WO2016056547A1 - 分離膜および分離膜エレメントおよび分離膜モジュール - Google Patents
分離膜および分離膜エレメントおよび分離膜モジュール Download PDFInfo
- Publication number
- WO2016056547A1 WO2016056547A1 PCT/JP2015/078331 JP2015078331W WO2016056547A1 WO 2016056547 A1 WO2016056547 A1 WO 2016056547A1 JP 2015078331 W JP2015078331 W JP 2015078331W WO 2016056547 A1 WO2016056547 A1 WO 2016056547A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- separation membrane
- membrane
- water
- formula
- separation
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 287
- 238000000926 separation method Methods 0.000 title claims abstract description 219
- 238000009292 forward osmosis Methods 0.000 claims abstract description 53
- 229920000642 polymer Polymers 0.000 claims abstract description 45
- 238000009826 distribution Methods 0.000 claims abstract description 38
- 238000001069 Raman spectroscopy Methods 0.000 claims abstract description 20
- 239000012510 hollow fiber Substances 0.000 claims description 26
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 18
- 230000002209 hydrophobic effect Effects 0.000 claims description 16
- 229920000412 polyarylene Polymers 0.000 claims description 13
- 238000006277 sulfonation reaction Methods 0.000 claims description 11
- 229920001577 copolymer Polymers 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 143
- 230000035699 permeability Effects 0.000 abstract description 47
- 239000000126 substance Substances 0.000 abstract description 19
- 230000010287 polarization Effects 0.000 abstract description 8
- 239000010408 film Substances 0.000 description 66
- 238000000034 method Methods 0.000 description 66
- 239000010410 layer Substances 0.000 description 51
- 239000002904 solvent Substances 0.000 description 48
- 239000000243 solution Substances 0.000 description 43
- 238000001223 reverse osmosis Methods 0.000 description 33
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 32
- 238000005259 measurement Methods 0.000 description 30
- 239000007788 liquid Substances 0.000 description 27
- 239000011148 porous material Substances 0.000 description 23
- 150000003839 salts Chemical class 0.000 description 23
- 230000015572 biosynthetic process Effects 0.000 description 22
- 238000006116 polymerization reaction Methods 0.000 description 22
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 21
- 239000011550 stock solution Substances 0.000 description 21
- 238000005345 coagulation Methods 0.000 description 20
- 230000015271 coagulation Effects 0.000 description 20
- 239000008186 active pharmaceutical agent Substances 0.000 description 19
- 239000000463 material Substances 0.000 description 17
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 16
- 239000007864 aqueous solution Substances 0.000 description 16
- 238000001035 drying Methods 0.000 description 14
- 238000011156 evaluation Methods 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 13
- 239000000203 mixture Substances 0.000 description 11
- 230000003204 osmotic effect Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 239000004952 Polyamide Substances 0.000 description 10
- 229920002647 polyamide Polymers 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 238000005406 washing Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 8
- 239000013535 sea water Substances 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- 125000000542 sulfonic acid group Chemical group 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229920002678 cellulose Polymers 0.000 description 6
- 239000001913 cellulose Substances 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 239000013505 freshwater Substances 0.000 description 6
- 238000005191 phase separation Methods 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 5
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 238000001237 Raman spectrum Methods 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000002346 layers by function Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229910000027 potassium carbonate Inorganic materials 0.000 description 4
- 235000011181 potassium carbonates Nutrition 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000008400 supply water Substances 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 238000001728 nano-filtration Methods 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- KGKGSIUWJCAFPX-UHFFFAOYSA-N 2,6-dichlorothiobenzamide Chemical compound NC(=S)C1=C(Cl)C=CC=C1Cl KGKGSIUWJCAFPX-UHFFFAOYSA-N 0.000 description 2
- 101100395484 Arabidopsis thaliana HPD gene Proteins 0.000 description 2
- 102100036218 DNA replication complex GINS protein PSF2 Human genes 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 101000736065 Homo sapiens DNA replication complex GINS protein PSF2 Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 238000012695 Interfacial polymerization Methods 0.000 description 2
- 101100463166 Oryza sativa subsp. japonica PDS gene Proteins 0.000 description 2
- 101150061817 PDS1 gene Proteins 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 101100234296 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KEX2 gene Proteins 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- -1 aromatic diol Chemical class 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- KZTYYGOKRVBIMI-UHFFFAOYSA-N diphenyl sulfone Chemical compound C=1C=CC=CC=1S(=O)(=O)C1=CC=CC=C1 KZTYYGOKRVBIMI-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 239000012527 feed solution Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002121 nanofiber Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 229960003975 potassium Drugs 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- YOYAIZYFCNQIRF-UHFFFAOYSA-N 2,6-dichlorobenzonitrile Chemical compound ClC1=CC=CC(Cl)=C1C#N YOYAIZYFCNQIRF-UHFFFAOYSA-N 0.000 description 1
- GPAPPPVRLPGFEQ-UHFFFAOYSA-N 4,4'-dichlorodiphenyl sulfone Chemical compound C1=CC(Cl)=CC=C1S(=O)(=O)C1=CC=C(Cl)C=C1 GPAPPPVRLPGFEQ-UHFFFAOYSA-N 0.000 description 1
- 208000029422 Hypernatremia Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical group OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- JFDZBHWFFUWGJE-KWCOIAHCSA-N benzonitrile Chemical group N#[11C]C1=CC=CC=C1 JFDZBHWFFUWGJE-KWCOIAHCSA-N 0.000 description 1
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical compound C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- HJUFTIJOISQSKQ-UHFFFAOYSA-N fenoxycarb Chemical compound C1=CC(OCCNC(=O)OCC)=CC=C1OC1=CC=CC=C1 HJUFTIJOISQSKQ-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/52—Polyethers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/002—Forward osmosis or direct osmosis
- B01D61/0021—Forward osmosis or direct osmosis comprising multiple forward osmosis steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1218—Layers having the same chemical composition, but different properties, e.g. pore size, molecular weight or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/66—Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
- B01D71/68—Polysulfones; Polyethersulfones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/76—Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
- B01D71/80—Block polymers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/445—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/38—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
- C08G65/40—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
- C08G65/4012—Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
- C08G65/4056—(I) or (II) containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/20—Polysulfones
- C08G75/23—Polyethersulfones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
- B01D2325/022—Asymmetric membranes
- B01D2325/023—Dense layer within the membrane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/04—Characteristic thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/14—Membrane materials having negatively charged functional groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/36—Hydrophilic membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/38—Hydrophobic membranes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/12—Halogens or halogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2340/00—Filter material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Definitions
- the present invention relates to a separation membrane, a separation membrane element, and a separation membrane module that are particularly suitable for forward osmosis treatment and that have both excellent separation characteristics and high water permeability while using a material having excellent chemical durability.
- Water treatment methods using reverse osmosis and nanofiltration methods use cellulose or polyamide as a membrane material and apply a pressure higher than the osmotic pressure to the supply liquid side to prevent permeation of the substance to be separated in the supply water. It is a processing method that selectively transmits the above.
- the forward osmosis method is a water treatment method in which water or the like in a feed liquid is collected into a draw solution that is a high osmotic pressure solution through a separation membrane made of cellulose, polyamide, or the like.
- the water recovered in the draw solution may be separated from the draw solution (solute) in the subsequent step or may be used as it is.
- the forward osmosis method unlike the reverse osmosis method in the process of recovering water and the like from the above-mentioned supply liquid to the draw solution side, it does not require high-pressure treatment, piping that can withstand high pressure, and the initial investment cost, The running cost for driving can be kept low.
- a membrane separation or a heat separation operation is performed, so that a high pressure treatment and a high temperature treatment are required.
- the solute used in the draw solution not only the one having an osmotic pressure sufficiently higher than the osmotic pressure of the supply solution but also the one that can be easily separated from the draw solution is selected.
- the cost of the method can be reduced as compared with the reverse osmosis method and the nanofiltration method.
- the forward osmosis method does not apply pressure to the supply liquid side unlike the reverse osmosis method, so when obtaining the same amount of treated water as the reverse osmosis method, the number of collisions of membrane contaminants in the supply liquid with the membrane surface And there is an advantage that the risk of fouling on the film surface is low. Therefore, compared to the reverse osmosis method, which required a multi-stage pretreatment process before the membrane treatment process, it is possible to reduce the number of pretreatments or perform the forward osmosis membrane treatment process without the pretreatment process. It is.
- the membrane for reverse osmosis has an optimum membrane structure so as to obtain a high water permeability when pressure is applied to the supply liquid side, and is high during processing under atmospheric pressure as in the forward osmosis method.
- the water permeability cannot be demonstrated.
- Patent Document 1 discloses a technique of forming a polyamide thin film on a support film having a porosity as high as possible by an interfacial polymerization method.
- Patent Document 2 discloses an asymmetric hollow fiber membrane using cellulose.
- the polyamide composite membrane described in Patent Document 1 pays attention to salt retention in the support membrane that supports the separation functional layer, and by increasing the porosity of the support membrane, the salt content suitable for the membrane for the forward osmosis method is increased. Efforts are being made to approach a membrane structure that is less prone to pooling and that can reduce concentration polarization. However, since a composite membrane having a support membrane and a separation functional layer needs to have a certain mechanical strength in production, a support membrane having a thickness of several tens of micrometers or more and a substrate for further supporting them are required. Have.
- the cellulose asymmetric membrane described in Patent Document 2 is a hollow fiber-shaped membrane and is self-supporting, it can be made thinner than the composite membrane. However, since the porosity is relatively low, it has a membrane structure in which the draw solute that causes concentration polarization tends to stay. In addition, since the cellulose asymmetric membrane has a narrow pH range that can be operated while maintaining the membrane performance, there is a problem that the available draw solute is limited when used in the forward osmosis method.
- the present invention has been made in order to solve the above-described problems.
- the object of the present invention is to reduce concentration polarization by appropriately controlling the distribution while having a high porosity, and to achieve high water permeability and self-containment.
- An object of the present invention is to provide a membrane for a forward osmosis method having high chemical durability so as to be compatible with support and to be applicable to various draw solutions.
- cellulose acetate and polyamide have been used as membrane materials for reverse osmosis and nanofiltration. Since these membranes are excellent in the exclusion of ions, they can be used for forward osmosis. However, the performance required for a membrane for forward osmosis is different from the performance required for a membrane for reverse osmosis, and it is possible to operate with various draw solutes, and atmospheric pressure such as forward osmosis. It is to show high water permeability even under operation.
- a polyamide composite flat membrane is generally produced by a method in which a support layer is formed on a base material and a polyamide functional layer is formed on the support layer by interfacial polymerization.
- the base material and the support layer need a certain degree of strength and thickness in order to maintain the self-supporting property of the flat membrane.
- SPAE sulfonated polyarylene ether
- SPAE has a repeating structure of a repeating unit of a hydrophobic segment represented by the following formula (I) and a repeating unit of a hydrophilic segment represented by the following formula (II).
- the hydrophobic segment has a high cohesive force, the mechanical strength is high and the swelling of the membrane in a water-containing state is small, so that excellent ion separation property is exhibited.
- m and n each represent a natural number of 1 or more
- R 1 and R 2 represent —SO 3 M
- M represents a metal element
- the formula (in the sulfonated polyarylene ether copolymer is greater than 10% and less than 50%.
- the removal performance and the water permeation performance are in a trade-off relationship, and it is difficult to achieve two elements at a high level at the same time.
- film formation is performed under conditions where the porosity is increased in order to obtain high water permeability, the permeation of solutes to be excluded is allowed as a result, and film formation is performed under conditions where the porosity is decreased in order to obtain high removal performance.
- water permeability is impaired.
- the inventor appropriately formed the porosity and the distribution of pores by forming a membrane using SPAE as a raw material by a non-solvent induced phase separation method and adjusting the phase separation conditions. I found out that it can be controlled. It was also found that the distribution of vacancies can be measured by measuring the distribution of S atoms in SPAE by Raman spectroscopy. In other words, SPAE, which is excellent in chemical durability, is used as a membrane material for the forward osmosis method, and the porosity of the membrane is controlled at a high level. Furthermore, by appropriately controlling the distribution of pores, The inventors have found that high water permeability can be achieved while preventing membrane permeation, and have reached the present invention.
- the present invention has been completed based on the above findings and has the following configurations (1) to (8).
- (1) A separation membrane having an inclined structure from the outer surface side to the inner surface side. When the distribution of polymer density in the film thickness direction is measured by Raman spectroscopy, the thickness and density of the layer having a dense polymer density are reduced. The ratio of the thickness of the layer is 0.25 ⁇ (thickness of the sparse layer) / [(thickness of the dense layer) + (thickness of the sparse layer)] ⁇ 0.6.
- Separation membrane (2) The separation membrane according to (1), wherein the separation membrane has a porosity of 60 to 85%.
- the separation membrane is composed of a sulfonated polyarylene ether having a repeating structure of a hydrophobic segment represented by the following formula (III) and a hydrophilic segment represented by the following formula (IV).
- the separation membrane according to (1) or (2).
- X is either the following formula (V) or (VI)
- Y is a single bond or any one of the following formulas (VII) to (X):
- Z is a single bond or any one of the following formulas (VII), (XI) and (X)
- W is a single bond or any one of the following formulas (VII), (XI) and (X),
- Y and W are not selected to be the same,
- a and b each represent a natural number of 1 or more,
- R 1 and R 2 represent —SO 3 M,
- M represents a metal element,
- Sulfonation rate expressed as a percentage ratio of the number of repetitions of formula (IV) to the sum of the number of repetitions of formula (III) and formula (IV) in the sulfonated polyarylene ether copolymer is from 10% Larger than 50%.
- the sulfonated polyarylene ether copolymer has a repeating structure of a hydrophobic segment represented by the following formula (I) and a hydrophilic segment represented by the following formula (II).
- the separation membrane according to (3) In the above formula, m and n each represent a natural number of 1 or more, R 1 and R 2 represent —SO 3 M, M represents a metal element, and the formula (in the sulfonated polyarylene ether copolymer ( The sulfonation rate, expressed as a percentage of the number of repetitions of formula (II) to the sum of the number of repetitions of I) and formula (II), is greater than 10% and less than 50%.
- separation membrane according to any one of (1) to (4), wherein the separation membrane is a forward osmosis membrane.
- a separation membrane element comprising the separation membrane according to any one of (1) to (6).
- a separation membrane module comprising one or more separation membrane elements according to (7).
- the separation membrane of the present invention uses SPAE as a membrane material, it has high chemical durability and can be applied to the forward osmosis method in combination with various draw solutions. Moreover, since the separation membrane of the present invention appropriately controls the distribution while maintaining a high porosity, it can achieve both high removal performance and high water permeability as a membrane for the forward osmosis method.
- the separation membrane of the present invention was prepared by selecting SPAE as a raw material, and then preparing a membrane having an inclined structure from the outer surface side to the inner surface side, and measuring the polymer density in the film thickness direction by Raman spectroscopy.
- the ratio of the thickness of the dense polymer layer to the thickness of the sparse layer is 0.25 ⁇ (thickness of the sparse layer) / [(thickness of the dense layer) + (thickness of the sparse layer)] ⁇ 0. It has the greatest feature in controlling to be in the range of 6. Conventionally, there has not been a separation membrane that achieves both removal performance and water permeation performance while maintaining chemical durability from such a viewpoint.
- the draw solution side may be dense and the feed solution side may be sparse, the draw solution side may be sparse, and the feed solution side may be dense. Also good.
- the inner layer side may be dense and the outer layer side may be sparse, or the inner layer side may be sparse and the outer layer side may be dense.
- the hollow fiber type separation membrane will be described as an example having a structure in which the outer layer side is dense and the inner layer side is sparse.
- the inclined structure of the separation membrane of the present invention is analyzed using a micro Raman spectroscope.
- the microscopic Raman spectroscopic device is a device that detects Raman scattered light generated by irradiating a measurement sample with laser light and separates it to obtain a Raman spectrum. Since the Raman spectrum is specific to a substance, and the intensity of Raman scattered light is proportional to the concentration of the substance, it is possible to analyze the distribution state from the intensity ratio of the peak specific to the sample.
- a separation membrane made of SPAE of the present invention is embedded in ice, and a cross section is created with a microtome. Analysis is performed using a laser Raman microscope RAMAN-11 manufactured by Nanophoton Co., Ltd. with the prepared cross-sectional sample immersed in water.
- the inclined structure of the separation membrane can be measured by mapping or imaging measurement under normal measurement conditions using a commonly used microscopic Raman spectrometer.
- an objective lens having a spatial resolution of 2 ⁇ m or less.
- the intensity of the laser light source at the time of measurement can be arbitrarily set in such a range that a Raman spectrum can be obtained with an exposure time of several seconds to several tens of minutes, so weak that the sample does not deteriorate during measurement.
- the peak of the Raman spectrum for analyzing the distribution state is not particularly defined, but it is desirable to use a peak having a high intensity as an index, such as stretching vibration of a benzene ring near 1600 cm ⁇ 1 .
- the peak intensity ratio can be calculated from the peak area or peak height of the selected peak.
- Figure 1 shows an example of the results of analysis by Raman spectroscopy.
- the X axis indicates the position in the film thickness direction in the film cross section, and the Y axis indicates the measured intensity.
- the obtained peak indicates the intensity of the peak derived from SPAE, and the intensity ratio indicates the density of the SPAE polymer in the separation membrane.
- the strength was measured from the inside of the membrane toward the outside of the membrane at 1 ⁇ m intervals while observing the membrane sample of FIG. 1 with a microscope.
- the intensity in the range indicated by the broken line arrow in FIG. 1 was measured, and only the intensity measurement data in the range indicated by the solid line arrow where the film exists was taken out and used as the density distribution data of the film.
- A is smaller than 0.25, since the ratio of the layer having a high polymer density is high, the membrane performance in a system in which pressure is applied to the supply liquid side as in reverse osmosis separation is improved. In such an operation under atmospheric pressure, sufficient water permeability cannot be obtained or water permeability cannot be confirmed.
- A is larger than 0.6, the ratio of the layer having a dense polymer density is low, so that permeation of the substance to be removed and the draw solute is permitted, resulting in a small osmotic pressure difference through the membrane. Therefore, the water permeability is also lowered at the same time. That is, there are problems that impurities in the feed water and draw solutes permeate the membrane and the water permeation performance is low, which is not suitable as a forward osmosis separation membrane.
- the separation membrane of the present invention is suitably used for removing inorganic substances and impurities in seawater and wastewater mainly by the forward osmosis method, and has a sodium chloride removal performance of 30% or more when subjected to reverse osmosis evaluation. It is preferable that it is 50% or more.
- the SPAE used as the material for the separation membrane of the present invention is preferably a polymer obtained by copolymerizing a hydrophilic monomer having a sulfonic acid group and a hydrophobic monomer having no sulfonic acid group.
- this SPAE it is possible to suitably select the chemical structures of a hydrophilic monomer having a sulfonic acid group and a hydrophobic monomer. Specifically, a chemical structure having high rigidity should be selected appropriately. Thus, it is possible to form a separation membrane that does not easily swell with water. Further, in the copolymerization reaction, the amount of sulfonic acid groups introduced can be precisely controlled with good reproducibility by adjusting the amount of each monomer charged.
