WO2016052867A1 - 가압부를 포함하는 원통형 전지 및 이의 제조 방법 - Google Patents

가압부를 포함하는 원통형 전지 및 이의 제조 방법 Download PDF

Info

Publication number
WO2016052867A1
WO2016052867A1 PCT/KR2015/009218 KR2015009218W WO2016052867A1 WO 2016052867 A1 WO2016052867 A1 WO 2016052867A1 KR 2015009218 W KR2015009218 W KR 2015009218W WO 2016052867 A1 WO2016052867 A1 WO 2016052867A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical battery
cylindrical
battery according
gas
volume
Prior art date
Application number
PCT/KR2015/009218
Other languages
English (en)
French (fr)
Inventor
이혜연
송주용
김일홍
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/506,854 priority Critical patent/US10418620B2/en
Priority to CN201580046589.1A priority patent/CN106716676B/zh
Priority to JP2017509675A priority patent/JP6636012B2/ja
Publication of WO2016052867A1 publication Critical patent/WO2016052867A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/167Lids or covers characterised by the methods of assembling casings with lids by crimping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • H01M50/56Cup shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/106PTC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a cylindrical battery including a pressurizing portion and a method of manufacturing the same.
  • a representative example of an electrochemical device using such electrochemical energy is a secondary battery, and its use area is gradually increasing.
  • secondary batteries are classified into cylindrical batteries and rectangular batteries in which the electrode assembly is embedded in a cylindrical or rectangular metal can, and pouch-type batteries in which the electrode assembly is embedded in a pouch type case of an aluminum laminate sheet. .
  • the cylindrical battery has the advantage of relatively large capacity and structurally stable.
  • the electrode assembly embedded in the battery case is a power generator capable of charging and discharging composed of a laminated structure of a positive electrode, a separator, and a negative electrode, and a jelly-roll type wound around a separator between a long sheet type positive electrode and a negative electrode coated with an active material;
  • a plurality of positive and negative electrodes of a predetermined size are classified into a stack type in which a plurality of positive and negative electrodes are sequentially stacked in a state where a separator is interposed.
  • the jelly-roll type electrode assembly has advantages of easy manufacturing and high energy density per weight.
  • lithium-containing cobalt oxide (LiCoO 2 ) is mainly used as a positive electrode active material, and lithium-containing manganese oxides such as LiMnO 2 having a layered crystal structure and LiMn 2 O 4 having a spinel crystal structure, and Lithium-containing nickel oxide (LiNiO 2 ) is also used.
  • LiCoO 2 is widely used because of its excellent physical properties such as excellent cycle characteristics, but has low safety and high cost due to resource limitations of cobalt as a raw material.
  • Li-Ni-based oxides such as LiNiO 2 have a lower discharge capacity than LiCoO 2 and have a high discharge capacity when charged to 4.25V, but have high production cost, swelling due to gas generation in a battery, low chemical stability, and high pH.
  • Have problems such as;
  • lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 have the advantage of using abundant resources and environmentally friendly manganese as a raw material, attracting a lot of attention as a cathode active material that can replace LiCoO 2 .
  • LiMn 2 O 4 has advantages such as relatively low price and high output, but has a low energy density compared to LiCoO 2 and three-component active materials.
  • LiMn 2 O 4 replaces a part of Mn with Ni, it has a higher operating potential (about 4.7V) than the original operating potential (about 4V).
  • spinel materials with the composition of Li 1 + a Ni x Mn 2-x O 4-z (0 ⁇ a ⁇ 0.1, 0.4 ⁇ x ⁇ 0.5, 0 ⁇ z ⁇ 0.1) have high energy and high power. It is a material that is likely to be used as a positive electrode active material of medium and large-sized lithium ion batteries including electric vehicles (EVs) requiring performance.
  • EVs electric vehicles
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the cylindrical battery according to the present invention includes an electrode assembly (jelly-roll) including a positive electrode, a separator, and a negative electrode;
  • a pressurizing part positioned between the safety vent and the accommodating part and communicating with the accommodating part and applying a predetermined pressure to the accommodating part by a gas,
  • the positive electrode is a lithium composite represented by Chemical Formula 1 as a positive electrode active material. It is characterized by including a transition metal oxide.
  • M is one or more selected from the group consisting of Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and two-cycle transition metals, 0 ⁇ a ⁇ 0.1, 0.4 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.1, and 0 ⁇ z ⁇ 0.1.
  • the capacity decreases as the charge and discharge cycle proceeds.
  • the pressing portion it is possible to suppress the decrease in capacity to improve the life characteristics.
  • the activation potential is activated or operated at a high voltage potential, so that the operating potential reaches the oxidation potential of the electrolyte and more decomposition occurs. It also produces a lot. Electrolyte is inaccessible to the portion where the gas trap is generated, and thus, lithium ion exchange between the active materials is impossible, causing a decrease in capacity by the corresponding volume.
  • the pressure of the gas and its volume are inversely proportional to each other (Boyle's law)
  • the volume of the gas trap can be reduced even if the same amount of gas is generated. Dose reductions can also be reduced. Therefore, when the pressure is applied to the housing through the pressing unit, it is possible to reduce the volume of the gas trap to improve the life characteristics of the battery.
  • HF and LiF these materials are mainly produced by the decomposition reaction of lithium salts, for example, LiPF 6 , contained in the electrolyte.
  • LiPF 6 lithium salts
  • HF acidifies the electrolyte and accelerates the elution of Mn from the positive electrode active material, thereby destroying the crystal structure of the positive electrode active material, causing a decrease in capacity of the battery.
  • LiF is formed on the surface of the negative electrode, and if it is thin and uniformly produced, it does not cause a big problem, but when it is produced unevenly and thickly, it makes it difficult to exchange lithium ions in the corresponding part, leading to a decrease in battery capacity.
  • the positioning of the pressurization portion inside the battery is, in view of the structural stability of the battery, using a cylindrical can, rather than a pouch type battery, in which the durability of the method of heat-sealing the laminate sheet is weak, the cylinder having excellent durability against internal pressure. More suitable for batteries.
  • the pressurizing unit may include a gas of 3 to 25 atm, in detail may include a gas of 10 to 25 atm, more specifically may include a gas of 15 to 25 atm. have.
  • the pressurization part contains gas of less than 3 atm, the effect of reducing the volume of the gas trap or reducing the side reaction by applying pressure to the housing part is not significant, and if the pressure exceeds 25 atm, it may pose a threat to the safety of the battery. It is not desirable because it can.
  • the gas may include a gas generated by the decomposition reaction of the electrolyte during charge and discharge for battery activation.
  • a gas generated by the decomposition reaction of the electrolyte When charging and discharging for battery activation, a large amount of gas is generated by side reactions. If a desired pressure is generated by using such a gas, a separate gas injection process is not required, thereby simplifying the process. Process costs can be reduced.
  • the volume of the pressurization portion may be 0.1% to 20%, in detail 0.1% to 10%, and more specifically 0.1% to 2% of the volume of the receiving portion.
  • the volume of the pressurization portion is less than 0.1%, the pressure of the pressurization portion may be excessively high, which may pose a threat to the safety of the battery. If the volume of the pressurization portion is greater than 20%, the space efficiency of the battery is low and the energy density is also low, which is not preferable.
  • the electrolyte may be included in excess so that the electrode assembly is completely immersed.
  • the fluidity of the electrolyte solution is relatively low, so even if gas is generated inside the electrode assembly, it is difficult to be discharged to the outside of the electrode assembly, and remains inside to generate a gas trap. There is a problem that is more likely to do.
  • the negative electrode is a negative electrode active material, for example, carbon such as non-graphitized carbon, graphite carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, 2, and 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such
  • M ' is at least one element selected from the group consisting of Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al and Zr;
  • a and b are 0.1 ⁇ a ⁇ 4; Determined according to the oxidation number of M 'in the range of 0.2 ⁇ b ⁇ 4;
  • c is determined depending on the oxidation number in the range of 0 ⁇ c ⁇ 0.2;
  • A is -1 or -divalent one or more anions.
  • the lithium metal oxide of Chemical Formula 2 may be lithium titanium oxide (LTO) represented by Chemical Formula 3, specifically, Li 0.8 Ti 2.2 O 4 , Li 2.67 Ti 1.33 O 4 , LiTi 2 O 4 , Li It may be 1.33 Ti 1.67 O 4 , Li 1.14 Ti 1.71 O 4, etc., but if it can occlude / discharge lithium ions, there is no restriction in the composition and type, and more specifically, the change in crystal structure during charge and discharge It may have a low spinel structure of Li 1.33 Ti 1.67 O 4 or LiTi 2 O 4 .
  • LTO lithium titanium oxide
  • the safety vent is a kind of safety device to ensure the safety of the battery by discharging the gas to the outside when the internal pressure of the battery due to abnormal operation of the battery or deterioration of the battery components.
  • the safety vent ruptures, and the gas discharged to such a rupture portion is discharged to the outside through one or more gas outlets formed in the upper cap. Can be discharged.
  • the safety vent may be set to rupture at a pressure of more than 25 atm, and in detail, may be set to rupture at a pressure of more than 30 atm.
  • the cap assembly may further include a protruding top cap connected along the outer circumferential surface of the safety vent, the cap assembly may further include a gasket mounted on the outer circumferential surface of the top cap, the cap A positive temperature coefficient element may be interposed between the top cap of the assembly and the safety vent to block the current by greatly increasing the battery resistance when the internal temperature of the battery increases.
  • a current interrupting member may be mounted inside the cap assembly to block abnormal operating current of the battery and to relieve internal pressure.
  • the positive electrode is prepared by applying a mixture of a positive electrode active material, a conductive material and a binder on a positive electrode current collector, followed by drying and pressing. If necessary, a filler may be further added to the mixture.
  • the positive electrode current collector is generally made to a thickness of 3 to 500 ⁇ m. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like may be used.
  • the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the conductive material is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the negative electrode is prepared by coating, drying and pressing the negative electrode active material on the negative electrode current collector, and optionally, the conductive material, binder, filler, etc. may be further included as necessary.
  • the negative electrode current collector is generally made of a thickness of 3 ⁇ 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
