記制御部は、前記偏向パターンに基づき前記走査光学系を制御することにより前記光源からの光を2次元的に偏向させる
     ことを特徴とする請求項3に記載の眼科装置。
  5.  前記制御部は、前記後眼部の矩形領域を走査するように前記光源からの光の照射位置を移動させる
     ことを特徴とする請求項4に記載の眼科装置。
  6.  前記制御部は、前記後眼部の所定領域をラスター走査するように前記光源からの光の照射位置を移動させる
     ことを特徴とする請求項4に記載の眼科装置。
  7.  前記制御部は、前記後眼部の所定領域をサークル走査するように前記光源からの光の照射位置を移動させる
     ことを特徴とする請求項4に記載の眼科装置。
  8.  前記制御部は、前記偏向パターンに基づき前記走査光学系を制御することにより前記光源からの光を1次元的に偏向させる
     ことを特徴とする請求項3に記載の眼科装置。
  9.  前記後眼部からの戻り光に基づいて、前記後眼部における所定データの分布を形成するデータ分布形成部を含み、
     前記制御部は、前記移動機構の制御と前記走査光学系の制御とを交互に実行し、
     前記データ分布形成部は、前記後眼部の複数の位置からの戻り光に基づいて前記所定データの分布を形成する
     ことを特徴とする請求項1~請求項8のいずれか一項に記載の眼科装置。
  10.  前記後眼部からの戻り光に基づいて、前記後眼部における所定データの分布を形成するデータ分布形成部を含み、
     前記制御部は、前記移動機構の制御と前記走査光学系の制御とを並行して行い、
     前記データ分布形成部は、前記後眼部の複数の位置からの戻り光に基づいて前記所定データの分布を形成する
     ことを特徴とする請求項1~請求項8のいずれか一項に記載の眼科装置。
  11.  前記光学ユニットは、前記光源からの光が前記被検眼を経由した戻り光を受光する受光系を含む
     ことを特徴とする請求項1~請求項10のいずれか一項に記載の眼科装置。
  12.  前記光学ユニットは、前記光源を含み、
     前記光源は、可視光または赤外光を出力する
     ことを特徴とする請求項1~請求項11のいずれか一項に記載の眼科装置。
  13.  前記被検眼の眼底に固視標を投影するための固視系を含む
     ことを特徴とする請求項1~請求項12のいずれか一項に記載の眼科装置。
  14.  前記固視系は、前記光学ユニットに設けられている
     ことを特徴とする請求項13に記載の眼科装置。
  15.  2以上の前記光学ユニットを含み、
     前記移動機構は、前記2以上の光学ユニットのうち少なくとも1つを前記瞳位置またはその近傍位置を基準に前記移動角度範囲内で移動させ、
     前記制御部は、前記2以上の光学ユニットのうち少なくとも1つにおける前記走査光学系と前記移動機構とを連係して制御する
     ことを特徴とする請求項1~請求項14のいずれか一項に記載の眼科装置。
  16.  前記制御部は、前記後眼部の所定領域を走査するように前記2以上の光学ユニットからの2以上の光の照射位置を移動させる
     ことを特徴とする請求項15に記載の眼科装置。
PCT/JP2015/078437 2014-10-16 2015-10-07 眼科装置 WO2016060033A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-211439 2014-10-16
JP2014211439A JP6469411B2 (ja) 2014-10-16 2014-10-16 眼科装置

Publications (1)

Publication Number Publication Date
WO2016060033A1 true WO2016060033A1 (ja) 2016-04-21

Family

ID=55746580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078437 WO2016060033A1 (ja) 2014-10-16 2015-10-07 眼科装置

Country Status (2)

Country Link
JP (1) JP6469411B2 (ja)
WO (1) WO2016060033A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018156777A1 (en) 2017-02-22 2018-08-30 Sutro Biopharma, Inc. Pd-1/tim-3 bi-specific antibodies, compositions thereof, and methods of making and using the same
WO2018217944A1 (en) 2017-05-24 2018-11-29 Sutro Biopharma, Inc. Pd-1/lag3 bi-specific antibodies, compositions thereof, and methods of making and using the same
CN111601538A (zh) * 2019-01-16 2020-08-28 株式会社拓普康 眼科装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6809815B2 (ja) * 2016-05-30 2021-01-06 株式会社トプコン 眼科撮影装置
JP6824659B2 (ja) * 2016-08-10 2021-02-03 株式会社トプコン 眼科撮影装置
JP7341422B2 (ja) * 2019-09-10 2023-09-11 国立大学法人 筑波大学 走査型イメージング装置、その制御方法、走査型イメージング方法、プログラム、及び記録媒体
JP7380013B2 (ja) * 2019-09-26 2023-11-15 株式会社ニコン 眼科装置、眼科装置の制御方法及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009279031A (ja) * 2008-05-19 2009-12-03 Topcon Corp 眼底観察装置
JP2013534853A (ja) * 2010-07-01 2013-09-09 オプトス、ピーエルシー 眼科における改良又は眼科に関する改良
JP2014045861A (ja) * 2012-08-30 2014-03-17 Canon Inc 眼科装置及び眼科装置の制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009279031A (ja) * 2008-05-19 2009-12-03 Topcon Corp 眼底観察装置
JP2013534853A (ja) * 2010-07-01 2013-09-09 オプトス、ピーエルシー 眼科における改良又は眼科に関する改良
JP2014045861A (ja) * 2012-08-30 2014-03-17 Canon Inc 眼科装置及び眼科装置の制御方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018156777A1 (en) 2017-02-22 2018-08-30 Sutro Biopharma, Inc. Pd-1/tim-3 bi-specific antibodies, compositions thereof, and methods of making and using the same
WO2018156785A1 (en) 2017-02-22 2018-08-30 Sutro Biopharma, Inc. Pd-1/tim-3 bi-specific antibodies, compositions thereof, and methods of making and using the same
WO2018217944A1 (en) 2017-05-24 2018-11-29 Sutro Biopharma, Inc. Pd-1/lag3 bi-specific antibodies, compositions thereof, and methods of making and using the same
WO2018217940A2 (en) 2017-05-24 2018-11-29 Sutro Biopharma, Inc. Pd-1/lag3 bi-specific antibodies, compositions thereof, and methods of making and using the same
CN111601538A (zh) * 2019-01-16 2020-08-28 株式会社拓普康 眼科装置
CN111601538B (zh) * 2019-01-16 2021-03-09 株式会社拓普康 眼科装置

Also Published As

Publication number Publication date
JP2016077506A (ja) 2016-05-16
JP6469411B2 (ja) 2019-02-13

Similar Documents

Publication Publication Date Title
JP6469411B2 (ja) 眼科装置
JP6589020B2 (ja) 眼科装置
US11253148B2 (en) Ophthalmological device and ophthalmological inspection system
JP6616704B2 (ja) 眼科装置及び眼科検査システム
JP6045895B2 (ja) 眼科観察装置
JP2012042348A (ja) 断層画像表示装置およびその制御方法
JP6809815B2 (ja) 眼科撮影装置
JP6824837B2 (ja) 眼科装置
JP6776076B2 (ja) Oct装置
JP2019080793A (ja) 断層画像撮影装置、画像処理装置、断層画像撮影装置の制御方法およびプログラム
WO2013085042A1 (ja) 眼底観察装置
JP6685125B2 (ja) 眼科撮影装置
JP2017195944A (ja) 眼科撮影装置
JP6898716B2 (ja) 光断層撮像装置
JP6159454B2 (ja) 眼科観察装置
JP6452977B2 (ja) 眼科撮影装置及びその制御方法
JP5919175B2 (ja) 光画像計測装置
EP2338407B1 (en) Device for visually examining the ocular fundus of a patient
JP6833081B2 (ja) 眼科装置及び眼科検査システム
JP7164328B2 (ja) 眼科装置、及び眼科装置の制御方法
JP6557388B2 (ja) 眼科撮影装置
JP2011234750A (ja) 光干渉断層撮像装置及びその処理方法
JP6824659B2 (ja) 眼科撮影装置
JP7306823B2 (ja) 眼科装置、及びその制御方法
WO2016039188A1 (ja) 眼底解析装置及び眼底観察装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15849855

Country of ref document: EP

Kind code of ref document: A1