- SPAE As another method for obtaining SPAE, there is a method of sulfonating a known polyarylene ether with sulfuric acid, but it is difficult to precisely control the introduction ratio of the sulfonic acid group, and the molecular weight tends to decrease during the reaction. This is not preferable.
- the structure of SPAE obtained by direct copolymerization is from the repeating structure of a hydrophobic segment represented by the following formula (III) in which the benzene rings are connected by an ether bond and a hydrophilic segment represented by the following formula (IV).
- a polymer having a basic skeleton is preferable because it exhibits a rigid molecular skeleton and excellent chemical durability.
- X is either the following formula (V) or (VI)
- Y is a single bond or any one of the following formulas (VII) to (X):
- Z is a single bond or any one of the following formulas (VII), (XI) and (X)
- W is a single bond or any one of the following formulas (VII), (XI) and (X)
- a and b each represent a natural number of 1 or more
- R 1 and R 2 represent —SO 3 M
- M represents a metal element
- Sulfonation rate expressed as a percentage ratio of the number of repetitions of formula (IV) to the sum of the number of repetitions of formula (III) and formula (IV) in the sulfonated polyarylene ether copolymer is from 10% Larger than 50%.
- SPAE can be obtained by a conventionally known method. For example, it can be obtained by polymerization by an aromatic nucleophilic substitution reaction containing the compound of the above general formula (III) and the compound of the general formula (IV) as monomers. .
- an activated difluoroaromatic compound and / or a dichloroaromatic compound and an aromatic diol containing the compound of the general formula (III) and the compound of the general formula (IV) are basic.
- the reaction can be carried out in the presence of the compound.
- the polymerization can be carried out in a temperature range of 0 to 350 ° C., but a temperature of 50 to 250 ° C. is preferable. When the temperature is lower than 0 ° C., the reaction does not proceed sufficiently. When the temperature is higher than 350 ° C., decomposition of the polymer tends to start.
- the reaction can be performed in the absence of a solvent, but is preferably performed in a solvent.
- the solvent that can be used include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, diphenyl sulfone, sulfolane, and the like.
- organic solvents may be used alone or as a mixture of two or more.
- the basic compound include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like, and those that can convert an aromatic diol into an active phenoxide structure may be used.
- water may be generated as a by-product.
- water can be removed from the system as an azeotrope by coexisting toluene or the like in the reaction system.
- a water absorbing material such as molecular sieve can also be used.
- the aromatic nucleophilic substitution reaction is carried out in a solvent
- the amount is less than 5% by mass, the degree of polymerization tends to be difficult to increase.
- the amount is more than 50% by mass, the viscosity of the reaction system becomes too high, and the post-treatment of the reaction product tends to be difficult.
- the solvent is removed from the reaction solution by evaporation, and the residue is washed as necessary to obtain the desired polymer.
- the polymer can be obtained by precipitating the polymer as a solid by adding the reaction solution in a solvent having low polymer solubility, and collecting the precipitate by filtration.
- the ion exchange capacity IEC that is, milliequivalents of sulfonic acid groups per 1 g of sulfonated polymer
- IEC milliequivalents of sulfonic acid groups per 1 g of sulfonated polymer
- the sulfonation rate DS is preferably larger than 10% and smaller than 50%.
- IEC and DS are lower than the above ranges, there are too few sulfonic acid groups, and the separation performance required as a forward osmosis separation membrane may not be sufficiently exhibited.
- IEC and DS are higher than the above ranges, the hydrophilicity of the polymer is increased, so that the SPAE is excessively swollen and it is difficult to form a film.
- the SPAE used for the separation membrane of the present invention further preferably comprises a repeating structure of a hydrophobic segment represented by the following formula (I) and a hydrophilic segment represented by the following formula (II).
- m and n each represent a natural number of 1 or more
- R 1 and R 2 represent —SO 3 M
- M represents a metal element
- the formula (I in the sulfonated polyarylene ether copolymer) )
- the rate of sulfonation expressed as a percentage of the number of repetitions of formula (II) to the sum of the number of repetitions of formula (II) is greater than 10% and less than 50%.
- R 1 and R 2 in the formulas (II) and (IV) represent —SO 3 M, but the metal element M in the latter case is not particularly limited, and potassium, sodium, magnesium, aluminum, cesium and the like are preferable. . More preferred are potassium and sodium.
- R 1 and R 2 can be —SO 3 H in addition to —SO 3 M.
- —SO 3 H preferred film formation described later is used. Even if it forms into a film on condition, since it is difficult to produce the film
- the number average molecular weight of SPAE represented by the above formulas (I), (II), (III), and (IV) is from the viewpoint of forming a separation membrane suitable for forward osmosis treatment having sufficient separation characteristics and mechanical strength. 1,000 to 1,000,000 is preferable.
- SPAEs represented by the above formulas (I), (II), (III), and (IV) form a forward osmosis separation membrane that has high mechanical strength and is difficult to swell with water due to its high molecular structure rigidity. Is possible.
- the hydrophobic segment of the formula (I) contains a benzonitrile structure, so that it has excellent chemical durability and has a hydrophobic portion. Since the cohesive force is increased, a membrane structure in which hydrophilic domains are supported on a strong hydrophobic matrix is formed, and as a result, swelling due to water is further suppressed.
- the phase separation conditions at the time of film formation include the polymer concentration of the film forming stock solution, the film forming temperature (nozzle temperature), the composition of the core liquid, the coagulation conditions, and the like.
- the separation membrane of the present invention includes a hollow fiber membrane or a flat membrane.
- a wet membrane formation method or a dry / wet membrane formation method is preferably used.
- a uniform solution-form film-forming stock solution is mixed with a good solvent in the film-forming stock solution, and the polymer is immersed in a coagulation liquid composed of a non-solvent such that the polymer is insoluble. It is a method of forming a film structure by separating and precipitating.
- the dry and wet film forming method the polymer density of the film surface layer became more dense by evaporating and drying the solvent for a certain period from the surface of the film forming raw solution immediately before immersing the film forming raw solution in the coagulation liquid. This is a method for obtaining an asymmetric structure.
- the dry and wet film forming method is more preferable from the viewpoint of easily obtaining a film having a desired pore distribution.
- the method for producing a separation membrane of the present invention will be described by taking a hollow fiber membrane as an example.
- the membrane-forming stock solution is discharged from the outer peripheral slit of a double-cylindrical spinning nozzle so as to form a hollow cylinder, and the inner hole on the inside serves as a core solution for forming a hollow part.
- it is possible to manufacture by immersing in a coagulation bath after giving a certain period of drying (solvent evaporation) time.
- the obtained separation membrane is given heat stability such as fixation of the membrane structure and dimensional stability by heat treatment in a solution as necessary.
- the concentration of SPAE in the membrane-forming stock solution is preferably 25% by mass to 45% by mass, and if it exceeds this range, A will be smaller than 0.25 even if other phase separation conditions are variously examined, and the water permeability will be low. Or water permeability may not be confirmed. Also, if the polymer concentration is lower than this range, A will be larger than 0.6 even if various other phase separation conditions are examined, the density of the dense layer will be small, and the separation performance required as a forward osmosis membrane will be obtained. May not develop. Moreover, even if the film formation is performed in the above-described polymer concentration range, the pore distribution A deviates from the range of 0.25 or more and 0.6 or less if other film formation conditions deviate from the preferable range as described later. Sometimes.
- Examples of the SPAE solvent of the present invention include N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide, dimethyl sulfoxide, N, N-dimethylformamide, and ⁇ -butyrolactone.
- NMP N-methyl-2-pyrrolidone
- N-dimethylacetamide dimethyl sulfoxide
- N, N-dimethylformamide and ⁇ -butyrolactone.
- the non-solvent is not particularly limited, and water, alcohol, and polyhydric alcohol (ethylene glycol, diethylene glycol, triethylene glycol, glycerin, etc.) are preferable, and the boiling point of the non-solvent is higher than the film forming temperature or the coagulation bath temperature. Should be selected.
- the solvent / non-solvent weight ratio in the membrane forming stock solution is preferably 100/0 to 70/30, more preferably in the range of 100/0 to 80/20. If the weight ratio of the non-solvent is larger than the above range, it may not be compatible with SPAE in the range of the polymer concentration of the above-mentioned film forming stock solution, and film formation may not be possible.
- the film forming (nozzle) temperature is preferably 155 ° C. or higher. As an upper limit of temperature, it is below the boiling point of a film forming solvent, More preferably, it is 180 degrees C or less.
- the film forming process using the dry and wet film forming method includes a drying process for a predetermined time after discharging the film forming raw solution. In this drying step, the film-forming stock solution forms a concentration gradient on the outer layer side and the inner layer side. That is, the polymer concentration on the outer layer side is increased by drying the solvent, while the polymer concentration on the inner layer side is kept low. Since the formed concentration gradient greatly affects the gradient structure of the separation membrane after film formation, it is extremely important to appropriately control the concentration gradient formation in the drying process. When the film-forming temperature is lower than 155 ° C., the solvent drying on the outer layer side becomes extremely slow, so that a suitable inclined structure cannot be obtained as a separation membrane suitable for forward osmosis treatment.
- the core liquid for forming the hollow part it is preferable to use a mixed solution of a solvent and a non-solvent, or a non-solvent.
- concentration gradient formation of the membrane forming stock solution during the drying (evaporation) step of the dry and wet membrane forming method has a great influence on the gradient structure of the separation membrane.
- the core liquid greatly affects the concentration gradient formation on the inner layer side.
- the SPAE solvent which is a component that suppresses solidification and drying of the polymer solution
- the polymer concentration on the inner layer side is kept lower, and separation suitable for forward osmosis treatment is performed. It is possible to realize an inclined structure suitable as a film.
- a certain solvent drying time is given before the step of immersing the film forming stock solution in the coagulation bath.
- the drying time and temperature are not particularly limited, and the structure of the finally obtained separation membrane should be adjusted so as to become a desired one. For example, at an atmospheric temperature of 5 to 200 ° C., 0.01 to It is preferred to partially dry the solvent for 0.5 seconds.
- an inclined structure is formed from the outer layer side to the inner layer side.
- the resulting gradient structure is affected by two factors: the film forming (nozzle) temperature that affects the structure formation from the outer layer side, and the core liquid composition that affects the structure formation from the inner layer side.
- the film forming temperature is sufficiently high, for example, when it is carried out at 170 ° C. or higher, a concentration gradient in the drying process is likely to be formed due to the high film forming temperature, and therefore, without mixing the SPAE solvent into the core liquid.
- the desired gradient structure can be obtained even when the composition is formed using only a non-solvent.
- the film forming temperature is lower than 155 ° C., the film forming temperature is low, resulting in insufficient formation of a concentration gradient, and even if a solvent is mixed in the core liquid at a certain ratio, A desired inclined structure cannot be obtained.
- the non-solvent for the coagulation bath used in the wet film formation method or the dry / wet film formation method is not particularly limited, and water, alcohol, polyhydric alcohol (ethylene glycol, diethylene glycol, triethylene glycol, glycerin) according to a known film formation method. Etc.), and a mixed liquid thereof may be used. From the viewpoint of economy and simplicity of production management, it is preferable to contain water as a component.
- the coagulation bath contains SPAE solvents N-methyl-2-pyrrolidone, N, N-dimethylacetamide, dimethyl sulfoxide. , N, N-dimethylformamide and ⁇ -butyrolactone can be added.
- SPAE solvents N-methyl-2-pyrrolidone, N, N-dimethylacetamide, dimethyl sulfoxide.
- N, N-dimethylformamide and ⁇ -butyrolactone can be added.
- polysaccharides or water-soluble polymers may be added to adjust the viscosity of the coagulation bath.
- the separation performance is lowered and the water permeability is improved by increasing the ratio of the solvent. That is, it is possible to finely adjust the desired film performance by controlling the ratio of the solvent.
- the ratio of the solvent exceeds 50%, the coagulation rate of the membrane-forming stock solution becomes extremely slow, which leads to an unstable membrane-forming process such as flattening of the shape of the hollow fiber membrane, which is not desirable.
- the temperature of the coagulation bath is not particularly limited, and an appropriate temperature may be selected from the viewpoint of achieving a desired porosity and hole distribution, or from the viewpoint of economy and work safety. Specifically, it is preferably 0 ° C. or higher and lower than 100 ° C., more preferably 10 ° C. or higher and 50 ° C. or lower. According to the study of the present inventor, for each combination of the polymer concentration of the membrane forming stock solution, the solvent, the non-solvent, and the composition of the core solution, the optimum point of the coagulation bath temperature, that is, the separation performance of the separation membrane suitable for forward osmosis treatment Since there is a good balance of water permeability, it is necessary to search and select appropriate temperature conditions.
- the time for dipping in the coagulation bath may be adjusted to a time for which the structure of the separation membrane is sufficiently generated. From the viewpoint of sufficiently solidifying and not unnecessarily lengthening the process, it is preferably in the range of 0.1 to 1000 seconds, and more preferably in the range of 1 to 600 seconds.
- the separation membrane obtained by completing the formation of the membrane structure in the coagulation bath is preferably washed with water.
- the washing method is not particularly limited, and the separation membrane may be immersed in water for a sufficient time, or may be washed with running water for a certain time while being conveyed.
- the membrane that has been subjected to the water washing treatment is preferably immersed in water in an unstrained state and subjected to heat treatment at 50 to 100 ° C. for 5 to 60 minutes.
- heat treatment it is possible to fix the film structure, improve the dimensional stability, and improve the thermal stability.
- the separation membrane suitable for the forward osmosis treatment is not within the preferable range. That is, the heat treatment process using an aqueous solution of inorganic salts, such as those used in separation membranes that require high physical durability, such as reverse osmosis separation membranes, significantly changes the gradient structure obtained by membrane formation. As a result, the result is out of the preferred range. According to the study of the present inventor, it is possible to impart a certain thermal stability while maintaining an appropriate inclined structure by performing a heat treatment in pure water.
- the separation membrane of the present invention obtained as described above preferably has a porosity of 60 to 85%.
- porosity When the porosity is lower than the above range, reverse osmosis performance is exhibited, but forward osmosis performance is hardly exhibited.
- porosity exceeds the above range, it is difficult to keep the salt removal rate low.
- the separation membrane of the present invention is characterized by high forward osmosis performance compared to reverse osmosis performance because the membrane material and membrane structure are optimized for forward osmosis treatment.
- the water permeation performance under normal osmosis treatment conditions is preferably expressed by 3 L / m 2 / h or more, and more preferably expressed by 3.5 L / m 2 / h or more.
- the separation membrane of the present invention obtained as described above is incorporated into a separation membrane module as a separation membrane element.
- a hollow fiber type separation membrane for example, as described in Japanese Patent No. 441486, Japanese Patent No. 4277147, Japanese Patent No. 3591618, Japanese Patent No. 3008886, etc.
- This is collected into one hollow fiber membrane assembly, and a plurality of these hollow fiber membrane assemblies are arranged side by side as a flat hollow fiber membrane bundle while traversing to a core tube having a large number of holes while traversing a specific position of the wound body. It winds up so that the cross
- liquids having different concentrations are brought into contact with each other through the separation membrane, and fresh water permeates from the low-concentration aqueous solution to the high-concentration aqueous solution using the concentration difference between the two liquids as a driving force.
- osmotic pressure osmotic pressure
- Preferred high-concentration aqueous solutions are seawater that is abundant in nature, concentrated seawater, or artificially-obtained high-concentration aqueous solutions, whose osmotic pressure is 0.5 to 10 MPa, depending on the molecular weight of the solute.
- the fresh water permeated to the high-concentration aqueous solution side can be recovered by another method, and the fresh water can be recovered from the supply water, or the fresh water can be removed from the supply water and dehydrated.
- the supply water is seawater
- the high-concentration aqueous solution can be an aqueous solution having a higher concentration and higher osmotic pressure than seawater.
- seawater that is abundant in nature can be used as a high-concentration aqueous solution.
- the water permeability is high, and the water permeability is designed to be high when the difference in salt concentration is the driving force due to the high selectivity between water and salt. It can be suitably used for processing.
- the shape of the separation membrane sample was evaluated by the following method. An appropriate amount of a hollow fiber bundle is packed into a hole of a 2 mm thick SUS plate with a 3 mm ⁇ hole, cut with a razor blade to expose a cross section, and then a Nikon microscope (ECLIPSE LV100) and Nikon image processing The cross-sectional shape was photographed using a device (DIGITAL SIGN DS-U2) and a CCD camera (DS-Ri1), and the outer diameter and inner diameter of the hollow fiber membrane cross section were measured using image analysis software (NIS Element D3.00 SP6). The outer diameter, inner diameter, and thickness of the hollow fiber membrane were calculated by measuring using the measurement function of the analysis software.
- a hollow fiber membrane having a length of 1 m was bundled in a loop shape, and after inserting one side into a plastic sleeve, a thermosetting resin was poured into the sleeve, cured, and sealed. An end face of the hollow fiber membrane cured with the thermosetting resin was cut to obtain an opening surface of the hollow fiber membrane, and an evaluation module was produced.
- This evaluation module was connected to a hollow fiber membrane performance testing device consisting of a feed water tank and a pump to evaluate the performance.
- the evaluation condition is that a supply aqueous solution with a sodium chloride concentration of 1500 mg / L is operated at 25 ° C.
- Permeated water amount (L) Permeated water weight (kg) /0.99704 (kg / L)
- FR water permeability
- the sodium chloride concentration was measured using the electric conductivity meter (Toa DKK Corporation CM-25R) for the membrane permeated water collected in the water permeability measurement and the sodium chloride concentration 1500 mg / L aqueous solution used in the same water permeability measurement. .
- Pure water was supplied to the outside of the separation membrane with a supply pump and allowed to pass through the outside of the separation membrane, and then pure water was supplied to the opening surface of the separation membrane with the supply pump and allowed to flow out from the other opening surface.
- the flow rate outside the separation membrane was adjusted with a flow rate adjustment valve, and the flow rate inside the separation membrane was adjusted with pressure and flow rate with a flow rate adjustment valve.
- the supply pressure of the draw solution is PDS1 (MPa)
- the supply flow rate is QDS1 (L / min)
- the amount of discharged water of the draw solution is QDS2 (L / min)
- the supply flow rate of pure water is QFS1 (L / min)
- pure water When the outflow flow rate is QFS2 (L / min) and the outflow pressure of pure water is PFS2 (kPa), each supply pump is adjusted so that the water permeability of the module (QDS2-QDS1), pressure, and flow rate are as follows.
- the flow rate increment of the draw solution under the conditions (QDS2-QDS1) was measured as the module water permeability.
- FR [L / m 2 / hour] module water permeability [L / min] / outer diameter reference membrane area [m 2 ] ⁇ (60 [min])
- FIG. 1 shows an example of an analysis result by Raman spectroscopy.
- the X axis indicates the position in the film thickness direction in the film cross section, and the Y axis indicates the measured intensity.
- the obtained peak indicates the intensity of the peak derived from SPAE, and the intensity ratio indicates the density of SPAE.
- the strength is measured from the inner layer side to the outer layer side at intervals of 1 ⁇ m while observing the film sample of FIG. 1 with a microscope.
- the strength of the broken line arrow portion in FIG. 1 was measured, and only the strength measurement data of the portion indicated by the solid line arrow where the film exists was taken out and used as the density distribution data of the film.
- Example 1 (SPAE polymerization) 3,3'-disulfo-4,4'-dichlorodiphenylsulfone disodium salt (hereinafter abbreviated as S-DCDPS) 20.00 g, 2,6-dichlorobenzonitrile (hereinafter abbreviated as DCBN) 19.38 g, 4 , 4'-biphenol (hereinafter abbreviated as BP) 28.54 g and potassium carbonate 24.35 g were weighed into a 1000 mL four-necked flask equipped with a cooling reflux tube, and nitrogen was allowed to flow at 0.5 L / min.
- S-DCDPS 3,3'-disulfo-4,4'-dichlorodiphenylsulfone disodium salt
- DCBN 2,6-dichlorobenzonitrile
- BP 4 , 4'-biphenol
- potassium carbonate 24.35 g were weighed into a 1000 mL four-necked flas
- NMP N-methyl-2-pyrrolidone
- N-methyl-2-pyrrolidone (hereinafter abbreviated as “NMP”) was added and kneaded at 150 ° C. so that the prepared SPAE was 40% by mass to obtain a uniform film forming stock solution. Subsequently, while keeping the membrane forming stock solution at a temperature of 170 ° C., while extruding it hollow from a double cylindrical tube nozzle, 30% by mass of N-methyl-2-pyrrolidone (NMP) and 70% by mass of the core liquid were used. The solution mixed with ethylene glycol was extruded at the same time, air-dried 15 mm in the air, dried, immersed in a 30 ° C.
- the separation membrane was produced, it was washed with water.
- the separation membrane after the water washing treatment was heat-treated in 70 ° C. water for 20 minutes.
- the obtained separation membrane had an outer diameter of 185 ⁇ m and an inner diameter of 90 ⁇ m in a wet state.
- the water permeability was 70 L / m 2 / day and the salt removal rate was 71.8% under the conditions of a test pressure of 0.5 MPa and a sodium chloride concentration of 1500 mg / L.
- the obtained separation membrane was evaluated for forward osmosis separation performance, it was 5.8 L / m 2 / h under the conditions of pure water as a supply liquid and 7.0 mass% sodium sulfate aqueous solution as a draw solution.
- a separation membrane was obtained in the same manner as in Example 1 except that the composition of the core liquid was a mixture of 50% by mass of N-methyl-2-pyrrolidone and 50% by mass of ethylene glycol. Went.
- the obtained separation membrane had an outer diameter of 184 ⁇ m and an inner diameter of 90 ⁇ m.
- the water permeability was 82 L / m 2 / day, and the salt removal rate was 63.8%.
- the obtained separation membrane was evaluated for forward osmosis separation performance, the amount of water permeation was 6.8 L / m 2 / h.
- a separation membrane was obtained by the same method as in Example 1 except that the temperature of the membrane-forming stock solution was 160 ° C., and was subjected to water washing treatment and heat treatment.
- the obtained separation membrane had an outer diameter of 185 ⁇ m and an inner diameter of 89 ⁇ m.
- the water permeability was 104 L / m 2 / day, and the salt removal rate was 55.2%.
- the obtained separation membrane was evaluated for forward osmosis separation performance, the amount of water permeation was 7.2 L / m 2 / h.
- a separation membrane was obtained by the same method as in Example 1 except that the temperature of the membrane-forming stock solution was 180 ° C., and was subjected to water washing treatment and heat treatment.
- the obtained separation membrane had an outer diameter of 185 ⁇ m and an inner diameter of 90 ⁇ m.
- the water permeability was 46 L / m 2 / day, and the salt removal rate was 83.0%.
- the amount of water permeation was 4.1 L / m ⁇ 2 > / h.
- a separation membrane was obtained in the same manner as in Example 1 except that the heat treatment temperature was set to 60 ° C., followed by washing with water and heat treatment.
- the obtained separation membrane had an outer diameter of 188 ⁇ m and an inner diameter of 91 ⁇ m.
- the water permeability was 81 L / m 2 / day, and the salt removal rate was 65.6%.
- the water permeation amount was 6.6 L / m 2 / h.
- a separation membrane was obtained in the same manner as in Example 1 except that the heat treatment temperature was set to 98 ° C., followed by washing with water and heat treatment.
- the obtained separation membrane had an outer diameter of 185 ⁇ m and an inner diameter of 90 ⁇ m.
- the water permeability was 46 L / m 2 / day, and the salt removal rate was 79.4%.
- the obtained separation membrane was evaluated for forward osmosis separation performance, the amount of water permeation was 3.9 L / m 2 / h.
- SPAE polymerization SPAE having a repeating structure of a hydrophobic segment represented by the following formula (XII) and a hydrophilic segment represented by the formula (XIII) selected from the combinations of the above formulas (III) and (IV): Prepared as follows. Weigh 16.6.0 g of S-DCDPS, 26.23 g of 4,4′-dichlorodiphenylsulfone, 22.70 g of BP, and 18.52 g of potassium carbonate into a 1000 mL four-necked flask equipped with a cooling reflux tube, and add nitrogen at 0.5 L / min. Shed.
- the prepared SPAE was dissolved at 150 ° C. while adding and kneading NMP so as to be 35% by mass to obtain a uniform film forming stock solution. Subsequently, while keeping the film forming stock solution at a temperature of 170 ° C., while extruding into a hollow shape from a double cylindrical tube nozzle, ethylene glycol was extruded as a core solution at the same time, and was allowed to run 15 mm in air at room temperature. After performing the drying process, the film was immersed in a 30 ° C. coagulation bath filled with water, wound up at 15 m / min using a roller to produce a separation membrane, and then washed with water.
- the separation membrane that had been washed with water was heat-treated in water at 70 ° C. for 20 minutes.
- the obtained separation membrane had an outer diameter of 178 ⁇ m and an inner diameter of 95 ⁇ m.
- the water permeability was 34 L / m 2 / day, and the salt removal rate was 95.0%.
- the obtained separation membrane was evaluated for forward osmosis separation performance, the amount of water permeation was 3.5 L / m 2 / h.
- the obtained separation membrane had an outer diameter of 188 ⁇ m and an inner diameter of 95 ⁇ m.
- the water permeability was 110 L / m 2 / day, and the salt removal rate was 52.2%.
- the obtained separation membrane was evaluated for forward osmosis separation performance, the amount of water permeation was 2.4 L / m 2 / h.
- a separation membrane was obtained in the same manner as in Example 1 except that the polymer was used, and then washed with water and heat-treated.
- the obtained separation membrane had an outer diameter of 185 ⁇ m and an inner diameter of 90 ⁇ m.
- the water permeability was 130 L / m 2 / day, and the salt removal rate was 62.0%.
- the obtained separation membrane was evaluated for forward osmosis separation performance, the amount of water permeation was 2.6 L / m 2 / h.
- a separation membrane was formed in the same manner as in Example 1, except that the composition of the core solution was a mixture of 85% by mass of N-methyl-2-pyrrolidone and 15% by mass of ethylene glycol. The film was frequently broken and could not be formed.
- a separation membrane was obtained in the same manner as in Example 1 except that the temperature of the membrane-forming stock solution was 150 ° C., the core solution was ethylene glycol, and a 3.5 mass% sodium chloride aqueous solution was used for the coagulation bath. Then, washing with water and heat treatment were performed.
- the obtained separation membrane had an outer diameter of 188 ⁇ m and an inner diameter of 93 ⁇ m.
- the water permeability was 38 L / m 2 / day, and the salt removal rate was 92.0%.
- the separation membrane of the present invention uses a highly chemical-durable material that can be forward osmosis treated in combination with various draw solutes, both separation performance and water permeation performance are compatible at a high level. Very useful.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Polyethers (AREA)
Abstract
Description
(1)外表面側から内表面側にかけて傾斜構造を有する分離膜であって、ラマン分光法により、膜厚方向のポリマー密度の分布を測定したときに、ポリマー密度が密な層の厚みと疎な層の厚みの比率が、0.25≦(疎な層の厚み)/〔(密な層の厚み)+(疎な層の厚み)〕≦0.6の範囲となることを特徴とする分離膜。
(2)前記分離膜の空孔率が60~85%であることを特徴とする(1)に記載の分離膜。
(3)前記分離膜が下記式(III)で表される疎水性セグメントと、下記式(IV)で表される親水性セグメントの繰り返し構造からなるスルホン化ポリアリーレンエーテルからなることを特徴とする(1)または(2)に記載の分離膜。
R1およびR2は、-SO3Mを表し、Mは金属元素を表し、
スルホン化ポリアリーレンエーテル共重合体中の式(III)の繰り返し数と式(IV)の繰り返し数の合計に対する式(IV)の繰り返し数の百分率割合として表されるスルホン化率が、10%よりも大きく、50%よりも小さい。
(4)前記スルホン化ポリアリーレンエーテル共重合体は、下記式(I)で表される疎水性セグメントと、下記式(II)で表される親水性セグメントの繰り返し構造からなることを特徴とする(3)に記載の分離膜。
(5)前記分離膜が正浸透膜であることを特徴とする(1)~(4)のいずれかに記載の分離膜。
(6)前記分離膜が中空糸膜であることを特徴とする(1)~(5)のいずれかに記載の分離膜。
(7)(1)~(6)のいずれかに記載の分離膜を組み込んだことを特徴とする分離膜エレメント。
(8)(7)に記載の分離膜エレメントを1以上組み込んだことを特徴とする分離膜モジュール。
aおよびbはそれぞれ1以上の自然数を表し、
R1およびR2は、-SO3Mを表し、Mは金属元素を表し、
スルホン化ポリアリーレンエーテル共重合体中の式(III)の繰り返し数と式(IV)の繰り返し数の合計に対する式(IV)の繰り返し数の百分率割合として表されるスルホン化率が、10%よりも大きく、50%よりも小さい。
SPAEポリマーのスルホン化度、イオン交換容量(IEC)は以下のように評価した。
窒素雰囲気下で一晩乾燥したSPAEポリマーの重量を測定し、水酸化ナトリウム水溶液と攪拌処理した後、塩酸水溶液による逆滴定を行うことでイオン交換容量(IEC)を評価した。
真空乾燥器で120℃、1晩乾燥させたポリマー10mgを、重水素化DMSO(DMSO-d6)1mLに溶解させ、これをBRUKER AVANCE500(周波数500.13MHz、測定温度30℃、FT積算32回)にてプロトンNMR測定した。得られたスペクトルチャートにおいて、疎水性セグメントおよび親水性セグメントに含まれる各プロトンとピーク位置の関係を同定し、疎水性セグメントにおけるプロトンのうち独立したピークと、親水性セグメントにおけるプロトンのうち独立したピークの1個のプロトンあたりの積分強度の比から求めた。
分離膜について以下の方法で、膜形状の評価、逆浸透分離性能の評価、正浸透分離性能の評価、空孔率の測定、膜中のポリマー密度分布の測定を実施した。
分離膜サンプルの形状評価は以下の方法で行った。3mmφの孔を空けた2mm厚のSUS板の孔に、適量の中空糸束を詰め、カミソリ刃でカットして断面を露出させた後、Nikon製の顕微鏡(ECLIPSE LV100)およびNikon製の画像処理装置(DIGITAL SIGHT DS-U2)およびCCDカメラ(DS-Ri1)を用いて、断面の形状を撮影し、画像解析ソフト(NIS Element D3.00 SP6)により、中空糸膜断面の外径および内径を、該解析ソフトの計測機能を用いて測定することで中空糸膜の外径および内径および厚みを算出した。
長さ1mの中空糸膜をループ状に束ねて、片側をプラスチック製スリーブに挿入した後、熱硬化性樹脂をスリーブに注入し、硬化させ封止した。熱硬化性樹脂で硬化させた中空糸膜の端部を切断することで中空糸膜の開口面を得て、評価用モジュールを作製した。この評価用モジュールを供給水タンク、ポンプからなる中空糸膜性能試験装置に接続し、性能評価した。評価条件は、塩化ナトリウム濃度1500mg/Lの供給水溶液を、25℃、圧力0.5MPaで約30分~1時間運転させ、その後、膜からの透過水を採取して、電子天秤(島津製作所 LIBROR EB-3200D)で透過水重量を測定した。透過水重量は、下記式にて25℃の透過水量に換算した。
透過水量(L)=透過水重量(kg)/0.99704(kg/L)
透水量(FR)は下記式より算出した。
FR[L/m2/日]=透過水量[L]/膜面積[m2]/採取時間[分]×(60[分]×24[時間])
前記透水量測定で採取した膜透過水と、同じく透水量の測定で使用した塩化ナトリウム濃度1500mg/L供給水溶液を電気伝導率計(東亜ディーケーケー社CM-25R)を用いて塩化ナトリウム濃度を測定した。
塩除去率は下記式より算出した。
塩除去率[%]=(1-膜透過水塩濃度[mg/L]/供給水溶液塩濃度[mg/L])×100
長さ1mの中空糸膜100本をループ状に束ねて、両側をプラスチック製スリーブに挿入した後、熱硬化性樹脂をスリーブに注入し、硬化させ封止した。熱硬化性樹脂で硬化させた分離膜の端部を切断することで分離膜の両端に開口面を得て、評価用モジュールを作製した。この評価用モジュールを供給水タンク、ドロー溶液タンク、ポンプからなる性能試験装置に接続し、性能評価した。評価条件は、供給水に純水、ドロー溶液に70g/L硫酸ナトリウム水溶液を用いた。純水を分離膜の外側に供給ポンプで供給し、分離膜の外側を通過させた後、純水を分離膜の開口面に供給ポンプで供給し、他方の開口面から流出させた。分離膜の外側の流量は流量調整バルブで調整し、分離膜の内側の流量は流量調整バルブで圧力と流量を調整した。ドロー溶液の供給圧力をPDS1(MPa)、供給流量をQDS1(L/min)、ドロー溶液の排出水量をQDS2(L/min)、純水の供給流量をQFS1(L/min)、純水の流出流量をQFS2(L/min)、純水の流出圧力をPFS2(kPa)とした場合、モジュールの透水量(QDS2-QDS1)と、圧力、流量が下記の条件となるように、各供給ポンプの流量と圧力を調整し、その条件でのドロー溶液の流量増分(QDS2-QDS1)をモジュール透水量として測定した。
PDS1=1.0MPa以下
PFS2=10kPa以下
QDS1=1.5mL/min
QFS1=1.0L/min
濃度による透水量(FR)は下記式より算出する。
FR[L/m2/時]=モジュール透水量[L/min]/外径基準膜面積[m2]×(60[分])
1時間以上純水に浸漬した分離膜を900rpmの回転数で5分間遠心脱液し、重量を測定する。その後、乾燥機中で絶乾し重量を測定する(Mp)。
Wt(空孔に詰まっている水の重量)=遠心後の分離膜の重量-Mp
空孔率(%)=Wt/(Wt+Mp/ポリマー密度)×100
本発明のSPAEからなる分離膜1本を氷包埋し、ミクロトームで断面を作成した。作成した断面試料を水に浸漬した状態で、ナノフォトン社製レーザーラマン顕微鏡RAMAN-11を用いてレーザー波長532nm、レーザー強度約9mW、アパーチャ50μmφ、露光時間4秒、露光回数1回、対物レンズ100倍/開口数0.6、マッピング間隔1.0μmの条件でマッピング分析を行った。分布状態を解析するピークとして1610cm-1のピークを選択した。ピークの信号強度は、1400~1800cm-1をベースラインとし、顕微ラマン分光装置に付属のピーク面積算出ソフトで算出した。
図1にラマン分光法による分析結果の一例を示す。X軸は膜断面における膜厚方向の位置を、Y軸は測定強度を示している。得られたピークは、SPAEに由来するピークの強度を示しており、その強度比がSPAEの密度を示している。ラマン分光法による測定では、図1の膜サンプルを顕微鏡で観察しながら、1μm間隔で内層側から外層側に向けて強度の測定を実施する。実際の測定では、図1の破線矢印部分の強度を測定し、膜の存在する部分である実線矢印で示した部分の強度測定データのみを取り出して、膜の密度分布データとした。次に、得られたデータの解析方法について、Xの値の小さい方を膜内層側として測定した場合(図1)を例にして述べる。上述したように得られたデータのうち、膜の存在する部分のみのデータを図1から取り出す(図2)。次に、プロットされているデータのうち最大値をSとしたとき(図2の場合はS=3739)、0からSの範囲を10分割し、それぞれの範囲に該当する点の数を数える(図3)。最も多くの点が入った範囲をS1<Y≦S2としたときに(図2の場合はS1=3365.2、S2=3739.0)、図2のプロットをXの値が小さい方から見て、Yの値が初めてS1を超える点を含みそれ以降の点を密な層、他方を疎な層と定義し、SPAEからなる分離膜中の疎な層の厚みの割合を示す値として、A=(疎な層の厚み)/〔(密な層の厚み)+(疎な層の厚み)〕とした。
(SPAEの重合)
3,3′-ジスルホ-4,4′-ジクロロジフェニルスルホン2ナトリウム塩(以下、S-DCDPSと略す)20.00g、2,6-ジクロロベンゾニトリル(以下、DCBNと略す)19.38g、4,4′-ビフェノール(以下、BPと略す)28.54g、炭酸カリウム24.35gを冷却還流管を取り付けた1000mL四つ口フラスコに計量し、0.5L/minで窒素を流した。N-メチル-2-ピロリドン(以下、NMPと略す)220mLを入れて、オイルバスに入れ、150℃にして30分攪拌した後、210℃に昇温して12時間反応させた。放冷の後、重合反応溶液を水中にストランド状に沈殿させた。得られたポリマーは、常温の水で6回洗浄し、110℃真空乾燥した。スルホン化度(以下、DSと略す)測定の結果、DS=26.5%のSPAEを得た。
作製したSPAEを40質量%となるように、N-メチル-2-ピロリドン(以下、NMPと略す。)を加えて混練しながら、150℃で溶解させて、均一な製膜原液を得た。
続いて、製膜原液を170℃の温度に保ちながら、二重円筒管ノズルより、中空状に押出しながら、芯液として30質量%のN-メチル-2-ピロリドン(NMP)と70質量%のエチレングリコールを混合した溶液を同時に押出し、空気中を15mm空走させて、乾燥処理を行ったあと、水を満たした30℃の凝固浴に浸漬させ、ローラーを用いて15m/分で巻き取り、分離膜を作製した後、水洗処理を行った。前記水洗処理を終えた分離膜を70℃の水中で20分間熱処理を行った。
得られた分離膜の湿潤状態での外径は185μm、内径は90μmであった。逆浸透分離性能評価を行ったところ、試験圧力0.5MPa、塩化ナトリウム濃度1500mg/Lの条件において、透水量は70L/m2/日、塩除去率は71.8%であった。
得られた分離膜について、正浸透分離性能評価を行ったところ、供給液を純水、ドロー溶液を7.0質量%硫酸ナトリウム水溶液の条件において、5.8L/m2/hであった。
得られた分離膜について空孔率と空孔分布の測定を実施したところ、空孔率は73.0%、空孔分布はA=0.51であった。
(SPAEの重合)
実施例1と同じ方法でDS=26.5%のSPAEを得た。
芯液の組成を50質量%のN-メチル-2-ピロリドンと50質量%のエチレングリコールを混合した溶液としたこと以外は実施例1と同じ方法で、分離膜を得て、水洗処理、熱処理を行った。
得られた分離膜の外径は184μm、内径は90μmであった。逆浸透分離性能評価を行ったところ、透水量は82L/m2/日、塩除去率は63.8%であった。
得られた分離膜について、正浸透分離性能評価を行ったところ、透水量は6.8L/m2/hであった。
得られた分離膜について、空孔率は76.2%、空孔分布はA=0.52であった。
(SPAEの重合)
実施例1と同じ方法でDS=26.5%のSPAEを得た。
製膜原液の温度を160℃としたこと以外は、実施例1と同じ方法で、分離膜を得て、水洗処理、熱処理を行った。
得られた分離膜の外径は185μm、内径は89μmであった。逆浸透分離性能評価を行ったところ、透水量は104L/m2/日、塩除去率は55.2%であった。
得られた分離膜について、正浸透分離性能評価を行ったところ、透水量は7.2L/m2/hであった。
得られた分離膜について、空孔率は80.1%、空孔分布はA=0.57であった。
(SPAEの重合)
実施例1と同じ方法でDS=26.5%のSPAEを得た。
製膜原液の温度を180℃としたこと以外は、実施例1と同じ方法で、分離膜を得て、水洗処理、熱処理を行った。
得られた分離膜の外径は185μm、内径は90μmであった。逆浸透分離性能評価を行ったところ、透水量は46L/m2/日、塩除去率は83.0%であった。
得られた分離膜について、正浸透分離性能評価を行ったところ、透水量は4.1L/m2/hであった。
得られた分離膜について、空孔率は66.8%、空孔分布はA=0.45であった。
(SPAEの重合)
実施例1と同じ方法でDS=26.5%のSPAEを得た。
熱処理温度を60℃としたこと以外は実施例1と同じ方法で、分離膜を得て、水洗処理、熱処理を行った。
得られた分離膜の外径は188μm、内径は91μmであった。逆浸透分離性能評価を行ったところ、透水量は81L/m2/日、塩除去率は65.6%であった。
得られた分離膜について、正浸透分離性能評価を行ったところ、透水量は6.6L/m2/hであった。
得られた分離膜について、空孔率は78.2%、空孔分布はA=0.52であった。
(SPAEの重合)
実施例1と同じ方法でDS=26.5%のSPAEを得た。
熱処理温度を98℃としたこと以外は実施例1と同じ方法で、分離膜を得て、水洗処理、熱処理を行った。
得られた分離膜の外径は185μm、内径は90μmであった。逆浸透分離性能評価を行ったところ、透水量は46L/m2/日、塩除去率は79.4%であった。
得られた分離膜について、正浸透分離性能評価を行ったところ、透水量は3.9L/m2/hであった。
得られた分離膜について、空孔率は65.0%、空孔分布はA=0.47であった。
(SPAEの重合)
前記式(III)、(IV)の組合せの中から選択し、下記の式(XII)で表される疎水性セグメントと式(XIII)で表される親水性セグメントの繰り返し構造を有するSPAEを以下のようにして準備した。
S-DCDPS16.00g、4,4’-ジクロロジフェニルスルホン26.23g、BP22.70g、炭酸カリウム18.52gを冷却還流管を取り付けた1000mL四つ口フラスコに計量し、0.5L/minで窒素を流した。NMP221mLを入れて、オイルバスに入れ、150℃にして30分攪拌した後、210℃に昇温して12時間反応させた。放冷の後、重合反応溶液を水中にストランド状に沈殿させた。得られたポリマーは、常温の水で6回洗浄し、110℃真空乾燥した。DS測定の結果、DS=26.5%のSPAEを得た。
実施例1と同じ方法で、分離膜を得て、水洗処理、熱処理を行った。
得られた分離膜の外径は186μm、内径は90μmであった。逆浸透分離性能評価を行ったところ、透水量は70L/m2/日、塩除去率は70.2%であった。
得られた分離膜について、正浸透分離性能評価を行ったところ、透水量は5.7L/m2/hであった。
得られた分離膜について、空孔率は72.9%、空孔分布はA=0.50であった。
(SPAEの重合)
S-DCDPS16.00g、DCBN37.82g、BP30.07g、炭酸カリウム24.53gを冷却還流管を取り付けた1000mL四つ口フラスコに計量し、0.5L/minで窒素を流した。NMP277mLを入れて、オイルバスに入れ、150℃にして30分攪拌した後、210℃に昇温して12時間反応させた。放冷の後、重合反応溶液を水中にストランド状に沈殿させた。得られたポリマーは、常温の水で6回洗浄し、110℃で真空乾燥した。測定の結果、DS=20.0%のSPAEを得た。
作成したSPAEを35質量%となるように、NMPを加えて混練しながら、150℃で溶解させて、均一な製膜原液を得た。
続いて、製膜原液を170℃の温度に保ちながら、二重円筒管ノズルより、中空状に押出しながら、芯液としてエチレングリコールを同時に押出して成形させ、常温の空気中を15mm空走させて、乾燥処理を行ったあと、水を満たした30℃の凝固浴に浸漬させ、ローラーを用いて15m/分で巻き取り、分離膜を作製した後、水洗処理を行った。前記水洗処理を終えた分離膜を70℃の水中で20分間の熱処理を行った。
得られた分離膜の外径は178μm、内径は95μmであった。逆浸透分離性能評価を行ったところ、透水量は34L/m2/日、塩除去率は95.0%であった。
得られた分離膜について、正浸透分離性能評価を行ったところ、透水量は3.5L/m2/hであった。
得られた分離膜について、空孔率は62.0%、空孔分布はA=0.26であった。
(SPAEの重合)
実施例1と同じ方法でDS=26.5%のSPAEを得た。
芯液としてNMP/EG=6/4を用いたこと以外は、実施例1と同じ方法で、分離膜を得て、水洗処理、熱処理を行った。
得られた分離膜の外径は188μm、内径は95μmであった。逆浸透分離性能評価を行ったところ、透水量は110L/m2/日、塩除去率は52.2%であった。
得られた分離膜について、正浸透分離性能評価を行ったところ、透水量は2.4L/m2/hであった。
得られた分離膜について、空孔率は87.4%、空孔分布はA=0.64であった。
(SPAEの重合)
実施例1と同じ方法でDS=26.5%のSPAEを得た。
実施例1と同じ方法で、分離膜を得て、水洗処理後、3.5質量%塩化ナトリウム水溶液中で98℃、20分間熱処理を行った。
得られた分離膜の外径は178μm、内径は79μmであった。逆浸透分離性能評価を行ったところ、透水量は28L/m2/日、塩除去率は98.2%であった。
得られた分離膜について、正浸透分離性能評価を行ったところ、透水量は0.2L/m2/hであった。
得られた分離膜について、空孔率は51.2%、空孔分布はA=0.18であった。
(SPAEの重合)
実施例1と同じ方法でDS=26.5%のSPAEを得た。その後、2モル/リットルの濃度に調整した硫酸水溶液中で48時間、SPAEを浸漬、攪拌した。得られたSPAEを十分に水洗、乾燥させることにより、スルホン酸基上のカウンターイオンをプロトンに変換させた。
前記ポリマーを用いたこと以外は、実施例1と同じ方法で、分離膜を得て、水洗処理、熱処理を行った。
得られた分離膜の外径は185μm、内径は90μmであった。逆浸透分離性能評価を行ったところ、透水量は130L/m2/日、塩除去率は62.0%であった。
得られた分離膜について、正浸透分離性能評価を行ったところ、透水量は2.6L/m2/hであった。
得られた分離膜について、空孔率は88.2%、空孔分布はA=0.22であった。
(SPAEの重合)
実施例1と同じ方法でDS=26.5%のSPAEを得た。
芯液の組成を85質量%のN-メチル-2-ピロリドンと15質量%のエチレングリコールを混合した溶液としたこと以外は実施例1と同じ方法で、分離膜の製膜実験を行ったが、膜の破断が頻発し、製膜を行うことができなかった。
(SPAEの重合)
実施例1と同じ方法でDS=26.5%のSPAEを得た。
製膜原液の温度を150℃としたこと、芯液をエチレングリコールとしたこと、凝固浴に3.5質量%塩化ナトリウム水溶液を使用したこと以外は実施例1と同じ方法で、分離膜を得て、水洗処理、熱処理を行った。
得られた分離膜の外径は188μm、内径は93μmであった。逆浸透分離性能評価を行ったところ、透水量は38L/m2/日、塩除去率は92.0%であった。
得られた分離膜について、正浸透分離性能評価を行ったところ、透水量は2.0L/m2/hであった。
得られた分離膜について、空孔率は54.8%、空孔分布はA=0.20であった。
(SPAEの重合)
実施例1と同じ方法でDS=26.5%のSPAEを得た。
比較例5と同じ方法で、分離膜を得て、水洗処理後、3.5質量%塩化ナトリウム水溶液中で98℃、20分間熱処理を行った。
得られた分離膜の外径は186μm、内径は92μmであった。逆浸透分離性能評価を行ったところ、透水量は27L/m2/日、塩除去率は98.5%であった。
得られた分離膜について、正浸透分離性能評価を行ったところ、透水量は1.6L/m2/hであった。
得られた分離膜について、空孔率は50.8%、空孔分布はA=0.16であった。
Claims (8)
- 外表面側から内表面側にかけて傾斜構造を有する分離膜であって、ラマン分光法により、膜厚方向のポリマー密度分布を測定したときに、ポリマー密度が密な層の厚みと疎な層の厚みの比率が、0.25≦(疎な層の厚み)/〔(密な層の厚み)+(疎な層の厚み)〕≦0.6の範囲となることを特徴とする分離膜。
- 前記分離膜の空孔率が60~85%であることを特徴とする請求項1に記載の分離膜。
- 前記分離膜が下記式(III)で表される疎水性セグメントと、下記式(IV)で表される親水性セグメントの繰り返し構造からなるスルホン化ポリアリーレンエーテル(SPAE)からなることを特徴とする請求項1または2に記載の分離膜。
aおよびbはそれぞれ1以上の自然数を表し、
R1およびR2は、-SO3Mを表し、Mは金属元素を表し、
スルホン化ポリアリーレンエーテル共重合体中の式(III)の繰り返し数と式(IV)の繰り返し数の合計に対する式(IV)の繰り返し数の百分率割合として表されるスルホン化率が、10%よりも大きく、50%よりも小さい。 - 前記分離膜が正浸透処理用であることを特徴とする請求項1~4のいずれかに記載の分離膜。
- 前記分離膜が中空糸膜であることを特徴とする請求項1~5のいずれかに記載の分離膜。
- 請求項1~6のいずれかに記載の分離膜を組み込んだことを特徴とする分離膜エレメント。
- 請求項7に記載の分離膜エレメントを1以上組み込んだことを特徴とする分離膜モジュール。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016553115A JP6620754B2 (ja) | 2014-10-07 | 2015-10-06 | 分離膜および分離膜エレメントおよび分離膜モジュール |
CA2963623A CA2963623C (en) | 2014-10-07 | 2015-10-06 | Polymer separation membrane having a layer of variable density |
US15/516,969 US10814289B2 (en) | 2014-10-07 | 2015-10-06 | Separation membrane, separation membrane element and separation membrane module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-206498 | 2014-10-07 | ||
JP2014206498 | 2014-10-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016056547A1 true WO2016056547A1 (ja) | 2016-04-14 |
Family
ID=55653158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/078331 WO2016056547A1 (ja) | 2014-10-07 | 2015-10-06 | 分離膜および分離膜エレメントおよび分離膜モジュール |
Country Status (4)
Country | Link |
---|---|
US (1) | US10814289B2 (ja) |
JP (1) | JP6620754B2 (ja) |
CA (1) | CA2963623C (ja) |
WO (1) | WO2016056547A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018079733A1 (ja) * | 2016-10-27 | 2018-05-03 | 三井化学株式会社 | 正浸透膜およびその用途 |
WO2019189547A1 (ja) * | 2018-03-29 | 2019-10-03 | 三井化学株式会社 | 正浸透膜およびその用途 |
WO2020175374A1 (ja) * | 2019-02-28 | 2020-09-03 | 東洋紡株式会社 | 中空糸膜および中空糸膜の製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102250387B1 (ko) * | 2018-06-21 | 2021-05-10 | 주식회사 엘지화학 | 분리막 활성층의 제조 전 분리막 활성층을 구성하는 아민 화합물을 정량하는 방법, 분리막 활성층 중의 폴리아마이드 또는 미반응 아민 화합물을 정량하는 방법, 및 분리막 활성층의 제조 조건의 설정 기준 또는 제조 조건을 설정하는 방법 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003026779A1 (fr) * | 2001-08-01 | 2003-04-03 | Asahi Kasei Kabushiki Kaisha | Film microporeux multicouches |
WO2013005551A1 (ja) * | 2011-07-04 | 2013-01-10 | 東洋紡株式会社 | 排水処理用の逆浸透膜 |
JP2013031836A (ja) * | 2011-07-04 | 2013-02-14 | Toyobo Co Ltd | ナノろ過用の分離膜 |
JP2013076024A (ja) * | 2011-09-30 | 2013-04-25 | Asahi Kasei Fibers Corp | ポリケトン多孔膜 |
WO2013156598A1 (en) * | 2012-04-20 | 2013-10-24 | Basf Se | Ultrafiltration membranes fabricated from sulfonated polyphenylenesulfones |
JP2014508637A (ja) * | 2011-01-11 | 2014-04-10 | ハイドレーション・システムズ,エルエルシー | 二層膜 |
JP2014514150A (ja) * | 2011-04-29 | 2014-06-19 | ビーエーエスエフ ソシエタス・ヨーロピア | スルホン化ポリアリールエーテルを含む複合膜および正浸透方法におけるその使用 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61136402A (ja) | 1984-12-05 | 1986-06-24 | Toyobo Co Ltd | 中空糸状逆浸透膜 |
JP3008886B2 (ja) | 1997-04-24 | 2000-02-14 | 東洋紡績株式会社 | 中空糸型選択透過膜モジュール |
JP3591618B2 (ja) | 1997-06-05 | 2004-11-24 | 東洋紡績株式会社 | 中空糸型分離膜素子 |
JP4277147B2 (ja) | 1999-10-15 | 2009-06-10 | 東洋紡績株式会社 | 中空糸膜モジュールおよびその製造方法 |
WO2004069391A1 (ja) | 2003-02-03 | 2004-08-19 | Toyo Boseki Kabushiki Kaisha | 中空糸膜モジュールおよびそのモジュール配列群 |
WO2008137082A1 (en) | 2007-05-02 | 2008-11-13 | Yale University | Method for designing membranes for osmotically driven membrane processes |
-
2015
- 2015-10-06 US US15/516,969 patent/US10814289B2/en active Active
- 2015-10-06 WO PCT/JP2015/078331 patent/WO2016056547A1/ja active Application Filing
- 2015-10-06 JP JP2016553115A patent/JP6620754B2/ja active Active
- 2015-10-06 CA CA2963623A patent/CA2963623C/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003026779A1 (fr) * | 2001-08-01 | 2003-04-03 | Asahi Kasei Kabushiki Kaisha | Film microporeux multicouches |
JP2014508637A (ja) * | 2011-01-11 | 2014-04-10 | ハイドレーション・システムズ,エルエルシー | 二層膜 |
JP2014514150A (ja) * | 2011-04-29 | 2014-06-19 | ビーエーエスエフ ソシエタス・ヨーロピア | スルホン化ポリアリールエーテルを含む複合膜および正浸透方法におけるその使用 |
WO2013005551A1 (ja) * | 2011-07-04 | 2013-01-10 | 東洋紡株式会社 | 排水処理用の逆浸透膜 |
JP2013031836A (ja) * | 2011-07-04 | 2013-02-14 | Toyobo Co Ltd | ナノろ過用の分離膜 |
JP2013076024A (ja) * | 2011-09-30 | 2013-04-25 | Asahi Kasei Fibers Corp | ポリケトン多孔膜 |
WO2013156598A1 (en) * | 2012-04-20 | 2013-10-24 | Basf Se | Ultrafiltration membranes fabricated from sulfonated polyphenylenesulfones |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018079733A1 (ja) * | 2016-10-27 | 2018-05-03 | 三井化学株式会社 | 正浸透膜およびその用途 |
JPWO2018079733A1 (ja) * | 2016-10-27 | 2019-10-03 | 三井化学株式会社 | 正浸透膜およびその用途 |
WO2019189547A1 (ja) * | 2018-03-29 | 2019-10-03 | 三井化学株式会社 | 正浸透膜およびその用途 |
JPWO2019189547A1 (ja) * | 2018-03-29 | 2021-03-25 | 三井化学株式会社 | 正浸透膜およびその用途 |
WO2020175374A1 (ja) * | 2019-02-28 | 2020-09-03 | 東洋紡株式会社 | 中空糸膜および中空糸膜の製造方法 |
JPWO2020175374A1 (ja) * | 2019-02-28 | 2021-05-20 | 東洋紡株式会社 | 中空糸膜および中空糸膜の製造方法 |
US12048898B2 (en) | 2019-02-28 | 2024-07-30 | Toyobo Mc Corporation | Hollow fiber membrane and method for producing hollow fiber membrane |
Also Published As
Publication number | Publication date |
---|---|
US20170296985A1 (en) | 2017-10-19 |
JPWO2016056547A1 (ja) | 2017-08-03 |
CA2963623C (en) | 2021-12-28 |
CA2963623A1 (en) | 2016-04-14 |
JP6620754B2 (ja) | 2019-12-18 |
US10814289B2 (en) | 2020-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6256705B2 (ja) | 複合分離膜 | |
JP6620754B2 (ja) | 分離膜および分離膜エレメントおよび分離膜モジュール | |
JP5252333B1 (ja) | 排水処理用の逆浸透膜 | |
JP5896295B2 (ja) | ナノろ過用の分離膜 | |
JPS6139083B2 (ja) | ||
Lau et al. | Effect of SPEEK content on the morphological and electrical properties of PES/SPEEK blend nanofiltration membranes | |
KR101969663B1 (ko) | 다공질 중공사막 | |
JP5578300B1 (ja) | 複合分離膜 | |
JP5896294B2 (ja) | かん水淡水化用の逆浸透膜 | |
DK201900343A1 (da) | Forward osmosis membrane obtained by using sulfonated polysulfone (sPSf) polymer and production method thereof | |
JP2013223852A (ja) | 海水淡水化用の逆浸透膜 | |
US20230079167A1 (en) | Method of producing hollow fiber membrane | |
JP2005144412A (ja) | ポリケトン系中空糸膜およびその製造方法 | |
JP2018012072A (ja) | 正浸透膜およびその製造方法 | |
WO2023172198A1 (en) | Covalent organic frameworks on hollow fibre substrates with janus-like characteristics for solvent separation | |
AU2017272761B2 (en) | Porous hollow-fiber membrane and production process therefor | |
CN116194194A (zh) | 聚酰胺多孔膜及其制备方法 | |
EP3053641B1 (en) | Water-treatment separation membrane comprising ionic exchange polymer layer and method for forming same | |
JP2021041313A (ja) | 中空糸膜 | |
JP2018171557A (ja) | 多孔質中空糸膜 | |
JPH0420647B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15849575 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2963623 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15516969 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2016553115 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15849575 Country of ref document: EP Kind code of ref document: A1 |