WO2016052616A1 - 蛍光材料、シンチレータ、シンチレータアレイ、並びに放射線検出器 - Google Patents

蛍光材料、シンチレータ、シンチレータアレイ、並びに放射線検出器 Download PDF

Info

Publication number
WO2016052616A1
WO2016052616A1 PCT/JP2015/077738 JP2015077738W WO2016052616A1 WO 2016052616 A1 WO2016052616 A1 WO 2016052616A1 JP 2015077738 W JP2015077738 W JP 2015077738W WO 2016052616 A1 WO2016052616 A1 WO 2016052616A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent material
scintillator
emission intensity
array
atomic number
Prior art date
Application number
PCT/JP2015/077738
Other languages
English (en)
French (fr)
Inventor
英雄 新田
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN201580052427.9A priority Critical patent/CN106715646B/zh
Priority to US15/515,165 priority patent/US10562785B2/en
Priority to JP2016552115A priority patent/JP6394705B2/ja
Priority to EP15848024.4A priority patent/EP3202874B1/en
Publication of WO2016052616A1 publication Critical patent/WO2016052616A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry

Definitions

  • the present invention relates to a fluorescent material, a scintillator, a scintillator array, and a radiation detector, which are garnet-type oxides having a composition containing Gd, Al, and Ga.
  • the scintillator is a member that absorbs radiation such as ⁇ rays, ⁇ rays, ⁇ rays, X rays and emits fluorescence.
  • the scintillator can be used to detect irradiated radiation.
  • it is used in various application fields such as medical fields such as tomography, industrial fields such as nondestructive inspection, security fields such as baggage inspection, and academic fields such as high energy physics.
  • Patent Document 1 has the general formula: (Gd 1-wxyz Y w Lu x RE y Ce z) 3 + a (Al 1-us Ga u Sc s) 5-a O 12 (although, RE is Pr, Dy and Er At least one element, 0 ⁇ a ⁇ 0.15, 0.2 ⁇ w ⁇ 0.5, 0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.003, 0.0003 ⁇ z ⁇ 0.0167, 0.2 ⁇ u ⁇ 0.6, 0 ⁇ s ⁇ 0.1), the content of Fe is 0.05 to 1 ppm by mass on an external basis, The content is 0.5 to 10 ppm by mass, and the temperature coefficient of the emission intensity at 30 to 40 ° C. when excited by X-ray is ⁇ 0.15% / ° C. to + 0.15% / ° C.
  • a polycrystalline scintillator is disclosed.
  • Patent Document 1 it is described that by replacing Gd with Y, or Y and Lu, the temperature coefficient can be improved while suppressing a decrease in emission intensity.
  • Patent Document 2 describes a general formula: (Gd 1- ⁇ - ⁇ - ⁇ Tb ⁇ Lu ⁇ Ce ⁇ ) 3 (Al 1-x Ga x ) a O b , 0 ⁇ ⁇ 0.5, 0 ⁇ ⁇ 0 .5, 0.0001 ⁇ ⁇ ⁇ 0.1, 0 ⁇ x ⁇ 1, 4.8 ⁇ a ⁇ 5.2, 11.6 ⁇ b ⁇ 12.4
  • a solid scintillator comprising:
  • Tb contributes to fluorescence, and that light emission intensity and afterglow characteristics are improved by co-addition of Tb and Ce.
  • Patent Document 3 is made of a luminescent material having a garnet structure, and includes Gd, Y, Ce, Ga, and Al, and includes (Gd 1 -xyz Y x A y Ce z ) 3 + u (Ga 1-mn Al m D n ) 5- uO 12 : represented by wFO, A is Lu, La, Tb, Dy or a combination thereof, D is In, Sc or a combination thereof, F is a divalent ion, 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.5, 0.001 ⁇ z ⁇ 0.05, 0 ⁇ u ⁇ 0.1, 0 ⁇ n ⁇ 0.2, 0.3 ⁇ m ⁇ 0.6 And scintillators where 10 ppm ⁇ w ⁇ 300 ppm and y / x> 1.
  • the ratio of Tb to Y is larger than 1, and divalent ions other than Mg (for example, Ca, Sr, Ba, Zn) are used as dopants. It is described that afterglow can be reduced as it is.
  • baggage, etc. are subject to inspection. Since the inside of the bag can contain storage items made of various materials, it is necessary to use X-rays of energy suitable for the material of the storage item in order to clearly image the storage item.
  • the characteristics required of the scintillator differ depending on the object to be measured. For this reason, it is preferable to prepare a plurality of materials having different characteristics as the fluorescent material for the scintillator. Thereby, the material corresponding to the energy of X-ray can be selected, and the application range is expanded.
  • an object of the present invention is to provide a fluorescent material having high emission intensity and different energy absorption coefficients. Another object of the present invention is to provide a scintillator, a scintillator array, and a radiation detector using this fluorescent material.
  • the fluorescent material of the present invention has a composition represented by (Gd 1 - ⁇ - ⁇ - ⁇ R ⁇ Ce ⁇ Tb ⁇ ) 3 + a (Al 1 -uv Ga u Sc v ) 5 -b O 12 , R is at least one of Y and Lu, and a, b, ⁇ , ⁇ , ⁇ , u, v satisfy the following range, 0 ⁇ a ⁇ 0.1, 0 ⁇ b ⁇ 0.1, 0 ⁇ ⁇ ⁇ 0.8, 0.0003 ⁇ ⁇ ⁇ 0.005, 0.02 ⁇ ⁇ ⁇ 0.2, 0.27 ⁇ u ⁇ 0.75, 0 ⁇ v ⁇ 0.02
  • the relative density is 99% or more, and the effective atomic number is 35 or more and 60 or less.
  • R is Y, and a, b and ⁇ satisfy the following ranges: 0 ⁇ a ⁇ 0.1, 0 ⁇ b ⁇ 0.1, 0.3 ⁇ ⁇ 0.8,
  • the effective atomic number may be 35 or more and 50 or less.
  • R is Lu; A, b and ⁇ satisfy the following ranges: 0 ⁇ a ⁇ 0.1, 0 ⁇ b ⁇ 0.1, 0.3 ⁇ ⁇ 0.8,
  • the effective atomic number may be 53 or more and 57 or less.
  • R is Lu
  • the effective atomic number may be 54 or more and 56 or less.
  • is in the following range: 0.0005 ⁇ ⁇ ⁇ 0.003 You may be satisfied.
  • the v is in the following range 0.003 ⁇ v ⁇ 0.02. You may be satisfied.
  • the fluorescent material includes a first fluorescent material and a second fluorescent material,
  • R is Y;
  • A, b and ⁇ satisfy the following ranges: 0 ⁇ a ⁇ 0.1, 0 ⁇ b ⁇ 0.1, 0.3 ⁇ ⁇ 0.8,
  • the effective atomic number is 35 or more and 50 or less,
  • R is Lu;
  • A, b and ⁇ satisfy the following ranges: 0 ⁇ a ⁇ 0.1, 0 ⁇ b ⁇ 0.1, 0.3 ⁇ ⁇ 0.8,
  • the effective atomic number may be 53 or more and 57 or less.
  • the scintillator of the present invention includes any one of the fluorescent materials described above.
  • the radiation detector of the present invention includes the scintillator and a photoelectric conversion element that converts light into an electric signal, a current value, or a voltage value.
  • the scintillator array of the present invention comprises a plurality of first cells made of a first fluorescent material and arranged in a first direction, and a plurality of second cells made of a second fluorescent material and arranged in the first direction. Each of the first cells is disposed adjacent to one of the plurality of second cells in a second direction perpendicular to the first direction.
  • the fluorescent material and the second fluorescent material are fluorescent materials defined in any of the above, and the first fluorescent material and the second fluorescent material have different energy absorption coefficients.
  • Another radiation detector of the present invention includes the scintillator array and a photoelectric conversion element array including a plurality of photoelectric conversion elements having a light receiving surface, and the plurality of photoelectric conversion elements are arranged in the first direction.
  • Each photoelectric conversion element includes the one first cell and the one first cell so that the light receiving surface faces one of the plurality of first cells and one of the plurality of second cells. 2 cells are adjacent to each other in a third direction orthogonal to the first direction and the second direction.
  • the present invention it is possible to provide a fluorescent material having high emission intensity and various energy absorption coefficients. Further, it is possible to provide a scintillator, a scintillator array, and a radiation detector capable of detecting radiation having energy of various intensities.
  • FIG. 2 is a diagram showing an embodiment of a scintillator array, where (a) shows a top view, and (b) and (c) show an AA section and a BB section in (a). It is typical sectional drawing (side surface) which shows one Embodiment of a radiation detector.
  • A) is a schematic top view which shows other embodiment of a radiation detector
  • (b) is a figure which shows the AA cross section in (a).
  • composition The present invention of a fluorescent material, the general formula (hereinafter, referred to as the general formula (1)) :( Gd 1- ⁇ - ⁇ - ⁇ R ⁇ Ce ⁇ Tb ⁇ ) 3 + a (Al 1-uv Ga u Sc v )
  • R is at least one element selected from Y and Lu.
  • a, b, ⁇ , ⁇ , ⁇ , u, and v each satisfy the following relationship.
  • the fluorescent material of the present invention has a relative density of 99% or more, and the effective atomic number of the fluorescent material is 35 or more and 60 or less.
  • the composition ratio of oxygen is 12. This is because the fluorescent material of the present invention has a garnet structure and the composition ratio is determined based on oxygen. However, the fluorescent material of the present invention may not have a complete garnet structure. As described above, depending on the values of a and b, the fluorescent material of the present invention may have a garnet structure having oxygen deficiency or oxygen excess. In other words, regardless of whether oxygen deficiency or oxygen excess is present, when the composition formula is determined assuming that the composition ratio of oxygen is 12, the composition ratios a, b, ⁇ , ⁇ , ⁇ , u, v of the composition formula Each satisfying the relationship.
  • a fluorescent material made of a garnet-type oxide is a metal oxide that is stable to radiation and is known as a fluorescent material having high emission intensity.
  • Luminescence of the fluorescent material is generated by combining electrons and holes generated by X-ray excitation in luminous ions.
  • the emission intensity is improved by adding Ce and Tb as light-emitting ions as compared with a composition of Ce alone or Tb alone.
  • Ce and Tb When only one of Ce and Tb is added, the emission intensity is increased up to a certain addition amount.
  • concentration quenching occurs and the emission intensity decreases.
  • a high luminescence intensity is realized by using a garnet-type oxide having a composition containing Gd, Al, and Ga as a base material and co-adding a small amount of both the Ce and Tb luminescent elements.
  • ⁇ indicating the amount of Ce is in the range of 0.0003 ⁇ ⁇ ⁇ 0.005.
  • is less than 0.0003, the number of Ce atoms that are light emitting elements is too small, so that the absorbed X-ray energy cannot be efficiently converted into light energy.
  • is larger than 0.005, the distance between Ce atoms becomes too small, and energy migration occurs (so-called concentration quenching occurs), resulting in a decrease in emission intensity.
  • ⁇ indicating the amount of Tb is in the range of 0.02 ⁇ ⁇ ⁇ 0.2.
  • is less than 0.02
  • the number of Tb atoms, which are light emitting elements, is too small, and thus absorbed X-ray energy cannot be efficiently converted into light energy.
  • is larger than 0.2, the distance between Tb atoms becomes too small, and energy migration occurs (so-called concentration quenching occurs), resulting in a decrease in emission intensity.
  • the addition of Ce or Tb alone is the addition amount M that decreases the emission intensity
  • the addition is dispersed in Ce and Tb, and the total of the addition amount of Tb and the addition amount of Ce is It was found that the emission intensity can be further increased by adding both Tb and Ce so as to be M.
  • Tb and Ce have different electron transition states (Tb is a 4f-4f electron transition and Ce is a 4f-5d transition), so that a light-emitting element having a different transition energy can be added together. It is considered that electrons and holes generated by X-ray excitation can be combined without waste.
  • Both the ranges of a and b are 0 ⁇ a ⁇ 0.1 and 0 ⁇ b ⁇ 0.1.
  • a and b preferably take the same value, but may take different values depending on the solid solution of an impurity element such as Si or Fe contained in the raw material or a weighing error.
  • an impurity element such as Si or Fe contained in the raw material or a weighing error.
  • a is a negative number less than 0, ion vacancies are generated at the (Gd 1 - ⁇ - ⁇ - ⁇ R ⁇ Ce ⁇ Tb ⁇ ) site occupied by the rare earth element, and the afterglow increases. In addition, the emission intensity is extremely reduced. Therefore, a is 0 or more. In mass production, it is preferable that 0 ⁇ a, 0 ⁇ b, 0.0001 ⁇ a, and 0.0001 ⁇ b in consideration of variation in composition. However, if a and b exceed 0.1, a non-garnet type heterogeneous phase (perovskite phase GdAlO 3 ) is likely to be generated. Since this different phase has a refractive index different from that of the garnet-type phase of the base material, light scattering occurs and the emission intensity decreases.
  • perovskite phase GdAlO 3 non-garnet type heterogeneous phase
  • a is in the range of 0 ⁇ a ⁇ 0.07
  • b is in the range of 0 ⁇ b ⁇ 0.07
  • a range of a ⁇ 0.05 and 0.0001 ⁇ b ⁇ 0.05 is particularly preferable.
  • ⁇ indicating the amount of R element (Y or Lu) is 0 ⁇ ⁇ ⁇ 0.8.
  • satisfies 0.3 ⁇ ⁇ 0.8, more preferably 0.5 ⁇ ⁇ 0.8.
  • the fluorescent material having the composition represented by the general formula (1) has high fluorescence emission intensity when the value of ⁇ is in the range of 0 ⁇ ⁇ ⁇ 0.8.
  • the substitution ratio of Gd with the R element can be adjusted, and the effective atomic number of the fluorescent material can be changed.
  • u is less than 0.27, the perovskite phase is precipitated and the emission intensity is lowered. In addition, the sinterability also decreases. For example, when u ⁇ 0.2, the sinterability decreases and the number of voids increases. On the other hand, when u exceeds 0.75, the light emission intensity decreases and the afterglow significantly increases. In order to obtain a particularly high relative light emission intensity, u is preferably in the range of 0.35 ⁇ u ⁇ 0.70, and more preferably in the range of 0.4 ⁇ u ⁇ 0.6.
  • V indicating the amount of Sc is 0 ⁇ v ⁇ 0.02.
  • Sc is an additive element that improves emission intensity and reduces afterglow.
  • Ga is a +3 valence ion, but has the property of easily changing the valence to +1 valence.
  • the ionic radius of Sc 3+ is larger than the ionic radius of Al 3+ and Ga 3+ , and is considered to suppress the valence change of Ga 3+ .
  • v is in the range of 0.003 ⁇ v ⁇ 0.02.
  • the fluorescent material obtained after sintering by adding Sc has a structure in which fine crystals are densely present.
  • the probability that the expansion of cracks due to the fracture is stopped by the crystal grains increases. For this reason, the denser the fine crystals are distributed, the higher the fracture toughness and, as a result, the higher the mechanical strength.
  • the average grain size of the sintered body crystal may be in any range as long as the sintered body has no pores and can achieve a sufficient density.
  • it is preferable to achieve a sufficient density, and the density after sintering tends to be high. Therefore, it is preferably 10 ⁇ m or less in the powder state, and can be kept to the same level after sintering. preferable.
  • the average crystal grain size of the fluorescent material can be reduced to 5 ⁇ m or less.
  • the emission intensity can be equal to or higher than that of the fluorescent material of Gd 2 O 2 S: Tb.
  • the relative density of the fluorescent material of the present invention is 99% or more.
  • the calculation is based on the lattice constant, and in some cases, the relative density may exceed 100%. However, if it greatly exceeds, there is a high possibility that the crystal structure has changed. From the examples of the present invention, it is confirmed that the garnet structure is provided if the relative density is 102.5% or less.
  • the fluorescent material of the present invention does not contain sulfur. For this reason, unlike a Gd 2 O 2 S-based fluorescent material, a high-density sintered body can be obtained by not using sulfide as a raw material, thereby increasing transmittance and realizing high emission intensity.
  • the effective atomic number (effective atomic number) of the fluorescent material of the present invention is 35 or more and 60 or less.
  • the effective atomic number is defined by the following formula.
  • f 1 , f 2 , f 3 Indicate the ratio of the number of electrons of each element to the number of electrons of all elements in the general formula (1)
  • Z 1 , Z 2 , Z 3 ,. ⁇ ⁇ Indicates the atomic number of each element.
  • the effective atomic number of a ceramic scintillator represented by a composition formula Gd 2 O 2 S which is a fluorescent material widely used in X-ray CT radiation detectors
  • the Gd—Al—Ga garnet scintillator The effective atomic number is about 52.
  • a scintillator in which the energy range of absorbed X-rays is separated can be configured using a fluorescent material having an effective atomic number of 52 to 59 and a fluorescent material having an effective atomic number smaller than 52.
  • the effective atomic numbers of the fluorescent materials constituting the respective scintillators are separated from each other.
  • the effective atomic number depends on the composition of the material. That is, a fluorescent material capable of absorbing high energy based on the effective atomic number can be obtained when the element to be used and the composition ratio are appropriately determined and the above-described relative density is 99% or more.
  • the composition R Y
  • 0.3 ⁇ ⁇ 0.8 and the effective atomic number is preferably 35 or more and 50 or less, and more preferably 0.5 ⁇ ⁇ 0.8.
  • the atomic number is preferably 37 or more and 45 or less.
  • R Lu
  • 0.3 ⁇ ⁇ 0.8 and the effective atomic number is preferably 53 or more and 57 or less.
  • 0.5 ⁇ ⁇ 0.8 and the effective atomic number is 54 or more and 56.
  • the following is preferable.
  • a combination of fluorescent materials having a large difference in effective atomic number is easily manufactured based on the general formula (1) by determining the R element amount ⁇ in the above-described range according to the element of R. be able to.
  • R Y, 0.3 ⁇ ⁇ 0.8, and the first fluorescent material having an effective atomic number of 35 to 50
  • the effective atomic number of the fluorescent material can be adjusted by a, b, ⁇ , ⁇ , ⁇ , u, v indicating the element selected as R and the ratio of each element.
  • the effective atomic number can be changed without greatly reducing the fluorescence emission intensity.
  • the fluorescent material of the present invention has a composition represented by the general formula (1), and has a density in the above-described range, whereby high fluorescence emission intensity can be realized. Moreover, the fluorescent material which has an effective atomic number of 35 or more and 60 or less is realizable by selecting the element used as R in the range shown by General formula (1), and adjusting the composition ratio of each element. Thereby, it is possible to realize a fluorescent material having high emission intensity and different energy absorption coefficients. Therefore, the fluorescent material represented by the general formula (1) is preferably used for detection of radiation having different energy.
  • the inorganic salt method is a method in which a precursor obtained by dissolving a raw material with an acid or the like is dried and sintered.
  • gadolinium nitrate, yttrium nitrate or lutetium nitrate, cerium nitrate, terbium nitrate, aluminum nitrate, gallium nitrate, scandium nitrate, etc. weighed to the target composition as raw materials are dissolved in pure water to form a precursor solution.
  • all starting materials may be acetate, formate, lactate, etc., or combinations thereof.
  • the oxide raw material may be dissolved in an aqueous nitric acid solution or an aqueous hydrochloric acid solution.
  • citric acid can be added and stirred while heating to 60 ° C. to 80 ° C. to increase the viscosity by polymerization.
  • a small amount of polyvinyl alcohol, polyvinyl pyrrolidone or the like may be added to adjust the viscosity.
  • a gel-like precursor adjusted to a viscosity suitable for molding is obtained.
  • This precursor can be formed into a sheet by a doctor blade method or the like.
  • the obtained sheet-like molded body is dried at about 100 ° C. to 150 ° C., and then the molded body is sintered in oxygen at a temperature of 1100 ° C. to 1500 ° C. for 0.5 to 5.0 hours. Let Thereby, a sheet-like fluorescent material is obtained.
  • the slurry method is a method in which a slurry-like raw material is mixed with a binder and then dried and sintered.
  • gadolinium oxide, yttrium oxide, lutetium oxide, cerium oxide, terbium oxide, aluminum oxide, gallium oxide, and scandium oxide which are appropriately weighed to the desired composition, fine powder of oxide raw material having an average particle size of 1 ⁇ m or less, alumina balls, etc.
  • the mixture is put into a container together with the pulverizing medium and water or ethanol, and a wet ball mill mixing is performed using a device that rotates the container to produce a slurry.
  • nitrate or the like may be used as a substance to be added in a small amount such as cerium and terbium which are luminescent ions.
  • a sheet molded body can be obtained by using a sheet molding apparatus for applying the slurry on the film with a certain thickness using a blade.
  • the sheet molded body is dried at about 100 ° C. to 150 ° C., and then held in oxygen at a temperature of 1100 ° C. to 1500 ° C. for 0.5 to 5.0 hours to sinter the sheet molded body. Thereby, a sheet-like fluorescent material is obtained.
  • gadolinium, yttrium or lutetium, cerium, terbium, aluminum, gallium and scandium oxides, carbonates, etc. are weighed so that these elements have the target composition ratio, and a solvent is added as necessary.
  • a powder fluorescent material can be obtained by pulverizing the obtained sintered product using a ball mill or the like. Moreover, you may use as a fluorescent material as it is, without grind
  • Embodiment using fluorescent material A plate-like fluorescent material, a compact or a powdered fluorescent material produced by the above-described method can be used as it is as a scintillator. Further, a scintillator having a desired shape may be produced by dispersing a powdered fluorescent material in a resin and molding the resin.
  • FIG. 8 shows an embodiment of a scintillator array according to the present invention.
  • FIG. 8A is a top view of the scintillator array 13
  • FIG. 8B shows an AA cross section in FIG.
  • FIG. 8C shows a BB cross section in FIG.
  • the scintillator array 13 has a dual array structure including two types of scintillator arrays having different detection sensitivities, that is, energy absorption coefficients.
  • the scintillator array 13 includes a three-dimensional scintillator array 10 in which a plurality of scintillators are arranged in a first direction (x direction).
  • the third scintillator array 10 is orthogonal to the first direction. A plurality are arranged in the direction (y direction).
  • each scintillator array 10 includes a first array 11 in which a plurality of first cells 21 made of a first fluorescent material are arranged, and a second fluorescent material.
  • a second array 12 in which a plurality of second cells 22 are arranged.
  • the first array 11 and the second array 12 include a resin layer 23 positioned around the plurality of first cells 21 and the plurality of second cells 22, respectively.
  • each first cell 21 of the first array 11 has a plurality of second cells of the second array 12 in a second direction (z direction) orthogonal to the first direction and the second direction. It is arranged adjacent to one of 22.
  • the heights of the first cell 21 and the second cell 22 in the second direction are h1 and h2, respectively.
  • the heights h1 and h2 of the first cell 21 and the second cell 22 can be determined according to the intensity of the radiation to be detected.
  • the first array 11 has an incident surface 11a on which X-rays are incident and a detection surface 11c for detecting fluorescence from the plurality of first cells 21. On the detection surface 11c, one surface of each of the plurality of first cells 21 is exposed.
  • the second array 12 has an incident surface 12a on which X-rays are incident and a detection surface 12c for detecting fluorescence from the plurality of second cells 22. One surface of each of the plurality of second cells 22 is exposed on the detection surface 12c.
  • the detection surface 11c of the first array 11 and the incident surface 12a of the second array 12 are opposed to each other.
  • the X-rays incident from the incident surface 11 a of the first array 11 pass through the first cell 21. At this time, part of the X-ray is absorbed, and the first cell 21 emits fluorescence. The X-rays that have not been absorbed exit from the detection surface 11 c and enter the second cell 22 from the incident surface 12 a of the second array 12. The second cell 22 absorbs X-rays and emits fluorescence. Therefore, the fluorescence in the first cell 21 and the second cell 22 can be detected by disposing photoelectric conversion elements that detect fluorescence on the detection surface 11c and the detection surface 12c, respectively.
  • the first fluorescent material and the second fluorescent material are represented by the general formula (1) and have different compositions.
  • the energy absorption coefficient of the first fluorescent material is the second fluorescence.
  • the energy absorption coefficient of the material is preferably smaller.
  • the scintillator array 13 can be manufactured by the following method, for example. First, a first fluorescent material and a second fluorescent material having different energy absorption coefficients are produced. This is achieved by using the general formula (1), for example, by making ⁇ different in the composition formula (1), or making different Y and Lu different as the element R, thereby making the first fluorescent material and the second fluorescent material different.
  • the composition of the material can be determined.
  • a plurality of first cells 21 and a plurality of second cells 22 are produced from the first fluorescent material and the second fluorescent material by firing. A plurality of first cells 21 are arranged at predetermined intervals, and the periphery is hardened with a resin 23 to produce the first array 11.
  • the second array 12 is produced by arranging a plurality of second cells 22 at predetermined intervals and hardening the periphery with a resin 23. By laminating these, the scintillator array 13 is completed.
  • the energy absorption coefficient of the first fluorescent material constituting the first cell 21 is smaller than the energy absorption coefficient of the second fluorescent material constituting the second cell 22.
  • parts such as blood vessels and muscles in a subject tend to absorb soft X-rays having relatively low energy and transmit hard X-rays having relatively high energy compared to parts such as bones.
  • parts such as bones tend to absorb hard X-rays having relatively large energy compared to parts such as blood vessels and muscles. For this reason, when a subject is imaged using either soft X-rays or hard X-rays, one of the parts such as blood vessels and muscles and the part such as bones is clearly imaged, and the other is clearly displayed. It may not be imaged.
  • the scintillator array 13 it is possible to obtain clear images of both parts such as blood vessels and muscles and parts such as bones.
  • a plurality of X-rays having different energy intensity distributions such as soft X-rays and hard X-rays, are irradiated onto the subject at the same time or at different times, and are incident on the scintillator array 13. Since the energy absorption coefficient of the first cell 21 is small, only the low energy X-rays are absorbed in the first cell 21, and the high energy X-rays are transmitted without being absorbed so much. High energy X-rays transmitted through the first cell 21 enter the second cell 22.
  • the energy absorption coefficient of the second fluorescent material is relatively larger than that of the first fluorescent material, the X-rays that have passed through the first cell 21 and entered the second cell 22 are incident on the second cell 22. Absorbed in. Therefore, the second cell 22 emits fluorescence corresponding to the intensity distribution of energy other than the X-rays absorbed by the first cell 21. Therefore, the X-ray image detected in the first cell 21 clearly shows a site such as a blood vessel or muscle. The X-ray image detected in the second cell 22 clearly shows a part such as a bone. By synthesizing these two images, it is possible to obtain an image in which both a site such as a blood vessel and a muscle and a site such as a bone are clearly shown.
  • the scintillator array 13 it is possible to detect X-rays having different energies with one scintillator array 13. Moreover, the 1st fluorescent material and 2nd fluorescent material which absorb suitably the X-ray of different energy of the scintillator array 13 can be manufactured using the same general formula (1).
  • the scintillator array 13 shown in FIG. 8 is a two-dimensional array in which the first cells 21 and the second cells 22 are arranged in the first direction (x direction) and the third direction (y direction).
  • the scintillator array of the invention is not limited to a two-dimensional array.
  • the scintillator array 10 may be used alone as a one-dimensional array array.
  • plate-like fluorescent materials compacts or powdered fluorescent materials are used as they are as scintillators
  • radiation is obtained by arranging photoelectric conversion elements that detect fluorescence of the fluorescent materials adjacent to these fluorescent materials.
  • a detector can be constructed.
  • a plate-like fluorescent material a two-dimensional photoelectric conversion element array may be used.
  • FIG. 9 is a cross-sectional view of a dual array structure radiation detector 14 according to an embodiment of the present invention.
  • the radiation detector 14 includes the scintillator array 13 and a plurality of photoelectric conversion element arrays 31 and 32 shown in FIG.
  • Each of the photoelectric conversion element arrays 31 and 32 includes, for example, a plurality of photoelectric conversion elements arranged in the first direction (x direction).
  • the photoelectric conversion element may be a photodiode such as a silicon photodiode, for example.
  • the photoelectric conversion element array 31 is disposed between the detection surface 11 c of the first array 11 and the incident surface 12 a of the second array 12, and the photoelectric conversion element array 31.
  • the light receiving surface 31a faces the detection surface 11c.
  • the photoelectric conversion element array 32 is disposed on the detection surface 12c of the second array 12, and the light receiving surface 32a faces the detection surface 12c.
  • the radiation detector 14 since the energy absorption coefficients of the first fluorescent material constituting the first cell 21 and the second fluorescent material constituting the second cell 22 are different, X-rays having different energies are 1 It is possible to detect with two radiation detectors 14. Therefore, if the radiation detector 14 is used, X-rays of a plurality of different energies can be used for living bodies including different internal tissues, inspected objects composed of different materials, baggage containing articles of different materials, and the like. By irradiating and detecting with X, it is possible to obtain an X-ray image showing the internal structure more clearly.
  • the radiation detector 14 shown in FIG. 9 is a two-dimensional array in which a first cell 21 and a second cell 22 are arranged in a first direction (x direction) and a third direction (y direction).
  • a one-dimensional array radiation detector may be configured using the one-dimensional array scintillator array 10 and the photoelectric conversion element arrays 31 and 32.
  • the X-ray transmitted through the first cell 21 made of the first fluorescent material does not pass through the photoelectric conversion element, and the second fluorescent material made of the second fluorescent material is used.
  • the photoelectric conversion element array may be arranged so as to be incident on the second cell 22.
  • the radiation detector 15 shown in FIGS. 10A and 10B includes a plurality of one-dimensional array scintillator arrays 10 ′ and a plurality of photoelectric conversion element arrays 33.
  • the scintillator array 10 ′ has a structure in which the first array 11 and the second array 12 of the one-dimensional array scintillator array 10 shown in FIG. 8 are joined.
  • the scintillator array 10 ' has an incident surface 10'a and a detection surface 10'b perpendicular to the incident surface 10'a.
  • the photoelectric conversion element array 33 is arranged adjacent to the scintillator array 10 ′ in the third direction (y direction). On the detection surface 10′b of the scintillator array 10 ′, one surface of each of the plurality of first cells 21 and second cells 22 is exposed, and the light receiving surface 33a of the photoelectric conversion element array 33 is the detection surface 10. It is opposite to 'b in the third direction.
  • the light receiving surface 33 a of the photoelectric conversion element array 33 is parallel to the X-ray transmission direction, and the X-ray incident from the incident surface 10 ′ a of the scintillator array 10 ′ is the light receiving surface of the photoelectric conversion element array 33. 33a is not transmitted. For this reason, the damage to a photoelectric conversion element can be made small by not transmitting X-rays on a photoelectric conversion element array.
  • the dual array scintillator and the dual array radiation detector constituted by two fluorescent materials having different energy absorption coefficients have been described.
  • the scintillator multi-array and the multi-array radiation detector may be realized using three or more fluorescent materials having different energy absorption coefficients.
  • Example 4 The relationship between Ce amount, Tb amount and relative light emission intensity was examined.
  • the scintillator emits light when electrons and holes generated by X-ray excitation are combined in the luminescent ions.
  • the luminescent ions are two elements of Ce and Tb.
  • Ce amount ⁇ The relationship between Ce amount ⁇ and relative emission intensity will be described.
  • Gadolinium oxide, yttrium oxide, terbium oxide, cerium nitrate (cerium oxide may be used; the same applies hereinafter), aluminum oxide, gallium oxide, and scandium oxide were weighed so that the composition formula shown in Table 1 was obtained.
  • the Ce amount ⁇ was set to 0, 0.00033, 0.00066, 0.0010, 0.0017, 0.0033, 0.0050, and 0.0066 in the following composition formula.
  • These raw material powders were put in a resin pot, and wet ball mill mixing was performed using alumina balls for 40 hours to prepare a raw material slurry. The produced slurry was dried, press-molded into a flat plate shape, and fired in oxygen.
  • the composition of the fluorescent material thus obtained was identified by ICP-AES analysis (high frequency inductively coupled plasma emission spectroscopy, manufactured by PerkinElmer: OPTIMA-3300XL), and it was confirmed that the fluorescent material had the composition shown in Table 1. did it.
  • the effective atomic number was calculated using the composition shown in Table 1, it was 50.7 to 50.8.
  • the firing temperature was determined such that the relative density was 99% or more, and the relative density of the actually obtained fluorescent material was 99% or more.
  • the average crystal grain size was about 3 ⁇ m.
  • Fig. 1 shows the relationship between Ce amount ⁇ and relative light emission intensity.
  • the relative light emission intensity in FIG. 1 is a value (%) when the light emission intensity of Gd 2 O 2 S: Tb is 100%.
  • the emission intensity was measured using a silicon photodiode (S2281 manufactured by Hamamatsu Photonics). The emission intensity of the following examples was also measured in the same manner.
  • a relative emission intensity greater than 100% was obtained when the value of ⁇ was in the range of 0.0003 ⁇ ⁇ ⁇ 0.005.
  • Ce improves the light emission intensity even in a small amount, so that the light emission intensity can be sufficiently increased if ⁇ is 0.0003 or more.
  • a relative emission intensity of 105% or more is obtained, and in the range of 0.0005 ⁇ ⁇ ⁇ 0.003, a relative emission intensity of 110% or more is obtained. It was.
  • Tb amount ⁇ Gadolinium oxide, yttrium oxide, terbium oxide, cerium nitrate, aluminum oxide, gallium oxide, and scandium oxide were weighed so that the composition formula shown in Table 2 was obtained. At that time, the Tb amount ⁇ was set to 0, 0.01, 0.017, 0.033, 0.05, 0.066, 0.10, 0.13, 0.20 in the following composition formula. . These raw material powders were put in a resin pot, and wet ball mill mixing was performed using alumina balls for 40 hours to prepare a raw material slurry. The produced slurry was dried, press-molded into a flat plate shape, and fired in oxygen. Firing was performed at 1660 ° C.
  • the composition of the fluorescent material thus obtained was identified by ICP-AES analysis, it was confirmed that the fluorescent material had the composition shown in Table 2.
  • the effective atomic number was calculated using the composition shown in Table 2, it was 50.7 to 50.9.
  • the firing temperature was determined such that the relative density was 99% or more, and the relative density of the actually obtained fluorescent material was 99% or more.
  • the average crystal grain size was about 3 ⁇ m.
  • FIG. 2A shows the relationship between the Tb amount ⁇ and the relative light emission intensity.
  • FIG. 2A shows the case where the addition amount ⁇ of Ce is 0.001, and from FIG. 1, when the addition amount ⁇ of Ce is 0.001, The emission intensity of the fluorescent material is the highest. Therefore, FIG. 2A shows that even when Ce is contained under the condition where the emission intensity is highest, the emission intensity can be further increased by adding Tb, and the addition amount ⁇ of Tb is about 0.05. It shows that the emission intensity is the highest.
  • FIG. 1 shows a case where the addition amount ⁇ of Tb is 0.05
  • FIG. 1 shows that even when Tb is included under the condition that the emission intensity is highest, Ce is By adding, the emission intensity can be further increased, and the emission intensity becomes highest when the addition amount ⁇ of Ce is about 0.001.
  • Tb amount ⁇ Gadolinium oxide, yttrium oxide, terbium oxide, cerium nitrate, aluminum oxide, gallium oxide, and scandium oxide were weighed so that the composition formula shown in Table 3 was obtained. At that time, Tb amount ⁇ was set to 0, 0.02, 0.05, 0.1, and 0.199 in the following composition formula. These raw material powders were put in a resin pot, and wet ball mill mixing was performed using alumina balls for 40 hours to prepare a raw material slurry. The produced slurry was dried, press-molded into a flat plate shape, and fired in oxygen. Firing was performed at 1700 ° C.
  • Example 2 The relationship between the Y amount and the Lu amount and the relative emission intensity, effective number, relative density, and energy absorption coefficient was examined. Gadolinium oxide, yttrium oxide or lutetium oxide, terbium oxide, cerium nitrate, aluminum oxide, gallium oxide, and scandium oxide were weighed so that the composition formula shown in Table 4 was obtained. At that time, the Y amount ⁇ was set to 0.033, 0.325, 0.617, 0.783, and 0.949 in the following composition formula. The Lu amount ⁇ was set to 0, 0.285, 0.617, 0.783, and 0.949 in the following composition formula.
  • the effective atomic number was determined by the above formula.
  • the actually measured density of the obtained fluorescent material was determined by a submerged weighing method using water based on Archimedes' principle.
  • the relative density was obtained by dividing the measured density by the theoretical density.
  • the energy absorption coefficient was determined by analyzing the composition by ICP, determining the linear energy absorption coefficient from the composition, and dividing the linear energy absorption coefficient by the density.
  • FIG. 3A shows the relationship between the Y amount and the relative light emission intensity. Further, FIG. 3B shows the relationship between the Lu amount and the relative light emission intensity.
  • R is Y
  • a relative light emission intensity of 110% or more is obtained when the value of ⁇ is in the range of 0 ⁇ ⁇ ⁇ 0.949.
  • R is Lu
  • a relative light emission intensity of 100% or more is obtained when the value of ⁇ is in the range of 0 ⁇ ⁇ ⁇ 0.8.
  • Table 5 shows the relationship between the R amount (Y or Lu) ⁇ , the effective atomic number, the energy absorption coefficient, and the relative density.
  • 3C and 3D show the relationship between the Y amount and the Lu amount and the effective atomic number, respectively.
  • R is Y
  • the effective atomic number decreases as ⁇ increases.
  • the energy absorption coefficient also decreases as ⁇ increases.
  • is larger than 0.8
  • the effective atomic number is smaller than 35 and the energy absorption coefficient is smaller than 7.
  • is preferably in the range of 0 ⁇ ⁇ ⁇ 0.8.
  • FIG. 3C shows that the effective atomic number can be adjusted to about 37 or more and 45 or less by setting ⁇ in the range of 0.5 ⁇ ⁇ 0.8.
  • the effective atomic number is not determined only by R and ⁇ , but also depends on the composition ratio of elements other than R in the general formula (1).
  • the effective atomic number increases as ⁇ increases. Also, the energy absorption coefficient increases as ⁇ increases.
  • is larger than 0.8, the sintering temperature rises, it becomes difficult to obtain a sintered body having a sufficient density, and the relative light emission intensity also decreases. From FIG. 3D, it is preferable that the effective atomic number is 53 or more and 57 or less by setting ⁇ in the range of 0.3 ⁇ ⁇ 0.8, and further, 0.5 ⁇ ⁇ 0.8.
  • the effective atomic number is preferably from 54 to 56.
  • the effective atomic number and the energy absorption coefficient with respect to the addition amount of R can be changed while having the same crystal structure.
  • Example 3 The relationship between Ga content and relative light emission intensity was examined. Gadolinium oxide, yttrium oxide, terbium oxide, cerium nitrate, aluminum oxide, gallium oxide, and scandium oxide were weighed so that the composition formula shown in Table 6 was obtained. At that time, the Ga amount u is 0.232, 0.293, 0.333, 0.373, 0.413, 0.453, 0.493, 0.573, 0.593, 0. 693, 0.754, and 0.794. These raw material powders were put in a resin pot, and wet ball mill mixing was performed using alumina balls for 40 hours to prepare a raw material slurry. The produced slurry was dried, press-molded into a flat plate shape, and fired in oxygen.
  • Firing was performed at 1660 ° C. for 12 hours.
  • the composition of the obtained fluorescent material was specified by ICP-AES analysis, it was confirmed that the fluorescent material had the composition shown in Table 6.
  • the effective atomic number was calculated using the composition shown in Table 6, it was 49.8 to 51.2.
  • the firing temperature was determined such that the relative density was 99% or more, and the relative density of the actually obtained fluorescent material was 99% or more.
  • the average crystal grain size was about 3 ⁇ m.
  • FIG. 4 shows the relationship between the Ga content and the relative light emission intensity.
  • Example 4 (Gd 1 - ⁇ - ⁇ - ⁇ Y ⁇ Ce ⁇ Tb ⁇ ) 3 + a (Al 1 -uv Ga u Sc v ) 5-b O 12 , the relationship between the values of a and b and the relative emission intensity Examined. Note that a and b have the same value. Gadolinium oxide, yttrium oxide, terbium oxide, cerium nitrate, aluminum oxide, gallium oxide, and scandium oxide were weighed so that the composition formula shown in Table 7 was obtained. At that time, a and b were set to ⁇ 0.01, 0, 0.01, 0.02, 0.05, 0.1, 0.15, and 0.20 in the following composition formula.
  • FIG. 5 shows the relationship between the values of a and b and the relative light emission intensity.
  • Example 5 The relationship between the value of ⁇ and the relative light emission intensity was examined when Lu was used instead of Y and when both Y and Lu were used.
  • Gadolinium oxide, yttrium oxide, lutetium oxide, terbium oxide, cerium nitrate, aluminum oxide, gallium oxide, and scandium oxide were weighed so that the three compositional formulas shown in Table 8 were obtained.
  • These raw material powders were put in a resin pot, and wet ball mill mixing was performed using alumina balls for 40 hours to prepare a raw material slurry.
  • the produced slurry was dried, press-molded into a flat plate shape, and fired in oxygen. Firing was performed at 1660 ° C. for 12 hours.
  • the composition of the obtained fluorescent material was specified by ICP-AES analysis, it was confirmed that the fluorescent material had the composition shown in Table 8.
  • the fluorescent materials according to these three examples like the fluorescent materials of the other examples, have a high emission of 95% or more in relative emission intensity when Gd 2 O 2 S: Tb is 100%. It was confirmed that strength was obtained.
  • Example 6 The relationship between the Sc amount and the relative emission intensity was examined. Gadolinium oxide, yttrium oxide, terbium oxide, cerium nitrate, aluminum oxide, gallium oxide, and scandium oxide were weighed so that the composition formula shown in Table 9 was obtained. At that time, the Sc amount v was set to 0, 0.003, 0.006, 0.012, 0.020, and 0.025 in the following composition formula. These raw material powders were put in a resin pot, and wet ball mill mixing was performed using alumina balls for 40 hours to prepare a raw material slurry. The produced slurry was dried, press-molded into a flat plate shape, and fired in oxygen. Firing was performed at 1660 ° C. for 12 hours. Thereby, a fluorescent material was obtained.
  • the composition of the fluorescent material thus obtained was identified by ICP-AES analysis, and it was confirmed that the fluorescent material had the composition shown in Table 9.
  • the effective atomic number was calculated using the composition shown in Table 9, it was 50.7 to 50.8.
  • the firing temperature was determined such that the relative density was 99% or more, and the relative density of the actually obtained fluorescent material was 99% or more.
  • Fig. 6 shows the relationship between the Sc amount v and the relative light emission intensity.
  • FIG. 7 shows the relationship between the Sc amount of the fluorescent material obtained above and the average crystal grain size.
  • Table 10 shows the amount of Sc, average crystal grain size, and emission intensity. From FIG. 7 and Table 10, if the value of v indicating the amount of Sc is 0.02 or less, it is possible to prevent the emission intensity from decreasing. If v is 0.003 or more, crystal grain growth is suppressed and the average crystal grain size can be made sufficiently small. Since the Sc raw material is expensive, the addition of a large amount preferably increases the cost and the upper limit value of v is preferably 0.02 in view of the effect of increasing the emission intensity. More preferred.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 蛍光材料は、(Gd1-α-β-γαCeβTbγ3+a(Al1-u-vGauScv5-b12で表される組成を有し、前記RはYおよびLuの少なくとも一方であり、前記a、b、α、β、γ、u、vが下記範囲を満足し、 0≦a≦0.1、 0≦b≦0.1、 0≦α≦0.8、 0.0003≦β≦0.005、 0.02≦γ≦0.2、 0.27≦u≦0.75、 0≦v≦0.02 相対密度が99%以上であり、有効原子番号が35以上60以下である。

Description

蛍光材料、シンチレータ、シンチレータアレイ、並びに放射線検出器
 本発明は、Gd、Al、Gaを含む組成のガーネット型の酸化物である蛍光材料、シンチレータ、シンチレータアレイおよび放射線検出器に関する。
 シンチレータは、α線、β線、γ線、X線等の放射線を吸収し、蛍光を発する部材である。シンチレータと、蛍光を検出するフォトダイオードと組み合わせることによって、照射された放射線の検出に用いることができる。例えば、断層撮影などの医療分野、非破壊検査などの工業分野、手荷物検査などのセキュリティ分野、高エネルギー物理学などの学術分野等の多様な応用分野で利用されている。
 特許文献1は、一般式:(Gd1-w-x-y-zwLuxREyCez3+a(Al1-u-sGauScs5-a12(ただし、REはPr、Dy及びErのうち少なくとも1種の元素であり、0<a≦0.15、0.2≦w≦0.5、0≦x≦0.5、0<y≦0.003、0.0003≦z≦0.0167、0.2≦u≦0.6、0≦s≦0.1)により表わされる組成を有し、Feの含有量が外割りで0.05~1質量ppmであり、Siの含有量が外割りで0.5~10質量ppmであり、X線で励起したときの30℃~40℃における発光強度の温度係数が-0.15%/℃~+0.15%/℃である多結晶シンチレータを開示している。
 特許文献1によれば、GdをY、又はY及びLuで置換したことにより、発光強度の低減を抑えながら温度係数を改善することができると記載されている。
 特許文献2は、一般式:(Gd1-α-β-γTbαLuβCeγ3(Al1-xGaxab、0<α≦0.5、0<β≦0.5、0.0001≦γ≦0.1、0<x<1、4.8≦a≦5.2、11.6≦b≦12.4、で表わされるガーネット構造酸化物の多結晶体からなる固体シンチレータを開示している。
 特許文献2によれば、Tbが蛍光に寄与し、TbとCeとを共添加したことにより発光強度と残光特性が向上すると記載されている。
 特許文献3は、ガーネット構造を備え伴う発光物質からなり、Gd、Y、Ce、Ga及びAlを含み、(Gd1-x-y-zxyCez3+u(Ga1-m-nAlmn5-u12:wFOで表され、AはLu、La、Tb、Dy又はそれらの組み合わせであり、DはIn、Scまたはそれらの組み合わせであり、Fは二価イオンであり、0≦x<0.2、0<y<0.5、0.001<z<0.05、0<u<0.1、0≦n<0.2、0.3<m<0.6、および10ppm≦w≦300ppmであり、並びにy/x>1であるシンチレータを開示している。
 特許文献3によれば、Yに対するTbの比を1より大きくし、Mg以外の二価のイオン(例えばCa、Sr、Ba、Zn)をドーパントとして用いることにより、減衰速度が速く、高い発光強度のまま残光を低減することができると記載されている。
特開2012-184397号公報 特開2012-72331号公報 特開2013-227575号公報
 例えば、医療分野では、骨と血管のように密度の異なる人体組織をそれぞれ個別あるいは同時に画像化することを求められる場合がある。この場合、広いエネルギー範囲でX線を吸収し、高い発光強度で蛍光を発することが可能な単一の蛍光材料からなるシンチレータを実現することは難しい。このため、例えば、低エネルギー用および高エネルギー用等、特性の異なる複数のシンチレータを用いてX線検出素子を構成する必要がある。
 また、例えば、セキュリティ分野などでは、手荷物等が検査の対象となる。鞄の内部には、種々の材質からなる収納品が含まれ得るため、収納品を明確に画像化するためには、収納品の材質に適したエネルギーのX線を用いる必要がある。
 このように測定対象に応じてシンチレータに求められる特性は異なる。このため、シンチレータ用の蛍光材料も特性の異なる複数の材料を用意することが好ましい。これによりX線のエネルギーに対応した材質を選択することができ、応用範囲が広がる。
 本発明は、この様な課題に鑑み、発光強度が高く、異なるエネルギー吸収係数を備える蛍光材料を提供することを目的とする。また、この蛍光材料を用いたシンチレータ、シンチレータアレイおよび放射線検出器を提供することを目的とする。
 本発明の蛍光材料は、(Gd1-α-β-γαCeβTbγ3+a(Al1-u-vGauScv5-b12で表される組成を有し、前記RはYおよびLuの少なくとも一方であり、前記a、b、α、β、γ、u、vが下記範囲を満足し、
0≦a≦0.1、
0≦b≦0.1、
0≦α≦0.8、
0.0003≦β≦0.005、
0.02≦γ≦0.2、
0.27≦u≦0.75、
0≦v≦0.02
 相対密度が99%以上であり、有効原子番号が35以上60以下である。
 前記RはYであり、前記a、b、αは下記範囲を満足し、
0<a≦0.1、
0<b≦0.1、
0.3<α≦0.8、
 前記有効原子番号は35以上50以下であってもよい。
 前記RはLuであり、
前記a、b、αは下記範囲を満足し、
0<a≦0.1、
0<b≦0.1、
0.3<α≦0.8、
 前記有効原子番号は53以上57以下であってもよい。
 前記RはLuであり、前記a、b、β、γ、u、vは下記数値を満足し、
a=0.01、b=0.01、
β=0.003/3.01
γ=0.15/3.01
u=1.96/4.99
v=0.03/4.99
 前記αは下記範囲を満足し、
0.5<α≦0.8、
 前記有効原子番号は54以上56以下であってもよい。
 前記βは下記範囲
0.0005≦β≦0.003
を満足していてもよい。
 前記vは下記範囲
0.003≦v≦0.02
を満足していてもよい。
 前記a、bはa=bであってもよい。
 前記蛍光材料は第1の蛍光材料と第2の蛍光材料とを含み、
 前記第1の蛍光材料において、
 前記RはYであり、
 前記a、b、αは下記範囲を満足し、
0<a≦0.1、
0<b≦0.1、
0.3<α≦0.8、
 前記有効原子番号は、35以上50以下であり、
 前記第2の蛍光材料において、
 前記RはLuであり、
 前記a、b、αは下記範囲を満足し、
0<a≦0.1、
0<b≦0.1、
0.3<α≦0.8、
 前記有効原子番号は53以上57以下であってもよい。
 本発明のシンチレータは、上記いずれかに記載の蛍光材料を含む。
 本発明の放射線検知器は、上記シンチレータと、光を電気信号、電流値または電圧値に変換する光電変換素子とを備える。
 本発明のシンチレータアレイは、第1の蛍光材料からなり、第1の方向に配列された複数の第1のセルと、第2の蛍光材料からなり、前記第1の方向に配列された複数の第2のセルとを備え、各第1のセルは、前記複数の第2のセルの1つと前記第1の方向に垂直な第2の方向において隣接するように配置されており、前記第1の蛍光材料および前記第2の蛍光材料はそれぞれ上記いずれかに規定される蛍光材料であり、前記第1の蛍光材料および前記第2の蛍光材料は互いに異なるエネルギー吸収係数を備える。
 本発明の他の放射線検出器は、上記シンチレータアレイと、受光面を有する複数の光電変換素子を含む光電変換素子アレイとを備え、前記複数の光電変換素子は前記第1の方向に配列されており、各光電変換素子は、前記受光面が前記複数の第1のセルの1つおよび前記複数の第2のセルの1つと対向するように、前記1つの第1のセルおよび前記1つの第2のセルと、前記第1の方向および前記第2の方向に直交する第3の方向において隣接して位置している。
 本発明によれば、発光強度が高く、種々の大きさのエネルギー吸収係数を有する蛍光材料を提供することができる。また、種々の強度のエネルギーの放射線を検出することが可能なシンチレータ、シンチレータアレイおよび放射線検出器を提供することができる。
Ce量βと相対発光強度の関係を示す図である。 Tb量γと相対発光強度の関係を示す図である。 Tb量γと相対発光強度の関係を示す図である。 R元素としてのY量αと相対発光強度の関係を示す図である。 R元素としてのLu量αと相対発光強度の関係を示す図である。 R元素としてのY量αと有効原子番号の関係を示す図である。 R元素としてのLu量αと有効原子番号の関係を示す図である。 Ga量uと相対発光強度の関係を示す図である。 (Gd1-α-β-γαCeβTbγ3+a(Al1-u-vGauScv5-b12の組成におけるa、b量と相対発光強度の関係を示す図である。 Sc量vと相対発光強度の関係を示す図である。 Sc量vと平均結晶粒径の関係を示す図である。 シンチレータアレイの一実施形態を示す図であって、(a)は上面図を示し、(b)および(c)は、(a)におけるA-A断面およびB-B断面を示す図である。 放射線検出器の一実施形態を示す模式的な断面図(側面)である。 (a)は、放射線検出器の他の実施形態を示す模式的な上面図であり、(b)は(a)におけるA-A断面を示す図である。
 1. 蛍光材料の組成
 本発明は、一般式(以下、一般式(1)と呼ぶ):(Gd1-α-β-γαCeβTbγ3+a(Al1-u-vGauScv5-b12(RはYおよびLuから選択される少なくとも一つの元素)で表される組成を有する蛍光材料である。ここで、a、b、α、β、γ、u、vはそれぞれ、以下の関係を満たしている。
0≦a≦0.1、
0≦b≦0.1、
0≦α≦0.8、
0.0003≦β≦0.005、
0.02≦γ≦0.2、
0.27≦u≦0.75、
0≦v≦0.02
 また、本発明の蛍光材料は、99%以上の相対密度を有し、蛍光材料の有効原子番号は35以上60以下である。
 本発明の蛍光材料の上記一般式(1)において、酸素の組成比は12であると定めている。これは、本発明の蛍光材料がガーネット構造を備えているとし、酸素を基準として組成比を決定しているからである。しかし、本発明の蛍光材料は完全なガーネット構造を備えていなくてもよい。上述したようにaおよびbの値によっては、本発明の蛍光材料は、酸素欠損または酸素過剰であるガーネット構造を備えていることもある。つまり、酸素欠損や酸素過剰であるかどうかにかかわらず、酸素の組成比を12であるとして組成式を定めた場合に、組成式の組成比a、b、α、β、γ、u、vがそれぞれ関係を満たしていればよい。
 ガーネット型の酸化物からなる蛍光材料は、放射線に対して安定な金属酸化物で、高い発光強度をもつ蛍光材料として知られている。蛍光材料の発光は、X線励起により生成した電子と正孔が発光イオンにおいて結合することにより生じる。Gd、Al、Gaを含むガーネット型の酸化物において、発光イオンとしてCeおよびTbを添加することで、Ce単独、Tb単独の組成とするよりも発光強度が向上する。CeとTbのどちらかのみを添加すると、ある程度の添加量までは発光強度が高まるが、以下において説明するように、多量に添加しすぎると濃度消光が起こって発光強度が下がる。本発明は、Gd、Al、Gaを含む組成のガーネット型の酸化物を母材とし、かつ、CeとTbの発光元素の両方を微量に共添加することで高い発光強度を実現した。
 Ceの量を示すβは、0.0003≦β≦0.005の範囲とする。βが0.0003未満の場合には、発光元素であるCe原子の数が少なすぎるために、吸収したX線のエネルギーを効率良く光エネルギーに変換することができない。βが0.005よりも大きいと、Ce原子間の距離が小さくなりすぎるために、エネルギーの回遊が起こり(いわゆる濃度消光が起こり)発光強度が低下する。特に高い発光強度を得るには、βを0.0003≦β≦0.004の範囲内にすることが好ましい。より好ましくは0.0005≦β≦0.003である。
 同様に、Tbの量を示すγは、0.02≦γ≦0.2の範囲とする。γが0.02未満の場合には、発光元素であるTb原子の数が少なすぎるために、吸収したX線のエネルギーを効率よく光エネルギーに変換することができない。γが0.2よりも大きいと、Tb原子間の距離が小さくなりすぎるために、エネルギーの回遊が起こり(いわゆる濃度消光が起こり)発光強度が低下する。特に高い発光強度を得るには、γを0.03≦γ≦0.15の範囲内にすることがより好ましい。さらに好ましくは0.03≦γ≦0.1である。
 本発明者の詳細な検討によれば、CeまたはTbのいずれかを単独で、Gd、Al、Gaを含むガーネット型の酸化物に添加する場合、β=0.001またはγ=0.05の割合まで、CeまたはTbの添加量が増大するにつれて蛍光強度も増大する。また、これらの値より添加量が増えると、発光強度は逆に減少する。
 しかし、例えば、CeまたはTbの単独での添加が、発光強度を減少させる添加量Mであっても、添加をCeとTbとに分散させ、Tbの添加量とCeの添加量との合計がMとなるようにTbおよびCeの両方を添加することによって、さらに発光強度を高められることが分かった。これは、TbとCeとでは、蛍光が生じる電子の遷移状態が異なるため(Tbは4f-4f電子の遷移、Ceは、4f-5d遷移)、異なる遷移エネルギーの発光元素を共添加することで、X線励起により生成された電子と正孔を無駄なく結合させることができるからと考えられる。
 a、bの範囲は共に、0≦a≦0.1、0≦b≦0.1とする。
 aとbは同じ値をとることが好ましいが、素原料などに含まれるSiやFe等の不純物元素の固溶や秤量誤差などにより、異なる値をとる場合もある。a≠bのときは結晶中に酸素欠陥が生じ易く、発光強度が低下する場合がある。
 aが0未満の負の数であると、希土類元素が占有する(Gd1-α-β-γαCeβTbγ)サイトにイオンの空孔が生成し残光が増加する。また、発光強度が極端に低下する。よってaは0以上とする。量産においては組成のバラツキを考慮して0<a、0<bさらには0.0001≦a、0.0001≦bとすることが好ましい。但し、a、bが0.1を超えるとガーネット型ではない異相(ペロブスカイト相GdAlO3)が生成されやすくなる。この異相は母材のガーネット型の相と屈折率が異なるため光散乱が生じ発光強度が低下する。
 特に高い発光強度と低い残光特性を両立するには、aを0<a≦0.07、bを0<b≦0.07の範囲内にすることがより好ましく、さらには0.0001≦a≦0.05、0.0001≦b≦0.05の範囲内にすることが特に好ましい。
 R元素(YまたはLu)の量を示すαは、0≦α≦0.8とする。好ましくは、αは、0.3<α≦0.8を満たし、さらに好ましくは0.5<α≦0.8を満たしている。
 上述したように、一般式(1)で示される組成を有する蛍光材料は、αの値が0≦α≦0.8の範囲にあることによって、高い蛍光発光強度を有する。一方、一般式(1)におけるαを0≦α≦0.8の範囲で調整することによって、GdのR元素による置換の割合が調節でき、蛍光材料の有効原子番号を変えることができる。
 Gaの量を示すuは、0.27≦u≦0.75とする。
 uが0.27未満の場合には上記のペロブスカイト相が析出し、発光強度が低くなる。また、焼結性も低下する。例えば、u≦0.2では焼結性が低下し、ボイドが多くなる。一方、uが0.75を超える場合は発光強度が低下し、残光が大幅に増加する。特に高い相対発光強度を得るには、uを0.35≦u≦0.70の範囲内にすることが好ましく、0.4≦u≦0.6の範囲内にすることがより好ましい。
 Scの量を示すvは、0≦v≦0.02とする。
 Scは、発光強度を向上させ残光を低減させる添加元素である。
 Gaは+3価イオンであるが、+1価に価数変動しやすい性質を持つ。ガーネット型の構造の中でGaが+1価になると、発光強度が低下し残光が増加する。Sc3+のイオン半径は、Al3+及びGa3+のイオン半径よりも大きく、Ga3+の価数変化を抑制するものと考えられる。特に高い相対発光強度比を得るには、vを0.003≦v≦0.02の範囲内にすることがより好ましい。
 また、Scを添加することで、焼結後に得られる蛍光材料は、微細な結晶が密に存在する構造を備える。一般に多結晶セラミックは、内部のどこかで破壊が生じても、破壊による亀裂の拡大が結晶粒で止められる確率が高くなる。このため微細な結晶が密に分布するほど破壊靭性が高まり、その結果として機械的強度も高くなる。
 焼結体の結晶の平均粒径は、焼結体に空孔がなく、十分な密度を達成できるのであればどのような範囲でも構わない。焼結前の成形において、十分な密度を達成したほうが、焼結後の密度も高くなりやすいため、粉末の状態において10μm以下であることが好ましく、かつ、焼結後も同程度に留めることが好ましい。
 Sc量を示すvが0.003以上であると蛍光材料の平均結晶粒径を5μm以下まで小さくできる。vが0.02以下であれば、発光強度はGd22S:Tbの蛍光材料と同等かもしくはそれ以上とすることができる。
 本発明の蛍光材料の相対密度は99%以上である。相対密度の計算方法は以下の通りである。まず、一般式(1)において、a=0、b=0、α=0、β=0、γ=0、u=2/5、v=0の場合(組成式:Gd3Al3Ga212)の格子定数をICDD(International Centre for Diffraction Data)のデータより引用し、それを基準に体積を算出する。次に相対密度を算出しようとする試料の組成式から質量として式量を算出し、式量と体積とから求めた密度を理論密度とする。次に、蛍光材料の実測密度を測定し、前記理論密度で割って相対密度を算出する。相対密度が小さい場合、十分なX線の吸収が行われなくなるため、99%以上が好ましい。また、Gd元素をαの組成比に基づいてR元素に置換するために、a=0、b=0、α=0、β=0、γ=0、u=2/5、v=0の格子定数を基準に算出しており、場合によっては、相対密度は100%を超えることもある。ただし、大きく超える場合、結晶構造が変わってしまっている可能性が高い。本発明の実施例からは相対密度は102.5%以下であればガーネット構造を備えていることを確認している。
 本発明の蛍光材料は、硫黄を含まない。このためGd22S系の蛍光材料と異なり、硫化物を原料として用いないことにより、高い密度の焼結体を得ることができ、これによって透過率が上がり高い発光強度を実現し得る。
 本発明の蛍光材料の有効原子番号(実効原子番号)は35以上60以下である。有効原子番号は、以下の式で定義される。
Figure JPOXMLDOC01-appb-M000001
 ここで、f1、f2、f3、・・・は、一般式(1)中の全元素の電子数に対する各元素の電子数の比を示し、Z1、Z2、Z3、・・・は各元素の原子番号を示す。
 有効原子番号が大きいほどより高いエネルギーを吸収できるようになり、有効原子番号が小さければ高いエネルギーを透過できるようになる。例えば、X線CTの放射線検出器に汎用される、蛍光材料である、組成式Gd22Sで示されるセラミックスシンチレータの有効原子番号は59.5であり、Gd-Al-Gaガーネットシンチレータの有効原子番号は約52である。ここで、有効原子番号が52から59の間の蛍光材料、及び有効原子番号が52より小さい範囲の蛍光材料を用いて、吸収するX線のエネルギー範囲が分離したシンチレータを構成することができる。吸収するX線のエネルギー範囲が大きく分離した2つのシンチレータを実現するためには、それぞれのシンチレータを構成する蛍光材料の有効原子番号は離れている方が好ましい。
 前述した有効原子番号の一般式(1)に示したとおり、有効原子番号は、材料の組成に依存している。すなわち、用いる元素と組成比を適切に決定し、かつ、前述した相対密度が99%以上であるとき、有効原子番号に基づいた高いエネルギーの吸収可能な蛍光材料が得られる。
 本発明において、組成R=Yであれば0.3<α≦0.8で、有効原子番号35以上50以下であることが好ましく、さらには、0.5<α≦0.8で、有効原子番号37以上45以下であることが好ましい。R=Luであれば0.3<α≦0.8で、有効原子番号53以上57以下であることが好ましく、さらには、0.5<α≦0.8で、有効原子番号54以上56以下であることが好ましい。上述したように、Rの元素に応じて、R元素量αを上述した範囲に決定することにより、有効原子番号の差が大きい蛍光材料の組み合わせを一般式(1)に基づき、簡単に製造することができる。
 例えば、一般式(1)において、R=Y、0.3<α≦0.8であり、有効原子番号が35以上50以下の第1の蛍光材料と、一般式(1)において、R=Lu、0.3<α≦0.8であり、有効原子番号が53以上57以下の第2の蛍光材料との組み合わせを簡単に製造することができる。
 蛍光材料の有効原子番号は、Rとして選択する元素および各元素の割合を示すa、b、α、β、γ、u、vによって調節し得る。特に、R元素としてYおよびLuのいずれを選ぶか、および、R元素の組成比αによって、蛍光の発光強度を大きく低下させることなく有効原子番号を変化させることができる。
 本発明の蛍光材料は、一般式(1)で示される組成を有し、上述した範囲の密度を有することにより、高い蛍光発光強度を実現することができる。また、一般式(1)で示される範囲でRとなる元素を選択し、各元素の組成比を調整することによって、35以上60以下の有効原子番号を有する蛍光材料を実現できる。これにより、発光強度が高く、異なるエネルギー吸収係数を備える蛍光材料を実現することが可能となる。よって、一般式(1)で表される蛍光材料は、異なるエネルギーの放射線の検出に好適に用いられる。
 2. 蛍光材料の製造方法
 以下、蛍光材料の製造方法の一例を説明する。本発明はこれに限定されない。
 <無機塩法>
 無機塩法とは、原料を酸などにより溶解した前駆体を乾燥し、焼結する方法である。
 例えば原料として、目標の組成に秤量した、硝酸ガドリニウム、硝酸イットリウムまたは硝酸ルテチウム、硝酸セリウム、硝酸テルビウム、硝酸アルミニウム、硝酸ガリウム、硝酸スカンジウム等を純水に溶かし、前駆体溶液を形成する。代替的には、出発物質すべてを酢酸塩、ギ酸塩、乳酸塩など、またはこれらの組合せにしてもよい。または、酸化物原料を硝酸水溶液や塩酸水溶液に溶かしてもよい。さらに、クエン酸を加えて、60℃~80℃に加熱しながら撹拌を行い重合により粘度を高めることができる。この際、粘度の調整としてポリビニルアルコール、ポリビニルピロリドンなどを少量添加してもよい。これによって成形に適した粘度に調整されたゲル状の前駆体が得られる。
 この前駆体をドクターブレード法等でシート状に成形することができる。得られたシート状の成形体を約100℃~150℃で乾燥し、その後、酸素中で1100℃~1500℃の温度で、0.5~5.0時間保持することにより成形体を焼結させる。これにより、シート状の蛍光材料が得られる。
 <スラリー法>
 スラリー法とは、スラリー状にした原料をバインダーと混ぜた後に乾燥し、焼結する方法である。
 例えば原料として、酸化ガドリニウム、酸化イットリウム、酸化ルテチウム、酸化セリウム、酸化テルビウム、酸化アルミニウム、酸化ガリウム、酸化スカンジウムを適宜目的組成に秤量した平均粒径1μm以下の酸化物原料の微粉を、アルミナボールなどの粉砕メディアと、水やエタノールなどの粉砕媒体と共に容器に入れ、容器を回転させる装置を用いて湿式ボールミル混合を行い、スラリーを作製する。この際、発光イオンであるセリウムとテルビウムなどの少量添加する物質は、硝酸塩などを用いてもよい。また、作製したスラリーに分散剤やバインダーなどをあらかじめ加えるか、混合後に加えてもよい。このスラリーをブレードを用いて一定の厚さでフィルムの上に塗布するシート成形装置などを用いてシート成形体を得ることができる。このシート成形体を約100℃~150℃で乾燥し、その後、酸素中で1100℃~1500℃の温度で、0.5~5.0時間保持することによって、シート成形体を焼結させる。これより、シート状の蛍光材料が得られる。
 <その他>
 粉体の蛍光材料を得る場合には、一般的なセラミックス焼成体を製造する方法を用いることができる。
 例えば原料として、ガドリニウム、イットリウムまたはルテチウム、セリウム、テルビウム、アルミニウム、ガリウムおよびスカンジウムの酸化物、炭酸塩等をこれらの元素が目標の組成比となるように秤量し、必要に応じて溶媒を加え、ボールミル等で混合及び粉砕する。混合物を乾燥後、混合物を適当な容器などに入れるか適当な形に成形し、酸素中で1100℃~1500℃の温度で、0.5~5.0時間保持することによって、焼結する。得られた焼結物をボールミル等を用いて粉砕することによって、粉体の蛍光材料を得ることができる。また、粉砕せずに、そのまま蛍光材料として用いてもよい。
 3.蛍光材料を用いた実施形態
 [シンチレータ]
 上述した方法によって作製した板状の蛍光材料、成形体または粉体の蛍光材料を、そのままのシンチレータとして用いることができる。また、粉体の蛍光材料を樹脂に分散させ、樹脂を成形することによって、所望の形状を有するシンチレータを作製してもよい。
 [シンチレータアレイ]
 図8に、本発明によるシンチレータアレイの一実施形態を示す。図8(a)は、シンチレータアレイ13の上面図であり、図8(b)は図8(a)におけるA-A断面を示す。また、図8(c)は、図8(a)におけるB-B断面を示す。
 シンチレータアレイ13は、検出感度、つまり、エネルギー吸収係数が異なる二種のシンチレータアレイを含むデュアルアレイ構造を備えている。図8(a)に示すように、シンチレータアレイ13は、第1の方向(x方向)に複数のシンチレータが配列された1次元配列のシンチレータアレイ10が、第1の方向と直交する第3の方向(y方向)に複数配列されている。図8(b)および(c)に示すように、各シンチレータアレイ10は、第1の蛍光材料からなる複数の第1のセル21が配列された第1のアレイ11と、第2の蛍光材料からなる複数の第2のセル22が配列された第2のアレイ12とを含む。第1のアレイ11および第2のアレイ12は、それぞれ複数の第1のセル21および複数の第2のセル22の周りに位置する樹脂層23を含む。
 第1のアレイ11および第2のアレイ12において、複数の第1のセル21および複数の第2のセル22は、それぞれ、第1の方向(x方向)に配列されている。また、第1のアレイ11の各第1のセル21は、第1の方向および第2の方向と直交する第2の方向(z方向)において、第2のアレイ12の複数の第2のセル22の1つと隣接するよう配列されている。
 第2の方向における第1のセル21および第2のセル22の高さはそれぞれh1、h2である。第1のセル21および第2のセル22の高さh1、h2は、検出すべき放射線の強度に応じて決定し得る。
 第1のアレイ11は、X線が入射する入射面11aと複数の第1のセル21による蛍光を検出するための検出面11cとを有する。検出面11cにおいて、複数の第1のセル21のそれぞれ1つの面が露出している。同様に第2のアレイ12は、X線が入射する入射面12aと複数の第2のセル22による蛍光を検出するための検出面12cとを有する。検出面12cにおいて、複数の第2のセル22のそれぞれ1つの面が露出している。第1のアレイ11の検出面11cと第2のアレイ12の入射面12aとは対向している。
 第1のアレイ11の入射面11aから入射したX線は、第1のセル21を透過する。この際、X線の一部が吸収され、第1のセル21が蛍光を発する。吸収されなかったX線は、検出面11cから出て、第2のアレイ12の入射面12aから第2のセル22に入射する。第2のセル22はX線を吸収し、蛍光を発する。したがって、検出面11cおよび検出面12cにそれぞれ蛍光を検出する光電変換素子を配置することによって、第1のセル21および第2のセル22における蛍光を検出することができる。
 第1の蛍光材料および第2の蛍光材料は、一般式(1)で示され、互いに異なる組成を有する。例えば、第1の蛍光材料にX線を照射し、吸収させると同時に透過させて、第2の蛍光材料にX線を照射させる場合は、第1の蛍光材料のエネルギー吸収係数は第2の蛍光材料のエネルギー吸収係数よりも小さいことが好ましい。
 シンチレータアレイ13は、例えば、以下の方法によって作製することができる。まず、異なるエネルギー吸収係数を有する第1の蛍光材料および第2の蛍光材料を作製する。これは、一般式(1)を用い、例えば、組成式(1)におけるαを異ならせたり、元素Rとして異なるYとLuを異ならせたりすることによって、第1の蛍光材料および第2の蛍光材料の組成を決定することができる。次に、例えば、焼成によって、第1の蛍光材料および第2の蛍光材料から複数の第1のセル21および複数の第2のセル22を作製する。複数の第1のセル21を所定の間隔で配列し、周囲を樹脂23で固めることによって、第1のアレイ11を作製する。同様に、複数の第2のセル22を所定の間隔で配列し、周囲を樹脂23で固めることによって、第2のアレイ12を作製する。これらを積層することによって、シンチレータアレイ13が完成する。
 シンチレータアレイ13において、第1のセル21を構成している第1の蛍光材料のエネルギー吸収係数は第2のセル22を構成している第2の蛍光材料のエネルギー吸収係数よりも小さい。それによりエネルギーを分離して検出する例を以下に説明する。
 一般に被検体中の血管や筋肉などの部位は、骨などの部位に比べて、エネルギーの相対的に小さい軟X線を吸収しやすく、エネルギーの相対的に大きい硬X線を透過しやすい。一方、骨などの部位は、血管や筋肉などの部位に比べてエネルギーの相対的に大きい硬X線を吸収しやすい。このため、軟X線および硬X線のいずれか一方を用いて被検体を撮影した場合、血管や筋肉などの部位および骨などの部位のいずれか一方が明瞭に画像化され、他方は明瞭に画像化されない場合がある。
 シンチレータアレイ13によれば、血管や筋肉などの部位および骨などの部位の両方の明瞭な画像を得ることができる。例えば、軟X線および硬X線等エネルギーの強度分布が異なる複数のX線を被検体に同時にまたは時間をずらして照射し、シンチレータアレイ13に入射させる。第1のセル21のエネルギー吸収係数は小さいため、第1のセル21では、エネルギーの低いX線のみが吸収され、エネルギーの高いX線はあまり吸収されずに透過する。第1のセル21を透過したエネルギーの高いX線は、第2のセル22に入射する。第2の蛍光材料のエネルギー吸収係数は第1の蛍光材料に比べて相対的に大きいため、第1のセル21を透過して第2のセル22に入射したX線は、第2のセル22で吸収される。よって、第2のセル22は、第1のセル21で吸収されたX線以外のエネルギーの強度分布に応じた蛍光を発する。したがって、第1のセル21で検出されたX線による画像には、血管や筋肉などの部位が明瞭に示される。第2のセル22で検出されたX線による画像には、骨などの部位が明瞭に示される。これら2つの画像を合成することによって、血管や筋肉などの部位および骨などの部位の両方が明瞭に示された画像を得ることが可能である。
 このようにシンチレータアレイ13によれば、異なるエネルギーのX線を1つのシンチレータアレイ13で検出することが可能である。また、シンチレータアレイ13の異なるエネルギーのX線を好適に吸収する第1の蛍光材料および第2の蛍光材料を同じ一般式(1)を用いて製造することができる。
 図8に示すシンチレータアレイ13は、第1のセル21および第2のセル22が第1の方向(x方向)および第3の方向(y方向)に配置された2次元アレイであるが、本発明のシンチレータアレイは、2次元アレイに限らない。シンチレータアレイ10を単独で1次元配列アレイとして用いてもよい。
 [放射線検出器]
 シンチレータと、光を電気信号、電流値または電圧値に変換する光電変換素子を組み合わせることによって、高感度、高解像度かつ放射線劣化の小さい放射線検出器を作製することができる。
 板状の蛍光材料、成形体または粉体の蛍光材料を、そのままのシンチレータとして用いる場合には、これらの蛍光材料に蛍光材料の蛍光を検出する光電変換素子を隣接して配置することにより、放射線検出器を構成できる。板状の蛍光材料を用いる場合には、2次元光電変換素子アレイを用いてもよい。
 図9は、本発明の実施形態によるデュアルアレイ構造の放射線検出器14の断面図である。放射線検出器14は、図8に示すシンチレータアレイ13と複数の光電変換素子アレイ31、32とを含む。光電変換素子アレイ31、32は、それぞれ、例えば、第1の方向(x方向)に配列された複数の光電変換素子を含む。光電変換素子は、例えば、シリコンフォトダイオード等のフォトダイオードであってもよい。
 シンチレータアレイ13に含まれる各シンチレータアレイ10において、光電変換素子アレイ31は、第1のアレイ11の検出面11cと第2のアレイ12の入射面12aとの間に配置され、光電変換素子アレイ31の受光面31aが検出面11cと対向している。また、光電変換素子アレイ32は、第2のアレイ12の検出面12cに配置され、受光面32aが検出面12cと対向している。
 放射線検出器14によれば、第1のセル21を構成する第1の蛍光材料および第2のセル22を構成する第2の蛍光材料のエネルギー吸収係数が異なるため、異なるエネルギーのX線を1つの放射線検出器14で検出することが可能である。よって、放射線検出器14を用いれば、異なる内部組織を含む生体や、異なる材料で内部が構成された被検査対象物、材料の異なる物品が収納された手荷物等を、複数の異なるエネルギーのX線で照射して検出することにより、内部の構造がより鮮明に示されたX線画像を得ることができる。
 図9に示す放射線検出器14は、第1のセル21および第2のセル22が第1の方向(x方向)および第3の方向(y方向)に配置された2次元アレイである。しかし、1次元配列のシンチレータアレイ10と光電変換素子アレイ31、32とを用いて1次元配列の放射線検出器を構成してもよい。
 また、図10(a)および(b)に示すように、第1の蛍光材料からなる第1のセル21を透過したX線が、光電変換素子を透過しないで第2の蛍光材料からなる第2のセル22に入射するように光電変換素子アレイを配置してもよい。具体的には、図10(a)および(b)に示す放射線検出器15は、複数の1次元配列のシンチレータアレイ10’と、複数の光電変換素子アレイ33とを備える。シンチレータアレイ10’は、図8に示す1次元配列のシンチレータアレイ10の第1のアレイ11と第2のアレイ12とが接合した構造を備える。シンチレータアレイ10’は、入射面10’aと、入射面10’aに垂直な検出面10’bとを有している。光電変換素子アレイ33は、シンチレータアレイ10’に対して、第3の方向(y方向)に隣接して配置されている。シンチレータアレイ10’の検出面10’bにおいて、複数の第1のセル21及び第2のセル22のそれぞれ1つの面が露出しており、光電変換素子アレイ33の受光面33aは、検出面10’bと第3の方向において対向している。放射線検出器15において、光電変換素子アレイ33の受光面33aはX線の透過方向と平行であり、シンチレータアレイ10’の入射面10’aから入射したX線が光電変換素子アレイ33の受光面33aを透過しない。このため、光電変換素子アレイの上にX線を透過させないようにすることで光電変換素子へのダメージを小さくできる。
 上記実施形態では、エネルギー吸収係数が異なる2つの蛍光材料によって構成されるデュアルアレイシンチレータおよびデュアルアレイ放射線検出器を説明した。しかし、エネルギー吸収係数が異なる3以上の蛍光材料を用いて、シンチレータマルチアレイおよびマルチアレイ放射線検出器を実現してもよい。
 4. 実施例
 (実施例1)
 Ce量、Tb量と相対発光強度の関係を調べた。
 シンチレータの発光は、X線励起により生成した電子と正孔が発光イオンにおいて結合することにより生じる。本発明の組成系では、発光イオンはCeおよびTbの2元素である。
 Ce量βと相対発光強度の関係を述べる。表1に示す組成式になるように、酸化ガドリニウム、酸化イットリウム、酸化テルビウム、硝酸セリウム(酸化セリウムでもよい。以下同様)、酸化アルミニウム、酸化ガリウム、酸化スカンジウムを秤量した。その際、Ce量βが下記組成式で、0、0.00033、0.00066、0.0010、0.0017、0.0033、0.0050、0.0066となるようにした。樹脂製のポットにこれらの原料粉を入れ、アルミナボールを用いて湿式ボールミル混合を40時間行い、原料スラリーを作製した。作製したスラリーを乾燥後、平板状にプレス成型し、酸素中にて焼成を行った。焼成は1660℃で12時間保持にて行った。これにより得られた蛍光材料をICP-AES分析(高周波誘導結合プラズマ発光分光分析法、パーキンエルマー製:OPTIMA-3300XL)により組成を特定したところ、表1に示す組成の蛍光材料であることが確認できた。表1の組成を用いて有効原子番号を計算すると50.7~50.8であった。焼成温度は相対密度が99%以上となるように決めており、実際に得られた蛍光材料の相対密度は99%以上であった。平均結晶粒径は約3μmであった。
 Ce量βと相対発光強度の関係を図1に示す。
Figure JPOXMLDOC01-appb-T000002
 図1の相対発光強度はGd22S:Tbの発光強度を100%とした場合の値(%)である。発光強度はシリコンフォトダイオード(浜松ホトニクス製S2281)を用いて測定した。以下の実施例の発光強度も同様に測定した。
 図1よりβの値が0.0003≦β≦0.005の範囲で100%より大きい相対発光強度が得られた。Ceは微量でも発光強度を向上させるため、βが0.0003以上であれば十分に発光強度を高めることができる。βの値が0.0003≦β≦0.004の範囲で、105%以上の相対発光強度が得られ、0.0005≦β≦0.003の範囲で、110%以上の相対発光強度が得られた。
 Tb量γと相対発光強度の関係を述べる。表2に示す組成式になるように、酸化ガドリニウム、酸化イットリウム、酸化テルビウム、硝酸セリウム、酸化アルミニウム、酸化ガリウム、酸化スカンジウムを秤量した。その際、Tb量γが下記組成式で、0、0.01、0.017、0.033、0.05、0.066、0.10、0.13、0.20となるようにした。樹脂製のポットにこれらの原料粉を入れ、アルミナボールを用いて湿式ボールミル混合を40時間行い、原料スラリーを作製した。作製したスラリーを乾燥後、平板状にプレス成型し、酸素中にて焼成を行った。焼成は1660℃で12時間保持にて行った。これにより得られた蛍光材料をICP-AES分析により組成を特定したところ、表2に示す組成の蛍光材料であることが確認できた。表2の組成を用いて有効原子番号を計算すると50.7~50.9であった。焼成温度は相対密度が99%以上となるように決めており、実際に得られた蛍光材料の相対密度は99%以上であった。平均結晶粒径は約3μmであった。
 Tb量γと相対発光強度の関係を図2Aに示す。
Figure JPOXMLDOC01-appb-T000003
 γの値が0.02≦γ≦0.2の範囲で発光強度が十分に高いものが得られた。γの値が0.03≦γ≦0.15の範囲とすることでさらに発光強度を高くすることができる。
 表2に示すように、図2Aの結果は、Ceの添加量βが0.001である場合を示しており、図1から、Ceの添加量βが0.001である場合、Ceについては、蛍光材料の最も発光強度が高くなる。したがって、図2Aは、最も発光強度が高くなる条件でCeが含まれている場合でも、Tbを添加することにより、発光強度をさらに高めることができ、Tbの添加量γが0.05程度で発光強度が最も高くなることを示している。
 同様に、図1の結果は、Tbの添加量γが0.05である場合を示しているため、図1は、最も発光強度が高くなる条件でTbが含まれている場合でも、Ceを添加することにより、発光強度をさらに高めることができ、Ceの添加量βが0.001程度で発光強度が最も高くなることを示している。
 これらの結果から、CeおよびTbを単独で蛍光材料に添加する場合に比べて、CeおよびTbの合計の添加量を高めることができ、これによって、CeおよびTbを単独で蛍光材料に添加する場合に比べて、より高い発光強度を得られることが分かる。
 さらに、R=Yであり、α=0.797である場合におけるTb量γと相対発光強度の関係を以下に説明する。表3に示す組成式になるように、酸化ガドリニウム、酸化イットリウム、酸化テルビウム、硝酸セリウム、酸化アルミニウム、酸化ガリウム、酸化スカンジウムを秤量した。その際、Tb量γが下記組成式で、0、0.02、0.05、0.1、0.199となるようにした。樹脂製のポットにこれらの原料粉を入れ、アルミナボールを用いて湿式ボールミル混合を40時間行い、原料スラリーを作製した。作製したスラリーを乾燥後、平板状にプレス成型し、酸素中にて焼成を行った。焼成は1700℃で12時間保持にて行った。表3の組成を用いて有効原子番号を計算すると37.5~38.0であり、エネルギー吸収係数は3.8~4.2であった。焼成温度は相対密度が99%以上となるように決めており、実際に得られた蛍光材料の相対密度は99%以上であった。
R=Y、α=0.797の場合の、Tb量γと相対発光強度の関係を図2Bに示す。
Figure JPOXMLDOC01-appb-T000004
 γの値が0.02≦γ≦0.199の範囲で発光強度が十分に高いものが得られた。γの値が0.05≦γ≦0.199の範囲とすることでさらに発光強度を高くすることができる。この結果から、Yの量をα=0.033からα=0.797に増やすことで、より高い発光強度を得られることが分かった。
 (実施例2)
 Y量およびLu量と相対発光強度、有効番号、相対密度およびエネルギー吸収係数との関係を調べた。表4に示す組成式になるように、酸化ガドリニウム、酸化イットリウムまたは酸化ルテチウム、酸化テルビウム、硝酸セリウム、酸化アルミニウム、酸化ガリウム、酸化スカンジウムを秤量した。その際、Y量αが下記組成式で、0.033、0.325、0.617、0.783、0.949となるようにした。また、Lu量αが下記組成式で、0、0.285、0.617、0.783、0.949となるようにした。樹脂製のポットにこれらの原料粉を入れ、アルミナボールを用いて湿式ボールミル混合を60時間行い、原料スラリーを作製した。作製したスラリーを乾燥後、平板状にプレス成型し、酸素中にて焼成を行った。焼成は1660℃から1700℃のいずれかの温度で12時間保持にて行った。これにより得られた蛍光材料をICP-AES分析により組成を特定したところ、表4に示す組成の蛍光材料であることが確認できた。平均結晶粒径は約3.5~8.1μmであった。
 有効原子番号は上述した式によって求めた。得られた蛍光材料の実測密度をアルキメデスの原理に基き、水を使用した液中秤量法によって求めた。相対密度は、実測密度を理論密度で除することによって求めた。エネルギー吸収係数は、ICPで組成を分析し、組成から線エネルギー吸収係数を求め、線エネルギー吸収係数を密度で除することによって求めた。
 Y量と相対発光強度の関係を図3Aに示す。また、Lu量と相対発光強度の関係を図3Bに示す。
Figure JPOXMLDOC01-appb-T000005
 RがYである場合、αの値が0≦α≦0.949の範囲で110%以上の相対発光強度が得られる。一方、RがLuである場合、αの値が0≦α≦0.8の範囲で100%以上の相対発光強度が得られる。
 表5に、R量(YまたはLu)αと、有効原子番号、エネルギー吸収係数および相対密度との関係を示す。また、図3Cおよび図3Dに、それぞれ、Y量およびLu量と有効原子番号との関係を示す。
Figure JPOXMLDOC01-appb-T000006
 RがYである場合、GdよりもYの原子番号が小さいため、αが増大するにつれて、有効原子番号は小さくなる。また、エネルギー吸収係数も、αが増大すると小さくなる。αが0.8よりも大きくなると、有効原子番号が35よりも小さくなり、エネルギー吸収係数も7よりも小さくなる。その結果、X線を吸収しにくくなり、蛍光が発生しにくくなる。このため、αは0≦α≦0.8の範囲であることが好ましい。図3Cより、αを0.5<α≦0.8の範囲に設定することによって、有効原子番号を有効原子番号37以上45以下程度に調整し得ることが分かる。なお、有効原子番号は、Rおよびαのみによって決まるのではなく、一般式(1)中のR以外の元素の組成比にも依存する。
 RがLuである場合、GdよりもLuの原子番号が大きいため、αが増大するにつれて、有効原子番号は大きくなる。また、エネルギー吸収係数もαが増大するにつれて大きくなる。αが0.8よりも大きくなると、焼結温度が上昇し、十分な密度の焼結体を得ることが難しくなり、相対発光強度も小さくなる。図3Dより、αを0.3<α≦0.8の範囲に設定することによって、有効原子番号53以上57以下であることが好ましく、さらには、0.5<α≦0.8で、有効原子番号54以上56以下であることが好ましい。
 このようにRとして、Yを選択するかLuを選択するかにより、同じ結晶構造でありながら、Rの添加量に対する有効原子番号およびエネルギー吸収係数を変化させられるため、Rとして用いる元素およびαの値に応じて、加工性などの特性がほぼ同じでありながら、種々の有効原子番号およびエネルギー吸収係数を備えた蛍光材料を実現することができる。
 (実施例3)
 Ga量と相対発光強度の関係を調べた。表6に示す組成式になるように、酸化ガドリニウム、酸化イットリウム、酸化テルビウム、硝酸セリウム、酸化アルミニウム、酸化ガリウム、酸化スカンジウムを秤量した。その際、Ga量uが下記組成式で、0.232、0.293、0.333、0.373、0.413、0.453、0.493、0.573、0.593、0.693、0.754、0.794となるようにした。樹脂製のポットにこれらの原料粉を入れ、アルミナボールを用いて湿式ボールミル混合を40時間行い、原料スラリーを作製した。作製したスラリーを乾燥後、平板状にプレス成型し、酸素中にて焼成を行った。焼成は1660℃で12時間保持にて行った。これにより得られた蛍光材料をICP-AES分析により組成を特定したところ、表6に示す組成の蛍光材料であることが確認できた。表6の組成を用いて有効原子番号を計算すると49.8~51.2であった。焼成温度は相対密度が99%以上となるように決めており、実際に得られた蛍光材料の相対密度は99%以上であった。平均結晶粒径は約3μmであった。
 Ga量と相対発光強度の関係を図4に示す。
Figure JPOXMLDOC01-appb-T000007
 図4よりGa量を示すuの値が0.27≦u≦0.75の範囲であれば、相対発光強度の低下を防ぐことができ、0.35≦u≦0.70の範囲であれば高い発光強度が得られる。特に、uが0.4≦u≦0.6を満たす場合、更に高い発光強度を得ることができる。
 (実施例4)
 (Gd1-α-β-γαCeβTbγ3+a(Al1-u-vGauScv5-b12の組成において、a、bの値と相対発光強度の関係を調べた。なお、aとbは同じ値とした。表7に示す組成式となるように、酸化ガドリニウム、酸化イットリウム、酸化テルビウム、硝酸セリウム、酸化アルミニウム、酸化ガリウム、酸化スカンジウムを秤量した。その際、a、bが下記組成式で、-0.01、0、0.01、0.02、0.05、0.1、0.15、0.20となるようにした。樹脂製のポットにこれらの原料粉を入れ、アルミナボールを用いて湿式ボールミル混合を40時間行い、原料スラリーを作製した。作製したスラリーを乾燥後、平板状にプレス成型し、酸素中にて焼成を行った。焼成は1660℃で12時間保持にて行った。これにより得られた蛍光材料をICP-AES分析により組成を特定したところ、表7に示す組成の蛍光材料であることが確認できた。表7の組成を用いて有効原子番号を計算すると50.7~50.8であった。焼成温度は相対密度が99%以上となるように決めており、実際に得られた蛍光材料の相対密度は99%以上であった。平均結晶粒径は約3μmであった。
 a、bの値と相対発光強度の関係を図5に示す。
Figure JPOXMLDOC01-appb-T000008
 図5よりa<0、b<0の場合、発光イオンであるCeおよびTbのサイトに空孔が生じることで、X線励起で生成した電子が捕捉され、発光強度が低下する。0≦a、0≦bとすることで、空孔が抑制され、良好な発光強度を示す。一方、aとbとが共に0.1より大きくなると、シンチレータ中にガーネット型の相とは異なるペロブスカイト型の相GdAlO3が異相として形成されやすくなる。この異相は、母材のガーネット型の相と屈折率が異なる為に、ペロブスカイト型の相で光散乱が生じ、発光強度が低下する。0≦a≦0.1、0≦b≦0.1の範囲であれば、相対発光強度の低下を防ぐことができる。0<a≦0.07、0<b≦0.07であればさらに高い発光強度が得られ、0.0001≦a≦0.05、0.0001≦b≦0.05であれば、さらに高い発光強度が得られる。
 (実施例5)
 Yの代わりにLuを用いた場合とY及びLuの両方を用いた場合について、αの値と相対発光強度の関係を調べた。
 表8に示す3種の組成式となるように、酸化ガドリニウム、酸化イットリウム、酸化ルテチウム、酸化テルビウム、硝酸セリウム、酸化アルミニウム、酸化ガリウム、酸化スカンジウムを秤量した。樹脂製のポットにこれらの原料粉を入れ、アルミナボールを用いて湿式ボールミル混合を40時間行い、原料スラリーを作製した。作製したスラリーを乾燥後、平板状にプレス成型し、酸素中にて焼成を行った。焼成は1660℃で12時間保持にて行った。これにより得られた蛍光材料をICP-AES分析により組成を特定したところ、表8に示す組成の蛍光材料であることが確認できた。表8の組成を用いて有効原子番号を計算すると50.7~52.5であった。焼成温度は相対密度が99%以上となるように決めており、実際に得られた蛍光材料の相対密度は99%以上であった。平均結晶粒径は約3μmであった。表8には、実施例1で得られたYを用いた試料の結果も示している。
 表8より、この3種の実施例による蛍光材料は、他の実施例の蛍光材料と同様に、Gd22S:Tbを100%としたときの相対発光強度で95%以上の高い発光強度が得られることを確認した。
Figure JPOXMLDOC01-appb-T000009
 (実施例6)
  Sc量と相対発光強度の関係を調べた。表9に示す組成式となるように、酸化ガドリニウム、酸化イットリウム、酸化テルビウム、硝酸セリウム、酸化アルミニウム、酸化ガリウム、酸化スカンジウムを秤量した。その際、Sc量vが下記組成式で、0、0.003、0.006、0.012、0.020、0.025となるようにした。樹脂製のポットにこれらの原料粉を入れ、アルミナボールを用いて湿式ボールミル混合を40時間行い、原料スラリーを作製した。作製したスラリーを乾燥後、平板状にプレス成型し、酸素中にて焼成を行った。焼成条件は1660℃で12時間保持にて行った。これにより蛍光材料を得た。
  これにより得られた蛍光材料をICP-AES分析により組成を特定したところ、表9に示す組成の蛍光材料であることが確認できた。表9の組成を用いて有効原子番号を計算すると50.7~50.8であった。焼成温度は相対密度が99%以上となるように決めており、実際に得られた蛍光材料の相対密度は99%以上であった。
  Sc量vと相対発光強度の関係を図6に示す。
Figure JPOXMLDOC01-appb-T000010
 また、Sc量と蛍光材料における平均結晶粒径の関係を調べた。上記で得た蛍光材料のSc量と平均結晶粒径との関係を図7に示す。
 表10はSc量と平均結晶粒径、発光強度について調べたものである。図7、表10より、Sc量を示すvの値が0.02以下であれば、発光強度の低下を防ぐことができる。また、vを0.003以上とすれば結晶粒成長が抑制され平均結晶粒径を十分に小さくすることができる。Scの原料は高価であることから多量の添加はコストを増大させることや、発光強度を高める効果を考慮すればvの上限値を0.02とすることが好ましく、0.015とすることがより好ましい。
Figure JPOXMLDOC01-appb-T000011
10、10’、13     シンチレータアレイ
11     第1のアレイ
10’a、11a、12a    入射面
11c、10’b、12c    検出面
12     第2のアレイ
14、15  放射線検出器
21     第1のセル
22     第2のセル
23     樹脂層
31、32、33     光電変換素子アレイ
31a、32a、33a  受光面

Claims (12)

  1.  (Gd1-α-β-γαCeβTbγ3+a(Al1-u-vGauScv5-b12で表される組成を有し、
     前記RはYおよびLuの少なくとも一方であり、
     前記a、b、α、β、γ、u、vが下記範囲を満足し、
    0≦a≦0.1、
    0≦b≦0.1、
    0≦α≦0.8、
    0.0003≦β≦0.005、
    0.02≦γ≦0.2、
    0.27≦u≦0.75、
    0≦v≦0.02
     相対密度が99%以上であり、
     有効原子番号が35以上60以下である蛍光材料。
  2.  前記RはYであり、
     前記a、b、αは下記範囲を満足し、
    0<a≦0.1、
    0<b≦0.1、
    0.3<α≦0.8、
     前記有効原子番号は35以上50以下である請求項1に記載の蛍光材料。
  3.  前記RはLuであり、
    前記a、b、αは下記範囲を満足し、
    0<a≦0.1、
    0<b≦0.1、
    0.3<α≦0.8、
     前記有効原子番号は53以上57以下である請求項1に記載の蛍光材料。
  4.  前記RはLuであり、
    前記a、b、β、γ、u、vは下記数値を満足し、
    a=0.01、b=0.01、
    β=0.003/3.01
    γ=0.15/3.01
    u=1.96/4.99
    v=0.03/4.99
     前記αは下記範囲を満足し、
    0.5<α≦0.8、
     前記有効原子番号は54以上56以下である請求項1に記載の蛍光材料。
  5.  前記βは下記範囲を満足する
    0.0005≦β≦0.003
    請求項1から4のいずれかに記載の蛍光材料。
  6.  前記vは下記範囲を満足する
    0.003≦v≦0.02
    請求項1から5のいずれかに記載の蛍光材料。
  7.  前記a、bはa=bである請求項1から6のいずれかに記載の蛍光材料。
  8.  前記蛍光材料は第1の蛍光材料と第2の蛍光材料とを含み、
     前記第1の蛍光材料において、
     前記RはYであり、
     前記a、b、αは下記範囲を満足し、
    0<a≦0.1、
    0<b≦0.1、
    0.3<α≦0.8、
     前記有効原子番号は、35以上50以下であり、
     前記第2の蛍光材料において、
     前記RはLuであり、
     前記a、b、αは下記範囲を満足し、
    0<a≦0.1、
    0<b≦0.1、
    0.3<α≦0.8、
     前記有効原子番号は53以上57以下である、
    請求項1に記載の蛍光材料。
  9.  請求項1から8のいずれかに記載の蛍光材料を含むシンチレータ。
  10.  請求項9に記載のシンチレータと、
     光を電気信号、電流値または電圧値に変換する光電変換素子と
    を備えた放射線検出器。
  11.  第1の蛍光材料からなり、第1の方向に配列された複数の第1のセルと、
     第2の蛍光材料からなり、前記第1の方向に配列された複数の第2のセルと、
    を備え、
     各第1のセルは、前記複数の第2のセルの1つと前記第1の方向に垂直な第2の方向において隣接するように配置されており、
     前記第1の蛍光材料および前記第2の蛍光材料はそれぞれ請求項1から7のいずれかに規定される蛍光材料であり、
     前記第1の蛍光材料および前記第2の蛍光材料は互いに異なるエネルギー吸収係数を備える、シンチレータアレイ。
  12.  請求項11に記載のシンチレータアレイと、
     受光面を有し、複数の光電変換素子を含む光電変換素子アレイと
    を備え、
     前記複数の光電変換素子は前記第1の方向に配列されており、各光電変換素子は、前記受光面が前記複数の第1のセルの1つおよび前記複数の第2のセルの1つと対向するように、前記1つの第1のセルおよび前記1つの第2のセルと、前記第1の方向および前記第2の方向に直交する第3の方向において隣接して位置している、放射線検出器。
PCT/JP2015/077738 2014-09-30 2015-09-30 蛍光材料、シンチレータ、シンチレータアレイ、並びに放射線検出器 WO2016052616A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580052427.9A CN106715646B (zh) 2014-09-30 2015-09-30 荧光材料、闪烁体、闪烁体阵列以及放射线检测器
US15/515,165 US10562785B2 (en) 2014-09-30 2015-09-30 Fluorescent material, scintillator, scintillator array, and radiation detector
JP2016552115A JP6394705B2 (ja) 2014-09-30 2015-09-30 蛍光材料、シンチレータ、シンチレータアレイ、並びに放射線検出器
EP15848024.4A EP3202874B1 (en) 2014-09-30 2015-09-30 Fluorescent material, scintillator, scintillator array, and radiation detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-199755 2014-09-30
JP2014199755 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016052616A1 true WO2016052616A1 (ja) 2016-04-07

Family

ID=55630641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077738 WO2016052616A1 (ja) 2014-09-30 2015-09-30 蛍光材料、シンチレータ、シンチレータアレイ、並びに放射線検出器

Country Status (5)

Country Link
US (1) US10562785B2 (ja)
EP (1) EP3202874B1 (ja)
JP (1) JP6394705B2 (ja)
CN (1) CN106715646B (ja)
WO (1) WO2016052616A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018105864A (ja) * 2016-12-23 2018-07-05 同方威視技術股▲分▼有限公司 デュアル・エネルギー検出器及び放射線検査システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10684380B2 (en) * 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
CN107879373A (zh) * 2017-12-07 2018-04-06 中国科学院福建物质结构研究所 铈锌双掺gagg纳米粉体及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102168307A (zh) * 2011-03-28 2011-08-31 蔡鸿 铈钇铝石榴石晶体生长方法
JP2012072330A (ja) * 2010-09-29 2012-04-12 Toshiba Corp 固体シンチレータ用材料、固体シンチレータ、およびそれを用いた放射線検出器並びに放射線検査装置
JP2012072331A (ja) * 2010-09-29 2012-04-12 Toshiba Corp 固体シンチレータ用材料、固体シンチレータ、およびそれを用いた放射線検出器並びに放射線検査装置
WO2012057133A1 (ja) * 2010-10-29 2012-05-03 日立金属株式会社 軟x線検出用多結晶シンチレータ
WO2012105202A1 (ja) * 2011-01-31 2012-08-09 国立大学法人東北大学 シンチレータ用ガーネット型結晶、及びこれを用いた放射線検出器
WO2013047193A1 (ja) * 2011-09-28 2013-04-04 富士フイルム株式会社 放射線画像撮影システム
WO2013136804A1 (ja) * 2012-03-15 2013-09-19 株式会社 東芝 固体シンチレータ、放射線検出器、および放射線検査装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10330595A1 (de) * 2003-07-07 2005-02-17 Siemens Ag Röntgendetektor und Verfahren zur Herstellung von Röntgenbildern mit spektraler Auflösung
CN101084290B (zh) 2004-12-21 2012-07-18 日立金属株式会社 荧光材料以及其制造方法,使用荧光材料的放射线检测器,与x射线ct装置
JP2008013607A (ja) * 2006-07-03 2008-01-24 Fujifilm Corp Tb含有発光性化合物、これを含む発光性組成物と発光体、発光素子、固体レーザ装置
JP5311241B2 (ja) 2011-02-16 2013-10-09 日立金属株式会社 多結晶シンチレータ及びその製造方法並びに放射線検出器
US9145517B2 (en) 2012-04-17 2015-09-29 General Electric Company Rare earth garnet scintillator and method of making same
JP6103042B2 (ja) 2013-04-12 2017-03-29 日立金属株式会社 蛍光材料、シンチレータ、並びに放射線変換パネル

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072330A (ja) * 2010-09-29 2012-04-12 Toshiba Corp 固体シンチレータ用材料、固体シンチレータ、およびそれを用いた放射線検出器並びに放射線検査装置
JP2012072331A (ja) * 2010-09-29 2012-04-12 Toshiba Corp 固体シンチレータ用材料、固体シンチレータ、およびそれを用いた放射線検出器並びに放射線検査装置
WO2012057133A1 (ja) * 2010-10-29 2012-05-03 日立金属株式会社 軟x線検出用多結晶シンチレータ
WO2012105202A1 (ja) * 2011-01-31 2012-08-09 国立大学法人東北大学 シンチレータ用ガーネット型結晶、及びこれを用いた放射線検出器
CN102168307A (zh) * 2011-03-28 2011-08-31 蔡鸿 铈钇铝石榴石晶体生长方法
WO2013047193A1 (ja) * 2011-09-28 2013-04-04 富士フイルム株式会社 放射線画像撮影システム
WO2013136804A1 (ja) * 2012-03-15 2013-09-19 株式会社 東芝 固体シンチレータ、放射線検出器、および放射線検査装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3202874A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018105864A (ja) * 2016-12-23 2018-07-05 同方威視技術股▲分▼有限公司 デュアル・エネルギー検出器及び放射線検査システム
US10386502B2 (en) 2016-12-23 2019-08-20 Nuctech Company Limited Dual energy detector and radiation inspection system

Also Published As

Publication number Publication date
US10562785B2 (en) 2020-02-18
EP3202874B1 (en) 2020-07-01
JP6394705B2 (ja) 2018-09-26
CN106715646A (zh) 2017-05-24
EP3202874A4 (en) 2018-07-04
CN106715646B (zh) 2020-09-15
EP3202874A1 (en) 2017-08-09
US20170217784A1 (en) 2017-08-03
JPWO2016052616A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
US8431042B2 (en) Solid state scintillator material, solid state scintillator, radiation detector, and radiation inspection apparatus
US9193903B2 (en) Solid scintillator, radiation detector, and radiation examination device
CN101253128B (zh) 稀土氧硫化物闪烁体及其生产方法
US8815122B2 (en) Polycrystalline scintillator for detecting soft X-rays
JP6103042B2 (ja) 蛍光材料、シンチレータ、並びに放射線変換パネル
JP6394705B2 (ja) 蛍光材料、シンチレータ、シンチレータアレイ、並びに放射線検出器
WO2002050211A1 (en) Oxide phosphor and radiation detector using it, and x-ray ct device
JP5269634B2 (ja) 固体シンチレータ、放射線検出器、放射線検査装置、固体シンチレータ製造用粉末および固体シンチレータの製造方法
JP6776671B2 (ja) 蛍光材料、セラミックシンチレータおよび放射線検出器、並びに蛍光材料の製造方法
WO2022202500A1 (ja) シンチレータおよび放射線検出器
JP5572049B2 (ja) 固体シンチレータ用材料、固体シンチレータ、およびそれを用いた放射線検出器並びに放射線検査装置
WO2021132494A1 (ja) シンチレータおよび放射線検出器
WO2021149670A1 (ja) シンチレータおよび放射線検出器
JP2021102716A (ja) シンチレータおよび放射線検出器
JP2021102715A (ja) シンチレータおよび放射線検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848024

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552115

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15515165

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015848024

Country of ref document: EP