  • a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • the electrolyte solution contains a lithium salt, and as the electrolyte solution, non-aqueous organic solvents, organic solid electrolytes, inorganic solid electrolytes, and the like are used, but not limited thereto.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be
  • organic solid electrolytes examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymerizers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate Triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, aluminum trichloride It may also be added.
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included.
  • lithium salts such as LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2, and the like, may be prepared by cyclic carbonate of EC or PC, which is a highly dielectric solvent, and DEC, DMC, or EMC, which are low viscosity solvents.
  • Lithium salt-containing non-aqueous electrolyte can be prepared by adding to a mixed solvent of linear carbonate.
  • the present invention also provides a device comprising the cylindrical battery.
  • Such a device include a small device such as a computer, a mobile phone, a power tool, and a power tool that is driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Medium and large devices such as a power storage system, but is not limited thereto.
  • Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
  • Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters)
  • Electric golf carts Medium and large devices such as a power storage system, but is not limited thereto.
  • the present invention also provides a method of manufacturing the cylindrical battery, and such a manufacturing method is
  • an electrode assembly (jelly-roll) including an anode, a separator, and a cathode in a housing of the cylindrical can;
  • the manufacturing method may further comprise the following process after the process (c):
  • the pressure of the pressurizing part may be determined according to the relative volume of the pressurizing part and the accommodating part.
  • the pressure of the pressurization portion may vary depending on the specific configuration and desired performance of the battery, and can flexibly respond to obtain the necessary pressure by adjusting the relative volume of the pressurization portion and the accommodation portion by adjusting the injection amount of the electrolyte.
  • the volume of the pressurization portion in the process (b), can be adjusted to be 0.1% to 20%, specifically 0.1% to 10%, more specifically 0.1% to 2% of the volume of the receiving portion. have.
  • the predetermined pressure may be 3 to 25 atm, in detail 10 to 25 atm, and more specifically 15 to 25 atm.
  • FIG. 1 is a vertical sectional perspective view of a typical cylindrical battery
  • FIG. 2 is a partial cross-sectional view of a cylindrical cell according to one embodiment of the present invention.
  • FIG. 3 is a partial cross-sectional view of a cylindrical battery according to an embodiment of the present invention with a different amount of electrolyte injection amount and the cylindrical battery of FIG. 2;
  • 4 to 6 are vertical cross-sectional views of a series of processes in which a current is cut off and a high pressure gas is discharged by the operation of the safety vent and the CID in the cylindrical battery according to another embodiment of the present invention
  • FIG. 7 is a perspective view of a safety vent used in a cylindrical cell
  • Example 8 is a graph comparing life characteristics of Example 1 and Comparative Example 1 of the present invention.
  • Example 9 is a graph comparing life characteristics of Example 1 and Example 2 of the present invention.
  • FIG. 1 is a schematic vertical sectional perspective view of a typical cylindrical battery
  • FIG. 2 and FIG. 3 are a partial cross-sectional view of a cylindrical battery according to an embodiment of the present invention.
  • the cylindrical battery 100 accommodates a jelly-roll type (wound) electrode assembly 110 in the housing 230 of the cylindrical can 200, and the cylindrical can 200.
  • the cap assembly 300 is mounted on the open upper end of the cylindrical can 200.
  • the pressing part 500 is positioned between the safety vent 320 embedded in the cap assembly 300 and the receiving part 230 of the cylindrical can 200, and the pressing part 500 communicates with the receiving part 230.
  • the predetermined pressure is applied to the housing 230 by gas.
  • the electrode assembly 110 has a structure in which a positive electrode, a negative electrode, and a separator are sequentially stacked and wound in a round shape, and a cylindrical center pin 120 is inserted into the center of the electrode assembly 110.
  • the center pin 120 is generally made of a metal material to impart a predetermined strength, and has a hollow cylindrical structure in which a plate is rounded. In some cases, the center pin 120 may be removed after welding the electrode of the electrode assembly 110 with the cylindrical can 200 or the cap assembly 300.
  • the cap assembly 300 has a top cap 310 and an internal pressure drop safety vent inside the hermetic gasket 400 mounted on the upper inner surface of the crimping portion 202 and the beading portion 210 of the cylindrical can 200.
  • the upper cap 310 has a structure in which the 320 is in close contact, and the upper cap 310 protrudes upward to serve as a positive electrode terminal by connection with an external circuit, and the gas inside the can 200 along the periphery of the protrusion. Is formed with a plurality of through-holes 312 can be discharged.
  • Safety vent 320 is a current-carrying thin film structure, its center portion is recessed to form an indented center portion 322, and two notches having different depths at the upper and lower bending portions of the central portion 322, respectively. Fields 324 and 326 are formed.
  • An insulating plate 220 is installed on the top surface of the electrode assembly 110 to prevent contact with the electrode lead 600, thereby preventing a short circuit due to contact between the electrode assembly 110 and the electrode lead 600. .
  • the first notch 324 formed on the upper portion of the notches 324, 326 has a closed curve
  • the second notch 326 formed on the lower portion has an open curved structure.
  • the engagement force of the second notch 326 is configured to be less than the engagement force of the first notch 324, such that the second notch 326 is deeper than the first notch 324.
  • the second notch 326 of the safety vent 320 does not withstand the pressure and breaks, so that the gas inside the can 200 is capped by the upper cap 310. Out through the through hole 312 of the).
  • the volume of the pressing unit 500 is relative to the volume of the receiving unit 230, and the relative volume between the pressing unit 500 and the receiving unit 230 may be adjusted according to the amount of the electrolyte injected into the receiving unit 230. have.
  • the electrolyte is injected up to the insulating plate 220 of the cylindrical battery 100, wherein the volume of the pressing unit 500 is proportional to h1, and the volume of the accommodating unit 230 is proportional to H1.
  • the cylindrical battery 100a is injected with more electrolyte than the cylindrical battery 100, and the electrolyte is injected up to the insulating plate 220.
  • the accommodating portion 230 is a portion into which the electrolyte is injected onto the insulating plate 220, and the volume of the accommodating portion 230 is increased compared to the cylindrical battery 100, and the volume thereof is proportional to H 2. do.
  • the volume of the accommodating part 230 increases, the volume of the pressing part 500 is relatively decreased, and the volume of the pressing part 500 is proportional to h2.
  • FIGS. 4 to 6 are a series of steps for operating the safety vent and the CID in the cylindrical battery according to another embodiment of the present invention is shown in stages, Figure 7 schematically shows a perspective view of the safety vent.
  • the upper cap 310 forms a positive electrode terminal in a protruding shape, and an exhaust port is perforated, and a PTC element for blocking current due to a large increase in battery resistance when the temperature inside the battery rises under the lower portion thereof ( 700), in a normal state has a downwardly protruding shape and the safety vent 320 to explode and exhaust gas when the pressure inside the battery rises, and one side of the upper end is coupled to the safety vent 320 and one side of the lower end
  • Current blocking members 800 connected to the anode of the electrode assembly 110 are sequentially located.
  • the pressing part 500 is positioned between the safety vent 320 and the electrode assembly 110.
  • a current blocking member gasket 810 for fixing the current blocking member 800 surrounds the outer surface of the current blocking member 800.
  • the anode of the electrode assembly 110 is electrically connected to the upper cap 310 via the electrode lead 600, the current blocking member 800, the safety vent 320, and the PTC element 700. To achieve power.
  • the safety vent 320 protrudes upward while its shape is reversed. 320 is separated from the current blocking member 800 is to block the current. Therefore, overcharging does not proceed any more to ensure safety. Nevertheless, if the internal pressure continues to increase, as shown in FIG. 6, the safety vent 320 ruptures and the pressurized gas is exhausted through the exhaust port of the upper cap 310 via such a rupture portion, thereby preventing the explosion of the battery. Will be prevented.
  • LiNi 0.5 Mn 1.5 O 4 was used as a positive electrode active material, and a conductive material (Super-P) and a binder (PVdF) were added to NMP at a weight ratio of 90: 5: 5, respectively, and mixed to prepare a positive electrode mixture.
  • the foil was coated, rolled and dried to prepare a positive electrode.
  • a negative electrode active material Li 1.33 Ti 1.67 O 4
  • a conductive material Super-P
  • a binder PVdF
  • the electrode assembly was manufactured by interposing a separator (thickness: 20 ⁇ m) between the prepared cathode and the anode, and the electrode assembly was accommodated in a cylindrical can, followed by ethylene carbonate (EC) and dimethyl carbonate: DMC) and ethyl methyl carbonate (EMC) are mixed 1: 1: 1 by volume, and 4.2 g of an electrolyte solution containing LiPF 6 at a concentration of 1 M is injected into a lithium salt.
  • the cap assembly was mounted on the open top of the cylindrical can and sealed to manufacture a cylindrical battery, wherein the volume of the press portion was 2% of the volume of the receiving portion.
  • Example 1 a cylindrical battery was prepared in the same manner as in Example 1, except that 3.4 g of electrolyte was injected into the cylindrical can, wherein the volume of the pressurization portion was 2.5% of the volume of the storage portion.
  • Example 1 a battery was manufactured in the same manner as in Example 1, except that the electrode assembly and the electrolyte were accommodated in a pouch type battery case instead of a cylindrical can, followed by heat sealing to prepare a pouch type battery.
  • the pouch-type battery of Comparative Example 1 rapidly dropped in capacity as charging and discharging progressed, while the cylindrical battery of Example 1 showed high capacity retention even after 100 cycles.
  • Example 2 the capacity retention rate is reduced to about 95% at about 40 cycles, while in Example 1, the capacity retention is maintained at about 97% even after 120 cycles.
  • Example 1 where the volume of the pressurization portion is relatively smaller than that of Example 2, it can be seen that the pressurization portion pressure was higher than that of Example 2, and the life characteristics were further improved due to the pressure difference.
  • the cylindrical battery and the manufacturing method thereof according to the present invention including a pressing portion for applying a predetermined pressure to the receiving portion, it is possible to reduce the volume of the gas trap, and to reduce side reactions, thereby Lifespan characteristics can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 양극, 분리막, 및 음극을 포함하는 전극조립체(젤리-롤); 상기 전극조립체와 전해액이 함께 수납되는 수납부를 포함하는 원통형 캔; 상기 원통형 캔의 개방 상단부에 탑재되는 캡 어셈블리; 상기 캡 어셈블리에 내장되어 있는 안전벤트; 및 상기 안전벤트와 수납부 사이에 위치하고, 수납부와 연통되어 있으며, 가스에 의해 수납부에 소정의 압력을 가하는 가압부;를 포함하고, 상기 양극은 양극 활물질로서 명세서 상의 화학식 1로 표현되는 리튬 복합 전이금속 산화물을 포함하는 원통형 전지에 관한 것이다.

Description

가압부를 포함하는 원통형 전지 및 이의 제조 방법
본 출원은 2015년 9월 29일자 한국 특허 출원 제 10-2014-0130182호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 가압부를 포함하는 원통형 전지 및 이의 제조 방법에 관한 것이다.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학을 이용한 발전, 축전 분야이다.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다.
이차전지는 전지케이스의 형상에 따라, 전극조립체가 원통형 또는 각형의 금속 캔에 내장되어 있는 원통형 전지 및 각형 전지와, 전극조립체가 알루미늄 라미네이트 시트의 파우치형 케이스에 내장되어 있는 파우치형 전지로 분류된다. 그 중 원통형 전지는 상대적으로 용량이 크고 구조적으로 안정하다는 장점을 가진다.
또한, 전지케이스에 내장되는 전극조립체는 양극/분리막/음극의 적층 구조로 이루어진 충방전이 가능한 발전소자로서, 활물질이 도포된 긴 시트형의 양극과 음극 사이에 분리막을 개재하여 권취한 젤리-롤형과, 소정 크기의 다수의 양극과 음극을 분리막이 개재된 상태에서 순차적으로 적층한 스택형으로 분류된다. 그 중 젤리-롤형 전극조립체는 제조가 용이하고 중량당 에너지 밀도가 높은 장점을 가지고 있다.
한편, 일반적으로 리튬 이차전지는 양극 활물질로는 리튬 함유 코발트 산화물(LiCoO2)이 주로 사용되고 있고, 그 외에 층상 결정구조의 LiMnO2,스피넬 결정구조의 LiMn2O4등의 리튬 함유 망간 산화물과, 리튬 함유 니켈 산화물(LiNiO2)도 사용되고 있다.
상기 양극 활물질들 중에 LiCoO2은 우수한 사이클 특성 등 제반 물성이 우수하여 현재 많이 사용되고 있지만, 안전성이 낮으며, 원료로서 코발트의 자원적 한계로 인해 고가라는 문제가 있다. LiNiO2등의 리튬 니켈계 산화물은 상기 LiCoO2보다 비용이 저렴하면서도 4.25V로 충전되었을 때, 높은 방전 용량을 나타내지만 높은 생산비용, 전지에서의 가스 발생에 의한 스웰링, 낮은 화학적 안정성, 높은 pH 등의 문제들을 가지고 있다.
또한, LiMnO2, LiMn2O4등의 리튬 망간 산화물은 원료로서 자원이 풍부하고 환경친화적인 망간을 사용한다는 장점을 가지고 있으므로, LiCoO2를 대체할 수 있는 양극 활물질로서 많은 관심을 모으고 있다. 특히, 그 중에서도 LiMn2O4는 상대적으로 저렴한 가격 및 고출력 등의 장점을 가지고 있지만, 에너지 밀도가 LiCoO2및 3성분계 활물질들에 비해 낮은 단점이 있다.
이러한 단점을 극복하기 위하여 LiMn2O4에서 Mn의 일부를 Ni로 치환하게 되면 원래 가지던 작동전위(약 4V)에 비하여 높은 작동전위(약 4.7V)를 가지게 된다. 높은 작동전위를 가지게 됨에 따라 Li1+aNixMn2-xO4-z(0≤a≤0.1, 0.4≤x≤0.5, 0≤z≤0.1)의 조성을 가지는 스피넬 물질은 고에너지 및 고출력 성능이 요구되는 전기자동차(Electric Vehicle, EV)를 비롯한 중대형용 리튬 이온 전지의 양극 활물질로 이용될 가능성이 높은 재료이다. 하지만 높은 충방전 전압 전위로 인하여, 양극 활물질 재료의 Mn 용출(dissolution) 및 전해액 부반응으로 인한 전지의 수명 특성 저하가 문제된다.
따라서, 상기와 같이 Mn을 고함량으로 함유하는 양극 활물질을 사용하면서도, 전지의 수명 특성을 향상시킬 수 있는 기술에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, Mn을 고함량으로 함유하는 양극 활물질을 사용하는 원통형 이차전지가, 안전벤트와 수납부 사이에, 수납부에 소정의 압력을 가하는 가압부를 포함하는 경우, 예상치 못하게 우수한 효과를 달성할 수 있는 것을 확인하고, 본 발명을 완성하기에 이르렀다.
따라서, 본 발명에 따른 원통형 전지는, 양극, 분리막, 및 음극을 포함하는 전극조립체(젤리-롤); 상기 전극조립체와 전해액이 함께 수납되는 수납부를 포함하는 원통형 캔; 상기 원통형 캔의 개방 상단부에 탑재되는 캡 어셈블리; 상기 캡 어셈블리에 내장되어 있고 원통형 전지 내부에 존재하는 가스의 압력 의해 파열되도록 노치가 형성되어 있는 안전벤트; 및 상기 안전벤트와 수납부 사이에 위치하고, 수납부와 연통되어 있으며, 가스에 의해 수납부에 소정의 압력을 가하는 가압부;를 포함하고, 상기 양극은 양극 활물질로서 하기 화학식 1로 표현되는 리튬 복합 전이금속 산화물을 포함하는 것을 특징으로 한다.
Li1+aNibMcMn2-(b+c)O4-z (1)
상기 식에서, M은 Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn 및 2주기 전이금속들로 이루어진 군에서 선택되는 하나 이상이고, 0≤a≤0.1, 0.4≤b≤0.5, 0≤c≤0.1, 0≤z≤0.1이다.
상기 화학식 1과 같이 Mn을 고함량으로 함유하고 있는 상기 양극 활물질을 사용하는 경우에는 충방전 사이클이 진행됨에 따라 용량의 감소가 심하게 일어난다. 하지만, 상기 가압부를 포함하는 경우, 용량 감소를 억제하여 수명 특성을 향상시키는 효과가 있다.
이러한 용량 감소의 원인은 다양하지만, 대표적으로 충방전 시 전해액의 분해 반응에 의해 발생하는 가스들이 모여서 생성되는 가스트랩(gas trap), 전해액에 포함되어 있는 리튬염의 분해 반응에 의해 생성되는 불산(HF)과 음극 표면에 불균일한 형태로 생성되는 불화리튬(LiF) 층, 및 양극 활물질 내에 존재하는 Mn2+의 전해액으로의 용출(dissolution) 등을 들 수 있다.
가스트랩의 생성과 관련하여, Mn이 고함량으로 함유된 양극 활물질을 사용하는 경우, 고전압 전위에서 활성화 또는 작동하므로 작동 전위가 전해액의 산화전위에 도달하여 전해액의 분해가 더욱 많이 발생하므로 가스트랩의 생성도 많아진다. 가스트랩이 생성된 부분에는 전해액이 접근할 수 없고, 따라서, 활물질 간의 리튬 이온 교환이 불가능하므로 해당 부피만큼의 용량 감소를 유발한다.
이와 관련하여, 기체의 압력과 그 부피는 서로 반비례하므로(보일의 법칙), 본 발명에서와 같이 전지 내부에 압력을 가하면, 같은 양의 가스가 발생하더라도 가스트랩의 부피를 줄일 수 있고, 전지의 용량 감소 또한 줄일 수 있다. 따라서, 상기 가압부를 통해 수납부에 압력을 가하게 되면, 가스트랩의 부피를 감소시켜 전지의 수명 특성을 향상시킬 수 있다.
한편, HF과 LiF과 관련하여, 이들 물질은 전해액에 포함되어 있는 리튬염, 예를 들어 LiPF6의 분해 반응에 의해 주로 생성된다. 특히, HF는 전해액을 산성화시켜 양극 활물질에서 Mn의 용출을 가속화 시킴으로써 양극 활물질의 결정 구조를 파괴하여 전지의 용량 감소를 유발한다.
LiF는 음극 표면 상에 생성되며, 얇고 균일하게 생성되는 경우에는 큰 문제를 일으키지 않으나, 불균일하고 두껍게 생성되는 경우에는 해당 부분에서 리튬 이온의 교환을 어렵게 만들어, 전지의 용량 감소를 유발한다.
본 발명의 발명자들이 확인한 바에 의하면, 낮은 압력 하에서 전지를 작동 시키는 경우, 가스발생에 의해 국부적으로 가스트랩이 발생하면, 그 부위에 과전압(overpotential)이 생겨 전해액 분해 반응 등의 부반응이 집중적으로 발생하고, 그에 따라 음극 표면 상에 국부적으로 LiF가 두껍게 형성된다.
하지만 이와 달리, 높은 압력 하에서 전지를 작동시키는 경우, 전극 표면 전체에서 반응이 균일하게 일어나므로, 음극 표면 상에 LiF 층이 생성되더라도 얇고 균일하게 생성된다. 따라서, 본 발명에서와 같이 가압부를 포함하여 전지 내부에 압력을 가하는 경우, 전지에서의 균일한 반응에 의해 전지의 수명 특성을 향상시킬 수 있다.
이와 같이, 전지 내부에 가압부를 위치시키는 것은, 전지의 구조적 안정성을 고려할 때, 라미네이트 시트를 열융착하는 방식의 내구성이 취약한 파우치형 전지보다는, 원통형의 캔을 사용하여 내부 압력에 대한 내구성이 뛰어난 원통형 전지에 더 적합하다.
하나의 구체적인 예에서, 상기 가압부는 3 내지 25 기압의 가스를 포함할 수 있고, 상세하게는 10 내지 25 기압의 가스를 포함할 수 있으며, 더욱 상세하게는 15 내지 25기압의 가스를 포함 할 수 있다.
가압부가 3 기압 미만의 가스를 포함하는 경우에는, 수납부에 압력을 가하여 가스트랩의 부피를 감소시키거나 부반응을 감소시키는 효과가 크지 않으며, 25 기압을 초과하는 경우에는 전지의 안전성에 위협이 될 수 있으므로 바람직하지 않다.
한편, 상기 가스는 전지 활성화를 위한 충방전 시 전해액의 분해 반응에 의해 생성된 가스를 포함할 수 있다. 전지 활성화를 위한 충방전 시에는 부반응에 의해 많은 양의 가스가 발생하는데, 이러한 가스를 활용하여 가압부에 소망하는 압력을 생성하면, 별도의 가스 주입 과정이 필요하지 않아 공정을 간소화 시킬 수 있고, 공정 비용을 절감할 수 있다.
하나의 구체적인 예에서, 상기 가압부의 부피는 수납부의 부피 대비 0.1% 내지 20%일 수 있고, 상세하게는 0.1% 내지 10%일 수 있으며, 더욱 상세하게는 0.1% 내지 2%일 수 있다.
가압부의 부피가 0.1% 미만인 경우에는 가압부의 압력이 과도하게 높아질 수 있어 전지의 안전성에 위협이 될 수 있고, 20% 초과인 경우에는 전지의 공간 효율성이 낮고 에너지 밀도 또한 낮아지게 되어 바람직하지 않다.
하나의 구체적인 예에서, 상기 전해액은 전극조립체가 완전히 침지되도록 과잉으로 포함될 수 있다.
전극조립체가 전해액에 완전히 침지되지 않고, 전해액을 적당히 함침하고 있는 경우에는, 전해액의 유동성이 상대적으로 낮으므로 전극조립체 내부에 가스가 발생되더라도 전극조립체 외부로 배출되기 어렵고, 내부에 남아 가스트랩을 생성할 가능성이 더 높아지는 문제가 있다.
반면, 전극조립체가 전해액에 완전히 침지되어 있는 경우에는, 전해액의 유동에 의해, 전극조립체 내부에 발생된 가스가 전극조립체 외부로 쉽게 배출되어 가스트랩이 생성될 가능성이 낮아진다.
하나의 구체적인 예에서, 상기 음극은 음극 활물질로서, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz(Me:Mn,Fe,Pb,Ge;Me':Al,B,P,Si,주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물, 및 하기 화학식 2로 표시되는 리튬 금속 산화물 등을 사용할 수 있다.
LiaM'bO4-cAc (2)
상기 식에서, M'은 Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al 및 Zr로 이루어진 군에서 선택되는 하나 이상의 원소이고;
a 및 b는 0.1≤a≤4; 0.2≤b≤4의 범위에서 M'의 산화수(oxidation number)에 따라 결정되며;
c는 0≤c<0.2의 범위에서 산화수에 따라 결정되고;
A는 -1 또는 -2가의 하나 이상의 음이온이다.
상세하게는, 상기 화학식 2의 리튬 금속 산화물은 하기 화학식 3으로 표시되는 리튬 티타늄 산화물(LTO)일 수 있고, 구체적으로 Li0.8Ti2.2O4, Li2.67Ti1.33O4, LiTi2O4, Li1.33Ti1.67O4, Li1.14Ti1.71O4 등일 수 있으나, 리튬 이온을 흡장/방출할 수 있는 것이면 그 조성 및 종류에 있어 별도의 제한은 없으며, 더욱 상세하게는, 충방전시 결정 구조의 변화가 적고 가역성이 우수한 스피넬 구조의 Li1.33Ti1.67O4또는 LiTi2O4일 수 있다.
LiaTibO4 (3)
상기 식에서, 0.5≤a≤3, 1≤b≤2.5 이다.
상대적으로 고전위를 가지는 스피넬 리튬 복합 전이금속 산화물을 양극 활물질로 사용하는 경우, 높은 전위를 갖는 LTO를 음극 활물질로 사용하면 레이트 특성을 향상 시킬 수 있고, 음극에서의 Li 플레이팅(Li plating)을 방지할 수 있다.
한편, 상기 안전벤트는 전지의 비정상적인 작동 또는 전지 구성요소들의 열화로 인한 전지 내부 압력의 상승시 가스를 외부로 배출시켜 전지의 안전성을 담보하는 일종의 안전소자이다. 예를 들어, 전지의 내부에서 가스가 발생하여 임계치 이상으로 내압이 증가하였을 때, 안전벤트가 파열되고, 그러한 파열 부위로 배출되는 가스는 상단 캡에 형성되어 있는 하나 또는 둘 이상의 가스 배출구를 통해 외부로 배출될 수 있다.
본 발명에서, 상기 안전벤트는 25 기압 초과의 압력에서 파열되도록 설정될 수 있으며, 상세하게는 30 기압 이상의 압력에서 파열되도록 설정될 수 있다.
하나의 구체적인 예에서, 상기 캡 어셈블리는 안전벤트의 외주면을 따라 접속되어 있는 돌출형의 상단 캡을 더 포함할 수 있고, 상기 상단 캡의 외주면에 장착되어 있는 가스켓을 더 포함할 수 있으며, 상기 캡 어셈블리의 상단 캡과 안전벤트 사이에는 전지의 내부 온도 상승 시 전지 저항이 크게 증가하여 전류를 차단하는 PTC 소자(positive temperature coefficient element)가 개재될 수 있다.
또한, 상기 캡 어셈블리 내부에는 전지의 비정상적인 작동 전류를 차단하고 내압을 해소하기 위한 전류차단부재(Current Interruptive Device; CID)도 장착될 수 있다.
이하에서는, 상기 원통형 전지의 기타 구성 성분들에 대해서 설명한다.
상기 양극은 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조 및 프레싱하여 제조되며, 필요에 따라서는 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
반면에, 음극은 음극 집전체 상에 음극 활물질을 도포, 건조 및 프레싱하여 제조되며, 필요에 따라 상기에서와 같은 도전재, 바인더, 충진제 등이 선택적으로 더 포함될 수 있다.
상기 음극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 전해액은 리튬염을 함유하고 있으며, 상기 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
경우에 따라서는, 상기 전해액에 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.
하나의 구체적인 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유 비수계 전해질을 제조할 수 있다.
본 발명은 또한, 상기 원통형 전지를 포함하는 디바이스를 제공한다.
이러한 디바이스의 구체적인 예로는, 컴퓨터, 휴대폰, 파워 툴(power tool) 등의 소형 디바이스와, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등의 중대형 디바이스를 들 수 있으나, 이에 한정되는 것은 아니다.
상기 전지팩과 디바이스의 구조 등은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명을 생략한다.
본 발명은 또한, 상기 원통형 전지의 제조 방법을 제공하며, 이러한 제조 방법은,
(a) 원통형 캔의 수납부에 양극, 분리막, 및 음극을 포함하는 전극조립체(젤리-롤)를 수납하는 과정;
(b) 상기 수납부에 주입하는 전해액의 양을 조절하여, 안전벤트와 수납부 사이에 형성되는 가압부와 수납부의 상대적 부피를 조절하는 과정; 및
(c) 상기 원통형 캔의 개방 상단부에 캡 어셈블리를 탑재하는 과정;
을 포함한다.
하나의 구체적인 예에서, 상기 제조 방법은 과정(c) 이후에 하기 과정을 더 포함할 수 있다:
(d) 상기 원통형 전지의 활성화를 위한 충방전을 수행하여 상기 충방전에서 발생된 가스를 가압부에 포집함으로써 소정의 압력을 생성하는 과정.
상기 수납부와 가압부는 연통되어 있으며, 전지 내에서 발생하는 가스를 포집함으로써 소정의 압력을 생성할 수 있으므로, 가압부와 수납부의 상대적 부피에 따라 가압부의 압력이 결정될 수 있다.
상기 가압부의 압력은 전지의 구체적인 구성 및 원하는 성능에 따라 달라질 수 있으며, 전해액의 주입량을 조절하여 가압부와 수납부의 상대적 부피를 조절함으로써 필요한 압력을 얻을 있도록 유연하게 대응할 수 있다.
하나의 구체적인 예에서, 상기 과정(b)에서, 가압부의 부피는 수납부의 부피 대비 0.1% 내지 20%, 상세하게는 0.1% 내지 10%, 더욱 상세하게는 0.1% 내지 2%가 되도록 조절할 수 있다.
상기 과정(d)에서, 소정의 압력은 3 내지 25 기압일 수 있고, 상세하게는 10 내지 25 기압일 수 있으며, 더욱 상세하게는 15 내지 25 기압일 수 있다.
도 1은 일반적인 원통형 전지의 수직 단면 사시도이다;
도 2는 본 발명의 하나의 실시예에 따른 원통형 전지의 부분 단면도이다;
도 3은 도 2의 원통형 전지와 전해액 주입량을 달리한 본 발명의 하나의 실시예에 따른 원통형 전지의 부분 단면도이다;
도 4 내지 도 6은 본 발명의 또 다른 실시예에 따른 원통형 전지에서, 안전벤트 및 CID의 작동에 의해 전류가 차단되고 고압 가스가 배출되는 일련의 과정에 대한 수직 단면도들이다;
도 7은 원통형 전지에 사용된 안전벤트의 사시도이다;
도 8은 본 발명의 실시예 1과 비교예 1의 수명 특성을 비교한 그래프이다;
도 9는 본 발명의 실시예 1과 실시예 2의 수명 특성을 비교한 그래프이다.
이하에서는, 본 발명의 실시예에 따른 도면을 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 1에는 일반적인 원통형 전지의 수직단면 사시도가 모식적으로 도시되어 있고, 도 2 및 도 3에는 본 발명의 하나의 실시예에 따른 원통형 전지의 부분 단면도가 모식적으로 도시되어 있다.
우선, 도 1 및 도 2를 참조하면, 원통형 전지(100)는 젤리-롤형(권취형) 전극조립체(110)를 원통형 캔(200)의 수납부(230)에 수납하고, 원통형 캔(200) 내에 전극조립체(110)가 완전히 침지되도록 수납부(230)에 전해액을 주입한 후에, 원통형 캔(200)의 개방 상단에 캡 어셈블리(300)를 탑재하여 제작한다.
캡 어셈블리(300)에 내장되어 있는 안전벤트(320)와 원통형 캔(200)의 수납부(230) 사이에는 가압부(500)가 위치하며, 가압부(500)는 수납부(230)와 연통되어 있으며, 가스에 의해 수납부(230)에 소정의 압력을 가한다.
전극조립체(110)는 양극과 음극, 및 분리막을 차례로 적층하여 둥근 형태로 감은 구조로서, 전극조립체(110)의 중심부에는 원통형의 센터 핀(120)이 삽입되어 있다. 센터 핀(120)은 일반적으로 소정의 강도를 부여하기 위해 금속 소재로 이루어져 있으며, 판재를 둥글게 절곡한 중공형의 원통형 구조로 이루어져 있다. 경우에 따라서는, 전극조립체(110)의 전극을 원통형 캔(200) 또는 캡 어샘블리(300)와 용접한 후 센터 핀(120)을 제거할 수도 있다.
캡 어셈블리(300)는 원통형 캔(200)의 클림핑부(202)와 비딩부(210)의 상부 내면에 장착되는 기밀유지용 가스켓(400) 내부에 상단 캡(310)과 내부 압력 강하용 안전벤트(320)가 밀착되어 있는 구조로 이루어져 있고, 상단 캡(310)은 중앙이 상향 돌출되어 있어서 외부 회로와의 접속에 의한 양극 단자로서의 역할을 수행하고, 돌출부 주변을 따라 캔(200) 내부의 가스가 배출될 수 있는 관통구(312)가 다수 개 형성되어 있다.
안전벤트(320)는 전류가 통하는 박막 구조물로서, 그것의 중앙부는 함몰되어 만입형 중앙부(322)를 형성하고 있고, 중앙부(322)의 상절곡 및 하절곡 부위에는 각각 깊이를 달리하는 2 개의 노치들(324, 326)이 형성되어 있다.
전극조립체(110)의 상단면에는 전극리드(600)와의 접촉을 방지하기 위한 절연성 플레이트(220)가 장착되어 있어서, 전극조립체(110)와 전극리드(600)의 접촉에 의한 단락을 방지하게 된다.
한편, 노치들(324, 326) 중 상부에 형성되는 제 1 노치(324)는 폐곡선을 이루고 있고, 하부에 형성되는 제 2 노치(326)는 일측이 개방된 개곡선의 구조로 되어 있다. 하나의 예에서, 제 2 노치(326)의 결합력은 제 1 노치(324)의 결합력보다 작도록 구성되어 있어서, 제 2 노치(326)는 제 1 노치(324)보다 깊게 파여 있다.
이 경우, 캔(200)의 내부압력이 임계 압력 이상으로 상승하게 되면, 안전벤트(320)의 제 2 노치(326)가 압력을 견디지 못하고 파단되면서 캔(200) 내부의 가스가 상단 캡(310)의 관통구(312)를 통해 외부로 빠져나가게 된다.
가압부(500)의 부피는 수납부(230)의 부피와 상대적이며, 수납부(230)에 주입하는 전해액의 양에 따라 가압부(500)와 수납부(230) 사이의 상대적 부피를 조절할 수 있다. 원통형 전지(100)의 절연성 플레이트(220)까지 전해액이 주입되어 있으며, 이때 가압부(500)의 부피는 h1에 비례하고, 수납부(230)의 부피는 H1에 비례한다.
도 2와 비교하여 도 3을 참조하면, 원통형 전지(100a)는 원통형 전지(100)에 비해 전해액이 더 많이 주입되어 있으며, 절연성 플레이트(220) 위쪽까지 전해액이 주입되어 있다. 이 경우, 수납부(230)는 절연성 플레이트(220)위쪽에 전해액이 주입되어 있는 부분까지이며, 원통형 전지(100)에 비해 수납부(230)의 부피가 더 증가하였고, 그 부피는 H2에 비례한다. 수납부(230)의 부피가 증가함에 따라 가압부(500)의 부피는 상대적으로 감소하였으며, 가압부(500)의 부피는 h2에 비례한다.
도 4 내지 도 6에는 본 발명의 또 다른 실시예에 따른 원통형 전지에서 안전벤트 및 CID가 작동하는 일련의 과정이 단계적으로 도시되어 있으며, 도 7에는 안전벤트의 사시도가 모식적으로 도시되어 있다.
이들 도면을 참조하면, 상단 캡(310)은 돌출된 형태로 양극 단자를 형성하고 배기구가 천공되어 있으며, 그것의 하부에 전지 내부의 온도 상승시 전지 저항이 크게 증가하여 전류를 차단하는 PTC 소자(700), 정상적인 상태에서는 하향 돌출된 형상으로 되어 있고 전지 내부의 압력 상승시 돌출되면서 파열되어 가스를 배기하는 안전벤트(320), 및 상단 일측 부위가 안전벤트(320)에 결합되어 있고 하단 일측이 전극조립체(110)의 양극에 연결되어 있는 전류차단부재(800)가 순차적으로 위치되어 있다. 안전벤트(320)와 전극조립체(110) 사이에는 가압부(500)가 위치하고 있다. 또한, 전류차단부재(800)를 고정하기 위한 전류차단부재용 가스켓(810)이 전류차단부재(800)의 외면을 감싸고 있다.
따라서, 정상적인 작동조건에서 전극조립체(110)의 양극은 전극 리드(600), 전류차단부재(800), 안전벤트(320) 및 PTC 소자(700)를 경유하여 상단 캡(310)에 전기적으로 연결되어 통전을 이룬다.
그러나, 과충전 등과 같은 원인에 의해 가스가 발생하여 가압부(500)의 압력이 증가하면, 도 5에서와 같이, 안전벤트(320)는 그것의 형상이 역전되면서 상향 돌출되게 되고, 이때, 안전벤트(320)가 전류차단부재(800)로부터 분리되어 전류가 차단되게 된다. 따라서, 과충전이 더 이상 진행되지 않도록 하여 안전성을 확보한다. 그럼에도 불구하고, 계속적으로 내압이 증가하면, 도 6에서와 같이, 안전벤트(320)가 파열되고 가압 가스는 그러한 파열 부위를 경유하여 상단 캡(310)의 배기구를 통해 배기됨으로써, 전지의 폭발을 방지하게 된다.
이하에서는, 본 발명의 실시예를 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
<실시예 1>
LiNi0.5Mn1.5O4를 양극 활물질로 사용하고 도전재(Super-P), 바인더(PVdF)를 각각 90: 5: 5 의 중량비로 NMP에 넣고 믹싱하여 양극 합제를 제조한 후 20 ㎛ 두께의 알루미늄 호일에 코팅하고, 압연 및 건조하여 양극을 제조하였다.
음극 활물질(Li1.33Ti1.67O4),도전재(Super-P), 바인더(PVdF)를 90: 5: 5의 중량비로 NMP에 넣고 믹싱하여 음극 합제를 제조하고, 20 ㎛ 두께의 구리 호일에 코팅한 후 압연 및 건조하여 음극을 제조하였다.
이렇게 제조된 음극과 양극 사이에 분리막(두께: 20 ㎛)을 개재하여 전극조립체를 제조하고, 상기 전극조립체를 원통형 캔에 수납한 후, 에틸렌 카보네이트(ethylene carbonate: EC), 디메틸카보네이트(dimethyl carbonate: DMC) 및 에틸메틸카보네이트(ethyl methyl carbonate: EMC)가 부피를 기준으로 1:1:1로 혼합되어 있고, 리튬염으로 LiPF6를 1 M의 농도로 포함하고 있는 전해액을 4.2 g 주입한 다음, 캡 어셈블리를 원통형 캔의 개방 상단에 탑재하고 밀봉하여 원통형 전지를 제조하였고, 이때, 가압부의 부피 는 수납부의 부피 대비 2%였다.
<실시예 2>
상기 실시예 1에서, 원통형 캔에 전해액을 3.4 g 주입한 것을 제외하고는 실시예 1과 동일하게 원통형 전지를 제조하였고, 이때, 가압부의 부피 는 수납부의 부피 대비 2.5%였다.
<비교예 1>
상기 실시예 1에서, 전극조립체 및 전해액을 원통형 캔 대신 파우치형 전지케이스에 수납한 후 열융착하여 파우치형 전지를 제조한 것을 제외하고는 실시예 1과 동일하게 전지를 제조하였다.
<실험예 1>
상기 실시예 1, 실시예 2 및 비교예 1의 전지를 25℃ 챔버에서 1C로 충방전을 실시하면서 초기 용량 대비 용량 유지율을 측정하여, 그 결과를 도 8 및 도 9에 나타내었다.
도 8을 참조하면, 비교예 1의 파우치형 전지는 충방전이 진행됨에 따라 용량이 급격히 떨어지는 반면, 실시예 1의 원통형 전지는 100 사이클 후에도 높은 용량 유지율을 보인다.
이러한 결과는 Mn을 고함량으로 함유하고 있는 양극 활물질을 사용하는 경우에 있어서, 가압부를 포함하지 않는 파우치형 전지에 사용하는 경우보다는, 가압부를 포함하는 원통형 전지에 사용하는 것이 전지의 수명 특성을 현저하게 증가시킬 수 있음을 보여준다.
도 9를 참조하면, 실시예 2는 40 사이클 정도에서 용량 유지율이 약95% 정도로 감소하는 반면, 실시예 1은 120 사이클 후에도 용량 유지율이 약 97% 정도를 유지하는 것을 알 수 있다.
가압부의 부피가 실시예 2에 비해 상대적으로 작은 실시예 1은, 가압부 압력이 실시예 2에 비해 더 높게 생성되었으며, 이러한 압력의 차이로 인해 수명 특성이 더욱 향상되었음을 알 수 있다.
이상 본 발명의 실시예를 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
상기에서 설명한 바와 같이, 본 발명에 따른 원통형 전지 및 이의 제조 방법은, 수납부에 소정의 압력을 가하는 가압부를 포함하여, 가스트랩의 부피를 줄이고, 부반응을 감소시킬 수 있고, 이를 통해, 전지의 수명 특성을 향상시킬 수 있다.

