WO2016052742A1 - 流体混合器および流体混合器を用いた装置 - Google Patents

流体混合器および流体混合器を用いた装置 Download PDF

Info

Publication number
WO2016052742A1
WO2016052742A1 PCT/JP2015/078099 JP2015078099W WO2016052742A1 WO 2016052742 A1 WO2016052742 A1 WO 2016052742A1 JP 2015078099 W JP2015078099 W JP 2015078099W WO 2016052742 A1 WO2016052742 A1 WO 2016052742A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
fluid
channel
peripheral surface
fluid mixer
Prior art date
Application number
PCT/JP2015/078099
Other languages
English (en)
French (fr)
Inventor
花田 敏広
岡田 貴弘
Original Assignee
旭有機材工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭有機材工業株式会社 filed Critical 旭有機材工業株式会社
Priority to US15/516,343 priority Critical patent/US10391460B2/en
Priority to EP15847431.2A priority patent/EP3202488A4/en
Publication of WO2016052742A1 publication Critical patent/WO2016052742A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4316Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
    • B01F25/43161Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod composed of consecutive sections of flat pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4316Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
    • B01F25/43163Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod in the form of small flat plate-like elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • B01F25/4323Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa using elements provided with a plurality of channels or using a plurality of tubes which can either be placed between common spaces or collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/434Mixing tubes comprising cylindrical or conical inserts provided with grooves or protrusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/434Mixing tubes comprising cylindrical or conical inserts provided with grooves or protrusions
    • B01F25/4342Mixing tubes comprising cylindrical or conical inserts provided with grooves or protrusions the insert being provided with a labyrinth of grooves or a distribution of protrusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/56General build-up of the mixers
    • B01F35/561General build-up of the mixers the mixer being built-up from a plurality of modules or stacked plates comprising complete or partial elements of the mixer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431972Mounted on an axial support member, e.g. a rod or bar

