WO2016058271A1 - 蜗壳结构、离心式压缩机及制冷设备 - Google Patents

蜗壳结构、离心式压缩机及制冷设备 Download PDF

Info

Publication number
WO2016058271A1
WO2016058271A1 PCT/CN2014/095093 CN2014095093W WO2016058271A1 WO 2016058271 A1 WO2016058271 A1 WO 2016058271A1 CN 2014095093 W CN2014095093 W CN 2014095093W WO 2016058271 A1 WO2016058271 A1 WO 2016058271A1
Authority
WO
WIPO (PCT)
Prior art keywords
volute
centrifugal compressor
stage
casing
diffuser
Prior art date
Application number
PCT/CN2014/095093
Other languages
English (en)
French (fr)
Inventor
刘建飞
张治平
钟瑞兴
蒋楠
蒋彩云
谢蓉
陈玉辉
黄保乾
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US15/516,108 priority Critical patent/US20170306981A1/en
Priority to EP14903991.9A priority patent/EP3208471A4/en
Publication of WO2016058271A1 publication Critical patent/WO2016058271A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/628Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/403Casings; Connections of working fluid especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/624Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps

Definitions

  • the invention relates to the field of refrigeration equipment, in particular to a volute structure, a centrifugal compressor and a refrigeration device.
  • FIG. 1 is a schematic view showing the arrangement of a pneumatic portion of a double-stage centrifugal compressor in which a volute is tilted forward in the prior art, and an inner curved cavity of the volute is directed downstream of the airflow.
  • the pneumatic part of the centrifugal compressor is mainly composed of a deflector, a first-stage impeller, a first-stage diffuser, a curve, a reflux, a secondary impeller, a secondary diffuser, and a volute 21.
  • the centrifugal compressor includes a housing 20 and a volute 21.
  • the distance of the curve from the volute 21 is as far as possible, the length of the first stage diffuser section is reduced, and the length of the cantilever end of the main shaft 20 is increased.
  • the inventors have found that at least the following disadvantages exist in the prior art: reducing the length of the stage of the first stage diffuser causes the gas entering the centrifugal compressor to be insufficiently diffused, which degrades the performance of the unit of the centrifugal compressor. Increasing the length of the main shaft 20 will result in a decrease in the critical speed of the compressor, a decrease in the operational stability of the unit, and a decrease in performance.
  • One of the objects of the present invention is to provide a volute structure, a centrifugal compressor and a refrigeration device for optimizing the aerodynamic structure of the existing centrifugal compressor and improving the performance and stability of the unit.
  • the present invention provides the following technical solutions:
  • the invention provides a volute structure, comprising: a box body, a volute shell and a reflux device;
  • the volute casing includes an inner volute and an outer volute independent of each other, the inner volute and the outer volute Forming a fluid passage between them;
  • the inner volute is disposed with the reflux.
  • the inner volute and the refluxer are formed into a unitary structure by casting.
  • the outer volute and the case are formed into a unitary structure by casting.
  • the joint between the inner volute and the outer volute adopts a rounded transition.
  • the volute structure further includes a curve which is fixed to the reflux.
  • the curve and the refluxer are formed into a unitary structure by casting.
  • the present invention also provides a centrifugal compressor comprising the volute structure provided by any of the technical solutions of the present invention.
  • the centrifugal compressor further includes a housing, and the volute structure further includes a primary diffuser;
  • the casing, the tank, the first diffuser and the returner enclose a first-stage air supply chamber.
  • the centrifugal compressor is a two-stage or multi-stage centrifugal compressor.
  • the present invention further provides a refrigeration apparatus comprising the centrifugal compressor provided by any one of the technical solutions of the present invention.
  • the embodiments of the present invention can at least produce the following technical effects:
  • the volute casing is divided into two separate parts: an inner volute and an outer volute, and the inner volute and the return dam are arranged together.
  • Arranging the inner volute and the returning device can save the space occupied by the inner volute and the returning device, and reduce the structure of the volute, the returning device and the curved connecting body, so that the volute casing and the curve are structurally It can be arranged close enough; at the same time, sufficient length of the first-stage diffuser section is ensured, the pressure-expansion effect of the gas entering the first-stage diffuser is improved, the unit performance of the centrifugal compressor is improved, and the centrifugal compressor is enhanced. Operational stability.
  • the critical speed of the rotating parts of the compressor is increased, and the operating stability and compressor performance of the centrifugal compressor are improved.
  • FIG. 1 is a schematic view showing the arrangement of a pneumatic portion of a two-stage centrifugal compressor with a volute forward leaning in the prior art
  • FIG. 2 is a schematic cross-sectional view showing a partial structure of a volute structure applied to a centrifugal compressor according to an embodiment of the present invention
  • the front and the back of this paper are based on the direction of the airflow entering the volute structure, the front of the airflow is the front, that is, the left side shown in Fig. 2; the downstream of the airflow is the rear, that is, the right side shown in Fig. 2.
  • the embodiment of the invention provides a volute structure, which is preferably applied in a centrifugal compressor and the like, and can be arranged as a forward tilting volute structure (ie, the arrangement shown in FIG. 2, the interior of the volute casing 7)
  • the curved cavity faces the upstream of the airflow, ie the left side, and may also be provided as a backward tilting volute structure.
  • the volute structure is preferably used in a two-stage centrifugal compressor, and can also be used in the last stage of the volute casing of the multi-stage centrifugal compressor, so that the centrifugal compressor structure is more compact, and the stability and the centrifugal type are improved. Compressor performance.
  • the volute structure includes a case 8, a volute case 7, and a returner 5.
  • the volute casing 7 includes mutually independent inner and outer volutes, and a fluid passage is formed between the inner volute and the outer volute for fluid to pass therethrough.
  • the inner volute is arranged with the returnor 5.
  • the volute casing 7 is divided into inner and outer parts in the circumferential direction: an inner volute and an outer volute.
  • the inner volute and the reflow device 5 are arranged together, and at least the following arrangements are provided: the inner volute is fixedly connected to the reflow device 5 or both are integrated structures.
  • the volute casing is divided into two separate parts: an inner volute and an outer volute, and the inner volute and the return dam are arranged together.
  • Arranging the inner volute and the returning device can save the space occupied by the inner volute and the returning device, and reduce the structure of the volute, the returning device and the curved connecting body, so that the volute casing and the curve are structurally
  • the arrangement is close enough; at the same time, sufficient length of the first-stage diffuser section is ensured, the diffusing effect of the gas entering the first-stage diffuser is improved, the unit performance of the centrifugal compressor is improved, and the stability of the centrifugal compressor is enhanced. Sex. At the same time, the length of the main shaft is shortened, the critical speed of the rotating parts of the compressor is increased, and the operating stability of the compressor and the performance of the compressor are improved.
  • the inner volute and the return device are arranged together, thereby reducing the number of components, so that the components of the pneumatic part can be more rationally matched and the aerodynamic performance is better under the premise of keeping the pneumatic part of the centrifugal compressor compact.
  • the critical speed of the centrifugal compressor is related to the length of the main shaft of the centrifugal compressor, and the volute casing is divided into an outer volute and an inner volute.
  • the position of the outer volute and the inner volute can be reasonably set, that is, the arrangement of the volute casing can be solved without affecting the critical speed of the centrifugal compressor and the performance of the unit.
  • the volute casing is divided into two parts, an outer volute and an inner volute, and the length of the main shaft can be shortened on the basis of the existing mechanism to increase the critical speed of the compressor.
  • the increase in critical speed means an increase in compressor stability, while also reducing bearing length or diameter while reducing spindle length, reducing power consumption and improving compressor performance.
  • volute casing is divided into two parts: the outer volute and the inner volute, which can simplify the casting process of the volute.
  • the existing numerical control machining center can be used to carry out secondary processing on the basis of casting on the inner volute.
  • the unit performance and the versatility of the cabinet are conducive to the common use of different models, reducing the number of mold opening times and costs of the new cabinet.
  • volute structure further includes a curve 4 to which the curve 4 is fixed.
  • the inner volute and the curve 4 are simultaneously fixed on the recirculator 5, so that the air supply pipe disposed between the curve and the return device in the existing centrifugal compressor can be omitted, so that Curved and inside
  • the volute can be arranged more compactly in the structure, which in turn makes the two-stage, multi-stage centrifugal compressor compact.
  • a general integrated volute structure is adopted, and a reflow device is installed to avoid the distance between the curve and the volute being too small (that is, the distance from the highest point of the curve to the nearest point of the volute casing in the direction of the main axis is avoided).
  • the axial length of the main shaft must be lengthened, which will reduce the critical speed of the compressor and thus reduce the stability of the compressor.
  • the inner volute and the reflux unit 5 are integrally formed by casting to form a unitary structure, that is, an arc shape of the inner volute is formed outside the reflux unit 5.
  • the inner volute is arranged on the reflow device 5, and is formed by casting, so that the profile of the inner volute can be processed by the current advanced machining center, and the volute structure can be expanded to make the volute and other pneumatic components (impeller, diffuser).
  • the matching is better, the aerodynamic performance is better, and it is not convenient for the structural arrangement, the volute structure is changed, and the aerodynamic performance is affected.
  • the curve 4 and the reflow device 5 are also formed into a unitary structure by casting.
  • the outer volute and the casing 8 are integrally formed by casting, that is, the arc shape of the outer volute is formed inside the casing 8.
  • the inner volute and the reflow device 5 are integrated, and the outer volute and the casing 8 are integrated. It can also be understood that both the reflow device 5 and the casing 8 enclose the volute casing 7.
  • the outer volute is placed on the casing 8
  • the inner volute is placed on the reflow device 5, and the high precision machining of the machining center ensures that the inner and outer volutes are well connected.
  • the joint between the inner volute and the outer volute adopts a rounded transition to avoid misalignment between the two.
  • An embodiment of the present invention further provides a centrifugal compressor comprising the volute structure provided by any one of the technical solutions of the present invention.
  • the entire centrifugal compressor is mainly composed of a casing 1, a first impeller 2, a first-stage diffuser 3, a curve 4, a reflux device 5, a secondary impeller 6, a secondary diffuser 10, and a volute casing.
  • the body 7 and the box 8 are composed.
  • the volute forward leaning finger is biased toward the intake side (the left side in FIG. 2), and the airflow sequentially enters the first stage diffuser 3, the curve 4, the second stage impeller 6, and the secondary diffuser along the first stage impeller 2 10.
  • the volute casing 7 finally achieves gas pressurization.
  • the volute structure is one of the important components of the pneumatic part of the centrifugal compressor, except for the volute structure.
  • the pneumatic part of the heart compressor also includes an impeller and a pneumatic motor.
  • the centrifugal compressor further includes a housing 1, and the volute structure further includes a primary diffuser 3.
  • the casing 1, the casing 8, the primary diffuser 3 and the reflux device 5 enclose a first-stage air supply chamber 9. That is, the casing 8 participates in both the volute casing 7 and the first-stage plenum 9 .
  • the above centrifugal compressor changes the installation position of the first-stage air supply chamber 9, and adopts a casing 1 and a casing 8, a diffuser and a return device 5 to form a first-stage air supply chamber 9, which can be used without
  • the qi function is realized on the premise of adding the air supply components.
  • the centrifugal compressor is a two-stage or multi-stage centrifugal compressor.
  • the embodiment of the invention further provides a refrigeration device, comprising the centrifugal compressor provided by any technical solution of the invention.
  • the refrigeration device with the above centrifugal compressor has a more compact pneumatic structure of the centrifugal compressor, better compressor running stability and better aerodynamic performance.
  • the refrigeration equipment is, for example, an air conditioning unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Abstract

公开了一种蜗壳结构、离心式压缩机及制冷设备。蜗壳结构包括:箱体(8)、蜗壳壳体(1)和回流器(5);蜗壳壳体(1)包括相互独立的内蜗壳和外蜗壳,内蜗壳和外蜗壳之间形成流体通道,内蜗壳与回流器(5)布置在一起。该技术方案能够增加一级扩压器段的长度,改善对进入一级扩压器的气体的扩压效果,进而提高离心式压缩机的机组性能。

Description

蜗壳结构、离心式压缩机及制冷设备
本申请要求于2014年10月16日提交中国专利局、申请号为201410549697.8、发明名称为“蜗壳结构、离心式压缩机及制冷设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及制冷设备领域,具体涉及一种蜗壳结构、离心式压缩机及制冷设备。
背景技术
在双级及多级离心式压缩机结构中,为减小主轴悬臂端长度,提高临界转速,增强稳定性,常常要将多级压缩的气动部分做的非常紧凑,离心式压缩机气动部分所包括的部件数量多,这使得离心式压缩机气动部分的各个部件的布置很困难。尤其是在蜗壳前倾式多级压缩中,蜗壳与一级扩压器出口后的弯道距离很近,结构上无法满足要求。
图1为现有技术中一种蜗壳前倾的双级离心式压缩机气动部分的布置示意图,蜗壳的内部弧形空腔朝向气流下游。离心式压缩机气动部分主要由导流器、一级叶轮、一级扩压器、弯道、回流器、二级叶轮、二级扩压器、蜗壳21组成。离心式压缩机包括壳体20和蜗壳21。现有技术中,为使得结构满足要求,使弯道距离蜗壳21的距离尽量远一些,会缩小一级扩压器段长度,同时增加主轴20悬臂端长度。
发明人发现,现有技术中至少存在下述不足:缩小一级扩压器段的长度会使得进入离心式压缩机的气体不能进行足够的扩压,这会降低离心式压缩机的机组性能。而增加主轴20长度会导致压缩机临界转速降低,机组运行稳定性降低,性能降低。
发明内容
本发明的其中一个目的是提出一种蜗壳结构、离心式压缩机及制冷设备,用以优化现有离心式压缩机的气动结构,提高机组性能与稳定性。
为实现上述目的,本发明提供了以下技术方案:
本发明提供了一种蜗壳结构,其包括:箱体、蜗壳壳体和回流器;
所述蜗壳壳体包括相互独立的内蜗壳和外蜗壳,所述内蜗壳和所述外蜗壳 之间形成流体通道;
所述内蜗壳与所述回流器布置在一起。
如上所述的蜗壳结构,优选的是,所述内蜗壳与所述回流器通过铸造形成一体式结构。
如上所述的蜗壳结构,优选的是,所述外蜗壳与所述箱体通过铸造形成一体式结构。
如上所述的蜗壳结构,优选的是,所述内蜗壳和所述外蜗壳的衔接处采用圆角过渡。
如上所述的蜗壳结构,优选的是,蜗壳结构还包括弯道,所述弯道固定在所述回流器上。
如上所述的蜗壳结构,优选的是,所述弯道与所述回流器通过铸造形成一体式结构。
本发明还提供一种离心式压缩机,其包括本发明任一技术方案所提供的蜗壳结构。
如上所述的离心式压缩机,优选的是,所述离心式压缩机还包括壳体,所述蜗壳结构还包括一级扩压器;
其中,所述壳体、所述箱体、所述一级扩压器和所述回流器之间围成一级补气腔。
如上所述的离心式压缩机,优选的是,所述离心式压缩机为双级或多级离心式压缩机。
本发明再提供一种制冷设备,其包括本发明任一技术方案所提供的离心式压缩机。
基于上述技术方案,本发明实施例至少可以产生如下技术效果:
上述技术方案,将蜗壳壳体分为了独立的两部分:内蜗壳和外蜗壳,且将内蜗壳与回流器布置在一起。将内蜗壳与回流器布置在一起,能够节省内蜗壳和回流器所占的空间,减少了蜗壳、回流器、弯道衔接固定的结构,使得蜗壳壳体与弯道在结构上能够布置的足够近;同时保证了足够的一级扩压器段长度,改善了进入一级扩压器的气体的扩压效果,进而提高离心式压缩机的机组性能,增强了离心式压缩机运行稳定性。另外,在采用上述技术方案时,还可 以缩短主轴长度,这样提高了压缩机转动部件的临界转速,提高了离心式压缩机运行稳定性与压缩机性能。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为现有技术中一种蜗壳前倾的双级离心式压缩机气动部分的布置示意图;
图2为本发明实施例提供的蜗壳结构应用在离心式压缩机中的局部结构剖视示意图;
附图标记:
1、壳体;        2、一级叶轮; 3、一级扩压器;
4、弯道;        5、回流器;   6、二级叶轮;
7、蜗壳壳体;    8、箱体;     9、一级补气腔;
10、二级扩压器; 20、主轴;    21、蜗壳。
具体实施方式
下面结合图2对本发明提供的技术方案进行更为详细的阐述,将本发明提供的任一技术手段进行替换或将本发明提供的任意两个或更多个技术手段或技术特征互相进行组合而得到的技术方案均应该在本发明的保护范围之内。
本文中的前、后是以进入蜗壳结构的气流方向为参照,位于气流上游的为前,即图2所示的左侧;位于气流下游的为后,即图2所示的右侧。
本发明实施例提供一种蜗壳结构,优选应用在离心式压缩机及类似的产品中,可以设置为前倾式蜗壳结构(即图2所示的设置方式,蜗壳壳体7的内部弧形空腔朝向气流上游,即左侧),也可以设置为后倾式蜗壳结构。该蜗壳结构优选用于双级离心式压缩机中,也可用于多级离心式压缩机的蜗壳壳体所在的最后一级,使得离心式压缩机结构更加紧凑,提高稳定性与离心式压缩机性能。
蜗壳结构包括箱体8、蜗壳壳体7和回流器5。蜗壳壳体7包括相互独立的内蜗壳和外蜗壳,内蜗壳和所述外蜗壳之间形成流体通道,以供流体通过。 内蜗壳与回流器5布置在一起。
此处,将蜗壳壳体7沿周向拆分为内外两部分:内蜗壳和外蜗壳。内蜗壳与回流器5布置在一起,则至少有以下几种设置方式:内蜗壳与回流器5固定连接或两者为一体式结构。
上述技术方案,将蜗壳壳体分为了独立的两部分:内蜗壳和外蜗壳,且将内蜗壳与回流器布置在一起。将内蜗壳与回流器布置在一起,能够节省内蜗壳和回流器所占的空间,减少了蜗壳、回流器、弯道衔接固定的结构,使得蜗壳壳体与弯道在结构上布置足够近;同时保证了足够的一级扩压器段长度,改善了进入一级扩压器的气体的扩压效果,进而提高离心式压缩机的机组性能,增强了离心式压缩机运行稳定性。同时,缩短了主轴长度,提高了压缩机转动部件的临界转速,提高了压缩机运行稳定性与压缩机性能。
另外,将内蜗壳与回流器布置在一起,减少了部件数量,故能在保持离心式压缩机气动部分结构紧凑的前提下,使得气动部分的部件参数搭配更加合理,气动性能更加优秀。以将上述蜗壳结构应用在离心式压缩机中为例,离心式压缩机的临界转速与离心式压缩机的主轴长度有关,将蜗壳壳体分为外蜗壳和内蜗壳两部分可以在不改变离心压缩机主轴长度的前提下,使得外蜗壳和内蜗壳的位置能够合理设置,即可以在不影响离心压缩机临界转速和机组性能的前提下解决蜗壳壳体的布置问题。另外,将蜗壳壳体分为外蜗壳和内蜗壳两部分,还可以在现有机构的基础上缩短主轴长度,提高压缩机临界转速。临界转速的提高意味着压缩机稳定性的提高,同时也可以在缩短主轴长度的同时减小轴承长度或者直径,减少耗功,提高压缩机性能。
再则,将蜗壳壳体分为独立的内蜗壳和外蜗壳不会改变蜗壳壳体的形状,故不会对蜗壳气动性能造成影响。另外,将蜗壳壳体分为外蜗壳和内蜗壳两部分,可以简化蜗壳铸造工艺,同时可以采用已有的数控加工中心对内蜗壳在铸造的基础上进行二次加工,提高机组性能与箱体通用性、利于不同机型的通用,降低新箱体的开模次数和费用。
进一步地,蜗壳结构还包括弯道4,弯道4固定在回流器5上。
本实施例中,以将内蜗壳和弯道4同时固定在回流器5上为例,这样可以省去现有离心式压缩机中设置在弯道与回流器之间的补气管道,使得弯道与内 蜗壳在结构上可以布置得更加紧凑,进而使得双级、多级离心式压缩机的结构紧凑。而现有技术中采用一般的整体式蜗壳结构,为安装回流器,避免弯道与蜗壳距离过小(即避免弯道的最高点距离蜗壳壳体的最近一点沿主轴方向的距离),必须要将主轴的轴向长度加长,这样会降低压缩机临界转速,进而降低压缩机稳定性。
此处,内蜗壳与回流器5具体通过铸造形成一体式结构,即内蜗壳的弧形形状形成在回流器5的外侧。将内蜗壳布置在回流器5上,通过铸造成型,使得可以通过目前先进的加工中心对内蜗壳的型线进行加工,拓展蜗壳结构,使得蜗壳与其他气动元件(叶轮、扩压器)匹配更好,气动性能更加优秀,而不至于为了结构布置方便,更改蜗壳结构,影响气动性能。
为提高整体结构的强度和减小安装难度,弯道4与回流器5也通过铸造形成一体式结构。
进一步地,外蜗壳与箱体8通过铸造形成一体式结构,即外蜗壳的弧形形状形成在箱体8的内侧。采用此结构在整体布置上可以采用更加优秀的蜗壳型线,而不至于为了结构布置方便,更改蜗壳结构,影响气动性能。
此处,同时采用内蜗壳与回流器5为一体式结构、外蜗壳与箱体8为一体式结构也可以理解为回流器5和箱体8两者围成了蜗壳壳体7。本实施例中,将外蜗壳置于箱体8上,内蜗壳置于回流器5上,通过精密铸造与加工中心的高精度加工保证内、外蜗壳衔接良好。
本实施例中,进一步地,内蜗壳和外蜗壳的衔接处采用圆角过渡,以避免两者的衔接错位。
本发明实施例还提供一种离心式压缩机,其包括本发明任一技术方案提供的蜗壳结构。
参见图2,整个离心式压缩机主要由壳体1、一级叶轮2、一级扩压器3、弯道4、回流器5、二级叶轮6、二级扩压器10、蜗壳壳体7、箱体8组成。其中,蜗壳前倾指偏向于进气侧(图2中左侧),气流沿一级叶轮2顺次进入一级扩压器3、弯道4、二级叶轮6、二级扩压器10、蜗壳壳体7,最终实现气体增压。
蜗壳结构是离心式压缩机气动部分的重要部件之一,除蜗壳结构之外,离 心式压缩机气动部分还包括叶轮和气动电机。
进一步地,离心式压缩机还包括壳体1,蜗壳结构还包括一级扩压器3。其中,壳体1、箱体8、一级扩压器3和回流器5之间围成一级补气腔9。即箱体8既参与构成蜗壳壳体7、又参与构成一级补气腔9。
上述离心式压缩机,改变了一级补气腔9的设置位置,且采用壳体1、箱体8、扩压器和回流器5之间围成一级补气腔9,可以在不另外增加补气部件的前提下实现补气功能。
承上述,离心式压缩机为双级或多级离心式压缩机。
本发明实施例还提供一种制冷设备,包括本发明任一技术方案提供的离心式压缩机。具有上述离心式压缩机的制冷设备,其离心式压缩机气动结构更加紧凑,压缩机运行稳定性更好,气动性能更加优秀。制冷设备比如为空调机组。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为便于描述本发明和简化描述,而不是指示或暗指所指的装置或元件必须具有特定的方位、为特定的方位构造和操作,因而不能理解为对本发明保护内容的限制。
如果本文中使用了“第一”、“第二”等词语来限定零部件的话,本领域技术人员应该知晓:“第一”、“第二”的使用仅仅是为了便于描述上对零部件进行区别如没有另行声明外,上述词语并没有特殊的含义。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (10)

  1. 一种蜗壳结构,其特征在于,包括:箱体、蜗壳壳体和回流器;
    所述蜗壳壳体包括相互独立的内蜗壳和外蜗壳,所述内蜗壳和所述外蜗壳之间形成流体通道;
    所述内蜗壳与所述回流器布置在一起。
  2. 根据权利要求1所述的蜗壳结构,其特征在于,所述内蜗壳与所述回流器通过铸造形成一体式结构。
  3. 根据权利要求1所述的蜗壳结构,其特征在于,所述外蜗壳与所述箱体通过铸造形成一体式结构。
  4. 根据权利要求1-3任一所述的蜗壳结构,其特征在于,所述内蜗壳和所述外蜗壳的衔接处采用圆角过渡。
  5. 根据权利要求1-3任一所述的蜗壳结构,其特征在于,还包括弯道,所述弯道固定在所述回流器上。
  6. 根据权利要求5所述的蜗壳结构,其特征在于,所述弯道与所述回流器通过铸造形成一体式结构。
  7. 一种离心式压缩机,其特征在于,包括权利要求1-6任一所述的蜗壳结构。
  8. 根据权利要求7所述的离心式压缩机,其特征在于,所述离心式压缩机还包括壳体,所述蜗壳结构还包括一级扩压器;
    其中,所述壳体、所述箱体、所述一级扩压器和所述回流器之间围成一级补气腔。
  9. 根据权利要求7所述的离心式压缩机,其特征在于,所述离心式压缩机为双级或多级离心式压缩机。
  10. 一种制冷设备,其特征在于,包括权利要求7-9任一所述的离心式压缩机。
PCT/CN2014/095093 2014-10-16 2014-12-26 蜗壳结构、离心式压缩机及制冷设备 WO2016058271A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/516,108 US20170306981A1 (en) 2014-10-16 2014-12-26 Volute Structure, Centrifugal Compressor and Refrigeration Equipment
EP14903991.9A EP3208471A4 (en) 2014-10-16 2014-12-26 Volute structure, centrifugal compressor and refrigeration device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410549697.8 2014-10-16
CN201410549697.8A CN104454652B (zh) 2014-10-16 2014-10-16 蜗壳结构、离心式压缩机及制冷设备

Publications (1)

Publication Number Publication Date
WO2016058271A1 true WO2016058271A1 (zh) 2016-04-21

Family

ID=52901233

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2014/095093 WO2016058271A1 (zh) 2014-10-16 2014-12-26 蜗壳结构、离心式压缩机及制冷设备
PCT/CN2015/079241 WO2016058379A1 (zh) 2014-10-16 2015-05-19 用于离心式压缩机的蜗壳结构、离心式压缩机及制冷设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079241 WO2016058379A1 (zh) 2014-10-16 2015-05-19 用于离心式压缩机的蜗壳结构、离心式压缩机及制冷设备

Country Status (4)

Country Link
US (1) US20170306981A1 (zh)
EP (1) EP3208471A4 (zh)
CN (1) CN104454652B (zh)
WO (2) WO2016058271A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104454652B (zh) * 2014-10-16 2017-07-25 珠海格力电器股份有限公司 蜗壳结构、离心式压缩机及制冷设备
CN105114327A (zh) * 2015-09-15 2015-12-02 珠海格力电器股份有限公司 多级压缩机及具有其的制冷系统
CN105240320B (zh) * 2015-10-15 2019-01-22 珠海格力电器股份有限公司 一种离心式压缩机补气结构及压缩机
WO2017169496A1 (ja) * 2016-03-28 2017-10-05 三菱重工コンプレッサ株式会社 回転機械
CN106762841B (zh) * 2016-12-05 2020-06-30 珠海格力电器股份有限公司 一种回流器与扩压器一体化结构及离心压缩机
CN107165869A (zh) * 2017-06-13 2017-09-15 珠海格力电器股份有限公司 压缩机补气结构和压缩机
JP6935312B2 (ja) * 2017-11-29 2021-09-15 三菱重工コンプレッサ株式会社 多段遠心圧縮機
CN110469543A (zh) * 2019-09-12 2019-11-19 中国船舶重工集团公司第七0四研究所 离心通风机柱式蜗舌
CN113566279A (zh) * 2020-04-29 2021-10-29 宁波奥克斯电气股份有限公司 一种新风装置及空调器
CN113931821B (zh) * 2021-08-27 2024-03-15 戚明海 一种空气收集压缩装置
CN114645859A (zh) * 2022-05-02 2022-06-21 烟台东德实业有限公司 一种双侧两级高速离心空压机与膨胀机集成系统
WO2024087826A1 (zh) * 2022-10-26 2024-05-02 青岛海信日立空调系统有限公司 室外机以及空调系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6935838B1 (en) * 2003-03-19 2005-08-30 Hi-Bar Blowers, Inc. High pressure multi-stage centrifugal blower
US20100272561A1 (en) * 2009-04-27 2010-10-28 Elliott Company Boltless Multi-part Diaphragm for Use with a Centrifugal Compressor
CN202811531U (zh) * 2012-07-27 2013-03-20 湖南航翔燃气轮机有限公司 回流器和离心压气机
CN103016363A (zh) * 2011-09-26 2013-04-03 珠海格力电器股份有限公司 一种离心压缩机及其控制方法
WO2014072288A1 (en) * 2012-11-06 2014-05-15 Nuovo Pignone Srl Centrifugal compressor with twisted return channel vane
CN204175653U (zh) * 2014-10-16 2015-02-25 珠海格力电器股份有限公司 蜗壳结构、离心式压缩机及制冷设备

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH417340A (de) * 1964-07-14 1966-07-15 Emile Egger & Cie S A Mehrzweck-Pumpenaggregat
US5988976A (en) * 1998-05-18 1999-11-23 Itt Manufacturing Enterprises, Inc. Scroll, for a fluid-working device
JP2003083281A (ja) * 2001-09-06 2003-03-19 Mitsubishi Heavy Ind Ltd 多段遠心圧縮機の改造方法
JP4321037B2 (ja) * 2002-10-25 2009-08-26 株式会社豊田中央研究所 ターボチャージャ用遠心圧縮機
DE102009055614B4 (de) * 2009-01-15 2017-03-23 Mann + Hummel Gmbh Turbolader mit einem Verdichtergehäuse aus Kunststoff
JP2010285899A (ja) * 2009-06-10 2010-12-24 Otics Corp 過給機用コンプレッサハウジング
JP2011043130A (ja) * 2009-08-24 2011-03-03 Hitachi Appliances Inc 遠心圧縮機及び冷凍装置
CN103075370B (zh) * 2011-10-26 2015-06-17 珠海格力电器股份有限公司 可调扩压器结构及具有该可调扩压器结构的压缩机
EP2607708B1 (de) * 2011-12-23 2020-02-26 Grundfos Holding A/S Elektromotor
JP5369198B2 (ja) * 2012-01-05 2013-12-18 トヨタ自動車株式会社 コンプレッサハウジング
CN103206389B (zh) * 2012-01-12 2015-10-14 珠海格力电器股份有限公司 多级制冷压缩机及其中间补气结构
JP2013167183A (ja) * 2012-02-15 2013-08-29 Isuzu Motors Ltd 遠心式ポンプと車両用の冷却装置
JP5985329B2 (ja) * 2012-09-21 2016-09-06 株式会社オティックス ターボチャージャ及びその製造方法
JP2014088785A (ja) * 2012-10-29 2014-05-15 Otics Corp 過給機用のコンプレッサハウジング
CN103016409A (zh) * 2012-12-24 2013-04-03 烟台蓝德空调工业有限责任公司 一种新型多级压缩离心式制冷压缩机的级间补气装置
CN203670285U (zh) * 2013-08-26 2014-06-25 重庆美的通用制冷设备有限公司 离心式压缩机及其蜗壳组件
CN104454652B (zh) * 2014-10-16 2017-07-25 珠海格力电器股份有限公司 蜗壳结构、离心式压缩机及制冷设备
JP6001707B2 (ja) * 2015-02-25 2016-10-05 株式会社オティックス 過給機用のコンプレッサハウジング
JPWO2016136037A1 (ja) * 2015-02-25 2017-11-30 株式会社オティックス 過給機用のコンプレッサハウジング

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6935838B1 (en) * 2003-03-19 2005-08-30 Hi-Bar Blowers, Inc. High pressure multi-stage centrifugal blower
US20100272561A1 (en) * 2009-04-27 2010-10-28 Elliott Company Boltless Multi-part Diaphragm for Use with a Centrifugal Compressor
CN103016363A (zh) * 2011-09-26 2013-04-03 珠海格力电器股份有限公司 一种离心压缩机及其控制方法
CN202811531U (zh) * 2012-07-27 2013-03-20 湖南航翔燃气轮机有限公司 回流器和离心压气机
WO2014072288A1 (en) * 2012-11-06 2014-05-15 Nuovo Pignone Srl Centrifugal compressor with twisted return channel vane
CN204175653U (zh) * 2014-10-16 2015-02-25 珠海格力电器股份有限公司 蜗壳结构、离心式压缩机及制冷设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3208471A4 *

Also Published As

Publication number Publication date
CN104454652B (zh) 2017-07-25
CN104454652A (zh) 2015-03-25
WO2016058379A1 (zh) 2016-04-21
US20170306981A1 (en) 2017-10-26
EP3208471A4 (en) 2018-05-30
EP3208471A1 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
WO2016058271A1 (zh) 蜗壳结构、离心式压缩机及制冷设备
WO2021189809A1 (zh) 送风系统、蜗壳及空调
WO2016019689A1 (zh) 多级压缩机和空调器
CN105401986A (zh) 航空发动机高压涡轮冷却气流路布置结构
WO2018205631A1 (zh) 回流器叶片、压缩机结构和压缩机
CN106460563A (zh) 涡轮的换气构造
CN112855625A (zh) 风扇降噪结构
WO2017041727A1 (zh) 一种空调、鼓形蜗壳风道系统及其风道蜗壳
CN101451544A (zh) 一种处理机匣及压气机
CN109469645B (zh) 一种离心风机蜗壳
US11073164B2 (en) Centrifugal compressor and turbocharger including the same
CN101566165A (zh) 同步后流通风压缩机
JP2013160232A (ja) ガスタービンシステム
CN102588349B (zh) 用于管道内排风排尘的轴流风机
CN105041648B (zh) 一种螺杆压缩机及其机体
JP2017520716A (ja) 排気駆動過給機のタービンの流出領域
CN201176968Y (zh) 一种驻室式处理机匣及压气机
CN208804046U (zh) 离心风机及吸油烟机
CN204175653U (zh) 蜗壳结构、离心式压缩机及制冷设备
WO2019104993A1 (zh) 压缩机及具有其的空调器
CN216518846U (zh) 压缩机壳体、空气循环机壳体和空气循环机
CN205154271U (zh) 航空发动机高压涡轮冷却气流路布置结构
CN110857791A (zh) 一种具有集流器的吸油烟机
CN110185640B (zh) 离心风机、家用电器
CN108916110A (zh) 叶轮、风机及油烟机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903991

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014903991

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014903991

Country of ref document: EP

Ref document number: 15516108

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE