WO2016052504A1 - 組成物、細胞構造体、膵島移植キット、膵島細胞移植治療剤及び血糖低下剤、膵島を含む組成物、膵島を含むキット、並びに膵島移植治療剤及び血糖低下剤 - Google Patents
組成物、細胞構造体、膵島移植キット、膵島細胞移植治療剤及び血糖低下剤、膵島を含む組成物、膵島を含むキット、並びに膵島移植治療剤及び血糖低下剤 Download PDFInfo
- Publication number
- WO2016052504A1 WO2016052504A1 PCT/JP2015/077516 JP2015077516W WO2016052504A1 WO 2016052504 A1 WO2016052504 A1 WO 2016052504A1 JP 2015077516 W JP2015077516 W JP 2015077516W WO 2016052504 A1 WO2016052504 A1 WO 2016052504A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- islet
- cell
- cell structure
- biocompatible polymer
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/37—Digestive system
- A61K35/39—Pancreas; Islets of Langerhans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/022—Artificial gland structures using bioreactors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/28—Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/42—Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/222—Gelatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3804—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3804—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
- A61L27/3834—Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3886—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells comprising two or more cell types
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0676—Pancreatic cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/64—Animal cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/06—Flowable or injectable implant compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/22—Materials or treatment for tissue regeneration for reconstruction of hollow organs, e.g. bladder, esophagus, urether, uterus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
- C12N2500/34—Sugars
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/998—Proteins not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2535/00—Supports or coatings for cell culture characterised by topography
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2537/00—Supports and/or coatings for cell culture characterised by physical or chemical treatment
- C12N2537/10—Cross-linking
Definitions
- the present invention relates to a composition containing an islet, a cell structure containing an islet or an islet cell, an islet transplantation kit, an islet cell transplantation therapeutic agent, and a hypoglycemic agent.
- the present invention further relates to a composition comprising an islet, a kit comprising an islet, an islet transplantation therapeutic agent, and a hypoglycemic agent.
- Regenerative medicine is being put to practical use to regenerate living tissues and organs that have fallen into dysfunction or dysfunction.
- Regenerative medicine is a new medicine that regenerates the same form and function as the original tissue using the three factors of cells, scaffolding, and growth factors from living tissue that can not be recovered only by the natural healing ability of the living body.
- Technology In recent years, treatment using cells is gradually being realized. For example, cultured epidermis using autologous cells, cartilage treatment using autologous chondrocytes, bone regeneration treatment using mesenchymal stem cells, cardiomyocyte sheet treatment using myoblasts, corneal regeneration treatment using corneal epithelial sheets, and Examples include nerve regeneration treatment.
- Patent Document 1 describes a cell structure including a polymer block having biocompatibility and cells, and a plurality of the polymer blocks arranged in the gaps between the plurality of cells.
- nutrients can be delivered from the outside to the inside of the cell structure.
- the cell structure has a sufficient thickness, and the cells are uniformly present in the structure.
- high cell survival activity has been demonstrated using a polymer block made of recombinant gelatin or a natural gelatin material.
- Patent Document 2 discloses a cell structure for cell transplantation, which includes a polymer block having biocompatibility and at least one type of cell, and a plurality of the polymer blocks are arranged in a gap between the plurality of cells. The body is listed.
- angiogenesis is evaluated using a cell structure for cell transplantation.
- transplantation treatment is carried out in which an islet that produces insulin is transplanted into the liver of the diabetic patient and permanently established. There are ⁇ cells that secrete insulin in the islets in the pancreas, and it is thought that insulin secretion becomes possible by transplanting the islets.
- transplantation treatment called islet transplantation is performed for patients who cannot secrete insulin from their own pancreas. There are ⁇ cells that secrete insulin in the islets in the pancreas, and it is thought that insulin secretion becomes possible by transplanting the islets.
- islet transplantation is currently performed by the Edmonton protocol method in which islets are injected into the blood from the portal vein.
- Non-Patent Document 1 in an in vitro glucose responsiveness test, in the case of only islets, glucose responsiveness disappears after 10 days of culture, but in the case of dispersed islet cells and mesenchymal stem cells, and islet cells In the case of a mesenchymal stem cell fusion, it has been shown that glucose responsiveness is maintained even after 10 days of culture (page 5, right column 4-6, Fig. 5-b). Moreover, in Non-Patent Document 1, the blood glucose level in Vivo was the same when pancreatic islets alone (Group 3) and when pancreatic islets and mesenchymal stem cells were cocultured (Group 6) (Fig. 8a). ). Non-Patent Document 2 shows that in in vivo, when only pancreatic islets are transplanted, the blood glucose level does not decrease, whereas by transplanting mesenchymal stem cells together with pancreatic islets, the blood glucose level is decreased.
- islet transplantation is currently performed by a method called Edmonton protocol in which islets are injected into the blood from the portal vein, but the problem is that the insulin withdrawal rate after transplantation is low.
- Edmonton protocol a method in which islets are injected into the blood from the portal vein, but the problem is that the insulin withdrawal rate after transplantation is low.
- One of the causes is that the cell activity (glucose responsiveness) of the islets after transplantation cannot be maintained. If the glucose responsiveness of islet cells can be maintained, the blood glucose level after transplantation can be lowered, and the insulin withdrawal rate after transplantation can be increased.
- Patent Document 1 and Patent Document 2 there is no description of transplanting pancreatic islets, nor is there a description of combining islet cells and stem cells into a cell structure. Moreover, in patent document 1 and patent document 2, there is no description of the Example using an islet cell or an islet, and there is no description regarding the glucose responsiveness of the islet cell after a transplant.
- Non-Patent Document 1 an in vitro test indicates that glucose responsiveness is maintained even after 10 days of culture in the case of dispersed islet cells and mesenchymal stem cells, and in the case of a fusion of islet cells and mesenchymal stem cells. However, it is unclear whether the pancreatic islet has sufficient glucose responsiveness after transplantation in vivo and whether the blood glucose level is sufficiently lowered.
- Non-Patent Document 2 shows that transplantation of pancreatic islets and mesenchymal stem cells reduces the blood glucose level. In order to reduce the number of transplanted islets, the glucose responsiveness of the pancreatic islets is further improved. There is a need for a way to do that.
- the present invention provides a composition containing an islet, a cell structure containing an islet or an islet cell, and an islet transplant kit that improve at least one of glucose responsiveness and blood glucose level-lowering ability after transplantation. This is a problem to be solved. It is another object of the present invention to provide a therapeutic agent for islet cell transplantation and a hypoglycemic agent comprising the above composition, cell structure or islet transplantation kit. It is another object of the present invention to provide a composition containing an islet and a kit containing an islet that can improve glucose responsiveness. Another object of the present invention is to provide a therapeutic agent for islet cell transplantation and a hypoglycemic agent comprising the above composition or kit.
- the inventors of the present invention can improve glucose responsiveness by mixing and culturing pancreatic islets or pancreatic islet cells as compared with the case where no polymer block is used. showed that.
- the present inventors use a composition containing islets and spheroids of stem cells such as mesenchymal stem cells, thereby including islets and dispersed stem cells. It was shown that the glucose responsiveness of the islets after transplantation is improved compared to the case of using the composition.
- the present invention has been completed based on these findings.
- A a cell structure comprising a biocompatible polymer block and at least one type of cell, wherein a plurality of the polymer blocks are disposed in a space between the plurality of cells
- B Islets
- a composition comprising (2) The composition according to (1), wherein the islet is an aggregate of ⁇ cells, ⁇ cells, ⁇ cells, ⁇ cells, and PP cells.
- the biocompatible polymer block is composed of a recombinant peptide.
- the above recombinant peptide is A peptide consisting of the amino acid sequence set forth in SEQ ID NO: 1; A peptide having an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence described in SEQ ID NO: 1 and having biocompatibility; or 80% or more of the amino acid sequence described in SEQ ID NO: 1 A peptide having an amino acid sequence having the following sequence identity and having biocompatibility;
- the composition according to (7), wherein (9) The composition according to any one of (1) to (8), wherein in the biocompatible polymer block, the biocompatible polymer is crosslinked with heat, ultraviolet light or an enzyme. (10) The composition according to any one of (1) to (9), wherein the biocompatible polymer block is in the form of granules obtained by pulverizing a porous body of a biocompatible polymer.
- a cell structure comprising a biocompatible polymer block, at least one type of cell, and an islet, wherein a plurality of the polymer blocks are disposed in a gap between the plurality of cells.
- a cell structure comprising a biocompatible polymer block and at least two types of cells, wherein a plurality of the polymer blocks are disposed in gaps between the plurality of cells, A cell structure comprising at least pancreatic islet cells and stem cells as cells.
- the islet cells include ⁇ cells, ⁇ cells, ⁇ cells, ⁇ cells, and PP cells.
- the above recombinant peptide is A peptide consisting of the amino acid sequence set forth in SEQ ID NO: 1; A peptide having an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence described in SEQ ID NO: 1 and having biocompatibility; or 80% or more of the amino acid sequence described in SEQ ID NO: 1 A peptide having an amino acid sequence having the following sequence identity and having biocompatibility;
- (25) The cell structure according to any one of (11) to (24), wherein in the biocompatible polymer block, the biocompatible polymer is crosslinked with heat, ultraviolet light, or an enzyme.
- A a cell structure comprising a biocompatible polymer block and at least one type of cell, wherein a plurality of the polymer blocks are disposed in a space between the plurality of cells
- B Islets, An islet transplantation kit.
- the biocompatible polymer block comprises a recombinant peptide.
- the above recombinant peptide is A peptide consisting of the amino acid sequence set forth in SEQ ID NO: 1; A peptide having an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence described in SEQ ID NO: 1 and having biocompatibility; or 80% or more of the amino acid sequence described in SEQ ID NO: 1 A peptide having an amino acid sequence having the following sequence identity and having biocompatibility;
- the islet transplant kit according to (33). The islet transplant kit according to any one of (27) to (34), wherein in the biocompatible polymer block, the biocompatible polymer is crosslinked with heat, ultraviolet light or an enzyme.
- composition according to any one of (1) to (10), the cell structure according to any one of (11) to (26), or the islet according to any one of (27) to (36) A therapeutic agent for islet cell transplantation including a transplantation kit.
- the composition according to any one of (1) to (10), the cell structure according to any one of (11) to (26), or the islet according to any one of (27) to (36) A hypoglycemic agent including a transplant kit.
- the composition according to any one of (1) to (10), the cell structure according to any one of (11) to (26), or the islet according to any one of (27) to (36) A cell transplantation method comprising the step of transplanting a transplantation kit to a patient in need of transplantation of islets or islet cells.
- a method for lowering blood glucose comprising the step of transplanting a transplantation kit to a patient in need of lowering blood glucose.
- composition according to any one of (1) to (10) for use in islet cell transplantation therapy The cell structure according to any one of (11) to (26) for use in islet cell transplantation therapy.
- the pancreatic islet transplant kit according to any one of (27) to (36) for use in a blood glucose lowering treatment The pancreatic islet transplant kit according to any one of (27) to (36) for use in a blood glucose lowering treatment.
- composition according to any one of (1) to (10), the cell structure according to any one of (11) to (26) or (27) for the production of a therapeutic agent for islet cell transplantation To use of the islet transplant kit according to any of (36).
- composition according to any one of (1) to (10), the cell structure according to any one of (11) to (26), or (27) for producing a hypoglycemic agent Use of the islet transplant kit according to any of 36).
- a composition comprising an islet and a spheroid comprising at least one type of stem cell.
- a kit comprising an islet and a spheroid comprising at least one type of stem cell.
- the kit according to any one of (62) to (65) wherein the islet is an aggregate of ⁇ cells, ⁇ cells, ⁇ cells, ⁇ cells, and PP cells.
- An islet transplantation therapeutic agent comprising the composition according to any one of (51) to (61) or the kit according to any one of (62) to (68).
- a hypoglycemic agent comprising the composition according to any one of (51) to (61) or the kit according to any one of (62) to (68).
- a method for islet transplantation comprising: (74) Transplanting the composition according to any one of (51) to (61) or the kit according to any one of (62) to (68) into a patient in need of hypoglycemia Including a method for lowering blood sugar.
- composition according to any one of (51) to (61) for use in a blood glucose lowering treatment.
- the glucose responsiveness and the ability to lower the blood glucose level after transplantation can be obtained.
- at least one of them can be improved.
- the glucose responsiveness can be improved and the blood glucose level can be lowered.
- FIG. 1 shows the temperature profile when freezing the solvent in the examples.
- FIG. 2 shows the results of measuring blood glucose levels after subcutaneous transplantation of cell structures and cell masses and islets into diabetic mice.
- FIG. 3 shows the results of verification of blood glucose level normalization ability in the glucose tolerance test (in the case of 200 islets).
- FIG. 4 shows the results of verification of blood glucose level normalization ability in the glucose tolerance test (in the case of 400 islets).
- FIG. 5 shows a tissue section image 4 weeks after diabetic mouse subcutaneous transplantation. The upper row shows HE staining (hematoxylin / eosin staining), and the lower row shows insulin immunostaining.
- FIG. 6 shows blood glucose levels after transplantation of 200 islets.
- FIG. 7 shows the results of a glucose tolerance test on 200 islets.
- FIG. 8 shows the results of a glucose tolerance test on 400 islets.
- the first aspect of the present invention is the aspect described in the above (1) to (50).
- the composition of the present invention comprises: A: a cell structure comprising a biocompatible polymer block and at least one type of cell, wherein a plurality of the polymer blocks are arranged in the gaps between the plurality of cells, and B: islets, It is a composition containing this.
- the cell structure of the present invention comprises A cell structure comprising a biocompatible polymer block, at least one kind of cell, and an islet, wherein a plurality of the polymer blocks are disposed in a space between the plurality of cells; or biocompatibility A cell structure comprising a polymer block and at least two types of cells, wherein a plurality of the polymer blocks are arranged in the gaps between the plurality of cells, and the cells are at least islet cells And cell structures including stem cells: It is.
- the cell structure of the present invention may be referred to as a mosaic cell mass (a mosaic cell mass) in the present specification.
- the islet transplant kit of the present invention comprises A: a cell structure comprising a biocompatible polymer block and at least one type of cell, wherein a plurality of the polymer blocks are arranged in the gaps between the plurality of cells, and B: islets, An islet transplantation kit.
- the composition referred to in the present invention is a composition containing a cell structure and an islet, and means an arbitrary mixture containing the cell structure and an islet.
- the islet is separated from the cell structure.
- a part of the islet is included in the cell structure as a part of the cell structure to form the cell structure, but the remaining islets are separated from the cell structure.
- the islet transplant kit referred to in the present invention means a kit containing a cell structure and an islet in a separate form, but in a combined state.
- composition, cell structure, and islet transplant kit of the present invention include: “a biocompatible polymer block and at least one type of cell, wherein a plurality of the polymers are provided in a space between the plurality of cells.
- a cell structure in which a block is arranged and further includes an islet cell or an islet in the cell structure, or includes an islet in combination with the cell structure.
- the composition, cell structure, and islet transplantation kit of the present invention can achieve high glucose responsiveness of islets after transplantation by having the above-described configuration.
- Patent Document 1 and Patent Document 2 a cell structure including a polymer block having biocompatibility and a cell, wherein a plurality of the polymer blocks are arranged in the gaps between the plurality of cells.
- a cell structure of the present invention “a cell comprising a biocompatible polymer block and at least two types of cells, wherein a plurality of the polymer blocks are disposed in a space between the plurality of cells.
- the structure and the cell structure including at least islet cells and stem cells as the cells high glucose responsiveness can be achieved by including both islet cells and stem cells in the polymer block. Is a feature.
- Comparative Example A1 islet only
- Comparative Example A3 cell structure composed of islet and biocompatible polymer block
- Comparative Example A4 islet cell only
- Comparative Example A6 cell structure composed of islet cells and biocompatible polymer block
- the biocompatible polymer block is When used, glucose responsiveness has been shown to decrease. Therefore, the fact that cell structures combining islet cells, stem cells, and biocompatible polymer blocks exhibit high glucose responsiveness means that glucose responsiveness decreases when biocompatible polymer blocks are used. It is the exact opposite, a completely unexpected and remarkable effect.
- Biocompatible polymer block The composition, cell structure and islet transplant kit of the present invention comprise a biocompatible polymer block.
- the biocompatible polymer block will be described below.
- (1-1) Bioaffinity polymer Bioaffinity means that a significant adverse reaction such as a long-term and chronic inflammatory reaction is not caused upon contact with a living body.
- the biocompatible polymer used in the present invention is not particularly limited as to whether or not it is degraded in vivo as long as it has affinity for the living body, but is preferably a biodegradable polymer.
- non-biodegradable material examples include polytetrafluoroethylene (PTFE), polyurethane, polypropylene, polyester, vinyl chloride, polycarbonate, acrylic, stainless steel, titanium, silicone, and MPC (2-methacryloyloxyethyl phosphorylcholine). It is done.
- PTFE polytetrafluoroethylene
- polyurethane polypropylene
- polyester vinyl chloride
- polycarbonate acrylic
- acrylic stainless steel
- titanium titanium
- silicone silicone
- MPC 2-methacryloyloxyethyl phosphorylcholine
- biodegradable materials include polypeptides such as recombinant peptides (for example, gelatin described below), polylactic acid, polyglycolic acid, lactic acid / glycolic acid copolymer (PLGA), hyaluronic acid, glycosamino Examples include glycan, proteoglycan, chondroitin, cellulose, agarose, carboxymethylcellulose, chitin, and chitosan. Among the above, a recombinant peptide is particularly preferable. These biocompatible polymers may be devised to enhance cell adhesion.
- recombinant peptides for example, gelatin described below
- polylactic acid polyglycolic acid
- PLGA lactic acid / glycolic acid copolymer
- hyaluronic acid glycosamino Examples include glycan, proteoglycan, chondroitin, cellulose, agarose, carboxymethylcellulose, chitin, and chitosan.
- Cell adhesion substrate fibronectin, vitronectin, laminin
- cell adhesion sequence expressed by one letter code of amino acid, RGD sequence, LDV sequence, REDV sequence, YIGSR sequence, PDSGR sequence, RYVVLPR sequence, LGTIPPG sequence, RNIAEIIKDI sequence, IKVAV sequence, LRE sequence, DGEA sequence, and HAV sequence
- Coating with peptide “Amination of substrate surface, cationization”, or “Plasma treatment of substrate surface, hydrophilic treatment by corona discharge”, etc. You can use the method.
- the type of polypeptide containing the recombinant peptide is not particularly limited as long as it has biocompatibility. And most preferred are gelatin, collagen and atelocollagen.
- the gelatin for use in the present invention is preferably natural gelatin or recombinant gelatin, and more preferably recombinant gelatin.
- natural gelatin means gelatin made from naturally derived collagen. Recombinant gelatin will be described later in this specification.
- the hydrophilicity value “1 / IOB” value of the biocompatible polymer used in the present invention is preferably from 0 to 1.0. More preferably, it is 0 to 0.6, and still more preferably 0 to 0.4.
- IOB is an index of hydrophilicity / hydrophobicity based on an organic conceptual diagram representing the polarity / nonpolarity of an organic compound proposed by Satoshi Fujita, and details thereof are described in, for example, “Pharmaceutical Bulletin”, vol.2, 2, pp .163-173 (1954), “Area of Chemistry” vol.11, 10, pp.719-725 (1957), “Fragrance Journal”, vol.50, pp.79-82 (1981), etc. Yes.