Claims (21)

  1. 양극, 분리막, 및 음극을 포함하는 전극조립체(젤리-롤);
    상기 전극조립체와 전해액이 함께 수납되는 수납부를 포함하는 원통형 캔;
    상기 원통형 캔의 개방 상단부에 탑재되는 캡 어셈블리;
    상기 캡 어셈블리에 내장되어 있고 원통형 전지 내부에 존재하는 가스의 압력 의해 파열되도록 노치가 형성되어 있는 안전벤트; 및
    상기 안전벤트와 수납부 사이에 위치하고, 수납부와 연통되어 있으며, 가스에 의해 수납부에 소정의 압력을 가하는 가압부;
    를 포함하고,
    상기 양극은 양극 활물질로서 하기 화학식 1로 표현되는 리튬 복합 전이금속 산화물을 포함하는 것을 특징으로 하는 원통형 전지:
    Li1+aNibMcMn2-(b+c)O4-z (1)
    상기 식에서, M은 Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn 및 2주기 전이금속들로 이루어진 군에서 선택되는 하나 이상이고, 0≤a≤0.1, 0.4≤b≤0.5, 0≤c≤0.1, 0≤z≤0.1이다.
  2. 제 1 항에 있어서, 상기 가압부는 3 내지 25 기압의 가스를 포함하는 것을 특징으로 하는 원통형 전지.
  3. 제 2 항에 있어서, 상기 가압부는 10 내지 25 기압의 가스를 포함하는 것을 특징으로 하는 원통형 전지.
  4. 제 1 항에 있어서, 상기 가스는 전지 활성화를 위한 충방전 시 전해액의 분해 반응에 의해 생성된 가스를 포함하는 것을 특징으로 하는 원통형 전지.
  5. 제 1 항에 있어서, 상기 가압부의 부피는 수납부의 부피 대비 0.1% 내지 20%인 것을 특징으로 하는 원통형 전지.
  6. 제 5 항에 있어서, 상기 가압부의 부피는 수납부의 부피 대비 0.1% 내지 10%인 것을 특징으로 하는 원통형 전지.
  7. 제 1 항에 있어서, 상기 전해액은 전극조립체가 완전히 침지되도록 과잉으로 포함되어 있는 것을 특징으로 하는 원통형 전지.
  8. 제 1 항에 있어서, 상기 안전벤트는 25 기압 초과의 압력에서 파열되도록 설정되어 있는 것을 특징으로 하는 원통형 전지.
  9. 제 8 항에 있어서, 상기 안전벤트는 30 기압 이상의 압력에서 파열되도록 설정되어 있는 것을 특징으로 하는 원통형 전지.
  10. 제 1 항에 있어서, 상기 음극은 음극 활물질로서 하기 화학식 2로 표시되는 리튬 금속 산화물을 포함하는 것을 특징으로 하는 원통형 전지:
    LiaM'bO4-cAc (2)
    상기 식에서, M'은 Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al 및 Zr로 이루어진 군에서 선택되는 하나 이상의 원소이고;
    a 및 b는 0.1≤a≤4; 0.2≤b≤4의 범위에서 M'의 산화수(oxidation number)에 따라 결정되며;
    c는 0≤c<0.2의 범위에서 산화수에 따라 결정되고;
    A는 -1 또는 -2가의 하나 이상의 음이온이다.
  11. 제 10 항에 있어서, 상기 화학식 2의 리튬 금속 산화물은 하기 화학식 3으로 표시되는 리튬 티타늄 산화물(Lithium Titanium Oxide: LTO)인 것을 특징으로 하는 원통형 전지:
    LiaTibO4 (3)
    상기 식에서, 0.5≤a≤3, 1≤b≤2.5 이다.
  12. 제 11 항에 있어서, 상기 화학식 3의 리튬 티타늄 산화물은 Li1.33Ti1.67O4 또는 LiTi2O4인 것을 특징으로 하는 원통형 전지.
  13. 제 1 항에 있어서, 상기 캡 어셈블리는 안전벤트의 외주면을 따라 접속되어 있는 돌출형의 상단 캡을 더 포함하는 것을 특징으로 하는 원통형 전지.
  14. 제 13 항에 있어서, 상기 캡 어셈블리는 상단 캡의 외주면에 장착되어 있는 가스켓을 더 포함하는 것을 특징으로 하는 원통형 전지.
  15. 제 13 항에 있어서, 상기 캡 어셈블리의 상단 캡과 안전벤트 사이에는 PTC 소자가 개재되어 있는 것을 특징으로 하는 원통형 전지.
  16. 제 1 항에 따른 원통형 전지를 포함하는 것을 특징으로 하는 디바이스.
  17. 제 16 항에 있어서, 상기 디바이스는 컴퓨터, 휴대폰, 웨어러블 전자기기, 파워 툴(power tool), 전기자동차(Electric Vehicle: EV), 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 전기 이륜차, 전기 골프 카트, 또는 전력저장용 시스템인 것을 특징으로 하는 디바이스.
  18. 제 1 항에 따른 원통형 전지를 제조하는 방법으로서,
    (a) 원통형 캔의 수납부에 양극, 분리막, 및 음극을 포함하는 전극조립체(젤리-롤)를 수납하는 과정;
    (b) 상기 수납부에 주입하는 전해액의 양을 조절하여, 안전벤트와 수납부 사이에 형성되는 가압부와 수납부의 상대적 부피를 조절하는 과정; 및
    (c) 상기 원통형 캔의 개방 상단부에 캡 어셈블리를 탑재하는 과정;
    을 포함하는 것을 특징으로 하는 원통형 전지의 제조 방법.
  19. 제 18 항에 있어서, 상기 과정 (b)에서, 가압부의 부피는 수납부의 부피 대비 0.1% 내지 20%, 상세하게는 0.1% 내지 10%가 되도록 조절하는 것을 특징으로 하는 원통형 전지의 제조 방법.
  20. 제 18 항에 있어서, 상기 과정(c) 이후에, 하기 과정을 더 포함하는 것을 특징으로 하는 원통형 전지의 제조 방법:
    (d) 상기 원통형 전지의 활성화를 위한 충방전을 수행하여 상기 충방전에서 발생된 가스를 가압부에 포집함으로써 소정의 압력을 생성하는 과정.
  21. 제 20 항에 있어서, 상기 과정(d)에서, 소정의 압력은 3 내지 25 기압이고, 상세하게는 10 내지 25 기압인 것을 특징으로 하는 원통형 전지의 제조 방법.
PCT/KR2015/009218 2014-09-29 2015-09-02 가압부를 포함하는 원통형 전지 및 이의 제조 방법 WO2016052867A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/506,854 US10418620B2 (en) 2014-09-29 2015-09-02 Cylindrical battery including pressurizing part and method of manufacturing the same
CN201580046589.1A CN106716676B (zh) 2014-09-29 2015-09-02 包括增压部的圆柱形电池及其制造方法
JP2017509675A JP6636012B2 (ja) 2014-09-29 2015-09-02 加圧部を含む円筒型電池及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140130182A KR20160037518A (ko) 2014-09-29 2014-09-29 가압부를 포함하는 원통형 전지 및 이의 제조 방법
KR10-2014-0130182 2014-09-29

Publications (1)

Publication Number Publication Date
WO2016052867A1 true WO2016052867A1 (ko) 2016-04-07

Family

ID=55630855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009218 WO2016052867A1 (ko) 2014-09-29 2015-09-02 가압부를 포함하는 원통형 전지 및 이의 제조 방법

Country Status (5)

Country Link
US (1) US10418620B2 (ko)
JP (1) JP6636012B2 (ko)
KR (1) KR20160037518A (ko)
CN (1) CN106716676B (ko)
WO (1) WO2016052867A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210351483A1 (en) * 2020-05-05 2021-11-11 James E. Beecham Battery comprising electrode with laser-sintered material and at least one hundred electrode extensions
KR102263423B1 (ko) * 2017-03-23 2021-06-11 주식회사 엘지에너지솔루션 안전벤트의 이탈을 방지하는 가이드 부재를 포함하는 캡 어셈블리
JP6891955B2 (ja) * 2017-06-15 2021-06-18 株式会社村田製作所 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
KR102331123B1 (ko) * 2017-09-22 2021-11-26 주식회사 엘지에너지솔루션 탄성 부재를 포함하는 원통형 전지셀의 캡 어셈블리
KR102565019B1 (ko) 2018-06-04 2023-08-08 주식회사 엘지에너지솔루션 가스 발생 물질을 포함하는 접착부가 구비된 원통형 이차전지
CN113273020B (zh) 2018-09-11 2024-03-26 劲量品牌有限责任公司 具有带槽的垫片的助听器
EP3905365A4 (en) * 2018-12-28 2022-03-02 SANYO Electric Co., Ltd. SEALED BATTERY
US11641044B1 (en) 2020-04-14 2023-05-02 Energizer Brands, Llc Battery housing and systems and methods of making thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082457A (ja) * 1998-09-04 2000-03-21 Toyo Kohan Co Ltd 電気電子機器・部品用安全装置、それを用いた密閉型電池の安全装置及びそれを用いた密閉型電池
JP2001143762A (ja) * 1999-11-17 2001-05-25 Shin Kobe Electric Mach Co Ltd 円筒形リチウムイオン電池
KR20080058967A (ko) * 2006-12-23 2008-06-26 주식회사 엘지화학 과충전 안전성이 향상된 이차전지
KR20120038977A (ko) * 2009-07-29 2012-04-24 소니 주식회사 이차 전지용 정극 및 이차 전지
KR20120039181A (ko) * 2010-10-15 2012-04-25 주식회사 엘지화학 신규한 구조의 캡 어셈블리 및 이를 포함하고 있는 원통형 전지

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144705A (ja) * 1997-11-11 1999-05-28 Matsushita Electric Ind Co Ltd 防爆型非水電解液二次電池及びその破断圧力設定方法
WO2003044882A1 (fr) * 2001-11-20 2003-05-30 Tdk Corporation Materiau actif d'electrode, electrode, element d'accumulateur au lithium-ion, procede de production de materiau actif d'electrode et procede de production d'element d'accumulateur au lithium-ion
CN100573978C (zh) * 2005-12-30 2009-12-23 比亚迪股份有限公司 二次电池
KR100966549B1 (ko) * 2008-10-14 2010-06-29 주식회사 엘지화학 안전성이 향상된 캡 어셈블리 및 이를 포함하고 있는 원통형 이차전지
KR101094937B1 (ko) 2009-02-16 2011-12-15 삼성에스디아이 주식회사 원통형 이차전지
KR101240717B1 (ko) * 2010-10-13 2013-03-11 삼성에스디아이 주식회사 이차 전지
EP2642560B1 (en) * 2011-01-25 2018-06-27 LG Chem, Ltd. Cylindrical secondary battery
KR101335285B1 (ko) * 2011-05-31 2013-12-02 주식회사 엘지화학 신규한 구조의 캡 어셈블리 및 이를 포함하고 있는 원통형 전지
JP5767407B2 (ja) 2011-07-13 2015-08-19 エルジー・ケム・リミテッド 円筒型二次電池
KR101527748B1 (ko) 2012-04-13 2015-06-12 주식회사 엘지화학 전극의 제조방법 및 이를 사용하여 제조되는 전극
JP2014036010A (ja) * 2012-08-10 2014-02-24 Toyota Motor Corp 非水電解液二次電池
KR102052063B1 (ko) * 2013-01-11 2019-12-04 삼성에스디아이 주식회사 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082457A (ja) * 1998-09-04 2000-03-21 Toyo Kohan Co Ltd 電気電子機器・部品用安全装置、それを用いた密閉型電池の安全装置及びそれを用いた密閉型電池
JP2001143762A (ja) * 1999-11-17 2001-05-25 Shin Kobe Electric Mach Co Ltd 円筒形リチウムイオン電池
KR20080058967A (ko) * 2006-12-23 2008-06-26 주식회사 엘지화학 과충전 안전성이 향상된 이차전지
KR20120038977A (ko) * 2009-07-29 2012-04-24 소니 주식회사 이차 전지용 정극 및 이차 전지
KR20120039181A (ko) * 2010-10-15 2012-04-25 주식회사 엘지화학 신규한 구조의 캡 어셈블리 및 이를 포함하고 있는 원통형 전지

Also Published As

Publication number Publication date
US10418620B2 (en) 2019-09-17
JP2017529659A (ja) 2017-10-05
US20170294641A1 (en) 2017-10-12
JP6636012B2 (ja) 2020-01-29
KR20160037518A (ko) 2016-04-06
CN106716676A (zh) 2017-05-24
CN106716676B (zh) 2019-06-25

Similar Documents

Publication Publication Date Title
WO2016052867A1 (ko) 가압부를 포함하는 원통형 전지 및 이의 제조 방법
WO2012074212A2 (ko) 전지셀의 제조방법 및 이를 이용하여 생산되는 전지셀
WO2016048002A1 (ko) 둘 이상의 케이스 부재들을 포함하는 각형 전지셀
WO2016048028A1 (ko) 절연층을 포함하는 이차전지용 케이스 및 이를 포함하는 리튬 이차전지
WO2012074217A2 (ko) 원심력을 이용한 이차전지의 탈기 방법
WO2015046709A1 (ko) 가열 부재를 포함하는 전지셀 절곡 장치
WO2013157806A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2013115549A1 (ko) 지그재그 형상의 실링부를 포함하는 이차전지
KR101840494B1 (ko) 이차전지용 전극, 이의 제조방법, 이를 포함하는 이차전지
WO2013002497A2 (ko) 우수한 제조 공정성과 안전성의 이차전지
WO2014126369A1 (ko) 비정형 구조의 전지셀
WO2013157863A1 (ko) 전극 및 이를 포함하는 이차전지
WO2013019039A2 (ko) 안전성 향상을 위한 분리막을 포함하는 전극조립체 및 이를 포함하는 리튬 이차전지
WO2018062882A1 (ko) 리튬 이차전지
WO2013157832A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2016209014A1 (ko) 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지
WO2014168398A1 (ko) 면적이 서로 다른 전극들을 포함하고 있는 전극 적층체 및 이를 포함하는 이차전지
WO2013157854A1 (ko) 성능이 우수한 리튬 이차전지
WO2018097500A1 (ko) 가스켓 압축 리미터를 포함하고 있는 전지팩
WO2018048126A1 (ko) 균일한 품질을 가지는 전극들의 제조 방법 및 이를 포함하는 전극조립체 제조 방법
WO2019009576A1 (ko) 비대칭 노치가 형성된 전극리드를 포함하는 파우치형 이차전지
KR102169839B1 (ko) 주름 제거 기능을 구비한 전지케이스 밀봉 장치
WO2017217646A1 (ko) 수명 특성이 향상된 전지시스템 및 전지시스템의 가동 방법
WO2015016568A1 (ko) 안전성이 강화된 리튬 이차전지
WO2013157811A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509675

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15506854

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846608

Country of ref document: EP

Kind code of ref document: A1