Definitions

  • the present invention relates to a fluid mixer used for fluid transport piping in various industries such as chemical factories, semiconductor manufacturing fields, food fields, medical fields, and bio fields, and in particular, concentration distribution and temperature distribution in the fluid flow direction.
  • the present invention relates to a fluid mixer and a device using the fluid mixer that can be uniformly and uniformly mixed and stirred.
  • the static mixer element 101 is a series of a plurality of minimum unit members that are twisted 180 degrees around the longitudinal axis of the rectangular mixer element 101 in a series so that the twist directions are alternately different. It has a combined structure.
  • a static mixer is formed by disposing the static mixer element 101 in the tube 102, attaching the mail connector 103 to both ends of the tube 102, attaching the flare 105, and tightening the tightening nut 104.
  • the outer diameter of the static mixer element 101 is designed to be approximately equal to the inner diameter of the tube 102 so that the fluid is effectively stirred.
  • the fluid mixing method using the conventional static mixer is configured to stir the flowing fluid along the flow
  • the concentration distribution in the radial direction Dd of the pipe is evenly uniform as shown in FIG. 13A.
  • the concentration distribution in the axial direction (flow direction) Fd of the pipe cannot be made uniform. Therefore, for example, when water and chemicals are mixed and flowed on the upstream side of the static mixer, if the mixing ratio of the chemicals is temporarily increased, the static mixer should be set in a state where the chemicals are partially concentrated in the flow path. pass.
  • the object of the present invention has been made in view of the above-described problems of the prior art, and can uniformly mix and agitate fluids by uniformly uniforming the concentration distribution and temperature distribution in the fluid flow direction. It is to provide a fluid mixer having a compact configuration.
  • the fluid inlet, the first channel connected to the fluid inlet, the first channel and the first channel are arranged so as to communicate with or be separated from each other and have the same central axis as the first channel.
  • a second flow path disposed in the first flow path, a third flow path disposed on an outer periphery of the second flow path, and a branch from the third flow path,
  • a fluid mixer connected to each of the second channels at different positions of two channels, wherein the fluid mixer has the fluid inlet formed at an end and the first channel formed therein.
  • a first flow path forming portion; and the fluid outlet is formed at an end; the second flow path is formed inside;
  • a body having a plurality of communication holes formed on the surface so that the second flow path and the outside communicate with each other; and the element is housed inside, and is fitted to at least both ends of the element.
  • a plurality of delay members are formed discontinuously in the flow path axis direction on at least one of the inner peripheral surface of the casing and the outer peripheral surface of the main body.
  • One fluid space is formed between the peripheral surface and the outer peripheral surface of the main body, the space serves as the third flow path, and the communication hole serves as the branch flow path.
  • a vessel is provided.
  • the fluid flowing in the first flow path and the third flow path is branched from the mutually different positions in the flow path axis direction by the plurality of branch flow paths, and the branched fluid is flow path axis line Each flows into the second flow path from different positions in the direction.
  • the fluid branched by the branch channel flows into the second channel with a time difference and flows out from the fluid outlet.
  • a fluid with a stable concentration can be supplied, and the occurrence of defects due to changes in the chemical concentration in various fields can be prevented.
  • a delay member is formed on at least one of the inner peripheral surface of the housing and the outer peripheral surface of the main body, each time difference generated when the fluid branched by the branch flow channel flows into the second flow channel. And the concentration distribution in the fluid flow direction can be made more uniform and uniform.
  • the shape and arrangement of the delay members are determined according to the flow rate, flow rate, properties, and required degree of mixing of the fluid flowing through the fluid mixer. Can be designed flexibly.
  • the plurality of delay members are formed discontinuously in the flow path axis direction, when the element is divided and formed, a connecting surface is arranged between the delay member and the delay member to obtain a precise position. Since the elements can be assembled without the need for alignment, design and molding are facilitated. In addition, the fluid mixer can be formed compactly with a small number of parts.
  • the delay member is an obstacle that delays the time for the fluid to reach a specific place by preventing the flow of the fluid.
  • the fluid inlet, the first flow path connected to the fluid inlet, the first flow path and the first flow path are arranged so as to communicate with or be separated from each other and have the same central axis as the first flow path.
  • a fluid mixer connected to each of the second flow paths at different positions of the two flow paths, wherein the fluid mixer has the fluid outlet formed at an end and the second flow path formed therein.
  • a housing that fits with an end portion in which an outlet is formed, and a plurality of delay members are discontinuous in the flow axis direction on at least one of the inner circumferential surface of the housing or the outer circumferential surface of the main body.
  • a continuous space is formed between the inner peripheral surface of the housing and the outer peripheral surface of the main body, the space serves as the third flow path, and the communication hole serves as the branch flow path.
  • a fluid mixer is provided.
  • the fluid mixer according to claim 1 or 2 wherein the main body portion is formed in a substantially truncated cone shape, and the delay member is a plate-shaped protrusion. Provided.
  • the projecting portion which is the delay member is formed in a plate shape, a large number of projecting portions can be arranged particularly along the flow axis direction, and the fluid flowing through the fluid mixer Accordingly, the shape and arrangement of the delay member can be designed flexibly.
  • At least two protrusions are provided on the circumference of the outer peripheral surface of the main body, and the protrusions adjacent to each other in the channel axial direction have their protrusion directions in the circumferential direction.
  • a vessel is provided.
  • the projecting portion is projected on the circumference of the outer peripheral surface of the main body portion, the projecting portion is easily installed perpendicular to the flow path axis, and the fluid flow is effectively prevented. Can be hindered.
  • the projecting portions are projected at least two on the circumference of the outer peripheral surface of the main body, and the projecting portions adjacent to each other in the flow path axis direction are arranged by shifting the projecting directions in the circumferential direction. When the fluid flows downstream, it can frequently collide with the protrusion. Further, since the flow passage cross-sectional area of the third flow passage on the circumference where the protruding portion protrudes gradually decreases from the upstream side toward the downstream side, the fluid flow can be effectively prevented. .
  • the main body portion is arranged in series and in alignment with the central axis of the cylindrical portion so that a plurality of cylindrical portions having different diameters gradually expand from the upstream side toward the downstream side. 5.
  • the main body is formed in a staircase shape and the outer peripheral surface of the main body is formed in a shape having no slope, it is easy to form the main body by cutting.
  • the said protrusion part is arrange
  • variety of the said protrusion part has arrange
  • the protrusion is formed larger than the diameter of the circumference, and the height of the protrusion is formed such that a gap is formed between the end of the protrusion and the inner peripheral surface of the housing.
  • the other projecting portions adjacent to each other in the flow path axis direction and the projecting directions of the projecting portions are shifted by 90 ° in the circumferential direction. 6.
  • a fluid mixer is provided.
  • the flow of the fluid flowing through the third flow path can be more effectively prevented, and each time difference generated when the fluid branched by the branch flow path flows into the second flow path. Can be increased.
  • the linear clearance channel that does not interfere with the protruding portion from the upstream side to the downstream side is formed, a part of the fluid flowing through the third channel flows to the protruding portion. It is possible to flow without being obstructed, and a time difference can be formed between the protrusion and the fluid obstructed to flow.
  • the fluid mixer according to the fifth aspect wherein the projecting portion is formed on the stepped step portion.
  • the projecting portion is formed in the stepped portion of the main body formed in a staircase shape, when the element is assembled by fitting the projecting portion to the main body portion, the positioning of the projecting portion is performed. Becomes easier. Further, when the stepped portion is disposed on the downstream side of the protruding portion, the protruding portion can be supported.
  • the fluid mixer according to any one of the first to eighth aspects, wherein at least the delay member of the element has a shape capable of injection molding.
  • the delay member is formed in a shape that can be injection-molded, the element can be manufactured efficiently.
  • the fluid mixer according to any one of the first to ninth aspects, and a flow path forming means for forming a flow path that joins and guides a plurality of different fluids to the fluid mixer.
  • An apparatus using a fluid mixer is provided.
  • a device for mixing various kinds of different fluids can be formed by providing the above-described fluid mixer and the flow path forming means.
  • the concentration distribution in the fluid flow direction is present even in a state where the concentration of the chemical solution is temporarily increased or decreased in the flow path flowing upstream from the fluid mixer. Therefore, it is possible to provide a fluid mixer capable of supplying a fluid with a stable concentration and preventing the occurrence of defects due to a change in chemical concentration in various fields.
  • FIG. 1 It is a perspective view which shows schematic structure of the modification of the element in 2nd embodiment of this invention. It is a decomposition
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration of a fluid mixer according to a first embodiment.
  • the mixing channel is formed by the substantially cylindrical element 1, that is, the cylindrical or substantially cylindrical element 1, and the substantially cylindrical housing 2 fitted to the outer peripheral surface including at least both ends of the element 1. Is formed.
  • Element 1 is made of, for example, polyvinyl chloride (hereinafter referred to as PVC).
  • the element 1 includes a first flow path forming portion 13 in which the fluid inlet 3 and the first flow path 4 are formed, and a main body portion 12 in which the fluid outlet 8 and the second flow path 5 are formed.
  • the first flow path forming portion 13 is formed on one end side of the element 1, the fluid inlet 3 is formed on the end surface of the first flow path forming portion 13, and the first flow path 4 connected to the fluid inlet 3 is formed inside. .
  • the main body portion 12 is formed on the other end side from the intermediate portion of the element 1, the fluid outlet 8 is formed on the end face of the main body portion 12, and the second flow path 5 connected to the fluid outlet 8 is formed inside. .
  • the first flow path 4 and the second flow path 5 are linearly arranged apart from each other on the central axis of the element 1.
  • An annular recess 14 having the same central axis as the element 1 is formed on the outer peripheral surface of the main body 12.
  • a plurality of communication holes 15 for communicating the annular recess 14 and the first flow path 4 are formed at one end of the annular recess 14.
  • the third flow path 6 is formed by the space formed by the outer peripheral surface of the main body 12 and the inner peripheral surface of the housing 2 and the communication hole 15.
  • communication holes 11 are formed that serve as a plurality of branch channels 7 that respectively communicate the second channel 5 and the third channel 6.
  • a plurality of annular protrusions 10 are formed on the outer peripheral surface of the main body 12 with an annular recess 14 therebetween.
  • the projecting portion 10 is formed discontinuously in the channel axis direction of the main body portion 12 as a delay member 9 to be described later in detail for delaying the flow of the fluid in the third channel 6.
  • the housing 2 is made of, for example, PVC.
  • the inner diameter of the housing 2 is formed to be substantially the same as the outer diameter of both end portions of the element 1.
  • the groove 16 is formed as a delay member 9 discontinuously in the flow path axis direction of the housing 2.
  • An internal thread portion for screwing a fixing nut 17 that sandwiches and fixes the element 1 and the housing 2 is formed at an end portion of the outer peripheral surface of the housing 2.
  • an O-ring fitted in an annular groove formed on the outer peripheral surface of both ends of the element 1 is disposed between the housing 2 and the element 1, and the boundary between the housing 2 and the element 1 The surface is kept watertight.
  • casing 2 and the element 1 is a substantially cylindrical shape
  • cylindrical shapes such as a rectangular parallelepiped other than a cylindrical shape, may be sufficient.
  • the casing 2 and the element 1 may be fixed by any method as long as they are fixed in a sealed state, and may be welding or bonding.
  • the remaining chemical solution passes over the protrusion 10b and flows downstream.
  • the chemical solution collides with the protruding portion 10b, passes through a narrow gap formed between the inner peripheral surface of the housing 2 and the protruding portion 10b, or is formed on the inner peripheral surface of the housing 2.
  • the flow is obstructed by the turbulent flow caused by the groove 16.
  • the action of the delay member 9 delays the time for the chemical solution that has passed through the location where the branch flow path 7a is connected to reach the branch flow path 7b.
  • the remaining chemical solution passes over the protrusion 10c and flows downstream. At this time, the flow of the chemical solution is blocked by the protruding portion 10c and the groove portion 16 in the same manner as when the chemical solution gets over the protruding portion 10b.
  • the chemical solution that has passed over the protruding portion 10c flows through the portion where the concentration of the chemical solution in the chemical solution is connected to the branch channel 7c, a part of the drug solution flows through the branch channel 7c and passes through the second channel 5 to be a fluid outlet. It flows to 8.
  • the remaining chemical solution passes over the protrusion 10d and flows downstream.
  • the flow of the chemical solution is blocked by the protruding portion 10d and the groove portion 16 in the same manner as when the chemical solution gets over the protruding portion 10c.
  • the chemical solution that has passed over the protruding portion 10d flows through the branch flow channel 7d to the fluid outlet 8 through the branch flow channel 7d when the portion where the chemical concentration of the chemical solution is high flows through the portion where the branch flow channel 7d is connected. .
  • a part of the partially concentrated chemical liquid flowing through the branch flow path 7a is a flow path from the fluid inlet 3 to the fluid outlet 8 rather than the chemical liquid flowing through the other branch flow paths 7b, 7c, 7d.
  • the chemicals flowing through the branch channels 7b, 7c, and 7d other than the branch channel 7a are inhibited from flowing smoothly by the delay members 9 that are the protrusions 10 and the grooves 16, respectively.
  • the fluid flows out from the fluid outlet 8 in the order of the branch flow path 7b, the branch flow path 7c, and the branch flow path 7d with a time difference.
  • the chemical liquid that is partially concentrated in the flow channel flows into four parts with a time difference by the fluid mixer, and flows by being mixed with the chemical liquid that is not concentrated in concentration.
  • the concentration distribution in the flow direction can be uniformly mixed without any unevenness.
  • the operation of the fluid mixer to divide the chemical solution flowing in a state where the concentration is partially high and to make the concentration distribution in the fluid flow direction uniform without unevenness will be described.
  • the fluid mixer of FIG. 1 in the piping system in which the fluid mixer of FIG. 1 is arranged on the downstream side of the merging portion of the lines 18 and 19 through which the pure water and the chemical liquid that are two fluids flow respectively, the fluid mixer of FIG.
  • the concentration meters 20 and 21 are respectively installed on the upstream side and the downstream side, and a device for mixing and flowing water and chemicals from the upstream side is created.
  • FIG. 3 shows the characteristics obtained by the densitometer 20 installed on the upstream side of the fluid mixer.
  • the horizontal axis represents elapsed time
  • the vertical axis represents concentration.
  • a peak (H1) as shown in FIG. 3 appears.
  • FIG. 4 shows the characteristics obtained by the densitometer 21 installed on the downstream side of the fluid mixer. Referring to FIG. 4, the concentration peak is dispersed into four, and the height of the peak (H2) is about a quarter of the peak (H1).
  • the interval T1 between the peaks of the concentration is such that the fluid passes through the position of the inlet of the branch channel 7a in the third channel 6 and then passes over the protruding portion 10b in the third channel 6 and passes through the branch channel 7b. This corresponds to the time obtained by subtracting the time from passing through the branch channel 7b to the outlet of the branch channel 7b through the branch channel 7a.
  • the interval T2 between the peaks of the concentration is such that the fluid passes through the entrance of the branch flow path 7b in the third flow path 6 and then passes over the protrusion 10c in the third flow path 6 and passes through the branch flow path 7c.
  • the interval T3 between the peaks of the concentration is such that the fluid passes through the entrance of the branch flow path 7c in the third flow path 6 and then passes over the protrusion 10d in the third flow path 6 and passes through the branch flow path 7d.
  • the fluid flows from the fluid inlet 3 to the fluid outlet 8 by using the fluid inlet 3 as the inlet through which the fluid flows in and the fluid outlet 8 as the outlet from which the fluid flows out, but the fluid flows in the opposite direction.
  • the fluid outlet 8 serves as an inlet through which fluid flows
  • the fluid inlet 3 serves as an outlet from which fluid flows out.
  • the fluid mixer of the first embodiment has a small number of parts and can be easily manufactured.
  • the fluid mixer can be reduced in size and can be installed without taking up piping space.
  • the construction is completed simply by connecting the fluid inlet 3 and the fluid outlet 8 respectively with a joint or the like, so that the pipe construction is easy and can be performed in a short time.
  • the delay member 9 is disposed in both the housing 2 and the element 1, but the delay member 9 may be disposed in at least one of the housing 2 and the element 1. If the delay member 9 is arranged in at least one of the housing 2 and the element 1, the concentration distribution and temperature distribution in the flow direction of the fluid flowing in the fluid mixer are made uniform and the fluid is mixed and stirred. Can
  • FIG. 5 is a longitudinal sectional view showing a schematic configuration of the fluid mixer according to the second embodiment.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of the fluid mixer according to the second embodiment.
  • FIG. 7 is a perspective view showing a schematic configuration of the element 31 according to the second embodiment.
  • the difference of the second embodiment from the first embodiment is mainly the shape of the element 31. That is, in the second embodiment, a branch channel 37 and a second channel 35 are formed inside the element 31, and a plate-shaped protrusion 40 is formed as a delay member 39 outside.
  • differences from the first embodiment will be mainly described.
  • Element 31 is made of PVC, for example.
  • the element 31 does not have the first flow path forming portion in which the fluid inlet 33 and the first flow path 34 are formed, and the element 31 has the fluid outlet 38 and Only the main body portion 42 in which the second flow path 35 is formed is provided.
  • the main body portion 42 has a substantially truncated cone shape in which a plurality of cylindrical portions having different diameters are arranged in series and in alignment with the central axis of the cylindrical portion so as to increase in diameter stepwise from the upstream side toward the downstream side. That is, the substantially truncated cone-shaped cone surface has a stepped shape having a step portion (a step portion formed at a boundary portion between the cylindrical portion and the cylindrical portion).
  • An opening 43 is formed on one end surface of the element 31, and the small diameter portion 44 of the second flow path 35 is connected to the opening 43.
  • a fluid outlet 38 is formed on the other end surface of the element 31, and a second flow path 35 is connected to the fluid outlet 38.
  • the second channel 35 has a channel cross-sectional area that gradually increases from one end side to the other end side.
  • a male thread portion for screwing the element 31 and the housing 32 is formed on the outer peripheral surface of the other end portion of the element 31, and the boundary surface between the element 31 and the housing 32 is watertight.
  • An annular groove for fitting an O-ring to maintain the state is formed.
  • an annular groove for fitting an O-ring for maintaining the element 31 and the flanged short tube 46 in a watertight state is formed on the other end surface of the element 31.
  • a protruding portion 40 that becomes the delay member 39 is formed in a substantially rectangular flat plate shape. If the protrusions 40 are formed in a plate shape, a large number of protrusions 40 can be arranged in the direction of the flow path axis, so the arrangement of the protrusions 40 depends on the nature and type of the fluid flowing through the fluid mixer. Can be designed flexibly. Two protrusions 40 are provided so as to protrude on the circumference of each stepped part, and the two protrusions 40 are arranged in the same shape and in opposite directions with respect to the center of the circumference.
  • the width of the protruding portion 40 is formed to be larger than the diameter of the circumference of the main body portion 42 where the protruding portion 40 is disposed.
  • the height of the protruding portion 40 is set to such a height that a slight gap is formed between the end portion of the protruding portion 40 and the inner peripheral surface of the housing 32.
  • the “slight gap” refers to preventing the end of the protrusion 40 from interfering with the inner peripheral surface of the housing 32 when the element 31 is inserted into the housing 32 with the center axis aligned. It is a slight gap that can be.
  • the protrusion 40 is located closer to the downstream side, the width of the protrusion 40 increases, the height of the protrusion 40 decreases, and each of the protrusions 40 is formed.
  • the flow path cross-sectional area of the third flow path 36 on the circumference is formed to be small.
  • the protrusions 40 adjacent to each other in the flow path axial direction are arranged with their protrusion directions shifted by 90 ° in the circumferential direction.
  • a linear gap channel 45 that does not interfere with the protrusion 40 is formed along the channel axis direction between the inner circumferential surface of the housing 32 and the outer circumferential surface of the main body 42.
  • communication holes 41 serving as a plurality of branch channels 37 that respectively communicate the second channel 35 and the third channel 36 are formed between the protrusions 40 adjacent in the channel axis direction at the shortest distance. ing.
  • the housing 32 is made of PVC, for example.
  • the housing 32 is formed in a cylindrical shape.
  • An opening on one end surface of the housing 32 serves as a fluid inlet 33, and a first flow path 34 is formed inside one end of the housing 32. That is, one end portion of the housing 32 becomes the first flow path forming portion.
  • the first flow path 34 has the same central axis as the second flow path 35.
  • the inner diameter of one end of the housing 32 is formed to be substantially the same as the diameter of the pipe connected to the upstream side of the fluid mixer, and the inner diameter from the middle to the other end is substantially the same as the outer diameter of the other end of the element 31. The same diameter is formed.
  • the inner peripheral surface of the housing 32 is formed with a smooth surface without unevenness, and a space formed by the inner peripheral surface of the housing 32 and the outer peripheral surface of the main body portion 42 becomes the third flow path 36, and the third flow path is formed.
  • the flow path cross-sectional area of 36 tends to decrease from the upstream side toward the downstream side.
  • a flanged short tube 46 is connected as a connecting portion for connecting the housing 32 and the upstream and downstream piping of the housing 32.
  • female screw portions for screwing cap nuts 47 that sandwich and fix the element 31, the housing 32, and the flanged short tube 46 are formed.
  • an annular groove for fitting an O-ring that maintains the housing 32 and the flanged short tube 46 in a watertight state is formed on one end face of the housing 32.
  • an annular groove for fitting an O-ring that maintains the housing 32 and the flanged short tube 46 in a watertight state is formed on one end face of the housing 32.
  • a female screw portion for screwing the element 31 and the housing 32 is formed on the inner peripheral surface of the other end portion of the housing 32.
  • the chemical solution that flows in a partially concentrated state in the flow path flows into the first flow path 34 from the fluid inlet 33 and flows downstream.
  • the chemical liquid flowing through the first flow path 34 is divided into a chemical liquid flowing into the narrow diameter portion 44 of the second flow path 35 and a chemical liquid flowing into the third flow path 36, and the divided chemical liquids Flows through each channel.
  • the chemical liquid flowing through the small diameter portion 44 flows downstream through the second flow path 35 and is discharged from the fluid outlet 38 earlier than the chemical liquid flowing into the third flow path 36.
  • the chemical solutions other than the chemical solution flowing into the small diameter portion 44 flow into the third flow path 36.
  • the chemical liquid that has flowed into the third flow path 36 is divided into a chemical liquid that collides with the protrusion 40a and a chemical that flows further downstream through the third flow path 36 without colliding with the protrusion 40a. Since the protruding portions 40a are arranged so that these protruding directions are substantially orthogonal to the flow path axis from the circumference of the outer peripheral surface of the main body portion 42, the flow of fluid can be effectively prevented.
  • the chemical liquid that collides with the protrusion 40a and is prevented from flowing bypasses the protrusion 40a and flows further downstream in the third flow path 36.
  • the chemical liquid that has collided with the protrusion 40a and has been blocked from flowing is delayed in the downstream of the third flow path 36 after the chemical liquid flowing further downstream in the third flow path 36 without colliding with the protrusion 40a.
  • the chemical solution having passed through the protrusion 40a flows through a portion where the chemical concentration of the chemical solution is connected to the branch channel 37a
  • a part of the drug solution flows through the branch channel 37a and passes through the second channel 35.
  • the chemical liquid flowing from the branch flow path 37a to the second flow path 35 flows into the branch flow path 37a after being prevented from flowing by the protruding portion 40a that is the delay member 39.
  • the remaining chemical solution is divided into a chemical solution that collides with the protruding portion 40b and obstructs the flow, and a chemical solution that flows further downstream in the third flow path 36 without colliding with the protruding portion 40b.
  • the protrusions 40a and 40b adjacent to each other in the flow path axis direction are arranged so that their protrusion directions are shifted by 90 ° in the circumferential direction, and thus collide with the protrusion 40a. It is easy for the chemical liquid that has passed without hitting the protrusion 40b. That is, the flow of the chemical liquid can be effectively prevented, and the chemical liquid can be effectively delayed from flowing downstream of the third flow path 36.
  • the chemical solution that collides with the protrusion 40b and is prevented from flowing flows around the protrusion 40b and flows further downstream in the third flow path 36.
  • the portion of the chemical liquid having passed through the protruding portion 40b flows through a portion where the chemical concentration of the chemical solution is connected to the branch flow path 37b
  • a part of the chemical flows through the branch flow path 37b and passes through the second flow path 35.
  • the chemical liquid flowing from the branch flow path 37b to the second flow path 35 flows into the branch flow path 37b after being prevented from flowing by the protruding portion 40b that is the delay member 39.
  • the liquid is discharged from the fluid outlet 38 later than the chemical flowing in the second flow path 35.
  • the remaining chemical solution flows downstream through the third flow path 36, but flows in the same manner as the chemical solution that has passed through the protrusions 40a and 40b. That is, when approaching the protrusions 40c, 40d, and 40e, the chemical solution that collides with the protrusions 40c, 40d, and 40e and the third flow path 36 flows downstream without colliding with the protrusions 40c, 40d, and 40e. Divided into chemicals. The chemical liquid that has collided with the protrusions 40c, 40d, and 40e bypasses the protrusions 40c, 40d, and 40e, and flows further downstream in the third flow path 36.
  • the branch flow channels 37c and 37d are partially connected to the branch flow channels 37c and 37d.
  • all that is left flows through the branch flow paths 37c, 37d, and 37e, and then flows through the second flow path 35 to the fluid outlet 38.
  • the chemical solution flowing from the branch flow paths 37c, 37d, and 37e to the second flow path 35 is blocked by the protrusions 40c, 40d, and 40e, and then flows into the branch flow paths 37c, 37d, and 37e. Therefore, each fluid is discharged from the fluid outlet 38 with a time difference.
  • the action of uniformizing the concentration distribution in the fluid flow direction without any unevenness is the same as that in the first embodiment, and thus the description thereof is omitted.
  • the time for the chemical liquid flowing into the second flow path 35 from the small diameter portion 44 to flow out of the fluid mixer and the chemical liquid flowing into the third flow path 36 are prevented from flowing by the protrusion 40. After that, a time difference can be provided between the time when the gas flows into the second flow channel 35 from the branch flow channel 37 and flows out from the fluid mixer.
  • the plurality of protrusions 40 are formed discontinuously in the flow path axis direction, there are portions where the chemical solution collides with the protrusions 40 with a high frequency and portions with which the chemicals collide with the protrusions 40 with a low frequency. is there.
  • a time difference can be provided in the time of flowing out from the fluid mixer depending on the frequency with which the chemical liquid flowing through the third flow path 36 collides with the protrusion 40.
  • a linear shape that does not interfere with the protruding portion 40 from the upstream side to the downstream side along the flow path axis line between the inner peripheral surface of the housing 32 and the outer peripheral surface of the main body portion 42.
  • a gap channel 45 is formed. Since the chemical liquid flowing through the gap flow path 45 flows through the third flow path 36 without being blocked by the protrusion 40, the chemical liquid flowing through the gap flow path 45 collides with the protrusion 40 when the liquid flows out of the fluid mixer.
  • a time difference can be provided between the time when the chemical liquid flowing through the third flow path 36 flows out of the fluid mixer while being prevented from flowing. That is, in the fluid mixer of the second embodiment, the chemical liquid that partially flows into the fluid mixer is branched into a plurality of chemical liquids, and the branched chemical liquids are allowed to flow out with a time difference. As a result, the concentration distribution in the flow direction can be effectively made uniform without unevenness.
  • two protrusions 40 are provided to protrude on each circumference, and the protrusion directions of the protrusions 40 adjacent to each other in the flow axis direction are shifted by 90 ° in the circumferential direction.
  • three protrusions 40 are provided on the circumference of each stepped part, and the protrusions 40 adjacent to each other in the flow path axial direction are arranged at positions shifted by 60 ° in the circumferential direction. May be.
  • the number of the protrusions 40 provided on the same circumference and the angle at which the protrusions 40 are shifted are not particularly limited.
  • the protrusion 40 is formed in a substantially rectangular plate shape, but the protrusion 40 may be formed in any shape as long as the flow of fluid can be prevented, and is not particularly limited.
  • the protruding portion 40 is formed in a semicircular plate shape, a shape in which a hole, a notch or a recess is formed in the plate, a shape in which the plate is curved or bent, a block shape having various external shapes, and the like. Good.
  • the height, width, and size of the protrusion 40 may be any height, width, and size as long as the flow of fluid can be prevented, and is not particularly limited.
  • the arrangement of the protrusions 40 is not particularly limited as long as a plurality of the protrusions 40 are discontinuously arranged in the flow path axis direction.
  • the flow passage cross-sectional area of the third flow passage 36 on the circumference where the protruding portion 40 is protruded decreases from the upstream side toward the downstream side. Further, since the third flow path 36 is formed from the inner peripheral surface of the housing 32 and the outer peripheral surface of the main body 42, the cross-sectional area of the third flow path 36 tends to decrease toward the downstream side. . Therefore, the chemical liquid flowing through the third flow path 36 can be prevented from staying on the downstream side, and the chemical liquid can be smoothly guided to the second flow path 35.
  • all the branch flow paths 37 have the same inner diameter, but there is no particular limitation, and the branch flow is used to adjust the flow rate of the chemical solution flowing through each branch flow path 37.
  • the inner diameter may be changed for each path 37.
  • the position, number and length of the branch flow path 37 and the connection angle between the branch flow path 37 and the second flow path 35 are not particularly limited and can be appropriately designed.
  • FIG. 9 is an exploded longitudinal sectional view showing a schematic configuration of the element 31 in the third embodiment.
  • the difference between the third embodiment and the second embodiment is mainly the shape of the element 31. That is, in the third embodiment, the element 31 is formed of a plurality of cylindrical members 51, and the configuration other than the element 31 is the same as that of the second embodiment.
  • the element 31 of the second embodiment and the element 31 of the third embodiment will be described, and the description and drawings of the configuration other than the element 31 will be omitted.
  • symbol is provided to the structure which shows the same effect
  • the shape of the element 31 is almost the same as that of the second embodiment, but is formed by integrally joining a plurality of members.
  • the element 31 is integrally coupled in series with the central axis of the cylindrical portion so that a plurality of cylindrical members 51 having different diameters gradually increase in diameter from the upstream side toward the downstream side.
  • the most upstream cylindrical member 51a is formed in a cylindrical shape, and a through-hole serving as the narrow diameter portion 44 of the second flow path 35 is formed inside.
  • An opening 43 is formed on one end surface of the cylindrical member 51a, and a receiving port 52a for coupling to the cylindrical member 51b on the downstream side of the cylindrical member 51a is formed on the other end.
  • two projecting portions 40a formed in a plate shape project in opposite directions with respect to the center of the circumference. Yes.
  • the cylindrical member 51b on the downstream side of the cylindrical member 51a is formed in a cylindrical shape, and a through-hole that becomes a part of the second flow path 35 communicating with the small diameter portion 44 gradually increases in diameter from the upstream side to the downstream side. It is formed in a truncated cone shape.
  • One end of the cylindrical member 51b is formed with an insertion portion 53a for coupling to the receiving port 52a of the cylindrical member 51a, and the other end is a receiving port for coupling with the cylindrical member 51c on the downstream side of the cylindrical member 51b.
  • 52b is formed.
  • On the circumference of the outer peripheral surface of the other end portion of the cylindrical member 51b two projecting portions 40b formed in a plate shape project in opposite directions with respect to the center of the circumference. Further, a communication hole 41 serving as a branch channel 37a is formed on the outer peripheral surface of the cylindrical member 51b.
  • the cylindrical members 51c, 51d, 51e are formed in the same manner as the cylindrical member 51b. That is, a through hole having a truncated cone shape that is a part of the second flow path 35 is formed inside the cylindrical members 51c, 51d, and 51e. Further, one end of each of the cylindrical members 51c, 51d, 51e is formed with insertion portions 53b, 53c, 53d for coupling with the receiving ports 52 of the respective upstream cylindrical members 51, and each of the other ends is provided with each of the insertion portions 53b, 53c, 53d. Receiving ports 52c, 52d, and 52e for coupling with the cylindrical member 51 on the downstream side of the cylindrical member 51 are formed.
  • the most downstream cylindrical member 51f is formed in a cylindrical shape, and a through-hole that is a part of the second flow path 35 communicating with the fluid outlet 38 is formed inside.
  • an insertion portion 53e for coupling with the receiving port 52e of the cylindrical member 51e is formed.
  • a male screw portion for screwing the element 31 and the housing is formed, and an O-ring for maintaining the element 31 and the housing in a watertight state is fitted.
  • An annular groove to be worn is formed.
  • an annular groove is formed on the other end surface of the cylindrical member 51f to fit an O-ring that maintains the element 31 and the flanged short tube in a watertight state.
  • a communication hole serving as a branch flow path 37e is formed on the outer peripheral surface of the cylindrical member 51f.
  • the element 31 is formed by connecting the receiving port 52 of each cylindrical member 51 and the insertion portion 53 corresponding to each receiving port 52 and integrally connecting each cylindrical member 51. At this time, the respective cylindrical members 51 are coupled so that the protruding portions 40 adjacent to each other in the flow path axis direction are shifted from each other in the circumferential direction by 90 °. Further, the second flow path 35 made of a through hole formed in each cylindrical member 51 has a smooth inner peripheral surface without a step. In addition, the element 31 has a step portion formed between the cylindrical members 51 by joining the cylindrical members 51 having different outer diameters. Since each protrusion 40 is formed at the other end of each cylindrical member 51, the protrusion 40 is formed at a step.
  • the projecting portion 40 By forming the projecting portion 40 in the stepped portion, the projecting portion 40 can be supported on one end surface of the cylindrical member 51 on the downstream side of the projecting portion 40, and the projecting portion even if the chemical solution collides with the projecting portion 40. 40 deformation and breakage can be prevented.
  • the element 31 is divided into the plurality of cylindrical members 51, even if the element 31 becomes large, it can be molded by a general-purpose cutting machine or injection molding machine.
  • the cylindrical member 51 is formed in a cylindrical shape, cutting is easy and the processing time can be shortened.
  • a similar projecting portion 40 projects from the cylindrical member 51.
  • the shape and arrangement of the projecting portion 40 can be appropriately designed and are not particularly limited.
  • the protruding portion 40 is integrally formed with the cylindrical member 51.
  • the protruding portion 40 may be a part different from the cylindrical member 51, and the protruding portion 40 is a cylindrical member by means such as fitting or adhesion. 51 may be integrally coupled.
  • the cylindrical member 51 may be formed by any method and is not particularly limited. For example, mass production is facilitated by making the shape of the protrusion 40 and various flow paths into a shape that can be injection-molded, and the cylindrical member 51 is manufactured by injection molding. It becomes easy.
  • the operation of the fluid mixer of the third embodiment and the operation of uniformizing the concentration distribution in the fluid flow direction are the same as those of the first embodiment and the second embodiment, respectively, and thus description thereof is omitted.
  • the fluid mixer according to the embodiment of the present invention is applied, for example, in a line in which the temperature or concentration of the fluid changes with time.
  • the fluid mixer according to the embodiment of the present invention is a liquid that is heated by, for example, a heater installed in a line, and the temperature of the fluid is changed due to variations in the temperature of the fluid with respect to the time axis.
  • the temperature or concentration of the fluid in the line can be made uniform by using a fluid mixer.
  • the substance sent as a fluid to a fluid mixer is gas or a fluid, it will not specifically limit.
  • FIG. 10 is a diagram showing an example of an apparatus using the fluid mixer according to the present invention.
  • a fluid mixer 86 according to the present invention is disposed on the downstream side of the joining portion 83 of the lines 81 and 82 through which two fluids flow.
  • Each fluid is supplied by pumps 84 and 85, respectively.
  • the mixing ratio when the fluids merge may change with the flow of time due to the pulsation of the pumps 84 and 85, but the fluid mixing ratio is uniformized by the fluid mixer 86.
  • the temperature and concentration can be made constant with respect to the time axis.
  • the apparatus may be configured to join lines through which three or more fluids flow, and the three or more fluids may be mixed by a fluid mixer.
  • FIG. 11 is a diagram showing a modification of the apparatus of FIG.
  • the fluid mixer 90 according to the present invention is disposed on the downstream side of the joining portion 89 of the lines 87 and 88 through which the two fluids flow, and a line 91 in which another fluid flows on the downstream side of the fluid mixer 90.
  • a fluid mixer 93 according to the present invention is also arranged on the downstream side of the junction 92.
  • the mixture and oil can be mixed uniformly without unevenness.
  • the mixture is mixed with ammonia gas to absorb ammonia gas, or after mixing with water and sulfuric acid to dilute, the mixture is mixed with sodium silicate and pH is adjusted. Also when adjusting, it can use suitably.
  • three or more fluids may be merged first, or two or more fluids may be merged in the middle. Further, three or more fluid mixers may be arranged in series, and other fluids may be mixed step by step.
  • water is supplied to the line 81 through which one fluid flows, and any of a pH adjuster, liquid fertilizer, bleach, disinfectant, surfactant, or liquid chemical is supplied to the line 82 through which the other fluid flows. You may make it flow.
  • the water is not particularly limited as long as it meets the conditions of the substance to be mixed, such as pure water, distilled water, tap water, and industrial water.
  • the temperature of water is not specifically limited, either hot water or cold water may be used.
  • the pH adjuster may be any acid or alkali used to adjust the pH of the liquid to be mixed. Hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, carboxylic acid, citric acid, gluconic acid, succinic acid, potassium carbonate, sodium bicarbonate, A sodium hydroxide aqueous solution etc. are mentioned.
  • the liquid fertilizer may be a liquid fertilizer for agriculture, and examples thereof include manure and chemical fertilizer.
  • the bleaching agent may be any one that decomposes the pigment using an oxidation or reduction reaction of a chemical substance, such as sodium hypochlorite, sodium percarbonate, hydrogen peroxide, ozone water, thiourea dioxide, dithionite. Sodium etc. are mentioned.
  • the bactericidal agent is a drug for killing pathogenic or harmful microorganisms, iodotin tincture, povidone iodine, sodium hypochlorite, chlorlime, mercurochrome solution, chlorhexidine gluconate, acrinol, ethanol, isopropanol, hydrogen peroxide water Benzalkonium chloride, cetylpyridinium chloride, cresol soap solution, sodium chlorite, hydrogen peroxide, sodium hypochlorite, hypochlorous acid water, ozone water and the like.
  • Surfactants are substances that have water-friendly parts (hydrophilic groups) and oil-friendly parts (lipophilic groups / hydrophobic groups) in the molecule, including fatty acid sodium, fatty acid potassium, monoalkyl sulfate, Alkyl polyoxyethylene sulfate, alkylbenzene sulfonate, monoalkyl phosphate, alkyltrimethylammonium salt, dialkyldimethylammonium salt, alkylbenzyldimethylammonium salt, alkyldimethylamine oxide, alkylcarboxybetaine, polyoxyethylene alkyl ether, fatty acid Sorbitan ester, alkyl polyglucoside, fatty acid diethanolamide, alkyl monoglyceryl ether, alpha sulfo fatty acid ester sodium, linear alkylbenzene sodium sulfonate, alkyl sulfate Sodium sulfonate, sodium alkyl ether sulfate, sodium alpha o
  • liquid chemicals that do not fall into the above categories may be used as long as they fall within the category of liquid chemicals, such as hydrochloric acid, sulfuric acid, acetic acid, nitric acid, formic acid, hydrofluoric acid, sodium hydroxide, potassium hydroxide, calcium hydroxide, Examples thereof include barium hydroxide, ammonium hydroxide, sodium silicate, and oil.
  • the liquid chemicals listed here may be used as corresponding to the above categories.
  • water may flow through the line 81 through which one fluid flows, and hot water may flow through the line 82 through which the other fluid flows, or water and hot water may be mixed and mixed at a uniform and constant temperature.
  • the first liquid chemical may flow through the line 81 through which one fluid flows, and the second liquid chemical or metal may flow through the line 82 through which the other fluid flows, and these may be mixed by the fluid mixer 86.
  • the first and second liquid chemicals may be liquid chemicals that can be mixed, and may be the above-mentioned liquid chemicals or other liquid chemicals. Examples of liquid chemicals include photoresist and thinner.
  • the liquid chemical may be a cosmetic product. Cosmetics are basic cosmetics intended to condition the skin itself, such as face wash, cleansing, lotion, beauty lotion, milky lotion, cream, and gel, and prevent bad breath, body odor, hot skin, soaking, hair loss, hair growth or removal. Medicinal cosmetics that are quasi-drugs such as hair, mice and pest control.
  • Organometallic compounds include organozinc compounds such as chloro (ethoxycarbonylmethyl) zinc, organocopper compounds such as dimethylcopper lithium, Grignard reagents, organomagnesium compounds such as methylmagnesium iodide and diethylmagnesium, and n-butyllithium. And organic metal compounds such as metallocenes such as metal carbonyls, carbene complexes, and ferrocene, and single element and multielement mixed standard solutions dissolved in paraffin oil. Also included are metalloid compounds such as silicon, arsenic and boron and base metals such as aluminum.
  • the organometallic compound is suitably used as a catalyst in the production of petrochemical products and organic polymers.
  • the waste liquid may be flowed through the line 81 through which one fluid flows, the pH adjusting agent or the flocculant is flowed through the line 82 through which the other fluid flows, and these may be mixed by the fluid mixer 86.
  • the above pH adjuster is used as the pH adjuster
  • the flocculant is not particularly limited as long as it can agglomerate the waste liquid.
  • Aluminum sulfate, polyferric sulfate, polyaluminum chloride, polysilica Examples include iron, calcium sulfate, ferric chloride, slaked lime.
  • Microorganisms are not particularly limited as long as they promote fermentation and decomposition of waste liquid, and include fungi such as mold and yeast, and bacteria such as bacteria.
  • the first petroleum is supplied to the line 81 through which one fluid flows
  • the second petroleum, additive, or water is supplied to the line 82 through which the other fluid flows, and these are mixed by the fluid mixer 86.
  • the first and second petroleums are liquid oils containing hydrocarbons as main components and a small amount of other substances such as sulfur, oxygen, and nitrogen, including naphtha (gasoline), kerosene, Examples include light oil, heavy oil, lubricating oil, and asphalt.
  • Additives here refer to those added to improve and maintain the quality of petroleum, and as lubricant additives, washing dispersants, antioxidants, viscosity index improvers / pour point depressants, oiliness improvers, Examples include extreme pressure additives, antiwear agents, rust / corrosion inhibitors, and grease additives such as structural stabilizers, fillers, and fuel oil additives.
  • the water here is not particularly limited as long as it meets the conditions of the substance to be mixed, such as pure water, distilled water, tap water, and industrial water.
  • the temperature of water is not specifically limited, either hot water or cold water may be used.
  • the resin here is a main component of an adhesive such as a molten resin or a liquid resin or a coating film forming component of a paint.
  • the molten resin is not particularly limited as long as it is a resin that can be molded by injection molding or extrusion.
  • Polyethylene Polypropylene, polyvinyl chloride, polystyrene, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, ABS resin, acrylic resin, polyamide , Nylon, polyacetal, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, polyether ether ketone, and the like.
  • the main components of adhesives such as liquid resins are acrylic resin adhesives, ⁇ -olefin adhesives, urethane resin adhesives, ether cellulose, ethylene-vinyl acetate resin adhesives, epoxy resin adhesives, chloride Vinyl resin solvent adhesive, chloroprene rubber adhesive, vinyl acetate resin adhesive, cyanoacrylate adhesive, silicone adhesive, aqueous polymer-isocyanate adhesive, styrene-butadiene rubber solution adhesive, styrene -Butadiene rubber latex adhesive, nitrile rubber adhesive, nitrocellulose adhesive, reactive hot melt adhesive, phenolic resin adhesive, modified silicone adhesive, polyamide resin hot melt adhesive, polyimide adhesive, Polyurethane resin hot melt adhesive, polyolefin resin hot melt contact Adhesive, polyvinyl acetate resin solution adhesive, polystyrene resin solvent adhesive, polyvinyl alcohol adhesive, polyvinyl pyrrolidone resin adhesive, polyvinyl butyral resin adhesive, polybenzimidazole
  • Examples of the solvent include hexane, benzene, toluene, diethyl ether, chloroform, ethyl acetate, tetrahydrofuran, methylene chloride, acetone, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethanol, methanol, and the like.
  • Examples of the curing agent include polyamines, acid anhydrides, amines, peroxides, saccharin and the like.
  • Colorants include zinc white, lead white, lithopone, titanium dioxide, precipitated barium sulfate, barite powder, red lead, iron oxide red, yellow lead, zinc yellow, ultramarine blue, potassium ferrocyanide, carbon black, etc. These pigments are mentioned.
  • the resin is a molten resin
  • a device for flowing the molten resin from the molding machine or the extruder to the fluid mixer 86 may be formed.
  • the fluid mixer 86 may be disposed between the nozzle of the molding machine and the mold, and injection molding may be performed.
  • the apparatus is an extruder, it is between the extruder and the die.
  • the fluid mixer 86 may be disposed in the extrusion molding. In this case, the temperature in the resin is made uniform, the viscosity of the resin is stabilized, generation of thickness unevenness, internal stress, and the like can be suppressed, and color unevenness can be eliminated.
  • the first food material flows through a line 81 through which one fluid flows
  • the second food material, food additive, seasoning, incombustible gas, and the like flow through a line 82 through which the other fluid flows.
  • 86 may be mixed.
  • the first and second food ingredients may be drinks or foods that can flow in the pipe, and alcoholic beverages such as sake, shochu, beer, whiskey, wine, vodka, milk, yogurt, butter, cream, cheese, Dairy products such as condensed milk, milk fat, beverages such as juice, tea, coffee, soy milk, water, beverages such as soup stock, miso soup, consommé soup, corn soup, pork bone soup, jelly, konjac, pudding, chocolate, Examples include various food ingredients such as ice cream, candy, tofu, paste products, whipped eggs, and gelatin.
  • alcoholic beverages such as sake, shochu, beer, whiskey, wine, vodka, milk, yogurt, butter, cream, cheese
  • Dairy products such as condensed milk, milk fat, beverages such as juice, tea, coffee, soy milk, water, beverages such as soup stock, miso soup, consommé soup, corn soup, pork bone soup, jelly, konjac, pudding, chocolate
  • beverages such as soup stock, miso soup, consommé soup, corn soup, pork bone soup, jelly, konja
  • flour ingredients such as wheat flour, starch powder, strong flour, weak flour, buckwheat flour, powdered milk, coffee, cocoa, pulp, wakame, sesame, green seaweed, shavings, bread crumbs, finely chopped Small solid foods such as dried or grated foods.
  • Food additives include brown sugar, tri-sugar, fructose, maltose, honey, molasses, maple syrup, starch syrup, erythritol, trehalose, maltitol, palatinose, xylitol, sorbitol, thaumatin, saccharin sodium, cyclamate, dulcin, aspartame, acesulfame potassium , Sucralose, neotame and other sweeteners, caramel dyes, gardenia dyes, anthocyanin dyes, anato dyes, paprika dyes, safflower dyes, sockeye dyes, flavonoid dyes, cochineal dyes, amaranth, erythrosin, alla red AC, new coccine, phloxine, Colors such as Rose Bengal, Acid Red, Tartrazine, Sunset Yellow FCF, Fast Green FCF, Brilliant Blue FCF, Indigo Carmine, Benzoic acid Preserv
  • Condiments include liquids such as soy sauce, sauce, vinegar, oil, chili oil, miso, ketchup, mayonnaise, dressing, mirin, and powders such as sugar, salt, pepper, yam, powdered chili, etc. .
  • Microorganisms promote the fermentation and degradation of foods, and are fungi such as mushrooms, molds and yeasts, and bacteria such as bacteria. Examples of the fungi include various mushrooms and mold fungi, and examples of the bacteria include bifidobacteria, lactic acid bacteria, and natto bacteria.
  • Carbon dioxide gas etc. are mentioned as nonflammable gas, for example, it is used for producing beer by mixing wort and carbon dioxide gas.
  • air may be supplied to the line 81 in which one fluid flows, and combustible gas may be supplied to the line 82 in which the other fluid flows, and these may be mixed by the fluid mixer 86.
  • combustible gas examples include methane, ethane, propane, butane, pentane, acetylene, hydrogen, carbon monoxide, ammonia, dimethyl ether, and the like.
  • the first nonflammable gas may flow through the line 81 through which one fluid flows
  • the second nonflammable gas or vapor may flow through the line 82 through which the other fluid flows, and these may be mixed by the fluid mixer 86.
  • Nonflammable gases include nitrogen, oxygen, carbon dioxide, argon gas, helium gas, hydrogen sulfide gas, sulfurous acid gas, sulfur oxide gas, and the like.
  • water, liquid chemicals or food raw material is flowed through the line 81 through which one fluid flows, and air, nonflammable gas or steam is flowed through the line 82 through which the other fluid flows, and these are mixed into the fluid mixer 86. You may make it mix by.
  • first synthetic intermediate is passed through a line 81 through which one fluid flows
  • second synthetic intermediate, additive, liquid chemical, metal, or the like is passed through a line 82 through which the other fluid flows. You may make it mix by.
  • the first and second synthetic intermediates refer to compounds in the middle of synthesis that appear in a multi-step synthesis route to the target compound. Examples of the first and second synthetic intermediates include those in the middle of synthesis in which a plurality of chemicals are mixed, those in the middle of resin purification, and pharmaceutical intermediates.
  • a heater or a vaporizer may be provided in each line through which the fluid flows before the fluids merge, and heat exchange is performed on the downstream side of the fluid mixer.
  • a vessel may be provided.
  • a control unit is provided to adjust the output of the pump of the line through which the other fluid flows according to the parameter measured by the measuring instrument, by arranging the measuring device in the line through which one fluid flows before the fluids merge.
  • a control valve may be provided in the other fluid flow line and a control valve may be provided to adjust the opening of the control valve in accordance with the parameter of the measuring instrument.
  • the measuring device may be a flow meter, a flow meter, a concentration meter, or a pH measuring device as long as it can measure parameters of a necessary fluid.
  • the mixing in the axial direction of the flow path is made uniform with the fluid mixer, and then the mixing in the radial direction of the flow path is made uniform with, for example, a static mixer as shown at the beginning of this specification. A more uniform fluid mixing can be performed.
  • each component such as the casings 2, 32, 62, and the elements 1, 31, 61 of the fluid mixer according to the present invention may be PVC, polypropylene, polyethylene, or the like as long as it is made of resin.
  • a corrosive fluid when used as the fluid, it is preferably a fluororesin such as polytetrafluoroethylene or polyvinylidene fluoride. If it is made of a fluororesin, it can be used as a corrosive fluid, and the corrosive gas is Even if it permeates, there is no need to worry about corrosion of the piping member.
  • a part of the casings 2, 32, 62 and the elements 1, 31, 61 may be formed of a transparent or translucent material.
  • the mixed state of the fluid can be visually confirmed, which is preferable.
  • the material of each component may be a metal or an alloy such as iron, copper, copper alloy, brass, aluminum, stainless steel, and titanium.
  • the fluid mixer may be configured by arbitrarily combining the first to third embodiments. That is, the present invention is not limited to the fluid mixer of the embodiment as long as the features and functions of the present invention can be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)

Abstract

 本発明の流体混合器は、端部に流体入口(3)が形成され、内部に第一流路(4)が形成される第一流路形成部(13)と、端部に流体出口(8)が形成され、内部に第二流路(5)が形成され、外周面に複数の連通孔(11)が第二流路と外部とを各々連通するように形成された本体部(12)と、を有するエレメント(1)と、内部にエレメントを収容するとともに、エレメントの少なくとも両端部と嵌合する筐体(2)と、を有し、筐体の内周面または本体部の外周面の少なくとも一方に、複数の遅延部材(9)が流路軸線方向に不連続に形成され、筐体の内周面と本体部の外周面との間には連続したひとつの空間が形成され、空間が第三流路(6)となり、連通孔が分岐流路(7)となる。

Description

流体混合器および流体混合器を用いた装置
 本発明は、化学工場、半導体製造分野、食品分野、医療分野、バイオ分野などの各種産業における流体輸送配管に用いられる流体混合器に関するものであり、特に流体の流れ方向の濃度分布や温度分布をムラなく均一化して、流体を混合するとともに撹拌することのできる流体混合器および流体混合器を用いた装置に関するものである。
 従来、配管内に装着して管内を流れる流体を均一に混合する方法として、図12に示すように捻り羽根状のスタティックミキサーエレメント101を用いたものが一般的であった(例えば、特許文献1参照)。通常、スタティックミキサーエレメント101は、矩形板をその長手軸線周りに180度捻ったものを最小単位部材として、複数の最小単位部材を、捻り方向が交互に異なる方向になるように一体的に直列に結合した構造を有している。このスタティックミキサーエレメント101を管102内に配置し、管102の両端部にメールコネクター103を取り付け、フレアー105を装着して締付ナット104を締め付けることによりスタティックミキサーが形成される。このとき、スタティックミキサーエレメント101の外径が管102の内径にほぼ等しく設計されて、流体が効果的に撹拌されるようになっている。
特開2001-205062号公報
 しかしながら、前記従来のスタティックミキサーを用いた流体の混合方法は、流れてくる流体を流れに沿って撹拌する構成であるため図13Aに示すように配管の径方向Ddの濃度分布をムラなく均一化することはできるが、図13Bに示すように配管の軸方向(流れ方向)Fdの濃度分布をムラなく均一化することはできない。そのため、例えば、スタティックミキサーの上流側で水と薬液を混合させて流す時、薬液の混合比が一時的に増加した場合には流路内で部分的に薬液の濃度が濃い状態でスタティックミキサーを通過する。このとき、径方向Ddで均一化されるように水と薬液は撹拌されても、配管の軸方向(流れ方向)Fdにおいては流路内で部分的に濃度が濃くなった箇所はほとんど希釈されることなく濃い状態のまま下流側へ流れてしまう(図13B参照)。これにより、半導体洗浄装置、特に半導体ウエハの表面に直接薬液を塗布して各種の処理を行うような装置に接続された場合、濃度の異なる薬液が半導体ウエハの表面に塗布されて不良品の原因となる問題があった。
 この配管の軸方向(流れ方向)の濃度分布のムラを回避する方法としては、流路の途中でタンクを設置してタンク内に流体を一旦貯めてタンク内の濃度を均一化させた後で流体を流す方法(図示せず)などが挙げられる。しかしながら、タンクを設置するには広いスペースが必要となり装置が大きくなる問題や、タンクから再び流体を輸送するにはポンプ、配管などが別途必要となるため、使用する部材の点数が多くなるという問題や、配管ラインを施工するためのコストが発生するという問題があった。また、この方法ではタンク内で流体が滞留する場合がある。流体が滞留するとバクテリアの発生原因となり、タンク内で発生したバクテリアが配管ラインに流れ込み、半導体製造ラインにおいては半導体ウエハに付着して不良品の原因となる問題があった。
 本発明の目的は、以上のような従来技術の問題点に鑑みなされたものであり、流体の流れ方向の濃度分布や温度分布をムラなく均一化して、流体を混合するとともに撹拌することのできる、コンパクトな構成の流体混合器を提供することである。
 請求項1の発明によれば、流体入口と、前記流体入口に接続する第一流路と、前記第一流路と連通または離間して配置されるとともに、前記第一流路と同じ中心軸を有するように配置される第二流路と、前記第一流路に接続するとともに、前記第二流路の外周に配置される第三流路と、前記第三流路から分岐して、前記第二流路と接続する複数の分岐流路と、前記第二流路に接続する流体出口と、を有し、前記複数の分岐流路は、前記第三流路の異なる位置から各々分岐し、前記第二流路の異なる位置において前記第二流路と各々接続する、流体混合器であって、前記流体混合器は、端部に前記流体入口が形成され、内部に前記第一流路が形成される第一流路形成部と、端部に前記流体出口が形成され、内部に前記第二流路が形成され、外周面に複数の連通孔が前記第二流路と外部とを各々連通するように形成された本体部と、を有するエレメントと、内部に前記エレメントを収容するとともに、前記エレメントの少なくとも両端部と嵌合する筐体と、を有し、前記筐体の内周面または前記本体部の外周面の少なくとも一方に、複数の遅延部材が流路軸線方向に不連続に形成され、前記筐体の内周面と前記本体部の外周面との間には連続したひとつの空間が形成され、前記空間が前記第三流路となり、前記連通孔が前記分岐流路となることを特徴とする流体混合器が提供される。
 すなわち、請求項1の発明では、第一流路および第三流路を流れる流体が、複数の分岐流路によって、流路軸線方向における互いに異なる位置から各々分岐され、分岐された流体は流路軸線方向における互いに異なる位置から第二流路に各々流入する。このとき、分岐流路によって分岐された流体は各々時間差をもって第二流路に流入し、流体出口から流出する。つまり、流体混合器より上流側を流れる流路内で、流体中の薬液の濃度が一時的に濃くなったり薄くなったりした状態でも、流体の流れ方向の濃度分布をムラなく均一化して混合することができる。それによって、濃度の安定した流体を供給することができ、各種分野における薬液濃度の変化による不良の発生を防止することができる。特に、筐体の内周面または本体部の外周面の少なくとも一方に、遅延部材が形成されているので、分岐流路によって分岐された流体が第二流路に流入するときに生じる各々の時間差を大きくすることができ、より効果的に流体の流れ方向の濃度分布をムラなく均一化することができる。また、複数の遅延部材が流路軸線方向に不連続に形成されているので、流体混合器を流れる流体の流量や流速、性状、求められる混合の度合いなどに応じて、遅延部材の形状や配置を柔軟に設計することができる。また、複数の遅延部材が流路軸線方向に不連続に形成されているので、エレメントを分割して形成するときは、遅延部材と遅延部材の間に連結面を配置することによって、精密な位置合わせを必要とすることなくエレメントを組み立てることができるので、設計および成形加工が容易になる。また、流体混合器を少ない部品点数でコンパクトに形成することができる。ここで、遅延部材とは、流体の流れを妨げることによって、流体が特定の場所に、到達する時間を遅延させる障害物のことである。
 請求項2の発明によれば、流体入口と、前記流体入口に接続する第一流路と、前記第一流路と連通または離間して配置されるとともに、前記第一流路と同じ中心軸を有するように配置される第二流路と、前記第一流路に接続するとともに、前記第二流路の外周に配置される第三流路と、前記第三流路から分岐して、前記第二流路と接続する複数の分岐流路と、前記第二流路に接続する流体出口と、を有し、前記複数の分岐流路は、前記第三流路の異なる位置から各々分岐し、前記第二流路の異なる位置において前記第二流路と各々接続する、流体混合器であって、前記流体混合器は、端部に前記流体出口が形成され、内部に前記第二流路が形成され、外周面に複数の連通孔が前記第二流路と外部とを各々連通するように形成された本体部を有するエレメントと、端部に前記流体入口が形成され、内部に前記第一流路が形成される第一流路形成部を有し、かつ、内部に前記エレメントを収容するとともに、前記エレメントの少なくとも前記流体出口が形成された端部と嵌合する筐体と、を有し、前記筐体の内周面または前記本体部の外周面の少なくとも一方に、複数の遅延部材が流路軸線方向に不連続に配置され、前記筐体の内周面と前記本体部の外周面との間には連続したひとつの空間が形成され、前記空間が前記第三流路となり、前記連通孔が前記分岐流路となることを特徴とする流体混合器が提供される。
 すなわち、請求項2の発明では、請求項1と同様な作用効果を発現することができる。
 請求項3の発明によれば、本体部が略円錐台形状に形成され、前記遅延部材が板形状の突出部であることを特徴とする請求項1または請求項2に記載の流体混合器が提供される。
 すなわち、請求項3の発明では、遅延部材である突出部が板形状に形成されているので、特に流路軸線方向にそって多くの突出部を配置することができ、流体混合器を流れる流体に応じて、遅延部材の形状や配置を柔軟に設計することができる。
 請求項4の発明によれば、突出部は本体部の外周面の円周上に少なくとも二個ずつ突設され、流路軸線方向に隣接する前記突出部は互いの突出方向を円周方向にずらして配置されるとともに、前記円周上における前記第三流路の流路断面積が、上流側から下流側に向かって漸次減少していることを特徴とする請求項3に記載の流体混合器が提供される。
 すなわち、請求項4の発明では、突出部が本体部の外周面の円周上に突設されているので、突出部が流路軸線に直交して設置されやすくなり、流体の流れを効果的に妨げることができる。また、突出部が本体部の外周面の円周上に少なくとも二個ずつ突設され、流路軸線方向に隣接する突出部が互いの突出方向を円周方向にずらして配置されているので、流体が下流側に流れるときに頻繁に突出部に衝突させることができる。また、突出部が突設されている円周上の第三流路の流路断面積が上流側から下流側に向かって漸次減少しているので、流体の流れを効果的に妨げることができる。
 請求項5の発明によれば、前記本体部が、直径の異なる複数の円筒部を上流側から下流側に向かって漸次拡径するように直列かつ前記円筒部の中心軸をあわせて配置した、階段形状であることを特徴とする請求項3または請求項4に記載の流体混合器が提供される。
 すなわち、請求項5の発明では、本体部が階段形状に形成され、本体部の外周面が斜面のない形状に形成されているので、本体部を切削加工で形成することが容易になる。
 請求項6の発明によれば、前記突出部は前記突出部が配置された本体部の円周の中心に対して反対向きに配置され、前記突出部の幅は、前記突出部が配置された円周の直径よりも大きく形成され、前記突出部の高さは、前記突出部の端部と前記筐体の内周面との間に隙間が形成される高さに形成され、前記突出部が流路軸線方向に隣接する他の前記突出部と互いの突出方向を円周方向に90°ずらして配置されていることを特徴とする請求項3乃至請求項5のいずれか1項に記載の流体混合器が提供される。
 すなわち、請求項6の発明では、第三流路を流れる流体の流れをより効果的に妨げることができ、分岐流路によって分岐された流体が第二流路に流入するときに生じる各々の時間差を大きくすることができる。
 請求項7の発明によれば、前記筐体の内周面と前記本体部の外周面との間に、流路軸線方向にそって前記本体部の上流側から下流側に向かって、前記突出部に干渉しない直線状の隙間流路が形成されていることを特徴とする請求項3乃至請求項6のいずれか1項に記載の流体混合器が提供される。
 すなわち、請求項7の発明では、上流側から下流側に向かって突出部に干渉しない直線状の隙間流路が形成されているので、第三流路を流れる流体の一部は突出部に流れを妨げられることなく流れることができ、突出部に流れを妨げられる流体との間で時間差を形成することができる。
 請求項8の発明によれば、前記突出部が前記階段形状の段差部に形成されていることを特徴とする請求項5に記載の流体混合器が提供される。
 すなわち、請求項8の発明では、突出部が階段形状に形成された本体の段差部に形成されているので、突出部を本体部に嵌合してエレメントを組み立てる場合には、突出部の位置決めが容易になる。また、突出部の下流側に段差部を配置すると突出部を支持することができる。
 請求項9の発明によれば、前記エレメントの少なくとも前記遅延部材が射出成形可能な形状であることを特徴とする請求項1乃至請求項8のいずれか1項に記載の流体混合器が提供される。
 すなわち、請求項9の発明では、遅延部材が射出成形可能な形状に形成されているので、エレメントを効率的に製造することができる。
 請求項10の発明によれば、請求項1~9のいずれか1項に記載の流体混合器と、前記流体混合器に複数の異種流体を合流して導く流路を形成する流路形成手段と、を備えることを特徴とする流体混合器を用いた装置が提供される。
 すなわち、請求項10の発明では、上述の流体混合器と前記流路形成手段とを備えることにより、多用な異種流体を混合する装置を形成することができる。
 請求項1乃至請求項9に記載の発明によれば、流体混合器より上流側を流れる流路内で、薬液の濃度が一時的に濃くまたは薄くなった状態でも、流体の流れ方向の濃度分布をムラなく均一化して混合でき、濃度の安定した流体の供給が可能であり、各種分野における薬液濃度の変化による不良の発生を防止できる流体混合器を提供することができる。
 請求項10に記載の発明によれば、さらに、多様な異種流体を混合する装置を提供することができる。
本発明の第一の実施形態に係る流体混合器の概略構成を示す縦断面図である。 図1の流体混合器を用いて流体の濃度を測定する装置を示す模式図である。 図2の流体混合器の上流側の濃度を測定したグラフである。 図2の流体混合器の下流側の濃度を測定したグラフである。 本発明の第二の実施形態に係る流体混合器の概略構成を示す縦断面図である。 本発明の第二の実施形態に係る流体混合器の概略構成を示す横断面図である。 本発明の第二の実施形態におけるエレメントの概略構成を示す斜視図である。 本発明の第二の実施形態におけるエレメントの変形例の概略構成を示す斜視図である。 本発明の第三の実施形態におけるエレメントの概略構成を示す分解縦断面図である。 本発明の流体混合器を用いた装置の実施形態を示す模式図である。 本発明の流体混合器を用いた装置の実施形態の変形例を示す模式図である。 従来の流体混合器を示す縦断面図である。 図12のスタティックミキサーの流体の撹拌状態を示す模式図である。 図12のスタティックミキサーの流体の撹拌状態を示す模式図である。
 以下、本発明の実施形態について図面に示す実施例を参照して説明するが、本発明が本実施形態に限定されないことは言うまでもない。
 -第一の実施形態-
 図1~4を参照して、本発明の第一の実施形態である流体混合器について説明する。図1は、第一の実施形態に係る流体混合器の概略構成を示す縦断面図である。第一の実施形態では、略円筒状、すなわち円筒状もしくはほぼ円筒状のエレメント1と、エレメント1の少なくとも両端部を含む外周面と嵌合する略円筒状の筐体2とにより、混合流路を有する流体混合器が形成される。
 エレメント1は例えばポリ塩化ビニル(以後、PVCと記す。)製である。ここで、第一の実施形態では、エレメント1は流体入口3および第一流路4が形成される第一流路形成部13と流体出口8および第二流路5が形成される本体部12とを有している。第一流路形成部13はエレメント1の一端側に形成され、第一流路形成部13の端面に流体入口3が形成され、内部に流体入口3に接続された第一流路4が形成されている。本体部12はエレメント1の中間部から他端側に形成され、本体部12の端面に流体出口8が形成され、内部には流体出口8に接続された第二流路5が形成されている。第一流路4と第二流路5はエレメント1の中心軸上に離間して直線状に配置されている。本体部12の外周面には、エレメント1と同一の中心軸を有する環状凹部14が形成されている。環状凹部14の一端部には環状凹部14と第一流路4とを連通する複数の連通孔15が形成されている。本体部12の外周面と筐体2の内周面とで形成される空間と連通孔15とにより第三流路6が形成される。環状凹部14における本体部12の外周面には第二流路5と第三流路6とを各々連通する複数の分岐流路7となる連通孔11が形成されている。また、本体部12の外周面には環状凹部14を隔てて、複数の環状の突出部10が形成されている。突出部10は、第三流路6内の流体の流れを遅延させるための、後に詳述する遅延部材9として本体部12の流路軸線方向に不連続に形成されている。
 筐体2は例えばPVC製である。筐体2の内径はエレメント1の両端部の外径と略同径に形成されている。筐体2の内周面には、環状溝からなる複数の溝部16が形成されている。溝部16は遅延部材9として筐体2の流路軸線方向に不連続に形成されている。筐体2の外周面の端部には、エレメント1と筐体2とを挟持固定する固定ナット17を螺合するための雌ネジ部が形成されている。また、筐体2とエレメント1との間にはエレメント1の両端部の外周面に形成されている環状溝に嵌着されたOリングが配置されており、筐体2とエレメント1との境界面が水密状態に維持されている。
 なお、筐体2とエレメント1の形状は略円筒形であるが、円筒形状以外にも直方体などの形状の筒状体であっても良い。また、筐体2とエレメント1はシールした状態で固定されているのであればどのような方法で固定させても良く、溶接や接着などでも良い。
 次に、本発明の第一の実施形態である流体混合器の作用について説明する。
 流体混合器の上流側で連続的に流れている水に薬液を間欠的に注入し、水と混合された薬液が一時的に薬液の濃度が濃い状態で流れるとき、流路内で部分的に濃度が濃い状態で流れる薬液は、流体入口3から第一流路4に流入して下流側に流れ、第三流路6に流入する。第三流路6に流入した薬液は連通孔15を通過し、本体部12に形成された突出部10aを乗り越えて、下流側に流れる。突出部10aを乗り越えた薬液は、薬液の薬液濃度が濃い部分が、分岐流路7aが接続した箇所を流れると、その一部分が分岐流路7aを流れて第二流路5を通って流体出口8へ流れる。
 残りの薬液は突出部10bを乗り越え、下流側へ流れる。このとき、薬液は突出部10bに衝突したり、筐体2の内周面と突出部10bとの間に形成される狭隘な隙間を通過したり、筐体2の内周面に形成された溝部16に起因して生じる乱流によって流れを妨げられる。すなわち、遅延部材9の作用によって、分岐流路7aが接続した箇所を通過した薬液が分岐流路7bに到達する時間が遅くなる。突出部10bを乗り越えた薬液は、薬液の薬液濃度が濃い部分が、分岐流路7bが接続した箇所を流れると、その一部分が分岐流路7bを流れて第二流路5を通って流体出口8へ流れる。
 残りの薬液は突出部10cを乗り越え、下流側へ流れる。このとき、薬液が突出部10bを乗り越えた場合と同様に、薬液は突出部10cや溝部16によって流れを妨げられる。突出部10cを乗り越えた薬液は、薬液の薬液濃度が濃い部分が、分岐流路7cが接続した箇所を流れると、その一部分が分岐流路7cを流れて第二流路5を通って流体出口8へ流れる。残りの薬液は、突出部10dを乗り越え、下流側へ流れる。このとき、薬液が突出部10cを乗り越えた場合と同様に、薬液は突出部10dや溝部16によって流れを妨げられる。突出部10dを乗り越えた薬液は、薬液の薬液濃度が濃い部分が、分岐流路7dが接続した箇所を流れると、分岐流路7dを流れて第二流路5を通って流体出口8へ流れる。
 このとき、分岐流路7aを流れる部分的に濃度が濃い状態の薬液の一部は、他の分岐流路7b、7c、7dを流れる薬液よりも、流体入口3から流体出口8までの流路を円滑に流れることから、他の分岐流路7b、7c、7dを流れる薬液よりも早く流体出口8から流出する。分岐流路7a以外の分岐流路7b、7c、7dを流れる薬液は、それぞれ突出部10や溝部16である遅延部材9によって円滑な流れを阻害され、それぞれの分岐流路7に到達する時間が遅くなり、時間差をもって分岐流路7b、分岐流路7c、分岐流路7dの順で流体出口8から流出する。つまり、流路内で部分的に濃度が濃い状態の流れている薬液は流体混合器によって時間差をもって4つに分割されて流れることとなり、濃度を濃くされていない薬液と各々混ざり合うことで流体の流れ方向の濃度分布をムラなく均一化して混合することができる。
 ここで、流体混合器が、部分的に濃度が濃い状態で流れる薬液を分割して、流体の流れ方向の濃度分布をムラなく均一化する作用について説明する。図2に示すように、2つの流体である純水と薬液が各々流れるライン18、19の合流部の下流側に図1の流体混合器を配置させた配管系において、図1の流体混合器の上流側と下流側に濃度計20、21を各々設置して、上流側から水と薬液を混合して流す装置を作成する。そして、装置に水と薬液を一定の比率で流している途中で、一時的に薬液の濃度を濃くした状態(水に対して薬液の比率を大きくする)とする。その後、元の一定の比率で流して濃度分布のムラを生じさせる。この時の上流側と下流側の濃度を測定すると図3及び図4のようになる。
 図3は流体混合器の上流側に設置した濃度計20により得られる特性を示す。ここで横軸は経過時間、縦軸は濃度である。ある一定時間に濃度が濃くなるような場合では、図3に示されているようなピーク(H1)が現れることとなる。図4は流体混合器の下流側に設置した濃度計21により得られる特性を示す。図4を参照すると、濃度のピークが4つに分散されて、ピーク(H2)の高さはピーク(H1)の約4分の1になっている。
 濃度のピーク間の間隔T1は、流体が第三流路6内において分岐流路7aの入口の位置を通過してから、第三流路6内において突出部10bを乗り越えて分岐流路7bを通って分岐流路7bの出口に至るまでの時間から、分岐流路7aを通って第二流路5内において分岐流路7bの出口に至るまでの時間を差し引いた時間に対応している。濃度のピーク間の間隔T2は、流体が第三流路6内において分岐流路7bの入口を通過してから、第三流路6内において突出部10cを乗り越えて分岐流路7cを通って分岐流路7cの出口に至るまでの時間から、分岐流路7bを通って第二流路5内において分岐流路7cの出口に至るまでの時間を差し引いた時間に対応している。濃度のピーク間の間隔T3は、流体が第三流路6内において分岐流路7cの入口を通過してから、第三流路6内において突出部10dを乗り越えて分岐流路7dを通って分岐流路7dの出口に至るまでの時間から、分岐流路7cを通って第二流路5内において分岐流路7dの出口に至るまでの時間を差し引いた時間に対応している。なお、仮に流体混合器を設置しない場合、図3に示される濃度のピークは流体の流れによって撹拌されることにより若干低下することはあるが、ピーク(H1)はほぼ変わらずに流れることになる。
 第一の実施形態では、流体入口3を流体が流入する入口、流体出口8を流体が流出する出口として、流体が流体入口3から流体出口8に流れるようにしたが、流体を逆方向に流しても同様の効果を得ることができる。この場合には、流体出口8は流体が流入する入口となり、流体入口3は流体が流出する出口となる。
 第一の実施形態の流体混合器は部品点数が少なく、容易に製造することができる。また、流路構造が小さくまとめられているため流体混合器を小型化することができ、配管スペースを取らずに設置することができる。また、流体混合器を配管に接続する際も流体入口3と流体出口8に各々継手等で接続するだけで施工が完了するため、配管施工が容易であり、短時間で施工することができる。
 第一の実施形態では、筐体2とエレメント1の両方に遅延部材9が配置されているが、遅延部材9は筐体2とエレメント1の少なくとも一方に配置されていればよい。遅延部材9が筐体2とエレメント1の少なくとも一方に配置されていれば、流体混合器内を流れる流体の流れ方向の濃度分布や温度分布をムラなく均一化して、流体を混合するとともに撹拌することのできる、
 -第二の実施形態-
 以下、図5~7を参照して、本発明の第二の実施形態である流体混合器について説明する。図5は、第二の実施形態に係る流体混合器の概略構成を示す縦断面図である。図6は、第二の実施形態に係る流体混合器の概略構成を示す横断面図である。図7は、第二の実施形態に係るエレメント31の概略構成を示す斜視図である。第二の実施形態が第一の実施形態と異なる点は、主にエレメント31の形状である。すなわち、第二の実施形態では、エレメント31の内部には、分岐流路37と第二流路35が形成され、外部には、遅延部材39として板形状の突出部40が形成されている。なお、以下では第一の実施形態との相違点を主に説明する。
 エレメント31は例えばPVC製である。第二の実施形態では、第一の実施形態とは異なり、エレメント31は流体入口33と第一流路34が形成される第一流路形成部を有しておらず、エレメント31は流体出口38と第二流路35が形成される本体部42のみを有している。本体部42は、直径の異なる複数の円筒部を上流側から下流側に向かって段階的に拡径するように直列かつ円筒部の中心軸をあわせて配置した略円錐台形状である。すなわち、略円錐台形状の錐体面は段差部(円筒部と円筒部との境界部分に形成される段差部分)を有する階段形状である。エレメント31の一端面には開口43が形成され、開口43には第二流路35の細径部44が接続されている。エレメント31の他端面には流体出口38が形成され、流体出口38には第二流路35が接続されている。第二流路35は一端側から他端側にかけて流路断面積が漸次大きくなっている。また、エレメント31の他端部の外周面には、エレメント31と筐体32とを螺合するための雄ネジ部が形成されるとともに、エレメント31と筐体32との間の境界面を水密状態に維持するOリングを嵌着する環状溝が形成されている。また、エレメント31の他端面には、エレメント31と鍔付き短管46とを水密状態に維持するOリングを嵌着する環状溝が形成されている。
 エレメント31の本体部42の外周面には、遅延部材39となる突出部40が略矩形の平坦な板形状に形成されている。突出部40が板形状に形成されていると、流路軸線方向に多くの突出部40を配置することができるので、流体混合器を流れる流体の性状や種類に応じて、突出部40の配置を柔軟に設計することができる。突出部40は各々の段差部の円周上に二個ずつ突設され、二個の突出部40は同一形状かつ当該円周の中心に対して反対向きに配置されている。突出部40の幅は、突出部40が配置された本体部42の部分における円周の直径よりも大きく形成されている。突出部40の高さは、突出部40の端部と筐体32の内周面との間にわずかな隙間が形成される程度の高さに形成されている。ここで、「わずかな隙間」とは、エレメント31が筐体32に中心軸を合わせて挿通されたときに、突出部40の端部が筐体32の内周面に干渉することを防ぐことができるわずかな隙間である。また、突出部40は、突出部40が配置される場所が下流側に近づくにつれて、突出部40の幅は大きくなり、突出部40の高さは低くなり、突出部40が形成されたそれぞれの円周上における第三流路36の流路断面積は小さくなるように形成されている。また、流路軸線方向に隣接する突出部40は、互いの突出方向を円周方向に90°ずらして配置されている。また、筐体32の内周面と本体部42の外周面との間には、突出部40に干渉しない直線状の隙間流路45が流路軸線方向にそって形成されている。また、流路軸線方向に隣接する突出部40の間には、第二流路35と第三流路36とを各々連通する複数の分岐流路37となる連通孔41が最短距離で形成されている。
 筐体32は例えばPVC製である。第二の実施形態では、筐体32は円筒状に形成されている。筐体32の一端面の開口が流体入口33となり、筐体32の一端部の内部には第一流路34が形成されている。すなわち、筐体32の一端部が第一流路形成部となる。このとき、第一流路34は第二流路35と同じ中心軸を有している。筐体32の一端部の内径は流体混合器の上流側に接続される配管の口径と略同径に形成され、中間部から他端部の内径はエレメント31の他端部の外径と略同径に形成されている。筐体32の内周面は凹凸のない滑らかな面で形成され、筐体32の内周面と本体部42の外周面とで形成される空間が第三流路36となり、第三流路36の流路断面積は上流側から下流側に向かって減少する傾向にある。筐体32の両端部には、筐体32と、筐体32の上流側および下流側の配管と、を接続する接続部となる鍔付き短管46が接続されている。筐体32の両端部の外周面には、エレメント31と、筐体32と、鍔付き短管46と、を挟持固定するキャップナット47を螺合するための雌ネジ部が形成されている。筐体32の一端面には、筐体32と鍔付き短管46とを水密状態に維持するOリングを嵌着する環状溝が形成されている。筐体32の他端部の内周面には、エレメント31と、筐体32と、を螺合するための雌ネジ部が形成されている。
 次に、本発明の第二の実施形態である流体混合器の作用について説明する。
 流路内で部分的に濃度が濃い状態で流れる薬液は、流体入口33から第一流路34に流入して下流側に流れていく。薬液が下流側に流れると、第一流路34を流れる薬液は第二流路35の細径部44に流入する薬液と、第三流路36に流入する薬液とに分けられ、分けられた薬液は各々の流路に流れていく。細径部44を流れる薬液は第二流路35を下流側に流れ、第三流路36に流入した薬液よりも早く、流体出口38から排出される。
 細径部44に流入した薬液以外の薬液は第三流路36に流れていく。第三流路36に流入した薬液は突出部40aに衝突する薬液と、突出部40aに衝突することなく第三流路36を更に下流側に流れる薬液とに分けられる。突出部40aは、これらの突出方向が本体部42の外周面の円周上から流路軸線にほぼ直交するように配置されているので、流体の流れを効果的に妨げることができる。突出部40aに衝突し流れを妨げられた薬液は、突出部40aを迂回して第三流路36を更に下流側に流れる。すなわち、突出部40aに衝突し流れを妨げられた薬液は、突出部40aに衝突することなく第三流路36を更に下流側に流れていく薬液よりも遅れて、第三流路36を下流側に流れていく。突出部40aを通過した薬液は、薬液の薬液濃度の濃い部分が、分岐流路37aと接続している箇所を流れると、その一部分が分岐流路37aを流れて第二流路35を通って流体出口38へ流れる。このとき、分岐流路37aから第二流路35に流れる薬液は、遅延部材39である突出部40aによって流れを妨げられた後で分岐流路37aに流入していることから、第二流路35の細径部44を流れる薬液よりも遅延して、流体出口38から流出する。
 残りの薬液は、突出部40bに衝突し流れを妨げられる薬液と、突出部40bに衝突することなく第三流路36を更に下流側に流れる薬液とに分けられる。ここで、第二の実施形態では、流路軸線方向に隣接する突出部40aと40bは、これらの突出方向を互いに円周方向に90°ずらして配置されているので、突出部40aに衝突することなく通過した薬液が突出部40bに衝突しやすくなっている。すなわち、薬液の流れを効果的に妨げることができ、薬液が第三流路36の下流側に流れることを効果的に遅延させることができる。突出部40bに衝突し流れを妨げられた薬液は、突出部40bを迂回して第三流路36を更に下流側に流れる。突出部40bを通過した薬液は、薬液の薬液濃度が濃い部分が、分岐流路37bと接続している箇所を流れると、その一部分が分岐流路37bを流れて第二流路35を通って流体出口38へ流れる。このとき、分岐流路37bから第二流路35に流れる薬液は、遅延部材39である突出部40bによって流れを妨げられた後で分岐流路37bに流入していることから、分岐流路37aから第二流路35に流れる薬液よりも遅延して、流体出口38から排出される。
 残りの薬液は、第三流路36を下流側に流れていくが、突出部40a、40bを通過した薬液と同様に流れていく。すなわち、突出部40c、40d、40eにさしかかると、突出部40c、40d、40eに衝突する薬液と、突出部40c、40d、40eに衝突することなく第三流路36を下流側に流れていく薬液とに分けられる。突出部40c、40d、40eに衝突した薬液は、突出部40c、40d、40eを迂回し、第三流路36を更に下流側に流れる。突出部40c、40d、40eを通過した薬液は、薬液の薬液濃度が濃い部分が分岐流路37c、37d、37eが接続した箇所を流れると、分岐流路37c、37dではその一部分、分岐流路37eでは残された全部が分岐流路37c、37d、37eを流れて第二流路35を通って流体出口38へ流れる。このとき、分岐流路37c、37d、37eから第二流路35に流れる薬液は、突出部40c、40d、40eによって流れを妨げられた後で分岐流路37c、37d、37eに流入していることから、それぞれに時間差を生じさせて流体出口38から排出される。第二の実施形態において、流体の流れ方向の濃度分布がムラなく均一化される作用は第一の実施形態と同様なので説明を省略する。
 第二の実施形態では、細径部44から第二流路35に流入した薬液が流体混合器から流出する時間と、第三流路36に流入した薬液が、突出部40に流れを妨げられた後に分岐流路37から第二流路35に流入し、流体混合器から流出する時間と、の間に時間差を設けることができる。また、複数の突出部40が流路軸線方向に不連続に形成されているので、薬液は、突出部40に高い頻度で衝突する部分もあれば、突出部40に低い頻度で衝突する部分もある。従って、第三流路36を流れる薬液が突出部40に衝突する頻度によって、流体混合器から流出する時間に時間差を設けることができる。また、第二の実施形態では、筐体32の内周面と本体部42の外周面との間に、流路軸線に沿って、上流側から下流側にかけて突出部40に干渉しない直線状の隙間流路45が形成されている。隙間流路45を流れる薬液は突出部40に流れを妨げられることなく第三流路36を流れていくので、隙間流路45を流れる薬液が流体混合器から流出する時間と突出部40に衝突して流れを妨げられながら第三流路36を流れる薬液が流体混合器から流出する時間との間に時間差を設けることができる。すなわち、第二の実施形態の流体混合器は、流体混合器に流入する部分的に薬液の濃度が濃くなった薬液を複数に分岐して、分岐された薬液を各々に時間差をつけて流出させることで、効果的に流れ方向の濃度分布をムラなく均一化することができる。
 第二の実施形態では、各々の円周上に突出部40が二個ずつ突設され、流路軸線方向に隣接する突出部40の突出方向を互いに円周方向に90°ずらしているが、図8のように、各々の段差部の円周上に突出部40を三個ずつ突設して、流路軸線方向に隣接する突出部40を互いに円周方向に60°ずらした位置に配置してもよい。このように、同一円周上に突設される突出部40の個数や突出部40をずらす角度は特に限定されない。
 第二の実施形態では、突出部40が略矩形の板形状に形成されているが、流体の流れを妨げることができれば突出部40をどのような形状に形成してもよく、特に限定されない。例えば、突出部40が半円形の板形状や、板に孔や切欠や窪みが形成されている形状、板が湾曲や屈曲した形状、様々な外形のブロック形状、などの形状に形成されてもよい。また、突出部40の形状と同様に、突出部40の高さや幅、大きさも、流体の流れを妨げることができればどのような高さや幅、大きさにしてもよく、特に限定されない。また、突出部40の配置は、突出部40が流路軸線方向に不連続に複数配置されていればよく、特に限定されない。例えば、形状が異なる突出部40を不規則に配置してもよい。すなわち、突出部40の形状や配置などは流体混合器を流れる流体の流量や流速、性状、求められる混合の度合いなどに応じて適宜設計することができる。
 第二の実施形態では、突出部40が突設されている円周上の第三流路36の流路断面積が上流側から下流側に向かって減少している。また、第三流路36は筐体32の内周面と本体部42の外周面から形成されているので、第三流路36の流路断面積は下流側に向かって減少する傾向にある。従って、第三流路36を流れる薬液が下流側で滞留するのを防ぐことができ、薬液を円滑に第二流路35に導くことができる。
 第二の実施形態では、全ての分岐流路37は同一の内径を有しているが、特に限定されることはなく、各々の分岐流路37を流れる薬液の流量を調節するために分岐流路37ごとに内径を変化させてもよい。また、分岐流路37の位置や数、長さ、分岐流路37と第二流路35との接続角度などについても、特に限定されることはなく、適宜設計することができる。
 -第三の実施形態-
 以下、図9を参照して、本発明の第三の実施形態である流体混合器について説明する。図9は、第三の実施形態におけるエレメント31の概略構成を示す分解縦断面図である。第三の実施形態が第二の実施形態と異なる点は、主にエレメント31の形状である。すなわち、第三の実施形態では、エレメント31が複数の円筒部材51から形成されており、エレメント31以外の構成は第二の実施形態と同様である。なお、以下では第二の実施形態のエレメント31と第三の実施形態のエレメント31との相違点について説明し、エレメント31以外の構成については説明および図面の記載を省略する。第二の実施形態と同じ作用を示す構成には同じ符号を付与する。
 エレメント31の形状は第二の実施形態とほぼ同じ形状であるが、複数の部材を一体的に結合して形成されている。エレメント31は直径の異なる複数の円筒部材51を上流側から下流側に向かって漸次拡径するように直列かつ円筒部の中心軸をあわせて一体的に結合している。
 最上流側の円筒部材51aは円筒形状に形成され、内部には第二流路35の細径部44となる貫通孔が形成されている。円筒部材51aの一端面には開口43が形成され、他端部には円筒部材51aの下流側の円筒部材51bと結合するための受口52aが形成されている。円筒部材51aの他端部の外周面の円周上には、遅延部材39として、板形状に形成された二個の突出部40aが当該円周の中心に対して反対向きに突設されている。
 円筒部材51aの下流側の円筒部材51bは円筒形状に形成され、内部には細径部44に連通する第二流路35の一部となる貫通孔が上流側から下流側にかけて漸次拡径する円錐台形状に形成されている。円筒部材51bの一端部には、円筒部材51aの受口52aと結合するための差し込み部53aが形成され、他端部には円筒部材51bの下流側の円筒部材51cと結合するための受口52bが形成されている。円筒部材51bの他端部の外周面の円周上には、板形状に形成された二個の突出部40bが当該円周の中心に対して反対向きに突設されている。また、円筒部材51bの外周面には、分岐流路37aとなる連通孔41が形成されている。
 円筒部材51c、51d、51eは円筒部材51bと同様に形成されている。すなわち、円筒部材51c、51d、51eの内部には第二流路35の一部となる円錐台形状の貫通孔が形成されている。また、円筒部材51c、51d、51eの一端部には、各々の上流側の円筒部材51の受口52と結合するための差し込み部53b、53c、53dが形成され、他端部には各々の円筒部材51の下流側の円筒部材51と結合するための受口52c、52d、52eが形成されている。円筒部材51c、51d、51eの他端部の外周面の円周上には、板形状に形成されたそれぞれ二個の突出部40c、40d、40eが当該円周の中心に対して反対向きに突設されている。また、円筒部材51c、51d、51eの外周面には、分岐流路37b、37c、37dとなる連通孔41が形成されている。
 最下流側の円筒部材51fは円筒形状に形成され、内部には流体出口38に連通する第二流路35の一部となる貫通孔が形成されている。円筒部材51fの一端部には、円筒部材51eの受口52eと結合するための差し込み部53eが形成されている。円筒部材51fの他端部の外周面には、エレメント31と筐体とを螺合するための雄ネジ部が形成されるとともに、エレメント31と筐体とを水密状態に維持するOリングを嵌着する環状溝が形成されている。また、円筒部材51fの他端面には、エレメント31と鍔付き短管とを水密状態に維持するOリングを嵌着する環状溝が形成されている。また、円筒部材51fの外周面には、分岐流路37eとなる連通孔が形成されている。
 各々の円筒部材51の受口52と各々の受口52に対応する差し込み部53とを結合し、各々の円筒部材51を一体的に結合することによって、エレメント31が形成される。このとき、流路軸線方向に隣接する突出部40が互いの突出方向を円周方向に90°ずらした状態になるように、各々の円筒部材51が結合されている。また、各々の円筒部材51に形成された貫通孔からなる第二流路35は段差のない滑らかな内周面を有している。また、エレメント31は外径の異なる円筒部材51を結合したことによって、円筒部材51間に形成された段差部を有している。各々の突出部40は各々の円筒部材51の他端部に形成されていることから、突出部40は段差部に形成されていることとなる。突出部40が段差部に形成されることによって、突出部40は突出部40の下流側の円筒部材51の一端面に支持されることができ、突出部40に薬液が衝突しても突出部40の変形や破損を防ぐことができる。
 第三の実施形態では、エレメント31が複数の円筒部材51に分割されているため、エレメント31が大きくなっても汎用的な切削加工機や射出成形機で成形加工することができる。また、円筒部材51が円筒形状に形成されているため、切削加工が容易であり、加工時間を短くすることができる。
 第三の実施形態では、円筒部材51に同様な突出部40が突設されているが、突出部40の形状や配置などは適宜設計することができ、特に限定されない。また、第三の実施形態では円筒部材51に突出部40が一体形成されているが、突出部40は円筒部材51と異なる部品でもよく、突出部40が嵌合や接着などの手段で円筒部材51に一体的に結合されてもよい。また、円筒部材51はどのような方法で成形加工されてもよく、特に限定されない。例えば、突出部40や各種流路の形状を射出成形可能な形状にして、円筒部材51を射出成形で製造すると大量生産が容易になり、円筒部材51を切削加工で製造すると多品種少量生産が容易になる。第三の実施形態の流体混合器の作用や流体の流れ方向の濃度分布がムラなく均一化される作用はそれぞれ第一の実施形態と第二の実施形態と同様なので説明を省略する。
 次に、図10、図11を参照して上述の流体混合器を用いた装置について説明する。
 本発明の実施形態に係る流体混合器は、例えば流体の温度または濃度が時間の流れに伴って変化するライン内に適用される。すなわち、本発明の実施形態に係る流体混合器は、例えばライン内にヒーターを設置してこのヒーターで加熱される液体であって、時間軸に対する流体の温度にバラツキが生じることで流体の温度が時間の流れに伴って変化する流体や、槽内に浸した固形物を流体内へ溶出させて流すラインで溶出した、当該固形物を構成する物質の濃度が時間の流れに伴って変化する流体などに適用され、流体混合器を用いることでラインの流体の温度または濃度を均一化することができる。なお、流体混合器に流体として流す物質は気体または流体であれば特に限定されない。
 図10は、本発明に係る流体混合器を用いた装置の一例を示す図である。図10では、2つの流体が各々流れるライン81、82の合流部83の下流側に本発明に係る流体混合器86が配置されている。各流体はそれぞれポンプ84、85により供給される。このため、ポンプ84、85の脈動などにより、流体が合流したときの混合比率が時間の流れに伴って変化することがあるが、流体混合器86により流体の混合比率が均一化されることで、時間軸に対して温度や濃度を一定にすることができる。なお、各ライン81、82に高温流体および低温流体をそれぞれ流した状態で、例えば高温流体が不均一に流れて時間軸に対する流体の温度にバラツキが生じる場合や、既定濃度の流体を他の流体と混合させたときに混合流体の濃度が時間の流れに伴って変化する場合などにも有効である。このときの流体は気体、液体、固体、粉体等のいずれでもよく、固体、粉体については、あらかじめ気体または液体と混合しておいてもよい。なお、3つ以上の流体が流れるラインを合流させるように装置を構成し、3つ以上の流体が流体混合器によって混合されるようにしてもよい。
 図11は、図10の装置の変形例を示す図である。図11では、2つの流体が各々流れるライン87、88の合流部89の下流側に本発明に係る流体混合器90を配置するとともに、流体混合器90の下流側に他の流体が流れるライン91が合流する合流部92を設け、合流部92の下流側にも本発明に係る流体混合器93を配置している。これにより、3つ以上の流体を同時に混合すると混合ムラが生じる場合に、最初に混合した2つの流体を均一に混合した後に他の流体を混合して均一に混合させることにより、効率よく混合ムラのない均一な流体を得ることができる。例えば水と油と界面活性剤とを混合する場合において、一度にこれら全部を混ぜるとうまく混ざらずに混合ムラが生じるので、予め水と界面活性剤とを混合した後に、その混合体と油とを混合することによりこれらをムラなく均一に混合することができる。水と硫酸とを混合して希釈した後にその混合体にアンモニアガスを混合してアンモニアガスを吸収させたり、水と硫酸とを混合して希釈した後にその混合体に珪酸ソーダを混合してpH調整させたりする場合にも、好適に用いることができる。なお、最初に3つ以上の流体を合流させてもよく、途中で2つ以上の流体を合流させてもよい。また、流体混合器を3つ以上直列に配置し、段階的に他の流体を混合するようにしてもよい。
 本装置によって混合される異種流体の組み合わせについてさらに説明する。図10の装置において、一方の流体が流れるライン81には水を、他方の流体の流れるライン82にはpH調整剤、液体肥料、漂白剤、殺菌剤、界面活性剤または液体薬品のいずれかを流すようにしてもよい。
 この場合、水は、純水、蒸留水、水道水、工業用水など、混合させる物質の条件に合う水であれば特に限定されない。また水の温度も特に限定されず、温水または冷水であってもよい。pH調整剤は、混合する液体のpH調整に用いられる酸またはアルカリであればよく、塩酸、硫酸、硝酸、フッ酸、カルボン酸、クエン酸、グルコン酸、コハク酸、炭酸カリウム、炭酸水素ナトリウム、水酸化ナトリウム水溶液などが挙げられる。液体肥料は、農業用の液状の肥料であればよく、糞尿や化学肥料などが挙げられる。
 漂白剤は、化学物質の酸化または還元反応を利用して色素を分解するものであればよく、次亜塩素酸ナトリウム、過炭酸ナトリウム、過酸化水素、オゾン水、二酸化チオ尿素、亜二チオン酸ナトリウムなどが挙げられる。殺菌剤は、病原性または有害性を有する微生物を殺すための薬剤であり、ヨードチンキ、ポビドンヨード、次亜塩素酸ナトリウム、クロル石灰、マーキュロクロム液、グルコン酸クロルヘキシジン、アクリノール、エタノール、イソプロパノール、過酸化水素水、塩化ベンザルコニウム、塩化セチルピリジニウム、クレゾール石鹸液、亜塩素酸ナトリウム、過酸化水素、次亜塩素酸ナトリウム、次亜塩素酸水、オゾン水などが挙げられる。
 界面活性剤は、分子内に水になじみやすい部分(親水基)と、油になじみやすい部分(親油基・疎水基)とを持つ物質であり、脂肪酸ナトリウム、脂肪酸カリウム、モノアルキル硫酸塩、アルキルポリオキシエチレン硫酸塩、アルキルベンゼンスルホン酸塩、モノアルキルリン酸塩、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩、アルキルジメチルアミンオキシド、アルキルカルボキシベタイン、ポリオキシエチレンアルキルエーテル、脂肪酸ソルビタンエステル、アルキルポリグルコシド、脂肪酸ジエタノールアミド、アルキルモノグリセリルエーテル、アルファスルホ脂肪酸エステルナトリウム、直鎖アルキルベンゼンスルホン酸ナトリウム、アルキル硫酸エステルナトリウム、アルキルエーテル硫酸エステルナトリウム、アルファオレフィンスルホン酸ナトリウム、アルキルスルホン酸ナトリウム、しょ糖脂肪酸エステルソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、脂肪酸アルカノールアミド、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、アルキルアミノ脂肪酸ナトリウム、アルキルベタイン、アルキルアミンオキシド、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩などが挙げられる。
 また、液体薬品の範疇に入るのであれば上記のカテゴリに入らない液体薬品を用いてもよく、塩酸、硫酸、酢酸、硝酸、蟻酸、フッ酸、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、水酸化アンモニウム、珪酸ソーダ、油などが挙げられる。なお、ここに挙げた液体薬品は上記のカテゴリに該当するものとして使用されることもある。また、一方の流体が流れるライン81に水を、他方の流体の流れるライン82にお湯を流してもよく、水とお湯とを混ぜて均一で一定の温度に混合させるようにしてもよい。
 また、一方の流体が流れるライン81に第一の液体薬品を、他方の流体の流れるライン82に第二の液体薬品または金属を流し、これらを流体混合器86で混合させるようにしてもよい。ここで、第一および第二液体薬品は混ぜることが可能である液体薬品であればよく、上記の液体薬品またはそれ以外の液体薬品でもよい。液体薬品には、例えばフォトレジスト、シンナーなどが挙げられる。また、液体薬品は化粧品であってもよい。化粧品は、洗顔料、クレンジング、化粧水、美容液、乳液、クリームおよびジェルといった肌質自体を整えることを目的とする基礎化粧品や、口臭、体臭、あせも、ただれ、脱毛などの防止、育毛または除毛、ねずみや害虫駆除などの医薬部外品に当たる薬用化粧品などが挙げられる。
 金属は主に有機金属化合物であり、微小な粒状体または粉体を有機溶剤等に溶解させた液体が使用される。有機金属化合物は、クロロ(エトキシカルボニルメチル)亜鉛のような有機亜鉛化合物、ジメチル銅リチウムのような有機銅化合物、グリニャール試薬、ヨウ化メチルマグネシウム、ジエチルマグネシウムのような有機マグネシウム化合物、n-ブチルリチウムのような有機リチウム化合物、金属カルボニル、カルベン錯体、フェロセンをはじめとするメタロセンなどの有機金属化合物、パラフィンオイルに溶解させた単元素や多元素混合標準液などが挙げられる。また、ケイ素、ヒ素、ホウ素などの半金属の化合物やアルミニウムのような卑金属も含まれる。有機金属化合物は、石油化学製品の製造や有機重合体の製造などにおいて触媒として好適に使用される。
 また、一方の流体が流れるライン81に廃液を、他方の流体の流れるライン82にpH調整剤または凝集剤を流し、これらを流体混合器86で混合させるようにしてもよい。pH調整剤には例えば上記のpH調整剤が用いられ、凝集剤は、廃液の凝集を行うことができるものであれば特に限定されず、硫酸アルミニウム、ポリ硫酸第二鉄、ポリ塩化アルミニウム、ポリシリカ鉄、硫酸カルシウム、塩化第二鉄、消石灰などが挙げられる。微生物は、廃液の発酵や分解を促すものであればよく、カビおよび酵母などの菌類や、バクテリアなどの細菌類などが挙げられる。
 また、一方の流体が流れるライン81に第一の石油類を、他方の流体の流れるライン82に第二の石油類、添加剤または水を流し、これらを流体混合器86で混合させるようにしてもよい。ここで第一および第二の石油類とは、炭化水素を主成分として他に少量の硫黄、酸素、窒素などのさまざまな物質を含む液状の油のことであり、ナフサ(ガソリン)、灯油、軽油、重油、潤滑油、アスファルトなどが挙げられる。ここでいう添加剤は石油類の品質向上や保持のために添加されるものを指し、潤滑油添加剤として洗浄分散剤、酸化防止剤、粘度指数向上剤・流動点降下剤、油性向上剤・極圧添加剤、摩耗防止剤、防錆・防食剤など、グリース添加剤として構造安定剤、充填剤など、燃料油添加剤などが挙げられる。ここでいう水は、純水、蒸留水、水道水、工業用水など、混合させる物質の条件に合う水であれば特に限定されない。また水の温度も特に限定されず、温水または冷水であってもよい。
 また、一方の流体が流れるライン81に第一の樹脂を、他方の流体の流れるライン82に第二の樹脂、溶剤、硬化剤または着色剤を流し、これらを流体混合器86で混合させるようにしてもよい。ここでいう樹脂とは、溶融樹脂、液体樹脂などの接着剤の主成分または塗料の塗膜形成成分のことである。溶融樹脂は、射出成形または押し出しが成形可能な樹脂であれば特に限定されず、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、ABS樹脂、アクリル樹脂、ポリアミド、ナイロン、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンサルファイド、ポリエーテルエーテルケトンなどが挙げられる。
 液体樹脂などの接着剤の主成分としては、アクリル樹脂系接着剤、α-オレフィン系接着剤、ウレタン樹脂系接着剤、エーテル系セルロース、エチレン-酢酸ビニル樹脂接着剤、エポキシ樹脂系接着剤、塩化ビニル樹脂溶剤系接着剤、クロロプレンゴム系接着剤、酢酸ビニル樹脂系接着剤、シアノアクリレート系接着剤、シリコーン系接着剤、水性高分子-イソシアネート系接着剤、スチレン-ブタジエンゴム溶液系接着剤、スチレン-ブタジエンゴム系ラテックス接着剤、ニトリルゴム系接着剤、ニトロセルロース接着剤、反応性ホットメルト接着剤、フェノール樹脂系接着剤、変成シリコーン系接着剤、ポリアミド樹脂ホットメルト接着剤、ポリイミド系接着剤、ポリウレタン樹脂ホットメルト接着剤、ポリオレフィン樹脂ホットメルト接着剤、ポリ酢酸ビニル樹脂溶液系接着剤、ポリスチレン樹脂溶剤系接着剤、ポリビニルアルコール系接着剤、ポリビニルピロリドン樹脂系接着剤、ポリビニルブチラール樹脂系接着剤、ポリベンズイミダソール接着剤、ポリメタクリレート樹脂溶液系接着剤、メラミン樹脂系接着剤、ユリア樹脂系接着剤、レゾルシノール系接着剤などが挙げられる。塗料の塗膜形成成分としては、アクリル樹脂、ウレタン樹脂、メラミン樹脂などが挙げられる。
 溶剤としてはヘキサン、ベンゼン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、テトラヒドロフラン、塩化メチレン、アセトン、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、エタノール、メタノールなどが挙げられる。硬化剤としてはポリアミン、酸無水物、アミン類、過酸化物、サッカリンなどが挙げられる。着色剤としては、亜鉛華、鉛白、リトポン、二酸化チタン、沈降性硫酸バリウム、バライト粉、鉛丹、酸化鉄赤、黄鉛、亜鉛黄、ウルトラマリン青、フェロシアン化鉄カリ、カーボンブラックなどの顔料が挙げられる。
 ここで上記樹脂が溶融樹脂の場合、成形機または押出機から流体混合器86に溶融樹脂を流す装置を形成してもよい。例えば装置が成形機の場合は、成形機のノズルと金型との間に流体混合器86を配置して射出成形を行えばよく、装置が押出機の場合は、押出機とダイとの間に流体混合器86を配置して押出成形を行えばよい。この場合、樹脂内の温度を均一化させ樹脂の粘度を安定させて厚みムラや内部応力等の発生を抑えることができ、さらには色ムラをなくすことができる。
 また、一方の流体が流れるライン81に第一の食品原料を、他方の流体の流れるライン82に第二の食品原料、食品添加剤、調味料、不燃性ガス等を流し、これらを流体混合器86で混合させるようにしてもよい。
 第一および第二の食品原料は配管内を流動可能である飲料または食品であればよく、日本酒、焼酎、ビール、ウイスキー、ワイン、ウォッカなどのアルコール飲料、牛乳、ヨーグルト、バター、クリーム、チーズ、練乳、乳脂などの乳製品、ジュース、お茶、コーヒー、豆乳、水などの飲料、出汁、味噌汁、コンソメスープ、コーンスープ、豚骨スープなどの飲料食品、その他にもゼリー、こんにゃく、プリン、チョコレート、アイスクリーム、キャンディ、豆腐、練り製品、解き卵、ゼラチンなどの各種食品原料などが挙げられる。また流動可能であれば個体や粉体などでもよく、小麦粉、片栗粉、強力粉、薄力粉、そば粉、粉ミルク、コーヒー、ココアなどの粉原料や、果肉、ワカメ、ゴマ、青海苔、削り節、パン粉、細かく刻んだ又はすりおろした食品などの小さい固形食品などが挙げられる。
 食品添加剤は、黒糖、三温糖、果糖、麦芽糖、蜂蜜、糖蜜、メープルシロップ、水飴、エリスリトール、トレハロース、マルチトール、パラチノース、キシリトール、ソルビトール、ソーマチン、サッカリンナトリウム、サイクラミン酸、ズルチン、アスパルテーム、アセスルファムカリウム、スクラロース、ネオテームなどの甘味料、カラメル色素、クチナシ色素、アントシアニン色素、アナトー色素、パプリカ色素、紅花色素、紅麹色素、フラボノイド色素、コチニール色素、アマランス、エリスロシン、アルラレッドAC、ニューコクシン、フロキシン、ローズベンガル、アシッドレッド、タートラジン、サンセットイエローFCF、ファストグリーンFCF、ブリリアントブルーFCF、インジゴカルミンなどの着色料、安息香酸ナトリウム、ε-ポリリジン、しらこたん白抽出物(プロタミン)、ソルビン酸カリウム、ナトリウム、デヒドロ酢酸ナトリウム、ツヤプリシン(ヒノキチオール)などの保存料、アスコルビン酸、トコフェロール、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール、エリソルビン酸ナトリウム、亜硫酸ナトリウム、二酸化硫黄、クロロゲン酸、カテキンなどの酸化防止剤や、香料などが挙げられる。
 調味料は、醤油、ソース、酢、油、ラー油、味噌、ケチャップ、マヨネーズ、ドレッシング、みりんなどの液体のものや、砂糖、塩、胡椒、山椒、粉唐辛子などの粉体のものなどが挙げられる。微生物は、食品の発酵や分解を促すものであり、キノコ、カビ、酵母など菌類や、バクテリアなどの細菌類である。菌類としては各種キノコや麹カビ菌などが挙げられ、細菌類として例えばビフィズス菌、乳酸菌、納豆菌などが挙げられる。不燃性ガスとしては炭酸ガスなどが挙げられ、例えば麦汁と炭酸ガスとを混合させてビールを生成することなどに用いられる。
 また、一方の流体が流れるライン81に空気を、他方の流体の流れるライン82に可燃性ガスを流し、これらを流体混合器86で混合させるようにしてもよい。可燃性ガスとしては、メタン、エタン、プロパン、ブタン、ペンタン、アセチレン、水素、一酸化炭素、アンモニア、ジメチルエーテルなどが挙げられる。
 また、一方の流体が流れるライン81に第一の不燃性ガスを、他方の流体の流れるライン82に第二の不燃性ガスまたは蒸気を流し、これらを流体混合器86で混合させるようにしてもよい。不燃性ガスとしては、窒素、酸素、二酸化炭素、アルゴンガス、ヘリウムガス、硫化水素ガス、亜硫酸ガス、硫黄酸化物ガスなどが挙げられる。また、上記の他の組み合わせとして、一方の流体が流れるライン81に水、液体薬品または食品原料を、他方の流体の流れるライン82に空気、不燃性ガスまたは蒸気を流し、これらを流体混合器86で混合させるようにしてもよい。
 また、一方の流体が流れるライン81に第一の合成中間体を、他方の流体が流れるライン82に第二の合成中間体、添加剤、液体薬品または金属等を流し、これらを流体混合器86で混合させるようにしてもよい。第一および第二の合成中間体とは、目標化合物までの多段階の合成経路の中で現れる、合成が途中の段階の化合物のことをいう。第一および第二の合成中間体には、複数の薬品を混合させた合成途中のもの、樹脂の精製途中のもの、または医薬中間体などが挙げられる。
 なお、上述の異種流体を図11の装置を用いて混合させるようにしてもよい。また、図10または図11の、流体混合器を用いた装置において、流体が合流する前の流体の流れる各々のラインにヒーターまたは気化器を設けてもよく、流体混合器の下流側に熱交換器を設けてもよい。さらに、流体が合流する前の一方の流体が流れるラインに計測器を配置し、その計測器で計測されたパラメーターに応じて他方の流体が流れるラインのポンプの出力を調整する制御部を設けてもよく、他方の流体の流れるラインに制御弁を配置し、計測器のパラメーターに応じて制御弁の開度を調整する制御弁を設けてもよい。このとき、計測器は、必要な流体のパラメーターを計測できるものであれば、流量計、流速計、濃度計またはpH測定器でもよい。また、ラインの合流部の下流側の流路にスタティックミキサーを設置してもよい。この場合、流体混合器で流路の軸方向の混合の均一化を行い、その後に例えば本明細書の冒頭で示したようなスタティックミキサーで流路の径方向の混合の均一化を行うので、より均一な流体の混合を行うことができる。
 本発明に係る流体混合器の筐体2、32、62、エレメント1、31、61などの各部品の材質は、樹脂製であればPVC、ポリプロピレン、ポリエチレンなどいずれでもよい。特に流体に腐食性流体を用いる場合は、ポリテトラフルオロエチレン、ポリビニリデンフルオロライドなどのフッ素樹脂であることが好ましく、フッ素樹脂製であれば腐食性流体に用いることができ、また腐食性ガスが透過しても配管部材の腐食の心配がなくなるため好適である。筐体2、32、62およびエレメント1、31、61の一部を透明または半透明な材質で形成してもよく、この場合には流体の混合の状態を目視で確認できるため好適である。また、流体混合器に流す物質によっては、各部品の材質は、鉄、銅、銅合金、真鍮、アルミニウム、ステンレス、チタンなどの金属または合金であってもよい。
 なお、上記第一の実施形態~第三の実施形態を任意に組み合わせて流体混合器を構成してもよい。すなわち、本発明の特徴および機能を実現できる限り、本発明は実施形態の流体混合器に限定されない。
 1、31  エレメント
 2、32  筐体
 3、33  流体入口
 4、34  第一流路
 5、35  第二流路
 6、36  第三流路
 7、37  分岐流路
 8、38  流体出口
 9、39  遅延部材
 10、40  突出部
 11、41  連通孔
 12、42  本体部

Claims (10)

  1.  流体入口と、
     前記流体入口に接続する第一流路と、
     前記第一流路と連通または離間して配置されるとともに、前記第一流路と同じ中心軸を有するように配置される第二流路と、
     前記第一流路に接続するとともに、前記第二流路の外周に配置される第三流路と、
     前記第三流路から分岐して、前記第二流路と接続する複数の分岐流路と、
     前記第二流路に接続する流体出口と、
     を有し、
     前記複数の分岐流路は、前記第三流路の異なる位置から各々分岐し、前記第二流路の異なる位置において前記第二流路と各々接続する、
     流体混合器であって、
     前記流体混合器は、
     端部に前記流体入口が形成され、内部に前記第一流路が形成される第一流路形成部と、端部に前記流体出口が形成され、内部に前記第二流路が形成され、外周面に複数の連通孔が前記第二流路と外部とを各々連通するように形成された本体部と、を有するエレメントと、
     内部に前記エレメントを収容するとともに、前記エレメントの少なくとも両端部と嵌合する筐体と、
     を有し、
     前記筐体の内周面または前記本体部の外周面の少なくとも一方に、複数の遅延部材が流路軸線方向に不連続に形成され、
     前記筐体の内周面と前記本体部の外周面との間には連続したひとつの空間が形成され、前記空間が前記第三流路となり、
     前記連通孔が前記分岐流路となることを特徴とする流体混合器。
  2.  流体入口と、
     前記流体入口に接続する第一流路と、
     前記第一流路と連通または離間して配置されるとともに、前記第一流路と同じ中心軸を有するように配置される第二流路と、
     前記第一流路に接続するとともに、前記第二流路の外周に配置される第三流路と、
     前記第三流路から分岐して、前記第二流路と接続する複数の分岐流路と、
     前記第二流路に接続する流体出口と、
     を有し、
     前記複数の分岐流路は、前記第三流路の異なる位置から各々分岐し、前記第二流路の異なる位置において前記第二流路と各々接続する、
     流体混合器であって、
     前記流体混合器は、
     端部に前記流体出口が形成され、内部に前記第二流路が形成され、外周面に複数の連通孔が前記第二流路と外部とを各々連通するように形成された本体部を有するエレメントと、
     端部に前記流体入口が形成され、内部に前記第一流路が形成される第一流路形成部を有し、かつ、内部に前記エレメントを収容するとともに、前記エレメントの少なくとも前記流体出口が形成された端部と嵌合する筐体と、
     を有し、
     前記筐体の内周面または前記本体部の外周面の少なくとも一方に、複数の遅延部材が流路軸線方向に不連続に配置され、
     前記筐体の内周面と前記本体部の外周面との間には連続したひとつの空間が形成され、前記空間が前記第三流路となり、
     前記連通孔が前記分岐流路となることを特徴とする流体混合器。
  3.  前記本体部が略円錐台形状に形成され、
     前記遅延部材が板形状の突出部であることを特徴とする請求項1または請求項2に記載の流体混合器。
  4.  前記突出部は前記本体部の外周面の円周上に少なくとも二個ずつ突設され、
     流路軸線方向に隣接する前記突出部は互いの突出方向を円周方向にずらして配置されるとともに、
     前記円周上における前記第三流路の流路断面積が、上流側から下流側に向かって漸次減少していることを特徴とする請求項3に記載の流体混合器。
  5.  前記本体部が、直径の異なる複数の円筒部を上流側から下流側に向かって漸次拡径するように直列かつ前記円筒部の中心軸をあわせて配置した、階段形状であることを特徴とする請求項3または請求項4に記載の流体混合器。
  6.  前記突出部は前記突出部が配置された本体部の円周の中心に対して反対向きに配置され、
     前記突出部の幅は、前記突出部が配置された円周の直径よりも大きく形成され、
     前記突出部の高さは、前記突出部の端部と前記筐体の内周面との間に隙間が形成される高さに形成され、
     前記突出部が流路軸線方向に隣接する他の前記突出部と互いの突出方向を円周方向に90°ずらして配置されていることを特徴とする請求項3乃至請求項5のいずれか1項に記載の流体混合器。
  7.  前記筐体の内周面と前記本体部の外周面との間に、流路軸線方向にそって前記本体部の上流側から下流側に向かって、前記突出部に干渉しない直線状の隙間流路が形成されていることを特徴とする請求項3乃至請求項6のいずれか1項に記載の流体混合器。
  8.  前記突出部が前記階段形状の段差部に形成されていることを特徴とする請求項5に記載の流体混合器。
  9.  前記エレメントの少なくとも前記遅延部材が射出成形可能な形状であることを特徴とする請求項1乃至請求項8のいずれか1項に記載の流体混合器。
  10.  請求項1~9のいずれか1項に記載の流体混合器と、
     前記流体混合器に複数の異種流体を合流して導く流路を形成する流路形成手段と、を備えることを特徴とする流体混合器を用いた装置。
PCT/JP2015/078099 2014-10-03 2015-10-02 流体混合器および流体混合器を用いた装置 WO2016052742A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/516,343 US10391460B2 (en) 2014-10-03 2015-10-02 Fluid mixer and apparatus using fluid mixer
EP15847431.2A EP3202488A4 (en) 2014-10-03 2015-10-02 Fluid mixer and apparatus using fluid mixer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014204685A JP6403528B2 (ja) 2014-10-03 2014-10-03 流体混合器および流体混合器を用いた装置
JP2014-204685 2014-10-03

Publications (1)

Publication Number Publication Date
WO2016052742A1 true WO2016052742A1 (ja) 2016-04-07

Family

ID=55630762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078099 WO2016052742A1 (ja) 2014-10-03 2015-10-02 流体混合器および流体混合器を用いた装置

Country Status (4)

Country Link
US (1) US10391460B2 (ja)
EP (1) EP3202488A4 (ja)
JP (1) JP6403528B2 (ja)
WO (1) WO2016052742A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070463A1 (ja) * 2016-10-13 2018-04-19 株式会社Ihi 流体分散装置及び熱処理装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6403528B2 (ja) * 2014-10-03 2018-10-10 旭有機材株式会社 流体混合器および流体混合器を用いた装置
US10363526B2 (en) * 2015-08-07 2019-07-30 Nordson Corporation Entry mixing elements and related static mixers and methods of mixing
JP6771960B2 (ja) * 2016-06-17 2020-10-21 株式会社アスプ 気体含有液生成装置および気体含有液処理機構
JP6847338B2 (ja) * 2016-06-24 2021-03-24 高橋 賢 気体含有液生成装置
CN106902662A (zh) * 2017-03-09 2017-06-30 安徽皖仪科技股份有限公司 一种液路或气路混合器
AT521586B1 (de) * 2018-08-28 2020-12-15 Avl List Gmbh Gasmischvorrichtung zur Linearisierung oder Kalibrierung von Gasanalysatoren
GB201818709D0 (en) * 2018-11-16 2019-01-02 Fujifilm Diosynth Biotechnologies Uk Ltd Mixer
JP6600065B1 (ja) * 2018-11-21 2019-10-30 シンユー技研株式会社 スタティックミキサー
WO2021069080A1 (en) * 2019-10-11 2021-04-15 Kraussmaffei Technologies Gmbh Lubricated mixing device for reaction plastics
CN112044296B (zh) * 2020-09-18 2021-06-15 浙江日洁环保科技有限公司 一种除菌水生产装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000140595A (ja) * 1998-11-13 2000-05-23 Tlv Co Ltd フローミキサー
JP2001029764A (ja) * 1999-07-19 2001-02-06 Noritake Co Ltd インライン型流体攪拌装置
JP2008220634A (ja) * 2007-03-13 2008-09-25 Ohira Shokai:Kk スクリューユニットおよびスクリュー構造体
JP2011104482A (ja) * 2009-11-13 2011-06-02 Asahi Organic Chemicals Industry Co Ltd 静止型流体混合器及び静止型流体混合器を用いた装置
JP2011161323A (ja) * 2010-02-05 2011-08-25 Asahi Organic Chemicals Industry Co Ltd 流体混合器および流体混合器を用いた装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2740616A (en) * 1952-11-03 1956-04-03 Willie W Walden Mixer
US2965362A (en) * 1957-11-13 1960-12-20 Ingbuero Dipl Ing Friedrich He Device for mixing and homogenizing
US3089683A (en) * 1960-06-08 1963-05-14 Horace F Thomas Mixer for viscous liquids
US3190618A (en) * 1963-04-30 1965-06-22 Katzen Raphael Fluid mixer
GB1075315A (en) * 1965-02-18 1967-07-12 Ici Ltd Apparatus for mixing viscous liquids
US3470912A (en) * 1966-11-30 1969-10-07 Du Pont Flow inverter
GB1251124A (ja) * 1969-01-10 1971-10-27
US3941355A (en) * 1974-06-12 1976-03-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Mixing insert for foam dispensing apparatus
SE409484B (sv) * 1976-08-19 1979-08-20 Collin Lars Ljuddempare
US4305672A (en) * 1980-03-31 1981-12-15 Matcote Company, Inc. Mixing device for viscous liquids
IT1128825B (it) * 1980-06-27 1986-06-04 Fiat Ricerche Dispositivo di miscelazione statico atto a miscelare omogeneamente due o piu componenti allo stato liquido o semiliquido
US4340311A (en) * 1980-09-26 1982-07-20 Zebron Corporation Interfacial surface generator mixer
NL8303350A (nl) * 1982-11-06 1984-06-01 Kernforschungsz Karlsruhe Statische menger.
US4591274A (en) * 1984-10-25 1986-05-27 George Sulin Mixing nozzle for injection molding
US4994242A (en) * 1988-08-15 1991-02-19 Noram Engineering And Constructors Ltd. Jet impingement reactor
US5863129A (en) * 1998-01-05 1999-01-26 Gary A. Smith Serial resin mixing devices
JP3677424B2 (ja) 2000-01-26 2005-08-03 株式会社ノリタケカンパニーリミテド スタティックミキサーエレメント
US6447158B1 (en) * 2000-08-29 2002-09-10 Frank E. Farkas Apertured-disk mixer
JP5006413B2 (ja) * 2007-03-15 2012-08-22 ダウ グローバル テクノロジーズ エルエルシー 連続流反応器用ミキサー
JP6076130B2 (ja) * 2013-02-25 2017-02-08 旭有機材株式会社 流体混合器および流体混合器を用いた装置
JP6403528B2 (ja) * 2014-10-03 2018-10-10 旭有機材株式会社 流体混合器および流体混合器を用いた装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000140595A (ja) * 1998-11-13 2000-05-23 Tlv Co Ltd フローミキサー
JP2001029764A (ja) * 1999-07-19 2001-02-06 Noritake Co Ltd インライン型流体攪拌装置
JP2008220634A (ja) * 2007-03-13 2008-09-25 Ohira Shokai:Kk スクリューユニットおよびスクリュー構造体
JP2011104482A (ja) * 2009-11-13 2011-06-02 Asahi Organic Chemicals Industry Co Ltd 静止型流体混合器及び静止型流体混合器を用いた装置
JP2011161323A (ja) * 2010-02-05 2011-08-25 Asahi Organic Chemicals Industry Co Ltd 流体混合器および流体混合器を用いた装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3202488A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070463A1 (ja) * 2016-10-13 2018-04-19 株式会社Ihi 流体分散装置及び熱処理装置
US10987644B2 (en) 2016-10-13 2021-04-27 Ihi Corporation Fluid dispersing device and heat treatment device

Also Published As

Publication number Publication date
EP3202488A1 (en) 2017-08-09
JP6403528B2 (ja) 2018-10-10
US20170304787A1 (en) 2017-10-26
JP2016073899A (ja) 2016-05-12
US10391460B2 (en) 2019-08-27
EP3202488A4 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6403528B2 (ja) 流体混合器および流体混合器を用いた装置
JP6076130B2 (ja) 流体混合器および流体混合器を用いた装置
JP5441746B2 (ja) 流体混合器および流体混合器を用いた装置
JP4667540B2 (ja) 螺旋式流体混合器及び螺旋式流体混合器を用いた装置
JP4667539B2 (ja) 流体混合器及び流体混合器を用いた装置
JP5484008B2 (ja) 静止型流体混合器及び静止型流体混合器を用いた装置
JP4667541B2 (ja) 渦巻き式流体混合器及び渦巻き式流体混合器を用いた装置
JP2011104483A (ja) 静的流体混合器及び静的流体混合器を用いた装置
JP2013075281A (ja) 流体混合器および流体混合器を用いた装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847431

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15516343

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015847431

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015847431

Country of ref document: EP