- methane (CH 4 ) is the source of all organic compounds, and all the other compounds are all methane derivatives, with certain numbers set for their carbon number, substituents, transformations, rings, etc. Then, the score is added to obtain an organic value (OV) and an inorganic value (IV), and these values are plotted on a diagram with the organic value on the X axis and the inorganic value on the Y axis. It is going.
- the IOB in the organic conceptual diagram refers to the ratio of the inorganic value (IV) to the organic value (OV) in the organic conceptual diagram, that is, “inorganic value (IV) / organic value (OV)”.
- hydrophilicity / hydrophobicity is represented by a “1 / IOB” value obtained by taking the reciprocal of IOB. The smaller the “1 / IOB” value (closer to 0), the more hydrophilic it is.
- the hydrophilicity is high and the water absorption is high. It is presumed that the cell structure (mosaic cell mass) of the invention contributes to stabilization of cells and ease of survival.
- the hydrophilicity / hydrophobicity index represented by the Grand average of hydropathicity (GRAVY) value is preferably 0.3 or less, preferably minus 9.0 or more, More preferably, it is 0.0 or less and minus 7.0 or more.
- Grand average of hydropathicity (GRAVY) values are based on Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins MR, Appel RD, Bairoch A .; Protein Identification and Analysis Tools on the ExPASy Server; (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press (2005) .pp.
- the biocompatible polymer used in the present invention may be cross-linked or non-cross-linked, but is preferably cross-linked.
- a cross-linked biocompatible polymer By using a cross-linked biocompatible polymer, it is possible to obtain an effect of preventing instantaneous degradation when cultured in a culture medium or transplanted to a living body.
- Common crosslinking methods include thermal crosslinking, crosslinking with aldehydes (eg, formaldehyde, glutaraldehyde, etc.), crosslinking with condensing agents (carbodiimide, cyanamide, etc.), enzyme crosslinking, photocrosslinking, UV crosslinking, hydrophobic interaction, Hydrogen bonds, ionic interactions, etc. are known.
- the biocompatible polymer block in the present invention is preferably a biocompatible polymer block that does not contain glutaraldehyde, and more preferably a biocompatible polymer block that does not contain an aldehyde or a condensing agent.
- the crosslinking method used in the present invention is more preferably thermal crosslinking, ultraviolet crosslinking, or enzyme crosslinking, and particularly preferably thermal crosslinking.
- the enzyme When performing cross-linking with an enzyme, the enzyme is not particularly limited as long as it has a cross-linking action between polymer materials, but preferably trans-glutaminase and laccase, most preferably trans-glutaminase can be used for cross-linking.
- a specific example of the protein that is enzymatically cross-linked with transglutaminase is not particularly limited as long as it is a protein having a lysine residue and a glutamine residue.
- the transglutaminase may be derived from a mammal or may be derived from a microorganism. Specifically, transglutaminase derived from a mammal that has been marketed as an Ajinomoto Co., Ltd.
- Human-derived blood coagulation factors Factor XIIIa, Haematologic Technologies, Inc.
- Factor XIIIa Haematologic Technologies, Inc.
- guinea pig liver-derived transglutaminase goat-derived transglutaminase
- rabbit-derived transglutaminase from Oriental Yeast Co., Ltd., Upstate USA Inc., Biodesign Bio International, etc. Etc.
- the reaction temperature at the time of performing crosslinking is not particularly limited as long as crosslinking is possible, but is preferably ⁇ 100 ° C. to 500 ° C., more preferably 0 ° C. to 300 ° C., and still more preferably. It is 50 ° C to 300 ° C, more preferably 100 ° C to 250 ° C, and further preferably 120 ° C to 200 ° C.
- the recombinant gelatin referred to in the present invention means a polypeptide or protein-like substance having an amino acid sequence similar to gelatin produced by a gene recombination technique.
- the recombinant gelatin that can be used in the present invention preferably has a repeating sequence represented by Gly-XY, which is characteristic of collagen (X and Y each independently represents an amino acid).
- Gly-XY may be the same or different.
- two or more cell adhesion signals are contained in one molecule.
- recombinant gelatin used in the present invention recombinant gelatin having an amino acid sequence derived from a partial amino acid sequence of collagen can be used.
- EP1014176, US Pat. No. 6,992,172, International Publication WO2004 / 85473, International Publication WO2008 / 103041, and the like can be used, but are not limited thereto.
- a preferable example of the recombinant gelatin used in the present invention is the recombinant gelatin of the following embodiment.
- Recombinant gelatin has excellent biocompatibility due to the inherent performance of natural gelatin, and is not naturally derived, so there is no concern about bovine spongiform encephalopathy (BSE) and excellent non-infectivity. Recombinant gelatin is more uniform than natural ceratin and its sequence is determined, so that strength and degradability can be precisely designed with less blur due to cross-linking and the like.
- BSE bovine spongiform encephalopathy
- the molecular weight of the recombinant gelatin is not particularly limited, but is preferably 2 kDa or more and 100 kDa or less, more preferably 2.5 kDa or more and 95 kDa or less, further preferably 5 kDa or more and 90 kDa or less, and most preferably 10 kDa or more and 90 kDa or less. is there.
- Recombinant gelatin preferably has a repeating sequence represented by Gly-XY characteristic of collagen.
- the plurality of Gly-XY may be the same or different.
- Gly-XY Gly represents glycine
- X and Y represent any amino acid (preferably any amino acid other than glycine).
- the sequence represented by Gly-XY, which is characteristic of collagen, is a very specific partial structure in the amino acid composition and sequence of gelatin / collagen compared to other proteins. In this part, glycine accounts for about one third of the whole, and in the amino acid sequence, it is one in three repeats.
- Glycine is the simplest amino acid, has few constraints on the arrangement of molecular chains, and greatly contributes to the regeneration of the helix structure upon gelation.
- the amino acids represented by X and Y are rich in imino acids (proline, oxyproline), and preferably account for 10% to 45% of the total.
- 80% or more, more preferably 95% or more, and most preferably 99% or more of the amino acid sequence of the recombinant gelatin is a Gly-XY repeating structure.
- polar amino acids are charged and uncharged at 1: 1.
- the polar amino acid specifically refers to cysteine, aspartic acid, glutamic acid, histidine, lysine, asparagine, glutamine, serine, threonine, tyrosine and arginine, and among these polar uncharged amino acids are cysteine, asparagine, glutamine, serine. Refers to threonine and tyrosine.
- the proportion of polar amino acids is 10 to 40%, preferably 20 to 30%, of all the constituent amino acids.
- the proportion of uncharged amino acids in the polar amino acid is preferably 5% or more and less than 20%, preferably less than 10%. Furthermore, it is preferable that any one amino acid, preferably two or more amino acids among serine, threonine, asparagine, tyrosine and cysteine are not included in the sequence.
- the minimum amino acid sequence that acts as a cell adhesion signal in a polypeptide is known (for example, “Pathophysiology”, Vol. 9, No. 7 (1990), page 527, published by Nagai Publishing Co., Ltd.).
- the recombinant gelatin used in the present invention preferably has two or more of these cell adhesion signals in one molecule.
- Specific sequences include RGD sequences, LDV sequences, REDV sequences, YIGSR sequences, PDSGR sequences, RYVVLPR sequences, LGITIPG sequences, RNIAEIIKDI sequences, which are expressed in one-letter amino acid notation in that many types of cells adhere.
- IKVAV sequences IKVAV sequences, LRE sequences, DGEA sequences, and HAV sequences are preferred. More preferred are RGD sequence, YIGSR sequence, PDSGR sequence, LGTIPG sequence, IKVAV sequence and HAV sequence, and particularly preferred is RGD sequence. Of the RGD sequences, an ERGD sequence is preferred.
- the amount of cell substrate produced can be improved. For example, in the case of cartilage differentiation using mesenchymal stem cells as cells, production of glycosaminoglycan (GAG) can be improved.
- GAG glycosaminoglycan
- the number of amino acids between RGDs is not uniform between 0 and 100, preferably between 25 and 60.
- the content of the minimum amino acid sequence is preferably 3 to 50, more preferably 4 to 30, and particularly preferably 5 to 20 per protein molecule from the viewpoint of cell adhesion / proliferation. Most preferably, it is 12.
- the ratio of the RGD motif to the total number of amino acids is preferably at least 0.4%.
- each stretch of 350 amino acids contains at least one RGD motif.
- the ratio of RGD motif to the total number of amino acids is more preferably at least 0.6%, more preferably at least 0.8%, more preferably at least 1.0%, more preferably at least 1.2%. And most preferably at least 1.5%.
- the number of RGD motifs in the recombinant peptide is preferably at least 4, more preferably 6, more preferably 8, more preferably 12 or more and 16 or less per 250 amino acids.
- a ratio of 0.4% of the RGD motif corresponds to at least one RGD sequence per 250 amino acids. Since the number of RGD motifs is an integer, a gelatin of 251 amino acids must contain at least two RGD sequences to meet the 0.4% feature.
- the recombinant gelatin of the present invention comprises at least 2 RGD sequences per 250 amino acids, more preferably comprises at least 3 RGD sequences per 250 amino acids, more preferably at least 4 per 250 amino acids. Contains the RGD sequence. As a further aspect of the recombinant gelatin of the present invention, it contains at least 4 RGD motifs, preferably 6, more preferably 8, more preferably 12 or more and 16 or less.
- Recombinant gelatin may be partially hydrolyzed.
- the recombinant gelatin used in the present invention is represented by the formula: A-[(Gly-XY) n ] m -B.
- n Xs independently represents any of amino acids
- n Ys independently represents any of amino acids.
- m is preferably 2 to 10, and preferably 3 to 5.
- n is preferably 3 to 100, more preferably 15 to 70, and most preferably 50 to 65.
- A represents any amino acid or amino acid sequence
- B represents any amino acid or amino acid sequence
- n Xs each independently represent any amino acid
- n Ys each independently represent any amino acid. Show.
- the recombinant gelatin used in the present invention has the formula: Gly-Ala-Pro-[(Gly-XY) 63 ] 3 -Gly (wherein 63 X independently represent any of the amino acids). 63 Y's each independently represent any of the amino acids, wherein 63 Gly-XY may be the same or different.
- the naturally occurring collagen referred to here may be any naturally occurring collagen, but is preferably type I, type II, type III, type IV, or type V collagen. More preferred is type I, type II, or type III collagen.
- the collagen origin is preferably human, bovine, porcine, mouse or rat, more preferably human.
- the isoelectric point of the recombinant gelatin used in the present invention is preferably 5 to 10, more preferably 6 to 10, and further preferably 7 to 9.5.
- the recombinant gelatin is not deaminated.
- the recombinant gelatin has no telopeptide.
- the recombinant gelatin is a substantially pure polypeptide prepared with a nucleic acid encoding an amino acid sequence.
- a peptide comprising the amino acid sequence set forth in SEQ ID NO: 1; (2) A peptide having an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence described in SEQ ID NO: 1 and having biocompatibility; or (3) described in SEQ ID NO: 1
- amino acid sequence in which one or several amino acids are deleted, substituted or added is preferably 1 to 20, more preferably 1 to 10, and further preferably 1 to 5. Means, particularly preferably 1 to 3.
- the recombinant gelatin used in the present invention can be produced by a genetic recombination technique known to those skilled in the art. For example, in EP1014176A2, US Pat. No. 6,992,172, International Publication WO2004 / 85473, International Publication WO2008 / 103041, etc. It can be produced according to the method described. Specifically, a gene encoding the amino acid sequence of a predetermined recombinant gelatin is obtained, and this is incorporated into an expression vector to produce a recombinant expression vector, which is introduced into an appropriate host to produce a transformant. . Recombinant gelatin is produced by culturing the obtained transformant in an appropriate medium. Therefore, the recombinant gelatin used in the present invention can be prepared by recovering the recombinant gelatin produced from the culture. .
- Bioaffinity polymer block In the present invention, a block (lumb) made of the above-described bioaffinity polymer is used.
- the shape of the biocompatible polymer block in the present invention is not particularly limited. For example, amorphous, spherical, particulate (granule), powder, porous, fiber, spindle, flat and sheet, preferably amorphous, spherical, particulate (granule), powder And porous.
- An indeterminate shape indicates that the surface shape is not uniform, for example, an object having irregularities such as rocks.
- the size of one biocompatible polymer block in the present invention is not particularly limited, but is preferably 1 ⁇ m or more and 1000 ⁇ m or less, more preferably 10 ⁇ m or more and 1000 ⁇ m or less, more preferably 10 ⁇ m or more and 700 ⁇ m or less, Preferably they are 10 micrometers or more and 300 micrometers or less, More preferably, they are 10 micrometers or more and 200 micrometers or less, More preferably, they are 20 micrometers or more and 200 micrometers or less, More preferably, they are 20 micrometers or more and 150 micrometers or less, More preferably, they are 50 micrometers or more and 110 micrometers or less.
- the size of one biocompatible polymer block does not mean that the average value of the sizes of a plurality of biocompatible polymer blocks is in the above range. It means the size of each biocompatible polymer block obtained by sieving the block.
- the size of one block can be defined by the size of the sieve used to separate the blocks.
- a block remaining on the sieve when the passed block is passed through a 106 ⁇ m sieve after passing through a 180 ⁇ m sieve can be a block having a size of 106 to 180 ⁇ m.
- the block remaining on the sieve when the block passed through the sieve of 106 ⁇ m and the passed block is passed through the sieve of 53 ⁇ m can be a block having a size of 53 to 106 ⁇ m.
- a block remaining on the sieve when the passed block is passed through a sieve of 53 ⁇ m and passed through a sieve of 25 ⁇ m can be made a block having a size of 25 to 53 ⁇ m.
- the method for producing the biocompatible polymer block is not particularly limited.
- a porous body of the biocompatible polymer block is pulverized (such as a new power mill). ) To obtain a biocompatible polymer block in the form of granules.
- the temperature at which the liquid temperature is highest in the solution (the internal maximum liquid temperature) is frozen at a temperature below the “solvent melting point ⁇ 3 ° C.” in the unfrozen state.
- the ice formed will be spherical.
- the ice is dried to obtain a porous body having spherical isotropic pores (spherical holes). It is formed by freezing without including the freezing step in which the liquid temperature at the highest liquid temperature in the solution (internal maximum liquid temperature) becomes “solvent melting point ⁇ 3 ° C.” or higher in an unfrozen state. Ice becomes pillar / flat.
- a porous body having columnar or plate-like pores (column / plate hole) that is long on one or two axes is obtained.
- the internal maximum liquid temperature which is the liquid temperature of the highest liquid temperature in the solution is 3 ° C. lower than the solvent melting point in an unfrozen state (“solvent melting point ⁇ 3 ° C.”).
- a biocompatible polymer block can be produced by a method comprising: More preferably, in the present invention, a biocompatible polymer block in the form of granules can be produced by pulverizing the porous body obtained in the step b.
- the biocompatible polymer solution is a temperature at which the internal maximum liquid temperature, which is the liquid temperature at the highest temperature in the solution, is 7 ° C. lower than the solvent melting point in an unfrozen state. (“Solvent melting point ⁇ 7 ° C.”) or below can be frozen.
- the composition, cell structure, and islet transplant kit of the present invention include islets or islet cells.
- An islet is a cell mass composed of an average of about 2000 islet cells, also called “Langerhans Islet”.
- the pancreatic islet is an alpha cell secreting glucagon, a beta cell secreting insulin, a delta cell secreting somatostatin, an epsilon cell secreting ghrelin, and a PP (pancreatic polypeptide) cell secreting pancreatic polypeptide. Composed of seed cells.
- the islet cells referred to in the present invention may be those containing at least one of the above five types, but preferably contain at least ⁇ cells.
- the islet cells may be a mixture containing all of ⁇ cells, ⁇ cells, ⁇ cells, ⁇ cells, and PP cells.
- the islet cell of the present invention may be a pancreatic islet cell by differentiation.
- it also includes islet cells obtained by differentiating somatic stem cells such as iPS cells, ES cells, and mesenchymal stem cells.
- the islets or islet cells used in the present invention preferably have viability and function to such an extent that the pathological state of the patient can be recovered when transplanted into the patient.
- As a function of the islet or the islet cell it is preferable that insulin is secreted and glucose responsiveness is maintained even after transplantation. The glucose responsiveness will be described later in this specification.
- cells other than islet cells may be used.
- pancreatic islet cells and / or cells other than pancreatic islet cells can be used as the “at least one type of cell”, but preferably other than pancreatic islet cells. Cells can be used.
- the cell structure of the present invention comprising a biocompatible polymer block, at least one kind of cell, and an islet, wherein a plurality of the polymer blocks are disposed in a space between the plurality of cells.
- islet cells and / or cells other than islet cells can be used, but cells other than islet cells can be preferably used.
- a cell structure comprising a biocompatible polymer block and at least two types of cells, wherein a plurality of the polymer blocks are disposed in a gap between the plurality of cells, wherein the cell
- stem cells are used as cells other than islet cells.
- the cells other than the islet cells any cells can be used as long as the cells can be transplanted, and the kind thereof is not particularly limited. Further, one type of cell may be used, or a plurality of types of cells may be used in combination.
- the cells to be used are preferably animal cells, more preferably vertebrate cells, and particularly preferably human cells.
- the type of vertebrate-derived cells may be any of stem cells (for example, universal cells or somatic stem cells), progenitor cells, or mature cells.
- stem cells for example, universal cells or somatic stem cells
- progenitor cells for example, embryonic stem (ES) cells, reproductive stem (GS) cells, or induced pluripotent stem (iPS) cells can be used as the universal cells.
- ES embryonic stem
- GS reproductive stem
- iPS induced pluripotent stem
- somatic stem cells for example, mesenchymal stem cells (MSC), hematopoietic stem cells, amniotic cells, umbilical cord blood cells, bone marrow-derived cells, myocardial stem cells, adipose-derived stem cells, or neural stem cells can be used.
- MSC mesenchymal stem cells
- hematopoietic stem cells amniotic cells
- umbilical cord blood cells bone marrow-derived cells
- myocardial stem cells myocardial stem cells
- adipose-derived stem cells adipose-derived stem cells
- neural stem cells for example, mesenchymal stem cells (MSC), hematopoietic stem cells, amniotic cells, umbilical cord blood cells, bone marrow-derived cells, myocardial stem cells, adipose-derived stem cells, or neural stem cells.
- progenitor cells and mature cells include skin, dermis, epidermis, muscle, heart muscle, nerve, bone, cartilage, endothelium, brain, epithelium, heart, kidney, liver, spleen, oral cavity, cornea, bone marrow, cord blood, Cells derived from amniotic membrane or hair can be used.
- human-derived cells examples include ES cells, iPS cells, MSCs, chondrocytes, osteoblasts, osteoprogenitor cells, mesenchymal cells, myoblasts, cardiomyocytes, cardioblasts, neurons, hepatocytes, Fibroblasts, corneal endothelial cells, vascular endothelial cells, corneal epithelial cells, amniotic cells, umbilical cord blood cells, bone marrow derived cells, or hematopoietic stem cells can be used.
- the origin of the cell may be either an autologous cell or an allogeneic cell.
- ES cells, iPS cells, and mesenchymal stem cells (MSC) can be used, and MSC is preferable.
- a plurality of biocompatible polymer blocks are three-dimensionally arranged in a gap between a plurality of cells.
- the biocompatible polymer block and the cells are arranged in a three-dimensional mosaic manner to form a cell structure in which the cells are uniformly present in the structure, and from the outside to the inside of the cell structure. Nutritional delivery is possible.
- a plurality of biocompatible polymer blocks are arranged in a gap between a plurality of cells.
- the “gap between cells” refers to a cell that is constituted. It is not necessary to be a closed space, as long as it is sandwiched between cells. Note that there is no need for a gap between all cells, and there may be a place where the cells are in contact with each other.
- the gap distance between the cells via the biocompatible polymer block that is, the gap distance when selecting a cell and a cell that is present at the shortest distance from the cell is not particularly limited.
- the size is preferably the size of the polymer block, and the preferred distance is also within the preferred size range of the biocompatible polymer block.
- the biocompatible polymer block is sandwiched between cells, but there is no need for cells between all the biocompatible polymer blocks, and the biocompatible polymer blocks are in contact with each other. There may be.
- the distance between the biocompatible polymer blocks via the cells that is, the distance when the biocompatible polymer block and the biocompatible polymer block existing at the shortest distance from the biocompatible polymer block are selected are particularly Although not limited, it is preferably the size of a cell mass when one to several cells used are collected, for example, preferably 10 ⁇ m to 1000 ⁇ m, more preferably 10 ⁇ m to 200 ⁇ m. It is below, More preferably, they are 50 micrometers or more and 110 micrometers or less.
- the expression “is uniformly present” such as “a cell structure in which cells are uniformly present in the structure” is used, but does not mean complete uniformity, It is meant to enable nutrient delivery from the outside to the inside of the cell structure.
- the thickness or diameter of the cell structure in the present invention can be a desired thickness, but the lower limit is preferably 100 ⁇ m or more, more preferably 200 ⁇ m or more, further preferably 215 ⁇ m or more, and 400 ⁇ m or more. More preferably, it is most preferably 730 ⁇ m or more.
- the upper limit of the thickness or diameter is not particularly limited, but the general range for use is preferably 3 cm or less, more preferably 2 cm or less, and even more preferably 1 cm or less.
- the range of the thickness or diameter of the cell structure is preferably 100 ⁇ m or more and 3 cm or less, more preferably 200 ⁇ m or more and 2 cm or less.
- the thickness or diameter of the cell structure is preferably approximately the same as the size of the islet. Specifically, it is preferably 100 ⁇ m or more and 400 ⁇ m or less, more preferably 150 ⁇ m or more and 300 ⁇ m or less, and still more preferably 150 ⁇ m or more and 250 ⁇ m or less.
- regions composed of biocompatible polymer blocks and regions composed of cells are arranged in a mosaic pattern.
- the “thickness or diameter of the cell structure” in this specification indicates the following.
- the length of the line segment that divides the cell structure so that the distance from the outside of the cell structure becomes the shortest in a straight line passing through the point A is shown. Minute A.
- a point A having the longest line segment A is selected in the cell structure, and the length of the line segment A at that time is defined as the “thickness or diameter of the cell structure”.
- the ratio of the cell to the biocompatible polymer block is not particularly limited, but the ratio of the biocompatible polymer block per cell is preferably 0.0000001 ⁇ g or more and 1 ⁇ g or less. Preferably, it is 0.000001 ⁇ g or more and 0.1 ⁇ g or less, more preferably 0.00001 ⁇ g or more and 0.01 ⁇ g or less, and most preferably 0.00002 ⁇ g or more and 0.006 ⁇ g or less.
- the above “per cell” means “per cell for all cells”.
- a cell structure comprising a biocompatible polymer block and at least two types of cells, wherein a plurality of the polymer blocks are disposed in gaps between the plurality of cells, wherein the cell
- a total of cells including islet cells and stem cells include a biocompatible polymer block of 0.0000001 ⁇ g to 1 ⁇ g per cell.
- a cell structure including a biocompatible polymer block, at least one kind of cell, and an islet wherein a plurality of the polymer blocks are arranged in a space between the plurality of cells”.
- the cells (islet cells) contained in the islets are not included in the “cells” of the above “per cell”.
- the ratio of the cells to the biocompatible polymer block within the above range because the cells can be present more uniformly.
- the effect of the cells can be exerted when used for the above-mentioned applications, and by setting the upper limit to the above range, the components in the biocompatible polymer block that are optionally present are cells.
- the component in the biocompatible polymer block is not particularly limited, and examples thereof include components contained in the medium described later.
- a cell structure comprising a biocompatible polymer block and at least two types of cells, wherein a plurality of the polymer blocks are disposed in the gaps between the plurality of cells
- the cell structure preferably includes 10 to 90% by number of islet cells, and 20 cells to all cells including islet cells and stem cells. It is more preferable that it contains at least 80% by number of islet cells, more preferably 30% by number to 70% by number of islet cells, and more preferably 40% by number to 60% by number of islet cells. preferable. From the viewpoint of achieving high glucose responsiveness, the ratio of islet cells is preferably within the above range.
- SI represented by the following formula is preferably 3.0 or more, more preferably 3.1 or more.
- the upper limit of SI is not specifically limited, Generally, it is 50 or less, More preferably, it is 20 or less.
- SI insulin amount when cultured in 20 mM glucose medium / 3 insulin amount when cultured in 3 mM glucose medium
- Measure the amount of insulin by the following method.
- Cell structures are cultured in 3 mM glucose medium for the first hour to stabilize insulin secretion, and then cultured in 3 mM glucose medium for the next hour to measure insulin secretion in low-concentration glucose.
- 3 mM glucose-containing medium manufactured by Cosmo Bio: PNI14
- a 20 mM glucose medium can be prepared by adding a glucose solution to this medium.
- the glucose concentration in each well of a cell container (6.5mm6.5Transwell (registered trademark) with 5.0 ⁇ m Pore Polycarbonate Membrane Insert, Sterile (Corning) etc.) 400 ⁇ L of the above medium was added, 100 ⁇ L of 3 mM glucose-containing medium containing 5 cell structures (Cosmo Bio: PNI14) was washed with 1 ml of the same medium, and 100 ⁇ L of the above medium containing 5 cell structures was placed on the insert. Put. The insert is moved every hour, 400 ⁇ L of the medium in the well after the insert is moved is collected, and insulin is quantified by ELISA (enzyme-linked immunosorbent assay). As the ELISA, a Rat Insulin ELISA (manufactured by ALPCO) can be used.
- ELISA enzyme-linked immunosorbent assay
- the cell structure of the present invention can be produced by mixing a biocompatible polymer block, at least one kind of cells, and, if desired, islets. More specifically, the cell structure of the present invention can be produced by alternately arranging a biocompatible polymer block and the cells.
- the production method is not particularly limited, it is preferably a method in which a biocompatible polymer block is formed and then cells and, if desired, islets are mixed.
- the cell structure of the present invention can be produced by incubating a mixture of a biocompatible polymer block, a cell-containing culture solution, and, optionally, islets.
- the cells and the biocompatible polymer block are arranged in a mosaic pattern in the container and in the liquid held in the container.
- it is preferable to promote or control the formation of a mosaic array composed of cells and a biocompatible substrate by using natural aggregation, natural dropping, centrifugation, and stirring.
- the container used is preferably a container made of a low cell adhesion material or a cell non-adhesive material, and more preferably a container made of polystyrene, polypropylene, polyethylene, glass, polycarbonate, or polyethylene terephthalate.
- the shape of the bottom surface of the container is preferably a flat bottom type, a U shape, or a V shape.
- the cell structure (mosaic cell mass) obtained by the above method is, for example, (A) fusing separately prepared cell structures (mosaic cell masses), or (b) increasing the volume under differentiation medium or growth medium, A cell structure of a desired size can be produced by such a method.
- the fusion method and the volume increase method are not particularly limited.
- the cell structure in the step of incubating the mixture of the biocompatible polymer block and the cell-containing culture solution, can be increased in volume by exchanging the medium with a differentiation medium or a growth medium.
- a cell structure having a desired size is obtained by further adding the biocompatible polymer block. A cell structure in which cells are uniformly present in the body can be produced.
- a plurality of biocompatible polymer blocks and a plurality of cells When fusing separately prepared cell structures, for example, a plurality of biocompatible polymer blocks and a plurality of cells, and a part of a plurality of gaps formed by the plurality of cells Alternatively, a plurality of cell structures in which one or a plurality of the above-mentioned biocompatible polymer blocks are arranged can be fused together.
- a cell structure obtained by fusing a plurality of cell structures of the present invention as described in (a) above is also within the scope of the present invention.
- the thickness or diameter of each cell structure before fusion is preferably 10 ⁇ m or more and 1 cm or less, more preferably 10 ⁇ m or more and 2000 ⁇ m or less, still more preferably 15 ⁇ m or more and 1500 ⁇ m or less, and most preferably 20 ⁇ m or more and 1300 ⁇ m or less.
- the thickness or diameter after fusion is preferably 400 ⁇ m or more and 3 cm or less, more preferably 500 ⁇ m or more and 2 cm or less, and further preferably 720 ⁇ m or more and 1 cm or less.
- the thickness or diameter of the cell structure after the fusion is approximately the same as the size of the islet.
- each cell structure before fusion is preferably 100 ⁇ m or more and 400 ⁇ m or less, more preferably 150 ⁇ m or more and 300 ⁇ m or less, and still more preferably 150 ⁇ m or more and 250 ⁇ m or less.
- the preferred range of the thickness or diameter of each cell structure before fusion is within the preferred range of thickness or diameter of subsequent cellular structures.
- a method for producing a cell structure comprising a biocompatible polymer block, at least one type of cell, and an islet, wherein a plurality of the polymer blocks are disposed in a gap between the plurality of cells.
- the obtained cell structure and the islet Examples include a method for producing a cell structure by incubating, and (ii) a method for producing a cell structure by incubating a biocompatible polymer block, at least one cell, and an islet.
- the cell structure of the present invention When used as a hypoglycemic agent, it comprises a biocompatible polymer block, at least one type of cell, and an islet, and a plurality of the above-mentioned high cells are disposed in a space between the plurality of cells.
- a cell structure in which a molecular block is arranged is particularly preferred, and among these, a cell structure produced by the method (i) is more preferred.
- the composition, cell structure or islet transplantation kit of the present invention can be used as an islet cell transplantation therapeutic agent or a hypoglycemic agent.
- the composition, cell structure or pancreatic islet transplantation kit of the present invention is used as a therapeutic agent for pancreatic islet cell transplantation, it can be administered to diabetic patients, patients who have undergone total pancreatectomy, and the like.
- the composition, cell structure or pancreatic islet transplantation kit of the present invention is used as a hypoglycemic agent, the blood glucose is higher than the normal level, such as an insulin-dependent diabetic patient and a patient who has undergone total pancreas removal. It can be administered to patients in need of reduction.
- an incision, an injection, an endoscope, or the like can be used.
- the cell structure of the present invention can reduce the size of the structure, and thus enables a minimally invasive transplantation method such as transplantation by injection.
- the site of transplantation is not particularly limited, and examples include subcutaneous, intrahepatic, intramuscular, intraomental, and subrenal capsules, but when used as a therapeutic agent for islet cell transplantation, transplant into the subcutaneous or intramuscular region. It is preferable.
- the number of islet cells and the number of islets in the islet cell transplantation therapeutic agent and the hypoglycemic agent of the present invention can be set to the number of islet cells and the number of islets calculated so as to produce a desired therapeutic effect.
- the number of islet cells per administration is preferably about 5.0 ⁇ 10 6 to 1.2 ⁇ 10 8 cells / kg per 1 kg body weight of the patient.
- Body weight more preferably about 8.0 ⁇ 10 6 to 8.0 ⁇ 10 7 pieces / kg body weight, more preferably about 1.2 ⁇ 10 7 to 4.0 ⁇ 10 7 pieces / kg body weight It is.
- the number of islets per administration is preferably about 5000 to 60000 / kg body weight, more preferably about 8000 to 40000 / kg body weight, and more preferably about 1 kg body weight of the patient. About 12000-20000 pieces / kg body weight.
- a cell transplantation method comprising the step of transplanting the composition, cell structure or islet transplantation kit of the present invention into a patient in need of transplantation of islet or islet cells.
- a cell transplantation method comprising the step of transplanting the composition, cell structure or pancreatic islet transplantation kit of the present invention to a patient in need of hypoglycemia.
- use of the composition, cell structure or islet transplant kit of the present invention for the production of a therapeutic agent for cell transplantation there is provided use of the composition, cell structure or islet transplant kit of the present invention for the production of a hypoglycemic agent.
- the second aspect of the present invention is the aspect described in (51 to (80) above.
- the second aspect of the present invention will be described below.
- composition of the present invention is a composition comprising an islet and a spheroid composed of at least one type of stem cell.
- the kit of the present invention is a kit comprising an islet and a spheroid composed of at least one type of stem cell.
- the composition referred to in the present invention means an arbitrary composition containing pancreatic islets and spheroids composed of at least one kind of stem cells, and the form thereof is not particularly limited.
- a liquid composition containing a plurality of islets and a plurality of spheroids in a liquid may be used, or a composition consisting only of cells containing a plurality of islets and a plurality of spheroids may be used.
- the composition of the present invention is a liquid composition comprising a plurality of islets and a plurality of spheroids in a liquid, more preferably a plurality of islets and a plurality of spheroids.
- a composition contained in a liquid medium is a liquid medium.
- the composition of the present invention is a composition containing a plurality of islets and a plurality of spheroids in a liquid medium
- the plurality of islets and the plurality of spheroids are cell clusters in the liquid medium.
- a plurality of islets and a plurality of spheroids may be suspended in the liquid medium.
- a state in which a plurality of islets and a plurality of spheroids form a cell mass in a liquid medium and a state in which the cells are floating in the liquid medium may be mixed.
- the kit referred to in the present invention means a kit containing islets and spheroids composed of at least one kind of stem cells in separate forms, but in a combined state.
- One of the characteristics of the composition and kit of the present invention is to use a spheroid composed of at least one kind of stem cells.
- glucose responsiveness can be improved by using stem cells in which spheroids are formed instead of using stem cells in a dispersed state. It is completely unexpected that the above effect is achieved by using spheroids composed of stem cells in combination with islets.
- the purpose of spheroidizing cells includes (1) the purpose of inducing cell differentiation, or (2) the purpose of imparting polarity to cells.
- mesenchymal stem cells can be differentiated into chondrocytes by culturing in a spheroid state.
- the polarity originally retained in the living body can be recovered.
- these two purposes are not necessary for stem cells used with islets in the present invention. It is not necessary to intend to differentiate mesenchymal stem cells, and polarity does not matter when using one type of cell. Therefore, in the present invention, there is no motivation to spheroidize stem cells used with islets.
- compositions and kits of the present invention include islets.
- An islet is a cell mass composed of an average of about 2000 islet cells, also called “Langerhans Islet”.
- the pancreatic islet is an alpha cell secreting glucagon, a beta cell secreting insulin, a delta cell secreting somatostatin, an epsilon cell secreting ghrelin, and a PP (pancreatic polypeptide) cell secreting pancreatic polypeptide.
- the islets used in the present invention preferably have viability and function to such an extent that the patient's pathological state can be recovered when transplanted into the patient. As a function of the islet, it is preferable that insulin is secreted and glucose responsiveness is maintained even after transplantation. The glucose responsiveness will be described later in this specification.
- the number of islets in the composition and kit of the present invention is not particularly limited, but can be set to the number of islets calculated to produce a desired therapeutic effect.
- the composition and kit of the present invention can be used for islet transplantation into a living body.
- the blood glucose level of the living body can be lowered.
- the blood glucose level of a living body can be measured by a conventional method. For example, if the blood glucose level of a laboratory animal such as a mouse is used, a commercially available glucose concentration measuring device such as a glucose pilot (manufactured by Iwai Chemical Co., Ltd.) is used.
- the human blood glucose level can also be measured by a commercially available glucose concentration measuring device such as One Touch Ultraview (Johnson & Johnson), Accu Check (Roche Diagnostics) or the like.
- composition and kit of the present invention include spheroids composed of at least one kind of stem cells.
- stem cell any cell can be used as long as cell transplantation can be performed, and the type thereof is not particularly limited.
- one type of stem cell may be used, or a plurality of types of stem cells may be used in combination, but it is preferable to use one type of stem cell. That is, in the present invention, it is preferable to use a spheroid composed of one kind of stem cells.
- the stem cell to be used is preferably an animal cell, more preferably a vertebrate cell, particularly preferably a human cell.
- the stem cell may be, for example, a universal cell or a somatic stem cell.
- ES embryonic stem
- GS reproductive stem
- iPS induced pluripotent stem
- the somatic stem cells for example, mesenchymal stem cells (MSC), hematopoietic stem cells, amniotic cells, umbilical cord blood cells, bone marrow-derived cells, myocardial stem cells, adipose-derived stem cells, or neural stem cells can be used.
- the origin of the cell may be either an autologous cell or an allogeneic cell.
- ES cells iPS cells, and mesenchymal stem cells (MSC) can be used, and MSC is preferable.
- MSC mesenchymal stem cells
- Spheroid means an aggregate of cells in which cells are aggregated three-dimensionally.
- the spheroid according to the invention of the present application is preferably an aggregate of cells in which cells are three-dimensionally aggregated only by cells without containing other components.
- the size and shape of the spheroid are not particularly limited, but are preferably equivalent to the size of the islets.
- the shape and size of the spheroid are not particularly limited.
- the spheroid may have a spherical shape with a diameter of 100 ⁇ m to 500 ⁇ m, and more preferably a spherical shape with a diameter of 100 ⁇ m to 300 ⁇ m.
- the size of the spheroid can be measured by approximating the spherical spheroid to a sphere and measuring the diameter of the approximated sphere.
- Spheroids are prepared by adjusting stem cells to a predetermined number (for example, 5 ⁇ 10 1 cells / mL to 1 ⁇ 10 4 cells / mL) in a medium, and then culturing the stem cells in the medium in an appropriate culture container.
- a medium growth medium
- MSCGM BulletKit registered trademark
- StemPro MSC SFM XenoFree medium life technologies, A10675-01
- the like can be used, but are not particularly limited.
- the culture vessel is not particularly limited as long as it can cultivate stem cells, but a vessel made of a low-cell adhesive material or a non-cell-adhesive material is preferable, and more preferably polystyrene, polypropylene, polyethylene, glass, polycarbonate, polyethylene terephthalate.
- a container The shape of the bottom surface of the container is preferably a flat bottom type, a U shape, or a V shape.
- a U-shaped plate for example, Sumilon Celtite X96U plate (manufactured by Sumitomo Bakelite Co., Ltd., bottom U-shaped)
- a spherical spheroid can be produced.
- the number of cells of one spheroid in the composition and kit of the present invention is preferably 5 ⁇ 10 1 cells to 1 ⁇ 10 4 cells, more preferably 1 ⁇ 10 2 cells to 5 ⁇ 10 3 cells, and 2 ⁇ 10 2 cells. More preferred is ⁇ 2 ⁇ 10 3 cells.
- the number of spheroids in the composition and kit of the present invention is preferably 0.1: 1 to 20: 1, more preferably 0.5: 1 to 10: 1, relative to the number of islets. More preferably, the ratio is 1: 1 to 5: 1 (“0.5: 1” means that when the number of islets is 1, the number of spheroids is 0.5) .
- SI represented by the following formula is preferably 1.7 or more, more preferably 2.0 or more.
- the upper limit of SI is not specifically limited, Generally, it is 50 or less, More preferably, it is 20 or less.
- SI 20 mmol / L Insulin amount cultured in glucose medium / 3 mmol / L Insulin amount cultured in glucose medium
- the cell mass formed using the composition of the present invention is cultured in a 3 mmol / L glucose medium for the first hour to stabilize the amount of insulin secretion, and then cultured in a 3 mmol / L glucose medium for the next hour.
- the amount of insulin secretion in the concentration glucose is measured, and the insulin secretion amount in the high concentration glucose is measured by culturing in the 20 mmol / L glucose medium for the last one hour.
- a medium a medium containing 3 mmol / L glucose (manufactured by Cosmo Bio: PNI14) is used, and a 20 mmol / L glucose medium can be prepared by adding a glucose solution to this medium.
- the glucose concentration in each well of a cell container (6.5mm6.5Transwell (registered trademark) with 5.0 ⁇ m Pore Polycarbonate Membrane Insert, Sterile (Corning) etc.) 400 ⁇ L of the above medium was added and 100 ⁇ L of 3 mmol / L glucose-containing medium (Cosmo Bio: PNI14) containing 5 cell masses was washed with 1 mL of the same medium, and 100 ⁇ L of the above media containing 5 cell masses was placed on the insert. Put. The insert is moved every hour, and 400 ⁇ L of the medium in the well after the insert is transferred, and insulin is quantified by ELISA (Enzyme-Linked ImmunoSorbent Assay; enzyme-linked immunosorbent assay). As the ELISA, a Rat Insulin ELISA (manufactured by ALPCO) can be used.
- ELISA Enzyme-Linked ImmunoSorbent Assay; enzyme-linked immunosorbent assay
- the method for producing the composition of the present invention is not particularly limited.
- the composition of the present invention can be produced by mixing a predetermined number of spheroids and a predetermined number of islets in a culture vessel containing a liquid medium and further culturing as desired.
- the composition of the present invention is a composition containing a plurality of islets and a plurality of spheroids in a liquid medium
- the islets and spheroids form a cell mass in the liquid medium. May be suspended in the liquid medium, or these may be mixed.
- the culture container used here is preferably a container made of a low-cell adhesive material or a non-cell-adhesive material, and more preferably a container made of polystyrene, polypropylene, polyethylene, glass, polycarbonate, or polyethylene terephthalate.
- the shape of the bottom surface of the container is preferably a flat bottom type, a U shape, or a V shape.
- composition or kit of the present invention can be used as an islet transplantation therapeutic agent or a hypoglycemic agent. That is, according to the present invention, there are provided an islet transplantation therapeutic agent comprising the composition or kit of the present invention, and a hypoglycemic agent comprising the composition or kit of the present invention.
- composition or kit of the present invention When the composition or kit of the present invention is used as a therapeutic agent for islet cell transplantation, it can be administered to diabetic patients, patients who have undergone total pancreatectomy, and the like.
- composition or kit of the present invention When the composition or kit of the present invention is used as a hypoglycemic agent, for example, a patient whose blood glucose is higher than a normal value and needs to be lowered, such as an insulin-dependent diabetic patient and a patient who has undergone total pancreatectomy Can be administered.
- an incision, an injection, an endoscope, or the like can be used as an implantation method.
- the site of transplantation is not particularly limited, and examples include subcutaneous, intrahepatic, intramuscular, intraomental, and subrenal capsules, but when used as islet transplantation therapeutic agents, transplant subcutaneously or intramuscularly. Is preferred.
- the number of islets in the islet transplantation therapeutic agent and the hypoglycemic agent of the present invention can be set to the number of islets calculated to produce a desired therapeutic effect.
- the number of islets per administration can be appropriately set according to the weight of the patient, the degree of symptoms, etc. About 1 ⁇ 10 2 to 1 ⁇ 10 5 pieces / kg body weight.
- an islet transplantation method comprising the step of transplanting the composition or kit of the present invention into a patient in need of islet transplantation.
- a cell transplantation method comprising the step of transplanting the composition or kit of the present invention into a patient in need of hypoglycemia.
- use of the composition or kit of this invention for manufacture of an islet transplant therapeutic agent is provided.
- use of the composition or kit of the present invention for the manufacture of a hypoglycemic agent there is provided.
- Example A1 Recombinant peptide (recombinant gelatin)
- CBE3 Molecular weight: 51.6 kD Structure: GAP [(GXY) 63 ] 3 G Number of amino acids: 571 RGD sequence: 12 Imino acid content: 33% Almost 100% of amino acids are GXY repeating structures.
- the amino acid sequence of CBE3 does not include serine, threonine, asparagine, tyrosine and cysteine.
- CBE3 has an ERGD sequence. Isoelectric point: 9.34 GRAVY value: -0.682 1 / IOB value: 0.323
- GAP GAPGLQGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGPAGAPGAPGLQGMPGERGAAGLPGAPG
- Example A2 Preparation of recombinant peptide porous body [PTFE thickness / cylindrical container]
- PTFE polytetrafluoroethylene
- the cylindrical cup-shaped container made of PTFE has a curved surface as a side surface, the side surface is closed with 8 mm PTFE, and the bottom surface (flat plate shape) is also closed with 3 mm PTFE.
- the upper surface has an open shape. Therefore, the inner diameter of the cylindrical cup-shaped container is 43 mm.
- this container is referred to as a PTFE thick / cylindrical container.
- the CBE3 aqueous solution was poured into a PTFE thick / cylindrical container, and the CBE3 aqueous solution was cooled from the bottom using a cooling shelf in a vacuum freeze dryer (TF5-85ATNNN: manufactured by Takara Seisakusho).
- the final concentration of the CBE3 aqueous solution is 4% by mass, and the amount of the aqueous solution is 8 mL.
- Set the shelf temperature to -10 ° C, cool to -10 ° C for 1 hour, then -20 ° C for 2 hours, further -40 ° C for 3 hours, and finally freeze at -50 ° C for 1 hour It was.
- the frozen product thus obtained was then vacuum-dried for 24 hours at ⁇ 20 ° C.
- each aqueous solution is cooled from the bottom surface, so that the water surface temperature at the center of the circle is hardly cooled. Therefore, since the water surface portion at the center of the circle has the highest liquid temperature in the solution, the temperature of the water surface at the center of the circle was measured.
- the liquid temperature of the water surface portion at the center of the circle is referred to as the internal maximum liquid temperature.
- FIG. 1 shows a temperature profile when a solvent is frozen. After passing through an unfrozen state below the melting point, solidification heat is generated and the temperature starts to rise, and ice formation actually begins at this stage. Thereafter, the temperature passed around 0 ° C. for a certain time, and at this stage, a mixture of water and ice was present. At the end, the temperature starts to drop again from 0 ° C. At this stage, the liquid portion disappears and ice is formed. The temperature being measured is the solid temperature inside the ice, not the liquid temperature. As described above, by looking at the internal maximum liquid temperature at the moment when the heat of solidification occurs, it can be determined whether the internal maximum liquid temperature has been frozen after passing through the “solvent melting point ⁇ 3 ° C.” in an unfrozen state.
- the internal maximum liquid temperature in the unfrozen state at the moment when the heat of solidification was generated was ⁇ 8.8 ° C.
- the internal maximum liquid temperature is not more than “solvent melting point ⁇ 3 ° C.” in an unfrozen state.
- Example A4 Preparation of recombinant peptide block (pulverization and crosslinking of porous material)
- the CBE3 porous material obtained in Example A2 was pulverized with a New Power Mill (manufactured by Osaka Chemical Co., Ltd., New Power Mill PM-2005).
- the pulverization was performed by pulverization for 5 minutes in total for 1 minute ⁇ 5 times at the maximum rotation speed.
- the obtained pulverized product was sized with a stainless steel sieve to obtain CBE3 blocks in the form of granules of 25 to 53 ⁇ m, 53 to 106 ⁇ m, and 106 ⁇ m to 180 ⁇ m.
- thermal crosslinking was performed at 160 ° C. under nitrogen (crosslinking time was 8 to 48 hours) to obtain a recombinant peptide block.
- all blocks of 53 to 106 ⁇ m were used.
- Example A5 Preparation of cell structure using recombinant peptide block (rat islet + human bone marrow-derived mesenchymal stem cell (hMSC)) Human bone marrow-derived mesenchymal stem cells (hMSC) cultured in a growth medium (Takara Bio Inc .: MSCGM BulletKit TM ) were adjusted to 50,000 cells / mL with 3 mM glucose-containing medium (Cosmo Bio Inc .: PNI14). The CBE3 block prepared in Example A4 was added to 0.1 mg / mL.
- Sumilon Celtite X96U plate (Sumitomo Bakelite) containing 200 ⁇ L of this mixed solution containing 10 rat islets (Cosmo Bio: PNI14) (an aggregate of ⁇ cells, ⁇ cells, ⁇ cells, ⁇ cells and PP cells).
- Cell made of CBE3 block, hMSC and rat pancreatic islet with a diameter of about 1 mm, seeded in a tabletop centrifuge (200 g, 5 minutes), allowed to stand for 24 hours, A structure was produced. In addition, since it produced in the U-shaped plate, this cell structure was spherical.
- spherical cell mass composed of hMSC and rat islets having a diameter of about 500 ⁇ m.
- the cell mass was spherical because it was produced in a U-shaped plate.
- Example A6 Preparation of cell structure using recombinant peptide block (rat islet cell + hMSC) 50,000 cells using 3 mM glucose-containing medium (COSMO BIO: PNI14) containing 10 islets of rat islets (COSMO BIO: PNI14) dispersed in a cell dispersion for islets (COSMO BIO: PNIDME). / ML.
- COSMO BIO: PNI14 3 mM glucose-containing medium
- COSMO BIO: PNI14 islets of rat islets
- COSMO BIO: PNIDME cell dispersion for islets
- / ML cell dispersion for islets
- Example A7 In vitro glucose responsiveness test For the cell structures produced in Examples A5 and A6 and the cell mass produced in Comparative Examples A1 to A6, glucose responsiveness to secrete insulin in response to glucose concentration The presence or absence was examined. The cell structure and cell mass cultured for 7 days were transferred to a medium having a different glucose concentration every hour, and the amount of insulin in the medium was quantified. A total of 3 hours was performed, and the amount of insulin secretion was stabilized in 3 mM glucose medium for the first hour, the amount of insulin secretion in low-concentration glucose was measured for the next hour in 3 mM glucose medium, and 20 mM for the last hour. Insulin secretion in high-concentration glucose was measured using a glucose medium. The medium used was a 3 mM glucose-containing medium (manufactured by Cosmo Bio: PNI14), and a 20 mM glucose medium was prepared by adding a glucose solution to the medium.
- the measurement was carried out using 6.5 mm Transwell (registered trademark) with 5.0 ⁇ m Pore Polycarbonate Membrane Insert, Sterile (Corning Co., Ltd.) in which a filter insert was set on a 24-well plate.
- 400 ⁇ L of a medium with each glucose concentration was added to the well.
- 100 ⁇ L of the same medium containing 5 cell structures prepared in Examples A5 and A6 and 5 cell clusters prepared in Comparative Examples A1 to A6 was placed on the insert.
- the insert was moved every hour, and 400 ⁇ L of the medium in the well after the insert was moved was collected and used for insulin quantification by ELISA.
- ELISA a Rat Insulin ELISA (manufactured by ALPCO) was used.
- SI an index of glucose responsiveness
- Example A8 Preparation of cell structure using recombinant peptide block for transplantation (hMSC) Human bone marrow-derived mesenchymal stem cells (hMSC) were adjusted to 2500 cells / mL with a growth medium (manufactured by Takara Bio Inc .: MSCGM BulletKit TM ) so that the CBE3 block prepared in Example A4 was 0.0025 mg / mL.
- hMSC Human bone marrow-derived mesenchymal stem cells
- hMSC Human bone marrow-derived mesenchymal stem cells
- a growth medium manufactured by Takara Bio Inc .: MSCGM BulletKit TM
- 200 ⁇ L of Sumilon Celtite X96U plate manufactured by Sumitomo Bakelite Co., Ltd., bottom U-shaped
- Centrifuged with a tabletop centrifuge 600 g, 5 minutes
- allowed to stand for 24 hours to produce a spherical cell mass consisting of hMSC cells having a diameter of about 200 ⁇ m.
- the cell mass was spherical because it was produced in a U-shaped plate. It was also about the same size as the islets.
- Example A9 Preparation of diabetic mouse and measurement of blood glucose level
- the mouse used was a male of NOD / SCID (Charles River), 6 weeks old.
- streptozotocin manufactured by Wako Pure Chemical Industries, Ltd.
- the blood sugar level was measured by collecting venous blood from the tail vein of a mouse with a 28G injection needle and using a glucose concentration measuring device glucose pilot (manufactured by Iwai Chemical Co., Ltd.).
- Example A10 Subcutaneous transplantation of cell structures and cell masses and islets into diabetic mice
- the diabetic mice produced in Example A9 and 7 days after administration of streptozotocin were used for transplantation. Under anesthesia, diabetic mice were removed from the back hair and transplanted by the following methods.
- an 18 G injection needle was inserted subcutaneously into the back, and a tip of a 200 ⁇ L scale tip was attached to the injection port of the injection needle.
- each of the following three types of implants was put in advance by sucking with a pipette, and the implants were collected at the tip of the tip. After attaching the tip to the injection needle, the pipette dial was turned and the implant was injected subcutaneously with 100 ⁇ L of medium.
- the transplants (1) to (6) are obtained by mixing the following three types in a medium containing 3 mM glucose (Cosmo Bio: PNI14).
- the transplant of (7) is obtained by culturing (3) before transplantation into a lump.
- 200 islets manufactured by Cosmo Bio: PNI14
- hMSC cell mass (Comparative Example A7)
- 400 cells + 200 islets (manufactured by Cosmo Bio: PNI14) (an aggregate of ⁇ cells, ⁇ cells, ⁇ cells, ⁇ cells, and PP cells)
- 400 hMSC cell structures Example A8) + 200 islets (Cosmo Bio: PNI14) (an aggregate of ⁇ cells, ⁇ cells, ⁇ cells, and PP cells)
- 400 islets COSMO BIO INC .: PNI14) (an aggregate of ⁇ cells, ⁇ cells, ⁇ cells, and PP
- the result is shown in FIG.
- the blood glucose level at 4 weeks after the transplantation was 398 mg / dl when only 200 islets of (1) were transplanted, and the blood glucose level remained high, but the mixture of the cell mass and 200 islets of (2)
- the blood glucose level could be lowered to a normal level.
- the blood glucose level could be lowered to 127 mg / dl and more completely to the normal level.
- Example A11 Verification of blood glucose level normalization ability in glucose tolerance test
- the mice transplanted with (1) to (7) were tested 4 weeks after transplantation. First, mice were fasted for 20 hours, blood glucose levels were measured, and then 2 mg / g glucose was injected intraperitoneally per mouse body weight. After injection, blood glucose level was measured after 15 minutes, 30 minutes, 45 minutes, 60 minutes, 90 minutes, 120 minutes, and 180 minutes. The same test was performed on diabetic mice in which nothing was transplanted and normal mice not administered with streptozotocin. The results are shown in FIG. 3 and FIG. FIG. 3 shows the results of (1) to (3) and (7) in the case of 200 islets, and FIG. 4 shows the results of (4) to (6) in the case of 400 islets.
- each graph the area under the curve of the graph was determined.
- the area was calculated by dividing the graph every measurement time and adding time (min) ⁇ blood glucose level (mg / dl). It can be said that the smaller this area, the higher the blood glucose level is.
- Each area is 45614 min ⁇ mg / dl for (1), 43104 min ⁇ mg / dl for (2), 37682 min ⁇ mg / dl for (3), 5195 min ⁇ mg / dl for (4), and (5) for 32752 min ⁇ mg / dl, (6) was 27405 min ⁇ mg / dl, and (7) was 26658 min ⁇ mg / dl.
- Example A12 Measurement of serum c-peptide (c-peptide) concentration To determine how much insulin is secreted by transplanted islets, c-peptide produced the same molecular weight when secreting insulin. Quantification was performed. One week after transplantation, the mouse was placed under anesthesia, and venous blood was collected from the abdominal vena cava. This was allowed to stand on ice for 30 minutes, and then centrifuged at 1000 g ⁇ 20 minutes to collect supernatant serum. Serum was later measured for c-peptide concentration by Rat c-peptide ELISA (manufactured by ALPCO).
- the concentration of c-peptide was as low as 51 pM when transplanting only the islet of (1), and 44 pM when a mixture of the cell mass and islet of (2) was transplanted, whereas the cell of (3) When a mixture of a structure and an islet was transplanted, the value was as high as 86 pM. From this, it has been clarified that transplanting islets with an hMSC cell structure containing a CBE3 block can lower blood glucose levels by increasing the amount of insulin secreted from the islets. That is, in the islet of (3), it has been clarified that the blood glucose level can be lowered because of high glucose responsiveness that the amount of insulin can be increased according to the high glucose concentration in the blood.
- Example A13 Collection of cell structure and specimen analysis Dissection was performed 4 weeks after transplantation. The skin on the back was peeled off, and the skin at the transplant site was collected. Tissue sections were made on the skin with the graft attached. The tissue was immersed in a 10% by mass formalin buffer solution and formalin fixation was performed. Thereafter, the tissue was embedded in paraffin, and a tissue section of the skin containing the implant was prepared. The sections were subjected to insulin staining with HE staining (hematoxylin and eosin staining) and anti-insulin antibody (Monoclonal Anti-Insulin antibody (manufactured by Sigma-Aldrich: I2018)).
- HE staining hematoxylin and eosin staining
- anti-insulin antibody Monoclonal Anti-Insulin antibody
- the transplanted islets could not be confirmed in the section, and it is considered that the islets did not engraft.
- the transplanted islet can be confirmed by the section, but the amount of islet that can be confirmed was small. Even in the case of insulin immunostaining, there were few areas stained.
- the mixture of the cell structure and islet of (3) was transplanted, many transplanted islets were confirmed in the section, and it was also stained by insulin immunostaining. Furthermore, many blood vessels were formed in the implant. This was a phenomenon that was not observed when the mixture of the cell mass and islet of (2) was transplanted.
- pancreatic islet of (7) When the cell structure and pancreatic islet of (7) are cultured and transplanted before transplantation, a large number of transplanted islets can be confirmed in the section, and there are many areas that are stained even with insulin immunostaining. Many blood vessels were formed in the implant.
- hMSC Human bone marrow-derived mesenchymal stem cells
- a growth medium manufactured by Takara Bio Inc .: MSCGM BulletKit (registered trademark)
- this cell suspension was 200 ⁇ L.
- a Sumilon Celtite X96U plate (Sumitomo Bakelite Co., Ltd., U-shaped at the bottom), centrifuged with a tabletop centrifuge (600 g, 5 minutes), allowed to stand for 24 hours, and a spherical hMSC spheroid with a diameter of about 200 ⁇ m Was made.
- the obtained hMSC spheroid was spherical. It was also about the same size as the islets.
- Example B2 Preparation of cell mass of islets and hMSC spheroids 20 hMSC spheroids of Example B1 cultured for 1 day and rat islets (Cosmo Bio: PNI14) ( ⁇ cells, ⁇ cells, ⁇ cells, ⁇ 10 cells, which are aggregates of cells and PP cells), Sumilon Celtite X96U plate (Sumitomo Bakelite, bottom U-shaped) containing 200 ⁇ L of 3 mmol / L glucose-containing medium (Cosmo Bio: PNI14) Mixed culture. As a result, a cell mass (one piece) of islets and hMSC spheroids was produced.
- Example B3 In vitro glucose responsiveness test The cell mass produced in Example B2 and Comparative Example B1 was examined for the presence of glucose responsiveness to secrete insulin in response to glucose concentration. The above-mentioned cell mass cultured for 1 day was transferred to a medium having a different glucose concentration every hour, and the amount of insulin in the medium was determined by quantification.
- the total secretion time was 3 hours, the insulin secretion was stabilized in 3 mmol / L glucose medium for the first hour, and the insulin secretion in low-concentration glucose was measured in 3 mmol / L glucose medium for the next hour.
- the amount of insulin secretion in high-concentration glucose was measured in a 20 mmol / L glucose medium.
- the medium used was a 3 mmol / L glucose-containing medium (COSMO BIO INC .: PNI14), and a glucose solution was added to the medium to prepare a 20 mmol / L glucose medium.
- the measurement was carried out using 6.5 mm Transwell (registered trademark) with 5.0 ⁇ m Pore Polycarbonate Membrane Insert, Sterile (Corning Co., Ltd.) in which a filter insert was set on a 24-well plate.
- 400 ⁇ L of a medium with each glucose concentration was added to the well.
- 100 ⁇ L of 3 mmol / L glucose-containing medium (Cosmo Bio: PNI14) containing one cell mass prepared in Example B2 and Comparative Example B1 was washed with 1 mL of the same medium, and Example B2 and Comparative Example B1 100 ⁇ L of the same medium containing one cell mass prepared in 1 above was placed on the insert.
- the insert was moved every hour, and 400 ⁇ L of the medium in the well after the insert was moved was collected and used for insulin quantification by ELISA.
- ELISA a Rat Insulin ELISA (manufactured by ALPCO) was used.
- SI 20 mmol / L at the time of culture in glucose medium
- the amount of insulin / the amount of insulin during culture in a 3 mmol / L glucose medium was calculated.
- Example B2 the SI of the islet + hMSC spheroid cell mass produced in Example B2 was 2.04, whereas the islet + hMSC cell mass of Comparative Example B1 was 1.41. From these results, when hMSC and pancreatic islets were co-cultured, it was found that spheroids can improve pancreatic glucose responsiveness rather than suspension.
- Example B4 Preparation of diabetic mice and measurement of blood glucose level
- the mouse used was a male, 6-week-old NOD / SCID (Non Obese Diabetes / Sevefe Combined ImmunoDeficiency) (Charles River).
- streptozotocin manufactured by Wako Pure Chemical Industries, Ltd.
- the blood sugar level was measured by collecting venous blood from the tail vein of a mouse with a 28G injection needle and using a glucose concentration measuring device glucose pilot (manufactured by Iwai Chemical Co., Ltd.).
- hMSC Human bone marrow-derived mesenchymal stem cells (hMSC) cultured in a growth medium (manufactured by Takara Bio Inc .: MSCGM BulletKit (registered trademark)) are medium containing 3 mmol / L glucose (Cosmo Bio The product was adjusted to 2 million cells / mL and 4 million cells / mL by PNI 14). 100 ⁇ L of this cell suspension was used for subsequent transplantation studies.
- a growth medium manufactured by Takara Bio Inc .: MSCGM BulletKit (registered trademark)
- MSCGM BulletKit registered trademark
- Example B5 Subcutaneous transplantation of cell clusters and pancreatic islets into diabetic mice
- the diabetic mice produced in Example B4 on the seventh day after administration of streptozotocin were used for transplantation. Under anesthesia of the diabetic mouse, the hair on the back was removed, an 18 G injection needle was inserted subcutaneously into the back, and a tip of a 200 ⁇ L scale tip was attached to the injection port of the injection needle.
- each of the following two types of implants was put in advance by sucking with a pipette, and the implants were collected at the tip of the tip. After attaching the tip to the injection needle, the pipette dial was turned and the implant was injected subcutaneously with 100 ⁇ L of medium.
- Blood glucose levels were measured every 3-4 days after transplantation.
- the blood sugar level was measured by collecting venous blood from the tail vein of a mouse with a 28G injection needle and using a glucose concentration measuring device glucose pilot (manufactured by Iwai Chemical Co., Ltd.).
- the following 6 types of transplants were mixed in 100 ⁇ L of 3 mmol / L glucose-containing medium (Cosmo Bio: PNI14).
- the islets are floating in a 3 mmol / L glucose-containing medium
- hMSC spheroids and islets are floating in the 3 mmol / L glucose-containing medium.
- hMSCs and islets are suspended in a 3 mmol / L glucose-containing medium.
- Example B1 200 islets (manufactured by Cosmo Bio: PNI14) (an aggregate of ⁇ cells, ⁇ cells, ⁇ cells, ⁇ cells, and PP cells) (2) 400 hMSC spheroids (Example B1) + 200 islets (Cosmo Bio: PNI14) (an aggregate of ⁇ cells, ⁇ cells, ⁇ cells, ⁇ cells, and PP cells) (3) 400 pancreatic islets (COSMO BIO INC .: PNI14) (an aggregate of ⁇ cells, ⁇ cells, ⁇ cells, ⁇ cells, and PP cells) (4) 800 hMSC spheroids (Example B1) + 400 islets (manufactured by Cosmo Bio: PNI14) (an aggregate of ⁇ cells, ⁇ cells, ⁇ cells, and PP cells) (5) hMSC 200,000 cells (2 million cells / mL of Comparative Example B2 for 100 ⁇ L) +200 islets (manufactured by Cosmo Bio: PNI14) (aggregati
- FIG. 6 shows the results of measuring the blood glucose level after transplanting the above (1), (2) and (5).
- the blood glucose level at 4 weeks after transplantation was 398 mg / dl when only 200 islets of (1) were transplanted, and the blood glucose level remained high, but the cell suspension and islets of (5) were transplanted.
- the blood glucose level could be lowered to a normal level of 268 mg / dl, and when transplanted with a mixture of (2) hMSC spheroid and 200 islets, it was 183 mg / dl.
- the blood glucose level cannot be lowered only by the islets, but when the pancreatic islets are transplanted together with hMSC, the blood glucose level can be lowered more than the pancreatic islets alone, and hMSC can be spheroided together. It was confirmed that the blood glucose level could be further lowered to the normal level after transplantation.
- Example B6 Verification of ability to normalize blood glucose level in glucose tolerance test
- the mice transplanted with (1) to (6) were tested 4 weeks after transplantation. First, mice were fasted for 20 hours, blood glucose levels were measured, and then 2 mg / g glucose was injected intraperitoneally per mouse body weight. After injection, blood glucose level was measured after 15 minutes, 30 minutes, 45 minutes, 60 minutes, 90 minutes, 120 minutes, and 180 minutes. The same test was performed on diabetic mice in which nothing was transplanted and normal mice not administered with streptozotocin.
- FIG. 7 shows the results of (1), (2) and (5) for 200 islets
- FIG. 8 shows the results of (3), (4) and (6) for 400 islets. Show.
- (1) was 45614 min ⁇ mg / dl
- (2) was 43104 min ⁇ mg / dl
- (5) was 44003 min ⁇ mg / dl.
- the areas of (3) were 51795 min ⁇ mg / dl, (4) was 32752 min ⁇ mg / dl, and (6) was 39410 min ⁇ mg / dl.
- the blood glucose level was not as high as that of a mouse in which nothing was transplanted, the blood glucose level was less likely to decrease.
- the cell suspension and islets of (6) were transplanted, the blood glucose level did not increase as compared to the islets of (3) alone.
- the spheroid and pancreatic islet of (4) were transplanted, the blood glucose level decreased to a normal value compared to (6).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Cell Biology (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dermatology (AREA)
- Zoology (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biotechnology (AREA)
- Developmental Biology & Embryology (AREA)
- Botany (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Virology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Organic Chemistry (AREA)
- Diabetes (AREA)
- Dispersion Chemistry (AREA)
- Physiology (AREA)
- Nutrition Science (AREA)
- Gastroenterology & Hepatology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Inorganic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Obesity (AREA)
Abstract
Description
(1)A:生体親和性高分子ブロックと、少なくとも1種の細胞とを含み、複数個の上記細胞間の隙間に、複数個の上記高分子ブロックが配置されている細胞構造体、及び
B:膵島、
を含む組成物。
(2)上記膵島が、α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である、(1)に記載の組成物。
(3)上記細胞として、少なくとも間葉系幹細胞を含む、(1)又は(2)に記載の組成物。
(4)上記細胞構造体が、細胞1個当り0.0000001μg以上1μg以下の生体親和性高分子ブロックを含む、(1)から(3)の何れかに記載の組成物。
(5)上記生体親和性高分子ブロック一つの大きさが10μm以上300μm以下である、(1)から(4)の何れかに記載の組成物。
(6)上記細胞構造体の厚さ又は直径が100μm以上3cm以下である、(1)から(5)の何れかに記載の組成物。
(7)上記生体親和性高分子ブロックがリコンビナントペプチドからなる、(1)から(6)の何れかに記載の組成物。
(8)上記リコンビナントペプチドが、
配列番号1に記載のアミノ酸配列からなるペプチド;
配列番号1に記載のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ生体親和性を有するペプチド;又は
配列番号1に記載のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつ生体親和性を有するペプチド;
の何れかである、(7)に記載の組成物。
(9)上記生体親和性高分子ブロックにおいて、上記生体親和性高分子が熱、紫外線又は酵素により架橋されている、(1)から(8)の何れかに記載の組成物。
(10)上記生体親和性高分子ブロックが、生体親和性高分子の多孔質体を粉砕することにより得られる顆粒の形態にある、(1)から(9)の何れかに記載の組成物。
(12)上記膵島が、α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である、(11)に記載の細胞構造体。
(13)上記細胞として、少なくとも間葉系幹細胞を含む、(11)又は(12)に記載の細胞構造体。
(14)上記細胞構造体が、細胞1個当り0.0000001μg以上1μg以下の生体親和性高分子ブロックを含む、(11)から(13)の何れかに記載の細胞構造体。
(15)生体親和性高分子ブロックと、少なくとも2種の細胞とを含み、複数個の上記細胞間の隙間に、複数個の上記高分子ブロックが配置されている細胞構造体であって、上記細胞として、少なくとも膵島細胞及び幹細胞を含む細胞構造体。
(16)上記膵島細胞が、α細胞、β細胞、δ細胞、ε細胞及びPP細胞を含む、(15)に記載の細胞構造体。
(17)上記幹細胞として、少なくとも間葉系幹細胞を含む、(15)又は(16)に記載の細胞構造体。
(18)上記細胞構造体が、膵島細胞及び幹細胞を含む全細胞について細胞1個当り0.0000001μg以上1μg以下の生体親和性高分子ブロックを含む、(15)から(17)の何れかに記載の細胞構造体。
(19)上記細胞構造体が、膵島細胞及び幹細胞を含む全細胞に対し、10個数%以上90個数%以下の膵島細胞を含む、(15)から(18)の何れかに記載の細胞構造体。
SI=20mMグルコース培地で培養時のインスリン量/3mMグルコース培地で培養時のインスリン量
(21)上記生体親和性高分子ブロック一つの大きさが10μm以上300μm以下である、(11)から(20)の何れかに記載の細胞構造体。
(22)上記細胞構造体の厚さ又は直径が100μm以上3cm以下である、(11)から(21)の何れか記載の細胞構造体。
(23)上記生体親和性高分子ブロックがリコンビナントペプチドからなる、(11)から(22)の何れかに記載の細胞構造体。
(24)上記リコンビナントペプチドが、
配列番号1に記載のアミノ酸配列からなるペプチド;
配列番号1に記載のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ生体親和性を有するペプチド;又は
配列番号1に記載のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつ生体親和性を有するペプチド;
の何れかである、(23)に記載の細胞構造体。
(25)上記生体親和性高分子ブロックにおいて、上記生体親和性高分子が熱、紫外線又は酵素により架橋されている、(11)から(24)の何れかに記載の細胞構造体。
(26)上記生体親和性高分子ブロックが、生体親和性高分子の多孔質体を粉砕することにより得られる顆粒の形態にある、(11)から(25)の何れかに記載の細胞構造体。
B:膵島、
を含む、膵島移植キット。
(28)上記膵島が、α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である、(27)に記載の膵島移植キット。
(29)上記細胞が、間葉系幹細胞を含む、(27)又は(28)に記載の膵島移植キット。
(30)上記細胞構造体が、細胞1個当り0.0000001 μg以上1 μg以下の生体親和性高分子ブロックを含む、(27)から(29)の何れかに記載の膵島移植キット。
(31)上記生体親和性高分子ブロック一つの大きさが10μm以上300μm以下である、(27)から(30)の何れかに記載の膵島移植キット。
(32)上記細胞構造体の厚さ又は直径が100μm以上3cm以下である、(27)から(31)の何れかに記載の膵島移植キット。
(33)上記生体親和性高分子ブロックがリコンビナントペプチドからなる、(27)から(32)の何れかに記載の膵島移植キット。
(34)上記リコンビナントペプチドが、
配列番号1に記載のアミノ酸配列からなるペプチド;
配列番号1に記載のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ生体親和性を有するペプチド;又は
配列番号1に記載のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつ生体親和性を有するペプチド;
の何れかである、(33)に記載の膵島移植キット。
(35)上記生体親和性高分子ブロックにおいて、上記生体親和性高分子が熱、紫外線又は酵素により架橋されている、(27)から(34)の何れかに記載の膵島移植キット。
(36)上記生体親和性高分子ブロックが、生体親和性高分子の多孔質体を粉砕することにより得られる顆粒の形態にある、(27)から(35)の何れかに記載の膵島移植キット。
(38)投与部位が皮下又は筋肉内である、(37)に記載の細胞移植治療剤。
(39)(1)から(10)の何れかに記載の組成物、(11)から(26)の何れかに記載の細胞構造体又は(27)から(36)の何れかに記載の膵島移植キットを含む、血糖低下剤。
(40)投与部位が皮下または筋肉内である、(39)に記載の血糖低下剤。
(41)(1)から(10)の何れかに記載の組成物、(11)から(26)の何れかに記載の細胞構造体又は(27)から(36)の何れかに記載の膵島移植キットを、膵島又は膵島細胞の移植を必要とする患者に移植する工程を含む、細胞移植方法。
(42)(1)から(10)の何れかに記載の組成物、(11)から(26)の何れかに記載の細胞構造体又は(27)から(36)の何れかに記載の膵島移植キットを、血糖低下を必要とする患者に移植する工程を含む、血糖低下方法。
(44)膵島細胞移植治療において使用するための、(11)から(26)の何れかに記載の細胞構造体。
(45)膵島細胞移植治療において使用するための、(27)から(36)の何れかに記載の膵島移植キット。
(46)血糖低下処置において使用するための、(1)から(10)の何れかに記載の組成物。
(47)血糖低下処置において使用するための、(11)から(26)の何れかに記載の細胞構造体。
(48)血糖低下処置において使用するための、(27)から(36)の何れかに記載の膵島移植キット。
(50) 血糖低下剤の製造のための、(1)から(10)の何れかに記載の組成物、(11)から(26)の何れかに記載の細胞構造体又は(27)から(36)の何れかに記載の膵島移植キットの使用。
(51)膵島と、少なくとも1種類の幹細胞からなるスフェロイドとを含む組成物。
(52)上記幹細胞として、体性幹細胞を少なくとも含む、(51)に記載の組成物。
(53)上記幹細胞として、間葉系幹細胞を少なくとも含む、(51)又は(52)に記載の組成物。
(54)スフェロイドが、1種類の幹細胞からなる、(51)から(53)のいずれか一に記載の組成物。
(55)上記膵島が、α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である、(51)から(54)のいずれか一に記載の組成物。
(56)上記スフェロイドが、直径100μm~500μmの球状である、(51)から(55)のいずれか一に記載の組成物。
(58)複数個の上記膵島と、複数個の上記スフェロイドとが、液体培地中で細胞塊を形成している、(51)から(57)のいずれか一に記載の組成物。
(59)複数個の上記膵島と、複数個の上記スフェロイドとが、液体培地中で浮遊している、(51)から(57)のいずれか一に記載の組成物。
(60)下記式で表されるSIが1.7以上である、(51)から(59)の何れか一に記載の組成物。
SI=20mmol/Lグルコース培地で培養時のインスリン量/3mmol/Lグルコース培地で培養時のインスリン量
(61)生体への膵島移植のために使用する、(51)から(60)のいずれか一に記載の組成物。
(63)上記幹細胞として、体性幹細胞を少なくとも含む、(62)に記載のキット。
(64)上記幹細胞として、間葉系幹細胞を少なくとも含む、(62)又は(63)に記載のキット。
(65)スフェロイドが、1種類の幹細胞からなる、(62)から(64)のいずれか一に記載のキット。
(66)上記膵島が、α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である、(62)から(65)のいずれか一に記載のキット。
(67)上記スフェロイドが、直径100μm~500μmの球状である、(62)から(66)のいずれか一に記載のキット。
(68)生体への膵島移植のために使用する、(62)から(67)のいずれか一に記載のキット。
(70)投与部位が皮下又は筋肉内である、(69)に記載の膵島移植治療剤。
(71)(51)から(61)の何れか一に記載の組成物、又は(62)から(68)の何れか一に記載のキットを含む、血糖低下剤。
(72)投与部位が皮下又は筋肉内である、(71)に記載の血糖低下剤。
(73)(51)から(61)の何れか一に記載の組成物、又は(62)から(68)の何れか一に記載のキットを、膵島の移植を必要とする患者に移植する工程を含む、膵島移植方法。
(74)(51)から(61)の何れか一に記載の組成物、又は(62)から(68)の何れか一に記載のキットを、血糖低下を必要とする患者に移植する工程を含む、血糖低下方法。
(75)膵島移植治療において使用するための、(51)から(61)の何れか一に記載の組成物。
(76)膵島移植治療において使用するための、(62)から(68)の何れかに記載のキット。
(77)血糖低下処置において使用するための、(51)から(61)の何れか一に記載の組成物。
(78)血糖低下処置において使用するための、(62)から(68)の何れか一に記載のキット。
(79) 膵島移植治療剤の製造のための、(51)から(61)の何れか一に記載の組成物又は(62)から(68)の何れか一に記載のキットの使用。
(80) 血糖低下剤の製造のための、(51)から(61)の何れか一に記載の組成物又は(62)から(68)の何れか一に記載のキットの使用。
本発明による膵島を含む組成物、膵島を含むキット、膵島移植治療剤、及び血糖低下剤によれば、グルコース応答性を向上させることができ、また血糖値を低下させることができる。
本発明の第一の態様は、上記(1)~(50)に記載した態様である。先ず、本発明の第一の態様について説明する。
[組成物、細胞構造体、及び膵島移植キット]
本発明の組成物は、
A:生体親和性高分子ブロックと、少なくとも1種の細胞とを含み、複数個の上記細胞間の隙間に、複数個の上記高分子ブロックが配置されている細胞構造体、及び
B:膵島、
を含む組成物である。
生体親和性高分子ブロックと、少なくとも1種の細胞と、膵島とを含み、複数個の上記細胞間の隙間に、複数個の上記高分子ブロックが配置されている細胞構造体;又は
生体親和性高分子ブロックと、少なくとも2種の細胞とを含み、複数個の上記細胞間の隙間に、複数個の上記高分子ブロックが配置されている細胞構造体であって、上記細胞として、少なくとも膵島細胞及び幹細胞を含む細胞構造体:
である。
なお、本発明の細胞構造体は、本明細書中において、モザイク細胞塊(モザイク状になっている細胞塊)と称する場合もある。
本発明の膵島移植キットは、
A:生体親和性高分子ブロックと、少なくとも1種の細胞とを含み、複数個の上記細胞間の隙間に、複数個の上記高分子ブロックが配置されている細胞構造体、及び
B:膵島、
を含む、膵島移植キットである。
本発明の組成物、細胞構造体及び膵島移植キットは、生体親和性高分子ブロックを含む。生体親和性高分子ブロックについて以下に説明する。
(1-1)生体性親和性高分子
生体性親和性とは、生体に接触した際に、長期的かつ慢性的な炎症反応などのような顕著な有害反応を惹起しないことを意味する。本発明で用いる生体親和性高分子は、生体に親和性を有するものであれば、生体内で分解されるか否かは特に限定されないが、生分解性高分子であることが好ましい。非生分解性材料として具体的には、ポリテトラフルオロエチレン(PTFE)、ポリウレタン、ポリプロピレン、ポリエステル、塩化ビニル、ポリカーボネート、アクリル、ステンレス、チタン、シリコーン及びMPC(2-メタクリロイルオキシエチルホスホリルコリン)などが挙げられる。生分解性材料としては、具体的にはリコンビナントペプチドなどのポリペプチド(例えば、以下に説明するゼラチン等)、ポリ乳酸、ポリグリコール酸、乳酸・グリコール酸コポリマー(PLGA)、ヒアルロン酸、グリコサミノグリカン、プロテオグリカン、コンドロイチン、セルロース、アガロース、カルボキシメチルセルロース、キチン、及びキトサンなどが挙げられる。上記の中でも、リコンビナントペプチドが特に好ましい。これら生体親和性高分子には細胞接着性を高める工夫がなされていてもよい。具体的には、1.「基材表面に対する細胞接着基質(フィブロネクチン、ビトロネクチン、ラミニン)や細胞接着配列(アミノ酸一文字表記で現わされる、RGD配列、LDV配列、REDV配列、YIGSR配列、PDSGR配列、RYVVLPR配列、LGTIPG配列、RNIAEIIKDI配列、IKVAV配列、LRE配列、DGEA配列、及びHAV配列)ペプチドによるコーティング」、「基材表面のアミノ化、カチオン化」、又は「基材表面のプラズマ処理、コロナ放電による親水性処理」といった方法を使用できる。
本発明で用いる高分子のGRAVY値を上記範囲とすることにより、親水性が高く、かつ、吸水性が高くなることから、栄養成分の保持に有効に作用し、結果として、本発明の細胞構造体(モザイク細胞塊)における細胞の安定化・生存しやすさに寄与するものと推定される。
本発明で用いる生体親和性高分子は、架橋されているものでもよいし、架橋されていないものでもよいが、架橋されているものが好ましい。架橋されている生体親和性高分子を使用することにより、培地中で培養する際及び生体に移植した際に瞬時に分解してしまうことを防ぐという効果が得られる。一般的な架橋方法としては、熱架橋、アルデヒド類(例えば、ホルムアルデヒド、グルタルアルデヒドなど)による架橋、縮合剤(カルボジイミド、シアナミドなど)による架橋、酵素架橋、光架橋、紫外線架橋、疎水性相互作用、水素結合、イオン性相互作用などが知られている。本発明ではグルタルアルデヒドを使用しない架橋方法を使用することが好ましい。本発明では、アルデヒド類又は縮合剤を使用しない架橋方法を使用することがより好ましい。即ち、本発明における生体親和性高分子ブロックは、好ましくは、グルタルアルデヒドを含まない生体親和性高分子ブロックであり、より好ましくは、アルデヒド類又は縮合剤を含まない生体親和性高分子ブロックである。本発明で使用する架橋方法としては、さらに好ましくは熱架橋、紫外線架橋、又は酵素架橋であり、特に好ましくは熱架橋である。
本発明で言うリコンビナントゼラチンとは、遺伝子組み換え技術により作られたゼラチン類似のアミノ酸配列を有するポリペプチドもしくは蛋白様物質を意味する。本発明で用いることができるリコンビナントゼラチンは、コラーゲンに特徴的なGly-X-Yで示される配列(X及びYはそれぞれ独立にアミノ酸の何れかを示す)の繰り返しを有するものが好ましい。ここで、複数個のGly-X-Yはそれぞれ同一でも異なっていてもよい。好ましくは、細胞接着シグナルが一分子中に2配列以上含まれている。本発明で用いるリコンビナントゼラチンとしては、コラーゲンの部分アミノ酸配列に由来するアミノ酸配列を有するリコンビナントゼラチンを用いることができる。例えばEP1014176、US特許6992172号、国際公開WO2004/85473、国際公開WO2008/103041等に記載のものを用いることができるが、これらに限定されるものではない。本発明で用いるリコンビナントゼラチンとして好ましいものは、以下の態様のリコンビナントゼラチンである。
この最小アミノ酸配列の含有量は、細胞接着・増殖性の観点から、タンパク質1分子中3~50個が好ましく、さらに好ましくは4~30個、特に好ましくは5~20個である。最も好ましくは12個である。
好ましくは、リコンビナントゼラチンはテロペプタイドを有さない。
好ましくは、リコンビナントゼラチンは、アミノ酸配列をコードする核酸により調製された実質的に純粋なポリペプチドである。
(1)配列番号1に記載のアミノ酸配列からなるペプチド;
(2)配列番号1に記載のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ生体親和性を有するペプチド;又は
(3)配列番号1に記載のアミノ酸配列と80%以上(さらに好ましくは90%以上、特に好ましくは95%以上、最も好ましくは98%以上)の配列同一性を有するアミノ酸配列からなり、かつ生体親和性を有するペプチド;
である。
本発明では、上記した生体親和性高分子からなるブロック(塊)を使用する。
本発明における生体親和性高分子ブロックの形状は特に限定されるものではない。例えば、不定形、球状、粒子状(顆粒)、粉状、多孔質状、繊維状、紡錘状、扁平状及びシート状であり、好ましくは、不定形、球状、粒子状(顆粒)、粉状及び多孔質状である。不定形とは、表面形状が均一でないもののことを示し、例えば、岩のような凹凸を有する物を示す。
生体親和性高分子ブロックの製造方法は、特に限定されないが、例えば、生体親和性高分子の多孔質体を、粉砕機(ニューパワーミルなど)を用いて粉砕することにより、顆粒の形態の生体親和性高分子ブロックを得ることができる。
生体親和性高分子の溶液を、溶液内で最も液温の高い部分の液温である内部最高液温が、未凍結状態で、溶媒融点より3℃低い温度(“溶媒融点-3℃”)以下となる、凍結処理により凍結する工程a;及び
上記工程aで得られた凍結した生体親和性高分子を凍結乾燥する工程b:
を含む方法により、生体親和性高分子ブロックを製造することができる。
本発明ではさらに好ましくは、上記工程bで得られた多孔質体を粉砕することによって、顆粒の形態の生体親和性高分子ブロックを製造することができる。
本発明の組成物、細胞構造体、及び膵島移植キットは、膵島又は膵島細胞を含む。
膵島とは、別名ランゲルハンス氏島とも呼ばれる、平均約2000個の膵島細胞より構成される細胞塊である。膵島は、グルカゴンを分泌するα細胞、インスリンを分泌するβ細胞、ソマトスタチンを分泌するδ細胞、グレリンを分泌するε細胞、及び膵ポリペプチドを分泌するPP(pancreatic polypeptide;膵ポリペプチド)細胞の5種の細胞から構成される。
また、本発明の膵島細胞は、分化により膵島細胞になったものであってもよい。例えば、iPS細胞やES細胞、間葉系幹細胞などの体性幹細胞を分化させて得られた膵島細胞も含むものとする。
本発明で使用する膵島又は膵島細胞としては、患者に移植した際に、患者の病的状態を回復することができる程度の生存性と機能とを有することが好ましい。膵島又は膵島細胞の機能としては、インスリンを分泌し、かつ移植後においてもグルコース応答性が維持されていることが好ましい。グルコース応答性については本明細書中後記する。
本発明では、膵島細胞以外の細胞を用いる場合がある。
A:生体親和性高分子ブロックと、少なくとも1種の細胞とを含み、複数個の上記細胞間の隙間に、複数個の上記高分子ブロックが配置されている細胞構造体、及び
B:膵島、
を含む、本発明の組成物及び膵島移植キットにおいては、上記の「少なくとも1種の細胞」として、膵島細胞、及び/又は膵島細胞以外の細胞を用いることができるが、好ましくは膵島細胞以外の細胞を用いることができる。
本発明においては、生体親和性高分子ブロックと細胞とを用いて、複数個の細胞間の隙間に複数個の生体親和性高分子ブロックをモザイク状に3次元的に配置させることによって細胞移植のために適した厚みを有することが可能となる。さらに、生体親和性高分子ブロックと細胞とがモザイク状に3次元に配置されることにより、構造体中で細胞が均一に存在する細胞構造体が形成され、外部から細胞構造体の内部への栄養送達を可能となる。
但し、上記(ii)膵島が、細胞構造体とは別個に存在している実施態様の場合には、細胞構造体の厚さ又は直径は、膵島の大きさと同程度であることが好ましい。具体的には、好ましくは100μm以上400μm以下、より好ましくは、150μm以上300μm以下、更に好ましくは、150μm以上250μm以下である。
SI=20mMグルコース培地で培養時のインスリン量/3mMグルコース培地で培養時のインスリン量
本発明の細胞構造体は、生体親和性高分子ブロックと、少なくとも一種類の細胞と、さらに所望により膵島を混合することによって製造することができる。より具体的には、本発明の細胞構造体は、生体親和性高分子ブロックと、上記細胞とを交互に配置することにより製造できる。製造方法は特に限定されないが、好ましくは生体親和性高分子ブロックを形成したのち、細胞、及び所望により膵島とを混合する方法である。具体的には、生体親和性高分子ブロックと、細胞含有培養液と、所望により膵島との混合物をインキュベートすることによって、本発明の細胞構造体を製造することができる。例えば、容器中、容器に保持される液体中で、細胞と生体親和性高分子ブロックとをモザイク状に配置する。配置の手段としては、自然凝集、自然落下、遠心、攪拌を用いることで、細胞と生体親和性基材からなるモザイク状の配列形成を促進又は制御することが好ましい。
(a)別々に調製した細胞構造体(モザイク細胞塊)同士を融合させる、又は
(b)分化培地又は増殖培地下でボリュームアップさせる、
などの方法により所望の大きさの細胞構造体を製造することができる。融合の方法、ボリュームアップの方法は特に限定されない。
但し、上記(ii)膵島が、細胞構造体とは別個に存在している実施態様の場合には、前述した通り、融合後の細胞構造体の厚さ又は直径は、膵島の大きさと同程度であることが好ましい。具体的には、好ましくは100μm以上400μm以下、より好ましくは、150μm以上300μm以下、更に好ましくは、150μm以上250μm以下であり、融合前の各細胞構造体の厚さ又は直径の好ましい範囲は、融合後の細胞構造体の厚さ又は直径の上記好適な範囲内である。
本発明の組成物、細胞構造体又は膵島移植キットは、膵島細胞移植治療剤又は血糖低下剤として使用することができる。
本発明の組成物、細胞構造体又は膵島移植キットを膵島細胞移植治療剤として使用する場合には、糖尿病患者、膵臓全摘出された患者などに投与することができる。本発明の組成物、細胞構造体又は膵島移植キットを血糖低下剤として使用する場合には、例えば、インスリン依存型糖尿病患者及び膵臓全摘出された患者のような、血糖が正常値より高く、血糖低下を必要とする患者に投与することができる。
移植部位は特に限定されず、皮下、肝臓内、筋肉内、大網内、腎被膜下などを挙げることができるが、膵島細胞移植治療剤として使用する場合には、皮下や筋肉内に移植することが好ましい。
更に本発明によれば、細胞移植治療剤の製造のための、本発明の組成物、細胞構造体又は膵島移植キット使用が提供される。本発明によれば、血糖低下剤の製造のための、本発明の組成物、細胞構造体又は膵島移植キット使用が提供される。
本発明の組成物は、膵島と、少なくとも1種類の幹細胞からなるスフェロイドとを含む組成物である。本発明のキットは、膵島と、少なくとも1種類の幹細胞からなるスフェロイドとを含む、キットである。
本発明の組成物及びキットの特徴の一つは、少なくとも1種類の幹細胞からなるスフェロイドを用いることである。本発明においては、分散した状態の幹細胞を使用するのではなく、スフェロイドを形成した幹細胞を使用することにより、グルコース応答性を向上できるという効果を奏する。幹細胞からなるスフェロイドを膵島と組み合わせて使用することにより上記効果を奏することは全く予想外なことである。
本発明の組成物及びキットは、膵島を含む。
膵島とは、別名ランゲルハンス氏島とも呼ばれる、平均約2000個の膵島細胞より構成される細胞塊である。膵島は、グルカゴンを分泌するα細胞、インスリンを分泌するβ細胞、ソマトスタチンを分泌するδ細胞、グレリンを分泌するε細胞、及び膵ポリペプチドを分泌するPP(pancreatic polypeptide;膵ポリペプチド)細胞の5種の細胞から構成される細胞の集合体である。
本発明で使用する膵島としては、患者に移植した際に、患者の病的状態を回復することができる程度の生存性と機能とを有することが好ましい。膵島の機能としては、インスリンを分泌し、かつ移植後においてもグルコース応答性が維持されていることが好ましい。グルコース応答性については本明細書中後記する。
本発明の組成物及びキットは、少なくとも1種類の幹細胞からなるスフェロイドを含む。
幹細胞は、細胞移植を行えるものであれば任意の細胞を使用することができ、その種類は特に限定されない。また、使用する幹細胞は1種でもよいし、複数種の幹細胞を組合せて用いてもよいが、1種類の幹細胞を使用することが好ましい。即ち、本発明においては、1種類の幹細胞からなるスフェロイドを使用することが好ましい。
スフェロイドの大きさ及び形状は特に限定されないが、膵島の大きさと同等であることが好ましい。スフェロイドの形状及び大きさとしては、特に限定されないが、例えば、直径100μm~500μmの球状とすることができ、さらに好ましくは直径100μm~300μmの球状とすることができる。スフェロイドの大きさの測定方法としては、スフェロイドが球状の場合には、球状のスフェロイドを球に近似し、近似した球の直径を測定することによりスフェロイドの大きさを測定することができる。
本発明の組成物及びキットにおけるスフェロイドの個数は、膵島の個数に対して、0.1:1~20:1であることが好ましく、0.5:1~10:1であることがより好ましく、1:1~5:1であることがより好ましい(なお、「0.5:1」とは、膵島の個数を1とした場合にスフェロイドの個数が0.5であることを意味する)。
本発明の組成物は、下記式で表されるSIが、好ましくは1.7以上であり、より好ましくは2.0以上である。SIの上限値は特に限定されないが、一般的には、50以下であり、より好ましくは20以下である。
SI=20mmol/Lグルコース培地で培養時のインスリン量/3mmol/Lグルコース培地で培養時のインスリン量
本発明の組成物又はキットは、膵島移植治療剤又は血糖低下剤として使用することができる。即ち、本発明によれば、本発明の組成物又はキットを含む膵島移植治療剤、並びに本発明の組成物又はキットを含む血糖低下剤が提供される。
移植部位は特に限定されず、皮下、肝臓内、筋肉内、大網内、腎被膜下などを挙げることができるが、膵島移植治療剤として使用する場合には、皮下や筋肉内に移植することが好ましい。
更に本発明によれば、膵島移植治療剤の製造のための、本発明の組成物又はキットの使用が提供される。本発明によれば、血糖低下剤の製造のための、本発明の組成物又はキットの使用が提供される。
リコンビナントペプチド(リコンビナントゼラチン)として以下のCBE3を用意した(国際公開WO2008/103041号公報に記載)。
CBE3:
分子量:51.6kD
構造: GAP[(GXY)63]3G
アミノ酸数:571個
RGD配列:12個
イミノ酸含量:33%
ほぼ100%のアミノ酸がGXYの繰り返し構造である。CBE3のアミノ酸配列には、セリン、スレオニン、アスパラギン、チロシン及びシステインは含まれていない。CBE3はERGD配列を有している。
等電点:9.34
GRAVY値:-0.682
1/IOB値:0.323
GAP(GAPGLQGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGPAGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPP)3G
[PTFE厚・円筒形容器]
底面厚さ3mm、直径51mm、側面厚さ8mm、高さ25mmのポリテトラフルオロエチレン(PTFE)製円筒カップ状容器を用意した。PTFE製円筒カップ状容器は、曲面を側面としたとき、側面は8mmのPTFEで閉鎖されており、底面(平板の円形状)も3mmのPTFEで閉鎖されている。一方、上面は開放された形をしている。よって、円筒カップ状容器の内径は43mmになっている。以後、この容器のことをPTFE厚・円筒形容器と呼称する。
溶媒を凍結する際の温度プロファイルを図1に示す。融点以下で未凍結状態を経た後、凝固熱が発生し温度上昇が始まり、この段階で実際に氷形成が始まる。その後、温度は0℃付近を一定時間経過していき、この段階では、水と氷の混合物が存在する状態となっていた。最後0℃から再び温度降下が始まるが、この段階では、液体部分はなくなり氷となる。測定している温度は氷内部の固体温度となり、液温ではなくなる。上記の通り、凝固熱が発生する瞬間の内部最高液温を見れば、内部最高液温が未凍結状態で「溶媒融点-3℃」を経た後に凍結したかどうかが分かる。
実施例A2で得られたCBE3多孔質体をニューパワーミル(大阪ケミカル社製、ニューパワーミルPM-2005)で粉砕した。粉砕は、最大回転数で1分間×5回、計5分間の粉砕で行った。得られた粉砕物について、ステンレス製ふるいでサイズ分けし、25~53μm、53~106μm、106μm~180μmの顆粒形態のCBE3ブロックを得た。その後、窒素下で160℃で熱架橋(架橋時間は8~48時間)を施して、リコンビナントペプチドブロックを得た。以下、すべて53~106μmのブロックを用いた。
増殖培地(タカラバイオ社製:MSCGM BulletKitTM)で培養したヒト骨髄由来間葉系幹細胞(hMSC)を3mMグルコース含有メディウム(コスモバイオ社製:PNI14)にて5万cells/mLに調整し、実施例A4で作製したCBE3ブロックを0.1mg/mLとなるように加えた。この混合液200μLを、ラット膵島(コスモバイオ社製:PNI14)(α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である)10個を入れたスミロンセルタイトX96Uプレート(住友ベークライト社製、底がU字型)に播種し、卓上プレート遠心機で遠心(200g、5分)し、24時間静置し、直径1mm程度の球状の、CBE3ブロックとhMSCとラット膵島からなる細胞構造体を作製した。なお、U字型のプレート中で作製したため、本細胞構造体は球状であった。
ラット膵島(コスモバイオ社製:PNI14)10個を3mMグルコース含有メディウム(コスモバイオ社製:PNI14)200μL入れたスミロンセルタイトX96Uプレート(住友ベークライト社製、底がU字型)に入れ、卓上プレート遠心機で遠心(200g、5分)し、24時間静置し、直径300μm程度の球状の、ラット膵島からなる細胞塊を作製した。なお、U字型のプレート中で作製したため、本細胞塊は球状であった。
増殖培地(タカラバイオ社製:MSCGM BulletKitTM)で培養したヒト骨髄由来間葉系幹細胞(hMSC)を3mMグルコース含有メディウム(コスモバイオ社製:PNI14)にて5万cells/mLに調整した。この細胞懸濁液200μLを、ラット膵島(コスモバイオ社製:PNI14)10個を入れたスミロンセルタイトX96Uプレート(住友ベークライト社製、底がU字型)に播種し、卓上プレート遠心機で遠心(200g、5分)し、24時間静置し、直径500μm程度の球状の、hMSCとラット膵島からなる細胞塊を作製した。なお、U字型のプレート中で作製したため、本細胞塊は球状であった。
実施例A4で作製したCBE3ブロックを0.1mg/mLになるように懸濁した3mMグルコース含有メディウム(コスモバイオ社製:PNI14)200μLを、ラット膵島(コスモバイオ社製:PNI14)10個を入れたスミロンセルタイトX96Uプレート(住友ベークライト社製、底がU字型)に播種し、卓上プレート遠心機で遠心(200g、5分)し、24時間静置し、CBE3ブロックとラット膵島からなる細胞塊を作製した。
ラット膵島(コスモバイオ社製:PNI14)10個を膵島用細胞分散液(コスモバイオ社製:PNIDME)で分散させた膵島細胞を3mMグルコース含有メディウム(コスモバイオ社製:PNI14)にて5万cells/mLに調整した。そこに増殖培地(タカラバイオ:MSCGM BulletKitTM)で培養したヒト骨髄由来間葉系幹細胞(hMSC)を5万cells/mLになるように加え、さらに実施例A4で作製したCBE3ブロックを0.1mg/mLとなるように加えた。この混合液200μLを、スミロンセルタイトX96Uプレート(住友ベークライト社製、底がU字型)に播種し、卓上プレート遠心機で遠心(200g、5分)し、24時間静置し、直径1mm程度の球状の、CBE3ブロックとhMSCとラット膵島細胞からなる細胞構造体を作製した。なお、U字型のプレート中で作製したため、本細胞構造体は球状であった。
ラット膵島(コスモバイオ社製:PNI14)10個を膵島用細胞分散液(コスモバイオ社製:PNIDME)で分散させた膵島細胞を3mMグルコース含有メディウム(コスモバイオ社製:PNI14)にて5万cells/mLに調整した。この細胞懸濁液200μLをスミロンセルタイトX96Uプレート(住友ベークライト社製、底がU字型)に播種し、卓上プレート遠心機で遠心(200g、5分)し、24時間静置し、直径300μm程度の球状の、ラット膵島細胞からなる細胞塊を作製した。なお、U字型のプレート中で作製したため、本細胞構造体は球状であった。
ラット膵島(コスモバイオ社製:PNI14)10個を膵島用細胞分散液(コスモバイオ社製:PNIDME)で分散させた膵島細胞を3mMグルコース含有メディウム(コスモバイオ社製:PNI14)にて5万cells/mLに調整した。この細胞懸濁液に、増殖培地(タカラバイオ社製:MSCGM BulletKitTM)で培養したヒト骨髄由来間葉系幹細胞(hMSC)を5万cells/mLになるように加えた。この細胞懸濁液200μLを、スミロンセルタイトX96Uプレート(住友ベークライト社製、底がU字型)に播種し、卓上プレート遠心機で遠心(200g、5分)し、24時間静置し、直径500μm程度の球状の、hMSCとラット膵島からなる細胞塊を作製した。なお、U字型のプレート中で作製したため、本細胞塊は球状であった。
ラット膵島(コスモバイオ社製:PNI14)10個を膵島用細胞分散液(コスモバイオ社製:PNIDME)で分散させた膵島細胞を3mMグルコース含有メディウム(コスモバイオ社製:PNI14)にて10万cells/mLに調整した。この細胞懸濁液に、実施例A4で作製したCBE3ブロックを0.0375mg/mLになるように加え、この懸濁液200μLをスミロンセルタイトX96Uプレート(住友ベークライト社製、底がU字型)に播種し、卓上プレート遠心機で遠心(200g、5分)し、24時間静置し、CBE3ブロックとラット膵島細胞からなる細胞塊を作製した。
実施例A5及びA6で作製した細胞構造体と、比較例A1~A6で作製した細胞塊について、グルコース濃度に応答してインスリンを分泌するグルコース応答性の有無を調べた。7日間培養した上記細胞構造体と細胞塊をそれぞれ1時間ごとにグルコース濃度の異なる培地に移し変え、培地中のインスリン量を定量することで算出した。
計3時間実施し、最初の1時間は3mMグルコース培地でインスリン分泌量を安定させ、次の1時間は3mMグルコース培地で低濃度グルコース中でのインスリン分泌量を測定し、最後の1時間は20mMグルコース培地で高濃度グルコース中でのインスリン分泌量を測定した。培地は3mMグルコース含有メディウム(コスモバイオ社製:PNI14)を用い、この培地にグルコース溶液を添加することで、20mMグルコース培地を作製した。
その結果、実施例A5で作製した膵島+hMSCの細胞構造体では、SIが3.12であったのに対し、比較例A1の膵島細胞塊では1.21、比較例A2の膵島+hMSC細胞塊では2.00、比較例A3では0.99であった。一方、実施例A6の膵島細胞+hMSCの細胞構造体ではSIが3.59であったのに対し、比較例A4の膵島細胞塊では1.23、比較例A5の膵島細胞+hMSC細胞塊では2.93、比較例A6では0.85であった(表1)。
ヒト骨髄由来間葉系幹細胞(hMSC)を増殖培地(タカラバイオ社製:MSCGM BulletKitTM)にて2500cells/mLに調整し、実施例A4で作製したCBE3ブロックを0.0025mg/mLとなるように加えた後、200μLをスミロンセルタイトX96Uプレート(住友ベークライト社製、底がU字型)に播種し、卓上プレート遠心機で遠心(600g、5分)し、24時間静置し、直径200μm程度の球状の、CBE3ブロックとhMSC細胞からなる細胞構造体を作製した。なお、U字型のプレート中で作製したため、本細胞構造体は球状であった。また、これは膵島と同程度の大きさであった。
ヒト骨髄由来間葉系幹細胞(hMSC)を増殖培地(タカラバイオ社製:MSCGM BulletKitTM)にて2500cells/mLに調整し、200μLをスミロンセルタイトX96Uプレート(住友ベークライト社製、底がU字型)に播種し、卓上プレート遠心機で遠心(600g、5分)し、24時間静置し、直径200μm程度の球状の、hMSC細胞からなる細胞塊を作製した。なお、U字型のプレート中で作製したため、本細胞塊は球状であった。また、これは膵島と同程度の大きさであった。
移植する膵島の効果を見るために、血糖値を高くした糖尿病マウスを作製した。
マウスはNOD/SCID(チャールスリバー社製)のオス、6週齢のものを用いた。まず、ストレプトゾトシン(和光純薬社製)を200mg/kg投与し、投与後3日後、7日後に血糖値を測定し、どちらも300mg/dl以上になった個体を糖尿病マウスとした。血糖値はマウスの尾静脈から28Gの注射針で静脈血を採取し、グルコース濃度測定装置グルコースパイロット(岩井化学社製)にて測定した。
実施例A9で作製した、ストレプトゾトシン投与後7日目の糖尿病マウスを移植に用いた。糖尿病マウスを麻酔下で背部の体毛を除去し、それぞれ以下の方法で移植した。(1)~(6)については、背部皮下に18Gの注射針を差し込み、注射針の注入口に、200μLスケールのチップの先を取り付けた。チップ中には、あらかじめ以下の3種類の移植物をピペットで吸うことでそれぞれを入れておき、チップの先端に移植物を集めておいた。注射針にチップを取り付けた後、ピペットのダイヤルを回し、100μLの培地と共に移植物を皮下に注入した。(7)については、背部皮下を切開後、スパチュラに乗せた細胞塊10個を、切開部から1cmほど下部の皮下に置き、切開部を縫合した。移植後、3~4日ごとに血糖値を測定した。
(7)の移植物については、(3)を移植前に培養し、塊にしたものである。
(1)膵島200個(コスモバイオ社製:PNI14)(α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である)
(2)hMSC細胞塊(比較例A7)400個+膵島200個(コスモバイオ社製:PNI14)(α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である)
(3)hMSC細胞構造体(実施例A8)400個+膵島200個(コスモバイオ社製:PNI14)(α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である)
(4)膵島400個(コスモバイオ社製:PNI14)(α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である)
(5)hMSC細胞塊(比較例A7)800個+膵島400個(コスモバイオ社製:PNI14)(α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である)
(6)hMSC細胞構造体(実施例A8)800個+膵島400個(コスモバイオ社製:PNI14)(α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である)
(7)hMSC細胞構造体(実施例A8)400個+膵島200個(コスモバイオ社製:PNI14)(α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である)
ただし、hMSC細胞構造体(実施例A8)40個+膵島20個(コスモバイオ社製:PNI14)(α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である)を、スミロンセルタイトX96Uプレート(住友ベークライト社製、底がU字型)で、200μLの3mMグルコース含有メディウム(コスモバイオ社製:PNI14)中、2.5時間培養して作製した塊を10個
糖を負荷した際に、血糖値を正常値に戻す能力をどれほど有しているかを検証するために、糖負荷試験を実施した。(1)~(7)を移植したマウスについて、移植後4週で試験を実施した。まず、マウスを20時間絶食状態にし、血糖値を測定し、その後マウスの体重あたり2mg/gのグルコースを腹腔注射した。注射後、15分後、30分後、45分後、60分後、90分後、120分後、180分後に血糖値を測定した。何も移植していない糖尿病マウス、ストレプトゾトシンを投与していない正常なマウスについても、同様に試験を実施した。
その結果を図3と図4に示した。図3は、膵島200個の場合の(1)~(3)と(7)の結果、図4は、膵島400個の場合の(4)~(6)の結果を示している。
それぞれの面積は、(1)が45614min・mg/dl、(2)が43104min・mg/dl、(3)が37682min・mg/dl、(4)が51795 min・mg/dl、(5)が32752 min・mg/dl、(6)が27405min・mg/dl、(7)が26658min・mg/dlであった。
以上の結果を表2にまとめた。
移植した膵島がどの程度インスリンを分泌しているかを定量するため、インスリンを分泌する際に、同じ分子量産生するc-peptideについて定量を実施した。
移植後1週のマウスを麻酔下に置き、腹部大静脈から静脈血を採取した。これを、氷上で30分静置後、1000g×20分遠心し、上清の血清を採取した。血清は、後にc-peptide濃度をRat c-peptide ELISA(ALPCO社製)で測定した。
解剖は移植から4週後に行った。背部の皮膚をはがし、移植部位の皮膚を採取した。
移植物が付着した皮膚について組織切片を作製した。組織を10質量%ホルマリン緩衝液に浸漬し、ホルマリン固定を行った。その後、パラフィンで包埋し、移植物を含む皮膚の組織切片を作製した。切片はHE染色(ヘマトキシリン・エオシン染色)と、抗インスリン抗体(Monoclonal Anti-Insulin antibody (Sigma-Aldrich社製:I2018))によるインスリン免疫染色を実施した。
ヒト骨髄由来間葉系幹細胞(hMSC)を増殖培地(タカラバイオ社製:MSCGM BulletKit(登録商標))にて2500cells/mLに調整し、この細胞懸濁液200μLをスミロンセルタイトX96Uプレート(住友ベークライト社製、底がU字型)に播種し、卓上プレート遠心機で遠心(600g、5分)し、24時間静置し、直径200μm程度の球状のhMSCスフェロイドを作製した。なお、U字型のプレート中で作製したため、得られたhMSCスフェロイドは球状であった。また、これは膵島と同程度の大きさであった。
1日培養した実施例B1のhMSCスフェロイド20個と、ラット膵島(コスモバイオ社製:PNI14)(α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である)10個とを、3mmol/Lグルコース含有メディウム(コスモバイオ社製:PNI14)200μLを入れたスミロンセルタイトX96Uプレート(住友ベークライト社製、底がU字型)で混合培養した。その結果、膵島とhMSCスフェロイドの細胞塊(1個)が作製された。
増殖培地(タカラバイオ社製:MSCGM BulletKit(登録商標))で培養したヒト骨髄由来間葉系幹細胞(hMSC)を3mmol/Lグルコース含有メディウム(コスモバイオ社製:PNI14)にて5万cells/mLに調整した。この細胞懸濁液200μLを、ラット膵島(コスモバイオ社製:PNI14)10個を入れたスミロンセルタイトX96Uプレート(住友ベークライト社製、底がU字型)に播種し、卓上プレート遠心機で遠心(200g、5分)し、24時間静置し、直径500μm程度の球状の、hMSCとラット膵島からなる細胞塊を作製した。なお、U字型のプレート中で作製したため、得られた細胞塊は球状であった。
実施例B2及び比較例B1で作製した細胞塊について、グルコース濃度に応答してインスリンを分泌するグルコース応答性の有無を調べた。1日間培養した上記の細胞塊をそれぞれ1時間ごとにグルコース濃度の異なる培地に移し変え、培地中のインスリン量を定量することで算出した。
これらの結果から、hMSCと膵島を共培養した場合、hMSCは懸濁液状態であるよりも、スフェロイドの方が膵臓のグルコース応答性を向上させることができることが分かった。
移植する膵島の効果を見るために、血糖値を高くした糖尿病マウスを作製した。
マウスはNOD/SCID(Non Obese Diabetes/Sevefe Combined ImmunoDeficiency)(チャールスリバー社製)のオス、6週齢のものを用いた。まず、ストレプトゾトシン(和光純薬社製)を200mg/kg投与し、投与後3日後、7日後に血糖値を測定し、どちらも300mg/dl(300mg/100ml)以上になった個体を糖尿病マウスとした。血糖値はマウスの尾静脈から28Gの注射針で静脈血を採取し、グルコース濃度測定装置グルコースパイロット(岩井化学社製)にて測定した。
増殖培地(タカラバイオ社製:MSCGM BulletKit(登録商標))で培養したヒト骨髄由来間葉系幹細胞(hMSC)を3mmol/Lグルコース含有メディウム(コスモバイオ社製:PNI14)にて200万cells/mLおよび400万cells/mLに調整した。この細胞懸濁液100μLを、後の移植試験に用いた。
実施例B4で作製した、ストレプトゾトシン投与後7日目の糖尿病マウスを移植に用いた。糖尿病マウスを麻酔下で背部の体毛を除去し、背部皮下に18Gの注射針を差し込み、注射針の注入口に、200μLスケールのチップの先を取り付けた。チップ中には、あらかじめ以下の2種類の移植物をピペットで吸うことでそれぞれを入れておき、チップの先端に移植物を集めておいた。注射針にチップを取り付けた後、ピペットのダイヤルを回し、100μLの培地と共に移植物を皮下に注入した。移植後、3~4日ごとに血糖値を測定した。血糖値はマウスの尾静脈から28Gの注射針で静脈血を採取し、グルコース濃度測定装置グルコースパイロット(岩井化学社製)にて測定した。
(2)hMSCスフェロイド(実施例B1)400個+膵島200個(コスモバイオ社製:PNI14)(α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である)
(3)膵島400個(コスモバイオ社製:PNI14)(α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である)
(4)hMSCスフェロイド(実施例B1)800個+膵島400個(コスモバイオ社製:PNI14)(α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である)
(5)hMSC 20万cells(比較例B2の200万cells/mLを100μL分)+膵島200個(コスモバイオ社製:PNI14)(α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である)
(6)hMSC 40万cells(比較例B2の400万cells/mLを100μL分)+膵島400個(コスモバイオ社製:PNI14)(α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である)
糖を負荷した際に、血糖値を正常値に戻す能力をどれほど有しているかを検証するために、糖負荷試験を実施した。(1)~(6)を移植したマウスについて、移植後4週で試験を実施した。まず、マウスを20時間絶食状態にし、血糖値を測定し、その後マウスの体重あたり2mg/gのグルコースを腹腔注射した。注射後、15分後、30分後、45分後、60分後、90分後、120分後、180分後に血糖値を測定した。何も移植していない糖尿病マウス、ストレプトゾトシンを投与していない正常なマウスについても、同様に試験を実施した。
(1)の膵島のみ200個を移植した場合では、何も移植していないマウスほど血糖値は高い状態でないものの、血糖値が低下しにくい結果となった。それに比べ、(5)の細胞懸濁液と膵島を移植した場合では、(1)の膵島のみに比べ血糖値が上昇しない結果となった。さらに(2)のスフェロイドと膵島200個の混合物を移植した場合は、(5)よりも血糖値が低下する結果となった。
(3)の膵島のみの場合、何も移植していないマウスほど血糖値は高い状態でないものの、血糖値が低下しにくい結果となった。それに比べ、(6)の細胞懸濁液と膵島を移植した場合では、(3)の膵島のみに比べ血糖値が上昇しない結果となった。さらに、(4)のスフェロイドと膵島を移植した場合は、(6)に比べ、血糖値が正常値に低下する結果となった。
最後に、結果を表3にまとめる。
Claims (62)
- A:生体親和性高分子ブロックと、少なくとも1種の細胞とを含み、複数個の前記細胞間の隙間に、複数個の前記高分子ブロックが配置されている細胞構造体、及び
B:膵島、
を含む組成物。 - 前記膵島が、α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である、請求項1に記載の組成物。
- 前記細胞として、少なくとも間葉系幹細胞を含む、請求項1又は2に記載の組成物。
- 前記細胞構造体が、細胞1個当り0.0000001μg以上1μg以下の生体親和性高分子ブロックを含む、請求項1から3の何れか一項に記載の組成物。
- 前記生体親和性高分子ブロック一つの大きさが10μm以上300μm以下である、請求項1から4の何れか一項に記載の組成物。
- 前記細胞構造体の厚さ又は直径が100μm以上3cm以下である、請求項1から5の何れか一項に記載の組成物。
- 前記生体親和性高分子ブロックがリコンビナントペプチドからなる、請求項1から6の何れか一項に記載の組成物。
- 前記リコンビナントペプチドが、
配列番号1に記載のアミノ酸配列からなるペプチド;
配列番号1に記載のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ生体親和性を有するペプチド;又は
配列番号1に記載のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつ生体親和性を有するペプチド;
の何れかである、請求項7に記載の組成物。 - 前記生体親和性高分子ブロックにおいて、前記生体親和性高分子が熱、紫外線又は酵素により架橋されている、請求項1から8の何れか一項に記載の組成物。
- 前記生体親和性高分子ブロックが、生体親和性高分子の多孔質体を粉砕することにより得られる顆粒の形態にある、請求項1から9の何れか一項に記載の組成物。
- 生体親和性高分子ブロックと、少なくとも1種の細胞と、膵島とを含み、複数個の前記細胞間の隙間に、複数個の前記高分子ブロックが配置されている細胞構造体。
- 前記膵島が、α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である、請求項11に記載の細胞構造体。
- 前記細胞として、少なくとも間葉系幹細胞を含む、請求項11又は12に記載の細胞構造体。
- 前記細胞構造体が、細胞1個当り0.0000001μg以上1μg以下の生体親和性高分子ブロックを含む、請求項11から13の何れか一項に記載の細胞構造体。
- 生体親和性高分子ブロックと、少なくとも2種の細胞とを含み、複数個の前記細胞間の隙間に、複数個の前記高分子ブロックが配置されている細胞構造体であって、前記細胞として、少なくとも膵島細胞及び幹細胞を含む細胞構造体。
- 前記膵島細胞が、α細胞、β細胞、δ細胞、ε細胞及びPP細胞を含む、請求項15に記載の細胞構造体。
- 前記幹細胞として、少なくとも間葉系幹細胞を含む、請求項15又は16に記載の細胞構造体。
- 前記細胞構造体が、膵島細胞及び幹細胞を含む全細胞について細胞1個当り0.0000001μg以上1μg以下の生体親和性高分子ブロックを含む、請求項15から17の何れか一項に記載の細胞構造体。
- 前記細胞構造体が、膵島細胞及び幹細胞を含む全細胞に対し、10個数%以上90個数%以下の膵島細胞を含む、請求項15から18の何れか一項に記載の細胞構造体。
- 下記式で表されるSIが3.0以上である、請求項11から19の何れか一項に記載の細胞構造体。
SI=20mMグルコース培地で培養時のインスリン量/3mMグルコース培地で培養時のインスリン量 - 前記生体親和性高分子ブロック一つの大きさが10μm以上300μm以下である、請求項11から20の何れか一項に記載の細胞構造体。
- 前記細胞構造体の厚さ又は直径が100μm以上3cm以下である、請求項11から21の何れか一項に記載の細胞構造体。
- 前記生体親和性高分子ブロックがリコンビナントペプチドからなる、請求項11から22の何れか一項に記載の細胞構造体。
- 前記リコンビナントペプチドが、
配列番号1に記載のアミノ酸配列からなるペプチド;
配列番号1に記載のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ生体親和性を有するペプチド;又は
配列番号1に記載のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつ生体親和性を有するペプチド;
の何れかである、請求項23に記載の細胞構造体。 - 前記生体親和性高分子ブロックにおいて、前記生体親和性高分子が熱、紫外線又は酵素により架橋されている、請求項11から24の何れか一項に記載の細胞構造体。
- 前記生体親和性高分子ブロックが、生体親和性高分子の多孔質体を粉砕することにより得られる顆粒の形態にある、請求項11から25の何れか一項に記載の細胞構造体。
- A:生体親和性高分子ブロックと、少なくとも1種の細胞とを含み、複数個の前記細胞間の隙間に、複数個の前記高分子ブロックが配置されている細胞構造体、及び
B:膵島、
を含む、膵島移植キット。 - 前記膵島が、α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である、請求項27に記載の膵島移植キット。
- 前記細胞が、間葉系幹細胞を含む、請求項27又は28に記載の膵島移植キット。
- 前記細胞構造体が、細胞1個当り0.0000001μg以上1μg以下の生体親和性高分子ブロックを含む、請求項27から29の何れか一項に記載の膵島移植キット。
- 前記生体親和性高分子ブロック一つの大きさが10μm以上300μm以下である、請求項27から30の何れか一項に記載の膵島移植キット。
- 前記細胞構造体の厚さ又は直径が100μm以上3cm以下である、請求項27から31の何れか一項に記載の膵島移植キット。
- 前記生体親和性高分子ブロックがリコンビナントペプチドからなる、請求項27から32の何れか一項に記載の膵島移植キット。
- 前記リコンビナントペプチドが、
配列番号1に記載のアミノ酸配列からなるペプチド;
配列番号1に記載のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ生体親和性を有するペプチド;又は
配列番号1に記載のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつ生体親和性を有するペプチド;
の何れかである、請求項33に記載の膵島移植キット。 - 前記生体親和性高分子ブロックにおいて、前記生体親和性高分子が熱、紫外線又は酵素により架橋されている、請求項27から34の何れか一項に記載の膵島移植キット。
- 前記生体親和性高分子ブロックが、生体親和性高分子の多孔質体を粉砕することにより得られる顆粒の形態にある、請求項27から35の何れか一項に記載の膵島移植キット。
- 請求項1から10の何れか一項に記載の組成物、請求項11から26の何れか一項に記載の細胞構造体又は請求項27から36の何れか一項に記載の膵島移植キットを含む、膵島細胞移植治療剤。
- 投与部位が皮下又は筋肉内である、請求項37に記載の細胞移植治療剤。
- 請求項1から10の何れか一項に記載の組成物、請求項11から26の何れか一項に記載の細胞構造体又は請求項27から36の何れか一項に記載の膵島移植キットを含む、血糖低下剤。
- 投与部位が皮下又は筋肉内である、請求項39に記載の血糖低下剤。
- 膵島と、少なくとも1種類の幹細胞からなるスフェロイドとを含む組成物。
- 前記幹細胞として、体性幹細胞を少なくとも含む、請求項41に記載の組成物。
- 前記幹細胞として、間葉系幹細胞を少なくとも含む、請求項41又は42に記載の組成物。
- スフェロイドが、1種類の幹細胞からなる、請求項41から43のいずれか一項に記載の組成物。
- 前記膵島が、α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である、請求項41から44のいずれか一項に記載の組成物。
- 前記スフェロイドが、直径100μm~500μmの球状である、請求項41から45のいずれか一項に記載の組成物。
- 複数個の前記膵島と、複数個の前記スフェロイドとを、液体培地中に含む組成物である、請求項41から46のいずれか一項に記載の組成物。
- 複数個の前記膵島と、複数個の前記スフェロイドとが、液体培地中で細胞塊を形成している、請求項41から47のいずれか一項に記載の組成物。
- 複数個の前記膵島と、複数個の前記スフェロイドとが、液体培地中で浮遊している、請求項41から47のいずれか一項に記載の組成物。
- 下記式で表されるSIが1.7以上である、請求項41から49の何れか一項に記載の組成物。
SI=20mmol/Lグルコース培地で培養時のインスリン量/3mmol/Lグルコース培地で培養時のインスリン量 - 生体への膵島移植のために使用する、請求項41から50のいずれか一項に記載の組成物。
- 膵島と、少なくとも1種類の幹細胞からなるスフェロイドとを含む、キット。
- 前記幹細胞として、体性幹細胞を少なくとも含む、請求項52に記載のキット。
- 前記幹細胞として、間葉系幹細胞を少なくとも含む、請求項52又は53に記載のキット。
- スフェロイドが、1種類の幹細胞からなる、請求項52から54のいずれか一項に記載のキット。
- 前記膵島が、α細胞、β細胞、δ細胞、ε細胞及びPP細胞の集合体である、請求項52から55のいずれか一項に記載のキット。
- 前記スフェロイドが、直径100μm~500μmの球状である、請求項52から56のいずれか一項に記載のキット。
- 生体への膵島移植のために使用する、請求項52から57のいずれか一項に記載のキット。
- 請求項41から51の何れか一項に記載の組成物、又は請求項52から58の何れか一項に記載のキットを含む、膵島移植治療剤。
- 投与部位が皮下又は筋肉内である、請求項59に記載の膵島移植治療剤。
- 請求項41から51の何れか一項に記載の組成物、又は請求項52から58の何れか一項に記載のキットを含む、血糖低下剤。
- 投与部位が皮下又は筋肉内である、請求項61に記載の血糖低下剤。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15846323.2A EP3202409A4 (en) | 2014-09-30 | 2015-09-29 | Composition, cell construct, islet transplant kit, islet cell transplant therapeutic agent and blood sugar reducing agent, composition including islets, kit including islets, and islet transplant therapeutic agent and blood sugar reducing agent |
JP2016552062A JP6466464B2 (ja) | 2014-09-30 | 2015-09-29 | 組成物、細胞構造体、膵島移植キット、膵島細胞移植治療剤及び血糖低下剤、膵島を含む組成物、膵島を含むキット、並びに膵島移植治療剤及び血糖低下剤 |
US15/472,855 US10335514B2 (en) | 2014-09-30 | 2017-03-29 | Composition, cell structure, pancreatic islet transplantation kit, pancreatic islet cell transplantation treatment agent and hypoglycemic agent, composition containing pancreatic islet, kit containing pancreatic islet, and pancreatic islet transplantation treatment agent and hypoglycemic agent |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-200220 | 2014-09-30 | ||
JP2014200220 | 2014-09-30 | ||
JP2014-262662 | 2014-12-25 | ||
JP2014-262637 | 2014-12-25 | ||
JP2014262662 | 2014-12-25 | ||
JP2014262637 | 2014-12-25 | ||
JP2015-030398 | 2015-02-19 | ||
JP2015030398 | 2015-02-19 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/472,855 Continuation US10335514B2 (en) | 2014-09-30 | 2017-03-29 | Composition, cell structure, pancreatic islet transplantation kit, pancreatic islet cell transplantation treatment agent and hypoglycemic agent, composition containing pancreatic islet, kit containing pancreatic islet, and pancreatic islet transplantation treatment agent and hypoglycemic agent |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016052504A1 true WO2016052504A1 (ja) | 2016-04-07 |
Family
ID=55630531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/077516 WO2016052504A1 (ja) | 2014-09-30 | 2015-09-29 | 組成物、細胞構造体、膵島移植キット、膵島細胞移植治療剤及び血糖低下剤、膵島を含む組成物、膵島を含むキット、並びに膵島移植治療剤及び血糖低下剤 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10335514B2 (ja) |
EP (1) | EP3202409A4 (ja) |
JP (2) | JP6466464B2 (ja) |
WO (1) | WO2016052504A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3332814A4 (en) * | 2015-08-03 | 2018-07-25 | FUJIFILM Corporation | Cell structure, non-human model animal, method for producing non-human model animal, and method for evaluating test substance |
WO2019004446A1 (ja) * | 2017-06-30 | 2019-01-03 | 富士フイルム株式会社 | ライソゾーム病処置剤 |
WO2019093468A1 (ja) * | 2017-11-10 | 2019-05-16 | 富士フイルム株式会社 | 間葉系幹細胞からインスリン産生細胞を製造する方法、インスリン産生細胞、細胞構造体および医薬組成物 |
JP2020062009A (ja) * | 2018-10-16 | 2020-04-23 | 東ソー株式会社 | 細胞培養基材、細胞培養基材の製造方法、及びスフェロイドの製造方法 |
WO2020105381A1 (ja) * | 2018-11-22 | 2020-05-28 | 株式会社日立製作所 | 細胞デバイス、細胞デバイスの製造方法及び細胞デバイスの移植方法 |
WO2020138028A1 (ja) * | 2018-12-25 | 2020-07-02 | 富士フイルム株式会社 | 細胞移植キット、袋状構造物の製造方法、および糖尿病治療剤 |
WO2021039610A1 (ja) * | 2019-08-23 | 2021-03-04 | 富士フイルム株式会社 | ミクロカプセルと細胞構造体とを含む組成物 |
US11278597B2 (en) * | 2017-03-17 | 2022-03-22 | Rutgers, The State University Of New Jersey | Compositions and methods for wound healing |
JP7513799B2 (ja) | 2017-06-14 | 2024-07-09 | バーテックス ファーマシューティカルズ インコーポレイテッド | 療法薬を送達するためのデバイスおよび方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012018127A1 (ja) * | 2010-08-06 | 2012-02-09 | 国立大学法人大阪大学 | 膵島と脂肪組織由来幹細胞を利用した膵島移植 |
JP2014012114A (ja) * | 2011-08-31 | 2014-01-23 | Fujifilm Corp | 細胞移植用細胞構造体および細胞移植用細胞集合体 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102858381B (zh) | 2010-03-01 | 2015-09-30 | 富士胶片株式会社 | 包括具有生物相容性的聚合物块和细胞的细胞构建体 |
JP5886199B2 (ja) * | 2010-08-03 | 2016-03-16 | Hoya株式会社 | 治療器具および付属器具 |
-
2015
- 2015-09-29 EP EP15846323.2A patent/EP3202409A4/en active Pending
- 2015-09-29 WO PCT/JP2015/077516 patent/WO2016052504A1/ja active Application Filing
- 2015-09-29 JP JP2016552062A patent/JP6466464B2/ja active Active
-
2017
- 2017-03-29 US US15/472,855 patent/US10335514B2/en active Active
-
2019
- 2019-01-09 JP JP2019001734A patent/JP6714736B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012018127A1 (ja) * | 2010-08-06 | 2012-02-09 | 国立大学法人大阪大学 | 膵島と脂肪組織由来幹細胞を利用した膵島移植 |
JP2014012114A (ja) * | 2011-08-31 | 2014-01-23 | Fujifilm Corp | 細胞移植用細胞構造体および細胞移植用細胞集合体 |
Non-Patent Citations (5)
Title |
---|
ITO, TAIHEI ET AL.: "Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function.", TRANSPLANTATION, vol. 89, no. 12, 2010, pages 1438 - 1445, XP002722620, DOI: doi:10.1097/TP.0b013e3181db09c4 * |
M. K. JU ET AL.: "Proliferation and Functional Assessment of Pseudo-islets With the Use of Pancreatic Endocrine Cells", TRANSPLANTATION PROCEEDINGS, vol. 45, no. 5, 2013, pages 1885 - 1888, XP055370973 * |
See also references of EP3202409A4 * |
TASNEEM BHAIJI ET AL.: "Improving cellular function and immune protection via layer-by- layer nanocoating of pancreatic islet beta- cell spheroids cocultured with mesenchymal stem cells", JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, vol. 100 A, no. 6, 2012, pages 1628 - 1636, XP055370989 * |
YANAI, GOICHI ET AL.: "Electrofusion of Mesenchymal Stem Cells and Islet Cells for Diabetes Therapy: A Rat Model", PLOS ONE, vol. 8, no. 5, 2013, pages 1 - 10, XP055370971 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3332814A4 (en) * | 2015-08-03 | 2018-07-25 | FUJIFILM Corporation | Cell structure, non-human model animal, method for producing non-human model animal, and method for evaluating test substance |
US11278597B2 (en) * | 2017-03-17 | 2022-03-22 | Rutgers, The State University Of New Jersey | Compositions and methods for wound healing |
JP7513799B2 (ja) | 2017-06-14 | 2024-07-09 | バーテックス ファーマシューティカルズ インコーポレイテッド | 療法薬を送達するためのデバイスおよび方法 |
WO2019004446A1 (ja) * | 2017-06-30 | 2019-01-03 | 富士フイルム株式会社 | ライソゾーム病処置剤 |
CN110913920A (zh) * | 2017-06-30 | 2020-03-24 | 富士胶片株式会社 | 溶酶体贮积病处置剂 |
US11999804B2 (en) | 2017-06-30 | 2024-06-04 | Fujifilm Corporation | Treatment agent for lysosomal storage disease |
JPWO2019004446A1 (ja) * | 2017-06-30 | 2020-05-21 | 富士フイルム株式会社 | ライソゾーム病処置剤 |
JP2022079721A (ja) * | 2017-11-10 | 2022-05-26 | 富士フイルム株式会社 | 間葉系幹細胞からインスリン産生細胞を製造する方法、インスリン産生細胞、細胞構造体および医薬組成物 |
CN111344393A (zh) * | 2017-11-10 | 2020-06-26 | 富士胶片株式会社 | 从间充质干细胞制造胰岛素产生细胞的方法、胰岛素产生细胞、细胞构建体及医药组合物 |
WO2019093468A1 (ja) * | 2017-11-10 | 2019-05-16 | 富士フイルム株式会社 | 間葉系幹細胞からインスリン産生細胞を製造する方法、インスリン産生細胞、細胞構造体および医薬組成物 |
JPWO2019093468A1 (ja) * | 2017-11-10 | 2021-01-14 | 富士フイルム株式会社 | 間葉系幹細胞からインスリン産生細胞を製造する方法、インスリン産生細胞、細胞構造体および医薬組成物 |
US12018282B2 (en) | 2017-11-10 | 2024-06-25 | Fujifilm Corporation | Method for producing insulin-producing cell from mesenchymal stem cell, insulin-producing cell, cell structure, and pharmaceutical composition |
JP7360672B2 (ja) | 2017-11-10 | 2023-10-13 | 富士フイルム株式会社 | 間葉系幹細胞からインスリン産生細胞を製造する方法、インスリン産生細胞、細胞構造体および医薬組成物 |
JP7078939B2 (ja) | 2017-11-10 | 2022-06-01 | 富士フイルム株式会社 | 間葉系幹細胞からインスリン産生細胞を製造する方法、インスリン産生細胞、細胞構造体および医薬組成物 |
JP2020062009A (ja) * | 2018-10-16 | 2020-04-23 | 東ソー株式会社 | 細胞培養基材、細胞培養基材の製造方法、及びスフェロイドの製造方法 |
WO2020080364A1 (ja) * | 2018-10-16 | 2020-04-23 | 東ソー株式会社 | 細胞培養基材、細胞培養基材の製造方法、及びスフェロイドの製造方法 |
WO2020105381A1 (ja) * | 2018-11-22 | 2020-05-28 | 株式会社日立製作所 | 細胞デバイス、細胞デバイスの製造方法及び細胞デバイスの移植方法 |
JP7260563B2 (ja) | 2018-12-25 | 2023-04-18 | 富士フイルム株式会社 | 細胞移植キット、袋状構造物の製造方法、および糖尿病治療剤 |
JPWO2020138028A1 (ja) * | 2018-12-25 | 2021-10-21 | 富士フイルム株式会社 | 細胞移植キット、袋状構造物の製造方法、および糖尿病治療剤 |
WO2020138028A1 (ja) * | 2018-12-25 | 2020-07-02 | 富士フイルム株式会社 | 細胞移植キット、袋状構造物の製造方法、および糖尿病治療剤 |
JP7431247B2 (ja) | 2019-08-23 | 2024-02-14 | 富士フイルム株式会社 | ミクロカプセルと細胞構造体とを含む組成物 |
JPWO2021039610A1 (ja) * | 2019-08-23 | 2021-03-04 | ||
WO2021039610A1 (ja) * | 2019-08-23 | 2021-03-04 | 富士フイルム株式会社 | ミクロカプセルと細胞構造体とを含む組成物 |
Also Published As
Publication number | Publication date |
---|---|
US10335514B2 (en) | 2019-07-02 |
US20170203005A1 (en) | 2017-07-20 |
EP3202409A1 (en) | 2017-08-09 |
JP6714736B2 (ja) | 2020-06-24 |
EP3202409A4 (en) | 2017-11-22 |
JPWO2016052504A1 (ja) | 2017-07-06 |
JP6466464B2 (ja) | 2019-02-06 |
JP2019056009A (ja) | 2019-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6714736B2 (ja) | 組成物、細胞構造体、膵島移植キット、膵島細胞移植治療剤及び血糖低下剤、膵島を含む組成物、膵島を含むキット、並びに膵島移植治療剤及び血糖低下剤 | |
JP6130903B2 (ja) | 細胞移植用細胞構造体、生体親和性高分子ブロック及びそれらの製造方法 | |
JP5876787B2 (ja) | 細胞移植用細胞構造体および細胞移植用細胞集合体 | |
JP6330042B2 (ja) | 脳損傷治療用細胞構造体、その製造方法、及び脳損傷治療剤 | |
JP6535072B2 (ja) | 生体親和性高分子多孔質体の製造方法、生体親和性高分子多孔質体、生体親和性高分子ブロック並びに細胞構造体 | |
WO2017221879A1 (ja) | トロフィックファクタ放出剤および炎症疾患処置剤 | |
JP6330039B2 (ja) | 細胞構造体及び細胞構造体の製造方法 | |
JP6510663B2 (ja) | シート状細胞構造体の製造方法及びシート状細胞構造体 | |
JP5990298B2 (ja) | 細胞移植用細胞構造体および細胞移植用細胞集合体 | |
JP6961560B2 (ja) | 管状構造物、管状構造物を製造するための装置、及び管状構造物の製造方法 | |
US10898612B2 (en) | Cell structure and method for producing cell structure | |
JP2016136848A (ja) | 薬剤の評価方法及び薬剤スクリーニング方法 | |
WO2018169065A1 (ja) | 細胞構造体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15846323 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016552062 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015846323 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015846323 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |