WO2016059905A1 - 移動体 - Google Patents

移動体 Download PDF

Info

Publication number
WO2016059905A1
WO2016059905A1 PCT/JP2015/075074 JP2015075074W WO2016059905A1 WO 2016059905 A1 WO2016059905 A1 WO 2016059905A1 JP 2015075074 W JP2015075074 W JP 2015075074W WO 2016059905 A1 WO2016059905 A1 WO 2016059905A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
target speed
moving body
speed
determination
Prior art date
Application number
PCT/JP2015/075074
Other languages
English (en)
French (fr)
Inventor
大輔 谷
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/519,265 priority Critical patent/US10549750B2/en
Publication of WO2016059905A1 publication Critical patent/WO2016059905A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/12Lateral speed
    • B60W2720/125Lateral acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9323Alternative operation using light waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9324Alternative operation using ultrasonic waves

Definitions

  • the present invention relates to a mobile object, and more particularly, to a mobile object provided with an object recognition unit.
  • an autonomous traveling type moving body has also been proposed as a moving body, which can be used not only for transportation purposes but also for surrounding monitoring (security).
  • Some moving objects are equipped with an object recognizing unit regardless of whether the object is a transportation purpose or a monitoring purpose, and whether or not the vehicle is an autonomous traveling type.
  • the object recognition unit is provided to avoid collisions with other moving objects and obstacles, and it is possible to detect obstacles from captured images using active sensors for detecting obstacles and cameras that capture the surroundings such as the front. And the like.
  • the active sensor include a radio wave radar using a reflected wave and a laser range finder.
  • Patent Document 1 when a front obstacle sensor detects the distance of an obstacle ahead of the vehicle, the target speed of the vehicle is calculated according to the distance of the obstacle, and the braking force is controlled based on the target speed.
  • a vehicle contact avoidance support device that performs contact avoidance support with an obstacle is disclosed.
  • the target speed to be calculated is corrected according to any one of the steering angle of the steering wheel, the steering angular speed, and the accelerator opening by the operation of the driver.
  • the laser range finder F shown in FIG. 1A emits laser light from its emission surface Fa, and scans it with a horizontal scanning pitch H and a vertical scanning pitch V when it travels on a plane separated by a predetermined distance, The reflected wave at each scanning point is received, and the distance d is measured based on the reception timing.
  • the laser range finder F can recognize an object within the detectable distance d (and measure the distance) for each of the number of measurement points defined by the scanning pitches H and V.
  • FIG. 1B shows a view of the laser range finder F of FIG. 1A as viewed from above.
  • the obstacle D can be recognized at the position of the distance d1, as shown in FIG. 1C with an example from the same viewpoint as FIG. 1B.
  • the shape and depth of the obstacle D can be recognized from the distribution of the distance d1. If it demonstrates from the viewpoint which goes to the front from the output surface Fa, the obstruction D will be recognized in the position which is illustrated to FIG. 1D.
  • the example which the obstruction D is rod-shaped is given for the simplification.
  • the obstacle is recognized, and the recognized obstacle (square).
  • the target speed is set according to D).
  • FIG. 2A a case where an obstacle (object) is going to cross the front of the laser range finder F from right to left is taken as an example.
  • time 0, 1, 2, 3, 4 and time have elapsed. Accordingly, the measurement points measured by the laser range finder F are changed to 0, 7, 14, 7, and 14 respectively when the distance is short.
  • Time 0 is a time when it is determined that the moving object equipped with the laser range finder F is dangerous while traveling at high speed.
  • the threshold value for determination is 10
  • it is determined to be dangerous when there are 10 or more measurement points whose distance is closer than the predetermined distance and if it becomes dangerous, the target speed is set to a low speed value. If so, the target speed is set to a high speed value.
  • the speed change of the moving body is as shown in FIG. 2B.
  • the vehicle will decelerate, accelerate, and decelerate over time, and repeat acceleration and deceleration. turn into.
  • Such repeated acceleration and deceleration not only increases the risk, but also increases the load on the mobile body itself and increases the risk of failure, as well as energy such as batteries and gasoline. The consumption of will also increase.
  • the target speed to be calculated is corrected according to the operation state by the driver, but such a repeating tendency is not changed.
  • the present invention has been made in view of the above-described actual situation, and an object of the present invention is to determine the risk of collision with an object according to an object recognition result, and to perform object recognition in a mobile object that sets a target speed. It is to prevent repeated acceleration and deceleration due to the result.
  • a first technical means of the present invention is a moving body including a drive unit, a control unit that controls driving by the drive unit, and an object recognition unit that recognizes an object. And a determination unit that determines a risk of collision with the object according to a recognition result of the object recognition unit, and the control unit is determined to be dangerous by the determination unit.
  • the target speed of the moving body is controlled to be lowered, and the target speed of the moving body is returned to the original when the determination unit determines that the target speed is safe for a predetermined period with the target speed lowered. It is a feature.
  • the determination unit has a plurality of determination conditions used when determining that it is dangerous, and the control unit is the determination unit.
  • the predetermined period is varied according to the determination condition to be used.
  • the control unit determines that the determination unit is dangerous while traveling at the first target speed
  • the target speed is controlled to be lowered to a second target speed or lowered by a predetermined speed, and determined to be safe for the predetermined period by the determination unit while being lowered to the second target speed or by the predetermined speed.
  • the target speed of the moving body is returned to the first target speed, and the predetermined period is set according to the first target speed, or according to the second target speed or the predetermined speed. It is characterized by making it different.
  • the fourth technical means of the present invention is characterized in that the third technical means includes a case where the second target speed is zero.
  • the determination unit has a plurality of determination conditions used when determining that it is dangerous, and the control unit The first predetermined period and / or the second predetermined period are made different according to a determination condition used in the determination unit.
  • a storage unit storing map information including a planned travel route of the mobile body, and a position indicating the position of the mobile body
  • a position information acquisition unit that acquires information, and the control unit performs control to perform autonomous traveling along the planned traveling route based on the current position acquired by the position information acquisition unit. It is a feature.
  • a storage unit storing map information including a planned travel route of the mobile body, and a position indicating the position of the mobile body
  • a position information acquisition unit that acquires information, an operation unit that receives a driving operation by a driver, and a navigation unit that performs navigation on the map indicated by the map information based on the current position acquired by the position information acquisition unit It is characterized by having.
  • the present invention it is possible to determine the risk of collision with an object according to the object recognition result, and to prevent repeated repetition of acceleration and deceleration due to the object recognition result in a moving body that sets a target speed.
  • FIG. 2 is a diagram for explaining a process in which a moving object recognizes an obstacle using the laser range finder of FIGS. 1A to 1D and sets a target speed according to the recognition result.
  • FIG. 2A It is a figure which shows the speed change of the moving body in the process of FIG. 2A. It is a block diagram which shows the example of 1 structure of the moving body which concerns on the 1st Embodiment of this invention. It is an external view which shows an example of the mobile body of FIG. 3A. It is a figure for demonstrating the process which recognizes an obstruction using the laser range finder in the mobile body of FIG. 3A, and sets a target speed according to the recognition result. It is a figure which shows the speed change of the moving body in the process of FIG. 4A.
  • the moving body according to the present invention is a moving body that moves within a facility such as a factory or a public facility, or a site such as a facility or a parking lot, or a moving body such as an automobile or a motorcycle traveling on a public road.
  • some moving bodies that automatically move within a site or facility have an autonomous traveling type control mechanism.
  • a moving body based on driving by a driver such as an automobile also has autonomous driving control so that autonomous driving or autonomous driving as driving assistance for the driver becomes possible.
  • the mobile body according to the present invention can be used not only for the purpose of transporting people and objects, but also for monitoring the surroundings while moving, and the mobile body in that case can also be called a monitoring robot.
  • FIGS. 3A to 4B A first embodiment of the present invention will be described with reference to FIGS. 3A to 4B. First, a configuration example of the moving body according to the present embodiment will be described with reference to the block diagram of FIG. 3A and the external view of FIG. 3B.
  • the moving body 1 is a machine having a moving mechanism for moving, and can also be called a moving device.
  • the moving mechanism includes a drive control unit 11 and a drive unit 12 including a wheel 12 a controlled by the drive control unit 11.
  • the drive unit 12 includes, for example, an engine and / or a motor (not shown). Of course, not only the wheel 12a as illustrated, but also a crawler belt (Catapillar (registered trademark)) may be driven.
  • the moving body 1 is provided with a battery (rechargeable battery).
  • the rechargeable battery is a part that supplies power to each functional element of the vehicle.
  • a traveling function For example, a traveling function, an object recognition function (in addition to an object distance detection function, a road surface determination function may be provided), a position information acquisition function, This is a part that supplies power to a part that realizes a function such as a communication function.
  • a rechargeable battery for example, a lithium ion battery, a nickel metal hydride battery, a Ni—Cd battery, a lead battery, a fuel battery, and an air battery are used.
  • the moving body 1 includes an object recognition unit 13, a storage unit 14, and a position information acquisition unit 15, and also includes a risk determination unit 10a and a speed instruction unit 10b.
  • FIG. 1A although the example which provided each part 10a, 10b in the main control part 10 which controls the mobile body 1 is given, it is not restricted to this.
  • the storage unit 14 and the position information acquisition unit 15 are not essential components.
  • the speed instruction unit 10 b and the drive control unit 11 are examples of a control unit that controls driving by the driving unit 12.
  • the main control unit 10 controls the drive control unit 11 and reads / writes data from / to the storage unit 14, but is also configured to control acquisition at the position information acquisition unit 15 and recognition at the object recognition unit 13. You can also.
  • the main control unit 10 includes a control device such as a CPU (Central Processing Unit) or MPU (Micro Processing Unit), a RAM (Random Access Memory) as a work area, and a storage device, and a part or all of the control device 10. It can also be mounted as an integrated circuit / IC chip set.
  • This storage device stores a control program (including a program for executing processing to be described later in each unit 10a, 10b) and various setting contents.
  • various devices such as HDD (Hard Disk Drive) and SSD (Solid State Drive) can be applied.
  • the object recognition unit 13 is a part that recognizes various objects such as a plurality of fixed objects and other moving objects.
  • the object recognition unit 13 only needs to be able to basically recognize the position of the object relative to the moving body 1 (distance and direction from the moving body 1 to the object).
  • the object recognizing unit 13 has a detectable range, but a configuration capable of detecting at all angles may be adopted.
  • a camera for taking a still image or a moving image can be used.
  • parallax information can also be obtained by providing two or more cameras.
  • the camera is an example of a passive obstacle detection sensor.
  • a camera that captures a still image can cope with the movement of the moving body 1 by shortening the shooting interval.
  • an obstacle detection active sensor hereinafter referred to as an active sensor
  • the speed of the object can be calculated by the object recognition unit 13 in consideration of the moving speed and the traveling direction of the moving body 1.
  • the active sensor is a sensor for detecting them in advance in order to avoid collision with other moving objects and obstacles, and actively transmits light, infrared rays, other electromagnetic waves, ultrasonic waves, etc. It is a sensor that receives the reflected wave of the transmitted wave and detects the position of the obstacle.
  • various types of sensors such as LIDAR (LightARDetection and Ranging or Laser Imaging Detection and Ranging), laser range finder, radio wave radar (such as millimeter wave radar), and ultrasonic sensor can be applied.
  • the active sensor is an electronic device that performs reception using a mechanical scan method that moves left and right by a motor or a plurality of channels as necessary, and calculates a detection angle using a phase difference generated between the reception channels.
  • An obstacle may be detected by adopting a scanning method.
  • the laser range finder is a distance measuring sensor that employs time-of-flight distance measurement (TOF: Time of ⁇ Flight). By providing one or two scanning axes, two-dimensional measurement and three-dimensional measurement are possible. Measurement is possible.
  • LIDAR can also be said to be a kind of laser range finder. As described above, laser, infrared, visible light, ultrasonic waves, electromagnetic waves, or the like can be used as what is emitted for sensing in the object recognition unit 13. However, it is preferable to use a laser because of high weather resistance and high ranging accuracy.
  • the object recognition unit 13 is preferably provided in front of the main body 16 of the mobile body 1 as illustrated in FIG. 3B, but it is sufficient that at least an object in the traveling direction can be recognized even if it is provided in another part.
  • the object recognition unit 13 may be provided with a detection surface (such as a transmission / reception unit or an antenna) at a position where the sensitivity is improved. Further, by providing a plurality of object recognition units 13 at different positions and / or by providing a plurality of types of object recognition units 13, the position of the object can be recognized more accurately.
  • the mobile body 1 has a performance (weather resistant) according to the travel speed and the travel range assumed by the mobile body 1 (for example, the range depending on whether it is a public road, the size of the site or indoors). And the type of object recognition unit 13 may be appropriately selected and mounted. Of course, since the performance of the object recognition unit 13 varies depending on its cost, it is only necessary to select one to be mounted in consideration of the cost.
  • the storage unit 14 is a part that stores the map information 14a.
  • the map information 14a also includes object information indicating the positions of a plurality of fixed objects.
  • the map information 14a also includes information indicating the position of a passable area (such as a road or a non-parking area in a parking lot).
  • the map information 14a can be said to be information indicating an environmental map.
  • the fixed objects may include not only real estate such as buildings but also other structures such as railroad tracks, planted trees, street trees, walls, and pillars. It can be said that the fixed object excludes a region (road or the like) that actually exists and can be passed among concepts generally called features.
  • the position information acquisition unit 15 acquires position information indicating the position of the moving body 1 using GPS (Global Positioning System) or the like.
  • the position information acquisition unit 15 includes an antenna that receives radio waves from GPS satellites, and an analysis unit that analyzes received GPS signals to obtain position information (latitude and longitude).
  • the antenna may be arranged at an appropriate position of the main body 16 of the moving body 1 like the position of the position information acquisition unit 15 illustrated in FIG. 3B.
  • the antenna is not limited to the illustrated arrangement, and the antenna may be provided at a position where the sensitivity is improved.
  • the position information acquisition unit 15 is provided with a DGPS (Differential GPS) function or an RTK-GPS (Real Time Kinematic GPS) function, and corrects the position based on the positional relationship with the wireless communication unit and the wireless communication base station. By providing a function, the accuracy can be increased. Further, as position information, when a moving body is run only within a limited range such as in a site or indoors, it is possible to simply adopt orthogonal coordinates, polar coordinates, or the like.
  • DGPS Downlink GPS
  • RTK-GPS Real Time Kinematic GPS
  • GPS Global Navigation Satellite System
  • GLONASS Global Navigation Satellite System
  • EU's Galileo China's Beitou
  • India's IRNSS Indian Regional Navigational Satellite System
  • the Internet that is open to the public or the like may be used, or a dedicated line wireless network in which devices that can be connected are limited may be used.
  • Various wireless LAN (Local Area Network) with or without WiFi (registered trademark) authentication), ZigBee (registered trademark), Bluetooth (registered trademark) LE (Low energy), etc.
  • a method conforming to the above standard may be mentioned, and it may be used in consideration of a wireless reachable distance, a transmission band, etc.
  • a mobile phone network may be used.
  • Supplementary information regarding the map information 14a For example, when the moving body 1 is used for monitoring in a specific area such as a parking lot or a site, a planned travel route is determined. Therefore, the mobile body 1 stores the planned travel route of the mobile body 1 as a part of the map information 14a in the storage unit 14, and based on the current position (current position on the map) acquired by the position information acquisition unit 15, What is necessary is just to control so that the autonomous running along the said scheduled driving
  • the moving body 1 includes a magnetic sensor for measuring geomagnetism, and detects the traveling direction of the moving body 1 by detecting the direction in which the magnetic sensor is facing, and outputs the detection result to the main control unit 10. It can also be configured to be used for correcting the traveling direction.
  • FIG. 4A is a diagram for explaining a process of recognizing an obstacle using the laser range finder in the moving body 1 and setting a target speed according to the recognition result
  • FIG. 4B is a process of FIG. 4A. It is a figure which shows the speed change of the moving body in.
  • the risk determination unit 10a is a determination unit that determines the risk of collision with an object according to the recognition result of the object recognition unit 13.
  • the risk level determination unit 10a may determine the risk level according to the size or speed of the recognized object.
  • the control unit performs control so that the target speed of the moving body 1 is decreased when the risk determination unit 10a determines that the risk is dangerous, and the determination unit performs predetermined control in a state where the target speed is decreased by the control.
  • the control for lowering the target speed may be control for lowering the target speed by a predetermined speed or control for lowering the target speed to a predetermined speed lower than the current speed.
  • the drive control unit 11 may perform control to drive the drive unit 12 so as to achieve the target speed instructed by the speed instruction unit 10b. For example, control may be performed so that the target speed is reached in a certain period, or control is performed until the target speed is reached at a constant acceleration.
  • the risk determination unit 10 a determines the risk according to the size of the object recognized by the object recognition unit 13. Similar to the case of FIG. 2A, an object (obstacle) is recognized using a laser range finder (having 16 measurement points in the horizontal direction and 10 measurement points in the vertical direction), and 10 measurement points are located at a short distance. If it is above, it is determined to be dangerous. Note that it is possible to recognize an object up to the detectable range of the laser range finder for each measurement point, and this determines the detectable range of the laser range finder.
  • time 0 is a time determined to be dangerous during traveling at high speed.
  • the speed instruction unit 10b sets the target speed to a low speed when it is determined to be dangerous at time 0 while traveling at a high speed.
  • the safety counter provided in the speed instruction unit 10b is set to zero.
  • the safety counter is a counter for counting the predetermined number of times (in this example, 5 times). Even if it is determined to be safe at time 1, since it is determined to be dangerous at the next time 2, the count of the safety counter is returned to zero. Then, the speed instruction unit 10b returns the target speed to a high speed only when it is determined that it is safe five times continuously at times 5 to 9.
  • acceleration is accelerated if there is no obstacle for a predetermined period after deceleration. Therefore, as shown in FIG. 4B, the speed change of the moving body 1 prevents unnecessary acceleration and deceleration from being repeated due to the object recognition result. can do.
  • the risk determination unit 10a in the present embodiment has a plurality of determination conditions used when determining that it is dangerous.
  • the plurality of determination conditions include a plurality of types of determination conditions and / or a plurality of stages of determination conditions.
  • the types of determination conditions for example, (a) a condition in which a recognized object is determined to be dangerous when the size of the recognized object is equal to or larger than a predetermined size, or (b) the size of the recognized object is When the object is detected at a position in a predetermined detection range near the center of the detectable range of the object recognition unit 13 under the condition that it is determined to be dangerous when increasing at a change amount greater than or equal to a predetermined speed For example, a condition that it is determined to be dangerous.
  • the predetermined size may be determined in consideration of the size of another assumed moving body.
  • the risk determination unit 10a has a plurality of types of determination conditions, which determination condition is used may be determined according to user settings or automatic settings in the mobile body 1.
  • the moving body 1 has a setting unit (not shown).
  • the automatic setting may be performed based on the degree of danger by registering a route that is originally dangerous in the map information 14a.
  • the stage of the judgment condition it may be divided into, for example, 10 stages from danger to safety in a certain kind of judgment condition.
  • the predetermined size may be provided in 10 steps
  • the predetermined speed is provided in 10 steps. Just keep it.
  • the type (c) for example, a weighting coefficient is held in correspondence with each position for the detectable range of the object recognition unit 13, and the position detected by the object is multiplied by the weighting coefficient. What is necessary is just to divide the sum of values with a threshold of 10 steps.
  • the risk level determination unit 10a has a plurality of determination conditions among certain types of determination conditions, it is determined whether the determination speed is reduced (or how much is reduced) by the user. Setting or similar automatic setting may be followed. In the case of the degree of risk determined based on a determination condition that is not used, for example, only a warning display or a warning sound can be output.
  • indication part 10b in this embodiment changes the said predetermined period according to the determination conditions used in the danger determination part 10a (it uses for target speed setting).
  • the predetermined period (the number of safety detections) is varied according to the determination condition that led to the determination of danger. More specifically, since it can be considered that the case where the acceleration is equal to or higher than the predetermined value is more dangerous than the example of FIG. 4A, the speed of the moving body 1 is higher when the latter determination condition is used. What is necessary is just to delay a return. However, depending on the threshold value of the number of measurements (that is, the threshold value of distance) and the threshold value of acceleration, this relationship is reversed, that is, when the former determination condition is used, the speed of the moving body 1 is restored. Sometimes it is delayed.
  • the predetermined period of acceleration after deceleration is changed according to the determination condition used for setting the target speed, so that the transition from deceleration to acceleration that matches the determination condition can be performed. It is possible to prevent excessive deceleration and acceleration from being repeated.
  • FIG. 5A is a diagram for explaining a process of recognizing an obstacle using a laser range finder and setting a target speed according to the recognition result in the moving body according to the present embodiment. It is a figure which shows the speed change of the moving body in the process of FIG. 5A.
  • description of the overlapping parts with the first embodiment is basically omitted, but various application examples described in the first embodiment can be applied, for example.
  • the speed instruction unit 10b changes the target speed of the moving body 1 to the second target speed when the danger level determination unit 10a determines that the vehicle is traveling at the first target speed. (Or only by a predetermined speed), and when it is determined to be safe by the risk determination unit 10a for a predetermined period in a state in which the control is reduced to the second target speed (or only by the predetermined speed) by the control, The target speed of the moving body 1 is returned to the first target speed.
  • the speed instruction unit 10b changes the predetermined period according to the first target speed, or according to the second target speed or the predetermined speed.
  • the target speed is reduced from a high speed (corresponding to the first target speed) to a low speed (corresponding to the second target speed), and then five consecutive times ( Corresponding to the above-mentioned predetermined period)
  • the speed is returned to high speed.
  • FIG. 5A is an example of the same scene as FIG. 4A.
  • a stop state is set (the second second). This corresponds to the case where the target speed is zero), and then returns to the low speed when it is determined to be safe four times in succession (corresponding to the predetermined period).
  • the speed change in this case is as shown in FIG. 5B.
  • the speed after the return is lower and safer than that in the example of FIG. 4A, the speed is returned faster.
  • the higher speed as in the example of FIG. 4A is a safe route, and the speed may be returned faster than in the example of FIG. 5A.
  • a predetermined period (first number of safety detections) until returning to high speed, and from controlling from high speed to stopping, until returning to the original speed
  • the predetermined period (second safety detection count) may be different.
  • a risk-avoidance travel can be achieved by setting a large number of second safety detection times.
  • the first number of safety detections may be conspicuous.
  • the predetermined period of acceleration after deceleration is changed according to the speed before deceleration or the speed after deceleration, so the transition from deceleration to acceleration that matches the speed before or after deceleration is performed. It is possible to prevent repeated repeated deceleration and acceleration.
  • the speed instruction unit 10b may change the first predetermined period and / or the second predetermined period according to the determination condition used in the risk determination unit 10a.
  • FIG. 6 is a block diagram illustrating a configuration example of the moving object according to the present embodiment.
  • the description of the overlapping part with the first embodiment is basically omitted, but for example, various application examples described in the first embodiment can be applied, and the second and third examples can be applied. It can be used in combination with any embodiment.
  • the moving body 6 is based on the operation unit 61 that receives a driving operation by the driver and the current position acquired by the position information acquisition unit 15 in addition to the units 11 to 15 of FIG. 3A.
  • a navigation unit 62 that performs navigation on the map indicated by the map information 14a.
  • the operation unit 61 includes a handle, an accelerator, a brake, and the like.
  • the navigation unit 62 displays the map indicated by the map information 14a, for example, so as to go to the destination registered in advance by the driver or passenger (that is, in the planned travel route to the destination registered in the map information 14a). It is sufficient to guide by voice and route display. Therefore, the navigation unit 62 includes an image display unit and / or an audio output unit.
  • an autonomous traveling function may be provided. In that case, autonomous traveling may be supplemented by driving of the driver, or deficiencies of driving by the driver may be supplemented by autonomous traveling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optics & Photonics (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

 物体認識結果に応じて物体との衝突の危険性を判定し、目標速度を設定する移動体において、物体認識結果による余計な加速と減速の繰り返しを防止する。本発明に係る移動体(1)は、駆動部(12)と、駆動部(12)での駆動を制御する制御部(駆動制御部(11)及び速度指示部(10b)で例示)と、物体を認識する物体認識部(13)と、物体認識部(13)での認識結果に応じて、物体との衝突の危険度を判定する判定部(危険度判定部(10a)で例示)と、を備える。上記制御部は、上記判定部により危険であると判定された場合に、移動体(1)の目標速度を下げるように制御し、目標速度が下げられた状態で上記判定部により所定期間、安全と判定された場合に、移動体(1)の目標速度を元に戻す。

Description

移動体
 本発明は、移動体に関し、より詳細には、物体認識部を備えた移動体に関する。
 従来から、人や物を運ぶための移動体は様々な種類が流通している。また、移動体には自律走行型の移動体も提案されており、これにより、運搬目的だけでなく、周囲の監視(警備)のためにも用いることができる。そして、運搬目的、監視目的に拘わらず、また自律走行型か否かに拘わらず、移動体には物体認識部が搭載されているものがある。物体認識部は、他の移動体や障害物との衝突を避けるために設けられており、障害物検知用のアクティブセンサや、前方等の周囲を撮影するカメラを利用して撮影画像から障害物を認識するものなどが挙げられる。アクティブセンサとしては、反射波を利用した電波レーダやレーザレンジファインダなどが挙げられる。
 特許文献1には、前方障害物センサが車両前方の障害物の距離を検知すると、その障害物の距離に応じて車両の目標速度を算出し、その目標速度に基づいて制動力を制御することで、障害物との接触回避支援を行う車両の接触回避支援装置が開示されている。なお、この装置では、運転者の操作によるステアリングホイールの操舵角、操舵角速度、及びアクセル開度のいずれかに応じて、算出する目標速度を補正している。
 図1A~図2Bを参照しながら、前方障害物センサとしてレーザレンジファインダを例に挙げ、特許文献1に記載の技術による障害物検知車両の目標速度の設定について説明する。図1Aに示すレーザレンジファインダFは、その出射面Faからレーザ光を出射させ、所定距離離れた平面を過程した場合、それを水平方向の走査ピッチH、垂直方向の走査ピッチVで走査し、各走査点における反射波を受信し、その受信タイミングにより距離dを計測するものである。このようにレーザレンジファインダFは、走査ピッチH,Vで規定される測定点数のそれぞれについて検出可能距離d内の物体の認識(及び距離の計測)を行うことができる。
 図1Bには図1AのレーザレンジファインダFを上から見た図を示している。障害物Dが存在した場合には、図1Cに図1Bと同様の視点での例を挙げるように、その障害物Dが距離d1の位置に認識できる。また、距離d1の分布により障害物Dの形状や奥行も認識することができる。出射面Faから正面に向かう視点で説明すると、図1Dに例示するような位置に障害物Dが認識されることになる。なお、図1Dでは簡略化のために、障害物Dが棒状である例を挙げている。
 このようなレーザレンジファインダF(図1Dで例示するように水平方向に16点、垂直方向に10点の測定点を有するもの)を用いて、障害物を認識し、認識された障害物(四角で囲んだ部分)Dに応じて、目標速度を設定する。
 具体的に図2Aを参照して説明する。ここでは、障害物(物体)がレーザレンジファインダFの前方を右から左に横切ろうとしている場合を例に挙げており、この場合、時刻0,1,2,3,4と時間が経過するに連れて、レーザレンジファインダFで距離が近いと測定された測定点がそれぞれ0,7,14,7,14個と変化している。時刻0はレーザレンジファインダFを搭載した移動体が高速で走行中に危険と判定された時刻とする。ここで、判定の閾値を10個とすると、距離が所定距離より近い測定点が10個以上である場合に危険であると判定し、危険になれば目標速度を低速の値に設定し、安全であれば目標速度を高速の値に設定することになる。これにより、移動体の速度変化は図2Bに示すようになる。
特開2008-49932号公報
 しかしながら、上述した設定方法で目標速度を設定すると、図2Bで示す移動体の速度変化から明らかなように、時間の経過と共に減速、加速、減速されることになり、加速と減速を繰り返すことになってしまう。そして、このような加速と減速の繰り返しによって、危険性がより高まってしまうだけでなく、移動体自体への負荷が高くなり、故障の危険性も増してしまう上に、バッテリやガソリン等のエネルギーの消費量も大きくなる。なお、特許文献1に記載の技術では、運転者による操作状態に応じて、算出する目標速度を補正しているが、このような繰り返しの傾向に変わりはない。
 本発明は、上述のような実状に鑑みてなされたものであり、その目的は、物体認識結果に応じて物体との衝突の危険性を判定し、目標速度を設定する移動体において、物体認識結果による余計な加速と減速の繰り返しを防止することにある。
 上記の課題を解決するために、本発明の第1の技術手段は、駆動部と、該駆動部での駆動を制御する制御部と、物体を認識する物体認識部と、を備えた移動体であって、前記物体認識部での認識結果に応じて、前記物体との衝突の危険度を判定する判定部を備え、前記制御部は、前記判定部により危険であると判定された場合に、前記移動体の目標速度を下げるように制御し、前記目標速度が下げられた状態で前記判定部により所定期間、安全と判定された場合に、前記移動体の目標速度を元に戻すことを特徴としたものである。
 本発明の第2の技術手段は、第1の技術手段において、前記判定部は、危険であると判定する際に使用する判定条件を複数有しており、前記制御部は、前記判定部で使用する判定条件に応じて前記所定期間を異ならせることを特徴としたものである。
 本発明の第3の技術手段は、第1の技術手段において、前記制御部は、第1の目標速度で走行中に、前記判定部により危険であると判定された場合に、前記移動体の目標速度を第2の目標速度に下げる又は所定速度だけ下げるように制御し、前記第2の目標速度に又は前記所定速度だけ下げられた状態で前記判定部により前記所定期間、安全と判定された場合に、前記移動体の目標速度を前記第1の目標速度に戻し、且つ、前記第1の目標速度に応じて、若しくは前記第2の目標速度又は前記所定速度に応じて、前記所定期間を異ならせることを特徴としたものである。
 本発明の第4の技術手段は、第3の技術手段において、前記第2の目標速度がゼロである場合を含むことを特徴としたものである。
 本発明の第5の技術手段は、第3又は第4の技術手段において、前記判定部は、危険であると判定する際に使用する判定条件を複数有しており、前記制御部は、前記判定部で使用する判定条件に応じて前記第1の所定期間及び/又は前記第2の所定期間を異ならせることを特徴としたものである。
 本発明の第6の技術手段は、第1~第5のいずれか1の技術手段において、前記移動体の予定走行経路を含む地図情報を記憶した記憶部と、当該移動体の位置を示す位置情報を取得する位置情報取得部と、を備え、前記制御部は、前記位置情報取得部で取得された現在の位置に基づき、前記予定走行経路に沿った自律走行を行うように制御することを特徴としたものである。
 本発明の第7の技術手段は、第1~第5のいずれか1の技術手段において、前記移動体の予定走行経路を含む地図情報を記憶した記憶部と、当該移動体の位置を示す位置情報を取得する位置情報取得部と、運転者による運転操作を受け付ける操作部と、前記位置情報取得部で取得された現在の位置に基づき、前記地図情報が示す地図上でのナビゲーションを行うナビゲーション部と、を備えたことを特徴としたものである。
 本発明によれば、物体認識結果に応じて物体との衝突の危険性を判定し、目標速度を設定する移動体において、物体認識結果による余計な加速と減速の繰り返しを防止することができる。
レーザレンジファインダにおける計測の様子を示す模式図である。 図1Aのレーザレンジファインダを上から見た図である。 図1Aのレーザレンジファインダを上から見た図であって、障害物が存在する場合の様子を示す模式図である。 図1Aのレーザレンジファインダを出射面の正面から見た図であって、障害物が存在する場合の様子を示す模式図である。 移動体において、図1A~図1Dのレーザレンジファインダを用いて障害物を認識して、その認識結果に応じて目標速度を設定する過程を説明するための図である。 図2Aの過程における移動体の速度変化を示す図である。 本発明の第1の実施形態に係る移動体の一構成例を示すブロック図である。 図3Aの移動体の一例を示す外観図である。 図3Aの移動体において、レーザレンジファインダを用いて障害物を認識して、その認識結果に応じて目標速度を設定する過程を説明するための図である。 図4Aの過程における移動体の速度変化を示す図である。 本発明の第3の実施形態に係る移動体において、レーザレンジファインダを用いて障害物を認識して、その認識結果に応じて目標速度を設定する過程を説明するための図である。 図5Aの過程における移動体の速度変化を示す図である。 本発明の第4の実施形態に係る移動体の一構成例を示すブロック図である。
 本発明に係る移動体は、工場や公共施設の施設内、或いはそれらの施設や駐車場等の敷地内で移動させる移動体や、公道を走行する自動車や自動二輪車等の移動体などである。特に敷地内や施設内で自動的に移動させる移動体には、自律走行型の制御機構を有しているものがある。自動車等の運転者による運転を基本とする移動体も自律走行型の制御を搭載することで、自律走行、或いは運転者の運転補助としての自律走行が可能になる。また、本発明に係る移動体は、人や物を運搬する運搬目的だけでなく、移動しながら周囲を監視するためにも用いることができ、その場合の移動体は監視ロボットとも呼べる。以下、図面を参照しながら、本発明の様々な実施形態について説明する。
(第1の実施形態)
 本発明の第1の実施形態について、図3A~図4Bを参照しながら説明する。まず、図3Aのブロック図、図3Bの外観図を参照しながら、本実施形態に係る移動体の一構成例について説明する。
 移動体1は、移動を行うための移動機構を備えたマシンであり、移動装置とも呼べる。図3A,図3Bの例では、この移動機構は、駆動制御部11と、駆動制御部11により制御される車輪12aを含む駆動部12で構成される。駆動部12は、例えば図示しないエンジン及び/又はモータなどを備えている。無論、例示するような車輪12aに限らず、例えば履帯(キャタピラー(登録商標))などを駆動させてもよい。その他、移動体1にはバッテリ(充電池)が設けられる。充電池は、車両の各機能要素に対して電力を供給する部分であり、例えば走行機能、物体認識機能(物体距離検出機能の他、路面判定機能を設けてもよい)、位置情報取得機能、通信機能などの機能を実現する部位に電力を供給する部分である。充電池としては、例えばリチウムイオン電池、ニッケル水素電池、Ni-Cd電池、鉛電池、燃料電池、空気電池が用いられる。
 さらに、移動体1は、物体認識部13、記憶部14、及び位置情報取得部15を備えると共に、危険度判定部10a及び速度指示部10bを備える。図1Aでは移動体1を制御する主制御部10に各部10a,10bを備えた例を挙げているが、これに限ったものではない。なお、記憶部14及び位置情報取得部15は必須の構成ではない。また、速度指示部10b及び駆動制御部11は、駆動部12での駆動を制御する制御部の一例である。
 なお、主制御部10は、駆動制御部11の制御及び記憶部14への読み書きを行うが、位置情報取得部15での取得や物体認識部13での認識の制御も行うように構成することもできる。例えばこの主制御部10は、CPU(Central Processing Unit)又はMPU(Micro Processing Unit)、作業領域としてのRAM(Random Access Memory)、及び記憶装置などの制御デバイスで構成され、その一部又は全部を集積回路/ICチップセットとして搭載することもできる。この記憶装置には、制御プログラム(各部10a,10bでの後述の処理を実行するためのプログラムを含む)をはじめ、各種設定内容などが記憶される。この記憶装置としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)など様々な装置が適用できる。
 物体認識部13は、複数の固定された物体や他の移動体など、様々な物体を認識する部位である。物体認識部13は、基本的に物体の移動体1に対する位置(移動体1から物体までの距離と方向)が認識できればよい。無論、物体認識部13には検出可能範囲が存在するが、全角度で検出可能なような構成を採用してもよい。
 物体認識部13としては、静止画又は動画を撮影するためのカメラなどを利用することができる。また、カメラは2台以上設けることで、視差情報も得ることができる。カメラは、パッシブ型の障害物検知用のセンサの一例であると言える。なお、静止画を撮影するカメラでは撮影間隔を短くすることで移動体1の移動に対応できる。また、物体認識部13としては、移動体1に対する障害物の位置を検出するための障害物検知用のアクティブセンサ(以下、アクティブセンサ)を利用することもできる。また、物体の速度は、物体認識部13が移動体1の移動速度及び進行方向を考慮して算出することができる。
 上記アクティブセンサは、他の移動体や障害物との衝突を避けるためにそれらを事前に検知するためのセンサであり、光や赤外線や他の電磁波や超音波などを能動的に発信し、その発信波の反射波を受信して障害物の位置を検知するセンサである。アクティブセンサとしては、例えば、LIDAR(Light Detection and Ranging又はLaser Imaging Detection and Ranging)、レーザレンジファインダ、電波レーダ(ミリ波レーダ等)、超音波センサなど、様々な種類のセンサが適用できる。また、アクティブセンサは、必要に応じて、モータによって左右に動かすメカニカルスキャン方式、或いは、複数のチャンネルを使って受信を行い、受信チャンネル間に発生する位相差を利用して検知角度を算出する電子スキャン方式を採用して、障害物の検知を行えばよい。なお、レーザレンジファインダは光飛行時間測距方式(TOF:Time of Flight)を採用した測距センサであり、走査軸を1軸、2軸もたせることで、それぞれ2次元平面の計測、3次元的な計測が可能となる。また、LIDARはレーザレンジファインダの一種であるとも言える。このように、物体認識部13においてセンシングのために放射されるものとしては、レーザー、赤外線、可視光、超音波、電磁波などを用いることができる。但し、耐天候性の高さと測距精度が高いことから、レーザーを用いることが好ましい。
 また、物体認識部13は図3Bで例示したように移動体1の本体16の前方に設けられることが好ましいが、他の部分に設けられていても少なくとも進行方向の物体が認識できればよい。但し、物体認識部13はその感度が良くなるような位置にその検知面(送受信部やアンテナ等)が設けられていればよい。また、複数の物体認識部13を別々の位置に設けること、及び/又は、複数種類の物体認識部13を設けることで、物体の位置をより精確に認識させることができる。
 移動体1は、移動体1で想定される走行速度や走行範囲(例えば公道なのか、どの程度の広さの敷地内や室内なのかなどによる範囲)に応じて、それに合った性能(耐天候性なども含む)や種類の物体認識部13を適宜選択して搭載しておけばよい。無論、物体認識部13はそのコストにより性能が変わるものであるため、コストも考慮して搭載するものを選べばよい。
 記憶部14は、地図情報14aを記憶する部位である。この地図情報14aには、複数の固定された物体の位置を示す物体情報も含まれている。また、地図情報14aには、通行可能な領域(道路や駐車場内の非駐車領域など)の位置を示す情報も含まれている。移動体1が監視ロボットである場合には、この地図情報14aは環境地図を示す情報であると言える。ここで、固定された物体には、建物等の不動産だけでなく、線路、植木や街路樹、壁や柱など、他の構造物を含めておけばよい。上記固定された物体は、一般的に地物と呼ばれる概念のうち、実際に存在するものであって且つ通行可能な領域(道路等)を除いたものと言える。
 位置情報取得部15は、GPS(Global Positioning System)などを用い、移動体1の位置を示す位置情報を取得する。例えば位置情報取得部15は、GPS衛星からの電波を受信するアンテナや受信したGPS信号を解析して位置情報(緯度、経度)を求める解析部などで構成される。アンテナは、図3Bで例示する位置情報取得部15の位置のように移動体1の本体16の適所に配置しておけばよい。但し、例示する配置に限らず、その感度が良くなるような位置にアンテナが設けられていればよい。なお、位置情報取得部15は、DGPS(Differential GPS)の機能又はRTK-GPS(Real Time Kinematic GPS)の機能を設けることや、無線通信部及び無線通信基地局との位置関係から位置を補正する機能を設けることで、その精度を上げることもできる。また、位置情報としては、敷地内や屋内などごく限られた範囲でのみ移動体を走らせる際には、単に直交座標や極座標などを採用することもできる。
 また、ここではGPSを用いる例を挙げて説明しているが、GPSと同様の他の衛星測位システム(地域航法衛星システム)を適用することもできる。他の衛星測位システムとしては、日本の準天頂衛星システム(Quasi-Zenith Satellite System:QZSS)、ロシアのGLONASS(Global Navigation Satellite System)、EUのガリレオ、中国の北斗、インドのIRNSS(Indian Regional Navigational Satellite System)などが挙げられる。
 上述の無線通信部等における無線通信のネットワークとしては、公衆に開放されているインターネットなどを利用してもよく、或いは、接続できる装置が限定される専用回線の無線ネットワークを利用してもよい。無線通信路での無線伝送方式としては、各種無線LAN(Local Area Network)(WiFi(登録商標)認証の有無は問わない)、ZigBee(登録商標)、Bluetooth(登録商標) LE(Low Energy)などの規格に準じた方式が挙げられ、無線到達距離や伝送帯域などを考慮して使用すればよいが、例えば携帯電話網などを利用してもよい。
 地図情報14aに関して補足する。例えば駐車場や敷地内などの或る特定領域内の監視用に移動体1を用いる場合には、予定走行経路が決まっている。よって、移動体1が、記憶部14に地図情報14aの一部として移動体1の予定走行経路を記憶し、位置情報取得部15で取得された現在位置(地図上の現在位置)に基づき、上記予定走行経路に沿った自律走行を行うように制御すればよい。なお、この制御は、駆動制御部11が駆動部12に対して行う。
 自律走行に関して補足する。移動体1は、地磁気を計測する磁気センサなどを備え、その磁気センサが向いている方向を検知することで移動体1の進行方向を検知して、検知結果を主制御部10に出力して進行方向の修正に利用するように構成することもできる。
 次に、図4A,図4Bを併せて参照しながら、本実施形態の主たる特徴である危険度判定部10a及び速度指示部10bについて説明する。図4Aは、移動体1において、レーザレンジファインダを用いて障害物を認識して、その認識結果に応じて目標速度を設定する過程を説明するための図で、図4Bは、図4Aの過程における移動体の速度変化を示す図である。
 危険度判定部10aは、物体認識部13での認識結果に応じて、物体との衝突の危険度を判定する判定部である。危険度判定部10aは、認識された物体の大きさや速度などに応じて危険度を判定すればよい。
 上記制御部は、危険度判定部10aにより危険であると判定された場合に、移動体1の目標速度を下げるように制御し、その制御により目標速度が下げられた状態で上記判定部により所定期間(つまり連続して所定回数)、安全と判定された場合に、移動体1の目標速度を元に戻す。なお、ここで目標速度を下げるような制御は、現在の速度より所定速度下げる制御であっても、現在の速度より低い所定速度に下げる制御であってもよい。
 以下、上記制御部における制御の主たる部分は、目標速度の設定にあり、この設定を行う速度指示部10bがその制御を担うものとして説明する。駆動制御部11は、速度指示部10bが指示した目標速度になるように駆動部12を駆動する制御を行えばよい。例えば、目標速度に一定期間で到達するように制御するか、或いは一定の加速度で目標速度に到達するまで制御するなどすればよい。
 このような目標速度の設定について、図4Aの例で説明する。この例では、危険度判定部10aは、物体認識部13で認識された物体の大きさに応じて危険度を判定する。図2Aの場合と同様にレーザレンジファインダ(水平方向に16点、垂直方向に10点の測定点を有するもの)を用いて、物体(障害物)を認識し、距離が近い測定点が10個以上である場合に危険であると判定する。なお、各測定点についてレーザレンジファインダの検出可能距離までの物体の認識が可能であり、これによりこのレーザレンジファインダの検出可能範囲が決まる。
 ここでも図2Aと同様に、障害物(物体)がレーザレンジファインダの前方を右から左に横切ろうとしている場合を例に挙げている。無論、他のアクティブセンサでも同様の処理は可能である。カメラであっても、1台では距離の情報は得られないものの、後述の測定点を画素単位と捉えるなどして画像処理を行うことにより同様の処理は可能である。
 この例では、時刻0,1,2,...,8,9,10と時間が経過するに連れて、レーザレンジファインダで距離が所定距離より近いと測定された測定点がそれぞれ14,7,14,...,0,0,0個と変化している。その結果、危険度判定部10aは、時刻0,2,4において危険と判定し、それ以外で安全と判定している。ここで、時刻0は高速で走行中に危険と判定された時刻である。
 そして、速度指示部10bは、高速で走行中にまず時刻0で危険と判定された場合、目標速度を低速に設定する。このとき、速度指示部10bに設けられた安全カウンタが0にしておく。安全カウンタは、上記所定回数(この例では5回)をカウントするためのカウンタである。そして、時刻1で安全と判定されても、次の時刻2で危険と判定されているため、安全カウンタのカウントは0に戻されている。そして、時刻5~9において連続して5回安全であると判定されたときにはじめて、速度指示部10bは、目標速度を高速に戻す。
 このような制御により、減速後、所定期間障害物が無ければ加速することになるため、図4Bに移動体1の速度変化を示すように、物体認識結果による余計な加速と減速の繰り返しを防止することができる。
(第2の実施形態)
 本発明の第2の実施形態について説明する。なお、本実施形態では、第1の実施形態との重複箇所の説明を基本的に省略するが、例えば第1の実施形態で説明した様々な応用例が適用できる。
 本実施形態における危険度判定部10aは、危険であると判定する際に使用する判定条件を複数有している。複数の判定条件としては、複数種類の判定条件及び/又は複数段階の判定条件が挙げられる。判定条件の種類としては、例えば、(a)認識された物体の大きさが所定の大きさ以上である場合に危険であると判定するといった条件や、(b)認識された物体の大きさが所定速度以上の変化量で増加する場合に危険であると判定するといった条件や、(c)物体認識部13の検出可能範囲のうち中央付近の所定の検出範囲の位置で物体が検出された場合に危険であると判定するといった条件などが挙げられる。なお、上記(a)に関し、距離が得られない物体認識部13を採用した場合には、想定される他の移動体の大きさを考慮して上記所定の大きさを決めておけばよい。
 ここで、危険度判定部10aが複数種類の判定条件を有していた場合、どの判定条件を使用するかは移動体1でのユーザ設定又は自動設定に従えばよい。ユーザ設定又は自動設定を行うために移動体1は図示しない設定部を有することになる。上記の自動設定は、地図情報14aに元々危険な経路を登録しておき、その危険度合いに基づいて行えばよい。
 判定条件の段階に関しては、或る種類の判定条件において、危険から安全にかけて例えば10段階に分けるなどしておいてもよい。例えば、上記(a)の種類を採用した場合には上記所定の大きさを10段階で設けておけばよく、上記(b)の種類を採用した場合には上記所定速度を10段階で設けておけばよい。上記(c)の種類を採用した場合には、例えば、物体認識部13の検出可能範囲について各位置に重み付け係数を対応させて保持しておき、物体が検出させた位置に重み付け係数を乗算した値の合計を、10段階の閾値で分けるようにしておけばよい。
 また、危険度判定部10aが或る種類の判定条件のうち複数段階の判定条件を有していた場合も、どの判定条件で低速化するか(或いはどの程度低速化するか)については、ユーザ設定又は同様の自動設定などに従えばよい。使用しない判定条件で判定された危険度の場合には、例えば警告表示や警告音の出力だけを行うこともできる。
 そして、本実施形態における速度指示部10bは、危険度判定部10aで使用する(目標速度設定のために使用する)判定条件に応じて上記所定期間を異ならせる。
 例えば、図4Aの例では、距離が近いと判定された測定数が所定個数(この例では10個)以上の場合、危険であると判定しているが、別の判定条件を設け、測定数の増加度(物体が近づいてきている加速度)が所定度(単位時間当たり所定の増加数)以上の場合、危険であると判定するようにする。
 そして、危険との判定に至った判定条件に応じて、上記所定期間(安全検知回数)を異ならせる。より具体的には、図4Aの例に比べて加速度が所定以上の場合の方が危険であると捉えることができるため、後者の判定条件を使用した場合の方について、より移動体1の速度復帰を遅らせるようにすればよい。但し、測定数の閾値(つまり距離の閾値)と加速度の閾値とに応じて、この関係は逆になること、つまり前者の判定条件を使用した場合の方について、より移動体1の速度復帰を遅らせるようにすることもある。
 このような制御により、目標速度設定のために使用する判定条件に応じて、減速後に加速する所定期間を変えることになるため、その判定条件に合った減速から加速への移行を行うことができ、余計な減速と加速の繰り返しを防止することができる。
(第3の実施形態)
 本発明の第3の実施形態について、主に図5A,図5Bを参照しながら説明する。図5Aは、本実施形態に係る移動体において、レーザレンジファインダを用いて障害物を認識して、その認識結果に応じて目標速度を設定する過程を説明するための図で、図5Bは、図5Aの過程における移動体の速度変化を示す図である。なお、本実施形態では、第1の実施形態との重複箇所の説明を基本的に省略するが、例えば第1の実施形態で説明した様々な応用例が適用できる。
 本実施形態における速度指示部10bは、第1の目標速度で走行中に、危険度判定部10aにより危険であると判定された場合に、移動体1の目標速度を第2の目標速度に(又は所定速度だけ)下げるように制御し、その制御により上記第2の目標速度に(又は上記所定速度だけ)下げられた状態で危険度判定部10aにより所定期間、安全と判定された場合に、移動体1の目標速度を上記第1の目標速度に戻す。
 そして、速度指示部10bでは、上記第1の目標速度に応じて、若しくは上記第2の目標速度又は上記所定速度に応じて、上記所定期間を異ならせる。ここで、上記第2の目標速度がゼロである場合(つまり停止させる場合)を含むことが好ましい。
 このような目標速度の設定について、図4A,図5Aの例を挙げて説明する。図4Aの例は、危険と判定された場合に目標速度を高速(上記第1の目標速度に対応)から低速(上記第2の目標速度に対応)に落とし、その後、5回連続して(上記所定期間に対応)安全と判定された場合に高速に戻している。
 図5Aの例は、図4Aと同じシーンの例であるが、低速の目標速度(上記第1の目標速度に対応)で走行中に危険と判定された場合に停止状態にし(上記第2の目標速度がゼロである場合に対応)、その後、4回連続して(上記所定期間に対応)安全と判定された場合に低速に戻している。この場合の速度変化は、図5Bに示すようになる。図5Aの例では、戻した後の速度が図4Aの例に比べて低く安全であるため、より早く速度を戻している。逆に、元々の速度を考慮して、図4Aの例のように元々高速であった方が安全な経路であると捉え、図5Aの例に比べて早く速度を戻すようにしてもよい。
 このような例に限らず、例えば、高速から低速に制御した後、高速に戻すまでの所定期間(第1の安全検知回数)と、高速から停止に制御した後、元の速度に戻すまでの所定期間(第2の安全検知回数)とを異ならせてもよい。この場合、危険時に停止させなければならないような経路であると考えた設定においては、第2の安全検知回数を多目にしておくことでより、危険回避的な走行ができると言える。無論、この場合にも逆に第1の安全検知回数を多目にしておいてもよい。
 このような制御により、減速前の速度や減速後の速度に応じて、減速後に加速する所定期間を変えることになるため、減速前又は減速後の速度に合った減速から加速への移行を行うことができ、余計な減速と加速の繰り返しを防止することができる。
 また、本実施形態においても、第2の実施形態で説明した、危険度判定部10aが危険であると判定する際に使用する判定条件を複数有している例を適用することができる。その場合、速度指示部10bは、危険度判定部10aで使用する判定条件に応じて上記第1の所定期間及び/又は上記第2の所定期間を異ならせればよい。
(第4の実施形態)
 本発明の第4の実施形態について、図6を参照しながら説明する。図6は、本実施形態に係る移動体の一構成例を示すブロック図である。なお、本実施形態では、第1の実施形態との重複箇所の説明を基本的に省略するが、例えば第1の実施形態で説明した様々な応用例が適用でき、また第2,第3のいずれの実施形態と併用することができる。
 第1の実施形態では、移動体1が自律走行装置である例を挙げて説明した。図6で例示する本実施形態に係る移動体6は、図3Aの各部11~15に加え、運転者による運転操作を受け付ける操作部61と、位置情報取得部15で取得された現在位置に基づき、地図情報14aが示す地図上でのナビゲーションを行うナビゲーション部62と、を備える。操作部61は、ハンドルやアクセル、ブレーキなどで構成される。
 ナビゲーション部62は、地図情報14aが示す地図を表示させ、例えば運転者や同乗者が事前に登録した目的地に向かうように(つまり、地図情報14aに登録させた目的地への予定走行経路に沿うように)、音声及びルート表示により案内すればよい。よって、ナビゲーション部62は、画像表示部及び/又は音声出力部を備える。なお、本実施形態においても、自律走行機能をもたせてもよく、その場合、自律走行を運転者の運転で補う、若しくは運転者の運転の不備を自律走行で補うようにすればよい。
1,6…移動体、10…主制御部、10a…危険度判定部、10b…速度指示部、11…駆動制御部、12…駆動部、12a…車輪、13…物体認識部、14…記憶部、14a…地図情報、15…位置情報取得部、16…本体、61…操作部、62…ナビゲーション部。

Claims (7)

  1.  駆動部と、該駆動部での駆動を制御する制御部と、物体を認識する物体認識部と、を備えた移動体であって、
     前記物体認識部での認識結果に応じて、前記物体との衝突の危険度を判定する判定部を備え、
     前記制御部は、前記判定部により危険であると判定された場合に、前記移動体の目標速度を下げるように制御し、前記目標速度が下げられた状態で前記判定部により所定期間、安全と判定された場合に、前記移動体の目標速度を元に戻すことを特徴とする移動体。
  2.  前記判定部は、危険であると判定する際に使用する判定条件を複数有しており、
     前記制御部は、前記判定部で使用する判定条件に応じて前記所定期間を異ならせることを特徴とする請求項1に記載の移動体。
  3.  前記制御部は、第1の目標速度で走行中に、前記判定部により危険であると判定された場合に、前記移動体の目標速度を第2の目標速度に下げる又は所定速度だけ下げるように制御し、前記第2の目標速度に又は前記所定速度だけ下げられた状態で前記判定部により前記所定期間、安全と判定された場合に、前記移動体の目標速度を前記第1の目標速度に戻し、且つ、
     前記第1の目標速度に応じて、若しくは前記第2の目標速度又は前記所定速度に応じて、前記所定期間を異ならせることを特徴とする請求項1に記載の移動体。
  4.  前記第2の目標速度がゼロである場合を含むことを特徴とする請求項3に記載の移動体。
  5.  前記判定部は、危険であると判定する際に使用する判定条件を複数有しており、
     前記制御部は、前記判定部で使用する判定条件に応じて前記所定期間を異ならせることを特徴とする請求項3又は4に記載の移動体。
  6.  前記移動体の予定走行経路を含む地図情報を記憶した記憶部と、当該移動体の位置を示す位置情報を取得する位置情報取得部と、を備え、
     前記制御部は、前記位置情報取得部で取得された現在の位置に基づき、前記予定走行経路に沿った自律走行を行うように制御することを特徴とする請求項1~5のいずれか1項に記載の移動体。
  7.  前記移動体の予定走行経路を含む地図情報を記憶した記憶部と、当該移動体の位置を示す位置情報を取得する位置情報取得部と、運転者による運転操作を受け付ける操作部と、前記位置情報取得部で取得された現在の位置に基づき、前記地図情報が示す地図上でのナビゲーションを行うナビゲーション部と、を備えたことを特徴とする請求項1~5のいずれか1項に記載の移動体。
PCT/JP2015/075074 2014-10-17 2015-09-03 移動体 WO2016059905A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/519,265 US10549750B2 (en) 2014-10-17 2015-09-03 Moving body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-212546 2014-10-17
JP2014212546A JP6447863B2 (ja) 2014-10-17 2014-10-17 移動体

Publications (1)

Publication Number Publication Date
WO2016059905A1 true WO2016059905A1 (ja) 2016-04-21

Family

ID=55746453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075074 WO2016059905A1 (ja) 2014-10-17 2015-09-03 移動体

Country Status (3)

Country Link
US (1) US10549750B2 (ja)
JP (1) JP6447863B2 (ja)
WO (1) WO2016059905A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111779337A (zh) * 2019-08-29 2020-10-16 浙江尚摩工贸有限公司 智能立体车库管理系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6062122B2 (ja) * 2014-08-21 2017-01-18 三菱電機株式会社 運転支援装置、運転支援方法及びプログラム
JP6610665B2 (ja) * 2015-06-23 2019-11-27 日本電気株式会社 検出システム、検出方法、及び、プログラム
JP6150950B1 (ja) 2015-11-20 2017-06-21 三菱電機株式会社 運転支援装置、運転支援システム、運転支援方法及び運転支援プログラム
US10444758B2 (en) * 2015-12-01 2019-10-15 Ricoh Company, Ltd. Autonomous traveling device
JP6314168B2 (ja) * 2016-04-11 2018-04-18 京楽産業.株式会社 遊技機
CN109689437B (zh) * 2016-09-15 2020-07-03 日产自动车株式会社 车辆的控制方法以及车辆的控制装置
GB2570910A (en) * 2018-02-09 2019-08-14 Hi Tec Security Systems Ltd Method and system for targeting and tracking an intruder using a laser detection and ranging device
CN109817021B (zh) * 2019-01-15 2021-11-02 阿波罗智能技术(北京)有限公司 一种激光雷达路侧盲区交通参与者避让方法和装置
CN110129755B (zh) * 2019-06-05 2021-08-24 Tcl华星光电技术有限公司 磁控溅射靶材和磁控溅射装置
IT202100026663A1 (it) * 2021-10-18 2023-04-18 Robopac Spa Macchina avvolgitrice semovente e metodo di avvolgimento

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262164A (ja) * 1992-03-17 1993-10-12 Mitsubishi Electric Corp 自動走行速度制御装置
JPH0765297A (ja) * 1993-08-31 1995-03-10 Mitsubishi Motors Corp 自動車の走行制御装置
JP2014091349A (ja) * 2012-10-31 2014-05-19 Toyota Motor Corp 運転支援装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10254394A1 (de) * 2002-11-21 2004-06-03 Lucas Automotive Gmbh System zur Beeinflussung der Geschwindigkeit eines Kraftfahrzeuges
JP4757148B2 (ja) * 2006-08-28 2011-08-24 本田技研工業株式会社 車両の接触回避支援装置
DE112011105832B4 (de) * 2011-11-10 2016-12-01 Mitsubishi Electric Corp. Fahrzeugseitiges System
US9187117B2 (en) * 2012-01-17 2015-11-17 Ford Global Technologies, Llc Autonomous lane control system
JP6355080B2 (ja) * 2014-03-03 2018-07-11 学校法人千葉工業大学 搭乗型移動ロボット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262164A (ja) * 1992-03-17 1993-10-12 Mitsubishi Electric Corp 自動走行速度制御装置
JPH0765297A (ja) * 1993-08-31 1995-03-10 Mitsubishi Motors Corp 自動車の走行制御装置
JP2014091349A (ja) * 2012-10-31 2014-05-19 Toyota Motor Corp 運転支援装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111779337A (zh) * 2019-08-29 2020-10-16 浙江尚摩工贸有限公司 智能立体车库管理系统

Also Published As

Publication number Publication date
JP6447863B2 (ja) 2019-01-09
JP2016078665A (ja) 2016-05-16
US20170240170A1 (en) 2017-08-24
US10549750B2 (en) 2020-02-04

Similar Documents

Publication Publication Date Title
WO2016059905A1 (ja) 移動体
US11914052B2 (en) Method and apparatus to determine relative location using GNSS carrier phase
US11448770B2 (en) Methods and systems for detecting signal spoofing
US11346959B2 (en) Method and apparatus to determine relative location using GNSS carrier phase
JP6219312B2 (ja) 道路の車線の車線交通路内の車両の位置を決定する方法、並びに2つの車両間の整列及び衝突リスクを検知する方法
US11059481B2 (en) Vehicle control system, vehicle control method, and vehicle control program
WO2016059904A1 (ja) 移動体
JP6380936B2 (ja) 移動体及びシステム
US11514790B2 (en) Collaborative perception for autonomous vehicles
CN109795500B (zh) 车辆控制装置、车辆控制方法及存储介质
EP3819668A1 (en) Information processing device, information processing method, computer program, and moving body device
US11562572B2 (en) Estimating auto exposure values of camera by prioritizing object of interest based on contextual inputs from 3D maps
US11372090B2 (en) Light detection and range (LIDAR) device with SPAD and APD sensors for autonomous driving vehicles
US10688995B2 (en) Method for controlling travel and device for controlling travel of vehicle
JP2019067295A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2005258941A (ja) 障害物検出装置
JP2018084492A (ja) 自己位置推定方法及び自己位置推定装置
US11945466B2 (en) Detection device, vehicle system, detection method, and program
US20220204046A1 (en) Vehicle control device, vehicle control method, and storage medium
JP6680502B2 (ja) 移動体
US11989950B2 (en) Information processing apparatus, vehicle system, information processing method, and storage medium
CN114954511A (zh) 车辆控制装置、车辆控制方法以及存储介质
CN112172826B (zh) 车辆控制装置、车辆控制方法及存储介质
US20220252404A1 (en) Self-correcting vehicle localization
US20230168363A1 (en) Method to detect radar installation error for pitch angle on autonomous vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851427

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15519265

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851427

Country of ref document: EP

Kind code of ref document: A1